ieee1394: SPIN_LOCK_UNLOCKED cleanup
[deliverable/linux.git] / drivers / ieee1394 / ieee1394_transactions.c
1 /*
2 * IEEE 1394 for Linux
3 *
4 * Transaction support.
5 *
6 * Copyright (C) 1999 Andreas E. Bombe
7 *
8 * This code is licensed under the GPL. See the file COPYING in the root
9 * directory of the kernel sources for details.
10 */
11
12 #include <linux/bitops.h>
13 #include <linux/compiler.h>
14 #include <linux/hardirq.h>
15 #include <linux/spinlock.h>
16 #include <linux/string.h>
17 #include <linux/sched.h> /* because linux/wait.h is broken if CONFIG_SMP=n */
18 #include <linux/wait.h>
19
20 #include <asm/bug.h>
21 #include <asm/errno.h>
22 #include <asm/system.h>
23
24 #include "ieee1394.h"
25 #include "ieee1394_types.h"
26 #include "hosts.h"
27 #include "ieee1394_core.h"
28 #include "ieee1394_transactions.h"
29
30 #define PREP_ASYNC_HEAD_ADDRESS(tc) \
31 packet->tcode = tc; \
32 packet->header[0] = (packet->node_id << 16) | (packet->tlabel << 10) \
33 | (1 << 8) | (tc << 4); \
34 packet->header[1] = (packet->host->node_id << 16) | (addr >> 32); \
35 packet->header[2] = addr & 0xffffffff
36
37 #ifndef HPSB_DEBUG_TLABELS
38 static
39 #endif
40 DEFINE_SPINLOCK(hpsb_tlabel_lock);
41
42 static DECLARE_WAIT_QUEUE_HEAD(tlabel_wq);
43
44 static void fill_async_readquad(struct hpsb_packet *packet, u64 addr)
45 {
46 PREP_ASYNC_HEAD_ADDRESS(TCODE_READQ);
47 packet->header_size = 12;
48 packet->data_size = 0;
49 packet->expect_response = 1;
50 }
51
52 static void fill_async_readblock(struct hpsb_packet *packet, u64 addr,
53 int length)
54 {
55 PREP_ASYNC_HEAD_ADDRESS(TCODE_READB);
56 packet->header[3] = length << 16;
57 packet->header_size = 16;
58 packet->data_size = 0;
59 packet->expect_response = 1;
60 }
61
62 static void fill_async_writequad(struct hpsb_packet *packet, u64 addr,
63 quadlet_t data)
64 {
65 PREP_ASYNC_HEAD_ADDRESS(TCODE_WRITEQ);
66 packet->header[3] = data;
67 packet->header_size = 16;
68 packet->data_size = 0;
69 packet->expect_response = 1;
70 }
71
72 static void fill_async_writeblock(struct hpsb_packet *packet, u64 addr,
73 int length)
74 {
75 PREP_ASYNC_HEAD_ADDRESS(TCODE_WRITEB);
76 packet->header[3] = length << 16;
77 packet->header_size = 16;
78 packet->expect_response = 1;
79 packet->data_size = length + (length % 4 ? 4 - (length % 4) : 0);
80 }
81
82 static void fill_async_lock(struct hpsb_packet *packet, u64 addr, int extcode,
83 int length)
84 {
85 PREP_ASYNC_HEAD_ADDRESS(TCODE_LOCK_REQUEST);
86 packet->header[3] = (length << 16) | extcode;
87 packet->header_size = 16;
88 packet->data_size = length;
89 packet->expect_response = 1;
90 }
91
92 static void fill_iso_packet(struct hpsb_packet *packet, int length, int channel,
93 int tag, int sync)
94 {
95 packet->header[0] = (length << 16) | (tag << 14) | (channel << 8)
96 | (TCODE_ISO_DATA << 4) | sync;
97
98 packet->header_size = 4;
99 packet->data_size = length;
100 packet->type = hpsb_iso;
101 packet->tcode = TCODE_ISO_DATA;
102 }
103
104 static void fill_phy_packet(struct hpsb_packet *packet, quadlet_t data)
105 {
106 packet->header[0] = data;
107 packet->header[1] = ~data;
108 packet->header_size = 8;
109 packet->data_size = 0;
110 packet->expect_response = 0;
111 packet->type = hpsb_raw; /* No CRC added */
112 packet->speed_code = IEEE1394_SPEED_100; /* Force speed to be 100Mbps */
113 }
114
115 static void fill_async_stream_packet(struct hpsb_packet *packet, int length,
116 int channel, int tag, int sync)
117 {
118 packet->header[0] = (length << 16) | (tag << 14) | (channel << 8)
119 | (TCODE_STREAM_DATA << 4) | sync;
120
121 packet->header_size = 4;
122 packet->data_size = length;
123 packet->type = hpsb_async;
124 packet->tcode = TCODE_ISO_DATA;
125 }
126
127 /* same as hpsb_get_tlabel, except that it returns immediately */
128 static int hpsb_get_tlabel_atomic(struct hpsb_packet *packet)
129 {
130 unsigned long flags, *tp;
131 u8 *next;
132 int tlabel, n = NODEID_TO_NODE(packet->node_id);
133
134 /* Broadcast transactions are complete once the request has been sent.
135 * Use the same transaction label for all broadcast transactions. */
136 if (unlikely(n == ALL_NODES)) {
137 packet->tlabel = 0;
138 return 0;
139 }
140 tp = packet->host->tl_pool[n].map;
141 next = &packet->host->next_tl[n];
142
143 spin_lock_irqsave(&hpsb_tlabel_lock, flags);
144 tlabel = find_next_zero_bit(tp, 64, *next);
145 if (tlabel > 63)
146 tlabel = find_first_zero_bit(tp, 64);
147 if (tlabel > 63) {
148 spin_unlock_irqrestore(&hpsb_tlabel_lock, flags);
149 return -EAGAIN;
150 }
151 __set_bit(tlabel, tp);
152 *next = (tlabel + 1) & 63;
153 spin_unlock_irqrestore(&hpsb_tlabel_lock, flags);
154
155 packet->tlabel = tlabel;
156 return 0;
157 }
158
159 /**
160 * hpsb_get_tlabel - allocate a transaction label
161 * @packet: the packet whose tlabel and tl_pool we set
162 *
163 * Every asynchronous transaction on the 1394 bus needs a transaction
164 * label to match the response to the request. This label has to be
165 * different from any other transaction label in an outstanding request to
166 * the same node to make matching possible without ambiguity.
167 *
168 * There are 64 different tlabels, so an allocated tlabel has to be freed
169 * with hpsb_free_tlabel() after the transaction is complete (unless it's
170 * reused again for the same target node).
171 *
172 * Return value: Zero on success, otherwise non-zero. A non-zero return
173 * generally means there are no available tlabels. If this is called out
174 * of interrupt or atomic context, then it will sleep until can return a
175 * tlabel or a signal is received.
176 */
177 int hpsb_get_tlabel(struct hpsb_packet *packet)
178 {
179 if (irqs_disabled() || in_atomic())
180 return hpsb_get_tlabel_atomic(packet);
181
182 /* NB: The macro wait_event_interruptible() is called with a condition
183 * argument with side effect. This is only possible because the side
184 * effect does not occur until the condition became true, and
185 * wait_event_interruptible() won't evaluate the condition again after
186 * that. */
187 return wait_event_interruptible(tlabel_wq,
188 !hpsb_get_tlabel_atomic(packet));
189 }
190
191 /**
192 * hpsb_free_tlabel - free an allocated transaction label
193 * @packet: packet whose tlabel and tl_pool needs to be cleared
194 *
195 * Frees the transaction label allocated with hpsb_get_tlabel(). The
196 * tlabel has to be freed after the transaction is complete (i.e. response
197 * was received for a split transaction or packet was sent for a unified
198 * transaction).
199 *
200 * A tlabel must not be freed twice.
201 */
202 void hpsb_free_tlabel(struct hpsb_packet *packet)
203 {
204 unsigned long flags, *tp;
205 int tlabel, n = NODEID_TO_NODE(packet->node_id);
206
207 if (unlikely(n == ALL_NODES))
208 return;
209 tp = packet->host->tl_pool[n].map;
210 tlabel = packet->tlabel;
211 BUG_ON(tlabel > 63 || tlabel < 0);
212
213 spin_lock_irqsave(&hpsb_tlabel_lock, flags);
214 BUG_ON(!__test_and_clear_bit(tlabel, tp));
215 spin_unlock_irqrestore(&hpsb_tlabel_lock, flags);
216
217 wake_up_interruptible(&tlabel_wq);
218 }
219
220 /**
221 * hpsb_packet_success - Make sense of the ack and reply codes
222 *
223 * Make sense of the ack and reply codes and return more convenient error codes:
224 * 0 = success. -%EBUSY = node is busy, try again. -%EAGAIN = error which can
225 * probably resolved by retry. -%EREMOTEIO = node suffers from an internal
226 * error. -%EACCES = this transaction is not allowed on requested address.
227 * -%EINVAL = invalid address at node.
228 */
229 int hpsb_packet_success(struct hpsb_packet *packet)
230 {
231 switch (packet->ack_code) {
232 case ACK_PENDING:
233 switch ((packet->header[1] >> 12) & 0xf) {
234 case RCODE_COMPLETE:
235 return 0;
236 case RCODE_CONFLICT_ERROR:
237 return -EAGAIN;
238 case RCODE_DATA_ERROR:
239 return -EREMOTEIO;
240 case RCODE_TYPE_ERROR:
241 return -EACCES;
242 case RCODE_ADDRESS_ERROR:
243 return -EINVAL;
244 default:
245 HPSB_ERR("received reserved rcode %d from node %d",
246 (packet->header[1] >> 12) & 0xf,
247 packet->node_id);
248 return -EAGAIN;
249 }
250 BUG();
251
252 case ACK_BUSY_X:
253 case ACK_BUSY_A:
254 case ACK_BUSY_B:
255 return -EBUSY;
256
257 case ACK_TYPE_ERROR:
258 return -EACCES;
259
260 case ACK_COMPLETE:
261 if (packet->tcode == TCODE_WRITEQ
262 || packet->tcode == TCODE_WRITEB) {
263 return 0;
264 } else {
265 HPSB_ERR("impossible ack_complete from node %d "
266 "(tcode %d)", packet->node_id, packet->tcode);
267 return -EAGAIN;
268 }
269
270 case ACK_DATA_ERROR:
271 if (packet->tcode == TCODE_WRITEB
272 || packet->tcode == TCODE_LOCK_REQUEST) {
273 return -EAGAIN;
274 } else {
275 HPSB_ERR("impossible ack_data_error from node %d "
276 "(tcode %d)", packet->node_id, packet->tcode);
277 return -EAGAIN;
278 }
279
280 case ACK_ADDRESS_ERROR:
281 return -EINVAL;
282
283 case ACK_TARDY:
284 case ACK_CONFLICT_ERROR:
285 case ACKX_NONE:
286 case ACKX_SEND_ERROR:
287 case ACKX_ABORTED:
288 case ACKX_TIMEOUT:
289 /* error while sending */
290 return -EAGAIN;
291
292 default:
293 HPSB_ERR("got invalid ack %d from node %d (tcode %d)",
294 packet->ack_code, packet->node_id, packet->tcode);
295 return -EAGAIN;
296 }
297 BUG();
298 }
299
300 struct hpsb_packet *hpsb_make_readpacket(struct hpsb_host *host, nodeid_t node,
301 u64 addr, size_t length)
302 {
303 struct hpsb_packet *packet;
304
305 if (length == 0)
306 return NULL;
307
308 packet = hpsb_alloc_packet(length);
309 if (!packet)
310 return NULL;
311
312 packet->host = host;
313 packet->node_id = node;
314
315 if (hpsb_get_tlabel(packet)) {
316 hpsb_free_packet(packet);
317 return NULL;
318 }
319
320 if (length == 4)
321 fill_async_readquad(packet, addr);
322 else
323 fill_async_readblock(packet, addr, length);
324
325 return packet;
326 }
327
328 struct hpsb_packet *hpsb_make_writepacket(struct hpsb_host *host, nodeid_t node,
329 u64 addr, quadlet_t * buffer,
330 size_t length)
331 {
332 struct hpsb_packet *packet;
333
334 if (length == 0)
335 return NULL;
336
337 packet = hpsb_alloc_packet(length);
338 if (!packet)
339 return NULL;
340
341 if (length % 4) { /* zero padding bytes */
342 packet->data[length >> 2] = 0;
343 }
344 packet->host = host;
345 packet->node_id = node;
346
347 if (hpsb_get_tlabel(packet)) {
348 hpsb_free_packet(packet);
349 return NULL;
350 }
351
352 if (length == 4) {
353 fill_async_writequad(packet, addr, buffer ? *buffer : 0);
354 } else {
355 fill_async_writeblock(packet, addr, length);
356 if (buffer)
357 memcpy(packet->data, buffer, length);
358 }
359
360 return packet;
361 }
362
363 struct hpsb_packet *hpsb_make_streampacket(struct hpsb_host *host, u8 * buffer,
364 int length, int channel, int tag,
365 int sync)
366 {
367 struct hpsb_packet *packet;
368
369 if (length == 0)
370 return NULL;
371
372 packet = hpsb_alloc_packet(length);
373 if (!packet)
374 return NULL;
375
376 if (length % 4) { /* zero padding bytes */
377 packet->data[length >> 2] = 0;
378 }
379 packet->host = host;
380
381 if (hpsb_get_tlabel(packet)) {
382 hpsb_free_packet(packet);
383 return NULL;
384 }
385
386 fill_async_stream_packet(packet, length, channel, tag, sync);
387 if (buffer)
388 memcpy(packet->data, buffer, length);
389
390 return packet;
391 }
392
393 struct hpsb_packet *hpsb_make_lockpacket(struct hpsb_host *host, nodeid_t node,
394 u64 addr, int extcode,
395 quadlet_t * data, quadlet_t arg)
396 {
397 struct hpsb_packet *p;
398 u32 length;
399
400 p = hpsb_alloc_packet(8);
401 if (!p)
402 return NULL;
403
404 p->host = host;
405 p->node_id = node;
406 if (hpsb_get_tlabel(p)) {
407 hpsb_free_packet(p);
408 return NULL;
409 }
410
411 switch (extcode) {
412 case EXTCODE_FETCH_ADD:
413 case EXTCODE_LITTLE_ADD:
414 length = 4;
415 if (data)
416 p->data[0] = *data;
417 break;
418 default:
419 length = 8;
420 if (data) {
421 p->data[0] = arg;
422 p->data[1] = *data;
423 }
424 break;
425 }
426 fill_async_lock(p, addr, extcode, length);
427
428 return p;
429 }
430
431 struct hpsb_packet *hpsb_make_lock64packet(struct hpsb_host *host,
432 nodeid_t node, u64 addr, int extcode,
433 octlet_t * data, octlet_t arg)
434 {
435 struct hpsb_packet *p;
436 u32 length;
437
438 p = hpsb_alloc_packet(16);
439 if (!p)
440 return NULL;
441
442 p->host = host;
443 p->node_id = node;
444 if (hpsb_get_tlabel(p)) {
445 hpsb_free_packet(p);
446 return NULL;
447 }
448
449 switch (extcode) {
450 case EXTCODE_FETCH_ADD:
451 case EXTCODE_LITTLE_ADD:
452 length = 8;
453 if (data) {
454 p->data[0] = *data >> 32;
455 p->data[1] = *data & 0xffffffff;
456 }
457 break;
458 default:
459 length = 16;
460 if (data) {
461 p->data[0] = arg >> 32;
462 p->data[1] = arg & 0xffffffff;
463 p->data[2] = *data >> 32;
464 p->data[3] = *data & 0xffffffff;
465 }
466 break;
467 }
468 fill_async_lock(p, addr, extcode, length);
469
470 return p;
471 }
472
473 struct hpsb_packet *hpsb_make_phypacket(struct hpsb_host *host, quadlet_t data)
474 {
475 struct hpsb_packet *p;
476
477 p = hpsb_alloc_packet(0);
478 if (!p)
479 return NULL;
480
481 p->host = host;
482 fill_phy_packet(p, data);
483
484 return p;
485 }
486
487 struct hpsb_packet *hpsb_make_isopacket(struct hpsb_host *host,
488 int length, int channel,
489 int tag, int sync)
490 {
491 struct hpsb_packet *p;
492
493 p = hpsb_alloc_packet(length);
494 if (!p)
495 return NULL;
496
497 p->host = host;
498 fill_iso_packet(p, length, channel, tag, sync);
499
500 p->generation = get_hpsb_generation(host);
501
502 return p;
503 }
504
505 /*
506 * FIXME - these functions should probably read from / write to user space to
507 * avoid in kernel buffers for user space callers
508 */
509
510 /**
511 * hpsb_read - generic read function
512 *
513 * Recognizes the local node ID and act accordingly. Automatically uses a
514 * quadlet read request if @length == 4 and and a block read request otherwise.
515 * It does not yet support lengths that are not a multiple of 4.
516 *
517 * You must explicitly specifiy the @generation for which the node ID is valid,
518 * to avoid sending packets to the wrong nodes when we race with a bus reset.
519 */
520 int hpsb_read(struct hpsb_host *host, nodeid_t node, unsigned int generation,
521 u64 addr, quadlet_t * buffer, size_t length)
522 {
523 struct hpsb_packet *packet;
524 int retval = 0;
525
526 if (length == 0)
527 return -EINVAL;
528
529 BUG_ON(in_interrupt()); // We can't be called in an interrupt, yet
530
531 packet = hpsb_make_readpacket(host, node, addr, length);
532
533 if (!packet) {
534 return -ENOMEM;
535 }
536
537 packet->generation = generation;
538 retval = hpsb_send_packet_and_wait(packet);
539 if (retval < 0)
540 goto hpsb_read_fail;
541
542 retval = hpsb_packet_success(packet);
543
544 if (retval == 0) {
545 if (length == 4) {
546 *buffer = packet->header[3];
547 } else {
548 memcpy(buffer, packet->data, length);
549 }
550 }
551
552 hpsb_read_fail:
553 hpsb_free_tlabel(packet);
554 hpsb_free_packet(packet);
555
556 return retval;
557 }
558
559 /**
560 * hpsb_write - generic write function
561 *
562 * Recognizes the local node ID and act accordingly. Automatically uses a
563 * quadlet write request if @length == 4 and and a block write request
564 * otherwise. It does not yet support lengths that are not a multiple of 4.
565 *
566 * You must explicitly specifiy the @generation for which the node ID is valid,
567 * to avoid sending packets to the wrong nodes when we race with a bus reset.
568 */
569 int hpsb_write(struct hpsb_host *host, nodeid_t node, unsigned int generation,
570 u64 addr, quadlet_t * buffer, size_t length)
571 {
572 struct hpsb_packet *packet;
573 int retval;
574
575 if (length == 0)
576 return -EINVAL;
577
578 BUG_ON(in_interrupt()); // We can't be called in an interrupt, yet
579
580 packet = hpsb_make_writepacket(host, node, addr, buffer, length);
581
582 if (!packet)
583 return -ENOMEM;
584
585 packet->generation = generation;
586 retval = hpsb_send_packet_and_wait(packet);
587 if (retval < 0)
588 goto hpsb_write_fail;
589
590 retval = hpsb_packet_success(packet);
591
592 hpsb_write_fail:
593 hpsb_free_tlabel(packet);
594 hpsb_free_packet(packet);
595
596 return retval;
597 }
598
599 #if 0
600
601 int hpsb_lock(struct hpsb_host *host, nodeid_t node, unsigned int generation,
602 u64 addr, int extcode, quadlet_t * data, quadlet_t arg)
603 {
604 struct hpsb_packet *packet;
605 int retval = 0;
606
607 BUG_ON(in_interrupt()); // We can't be called in an interrupt, yet
608
609 packet = hpsb_make_lockpacket(host, node, addr, extcode, data, arg);
610 if (!packet)
611 return -ENOMEM;
612
613 packet->generation = generation;
614 retval = hpsb_send_packet_and_wait(packet);
615 if (retval < 0)
616 goto hpsb_lock_fail;
617
618 retval = hpsb_packet_success(packet);
619
620 if (retval == 0) {
621 *data = packet->data[0];
622 }
623
624 hpsb_lock_fail:
625 hpsb_free_tlabel(packet);
626 hpsb_free_packet(packet);
627
628 return retval;
629 }
630
631 int hpsb_send_gasp(struct hpsb_host *host, int channel, unsigned int generation,
632 quadlet_t * buffer, size_t length, u32 specifier_id,
633 unsigned int version)
634 {
635 struct hpsb_packet *packet;
636 int retval = 0;
637 u16 specifier_id_hi = (specifier_id & 0x00ffff00) >> 8;
638 u8 specifier_id_lo = specifier_id & 0xff;
639
640 HPSB_VERBOSE("Send GASP: channel = %d, length = %Zd", channel, length);
641
642 length += 8;
643
644 packet = hpsb_make_streampacket(host, NULL, length, channel, 3, 0);
645 if (!packet)
646 return -ENOMEM;
647
648 packet->data[0] = cpu_to_be32((host->node_id << 16) | specifier_id_hi);
649 packet->data[1] =
650 cpu_to_be32((specifier_id_lo << 24) | (version & 0x00ffffff));
651
652 memcpy(&(packet->data[2]), buffer, length - 8);
653
654 packet->generation = generation;
655
656 packet->no_waiter = 1;
657
658 retval = hpsb_send_packet(packet);
659 if (retval < 0)
660 hpsb_free_packet(packet);
661
662 return retval;
663 }
664
665 #endif /* 0 */
This page took 0.045948 seconds and 6 git commands to generate.