[IA64] update sn2_defconfig
[deliverable/linux.git] / drivers / ieee1394 / nodemgr.c
1 /*
2 * Node information (ConfigROM) collection and management.
3 *
4 * Copyright (C) 2000 Andreas E. Bombe
5 * 2001-2003 Ben Collins <bcollins@debian.net>
6 *
7 * This code is licensed under the GPL. See the file COPYING in the root
8 * directory of the kernel sources for details.
9 */
10
11 #include <linux/bitmap.h>
12 #include <linux/kernel.h>
13 #include <linux/list.h>
14 #include <linux/slab.h>
15 #include <linux/delay.h>
16 #include <linux/kthread.h>
17 #include <linux/module.h>
18 #include <linux/moduleparam.h>
19 #include <linux/mutex.h>
20 #include <linux/freezer.h>
21 #include <asm/atomic.h>
22 #include <asm/semaphore.h>
23
24 #include "csr.h"
25 #include "highlevel.h"
26 #include "hosts.h"
27 #include "ieee1394.h"
28 #include "ieee1394_core.h"
29 #include "ieee1394_hotplug.h"
30 #include "ieee1394_types.h"
31 #include "ieee1394_transactions.h"
32 #include "nodemgr.h"
33
34 static int ignore_drivers;
35 module_param(ignore_drivers, int, S_IRUGO | S_IWUSR);
36 MODULE_PARM_DESC(ignore_drivers, "Disable automatic probing for drivers.");
37
38 struct nodemgr_csr_info {
39 struct hpsb_host *host;
40 nodeid_t nodeid;
41 unsigned int generation;
42 unsigned int speed_unverified:1;
43 };
44
45
46 /*
47 * Correct the speed map entry. This is necessary
48 * - for nodes with link speed < phy speed,
49 * - for 1394b nodes with negotiated phy port speed < IEEE1394_SPEED_MAX.
50 * A possible speed is determined by trial and error, using quadlet reads.
51 */
52 static int nodemgr_check_speed(struct nodemgr_csr_info *ci, u64 addr,
53 quadlet_t *buffer)
54 {
55 quadlet_t q;
56 u8 i, *speed, old_speed, good_speed;
57 int error;
58
59 speed = &(ci->host->speed[NODEID_TO_NODE(ci->nodeid)]);
60 old_speed = *speed;
61 good_speed = IEEE1394_SPEED_MAX + 1;
62
63 /* Try every speed from S100 to old_speed.
64 * If we did it the other way around, a too low speed could be caught
65 * if the retry succeeded for some other reason, e.g. because the link
66 * just finished its initialization. */
67 for (i = IEEE1394_SPEED_100; i <= old_speed; i++) {
68 *speed = i;
69 error = hpsb_read(ci->host, ci->nodeid, ci->generation, addr,
70 &q, sizeof(quadlet_t));
71 if (error)
72 break;
73 *buffer = q;
74 good_speed = i;
75 }
76 if (good_speed <= IEEE1394_SPEED_MAX) {
77 HPSB_DEBUG("Speed probe of node " NODE_BUS_FMT " yields %s",
78 NODE_BUS_ARGS(ci->host, ci->nodeid),
79 hpsb_speedto_str[good_speed]);
80 *speed = good_speed;
81 ci->speed_unverified = 0;
82 return 0;
83 }
84 *speed = old_speed;
85 return error;
86 }
87
88 static int nodemgr_bus_read(struct csr1212_csr *csr, u64 addr, u16 length,
89 void *buffer, void *__ci)
90 {
91 struct nodemgr_csr_info *ci = (struct nodemgr_csr_info*)__ci;
92 int i, error;
93
94 for (i = 1; ; i++) {
95 error = hpsb_read(ci->host, ci->nodeid, ci->generation, addr,
96 buffer, length);
97 if (!error) {
98 ci->speed_unverified = 0;
99 break;
100 }
101 /* Give up after 3rd failure. */
102 if (i == 3)
103 break;
104
105 /* The ieee1394_core guessed the node's speed capability from
106 * the self ID. Check whether a lower speed works. */
107 if (ci->speed_unverified && length == sizeof(quadlet_t)) {
108 error = nodemgr_check_speed(ci, addr, buffer);
109 if (!error)
110 break;
111 }
112 if (msleep_interruptible(334))
113 return -EINTR;
114 }
115 return error;
116 }
117
118 static int nodemgr_get_max_rom(quadlet_t *bus_info_data, void *__ci)
119 {
120 return (be32_to_cpu(bus_info_data[2]) >> 8) & 0x3;
121 }
122
123 static struct csr1212_bus_ops nodemgr_csr_ops = {
124 .bus_read = nodemgr_bus_read,
125 .get_max_rom = nodemgr_get_max_rom
126 };
127
128
129 /*
130 * Basically what we do here is start off retrieving the bus_info block.
131 * From there will fill in some info about the node, verify it is of IEEE
132 * 1394 type, and that the crc checks out ok. After that we start off with
133 * the root directory, and subdirectories. To do this, we retrieve the
134 * quadlet header for a directory, find out the length, and retrieve the
135 * complete directory entry (be it a leaf or a directory). We then process
136 * it and add the info to our structure for that particular node.
137 *
138 * We verify CRC's along the way for each directory/block/leaf. The entire
139 * node structure is generic, and simply stores the information in a way
140 * that's easy to parse by the protocol interface.
141 */
142
143 /*
144 * The nodemgr relies heavily on the Driver Model for device callbacks and
145 * driver/device mappings. The old nodemgr used to handle all this itself,
146 * but now we are much simpler because of the LDM.
147 */
148
149 struct host_info {
150 struct hpsb_host *host;
151 struct list_head list;
152 struct task_struct *thread;
153 };
154
155 static int nodemgr_bus_match(struct device * dev, struct device_driver * drv);
156 static int nodemgr_uevent(struct device *dev, char **envp, int num_envp,
157 char *buffer, int buffer_size);
158 static void nodemgr_resume_ne(struct node_entry *ne);
159 static void nodemgr_remove_ne(struct node_entry *ne);
160 static struct node_entry *find_entry_by_guid(u64 guid);
161
162 struct bus_type ieee1394_bus_type = {
163 .name = "ieee1394",
164 .match = nodemgr_bus_match,
165 };
166
167 static void host_cls_release(struct device *dev)
168 {
169 put_device(&container_of((dev), struct hpsb_host, host_dev)->device);
170 }
171
172 struct class hpsb_host_class = {
173 .name = "ieee1394_host",
174 .dev_release = host_cls_release,
175 };
176
177 static void ne_cls_release(struct device *dev)
178 {
179 put_device(&container_of((dev), struct node_entry, node_dev)->device);
180 }
181
182 static struct class nodemgr_ne_class = {
183 .name = "ieee1394_node",
184 .dev_release = ne_cls_release,
185 };
186
187 static void ud_cls_release(struct device *dev)
188 {
189 put_device(&container_of((dev), struct unit_directory, unit_dev)->device);
190 }
191
192 /* The name here is only so that unit directory hotplug works with old
193 * style hotplug, which only ever did unit directories anyway.
194 */
195 static struct class nodemgr_ud_class = {
196 .name = "ieee1394",
197 .dev_release = ud_cls_release,
198 .dev_uevent = nodemgr_uevent,
199 };
200
201 static struct hpsb_highlevel nodemgr_highlevel;
202
203
204 static void nodemgr_release_ud(struct device *dev)
205 {
206 struct unit_directory *ud = container_of(dev, struct unit_directory, device);
207
208 if (ud->vendor_name_kv)
209 csr1212_release_keyval(ud->vendor_name_kv);
210 if (ud->model_name_kv)
211 csr1212_release_keyval(ud->model_name_kv);
212
213 kfree(ud);
214 }
215
216 static void nodemgr_release_ne(struct device *dev)
217 {
218 struct node_entry *ne = container_of(dev, struct node_entry, device);
219
220 if (ne->vendor_name_kv)
221 csr1212_release_keyval(ne->vendor_name_kv);
222
223 kfree(ne);
224 }
225
226
227 static void nodemgr_release_host(struct device *dev)
228 {
229 struct hpsb_host *host = container_of(dev, struct hpsb_host, device);
230
231 csr1212_destroy_csr(host->csr.rom);
232
233 kfree(host);
234 }
235
236 static int nodemgr_ud_platform_data;
237
238 static struct device nodemgr_dev_template_ud = {
239 .bus = &ieee1394_bus_type,
240 .release = nodemgr_release_ud,
241 .platform_data = &nodemgr_ud_platform_data,
242 };
243
244 static struct device nodemgr_dev_template_ne = {
245 .bus = &ieee1394_bus_type,
246 .release = nodemgr_release_ne,
247 };
248
249 /* This dummy driver prevents the host devices from being scanned. We have no
250 * useful drivers for them yet, and there would be a deadlock possible if the
251 * driver core scans the host device while the host's low-level driver (i.e.
252 * the host's parent device) is being removed. */
253 static struct device_driver nodemgr_mid_layer_driver = {
254 .bus = &ieee1394_bus_type,
255 .name = "nodemgr",
256 .owner = THIS_MODULE,
257 };
258
259 struct device nodemgr_dev_template_host = {
260 .bus = &ieee1394_bus_type,
261 .release = nodemgr_release_host,
262 };
263
264
265 #define fw_attr(class, class_type, field, type, format_string) \
266 static ssize_t fw_show_##class##_##field (struct device *dev, struct device_attribute *attr, char *buf)\
267 { \
268 class_type *class; \
269 class = container_of(dev, class_type, device); \
270 return sprintf(buf, format_string, (type)class->field); \
271 } \
272 static struct device_attribute dev_attr_##class##_##field = { \
273 .attr = {.name = __stringify(field), .mode = S_IRUGO }, \
274 .show = fw_show_##class##_##field, \
275 };
276
277 #define fw_attr_td(class, class_type, td_kv) \
278 static ssize_t fw_show_##class##_##td_kv (struct device *dev, struct device_attribute *attr, char *buf)\
279 { \
280 int len; \
281 class_type *class = container_of(dev, class_type, device); \
282 len = (class->td_kv->value.leaf.len - 2) * sizeof(quadlet_t); \
283 memcpy(buf, \
284 CSR1212_TEXTUAL_DESCRIPTOR_LEAF_DATA(class->td_kv), \
285 len); \
286 while (buf[len - 1] == '\0') \
287 len--; \
288 buf[len++] = '\n'; \
289 buf[len] = '\0'; \
290 return len; \
291 } \
292 static struct device_attribute dev_attr_##class##_##td_kv = { \
293 .attr = {.name = __stringify(td_kv), .mode = S_IRUGO }, \
294 .show = fw_show_##class##_##td_kv, \
295 };
296
297
298 #define fw_drv_attr(field, type, format_string) \
299 static ssize_t fw_drv_show_##field (struct device_driver *drv, char *buf) \
300 { \
301 struct hpsb_protocol_driver *driver; \
302 driver = container_of(drv, struct hpsb_protocol_driver, driver); \
303 return sprintf(buf, format_string, (type)driver->field);\
304 } \
305 static struct driver_attribute driver_attr_drv_##field = { \
306 .attr = {.name = __stringify(field), .mode = S_IRUGO }, \
307 .show = fw_drv_show_##field, \
308 };
309
310
311 static ssize_t fw_show_ne_bus_options(struct device *dev, struct device_attribute *attr, char *buf)
312 {
313 struct node_entry *ne = container_of(dev, struct node_entry, device);
314
315 return sprintf(buf, "IRMC(%d) CMC(%d) ISC(%d) BMC(%d) PMC(%d) GEN(%d) "
316 "LSPD(%d) MAX_REC(%d) MAX_ROM(%d) CYC_CLK_ACC(%d)\n",
317 ne->busopt.irmc,
318 ne->busopt.cmc, ne->busopt.isc, ne->busopt.bmc,
319 ne->busopt.pmc, ne->busopt.generation, ne->busopt.lnkspd,
320 ne->busopt.max_rec,
321 ne->busopt.max_rom,
322 ne->busopt.cyc_clk_acc);
323 }
324 static DEVICE_ATTR(bus_options,S_IRUGO,fw_show_ne_bus_options,NULL);
325
326
327 #ifdef HPSB_DEBUG_TLABELS
328 static ssize_t fw_show_ne_tlabels_free(struct device *dev,
329 struct device_attribute *attr, char *buf)
330 {
331 struct node_entry *ne = container_of(dev, struct node_entry, device);
332 unsigned long flags;
333 unsigned long *tp = ne->host->tl_pool[NODEID_TO_NODE(ne->nodeid)].map;
334 int tf;
335
336 spin_lock_irqsave(&hpsb_tlabel_lock, flags);
337 tf = 64 - bitmap_weight(tp, 64);
338 spin_unlock_irqrestore(&hpsb_tlabel_lock, flags);
339
340 return sprintf(buf, "%d\n", tf);
341 }
342 static DEVICE_ATTR(tlabels_free,S_IRUGO,fw_show_ne_tlabels_free,NULL);
343
344
345 static ssize_t fw_show_ne_tlabels_mask(struct device *dev,
346 struct device_attribute *attr, char *buf)
347 {
348 struct node_entry *ne = container_of(dev, struct node_entry, device);
349 unsigned long flags;
350 unsigned long *tp = ne->host->tl_pool[NODEID_TO_NODE(ne->nodeid)].map;
351 u64 tm;
352
353 spin_lock_irqsave(&hpsb_tlabel_lock, flags);
354 #if (BITS_PER_LONG <= 32)
355 tm = ((u64)tp[0] << 32) + tp[1];
356 #else
357 tm = tp[0];
358 #endif
359 spin_unlock_irqrestore(&hpsb_tlabel_lock, flags);
360
361 return sprintf(buf, "0x%016llx\n", (unsigned long long)tm);
362 }
363 static DEVICE_ATTR(tlabels_mask, S_IRUGO, fw_show_ne_tlabels_mask, NULL);
364 #endif /* HPSB_DEBUG_TLABELS */
365
366
367 static ssize_t fw_set_ignore_driver(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)
368 {
369 struct unit_directory *ud = container_of(dev, struct unit_directory, device);
370 int state = simple_strtoul(buf, NULL, 10);
371
372 if (state == 1) {
373 ud->ignore_driver = 1;
374 device_release_driver(dev);
375 } else if (state == 0)
376 ud->ignore_driver = 0;
377
378 return count;
379 }
380 static ssize_t fw_get_ignore_driver(struct device *dev, struct device_attribute *attr, char *buf)
381 {
382 struct unit_directory *ud = container_of(dev, struct unit_directory, device);
383
384 return sprintf(buf, "%d\n", ud->ignore_driver);
385 }
386 static DEVICE_ATTR(ignore_driver, S_IWUSR | S_IRUGO, fw_get_ignore_driver, fw_set_ignore_driver);
387
388
389 static ssize_t fw_set_destroy_node(struct bus_type *bus, const char *buf, size_t count)
390 {
391 struct node_entry *ne;
392 u64 guid = (u64)simple_strtoull(buf, NULL, 16);
393
394 ne = find_entry_by_guid(guid);
395
396 if (ne == NULL || !ne->in_limbo)
397 return -EINVAL;
398
399 nodemgr_remove_ne(ne);
400
401 return count;
402 }
403 static ssize_t fw_get_destroy_node(struct bus_type *bus, char *buf)
404 {
405 return sprintf(buf, "You can destroy in_limbo nodes by writing their GUID to this file\n");
406 }
407 static BUS_ATTR(destroy_node, S_IWUSR | S_IRUGO, fw_get_destroy_node, fw_set_destroy_node);
408
409
410 static ssize_t fw_set_rescan(struct bus_type *bus, const char *buf,
411 size_t count)
412 {
413 int error = 0;
414
415 if (simple_strtoul(buf, NULL, 10) == 1)
416 error = bus_rescan_devices(&ieee1394_bus_type);
417 return error ? error : count;
418 }
419 static ssize_t fw_get_rescan(struct bus_type *bus, char *buf)
420 {
421 return sprintf(buf, "You can force a rescan of the bus for "
422 "drivers by writing a 1 to this file\n");
423 }
424 static BUS_ATTR(rescan, S_IWUSR | S_IRUGO, fw_get_rescan, fw_set_rescan);
425
426
427 static ssize_t fw_set_ignore_drivers(struct bus_type *bus, const char *buf, size_t count)
428 {
429 int state = simple_strtoul(buf, NULL, 10);
430
431 if (state == 1)
432 ignore_drivers = 1;
433 else if (state == 0)
434 ignore_drivers = 0;
435
436 return count;
437 }
438 static ssize_t fw_get_ignore_drivers(struct bus_type *bus, char *buf)
439 {
440 return sprintf(buf, "%d\n", ignore_drivers);
441 }
442 static BUS_ATTR(ignore_drivers, S_IWUSR | S_IRUGO, fw_get_ignore_drivers, fw_set_ignore_drivers);
443
444
445 struct bus_attribute *const fw_bus_attrs[] = {
446 &bus_attr_destroy_node,
447 &bus_attr_rescan,
448 &bus_attr_ignore_drivers,
449 NULL
450 };
451
452
453 fw_attr(ne, struct node_entry, capabilities, unsigned int, "0x%06x\n")
454 fw_attr(ne, struct node_entry, nodeid, unsigned int, "0x%04x\n")
455
456 fw_attr(ne, struct node_entry, vendor_id, unsigned int, "0x%06x\n")
457 fw_attr_td(ne, struct node_entry, vendor_name_kv)
458
459 fw_attr(ne, struct node_entry, guid, unsigned long long, "0x%016Lx\n")
460 fw_attr(ne, struct node_entry, guid_vendor_id, unsigned int, "0x%06x\n")
461 fw_attr(ne, struct node_entry, in_limbo, int, "%d\n");
462
463 static struct device_attribute *const fw_ne_attrs[] = {
464 &dev_attr_ne_guid,
465 &dev_attr_ne_guid_vendor_id,
466 &dev_attr_ne_capabilities,
467 &dev_attr_ne_vendor_id,
468 &dev_attr_ne_nodeid,
469 &dev_attr_bus_options,
470 #ifdef HPSB_DEBUG_TLABELS
471 &dev_attr_tlabels_free,
472 &dev_attr_tlabels_mask,
473 #endif
474 };
475
476
477
478 fw_attr(ud, struct unit_directory, address, unsigned long long, "0x%016Lx\n")
479 fw_attr(ud, struct unit_directory, length, int, "%d\n")
480 /* These are all dependent on the value being provided */
481 fw_attr(ud, struct unit_directory, vendor_id, unsigned int, "0x%06x\n")
482 fw_attr(ud, struct unit_directory, model_id, unsigned int, "0x%06x\n")
483 fw_attr(ud, struct unit_directory, specifier_id, unsigned int, "0x%06x\n")
484 fw_attr(ud, struct unit_directory, version, unsigned int, "0x%06x\n")
485 fw_attr_td(ud, struct unit_directory, vendor_name_kv)
486 fw_attr_td(ud, struct unit_directory, model_name_kv)
487
488 static struct device_attribute *const fw_ud_attrs[] = {
489 &dev_attr_ud_address,
490 &dev_attr_ud_length,
491 &dev_attr_ignore_driver,
492 };
493
494
495 fw_attr(host, struct hpsb_host, node_count, int, "%d\n")
496 fw_attr(host, struct hpsb_host, selfid_count, int, "%d\n")
497 fw_attr(host, struct hpsb_host, nodes_active, int, "%d\n")
498 fw_attr(host, struct hpsb_host, in_bus_reset, int, "%d\n")
499 fw_attr(host, struct hpsb_host, is_root, int, "%d\n")
500 fw_attr(host, struct hpsb_host, is_cycmst, int, "%d\n")
501 fw_attr(host, struct hpsb_host, is_irm, int, "%d\n")
502 fw_attr(host, struct hpsb_host, is_busmgr, int, "%d\n")
503
504 static struct device_attribute *const fw_host_attrs[] = {
505 &dev_attr_host_node_count,
506 &dev_attr_host_selfid_count,
507 &dev_attr_host_nodes_active,
508 &dev_attr_host_in_bus_reset,
509 &dev_attr_host_is_root,
510 &dev_attr_host_is_cycmst,
511 &dev_attr_host_is_irm,
512 &dev_attr_host_is_busmgr,
513 };
514
515
516 static ssize_t fw_show_drv_device_ids(struct device_driver *drv, char *buf)
517 {
518 struct hpsb_protocol_driver *driver;
519 struct ieee1394_device_id *id;
520 int length = 0;
521 char *scratch = buf;
522
523 driver = container_of(drv, struct hpsb_protocol_driver, driver);
524
525 for (id = driver->id_table; id->match_flags != 0; id++) {
526 int need_coma = 0;
527
528 if (id->match_flags & IEEE1394_MATCH_VENDOR_ID) {
529 length += sprintf(scratch, "vendor_id=0x%06x", id->vendor_id);
530 scratch = buf + length;
531 need_coma++;
532 }
533
534 if (id->match_flags & IEEE1394_MATCH_MODEL_ID) {
535 length += sprintf(scratch, "%smodel_id=0x%06x",
536 need_coma++ ? "," : "",
537 id->model_id);
538 scratch = buf + length;
539 }
540
541 if (id->match_flags & IEEE1394_MATCH_SPECIFIER_ID) {
542 length += sprintf(scratch, "%sspecifier_id=0x%06x",
543 need_coma++ ? "," : "",
544 id->specifier_id);
545 scratch = buf + length;
546 }
547
548 if (id->match_flags & IEEE1394_MATCH_VERSION) {
549 length += sprintf(scratch, "%sversion=0x%06x",
550 need_coma++ ? "," : "",
551 id->version);
552 scratch = buf + length;
553 }
554
555 if (need_coma) {
556 *scratch++ = '\n';
557 length++;
558 }
559 }
560
561 return length;
562 }
563 static DRIVER_ATTR(device_ids,S_IRUGO,fw_show_drv_device_ids,NULL);
564
565
566 fw_drv_attr(name, const char *, "%s\n")
567
568 static struct driver_attribute *const fw_drv_attrs[] = {
569 &driver_attr_drv_name,
570 &driver_attr_device_ids,
571 };
572
573
574 static void nodemgr_create_drv_files(struct hpsb_protocol_driver *driver)
575 {
576 struct device_driver *drv = &driver->driver;
577 int i;
578
579 for (i = 0; i < ARRAY_SIZE(fw_drv_attrs); i++)
580 if (driver_create_file(drv, fw_drv_attrs[i]))
581 goto fail;
582 return;
583 fail:
584 HPSB_ERR("Failed to add sysfs attribute");
585 }
586
587
588 static void nodemgr_remove_drv_files(struct hpsb_protocol_driver *driver)
589 {
590 struct device_driver *drv = &driver->driver;
591 int i;
592
593 for (i = 0; i < ARRAY_SIZE(fw_drv_attrs); i++)
594 driver_remove_file(drv, fw_drv_attrs[i]);
595 }
596
597
598 static void nodemgr_create_ne_dev_files(struct node_entry *ne)
599 {
600 struct device *dev = &ne->device;
601 int i;
602
603 for (i = 0; i < ARRAY_SIZE(fw_ne_attrs); i++)
604 if (device_create_file(dev, fw_ne_attrs[i]))
605 goto fail;
606 return;
607 fail:
608 HPSB_ERR("Failed to add sysfs attribute");
609 }
610
611
612 static void nodemgr_create_host_dev_files(struct hpsb_host *host)
613 {
614 struct device *dev = &host->device;
615 int i;
616
617 for (i = 0; i < ARRAY_SIZE(fw_host_attrs); i++)
618 if (device_create_file(dev, fw_host_attrs[i]))
619 goto fail;
620 return;
621 fail:
622 HPSB_ERR("Failed to add sysfs attribute");
623 }
624
625
626 static struct node_entry *find_entry_by_nodeid(struct hpsb_host *host,
627 nodeid_t nodeid);
628
629 static void nodemgr_update_host_dev_links(struct hpsb_host *host)
630 {
631 struct device *dev = &host->device;
632 struct node_entry *ne;
633
634 sysfs_remove_link(&dev->kobj, "irm_id");
635 sysfs_remove_link(&dev->kobj, "busmgr_id");
636 sysfs_remove_link(&dev->kobj, "host_id");
637
638 if ((ne = find_entry_by_nodeid(host, host->irm_id)) &&
639 sysfs_create_link(&dev->kobj, &ne->device.kobj, "irm_id"))
640 goto fail;
641 if ((ne = find_entry_by_nodeid(host, host->busmgr_id)) &&
642 sysfs_create_link(&dev->kobj, &ne->device.kobj, "busmgr_id"))
643 goto fail;
644 if ((ne = find_entry_by_nodeid(host, host->node_id)) &&
645 sysfs_create_link(&dev->kobj, &ne->device.kobj, "host_id"))
646 goto fail;
647 return;
648 fail:
649 HPSB_ERR("Failed to update sysfs attributes for host %d", host->id);
650 }
651
652 static void nodemgr_create_ud_dev_files(struct unit_directory *ud)
653 {
654 struct device *dev = &ud->device;
655 int i;
656
657 for (i = 0; i < ARRAY_SIZE(fw_ud_attrs); i++)
658 if (device_create_file(dev, fw_ud_attrs[i]))
659 goto fail;
660 if (ud->flags & UNIT_DIRECTORY_SPECIFIER_ID)
661 if (device_create_file(dev, &dev_attr_ud_specifier_id))
662 goto fail;
663 if (ud->flags & UNIT_DIRECTORY_VERSION)
664 if (device_create_file(dev, &dev_attr_ud_version))
665 goto fail;
666 if (ud->flags & UNIT_DIRECTORY_VENDOR_ID) {
667 if (device_create_file(dev, &dev_attr_ud_vendor_id))
668 goto fail;
669 if (ud->vendor_name_kv &&
670 device_create_file(dev, &dev_attr_ud_vendor_name_kv))
671 goto fail;
672 }
673 if (ud->flags & UNIT_DIRECTORY_MODEL_ID) {
674 if (device_create_file(dev, &dev_attr_ud_model_id))
675 goto fail;
676 if (ud->model_name_kv &&
677 device_create_file(dev, &dev_attr_ud_model_name_kv))
678 goto fail;
679 }
680 return;
681 fail:
682 HPSB_ERR("Failed to add sysfs attribute");
683 }
684
685
686 static int nodemgr_bus_match(struct device * dev, struct device_driver * drv)
687 {
688 struct hpsb_protocol_driver *driver;
689 struct unit_directory *ud;
690 struct ieee1394_device_id *id;
691
692 /* We only match unit directories */
693 if (dev->platform_data != &nodemgr_ud_platform_data)
694 return 0;
695
696 ud = container_of(dev, struct unit_directory, device);
697 if (ud->ne->in_limbo || ud->ignore_driver)
698 return 0;
699
700 /* We only match drivers of type hpsb_protocol_driver */
701 if (drv == &nodemgr_mid_layer_driver)
702 return 0;
703
704 driver = container_of(drv, struct hpsb_protocol_driver, driver);
705 for (id = driver->id_table; id->match_flags != 0; id++) {
706 if ((id->match_flags & IEEE1394_MATCH_VENDOR_ID) &&
707 id->vendor_id != ud->vendor_id)
708 continue;
709
710 if ((id->match_flags & IEEE1394_MATCH_MODEL_ID) &&
711 id->model_id != ud->model_id)
712 continue;
713
714 if ((id->match_flags & IEEE1394_MATCH_SPECIFIER_ID) &&
715 id->specifier_id != ud->specifier_id)
716 continue;
717
718 if ((id->match_flags & IEEE1394_MATCH_VERSION) &&
719 id->version != ud->version)
720 continue;
721
722 return 1;
723 }
724
725 return 0;
726 }
727
728
729 static DEFINE_MUTEX(nodemgr_serialize_remove_uds);
730
731 static void nodemgr_remove_uds(struct node_entry *ne)
732 {
733 struct device *dev;
734 struct unit_directory *tmp, *ud;
735
736 /* Iteration over nodemgr_ud_class.devices has to be protected by
737 * nodemgr_ud_class.sem, but device_unregister() will eventually
738 * take nodemgr_ud_class.sem too. Therefore pick out one ud at a time,
739 * release the semaphore, and then unregister the ud. Since this code
740 * may be called from other contexts besides the knodemgrds, protect the
741 * gap after release of the semaphore by nodemgr_serialize_remove_uds.
742 */
743 mutex_lock(&nodemgr_serialize_remove_uds);
744 for (;;) {
745 ud = NULL;
746 down(&nodemgr_ud_class.sem);
747 list_for_each_entry(dev, &nodemgr_ud_class.devices, node) {
748 tmp = container_of(dev, struct unit_directory,
749 unit_dev);
750 if (tmp->ne == ne) {
751 ud = tmp;
752 break;
753 }
754 }
755 up(&nodemgr_ud_class.sem);
756 if (ud == NULL)
757 break;
758 device_unregister(&ud->unit_dev);
759 device_unregister(&ud->device);
760 }
761 mutex_unlock(&nodemgr_serialize_remove_uds);
762 }
763
764
765 static void nodemgr_remove_ne(struct node_entry *ne)
766 {
767 struct device *dev;
768
769 dev = get_device(&ne->device);
770 if (!dev)
771 return;
772
773 HPSB_DEBUG("Node removed: ID:BUS[" NODE_BUS_FMT "] GUID[%016Lx]",
774 NODE_BUS_ARGS(ne->host, ne->nodeid), (unsigned long long)ne->guid);
775 nodemgr_remove_uds(ne);
776
777 device_unregister(&ne->node_dev);
778 device_unregister(dev);
779
780 put_device(dev);
781 }
782
783 static int __nodemgr_remove_host_dev(struct device *dev, void *data)
784 {
785 if (dev->bus == &ieee1394_bus_type)
786 nodemgr_remove_ne(container_of(dev, struct node_entry,
787 device));
788 return 0;
789 }
790
791 static void nodemgr_remove_host_dev(struct device *dev)
792 {
793 WARN_ON(device_for_each_child(dev, NULL, __nodemgr_remove_host_dev));
794 sysfs_remove_link(&dev->kobj, "irm_id");
795 sysfs_remove_link(&dev->kobj, "busmgr_id");
796 sysfs_remove_link(&dev->kobj, "host_id");
797 }
798
799
800 static void nodemgr_update_bus_options(struct node_entry *ne)
801 {
802 #ifdef CONFIG_IEEE1394_VERBOSEDEBUG
803 static const u16 mr[] = { 4, 64, 1024, 0};
804 #endif
805 quadlet_t busoptions = be32_to_cpu(ne->csr->bus_info_data[2]);
806
807 ne->busopt.irmc = (busoptions >> 31) & 1;
808 ne->busopt.cmc = (busoptions >> 30) & 1;
809 ne->busopt.isc = (busoptions >> 29) & 1;
810 ne->busopt.bmc = (busoptions >> 28) & 1;
811 ne->busopt.pmc = (busoptions >> 27) & 1;
812 ne->busopt.cyc_clk_acc = (busoptions >> 16) & 0xff;
813 ne->busopt.max_rec = 1 << (((busoptions >> 12) & 0xf) + 1);
814 ne->busopt.max_rom = (busoptions >> 8) & 0x3;
815 ne->busopt.generation = (busoptions >> 4) & 0xf;
816 ne->busopt.lnkspd = busoptions & 0x7;
817
818 HPSB_VERBOSE("NodeMgr: raw=0x%08x irmc=%d cmc=%d isc=%d bmc=%d pmc=%d "
819 "cyc_clk_acc=%d max_rec=%d max_rom=%d gen=%d lspd=%d",
820 busoptions, ne->busopt.irmc, ne->busopt.cmc,
821 ne->busopt.isc, ne->busopt.bmc, ne->busopt.pmc,
822 ne->busopt.cyc_clk_acc, ne->busopt.max_rec,
823 mr[ne->busopt.max_rom],
824 ne->busopt.generation, ne->busopt.lnkspd);
825 }
826
827
828 static struct node_entry *nodemgr_create_node(octlet_t guid, struct csr1212_csr *csr,
829 struct host_info *hi, nodeid_t nodeid,
830 unsigned int generation)
831 {
832 struct hpsb_host *host = hi->host;
833 struct node_entry *ne;
834
835 ne = kzalloc(sizeof(*ne), GFP_KERNEL);
836 if (!ne)
837 goto fail_alloc;
838
839 ne->host = host;
840 ne->nodeid = nodeid;
841 ne->generation = generation;
842 ne->needs_probe = 1;
843
844 ne->guid = guid;
845 ne->guid_vendor_id = (guid >> 40) & 0xffffff;
846 ne->csr = csr;
847
848 memcpy(&ne->device, &nodemgr_dev_template_ne,
849 sizeof(ne->device));
850 ne->device.parent = &host->device;
851 snprintf(ne->device.bus_id, BUS_ID_SIZE, "%016Lx",
852 (unsigned long long)(ne->guid));
853
854 ne->node_dev.parent = &ne->device;
855 ne->node_dev.class = &nodemgr_ne_class;
856 snprintf(ne->node_dev.bus_id, BUS_ID_SIZE, "%016Lx",
857 (unsigned long long)(ne->guid));
858
859 if (device_register(&ne->device))
860 goto fail_devreg;
861 if (device_register(&ne->node_dev))
862 goto fail_classdevreg;
863 get_device(&ne->device);
864
865 nodemgr_create_ne_dev_files(ne);
866
867 nodemgr_update_bus_options(ne);
868
869 HPSB_DEBUG("%s added: ID:BUS[" NODE_BUS_FMT "] GUID[%016Lx]",
870 (host->node_id == nodeid) ? "Host" : "Node",
871 NODE_BUS_ARGS(host, nodeid), (unsigned long long)guid);
872
873 return ne;
874
875 fail_classdevreg:
876 device_unregister(&ne->device);
877 fail_devreg:
878 kfree(ne);
879 fail_alloc:
880 HPSB_ERR("Failed to create node ID:BUS[" NODE_BUS_FMT "] GUID[%016Lx]",
881 NODE_BUS_ARGS(host, nodeid), (unsigned long long)guid);
882
883 return NULL;
884 }
885
886
887 static struct node_entry *find_entry_by_guid(u64 guid)
888 {
889 struct device *dev;
890 struct node_entry *ne, *ret_ne = NULL;
891
892 down(&nodemgr_ne_class.sem);
893 list_for_each_entry(dev, &nodemgr_ne_class.devices, node) {
894 ne = container_of(dev, struct node_entry, node_dev);
895
896 if (ne->guid == guid) {
897 ret_ne = ne;
898 break;
899 }
900 }
901 up(&nodemgr_ne_class.sem);
902
903 return ret_ne;
904 }
905
906
907 static struct node_entry *find_entry_by_nodeid(struct hpsb_host *host,
908 nodeid_t nodeid)
909 {
910 struct device *dev;
911 struct node_entry *ne, *ret_ne = NULL;
912
913 down(&nodemgr_ne_class.sem);
914 list_for_each_entry(dev, &nodemgr_ne_class.devices, node) {
915 ne = container_of(dev, struct node_entry, node_dev);
916
917 if (ne->host == host && ne->nodeid == nodeid) {
918 ret_ne = ne;
919 break;
920 }
921 }
922 up(&nodemgr_ne_class.sem);
923
924 return ret_ne;
925 }
926
927
928 static void nodemgr_register_device(struct node_entry *ne,
929 struct unit_directory *ud, struct device *parent)
930 {
931 memcpy(&ud->device, &nodemgr_dev_template_ud,
932 sizeof(ud->device));
933
934 ud->device.parent = parent;
935
936 snprintf(ud->device.bus_id, BUS_ID_SIZE, "%s-%u",
937 ne->device.bus_id, ud->id);
938
939 ud->unit_dev.parent = &ud->device;
940 ud->unit_dev.class = &nodemgr_ud_class;
941 snprintf(ud->unit_dev.bus_id, BUS_ID_SIZE, "%s-%u",
942 ne->device.bus_id, ud->id);
943
944 if (device_register(&ud->device))
945 goto fail_devreg;
946 if (device_register(&ud->unit_dev))
947 goto fail_classdevreg;
948 get_device(&ud->device);
949
950 nodemgr_create_ud_dev_files(ud);
951
952 return;
953
954 fail_classdevreg:
955 device_unregister(&ud->device);
956 fail_devreg:
957 HPSB_ERR("Failed to create unit %s", ud->device.bus_id);
958 }
959
960
961 /* This implementation currently only scans the config rom and its
962 * immediate unit directories looking for software_id and
963 * software_version entries, in order to get driver autoloading working. */
964 static struct unit_directory *nodemgr_process_unit_directory
965 (struct host_info *hi, struct node_entry *ne, struct csr1212_keyval *ud_kv,
966 unsigned int *id, struct unit_directory *parent)
967 {
968 struct unit_directory *ud;
969 struct unit_directory *ud_child = NULL;
970 struct csr1212_dentry *dentry;
971 struct csr1212_keyval *kv;
972 u8 last_key_id = 0;
973
974 ud = kzalloc(sizeof(*ud), GFP_KERNEL);
975 if (!ud)
976 goto unit_directory_error;
977
978 ud->ne = ne;
979 ud->ignore_driver = ignore_drivers;
980 ud->address = ud_kv->offset + CSR1212_REGISTER_SPACE_BASE;
981 ud->directory_id = ud->address & 0xffffff;
982 ud->ud_kv = ud_kv;
983 ud->id = (*id)++;
984
985 csr1212_for_each_dir_entry(ne->csr, kv, ud_kv, dentry) {
986 switch (kv->key.id) {
987 case CSR1212_KV_ID_VENDOR:
988 if (kv->key.type == CSR1212_KV_TYPE_IMMEDIATE) {
989 ud->vendor_id = kv->value.immediate;
990 ud->flags |= UNIT_DIRECTORY_VENDOR_ID;
991 }
992 break;
993
994 case CSR1212_KV_ID_MODEL:
995 ud->model_id = kv->value.immediate;
996 ud->flags |= UNIT_DIRECTORY_MODEL_ID;
997 break;
998
999 case CSR1212_KV_ID_SPECIFIER_ID:
1000 ud->specifier_id = kv->value.immediate;
1001 ud->flags |= UNIT_DIRECTORY_SPECIFIER_ID;
1002 break;
1003
1004 case CSR1212_KV_ID_VERSION:
1005 ud->version = kv->value.immediate;
1006 ud->flags |= UNIT_DIRECTORY_VERSION;
1007 break;
1008
1009 case CSR1212_KV_ID_DESCRIPTOR:
1010 if (kv->key.type == CSR1212_KV_TYPE_LEAF &&
1011 CSR1212_DESCRIPTOR_LEAF_TYPE(kv) == 0 &&
1012 CSR1212_DESCRIPTOR_LEAF_SPECIFIER_ID(kv) == 0 &&
1013 CSR1212_TEXTUAL_DESCRIPTOR_LEAF_WIDTH(kv) == 0 &&
1014 CSR1212_TEXTUAL_DESCRIPTOR_LEAF_CHAR_SET(kv) == 0 &&
1015 CSR1212_TEXTUAL_DESCRIPTOR_LEAF_LANGUAGE(kv) == 0) {
1016 switch (last_key_id) {
1017 case CSR1212_KV_ID_VENDOR:
1018 ud->vendor_name_kv = kv;
1019 csr1212_keep_keyval(kv);
1020 break;
1021
1022 case CSR1212_KV_ID_MODEL:
1023 ud->model_name_kv = kv;
1024 csr1212_keep_keyval(kv);
1025 break;
1026
1027 }
1028 } /* else if (kv->key.type == CSR1212_KV_TYPE_DIRECTORY) ... */
1029 break;
1030
1031 case CSR1212_KV_ID_DEPENDENT_INFO:
1032 /* Logical Unit Number */
1033 if (kv->key.type == CSR1212_KV_TYPE_IMMEDIATE) {
1034 if (ud->flags & UNIT_DIRECTORY_HAS_LUN) {
1035 ud_child = kmemdup(ud, sizeof(*ud_child), GFP_KERNEL);
1036 if (!ud_child)
1037 goto unit_directory_error;
1038 nodemgr_register_device(ne, ud_child, &ne->device);
1039 ud_child = NULL;
1040
1041 ud->id = (*id)++;
1042 }
1043 ud->lun = kv->value.immediate;
1044 ud->flags |= UNIT_DIRECTORY_HAS_LUN;
1045
1046 /* Logical Unit Directory */
1047 } else if (kv->key.type == CSR1212_KV_TYPE_DIRECTORY) {
1048 /* This should really be done in SBP2 as this is
1049 * doing SBP2 specific parsing.
1050 */
1051
1052 /* first register the parent unit */
1053 ud->flags |= UNIT_DIRECTORY_HAS_LUN_DIRECTORY;
1054 if (ud->device.bus != &ieee1394_bus_type)
1055 nodemgr_register_device(ne, ud, &ne->device);
1056
1057 /* process the child unit */
1058 ud_child = nodemgr_process_unit_directory(hi, ne, kv, id, ud);
1059
1060 if (ud_child == NULL)
1061 break;
1062
1063 /* inherit unspecified values, the driver core picks it up */
1064 if ((ud->flags & UNIT_DIRECTORY_MODEL_ID) &&
1065 !(ud_child->flags & UNIT_DIRECTORY_MODEL_ID))
1066 {
1067 ud_child->flags |= UNIT_DIRECTORY_MODEL_ID;
1068 ud_child->model_id = ud->model_id;
1069 }
1070 if ((ud->flags & UNIT_DIRECTORY_SPECIFIER_ID) &&
1071 !(ud_child->flags & UNIT_DIRECTORY_SPECIFIER_ID))
1072 {
1073 ud_child->flags |= UNIT_DIRECTORY_SPECIFIER_ID;
1074 ud_child->specifier_id = ud->specifier_id;
1075 }
1076 if ((ud->flags & UNIT_DIRECTORY_VERSION) &&
1077 !(ud_child->flags & UNIT_DIRECTORY_VERSION))
1078 {
1079 ud_child->flags |= UNIT_DIRECTORY_VERSION;
1080 ud_child->version = ud->version;
1081 }
1082
1083 /* register the child unit */
1084 ud_child->flags |= UNIT_DIRECTORY_LUN_DIRECTORY;
1085 nodemgr_register_device(ne, ud_child, &ud->device);
1086 }
1087
1088 break;
1089
1090 case CSR1212_KV_ID_DIRECTORY_ID:
1091 ud->directory_id = kv->value.immediate;
1092 break;
1093
1094 default:
1095 break;
1096 }
1097 last_key_id = kv->key.id;
1098 }
1099
1100 /* do not process child units here and only if not already registered */
1101 if (!parent && ud->device.bus != &ieee1394_bus_type)
1102 nodemgr_register_device(ne, ud, &ne->device);
1103
1104 return ud;
1105
1106 unit_directory_error:
1107 kfree(ud);
1108 return NULL;
1109 }
1110
1111
1112 static void nodemgr_process_root_directory(struct host_info *hi, struct node_entry *ne)
1113 {
1114 unsigned int ud_id = 0;
1115 struct csr1212_dentry *dentry;
1116 struct csr1212_keyval *kv;
1117 u8 last_key_id = 0;
1118
1119 ne->needs_probe = 0;
1120
1121 csr1212_for_each_dir_entry(ne->csr, kv, ne->csr->root_kv, dentry) {
1122 switch (kv->key.id) {
1123 case CSR1212_KV_ID_VENDOR:
1124 ne->vendor_id = kv->value.immediate;
1125 break;
1126
1127 case CSR1212_KV_ID_NODE_CAPABILITIES:
1128 ne->capabilities = kv->value.immediate;
1129 break;
1130
1131 case CSR1212_KV_ID_UNIT:
1132 nodemgr_process_unit_directory(hi, ne, kv, &ud_id, NULL);
1133 break;
1134
1135 case CSR1212_KV_ID_DESCRIPTOR:
1136 if (last_key_id == CSR1212_KV_ID_VENDOR) {
1137 if (kv->key.type == CSR1212_KV_TYPE_LEAF &&
1138 CSR1212_DESCRIPTOR_LEAF_TYPE(kv) == 0 &&
1139 CSR1212_DESCRIPTOR_LEAF_SPECIFIER_ID(kv) == 0 &&
1140 CSR1212_TEXTUAL_DESCRIPTOR_LEAF_WIDTH(kv) == 0 &&
1141 CSR1212_TEXTUAL_DESCRIPTOR_LEAF_CHAR_SET(kv) == 0 &&
1142 CSR1212_TEXTUAL_DESCRIPTOR_LEAF_LANGUAGE(kv) == 0) {
1143 ne->vendor_name_kv = kv;
1144 csr1212_keep_keyval(kv);
1145 }
1146 }
1147 break;
1148 }
1149 last_key_id = kv->key.id;
1150 }
1151
1152 if (ne->vendor_name_kv) {
1153 int error = device_create_file(&ne->device,
1154 &dev_attr_ne_vendor_name_kv);
1155
1156 if (error && error != -EEXIST)
1157 HPSB_ERR("Failed to add sysfs attribute");
1158 }
1159 }
1160
1161 #ifdef CONFIG_HOTPLUG
1162
1163 static int nodemgr_uevent(struct device *dev, char **envp, int num_envp,
1164 char *buffer, int buffer_size)
1165 {
1166 struct unit_directory *ud;
1167 int i = 0;
1168 int length = 0;
1169 int retval = 0;
1170 /* ieee1394:venNmoNspNverN */
1171 char buf[8 + 1 + 3 + 8 + 2 + 8 + 2 + 8 + 3 + 8 + 1];
1172
1173 if (!dev)
1174 return -ENODEV;
1175
1176 ud = container_of(dev, struct unit_directory, unit_dev);
1177
1178 if (ud->ne->in_limbo || ud->ignore_driver)
1179 return -ENODEV;
1180
1181 #define PUT_ENVP(fmt,val) \
1182 do { \
1183 retval = add_uevent_var(envp, num_envp, &i, \
1184 buffer, buffer_size, &length, \
1185 fmt, val); \
1186 if (retval) \
1187 return retval; \
1188 } while (0)
1189
1190 PUT_ENVP("VENDOR_ID=%06x", ud->vendor_id);
1191 PUT_ENVP("MODEL_ID=%06x", ud->model_id);
1192 PUT_ENVP("GUID=%016Lx", (unsigned long long)ud->ne->guid);
1193 PUT_ENVP("SPECIFIER_ID=%06x", ud->specifier_id);
1194 PUT_ENVP("VERSION=%06x", ud->version);
1195 snprintf(buf, sizeof(buf), "ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
1196 ud->vendor_id,
1197 ud->model_id,
1198 ud->specifier_id,
1199 ud->version);
1200 PUT_ENVP("MODALIAS=%s", buf);
1201
1202 #undef PUT_ENVP
1203
1204 envp[i] = NULL;
1205
1206 return 0;
1207 }
1208
1209 #else
1210
1211 static int nodemgr_uevent(struct device *dev, char **envp, int num_envp,
1212 char *buffer, int buffer_size)
1213 {
1214 return -ENODEV;
1215 }
1216
1217 #endif /* CONFIG_HOTPLUG */
1218
1219
1220 int __hpsb_register_protocol(struct hpsb_protocol_driver *drv,
1221 struct module *owner)
1222 {
1223 int error;
1224
1225 drv->driver.bus = &ieee1394_bus_type;
1226 drv->driver.owner = owner;
1227 drv->driver.name = drv->name;
1228
1229 /* This will cause a probe for devices */
1230 error = driver_register(&drv->driver);
1231 if (!error)
1232 nodemgr_create_drv_files(drv);
1233 return error;
1234 }
1235
1236 void hpsb_unregister_protocol(struct hpsb_protocol_driver *driver)
1237 {
1238 nodemgr_remove_drv_files(driver);
1239 /* This will subsequently disconnect all devices that our driver
1240 * is attached to. */
1241 driver_unregister(&driver->driver);
1242 }
1243
1244
1245 /*
1246 * This function updates nodes that were present on the bus before the
1247 * reset and still are after the reset. The nodeid and the config rom
1248 * may have changed, and the drivers managing this device must be
1249 * informed that this device just went through a bus reset, to allow
1250 * the to take whatever actions required.
1251 */
1252 static void nodemgr_update_node(struct node_entry *ne, struct csr1212_csr *csr,
1253 struct host_info *hi, nodeid_t nodeid,
1254 unsigned int generation)
1255 {
1256 if (ne->nodeid != nodeid) {
1257 HPSB_DEBUG("Node changed: " NODE_BUS_FMT " -> " NODE_BUS_FMT,
1258 NODE_BUS_ARGS(ne->host, ne->nodeid),
1259 NODE_BUS_ARGS(ne->host, nodeid));
1260 ne->nodeid = nodeid;
1261 }
1262
1263 if (ne->busopt.generation != ((be32_to_cpu(csr->bus_info_data[2]) >> 4) & 0xf)) {
1264 kfree(ne->csr->private);
1265 csr1212_destroy_csr(ne->csr);
1266 ne->csr = csr;
1267
1268 /* If the node's configrom generation has changed, we
1269 * unregister all the unit directories. */
1270 nodemgr_remove_uds(ne);
1271
1272 nodemgr_update_bus_options(ne);
1273
1274 /* Mark the node as new, so it gets re-probed */
1275 ne->needs_probe = 1;
1276 } else {
1277 /* old cache is valid, so update its generation */
1278 struct nodemgr_csr_info *ci = ne->csr->private;
1279 ci->generation = generation;
1280 /* free the partially filled now unneeded new cache */
1281 kfree(csr->private);
1282 csr1212_destroy_csr(csr);
1283 }
1284
1285 if (ne->in_limbo)
1286 nodemgr_resume_ne(ne);
1287
1288 /* Mark the node current */
1289 ne->generation = generation;
1290 }
1291
1292
1293
1294 static void nodemgr_node_scan_one(struct host_info *hi,
1295 nodeid_t nodeid, int generation)
1296 {
1297 struct hpsb_host *host = hi->host;
1298 struct node_entry *ne;
1299 octlet_t guid;
1300 struct csr1212_csr *csr;
1301 struct nodemgr_csr_info *ci;
1302 u8 *speed;
1303
1304 ci = kmalloc(sizeof(*ci), GFP_KERNEL);
1305 if (!ci)
1306 return;
1307
1308 ci->host = host;
1309 ci->nodeid = nodeid;
1310 ci->generation = generation;
1311
1312 /* Prepare for speed probe which occurs when reading the ROM */
1313 speed = &(host->speed[NODEID_TO_NODE(nodeid)]);
1314 if (*speed > host->csr.lnk_spd)
1315 *speed = host->csr.lnk_spd;
1316 ci->speed_unverified = *speed > IEEE1394_SPEED_100;
1317
1318 /* We need to detect when the ConfigROM's generation has changed,
1319 * so we only update the node's info when it needs to be. */
1320
1321 csr = csr1212_create_csr(&nodemgr_csr_ops, 5 * sizeof(quadlet_t), ci);
1322 if (!csr || csr1212_parse_csr(csr) != CSR1212_SUCCESS) {
1323 HPSB_ERR("Error parsing configrom for node " NODE_BUS_FMT,
1324 NODE_BUS_ARGS(host, nodeid));
1325 if (csr)
1326 csr1212_destroy_csr(csr);
1327 kfree(ci);
1328 return;
1329 }
1330
1331 if (csr->bus_info_data[1] != IEEE1394_BUSID_MAGIC) {
1332 /* This isn't a 1394 device, but we let it slide. There
1333 * was a report of a device with broken firmware which
1334 * reported '2394' instead of '1394', which is obviously a
1335 * mistake. One would hope that a non-1394 device never
1336 * gets connected to Firewire bus. If someone does, we
1337 * shouldn't be held responsible, so we'll allow it with a
1338 * warning. */
1339 HPSB_WARN("Node " NODE_BUS_FMT " has invalid busID magic [0x%08x]",
1340 NODE_BUS_ARGS(host, nodeid), csr->bus_info_data[1]);
1341 }
1342
1343 guid = ((u64)be32_to_cpu(csr->bus_info_data[3]) << 32) | be32_to_cpu(csr->bus_info_data[4]);
1344 ne = find_entry_by_guid(guid);
1345
1346 if (ne && ne->host != host && ne->in_limbo) {
1347 /* Must have moved this device from one host to another */
1348 nodemgr_remove_ne(ne);
1349 ne = NULL;
1350 }
1351
1352 if (!ne)
1353 nodemgr_create_node(guid, csr, hi, nodeid, generation);
1354 else
1355 nodemgr_update_node(ne, csr, hi, nodeid, generation);
1356 }
1357
1358
1359 static void nodemgr_node_scan(struct host_info *hi, int generation)
1360 {
1361 int count;
1362 struct hpsb_host *host = hi->host;
1363 struct selfid *sid = (struct selfid *)host->topology_map;
1364 nodeid_t nodeid = LOCAL_BUS;
1365
1366 /* Scan each node on the bus */
1367 for (count = host->selfid_count; count; count--, sid++) {
1368 if (sid->extended)
1369 continue;
1370
1371 if (!sid->link_active) {
1372 nodeid++;
1373 continue;
1374 }
1375 nodemgr_node_scan_one(hi, nodeid++, generation);
1376 }
1377 }
1378
1379
1380 static void nodemgr_suspend_ne(struct node_entry *ne)
1381 {
1382 struct device *dev;
1383 struct unit_directory *ud;
1384 struct device_driver *drv;
1385 int error;
1386
1387 HPSB_DEBUG("Node suspended: ID:BUS[" NODE_BUS_FMT "] GUID[%016Lx]",
1388 NODE_BUS_ARGS(ne->host, ne->nodeid), (unsigned long long)ne->guid);
1389
1390 ne->in_limbo = 1;
1391 WARN_ON(device_create_file(&ne->device, &dev_attr_ne_in_limbo));
1392
1393 down(&nodemgr_ud_class.sem);
1394 list_for_each_entry(dev, &nodemgr_ud_class.devices, node) {
1395 ud = container_of(dev, struct unit_directory, unit_dev);
1396 if (ud->ne != ne)
1397 continue;
1398
1399 drv = get_driver(ud->device.driver);
1400 if (!drv)
1401 continue;
1402
1403 error = 1; /* release if suspend is not implemented */
1404 if (drv->suspend) {
1405 down(&ud->device.sem);
1406 error = drv->suspend(&ud->device, PMSG_SUSPEND);
1407 up(&ud->device.sem);
1408 }
1409 if (error)
1410 device_release_driver(&ud->device);
1411 put_driver(drv);
1412 }
1413 up(&nodemgr_ud_class.sem);
1414 }
1415
1416
1417 static void nodemgr_resume_ne(struct node_entry *ne)
1418 {
1419 struct device *dev;
1420 struct unit_directory *ud;
1421 struct device_driver *drv;
1422
1423 ne->in_limbo = 0;
1424 device_remove_file(&ne->device, &dev_attr_ne_in_limbo);
1425
1426 down(&nodemgr_ud_class.sem);
1427 list_for_each_entry(dev, &nodemgr_ud_class.devices, node) {
1428 ud = container_of(dev, struct unit_directory, unit_dev);
1429 if (ud->ne != ne)
1430 continue;
1431
1432 drv = get_driver(ud->device.driver);
1433 if (!drv)
1434 continue;
1435
1436 if (drv->resume) {
1437 down(&ud->device.sem);
1438 drv->resume(&ud->device);
1439 up(&ud->device.sem);
1440 }
1441 put_driver(drv);
1442 }
1443 up(&nodemgr_ud_class.sem);
1444
1445 HPSB_DEBUG("Node resumed: ID:BUS[" NODE_BUS_FMT "] GUID[%016Lx]",
1446 NODE_BUS_ARGS(ne->host, ne->nodeid), (unsigned long long)ne->guid);
1447 }
1448
1449
1450 static void nodemgr_update_pdrv(struct node_entry *ne)
1451 {
1452 struct device *dev;
1453 struct unit_directory *ud;
1454 struct device_driver *drv;
1455 struct hpsb_protocol_driver *pdrv;
1456 int error;
1457
1458 down(&nodemgr_ud_class.sem);
1459 list_for_each_entry(dev, &nodemgr_ud_class.devices, node) {
1460 ud = container_of(dev, struct unit_directory, unit_dev);
1461 if (ud->ne != ne)
1462 continue;
1463
1464 drv = get_driver(ud->device.driver);
1465 if (!drv)
1466 continue;
1467
1468 error = 0;
1469 pdrv = container_of(drv, struct hpsb_protocol_driver, driver);
1470 if (pdrv->update) {
1471 down(&ud->device.sem);
1472 error = pdrv->update(ud);
1473 up(&ud->device.sem);
1474 }
1475 if (error)
1476 device_release_driver(&ud->device);
1477 put_driver(drv);
1478 }
1479 up(&nodemgr_ud_class.sem);
1480 }
1481
1482
1483 /* Write the BROADCAST_CHANNEL as per IEEE1394a 8.3.2.3.11 and 8.4.2.3. This
1484 * seems like an optional service but in the end it is practically mandatory
1485 * as a consequence of these clauses.
1486 *
1487 * Note that we cannot do a broadcast write to all nodes at once because some
1488 * pre-1394a devices would hang. */
1489 static void nodemgr_irm_write_bc(struct node_entry *ne, int generation)
1490 {
1491 const u64 bc_addr = (CSR_REGISTER_BASE | CSR_BROADCAST_CHANNEL);
1492 quadlet_t bc_remote, bc_local;
1493 int error;
1494
1495 if (!ne->host->is_irm || ne->generation != generation ||
1496 ne->nodeid == ne->host->node_id)
1497 return;
1498
1499 bc_local = cpu_to_be32(ne->host->csr.broadcast_channel);
1500
1501 /* Check if the register is implemented and 1394a compliant. */
1502 error = hpsb_read(ne->host, ne->nodeid, generation, bc_addr, &bc_remote,
1503 sizeof(bc_remote));
1504 if (!error && bc_remote & cpu_to_be32(0x80000000) &&
1505 bc_remote != bc_local)
1506 hpsb_node_write(ne, bc_addr, &bc_local, sizeof(bc_local));
1507 }
1508
1509
1510 static void nodemgr_probe_ne(struct host_info *hi, struct node_entry *ne, int generation)
1511 {
1512 struct device *dev;
1513
1514 if (ne->host != hi->host || ne->in_limbo)
1515 return;
1516
1517 dev = get_device(&ne->device);
1518 if (!dev)
1519 return;
1520
1521 nodemgr_irm_write_bc(ne, generation);
1522
1523 /* If "needs_probe", then this is either a new or changed node we
1524 * rescan totally. If the generation matches for an existing node
1525 * (one that existed prior to the bus reset) we send update calls
1526 * down to the drivers. Otherwise, this is a dead node and we
1527 * suspend it. */
1528 if (ne->needs_probe)
1529 nodemgr_process_root_directory(hi, ne);
1530 else if (ne->generation == generation)
1531 nodemgr_update_pdrv(ne);
1532 else
1533 nodemgr_suspend_ne(ne);
1534
1535 put_device(dev);
1536 }
1537
1538
1539 static void nodemgr_node_probe(struct host_info *hi, int generation)
1540 {
1541 struct hpsb_host *host = hi->host;
1542 struct device *dev;
1543 struct node_entry *ne;
1544
1545 /* Do some processing of the nodes we've probed. This pulls them
1546 * into the sysfs layer if needed, and can result in processing of
1547 * unit-directories, or just updating the node and it's
1548 * unit-directories.
1549 *
1550 * Run updates before probes. Usually, updates are time-critical
1551 * while probes are time-consuming. (Well, those probes need some
1552 * improvement...) */
1553
1554 down(&nodemgr_ne_class.sem);
1555 list_for_each_entry(dev, &nodemgr_ne_class.devices, node) {
1556 ne = container_of(dev, struct node_entry, node_dev);
1557 if (!ne->needs_probe)
1558 nodemgr_probe_ne(hi, ne, generation);
1559 }
1560 list_for_each_entry(dev, &nodemgr_ne_class.devices, node) {
1561 ne = container_of(dev, struct node_entry, node_dev);
1562 if (ne->needs_probe)
1563 nodemgr_probe_ne(hi, ne, generation);
1564 }
1565 up(&nodemgr_ne_class.sem);
1566
1567
1568 /* If we had a bus reset while we were scanning the bus, it is
1569 * possible that we did not probe all nodes. In that case, we
1570 * skip the clean up for now, since we could remove nodes that
1571 * were still on the bus. Another bus scan is pending which will
1572 * do the clean up eventually.
1573 *
1574 * Now let's tell the bus to rescan our devices. This may seem
1575 * like overhead, but the driver-model core will only scan a
1576 * device for a driver when either the device is added, or when a
1577 * new driver is added. A bus reset is a good reason to rescan
1578 * devices that were there before. For example, an sbp2 device
1579 * may become available for login, if the host that held it was
1580 * just removed. */
1581
1582 if (generation == get_hpsb_generation(host))
1583 if (bus_rescan_devices(&ieee1394_bus_type))
1584 HPSB_DEBUG("bus_rescan_devices had an error");
1585 }
1586
1587 static int nodemgr_send_resume_packet(struct hpsb_host *host)
1588 {
1589 struct hpsb_packet *packet;
1590 int error = -ENOMEM;
1591
1592 packet = hpsb_make_phypacket(host,
1593 EXTPHYPACKET_TYPE_RESUME |
1594 NODEID_TO_NODE(host->node_id) << PHYPACKET_PORT_SHIFT);
1595 if (packet) {
1596 packet->no_waiter = 1;
1597 packet->generation = get_hpsb_generation(host);
1598 error = hpsb_send_packet(packet);
1599 }
1600 if (error)
1601 HPSB_WARN("fw-host%d: Failed to broadcast resume packet",
1602 host->id);
1603 return error;
1604 }
1605
1606 /* Perform a few high-level IRM responsibilities. */
1607 static int nodemgr_do_irm_duties(struct hpsb_host *host, int cycles)
1608 {
1609 quadlet_t bc;
1610
1611 /* if irm_id == -1 then there is no IRM on this bus */
1612 if (!host->is_irm || host->irm_id == (nodeid_t)-1)
1613 return 1;
1614
1615 /* We are a 1394a-2000 compliant IRM. Set the validity bit. */
1616 host->csr.broadcast_channel |= 0x40000000;
1617
1618 /* If there is no bus manager then we should set the root node's
1619 * force_root bit to promote bus stability per the 1394
1620 * spec. (8.4.2.6) */
1621 if (host->busmgr_id == 0xffff && host->node_count > 1)
1622 {
1623 u16 root_node = host->node_count - 1;
1624
1625 /* get cycle master capability flag from root node */
1626 if (host->is_cycmst ||
1627 (!hpsb_read(host, LOCAL_BUS | root_node, get_hpsb_generation(host),
1628 (CSR_REGISTER_BASE + CSR_CONFIG_ROM + 2 * sizeof(quadlet_t)),
1629 &bc, sizeof(quadlet_t)) &&
1630 be32_to_cpu(bc) & 1 << CSR_CMC_SHIFT))
1631 hpsb_send_phy_config(host, root_node, -1);
1632 else {
1633 HPSB_DEBUG("The root node is not cycle master capable; "
1634 "selecting a new root node and resetting...");
1635
1636 if (cycles >= 5) {
1637 /* Oh screw it! Just leave the bus as it is */
1638 HPSB_DEBUG("Stopping reset loop for IRM sanity");
1639 return 1;
1640 }
1641
1642 hpsb_send_phy_config(host, NODEID_TO_NODE(host->node_id), -1);
1643 hpsb_reset_bus(host, LONG_RESET_FORCE_ROOT);
1644
1645 return 0;
1646 }
1647 }
1648
1649 /* Some devices suspend their ports while being connected to an inactive
1650 * host adapter, i.e. if connected before the low-level driver is
1651 * loaded. They become visible either when physically unplugged and
1652 * replugged, or when receiving a resume packet. Send one once. */
1653 if (!host->resume_packet_sent && !nodemgr_send_resume_packet(host))
1654 host->resume_packet_sent = 1;
1655
1656 return 1;
1657 }
1658
1659 /* We need to ensure that if we are not the IRM, that the IRM node is capable of
1660 * everything we can do, otherwise issue a bus reset and try to become the IRM
1661 * ourselves. */
1662 static int nodemgr_check_irm_capability(struct hpsb_host *host, int cycles)
1663 {
1664 quadlet_t bc;
1665 int status;
1666
1667 if (hpsb_disable_irm || host->is_irm)
1668 return 1;
1669
1670 status = hpsb_read(host, LOCAL_BUS | (host->irm_id),
1671 get_hpsb_generation(host),
1672 (CSR_REGISTER_BASE | CSR_BROADCAST_CHANNEL),
1673 &bc, sizeof(quadlet_t));
1674
1675 if (status < 0 || !(be32_to_cpu(bc) & 0x80000000)) {
1676 /* The current irm node does not have a valid BROADCAST_CHANNEL
1677 * register and we do, so reset the bus with force_root set */
1678 HPSB_DEBUG("Current remote IRM is not 1394a-2000 compliant, resetting...");
1679
1680 if (cycles >= 5) {
1681 /* Oh screw it! Just leave the bus as it is */
1682 HPSB_DEBUG("Stopping reset loop for IRM sanity");
1683 return 1;
1684 }
1685
1686 hpsb_send_phy_config(host, NODEID_TO_NODE(host->node_id), -1);
1687 hpsb_reset_bus(host, LONG_RESET_FORCE_ROOT);
1688
1689 return 0;
1690 }
1691
1692 return 1;
1693 }
1694
1695 static int nodemgr_host_thread(void *__hi)
1696 {
1697 struct host_info *hi = (struct host_info *)__hi;
1698 struct hpsb_host *host = hi->host;
1699 unsigned int g, generation = 0;
1700 int i, reset_cycles = 0;
1701
1702 set_freezable();
1703 /* Setup our device-model entries */
1704 nodemgr_create_host_dev_files(host);
1705
1706 for (;;) {
1707 /* Sleep until next bus reset */
1708 set_current_state(TASK_INTERRUPTIBLE);
1709 if (get_hpsb_generation(host) == generation &&
1710 !kthread_should_stop())
1711 schedule();
1712 __set_current_state(TASK_RUNNING);
1713
1714 /* Thread may have been woken up to freeze or to exit */
1715 if (try_to_freeze())
1716 continue;
1717 if (kthread_should_stop())
1718 goto exit;
1719
1720 /* Pause for 1/4 second in 1/16 second intervals,
1721 * to make sure things settle down. */
1722 g = get_hpsb_generation(host);
1723 for (i = 0; i < 4 ; i++) {
1724 if (msleep_interruptible(63) || kthread_should_stop())
1725 goto exit;
1726
1727 /* Now get the generation in which the node ID's we collect
1728 * are valid. During the bus scan we will use this generation
1729 * for the read transactions, so that if another reset occurs
1730 * during the scan the transactions will fail instead of
1731 * returning bogus data. */
1732 generation = get_hpsb_generation(host);
1733
1734 /* If we get a reset before we are done waiting, then
1735 * start the waiting over again */
1736 if (generation != g)
1737 g = generation, i = 0;
1738 }
1739
1740 if (!nodemgr_check_irm_capability(host, reset_cycles) ||
1741 !nodemgr_do_irm_duties(host, reset_cycles)) {
1742 reset_cycles++;
1743 continue;
1744 }
1745 reset_cycles = 0;
1746
1747 /* Scan our nodes to get the bus options and create node
1748 * entries. This does not do the sysfs stuff, since that
1749 * would trigger uevents and such, which is a bad idea at
1750 * this point. */
1751 nodemgr_node_scan(hi, generation);
1752
1753 /* This actually does the full probe, with sysfs
1754 * registration. */
1755 nodemgr_node_probe(hi, generation);
1756
1757 /* Update some of our sysfs symlinks */
1758 nodemgr_update_host_dev_links(host);
1759 }
1760 exit:
1761 HPSB_VERBOSE("NodeMgr: Exiting thread");
1762 return 0;
1763 }
1764
1765 /**
1766 * nodemgr_for_each_host - call a function for each IEEE 1394 host
1767 * @data: an address to supply to the callback
1768 * @cb: function to call for each host
1769 *
1770 * Iterate the hosts, calling a given function with supplied data for each host.
1771 * If the callback fails on a host, i.e. if it returns a non-zero value, the
1772 * iteration is stopped.
1773 *
1774 * Return value: 0 on success, non-zero on failure (same as returned by last run
1775 * of the callback).
1776 */
1777 int nodemgr_for_each_host(void *data, int (*cb)(struct hpsb_host *, void *))
1778 {
1779 struct device *dev;
1780 struct hpsb_host *host;
1781 int error = 0;
1782
1783 down(&hpsb_host_class.sem);
1784 list_for_each_entry(dev, &hpsb_host_class.devices, node) {
1785 host = container_of(dev, struct hpsb_host, host_dev);
1786
1787 if ((error = cb(host, data)))
1788 break;
1789 }
1790 up(&hpsb_host_class.sem);
1791
1792 return error;
1793 }
1794
1795 /* The following two convenience functions use a struct node_entry
1796 * for addressing a node on the bus. They are intended for use by any
1797 * process context, not just the nodemgr thread, so we need to be a
1798 * little careful when reading out the node ID and generation. The
1799 * thing that can go wrong is that we get the node ID, then a bus
1800 * reset occurs, and then we read the generation. The node ID is
1801 * possibly invalid, but the generation is current, and we end up
1802 * sending a packet to a the wrong node.
1803 *
1804 * The solution is to make sure we read the generation first, so that
1805 * if a reset occurs in the process, we end up with a stale generation
1806 * and the transactions will fail instead of silently using wrong node
1807 * ID's.
1808 */
1809
1810 /**
1811 * hpsb_node_fill_packet - fill some destination information into a packet
1812 * @ne: destination node
1813 * @packet: packet to fill in
1814 *
1815 * This will fill in the given, pre-initialised hpsb_packet with the current
1816 * information from the node entry (host, node ID, bus generation number).
1817 */
1818 void hpsb_node_fill_packet(struct node_entry *ne, struct hpsb_packet *packet)
1819 {
1820 packet->host = ne->host;
1821 packet->generation = ne->generation;
1822 barrier();
1823 packet->node_id = ne->nodeid;
1824 }
1825
1826 int hpsb_node_write(struct node_entry *ne, u64 addr,
1827 quadlet_t *buffer, size_t length)
1828 {
1829 unsigned int generation = ne->generation;
1830
1831 barrier();
1832 return hpsb_write(ne->host, ne->nodeid, generation,
1833 addr, buffer, length);
1834 }
1835
1836 static void nodemgr_add_host(struct hpsb_host *host)
1837 {
1838 struct host_info *hi;
1839
1840 hi = hpsb_create_hostinfo(&nodemgr_highlevel, host, sizeof(*hi));
1841 if (!hi) {
1842 HPSB_ERR("NodeMgr: out of memory in add host");
1843 return;
1844 }
1845 hi->host = host;
1846 hi->thread = kthread_run(nodemgr_host_thread, hi, "knodemgrd_%d",
1847 host->id);
1848 if (IS_ERR(hi->thread)) {
1849 HPSB_ERR("NodeMgr: cannot start thread for host %d", host->id);
1850 hpsb_destroy_hostinfo(&nodemgr_highlevel, host);
1851 }
1852 }
1853
1854 static void nodemgr_host_reset(struct hpsb_host *host)
1855 {
1856 struct host_info *hi = hpsb_get_hostinfo(&nodemgr_highlevel, host);
1857
1858 if (hi) {
1859 HPSB_VERBOSE("NodeMgr: Processing reset for host %d", host->id);
1860 wake_up_process(hi->thread);
1861 }
1862 }
1863
1864 static void nodemgr_remove_host(struct hpsb_host *host)
1865 {
1866 struct host_info *hi = hpsb_get_hostinfo(&nodemgr_highlevel, host);
1867
1868 if (hi) {
1869 kthread_stop(hi->thread);
1870 nodemgr_remove_host_dev(&host->device);
1871 }
1872 }
1873
1874 static struct hpsb_highlevel nodemgr_highlevel = {
1875 .name = "Node manager",
1876 .add_host = nodemgr_add_host,
1877 .host_reset = nodemgr_host_reset,
1878 .remove_host = nodemgr_remove_host,
1879 };
1880
1881 int init_ieee1394_nodemgr(void)
1882 {
1883 int error;
1884
1885 error = class_register(&nodemgr_ne_class);
1886 if (error)
1887 goto fail_ne;
1888 error = class_register(&nodemgr_ud_class);
1889 if (error)
1890 goto fail_ud;
1891 error = driver_register(&nodemgr_mid_layer_driver);
1892 if (error)
1893 goto fail_ml;
1894 /* This driver is not used if nodemgr is off (disable_nodemgr=1). */
1895 nodemgr_dev_template_host.driver = &nodemgr_mid_layer_driver;
1896
1897 hpsb_register_highlevel(&nodemgr_highlevel);
1898 return 0;
1899
1900 fail_ml:
1901 class_unregister(&nodemgr_ud_class);
1902 fail_ud:
1903 class_unregister(&nodemgr_ne_class);
1904 fail_ne:
1905 return error;
1906 }
1907
1908 void cleanup_ieee1394_nodemgr(void)
1909 {
1910 hpsb_unregister_highlevel(&nodemgr_highlevel);
1911 driver_unregister(&nodemgr_mid_layer_driver);
1912 class_unregister(&nodemgr_ud_class);
1913 class_unregister(&nodemgr_ne_class);
1914 }
This page took 0.103453 seconds and 5 git commands to generate.