Fix occurrences of "the the "
[deliverable/linux.git] / drivers / ieee1394 / nodemgr.c
1 /*
2 * Node information (ConfigROM) collection and management.
3 *
4 * Copyright (C) 2000 Andreas E. Bombe
5 * 2001-2003 Ben Collins <bcollins@debian.net>
6 *
7 * This code is licensed under the GPL. See the file COPYING in the root
8 * directory of the kernel sources for details.
9 */
10
11 #include <linux/bitmap.h>
12 #include <linux/kernel.h>
13 #include <linux/list.h>
14 #include <linux/slab.h>
15 #include <linux/delay.h>
16 #include <linux/kthread.h>
17 #include <linux/module.h>
18 #include <linux/moduleparam.h>
19 #include <linux/mutex.h>
20 #include <linux/freezer.h>
21 #include <asm/atomic.h>
22
23 #include "csr.h"
24 #include "highlevel.h"
25 #include "hosts.h"
26 #include "ieee1394.h"
27 #include "ieee1394_core.h"
28 #include "ieee1394_hotplug.h"
29 #include "ieee1394_types.h"
30 #include "ieee1394_transactions.h"
31 #include "nodemgr.h"
32
33 static int ignore_drivers;
34 module_param(ignore_drivers, int, S_IRUGO | S_IWUSR);
35 MODULE_PARM_DESC(ignore_drivers, "Disable automatic probing for drivers.");
36
37 struct nodemgr_csr_info {
38 struct hpsb_host *host;
39 nodeid_t nodeid;
40 unsigned int generation;
41 unsigned int speed_unverified:1;
42 };
43
44
45 /*
46 * Correct the speed map entry. This is necessary
47 * - for nodes with link speed < phy speed,
48 * - for 1394b nodes with negotiated phy port speed < IEEE1394_SPEED_MAX.
49 * A possible speed is determined by trial and error, using quadlet reads.
50 */
51 static int nodemgr_check_speed(struct nodemgr_csr_info *ci, u64 addr,
52 quadlet_t *buffer)
53 {
54 quadlet_t q;
55 u8 i, *speed, old_speed, good_speed;
56 int error;
57
58 speed = &(ci->host->speed[NODEID_TO_NODE(ci->nodeid)]);
59 old_speed = *speed;
60 good_speed = IEEE1394_SPEED_MAX + 1;
61
62 /* Try every speed from S100 to old_speed.
63 * If we did it the other way around, a too low speed could be caught
64 * if the retry succeeded for some other reason, e.g. because the link
65 * just finished its initialization. */
66 for (i = IEEE1394_SPEED_100; i <= old_speed; i++) {
67 *speed = i;
68 error = hpsb_read(ci->host, ci->nodeid, ci->generation, addr,
69 &q, sizeof(quadlet_t));
70 if (error)
71 break;
72 *buffer = q;
73 good_speed = i;
74 }
75 if (good_speed <= IEEE1394_SPEED_MAX) {
76 HPSB_DEBUG("Speed probe of node " NODE_BUS_FMT " yields %s",
77 NODE_BUS_ARGS(ci->host, ci->nodeid),
78 hpsb_speedto_str[good_speed]);
79 *speed = good_speed;
80 ci->speed_unverified = 0;
81 return 0;
82 }
83 *speed = old_speed;
84 return error;
85 }
86
87 static int nodemgr_bus_read(struct csr1212_csr *csr, u64 addr, u16 length,
88 void *buffer, void *__ci)
89 {
90 struct nodemgr_csr_info *ci = (struct nodemgr_csr_info*)__ci;
91 int i, error;
92
93 for (i = 1; ; i++) {
94 error = hpsb_read(ci->host, ci->nodeid, ci->generation, addr,
95 buffer, length);
96 if (!error) {
97 ci->speed_unverified = 0;
98 break;
99 }
100 /* Give up after 3rd failure. */
101 if (i == 3)
102 break;
103
104 /* The ieee1394_core guessed the node's speed capability from
105 * the self ID. Check whether a lower speed works. */
106 if (ci->speed_unverified && length == sizeof(quadlet_t)) {
107 error = nodemgr_check_speed(ci, addr, buffer);
108 if (!error)
109 break;
110 }
111 if (msleep_interruptible(334))
112 return -EINTR;
113 }
114 return error;
115 }
116
117 static int nodemgr_get_max_rom(quadlet_t *bus_info_data, void *__ci)
118 {
119 return (be32_to_cpu(bus_info_data[2]) >> 8) & 0x3;
120 }
121
122 static struct csr1212_bus_ops nodemgr_csr_ops = {
123 .bus_read = nodemgr_bus_read,
124 .get_max_rom = nodemgr_get_max_rom
125 };
126
127
128 /*
129 * Basically what we do here is start off retrieving the bus_info block.
130 * From there will fill in some info about the node, verify it is of IEEE
131 * 1394 type, and that the crc checks out ok. After that we start off with
132 * the root directory, and subdirectories. To do this, we retrieve the
133 * quadlet header for a directory, find out the length, and retrieve the
134 * complete directory entry (be it a leaf or a directory). We then process
135 * it and add the info to our structure for that particular node.
136 *
137 * We verify CRC's along the way for each directory/block/leaf. The entire
138 * node structure is generic, and simply stores the information in a way
139 * that's easy to parse by the protocol interface.
140 */
141
142 /*
143 * The nodemgr relies heavily on the Driver Model for device callbacks and
144 * driver/device mappings. The old nodemgr used to handle all this itself,
145 * but now we are much simpler because of the LDM.
146 */
147
148 static DEFINE_MUTEX(nodemgr_serialize);
149
150 struct host_info {
151 struct hpsb_host *host;
152 struct list_head list;
153 struct task_struct *thread;
154 };
155
156 static int nodemgr_bus_match(struct device * dev, struct device_driver * drv);
157 static int nodemgr_uevent(struct class_device *cdev, char **envp, int num_envp,
158 char *buffer, int buffer_size);
159 static void nodemgr_resume_ne(struct node_entry *ne);
160 static void nodemgr_remove_ne(struct node_entry *ne);
161 static struct node_entry *find_entry_by_guid(u64 guid);
162
163 struct bus_type ieee1394_bus_type = {
164 .name = "ieee1394",
165 .match = nodemgr_bus_match,
166 };
167
168 static void host_cls_release(struct class_device *class_dev)
169 {
170 put_device(&container_of((class_dev), struct hpsb_host, class_dev)->device);
171 }
172
173 struct class hpsb_host_class = {
174 .name = "ieee1394_host",
175 .release = host_cls_release,
176 };
177
178 static void ne_cls_release(struct class_device *class_dev)
179 {
180 put_device(&container_of((class_dev), struct node_entry, class_dev)->device);
181 }
182
183 static struct class nodemgr_ne_class = {
184 .name = "ieee1394_node",
185 .release = ne_cls_release,
186 };
187
188 static void ud_cls_release(struct class_device *class_dev)
189 {
190 put_device(&container_of((class_dev), struct unit_directory, class_dev)->device);
191 }
192
193 /* The name here is only so that unit directory hotplug works with old
194 * style hotplug, which only ever did unit directories anyway. */
195 static struct class nodemgr_ud_class = {
196 .name = "ieee1394",
197 .release = ud_cls_release,
198 .uevent = nodemgr_uevent,
199 };
200
201 static struct hpsb_highlevel nodemgr_highlevel;
202
203
204 static void nodemgr_release_ud(struct device *dev)
205 {
206 struct unit_directory *ud = container_of(dev, struct unit_directory, device);
207
208 if (ud->vendor_name_kv)
209 csr1212_release_keyval(ud->vendor_name_kv);
210 if (ud->model_name_kv)
211 csr1212_release_keyval(ud->model_name_kv);
212
213 kfree(ud);
214 }
215
216 static void nodemgr_release_ne(struct device *dev)
217 {
218 struct node_entry *ne = container_of(dev, struct node_entry, device);
219
220 if (ne->vendor_name_kv)
221 csr1212_release_keyval(ne->vendor_name_kv);
222
223 kfree(ne);
224 }
225
226
227 static void nodemgr_release_host(struct device *dev)
228 {
229 struct hpsb_host *host = container_of(dev, struct hpsb_host, device);
230
231 csr1212_destroy_csr(host->csr.rom);
232
233 kfree(host);
234 }
235
236 static int nodemgr_ud_platform_data;
237
238 static struct device nodemgr_dev_template_ud = {
239 .bus = &ieee1394_bus_type,
240 .release = nodemgr_release_ud,
241 .platform_data = &nodemgr_ud_platform_data,
242 };
243
244 static struct device nodemgr_dev_template_ne = {
245 .bus = &ieee1394_bus_type,
246 .release = nodemgr_release_ne,
247 };
248
249 /* This dummy driver prevents the host devices from being scanned. We have no
250 * useful drivers for them yet, and there would be a deadlock possible if the
251 * driver core scans the host device while the host's low-level driver (i.e.
252 * the host's parent device) is being removed. */
253 static struct device_driver nodemgr_mid_layer_driver = {
254 .bus = &ieee1394_bus_type,
255 .name = "nodemgr",
256 .owner = THIS_MODULE,
257 };
258
259 struct device nodemgr_dev_template_host = {
260 .bus = &ieee1394_bus_type,
261 .release = nodemgr_release_host,
262 };
263
264
265 #define fw_attr(class, class_type, field, type, format_string) \
266 static ssize_t fw_show_##class##_##field (struct device *dev, struct device_attribute *attr, char *buf)\
267 { \
268 class_type *class; \
269 class = container_of(dev, class_type, device); \
270 return sprintf(buf, format_string, (type)class->field); \
271 } \
272 static struct device_attribute dev_attr_##class##_##field = { \
273 .attr = {.name = __stringify(field), .mode = S_IRUGO }, \
274 .show = fw_show_##class##_##field, \
275 };
276
277 #define fw_attr_td(class, class_type, td_kv) \
278 static ssize_t fw_show_##class##_##td_kv (struct device *dev, struct device_attribute *attr, char *buf)\
279 { \
280 int len; \
281 class_type *class = container_of(dev, class_type, device); \
282 len = (class->td_kv->value.leaf.len - 2) * sizeof(quadlet_t); \
283 memcpy(buf, \
284 CSR1212_TEXTUAL_DESCRIPTOR_LEAF_DATA(class->td_kv), \
285 len); \
286 while ((buf + len - 1) == '\0') \
287 len--; \
288 buf[len++] = '\n'; \
289 buf[len] = '\0'; \
290 return len; \
291 } \
292 static struct device_attribute dev_attr_##class##_##td_kv = { \
293 .attr = {.name = __stringify(td_kv), .mode = S_IRUGO }, \
294 .show = fw_show_##class##_##td_kv, \
295 };
296
297
298 #define fw_drv_attr(field, type, format_string) \
299 static ssize_t fw_drv_show_##field (struct device_driver *drv, char *buf) \
300 { \
301 struct hpsb_protocol_driver *driver; \
302 driver = container_of(drv, struct hpsb_protocol_driver, driver); \
303 return sprintf(buf, format_string, (type)driver->field);\
304 } \
305 static struct driver_attribute driver_attr_drv_##field = { \
306 .attr = {.name = __stringify(field), .mode = S_IRUGO }, \
307 .show = fw_drv_show_##field, \
308 };
309
310
311 static ssize_t fw_show_ne_bus_options(struct device *dev, struct device_attribute *attr, char *buf)
312 {
313 struct node_entry *ne = container_of(dev, struct node_entry, device);
314
315 return sprintf(buf, "IRMC(%d) CMC(%d) ISC(%d) BMC(%d) PMC(%d) GEN(%d) "
316 "LSPD(%d) MAX_REC(%d) MAX_ROM(%d) CYC_CLK_ACC(%d)\n",
317 ne->busopt.irmc,
318 ne->busopt.cmc, ne->busopt.isc, ne->busopt.bmc,
319 ne->busopt.pmc, ne->busopt.generation, ne->busopt.lnkspd,
320 ne->busopt.max_rec,
321 ne->busopt.max_rom,
322 ne->busopt.cyc_clk_acc);
323 }
324 static DEVICE_ATTR(bus_options,S_IRUGO,fw_show_ne_bus_options,NULL);
325
326
327 #ifdef HPSB_DEBUG_TLABELS
328 static ssize_t fw_show_ne_tlabels_free(struct device *dev,
329 struct device_attribute *attr, char *buf)
330 {
331 struct node_entry *ne = container_of(dev, struct node_entry, device);
332 unsigned long flags;
333 unsigned long *tp = ne->host->tl_pool[NODEID_TO_NODE(ne->nodeid)].map;
334 int tf;
335
336 spin_lock_irqsave(&hpsb_tlabel_lock, flags);
337 tf = 64 - bitmap_weight(tp, 64);
338 spin_unlock_irqrestore(&hpsb_tlabel_lock, flags);
339
340 return sprintf(buf, "%d\n", tf);
341 }
342 static DEVICE_ATTR(tlabels_free,S_IRUGO,fw_show_ne_tlabels_free,NULL);
343
344
345 static ssize_t fw_show_ne_tlabels_mask(struct device *dev,
346 struct device_attribute *attr, char *buf)
347 {
348 struct node_entry *ne = container_of(dev, struct node_entry, device);
349 unsigned long flags;
350 unsigned long *tp = ne->host->tl_pool[NODEID_TO_NODE(ne->nodeid)].map;
351 u64 tm;
352
353 spin_lock_irqsave(&hpsb_tlabel_lock, flags);
354 #if (BITS_PER_LONG <= 32)
355 tm = ((u64)tp[0] << 32) + tp[1];
356 #else
357 tm = tp[0];
358 #endif
359 spin_unlock_irqrestore(&hpsb_tlabel_lock, flags);
360
361 return sprintf(buf, "0x%016llx\n", (unsigned long long)tm);
362 }
363 static DEVICE_ATTR(tlabels_mask, S_IRUGO, fw_show_ne_tlabels_mask, NULL);
364 #endif /* HPSB_DEBUG_TLABELS */
365
366
367 static ssize_t fw_set_ignore_driver(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)
368 {
369 struct unit_directory *ud = container_of(dev, struct unit_directory, device);
370 int state = simple_strtoul(buf, NULL, 10);
371
372 if (state == 1) {
373 ud->ignore_driver = 1;
374 device_release_driver(dev);
375 } else if (state == 0)
376 ud->ignore_driver = 0;
377
378 return count;
379 }
380 static ssize_t fw_get_ignore_driver(struct device *dev, struct device_attribute *attr, char *buf)
381 {
382 struct unit_directory *ud = container_of(dev, struct unit_directory, device);
383
384 return sprintf(buf, "%d\n", ud->ignore_driver);
385 }
386 static DEVICE_ATTR(ignore_driver, S_IWUSR | S_IRUGO, fw_get_ignore_driver, fw_set_ignore_driver);
387
388
389 static ssize_t fw_set_destroy_node(struct bus_type *bus, const char *buf, size_t count)
390 {
391 struct node_entry *ne;
392 u64 guid = (u64)simple_strtoull(buf, NULL, 16);
393
394 ne = find_entry_by_guid(guid);
395
396 if (ne == NULL || !ne->in_limbo)
397 return -EINVAL;
398
399 nodemgr_remove_ne(ne);
400
401 return count;
402 }
403 static ssize_t fw_get_destroy_node(struct bus_type *bus, char *buf)
404 {
405 return sprintf(buf, "You can destroy in_limbo nodes by writing their GUID to this file\n");
406 }
407 static BUS_ATTR(destroy_node, S_IWUSR | S_IRUGO, fw_get_destroy_node, fw_set_destroy_node);
408
409
410 static ssize_t fw_set_rescan(struct bus_type *bus, const char *buf,
411 size_t count)
412 {
413 int error = 0;
414
415 if (simple_strtoul(buf, NULL, 10) == 1)
416 error = bus_rescan_devices(&ieee1394_bus_type);
417 return error ? error : count;
418 }
419 static ssize_t fw_get_rescan(struct bus_type *bus, char *buf)
420 {
421 return sprintf(buf, "You can force a rescan of the bus for "
422 "drivers by writing a 1 to this file\n");
423 }
424 static BUS_ATTR(rescan, S_IWUSR | S_IRUGO, fw_get_rescan, fw_set_rescan);
425
426
427 static ssize_t fw_set_ignore_drivers(struct bus_type *bus, const char *buf, size_t count)
428 {
429 int state = simple_strtoul(buf, NULL, 10);
430
431 if (state == 1)
432 ignore_drivers = 1;
433 else if (state == 0)
434 ignore_drivers = 0;
435
436 return count;
437 }
438 static ssize_t fw_get_ignore_drivers(struct bus_type *bus, char *buf)
439 {
440 return sprintf(buf, "%d\n", ignore_drivers);
441 }
442 static BUS_ATTR(ignore_drivers, S_IWUSR | S_IRUGO, fw_get_ignore_drivers, fw_set_ignore_drivers);
443
444
445 struct bus_attribute *const fw_bus_attrs[] = {
446 &bus_attr_destroy_node,
447 &bus_attr_rescan,
448 &bus_attr_ignore_drivers,
449 NULL
450 };
451
452
453 fw_attr(ne, struct node_entry, capabilities, unsigned int, "0x%06x\n")
454 fw_attr(ne, struct node_entry, nodeid, unsigned int, "0x%04x\n")
455
456 fw_attr(ne, struct node_entry, vendor_id, unsigned int, "0x%06x\n")
457 fw_attr_td(ne, struct node_entry, vendor_name_kv)
458
459 fw_attr(ne, struct node_entry, guid, unsigned long long, "0x%016Lx\n")
460 fw_attr(ne, struct node_entry, guid_vendor_id, unsigned int, "0x%06x\n")
461 fw_attr(ne, struct node_entry, in_limbo, int, "%d\n");
462
463 static struct device_attribute *const fw_ne_attrs[] = {
464 &dev_attr_ne_guid,
465 &dev_attr_ne_guid_vendor_id,
466 &dev_attr_ne_capabilities,
467 &dev_attr_ne_vendor_id,
468 &dev_attr_ne_nodeid,
469 &dev_attr_bus_options,
470 #ifdef HPSB_DEBUG_TLABELS
471 &dev_attr_tlabels_free,
472 &dev_attr_tlabels_mask,
473 #endif
474 };
475
476
477
478 fw_attr(ud, struct unit_directory, address, unsigned long long, "0x%016Lx\n")
479 fw_attr(ud, struct unit_directory, length, int, "%d\n")
480 /* These are all dependent on the value being provided */
481 fw_attr(ud, struct unit_directory, vendor_id, unsigned int, "0x%06x\n")
482 fw_attr(ud, struct unit_directory, model_id, unsigned int, "0x%06x\n")
483 fw_attr(ud, struct unit_directory, specifier_id, unsigned int, "0x%06x\n")
484 fw_attr(ud, struct unit_directory, version, unsigned int, "0x%06x\n")
485 fw_attr_td(ud, struct unit_directory, vendor_name_kv)
486 fw_attr_td(ud, struct unit_directory, model_name_kv)
487
488 static struct device_attribute *const fw_ud_attrs[] = {
489 &dev_attr_ud_address,
490 &dev_attr_ud_length,
491 &dev_attr_ignore_driver,
492 };
493
494
495 fw_attr(host, struct hpsb_host, node_count, int, "%d\n")
496 fw_attr(host, struct hpsb_host, selfid_count, int, "%d\n")
497 fw_attr(host, struct hpsb_host, nodes_active, int, "%d\n")
498 fw_attr(host, struct hpsb_host, in_bus_reset, int, "%d\n")
499 fw_attr(host, struct hpsb_host, is_root, int, "%d\n")
500 fw_attr(host, struct hpsb_host, is_cycmst, int, "%d\n")
501 fw_attr(host, struct hpsb_host, is_irm, int, "%d\n")
502 fw_attr(host, struct hpsb_host, is_busmgr, int, "%d\n")
503
504 static struct device_attribute *const fw_host_attrs[] = {
505 &dev_attr_host_node_count,
506 &dev_attr_host_selfid_count,
507 &dev_attr_host_nodes_active,
508 &dev_attr_host_in_bus_reset,
509 &dev_attr_host_is_root,
510 &dev_attr_host_is_cycmst,
511 &dev_attr_host_is_irm,
512 &dev_attr_host_is_busmgr,
513 };
514
515
516 static ssize_t fw_show_drv_device_ids(struct device_driver *drv, char *buf)
517 {
518 struct hpsb_protocol_driver *driver;
519 struct ieee1394_device_id *id;
520 int length = 0;
521 char *scratch = buf;
522
523 driver = container_of(drv, struct hpsb_protocol_driver, driver);
524
525 for (id = driver->id_table; id->match_flags != 0; id++) {
526 int need_coma = 0;
527
528 if (id->match_flags & IEEE1394_MATCH_VENDOR_ID) {
529 length += sprintf(scratch, "vendor_id=0x%06x", id->vendor_id);
530 scratch = buf + length;
531 need_coma++;
532 }
533
534 if (id->match_flags & IEEE1394_MATCH_MODEL_ID) {
535 length += sprintf(scratch, "%smodel_id=0x%06x",
536 need_coma++ ? "," : "",
537 id->model_id);
538 scratch = buf + length;
539 }
540
541 if (id->match_flags & IEEE1394_MATCH_SPECIFIER_ID) {
542 length += sprintf(scratch, "%sspecifier_id=0x%06x",
543 need_coma++ ? "," : "",
544 id->specifier_id);
545 scratch = buf + length;
546 }
547
548 if (id->match_flags & IEEE1394_MATCH_VERSION) {
549 length += sprintf(scratch, "%sversion=0x%06x",
550 need_coma++ ? "," : "",
551 id->version);
552 scratch = buf + length;
553 }
554
555 if (need_coma) {
556 *scratch++ = '\n';
557 length++;
558 }
559 }
560
561 return length;
562 }
563 static DRIVER_ATTR(device_ids,S_IRUGO,fw_show_drv_device_ids,NULL);
564
565
566 fw_drv_attr(name, const char *, "%s\n")
567
568 static struct driver_attribute *const fw_drv_attrs[] = {
569 &driver_attr_drv_name,
570 &driver_attr_device_ids,
571 };
572
573
574 static void nodemgr_create_drv_files(struct hpsb_protocol_driver *driver)
575 {
576 struct device_driver *drv = &driver->driver;
577 int i;
578
579 for (i = 0; i < ARRAY_SIZE(fw_drv_attrs); i++)
580 if (driver_create_file(drv, fw_drv_attrs[i]))
581 goto fail;
582 return;
583 fail:
584 HPSB_ERR("Failed to add sysfs attribute");
585 }
586
587
588 static void nodemgr_remove_drv_files(struct hpsb_protocol_driver *driver)
589 {
590 struct device_driver *drv = &driver->driver;
591 int i;
592
593 for (i = 0; i < ARRAY_SIZE(fw_drv_attrs); i++)
594 driver_remove_file(drv, fw_drv_attrs[i]);
595 }
596
597
598 static void nodemgr_create_ne_dev_files(struct node_entry *ne)
599 {
600 struct device *dev = &ne->device;
601 int i;
602
603 for (i = 0; i < ARRAY_SIZE(fw_ne_attrs); i++)
604 if (device_create_file(dev, fw_ne_attrs[i]))
605 goto fail;
606 return;
607 fail:
608 HPSB_ERR("Failed to add sysfs attribute");
609 }
610
611
612 static void nodemgr_create_host_dev_files(struct hpsb_host *host)
613 {
614 struct device *dev = &host->device;
615 int i;
616
617 for (i = 0; i < ARRAY_SIZE(fw_host_attrs); i++)
618 if (device_create_file(dev, fw_host_attrs[i]))
619 goto fail;
620 return;
621 fail:
622 HPSB_ERR("Failed to add sysfs attribute");
623 }
624
625
626 static struct node_entry *find_entry_by_nodeid(struct hpsb_host *host,
627 nodeid_t nodeid);
628
629 static void nodemgr_update_host_dev_links(struct hpsb_host *host)
630 {
631 struct device *dev = &host->device;
632 struct node_entry *ne;
633
634 sysfs_remove_link(&dev->kobj, "irm_id");
635 sysfs_remove_link(&dev->kobj, "busmgr_id");
636 sysfs_remove_link(&dev->kobj, "host_id");
637
638 if ((ne = find_entry_by_nodeid(host, host->irm_id)) &&
639 sysfs_create_link(&dev->kobj, &ne->device.kobj, "irm_id"))
640 goto fail;
641 if ((ne = find_entry_by_nodeid(host, host->busmgr_id)) &&
642 sysfs_create_link(&dev->kobj, &ne->device.kobj, "busmgr_id"))
643 goto fail;
644 if ((ne = find_entry_by_nodeid(host, host->node_id)) &&
645 sysfs_create_link(&dev->kobj, &ne->device.kobj, "host_id"))
646 goto fail;
647 return;
648 fail:
649 HPSB_ERR("Failed to update sysfs attributes for host %d", host->id);
650 }
651
652 static void nodemgr_create_ud_dev_files(struct unit_directory *ud)
653 {
654 struct device *dev = &ud->device;
655 int i;
656
657 for (i = 0; i < ARRAY_SIZE(fw_ud_attrs); i++)
658 if (device_create_file(dev, fw_ud_attrs[i]))
659 goto fail;
660 if (ud->flags & UNIT_DIRECTORY_SPECIFIER_ID)
661 if (device_create_file(dev, &dev_attr_ud_specifier_id))
662 goto fail;
663 if (ud->flags & UNIT_DIRECTORY_VERSION)
664 if (device_create_file(dev, &dev_attr_ud_version))
665 goto fail;
666 if (ud->flags & UNIT_DIRECTORY_VENDOR_ID) {
667 if (device_create_file(dev, &dev_attr_ud_vendor_id))
668 goto fail;
669 if (ud->vendor_name_kv &&
670 device_create_file(dev, &dev_attr_ud_vendor_name_kv))
671 goto fail;
672 }
673 if (ud->flags & UNIT_DIRECTORY_MODEL_ID) {
674 if (device_create_file(dev, &dev_attr_ud_model_id))
675 goto fail;
676 if (ud->model_name_kv &&
677 device_create_file(dev, &dev_attr_ud_model_name_kv))
678 goto fail;
679 }
680 return;
681 fail:
682 HPSB_ERR("Failed to add sysfs attribute");
683 }
684
685
686 static int nodemgr_bus_match(struct device * dev, struct device_driver * drv)
687 {
688 struct hpsb_protocol_driver *driver;
689 struct unit_directory *ud;
690 struct ieee1394_device_id *id;
691
692 /* We only match unit directories */
693 if (dev->platform_data != &nodemgr_ud_platform_data)
694 return 0;
695
696 ud = container_of(dev, struct unit_directory, device);
697 if (ud->ne->in_limbo || ud->ignore_driver)
698 return 0;
699
700 /* We only match drivers of type hpsb_protocol_driver */
701 if (drv == &nodemgr_mid_layer_driver)
702 return 0;
703
704 driver = container_of(drv, struct hpsb_protocol_driver, driver);
705 for (id = driver->id_table; id->match_flags != 0; id++) {
706 if ((id->match_flags & IEEE1394_MATCH_VENDOR_ID) &&
707 id->vendor_id != ud->vendor_id)
708 continue;
709
710 if ((id->match_flags & IEEE1394_MATCH_MODEL_ID) &&
711 id->model_id != ud->model_id)
712 continue;
713
714 if ((id->match_flags & IEEE1394_MATCH_SPECIFIER_ID) &&
715 id->specifier_id != ud->specifier_id)
716 continue;
717
718 if ((id->match_flags & IEEE1394_MATCH_VERSION) &&
719 id->version != ud->version)
720 continue;
721
722 return 1;
723 }
724
725 return 0;
726 }
727
728
729 static DEFINE_MUTEX(nodemgr_serialize_remove_uds);
730
731 static void nodemgr_remove_uds(struct node_entry *ne)
732 {
733 struct class_device *cdev;
734 struct unit_directory *tmp, *ud;
735
736 /* Iteration over nodemgr_ud_class.children has to be protected by
737 * nodemgr_ud_class.sem, but class_device_unregister() will eventually
738 * take nodemgr_ud_class.sem too. Therefore pick out one ud at a time,
739 * release the semaphore, and then unregister the ud. Since this code
740 * may be called from other contexts besides the knodemgrds, protect the
741 * gap after release of the semaphore by nodemgr_serialize_remove_uds.
742 */
743 mutex_lock(&nodemgr_serialize_remove_uds);
744 for (;;) {
745 ud = NULL;
746 down(&nodemgr_ud_class.sem);
747 list_for_each_entry(cdev, &nodemgr_ud_class.children, node) {
748 tmp = container_of(cdev, struct unit_directory,
749 class_dev);
750 if (tmp->ne == ne) {
751 ud = tmp;
752 break;
753 }
754 }
755 up(&nodemgr_ud_class.sem);
756 if (ud == NULL)
757 break;
758 class_device_unregister(&ud->class_dev);
759 device_unregister(&ud->device);
760 }
761 mutex_unlock(&nodemgr_serialize_remove_uds);
762 }
763
764
765 static void nodemgr_remove_ne(struct node_entry *ne)
766 {
767 struct device *dev;
768
769 dev = get_device(&ne->device);
770 if (!dev)
771 return;
772
773 HPSB_DEBUG("Node removed: ID:BUS[" NODE_BUS_FMT "] GUID[%016Lx]",
774 NODE_BUS_ARGS(ne->host, ne->nodeid), (unsigned long long)ne->guid);
775
776 nodemgr_remove_uds(ne);
777
778 class_device_unregister(&ne->class_dev);
779 device_unregister(dev);
780
781 put_device(dev);
782 }
783
784 static int __nodemgr_remove_host_dev(struct device *dev, void *data)
785 {
786 nodemgr_remove_ne(container_of(dev, struct node_entry, device));
787 return 0;
788 }
789
790 static void nodemgr_remove_host_dev(struct device *dev)
791 {
792 WARN_ON(device_for_each_child(dev, NULL, __nodemgr_remove_host_dev));
793 sysfs_remove_link(&dev->kobj, "irm_id");
794 sysfs_remove_link(&dev->kobj, "busmgr_id");
795 sysfs_remove_link(&dev->kobj, "host_id");
796 }
797
798
799 static void nodemgr_update_bus_options(struct node_entry *ne)
800 {
801 #ifdef CONFIG_IEEE1394_VERBOSEDEBUG
802 static const u16 mr[] = { 4, 64, 1024, 0};
803 #endif
804 quadlet_t busoptions = be32_to_cpu(ne->csr->bus_info_data[2]);
805
806 ne->busopt.irmc = (busoptions >> 31) & 1;
807 ne->busopt.cmc = (busoptions >> 30) & 1;
808 ne->busopt.isc = (busoptions >> 29) & 1;
809 ne->busopt.bmc = (busoptions >> 28) & 1;
810 ne->busopt.pmc = (busoptions >> 27) & 1;
811 ne->busopt.cyc_clk_acc = (busoptions >> 16) & 0xff;
812 ne->busopt.max_rec = 1 << (((busoptions >> 12) & 0xf) + 1);
813 ne->busopt.max_rom = (busoptions >> 8) & 0x3;
814 ne->busopt.generation = (busoptions >> 4) & 0xf;
815 ne->busopt.lnkspd = busoptions & 0x7;
816
817 HPSB_VERBOSE("NodeMgr: raw=0x%08x irmc=%d cmc=%d isc=%d bmc=%d pmc=%d "
818 "cyc_clk_acc=%d max_rec=%d max_rom=%d gen=%d lspd=%d",
819 busoptions, ne->busopt.irmc, ne->busopt.cmc,
820 ne->busopt.isc, ne->busopt.bmc, ne->busopt.pmc,
821 ne->busopt.cyc_clk_acc, ne->busopt.max_rec,
822 mr[ne->busopt.max_rom],
823 ne->busopt.generation, ne->busopt.lnkspd);
824 }
825
826
827 static struct node_entry *nodemgr_create_node(octlet_t guid, struct csr1212_csr *csr,
828 struct host_info *hi, nodeid_t nodeid,
829 unsigned int generation)
830 {
831 struct hpsb_host *host = hi->host;
832 struct node_entry *ne;
833
834 ne = kzalloc(sizeof(*ne), GFP_KERNEL);
835 if (!ne)
836 goto fail_alloc;
837
838 ne->host = host;
839 ne->nodeid = nodeid;
840 ne->generation = generation;
841 ne->needs_probe = 1;
842
843 ne->guid = guid;
844 ne->guid_vendor_id = (guid >> 40) & 0xffffff;
845 ne->csr = csr;
846
847 memcpy(&ne->device, &nodemgr_dev_template_ne,
848 sizeof(ne->device));
849 ne->device.parent = &host->device;
850 snprintf(ne->device.bus_id, BUS_ID_SIZE, "%016Lx",
851 (unsigned long long)(ne->guid));
852
853 ne->class_dev.dev = &ne->device;
854 ne->class_dev.class = &nodemgr_ne_class;
855 snprintf(ne->class_dev.class_id, BUS_ID_SIZE, "%016Lx",
856 (unsigned long long)(ne->guid));
857
858 if (device_register(&ne->device))
859 goto fail_devreg;
860 if (class_device_register(&ne->class_dev))
861 goto fail_classdevreg;
862 get_device(&ne->device);
863
864 nodemgr_create_ne_dev_files(ne);
865
866 nodemgr_update_bus_options(ne);
867
868 HPSB_DEBUG("%s added: ID:BUS[" NODE_BUS_FMT "] GUID[%016Lx]",
869 (host->node_id == nodeid) ? "Host" : "Node",
870 NODE_BUS_ARGS(host, nodeid), (unsigned long long)guid);
871
872 return ne;
873
874 fail_classdevreg:
875 device_unregister(&ne->device);
876 fail_devreg:
877 kfree(ne);
878 fail_alloc:
879 HPSB_ERR("Failed to create node ID:BUS[" NODE_BUS_FMT "] GUID[%016Lx]",
880 NODE_BUS_ARGS(host, nodeid), (unsigned long long)guid);
881
882 return NULL;
883 }
884
885
886 static struct node_entry *find_entry_by_guid(u64 guid)
887 {
888 struct class_device *cdev;
889 struct node_entry *ne, *ret_ne = NULL;
890
891 down(&nodemgr_ne_class.sem);
892 list_for_each_entry(cdev, &nodemgr_ne_class.children, node) {
893 ne = container_of(cdev, struct node_entry, class_dev);
894
895 if (ne->guid == guid) {
896 ret_ne = ne;
897 break;
898 }
899 }
900 up(&nodemgr_ne_class.sem);
901
902 return ret_ne;
903 }
904
905
906 static struct node_entry *find_entry_by_nodeid(struct hpsb_host *host,
907 nodeid_t nodeid)
908 {
909 struct class_device *cdev;
910 struct node_entry *ne, *ret_ne = NULL;
911
912 down(&nodemgr_ne_class.sem);
913 list_for_each_entry(cdev, &nodemgr_ne_class.children, node) {
914 ne = container_of(cdev, struct node_entry, class_dev);
915
916 if (ne->host == host && ne->nodeid == nodeid) {
917 ret_ne = ne;
918 break;
919 }
920 }
921 up(&nodemgr_ne_class.sem);
922
923 return ret_ne;
924 }
925
926
927 static void nodemgr_register_device(struct node_entry *ne,
928 struct unit_directory *ud, struct device *parent)
929 {
930 memcpy(&ud->device, &nodemgr_dev_template_ud,
931 sizeof(ud->device));
932
933 ud->device.parent = parent;
934
935 snprintf(ud->device.bus_id, BUS_ID_SIZE, "%s-%u",
936 ne->device.bus_id, ud->id);
937
938 ud->class_dev.dev = &ud->device;
939 ud->class_dev.class = &nodemgr_ud_class;
940 snprintf(ud->class_dev.class_id, BUS_ID_SIZE, "%s-%u",
941 ne->device.bus_id, ud->id);
942
943 if (device_register(&ud->device))
944 goto fail_devreg;
945 if (class_device_register(&ud->class_dev))
946 goto fail_classdevreg;
947 get_device(&ud->device);
948
949 nodemgr_create_ud_dev_files(ud);
950
951 return;
952
953 fail_classdevreg:
954 device_unregister(&ud->device);
955 fail_devreg:
956 HPSB_ERR("Failed to create unit %s", ud->device.bus_id);
957 }
958
959
960 /* This implementation currently only scans the config rom and its
961 * immediate unit directories looking for software_id and
962 * software_version entries, in order to get driver autoloading working. */
963 static struct unit_directory *nodemgr_process_unit_directory
964 (struct host_info *hi, struct node_entry *ne, struct csr1212_keyval *ud_kv,
965 unsigned int *id, struct unit_directory *parent)
966 {
967 struct unit_directory *ud;
968 struct unit_directory *ud_child = NULL;
969 struct csr1212_dentry *dentry;
970 struct csr1212_keyval *kv;
971 u8 last_key_id = 0;
972
973 ud = kzalloc(sizeof(*ud), GFP_KERNEL);
974 if (!ud)
975 goto unit_directory_error;
976
977 ud->ne = ne;
978 ud->ignore_driver = ignore_drivers;
979 ud->address = ud_kv->offset + CSR1212_CONFIG_ROM_SPACE_BASE;
980 ud->ud_kv = ud_kv;
981 ud->id = (*id)++;
982
983 csr1212_for_each_dir_entry(ne->csr, kv, ud_kv, dentry) {
984 switch (kv->key.id) {
985 case CSR1212_KV_ID_VENDOR:
986 if (kv->key.type == CSR1212_KV_TYPE_IMMEDIATE) {
987 ud->vendor_id = kv->value.immediate;
988 ud->flags |= UNIT_DIRECTORY_VENDOR_ID;
989 }
990 break;
991
992 case CSR1212_KV_ID_MODEL:
993 ud->model_id = kv->value.immediate;
994 ud->flags |= UNIT_DIRECTORY_MODEL_ID;
995 break;
996
997 case CSR1212_KV_ID_SPECIFIER_ID:
998 ud->specifier_id = kv->value.immediate;
999 ud->flags |= UNIT_DIRECTORY_SPECIFIER_ID;
1000 break;
1001
1002 case CSR1212_KV_ID_VERSION:
1003 ud->version = kv->value.immediate;
1004 ud->flags |= UNIT_DIRECTORY_VERSION;
1005 break;
1006
1007 case CSR1212_KV_ID_DESCRIPTOR:
1008 if (kv->key.type == CSR1212_KV_TYPE_LEAF &&
1009 CSR1212_DESCRIPTOR_LEAF_TYPE(kv) == 0 &&
1010 CSR1212_DESCRIPTOR_LEAF_SPECIFIER_ID(kv) == 0 &&
1011 CSR1212_TEXTUAL_DESCRIPTOR_LEAF_WIDTH(kv) == 0 &&
1012 CSR1212_TEXTUAL_DESCRIPTOR_LEAF_CHAR_SET(kv) == 0 &&
1013 CSR1212_TEXTUAL_DESCRIPTOR_LEAF_LANGUAGE(kv) == 0) {
1014 switch (last_key_id) {
1015 case CSR1212_KV_ID_VENDOR:
1016 ud->vendor_name_kv = kv;
1017 csr1212_keep_keyval(kv);
1018 break;
1019
1020 case CSR1212_KV_ID_MODEL:
1021 ud->model_name_kv = kv;
1022 csr1212_keep_keyval(kv);
1023 break;
1024
1025 }
1026 } /* else if (kv->key.type == CSR1212_KV_TYPE_DIRECTORY) ... */
1027 break;
1028
1029 case CSR1212_KV_ID_DEPENDENT_INFO:
1030 /* Logical Unit Number */
1031 if (kv->key.type == CSR1212_KV_TYPE_IMMEDIATE) {
1032 if (ud->flags & UNIT_DIRECTORY_HAS_LUN) {
1033 ud_child = kmemdup(ud, sizeof(*ud_child), GFP_KERNEL);
1034 if (!ud_child)
1035 goto unit_directory_error;
1036 nodemgr_register_device(ne, ud_child, &ne->device);
1037 ud_child = NULL;
1038
1039 ud->id = (*id)++;
1040 }
1041 ud->lun = kv->value.immediate;
1042 ud->flags |= UNIT_DIRECTORY_HAS_LUN;
1043
1044 /* Logical Unit Directory */
1045 } else if (kv->key.type == CSR1212_KV_TYPE_DIRECTORY) {
1046 /* This should really be done in SBP2 as this is
1047 * doing SBP2 specific parsing.
1048 */
1049
1050 /* first register the parent unit */
1051 ud->flags |= UNIT_DIRECTORY_HAS_LUN_DIRECTORY;
1052 if (ud->device.bus != &ieee1394_bus_type)
1053 nodemgr_register_device(ne, ud, &ne->device);
1054
1055 /* process the child unit */
1056 ud_child = nodemgr_process_unit_directory(hi, ne, kv, id, ud);
1057
1058 if (ud_child == NULL)
1059 break;
1060
1061 /* inherit unspecified values, the driver core picks it up */
1062 if ((ud->flags & UNIT_DIRECTORY_MODEL_ID) &&
1063 !(ud_child->flags & UNIT_DIRECTORY_MODEL_ID))
1064 {
1065 ud_child->flags |= UNIT_DIRECTORY_MODEL_ID;
1066 ud_child->model_id = ud->model_id;
1067 }
1068 if ((ud->flags & UNIT_DIRECTORY_SPECIFIER_ID) &&
1069 !(ud_child->flags & UNIT_DIRECTORY_SPECIFIER_ID))
1070 {
1071 ud_child->flags |= UNIT_DIRECTORY_SPECIFIER_ID;
1072 ud_child->specifier_id = ud->specifier_id;
1073 }
1074 if ((ud->flags & UNIT_DIRECTORY_VERSION) &&
1075 !(ud_child->flags & UNIT_DIRECTORY_VERSION))
1076 {
1077 ud_child->flags |= UNIT_DIRECTORY_VERSION;
1078 ud_child->version = ud->version;
1079 }
1080
1081 /* register the child unit */
1082 ud_child->flags |= UNIT_DIRECTORY_LUN_DIRECTORY;
1083 nodemgr_register_device(ne, ud_child, &ud->device);
1084 }
1085
1086 break;
1087
1088 default:
1089 break;
1090 }
1091 last_key_id = kv->key.id;
1092 }
1093
1094 /* do not process child units here and only if not already registered */
1095 if (!parent && ud->device.bus != &ieee1394_bus_type)
1096 nodemgr_register_device(ne, ud, &ne->device);
1097
1098 return ud;
1099
1100 unit_directory_error:
1101 kfree(ud);
1102 return NULL;
1103 }
1104
1105
1106 static void nodemgr_process_root_directory(struct host_info *hi, struct node_entry *ne)
1107 {
1108 unsigned int ud_id = 0;
1109 struct csr1212_dentry *dentry;
1110 struct csr1212_keyval *kv;
1111 u8 last_key_id = 0;
1112
1113 ne->needs_probe = 0;
1114
1115 csr1212_for_each_dir_entry(ne->csr, kv, ne->csr->root_kv, dentry) {
1116 switch (kv->key.id) {
1117 case CSR1212_KV_ID_VENDOR:
1118 ne->vendor_id = kv->value.immediate;
1119 break;
1120
1121 case CSR1212_KV_ID_NODE_CAPABILITIES:
1122 ne->capabilities = kv->value.immediate;
1123 break;
1124
1125 case CSR1212_KV_ID_UNIT:
1126 nodemgr_process_unit_directory(hi, ne, kv, &ud_id, NULL);
1127 break;
1128
1129 case CSR1212_KV_ID_DESCRIPTOR:
1130 if (last_key_id == CSR1212_KV_ID_VENDOR) {
1131 if (kv->key.type == CSR1212_KV_TYPE_LEAF &&
1132 CSR1212_DESCRIPTOR_LEAF_TYPE(kv) == 0 &&
1133 CSR1212_DESCRIPTOR_LEAF_SPECIFIER_ID(kv) == 0 &&
1134 CSR1212_TEXTUAL_DESCRIPTOR_LEAF_WIDTH(kv) == 0 &&
1135 CSR1212_TEXTUAL_DESCRIPTOR_LEAF_CHAR_SET(kv) == 0 &&
1136 CSR1212_TEXTUAL_DESCRIPTOR_LEAF_LANGUAGE(kv) == 0) {
1137 ne->vendor_name_kv = kv;
1138 csr1212_keep_keyval(kv);
1139 }
1140 }
1141 break;
1142 }
1143 last_key_id = kv->key.id;
1144 }
1145
1146 if (ne->vendor_name_kv) {
1147 int error = device_create_file(&ne->device,
1148 &dev_attr_ne_vendor_name_kv);
1149
1150 if (error && error != -EEXIST)
1151 HPSB_ERR("Failed to add sysfs attribute");
1152 }
1153 }
1154
1155 #ifdef CONFIG_HOTPLUG
1156
1157 static int nodemgr_uevent(struct class_device *cdev, char **envp, int num_envp,
1158 char *buffer, int buffer_size)
1159 {
1160 struct unit_directory *ud;
1161 int i = 0;
1162 int length = 0;
1163 int retval = 0;
1164 /* ieee1394:venNmoNspNverN */
1165 char buf[8 + 1 + 3 + 8 + 2 + 8 + 2 + 8 + 3 + 8 + 1];
1166
1167 if (!cdev)
1168 return -ENODEV;
1169
1170 ud = container_of(cdev, struct unit_directory, class_dev);
1171
1172 if (ud->ne->in_limbo || ud->ignore_driver)
1173 return -ENODEV;
1174
1175 #define PUT_ENVP(fmt,val) \
1176 do { \
1177 retval = add_uevent_var(envp, num_envp, &i, \
1178 buffer, buffer_size, &length, \
1179 fmt, val); \
1180 if (retval) \
1181 return retval; \
1182 } while (0)
1183
1184 PUT_ENVP("VENDOR_ID=%06x", ud->vendor_id);
1185 PUT_ENVP("MODEL_ID=%06x", ud->model_id);
1186 PUT_ENVP("GUID=%016Lx", (unsigned long long)ud->ne->guid);
1187 PUT_ENVP("SPECIFIER_ID=%06x", ud->specifier_id);
1188 PUT_ENVP("VERSION=%06x", ud->version);
1189 snprintf(buf, sizeof(buf), "ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
1190 ud->vendor_id,
1191 ud->model_id,
1192 ud->specifier_id,
1193 ud->version);
1194 PUT_ENVP("MODALIAS=%s", buf);
1195
1196 #undef PUT_ENVP
1197
1198 envp[i] = NULL;
1199
1200 return 0;
1201 }
1202
1203 #else
1204
1205 static int nodemgr_uevent(struct class_device *cdev, char **envp, int num_envp,
1206 char *buffer, int buffer_size)
1207 {
1208 return -ENODEV;
1209 }
1210
1211 #endif /* CONFIG_HOTPLUG */
1212
1213
1214 int __hpsb_register_protocol(struct hpsb_protocol_driver *drv,
1215 struct module *owner)
1216 {
1217 int error;
1218
1219 drv->driver.bus = &ieee1394_bus_type;
1220 drv->driver.owner = owner;
1221 drv->driver.name = drv->name;
1222
1223 /* This will cause a probe for devices */
1224 error = driver_register(&drv->driver);
1225 if (!error)
1226 nodemgr_create_drv_files(drv);
1227 return error;
1228 }
1229
1230 void hpsb_unregister_protocol(struct hpsb_protocol_driver *driver)
1231 {
1232 nodemgr_remove_drv_files(driver);
1233 /* This will subsequently disconnect all devices that our driver
1234 * is attached to. */
1235 driver_unregister(&driver->driver);
1236 }
1237
1238
1239 /*
1240 * This function updates nodes that were present on the bus before the
1241 * reset and still are after the reset. The nodeid and the config rom
1242 * may have changed, and the drivers managing this device must be
1243 * informed that this device just went through a bus reset, to allow
1244 * the to take whatever actions required.
1245 */
1246 static void nodemgr_update_node(struct node_entry *ne, struct csr1212_csr *csr,
1247 struct host_info *hi, nodeid_t nodeid,
1248 unsigned int generation)
1249 {
1250 if (ne->nodeid != nodeid) {
1251 HPSB_DEBUG("Node changed: " NODE_BUS_FMT " -> " NODE_BUS_FMT,
1252 NODE_BUS_ARGS(ne->host, ne->nodeid),
1253 NODE_BUS_ARGS(ne->host, nodeid));
1254 ne->nodeid = nodeid;
1255 }
1256
1257 if (ne->busopt.generation != ((be32_to_cpu(csr->bus_info_data[2]) >> 4) & 0xf)) {
1258 kfree(ne->csr->private);
1259 csr1212_destroy_csr(ne->csr);
1260 ne->csr = csr;
1261
1262 /* If the node's configrom generation has changed, we
1263 * unregister all the unit directories. */
1264 nodemgr_remove_uds(ne);
1265
1266 nodemgr_update_bus_options(ne);
1267
1268 /* Mark the node as new, so it gets re-probed */
1269 ne->needs_probe = 1;
1270 } else {
1271 /* old cache is valid, so update its generation */
1272 struct nodemgr_csr_info *ci = ne->csr->private;
1273 ci->generation = generation;
1274 /* free the partially filled now unneeded new cache */
1275 kfree(csr->private);
1276 csr1212_destroy_csr(csr);
1277 }
1278
1279 if (ne->in_limbo)
1280 nodemgr_resume_ne(ne);
1281
1282 /* Mark the node current */
1283 ne->generation = generation;
1284 }
1285
1286
1287
1288 static void nodemgr_node_scan_one(struct host_info *hi,
1289 nodeid_t nodeid, int generation)
1290 {
1291 struct hpsb_host *host = hi->host;
1292 struct node_entry *ne;
1293 octlet_t guid;
1294 struct csr1212_csr *csr;
1295 struct nodemgr_csr_info *ci;
1296 u8 *speed;
1297
1298 ci = kmalloc(sizeof(*ci), GFP_KERNEL);
1299 if (!ci)
1300 return;
1301
1302 ci->host = host;
1303 ci->nodeid = nodeid;
1304 ci->generation = generation;
1305
1306 /* Prepare for speed probe which occurs when reading the ROM */
1307 speed = &(host->speed[NODEID_TO_NODE(nodeid)]);
1308 if (*speed > host->csr.lnk_spd)
1309 *speed = host->csr.lnk_spd;
1310 ci->speed_unverified = *speed > IEEE1394_SPEED_100;
1311
1312 /* We need to detect when the ConfigROM's generation has changed,
1313 * so we only update the node's info when it needs to be. */
1314
1315 csr = csr1212_create_csr(&nodemgr_csr_ops, 5 * sizeof(quadlet_t), ci);
1316 if (!csr || csr1212_parse_csr(csr) != CSR1212_SUCCESS) {
1317 HPSB_ERR("Error parsing configrom for node " NODE_BUS_FMT,
1318 NODE_BUS_ARGS(host, nodeid));
1319 if (csr)
1320 csr1212_destroy_csr(csr);
1321 kfree(ci);
1322 return;
1323 }
1324
1325 if (csr->bus_info_data[1] != IEEE1394_BUSID_MAGIC) {
1326 /* This isn't a 1394 device, but we let it slide. There
1327 * was a report of a device with broken firmware which
1328 * reported '2394' instead of '1394', which is obviously a
1329 * mistake. One would hope that a non-1394 device never
1330 * gets connected to Firewire bus. If someone does, we
1331 * shouldn't be held responsible, so we'll allow it with a
1332 * warning. */
1333 HPSB_WARN("Node " NODE_BUS_FMT " has invalid busID magic [0x%08x]",
1334 NODE_BUS_ARGS(host, nodeid), csr->bus_info_data[1]);
1335 }
1336
1337 guid = ((u64)be32_to_cpu(csr->bus_info_data[3]) << 32) | be32_to_cpu(csr->bus_info_data[4]);
1338 ne = find_entry_by_guid(guid);
1339
1340 if (ne && ne->host != host && ne->in_limbo) {
1341 /* Must have moved this device from one host to another */
1342 nodemgr_remove_ne(ne);
1343 ne = NULL;
1344 }
1345
1346 if (!ne)
1347 nodemgr_create_node(guid, csr, hi, nodeid, generation);
1348 else
1349 nodemgr_update_node(ne, csr, hi, nodeid, generation);
1350 }
1351
1352
1353 static void nodemgr_node_scan(struct host_info *hi, int generation)
1354 {
1355 int count;
1356 struct hpsb_host *host = hi->host;
1357 struct selfid *sid = (struct selfid *)host->topology_map;
1358 nodeid_t nodeid = LOCAL_BUS;
1359
1360 /* Scan each node on the bus */
1361 for (count = host->selfid_count; count; count--, sid++) {
1362 if (sid->extended)
1363 continue;
1364
1365 if (!sid->link_active) {
1366 nodeid++;
1367 continue;
1368 }
1369 nodemgr_node_scan_one(hi, nodeid++, generation);
1370 }
1371 }
1372
1373
1374 static void nodemgr_suspend_ne(struct node_entry *ne)
1375 {
1376 struct class_device *cdev;
1377 struct unit_directory *ud;
1378
1379 HPSB_DEBUG("Node suspended: ID:BUS[" NODE_BUS_FMT "] GUID[%016Lx]",
1380 NODE_BUS_ARGS(ne->host, ne->nodeid), (unsigned long long)ne->guid);
1381
1382 ne->in_limbo = 1;
1383 WARN_ON(device_create_file(&ne->device, &dev_attr_ne_in_limbo));
1384
1385 down(&nodemgr_ud_class.sem);
1386 list_for_each_entry(cdev, &nodemgr_ud_class.children, node) {
1387 ud = container_of(cdev, struct unit_directory, class_dev);
1388 if (ud->ne != ne)
1389 continue;
1390
1391 if (ud->device.driver &&
1392 (!ud->device.driver->suspend ||
1393 ud->device.driver->suspend(&ud->device, PMSG_SUSPEND)))
1394 device_release_driver(&ud->device);
1395 }
1396 up(&nodemgr_ud_class.sem);
1397 }
1398
1399
1400 static void nodemgr_resume_ne(struct node_entry *ne)
1401 {
1402 struct class_device *cdev;
1403 struct unit_directory *ud;
1404
1405 ne->in_limbo = 0;
1406 device_remove_file(&ne->device, &dev_attr_ne_in_limbo);
1407
1408 down(&nodemgr_ud_class.sem);
1409 list_for_each_entry(cdev, &nodemgr_ud_class.children, node) {
1410 ud = container_of(cdev, struct unit_directory, class_dev);
1411 if (ud->ne != ne)
1412 continue;
1413
1414 if (ud->device.driver && ud->device.driver->resume)
1415 ud->device.driver->resume(&ud->device);
1416 }
1417 up(&nodemgr_ud_class.sem);
1418
1419 HPSB_DEBUG("Node resumed: ID:BUS[" NODE_BUS_FMT "] GUID[%016Lx]",
1420 NODE_BUS_ARGS(ne->host, ne->nodeid), (unsigned long long)ne->guid);
1421 }
1422
1423
1424 static void nodemgr_update_pdrv(struct node_entry *ne)
1425 {
1426 struct unit_directory *ud;
1427 struct hpsb_protocol_driver *pdrv;
1428 struct class_device *cdev;
1429
1430 down(&nodemgr_ud_class.sem);
1431 list_for_each_entry(cdev, &nodemgr_ud_class.children, node) {
1432 ud = container_of(cdev, struct unit_directory, class_dev);
1433 if (ud->ne != ne)
1434 continue;
1435
1436 if (ud->device.driver) {
1437 pdrv = container_of(ud->device.driver,
1438 struct hpsb_protocol_driver,
1439 driver);
1440 if (pdrv->update && pdrv->update(ud))
1441 device_release_driver(&ud->device);
1442 }
1443 }
1444 up(&nodemgr_ud_class.sem);
1445 }
1446
1447
1448 /* Write the BROADCAST_CHANNEL as per IEEE1394a 8.3.2.3.11 and 8.4.2.3. This
1449 * seems like an optional service but in the end it is practically mandatory
1450 * as a consequence of these clauses.
1451 *
1452 * Note that we cannot do a broadcast write to all nodes at once because some
1453 * pre-1394a devices would hang. */
1454 static void nodemgr_irm_write_bc(struct node_entry *ne, int generation)
1455 {
1456 const u64 bc_addr = (CSR_REGISTER_BASE | CSR_BROADCAST_CHANNEL);
1457 quadlet_t bc_remote, bc_local;
1458 int error;
1459
1460 if (!ne->host->is_irm || ne->generation != generation ||
1461 ne->nodeid == ne->host->node_id)
1462 return;
1463
1464 bc_local = cpu_to_be32(ne->host->csr.broadcast_channel);
1465
1466 /* Check if the register is implemented and 1394a compliant. */
1467 error = hpsb_read(ne->host, ne->nodeid, generation, bc_addr, &bc_remote,
1468 sizeof(bc_remote));
1469 if (!error && bc_remote & cpu_to_be32(0x80000000) &&
1470 bc_remote != bc_local)
1471 hpsb_node_write(ne, bc_addr, &bc_local, sizeof(bc_local));
1472 }
1473
1474
1475 static void nodemgr_probe_ne(struct host_info *hi, struct node_entry *ne, int generation)
1476 {
1477 struct device *dev;
1478
1479 if (ne->host != hi->host || ne->in_limbo)
1480 return;
1481
1482 dev = get_device(&ne->device);
1483 if (!dev)
1484 return;
1485
1486 nodemgr_irm_write_bc(ne, generation);
1487
1488 /* If "needs_probe", then this is either a new or changed node we
1489 * rescan totally. If the generation matches for an existing node
1490 * (one that existed prior to the bus reset) we send update calls
1491 * down to the drivers. Otherwise, this is a dead node and we
1492 * suspend it. */
1493 if (ne->needs_probe)
1494 nodemgr_process_root_directory(hi, ne);
1495 else if (ne->generation == generation)
1496 nodemgr_update_pdrv(ne);
1497 else
1498 nodemgr_suspend_ne(ne);
1499
1500 put_device(dev);
1501 }
1502
1503
1504 static void nodemgr_node_probe(struct host_info *hi, int generation)
1505 {
1506 struct hpsb_host *host = hi->host;
1507 struct class_device *cdev;
1508 struct node_entry *ne;
1509
1510 /* Do some processing of the nodes we've probed. This pulls them
1511 * into the sysfs layer if needed, and can result in processing of
1512 * unit-directories, or just updating the node and it's
1513 * unit-directories.
1514 *
1515 * Run updates before probes. Usually, updates are time-critical
1516 * while probes are time-consuming. (Well, those probes need some
1517 * improvement...) */
1518
1519 down(&nodemgr_ne_class.sem);
1520 list_for_each_entry(cdev, &nodemgr_ne_class.children, node) {
1521 ne = container_of(cdev, struct node_entry, class_dev);
1522 if (!ne->needs_probe)
1523 nodemgr_probe_ne(hi, ne, generation);
1524 }
1525 list_for_each_entry(cdev, &nodemgr_ne_class.children, node) {
1526 ne = container_of(cdev, struct node_entry, class_dev);
1527 if (ne->needs_probe)
1528 nodemgr_probe_ne(hi, ne, generation);
1529 }
1530 up(&nodemgr_ne_class.sem);
1531
1532
1533 /* If we had a bus reset while we were scanning the bus, it is
1534 * possible that we did not probe all nodes. In that case, we
1535 * skip the clean up for now, since we could remove nodes that
1536 * were still on the bus. Another bus scan is pending which will
1537 * do the clean up eventually.
1538 *
1539 * Now let's tell the bus to rescan our devices. This may seem
1540 * like overhead, but the driver-model core will only scan a
1541 * device for a driver when either the device is added, or when a
1542 * new driver is added. A bus reset is a good reason to rescan
1543 * devices that were there before. For example, an sbp2 device
1544 * may become available for login, if the host that held it was
1545 * just removed. */
1546
1547 if (generation == get_hpsb_generation(host))
1548 if (bus_rescan_devices(&ieee1394_bus_type))
1549 HPSB_DEBUG("bus_rescan_devices had an error");
1550 }
1551
1552 static int nodemgr_send_resume_packet(struct hpsb_host *host)
1553 {
1554 struct hpsb_packet *packet;
1555 int error = -ENOMEM;
1556
1557 packet = hpsb_make_phypacket(host,
1558 EXTPHYPACKET_TYPE_RESUME |
1559 NODEID_TO_NODE(host->node_id) << PHYPACKET_PORT_SHIFT);
1560 if (packet) {
1561 packet->no_waiter = 1;
1562 packet->generation = get_hpsb_generation(host);
1563 error = hpsb_send_packet(packet);
1564 }
1565 if (error)
1566 HPSB_WARN("fw-host%d: Failed to broadcast resume packet",
1567 host->id);
1568 return error;
1569 }
1570
1571 /* Perform a few high-level IRM responsibilities. */
1572 static int nodemgr_do_irm_duties(struct hpsb_host *host, int cycles)
1573 {
1574 quadlet_t bc;
1575
1576 /* if irm_id == -1 then there is no IRM on this bus */
1577 if (!host->is_irm || host->irm_id == (nodeid_t)-1)
1578 return 1;
1579
1580 /* We are a 1394a-2000 compliant IRM. Set the validity bit. */
1581 host->csr.broadcast_channel |= 0x40000000;
1582
1583 /* If there is no bus manager then we should set the root node's
1584 * force_root bit to promote bus stability per the 1394
1585 * spec. (8.4.2.6) */
1586 if (host->busmgr_id == 0xffff && host->node_count > 1)
1587 {
1588 u16 root_node = host->node_count - 1;
1589
1590 /* get cycle master capability flag from root node */
1591 if (host->is_cycmst ||
1592 (!hpsb_read(host, LOCAL_BUS | root_node, get_hpsb_generation(host),
1593 (CSR_REGISTER_BASE + CSR_CONFIG_ROM + 2 * sizeof(quadlet_t)),
1594 &bc, sizeof(quadlet_t)) &&
1595 be32_to_cpu(bc) & 1 << CSR_CMC_SHIFT))
1596 hpsb_send_phy_config(host, root_node, -1);
1597 else {
1598 HPSB_DEBUG("The root node is not cycle master capable; "
1599 "selecting a new root node and resetting...");
1600
1601 if (cycles >= 5) {
1602 /* Oh screw it! Just leave the bus as it is */
1603 HPSB_DEBUG("Stopping reset loop for IRM sanity");
1604 return 1;
1605 }
1606
1607 hpsb_send_phy_config(host, NODEID_TO_NODE(host->node_id), -1);
1608 hpsb_reset_bus(host, LONG_RESET_FORCE_ROOT);
1609
1610 return 0;
1611 }
1612 }
1613
1614 /* Some devices suspend their ports while being connected to an inactive
1615 * host adapter, i.e. if connected before the low-level driver is
1616 * loaded. They become visible either when physically unplugged and
1617 * replugged, or when receiving a resume packet. Send one once. */
1618 if (!host->resume_packet_sent && !nodemgr_send_resume_packet(host))
1619 host->resume_packet_sent = 1;
1620
1621 return 1;
1622 }
1623
1624 /* We need to ensure that if we are not the IRM, that the IRM node is capable of
1625 * everything we can do, otherwise issue a bus reset and try to become the IRM
1626 * ourselves. */
1627 static int nodemgr_check_irm_capability(struct hpsb_host *host, int cycles)
1628 {
1629 quadlet_t bc;
1630 int status;
1631
1632 if (hpsb_disable_irm || host->is_irm)
1633 return 1;
1634
1635 status = hpsb_read(host, LOCAL_BUS | (host->irm_id),
1636 get_hpsb_generation(host),
1637 (CSR_REGISTER_BASE | CSR_BROADCAST_CHANNEL),
1638 &bc, sizeof(quadlet_t));
1639
1640 if (status < 0 || !(be32_to_cpu(bc) & 0x80000000)) {
1641 /* The current irm node does not have a valid BROADCAST_CHANNEL
1642 * register and we do, so reset the bus with force_root set */
1643 HPSB_DEBUG("Current remote IRM is not 1394a-2000 compliant, resetting...");
1644
1645 if (cycles >= 5) {
1646 /* Oh screw it! Just leave the bus as it is */
1647 HPSB_DEBUG("Stopping reset loop for IRM sanity");
1648 return 1;
1649 }
1650
1651 hpsb_send_phy_config(host, NODEID_TO_NODE(host->node_id), -1);
1652 hpsb_reset_bus(host, LONG_RESET_FORCE_ROOT);
1653
1654 return 0;
1655 }
1656
1657 return 1;
1658 }
1659
1660 static int nodemgr_host_thread(void *__hi)
1661 {
1662 struct host_info *hi = (struct host_info *)__hi;
1663 struct hpsb_host *host = hi->host;
1664 unsigned int g, generation = 0;
1665 int i, reset_cycles = 0;
1666
1667 /* Setup our device-model entries */
1668 nodemgr_create_host_dev_files(host);
1669
1670 for (;;) {
1671 /* Sleep until next bus reset */
1672 set_current_state(TASK_INTERRUPTIBLE);
1673 if (get_hpsb_generation(host) == generation &&
1674 !kthread_should_stop())
1675 schedule();
1676 __set_current_state(TASK_RUNNING);
1677
1678 /* Thread may have been woken up to freeze or to exit */
1679 if (try_to_freeze())
1680 continue;
1681 if (kthread_should_stop())
1682 goto exit;
1683
1684 if (mutex_lock_interruptible(&nodemgr_serialize)) {
1685 if (try_to_freeze())
1686 continue;
1687 goto exit;
1688 }
1689
1690 /* Pause for 1/4 second in 1/16 second intervals,
1691 * to make sure things settle down. */
1692 g = get_hpsb_generation(host);
1693 for (i = 0; i < 4 ; i++) {
1694 if (msleep_interruptible(63) || kthread_should_stop())
1695 goto unlock_exit;
1696
1697 /* Now get the generation in which the node ID's we collect
1698 * are valid. During the bus scan we will use this generation
1699 * for the read transactions, so that if another reset occurs
1700 * during the scan the transactions will fail instead of
1701 * returning bogus data. */
1702 generation = get_hpsb_generation(host);
1703
1704 /* If we get a reset before we are done waiting, then
1705 * start the waiting over again */
1706 if (generation != g)
1707 g = generation, i = 0;
1708 }
1709
1710 if (!nodemgr_check_irm_capability(host, reset_cycles) ||
1711 !nodemgr_do_irm_duties(host, reset_cycles)) {
1712 reset_cycles++;
1713 mutex_unlock(&nodemgr_serialize);
1714 continue;
1715 }
1716 reset_cycles = 0;
1717
1718 /* Scan our nodes to get the bus options and create node
1719 * entries. This does not do the sysfs stuff, since that
1720 * would trigger uevents and such, which is a bad idea at
1721 * this point. */
1722 nodemgr_node_scan(hi, generation);
1723
1724 /* This actually does the full probe, with sysfs
1725 * registration. */
1726 nodemgr_node_probe(hi, generation);
1727
1728 /* Update some of our sysfs symlinks */
1729 nodemgr_update_host_dev_links(host);
1730
1731 mutex_unlock(&nodemgr_serialize);
1732 }
1733 unlock_exit:
1734 mutex_unlock(&nodemgr_serialize);
1735 exit:
1736 HPSB_VERBOSE("NodeMgr: Exiting thread");
1737 return 0;
1738 }
1739
1740 /**
1741 * nodemgr_for_each_host - call a function for each IEEE 1394 host
1742 * @data: an address to supply to the callback
1743 * @cb: function to call for each host
1744 *
1745 * Iterate the hosts, calling a given function with supplied data for each host.
1746 * If the callback fails on a host, i.e. if it returns a non-zero value, the
1747 * iteration is stopped.
1748 *
1749 * Return value: 0 on success, non-zero on failure (same as returned by last run
1750 * of the callback).
1751 */
1752 int nodemgr_for_each_host(void *data, int (*cb)(struct hpsb_host *, void *))
1753 {
1754 struct class_device *cdev;
1755 struct hpsb_host *host;
1756 int error = 0;
1757
1758 down(&hpsb_host_class.sem);
1759 list_for_each_entry(cdev, &hpsb_host_class.children, node) {
1760 host = container_of(cdev, struct hpsb_host, class_dev);
1761
1762 if ((error = cb(host, data)))
1763 break;
1764 }
1765 up(&hpsb_host_class.sem);
1766
1767 return error;
1768 }
1769
1770 /* The following two convenience functions use a struct node_entry
1771 * for addressing a node on the bus. They are intended for use by any
1772 * process context, not just the nodemgr thread, so we need to be a
1773 * little careful when reading out the node ID and generation. The
1774 * thing that can go wrong is that we get the node ID, then a bus
1775 * reset occurs, and then we read the generation. The node ID is
1776 * possibly invalid, but the generation is current, and we end up
1777 * sending a packet to a the wrong node.
1778 *
1779 * The solution is to make sure we read the generation first, so that
1780 * if a reset occurs in the process, we end up with a stale generation
1781 * and the transactions will fail instead of silently using wrong node
1782 * ID's.
1783 */
1784
1785 /**
1786 * hpsb_node_fill_packet - fill some destination information into a packet
1787 * @ne: destination node
1788 * @packet: packet to fill in
1789 *
1790 * This will fill in the given, pre-initialised hpsb_packet with the current
1791 * information from the node entry (host, node ID, bus generation number).
1792 */
1793 void hpsb_node_fill_packet(struct node_entry *ne, struct hpsb_packet *packet)
1794 {
1795 packet->host = ne->host;
1796 packet->generation = ne->generation;
1797 barrier();
1798 packet->node_id = ne->nodeid;
1799 }
1800
1801 int hpsb_node_write(struct node_entry *ne, u64 addr,
1802 quadlet_t *buffer, size_t length)
1803 {
1804 unsigned int generation = ne->generation;
1805
1806 barrier();
1807 return hpsb_write(ne->host, ne->nodeid, generation,
1808 addr, buffer, length);
1809 }
1810
1811 static void nodemgr_add_host(struct hpsb_host *host)
1812 {
1813 struct host_info *hi;
1814
1815 hi = hpsb_create_hostinfo(&nodemgr_highlevel, host, sizeof(*hi));
1816 if (!hi) {
1817 HPSB_ERR("NodeMgr: out of memory in add host");
1818 return;
1819 }
1820 hi->host = host;
1821 hi->thread = kthread_run(nodemgr_host_thread, hi, "knodemgrd_%d",
1822 host->id);
1823 if (IS_ERR(hi->thread)) {
1824 HPSB_ERR("NodeMgr: cannot start thread for host %d", host->id);
1825 hpsb_destroy_hostinfo(&nodemgr_highlevel, host);
1826 }
1827 }
1828
1829 static void nodemgr_host_reset(struct hpsb_host *host)
1830 {
1831 struct host_info *hi = hpsb_get_hostinfo(&nodemgr_highlevel, host);
1832
1833 if (hi) {
1834 HPSB_VERBOSE("NodeMgr: Processing reset for host %d", host->id);
1835 wake_up_process(hi->thread);
1836 }
1837 }
1838
1839 static void nodemgr_remove_host(struct hpsb_host *host)
1840 {
1841 struct host_info *hi = hpsb_get_hostinfo(&nodemgr_highlevel, host);
1842
1843 if (hi) {
1844 kthread_stop(hi->thread);
1845 nodemgr_remove_host_dev(&host->device);
1846 }
1847 }
1848
1849 static struct hpsb_highlevel nodemgr_highlevel = {
1850 .name = "Node manager",
1851 .add_host = nodemgr_add_host,
1852 .host_reset = nodemgr_host_reset,
1853 .remove_host = nodemgr_remove_host,
1854 };
1855
1856 int init_ieee1394_nodemgr(void)
1857 {
1858 int error;
1859
1860 error = class_register(&nodemgr_ne_class);
1861 if (error)
1862 goto fail_ne;
1863 error = class_register(&nodemgr_ud_class);
1864 if (error)
1865 goto fail_ud;
1866 error = driver_register(&nodemgr_mid_layer_driver);
1867 if (error)
1868 goto fail_ml;
1869 /* This driver is not used if nodemgr is off (disable_nodemgr=1). */
1870 nodemgr_dev_template_host.driver = &nodemgr_mid_layer_driver;
1871
1872 hpsb_register_highlevel(&nodemgr_highlevel);
1873 return 0;
1874
1875 fail_ml:
1876 class_unregister(&nodemgr_ud_class);
1877 fail_ud:
1878 class_unregister(&nodemgr_ne_class);
1879 fail_ne:
1880 return error;
1881 }
1882
1883 void cleanup_ieee1394_nodemgr(void)
1884 {
1885 hpsb_unregister_highlevel(&nodemgr_highlevel);
1886 driver_unregister(&nodemgr_mid_layer_driver);
1887 class_unregister(&nodemgr_ud_class);
1888 class_unregister(&nodemgr_ne_class);
1889 }
This page took 0.09752 seconds and 5 git commands to generate.