e1000: use netif_<level> instead of netdev_<level>
[deliverable/linux.git] / drivers / ieee1394 / sbp2.c
1 /*
2 * sbp2.c - SBP-2 protocol driver for IEEE-1394
3 *
4 * Copyright (C) 2000 James Goodwin, Filanet Corporation (www.filanet.com)
5 * jamesg@filanet.com (JSG)
6 *
7 * Copyright (C) 2003 Ben Collins <bcollins@debian.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software Foundation,
21 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 */
23
24 /*
25 * Brief Description:
26 *
27 * This driver implements the Serial Bus Protocol 2 (SBP-2) over IEEE-1394
28 * under Linux. The SBP-2 driver is implemented as an IEEE-1394 high-level
29 * driver. It also registers as a SCSI lower-level driver in order to accept
30 * SCSI commands for transport using SBP-2.
31 *
32 * You may access any attached SBP-2 (usually storage devices) as regular
33 * SCSI devices. E.g. mount /dev/sda1, fdisk, mkfs, etc..
34 *
35 * See http://www.t10.org/drafts.htm#sbp2 for the final draft of the SBP-2
36 * specification and for where to purchase the official standard.
37 *
38 * TODO:
39 * - look into possible improvements of the SCSI error handlers
40 * - handle Unit_Characteristics.mgt_ORB_timeout and .ORB_size
41 * - handle Logical_Unit_Number.ordered
42 * - handle src == 1 in status blocks
43 * - reimplement the DMA mapping in absence of physical DMA so that
44 * bus_to_virt is no longer required
45 * - debug the handling of absent physical DMA
46 * - replace CONFIG_IEEE1394_SBP2_PHYS_DMA by automatic detection
47 * (this is easy but depends on the previous two TODO items)
48 * - make the parameter serialize_io configurable per device
49 * - move all requests to fetch agent registers into non-atomic context,
50 * replace all usages of sbp2util_node_write_no_wait by true transactions
51 * Grep for inline FIXME comments below.
52 */
53
54 #include <linux/blkdev.h>
55 #include <linux/compiler.h>
56 #include <linux/delay.h>
57 #include <linux/device.h>
58 #include <linux/dma-mapping.h>
59 #include <linux/init.h>
60 #include <linux/kernel.h>
61 #include <linux/list.h>
62 #include <linux/mm.h>
63 #include <linux/module.h>
64 #include <linux/moduleparam.h>
65 #include <linux/sched.h>
66 #include <linux/slab.h>
67 #include <linux/spinlock.h>
68 #include <linux/stat.h>
69 #include <linux/string.h>
70 #include <linux/stringify.h>
71 #include <linux/types.h>
72 #include <linux/wait.h>
73 #include <linux/workqueue.h>
74 #include <linux/scatterlist.h>
75
76 #include <asm/byteorder.h>
77 #include <asm/errno.h>
78 #include <asm/param.h>
79 #include <asm/system.h>
80 #include <asm/types.h>
81
82 #ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
83 #include <asm/io.h> /* for bus_to_virt */
84 #endif
85
86 #include <scsi/scsi.h>
87 #include <scsi/scsi_cmnd.h>
88 #include <scsi/scsi_dbg.h>
89 #include <scsi/scsi_device.h>
90 #include <scsi/scsi_host.h>
91
92 #include "csr1212.h"
93 #include "highlevel.h"
94 #include "hosts.h"
95 #include "ieee1394.h"
96 #include "ieee1394_core.h"
97 #include "ieee1394_hotplug.h"
98 #include "ieee1394_transactions.h"
99 #include "ieee1394_types.h"
100 #include "nodemgr.h"
101 #include "sbp2.h"
102
103 /*
104 * Module load parameter definitions
105 */
106
107 /*
108 * Change max_speed on module load if you have a bad IEEE-1394
109 * controller that has trouble running 2KB packets at 400mb.
110 *
111 * NOTE: On certain OHCI parts I have seen short packets on async transmit
112 * (probably due to PCI latency/throughput issues with the part). You can
113 * bump down the speed if you are running into problems.
114 */
115 static int sbp2_max_speed = IEEE1394_SPEED_MAX;
116 module_param_named(max_speed, sbp2_max_speed, int, 0644);
117 MODULE_PARM_DESC(max_speed, "Limit data transfer speed (5 <= 3200, "
118 "4 <= 1600, 3 <= 800, 2 <= 400, 1 <= 200, 0 = 100 Mb/s)");
119
120 /*
121 * Set serialize_io to 0 or N to use dynamically appended lists of command ORBs.
122 * This is and always has been buggy in multiple subtle ways. See above TODOs.
123 */
124 static int sbp2_serialize_io = 1;
125 module_param_named(serialize_io, sbp2_serialize_io, bool, 0444);
126 MODULE_PARM_DESC(serialize_io, "Serialize requests coming from SCSI drivers "
127 "(default = Y, faster but buggy = N)");
128
129 /*
130 * Adjust max_sectors if you'd like to influence how many sectors each SCSI
131 * command can transfer at most. Please note that some older SBP-2 bridge
132 * chips are broken for transfers greater or equal to 128KB, therefore
133 * max_sectors used to be a safe 255 sectors for many years. We now have a
134 * default of 0 here which means that we let the SCSI stack choose a limit.
135 *
136 * The SBP2_WORKAROUND_128K_MAX_TRANS flag, if set either in the workarounds
137 * module parameter or in the sbp2_workarounds_table[], will override the
138 * value of max_sectors. We should use sbp2_workarounds_table[] to cover any
139 * bridge chip which becomes known to need the 255 sectors limit.
140 */
141 static int sbp2_max_sectors;
142 module_param_named(max_sectors, sbp2_max_sectors, int, 0444);
143 MODULE_PARM_DESC(max_sectors, "Change max sectors per I/O supported "
144 "(default = 0 = use SCSI stack's default)");
145
146 /*
147 * Exclusive login to sbp2 device? In most cases, the sbp2 driver should
148 * do an exclusive login, as it's generally unsafe to have two hosts
149 * talking to a single sbp2 device at the same time (filesystem coherency,
150 * etc.). If you're running an sbp2 device that supports multiple logins,
151 * and you're either running read-only filesystems or some sort of special
152 * filesystem supporting multiple hosts, e.g. OpenGFS, Oracle Cluster
153 * File System, or Lustre, then set exclusive_login to zero.
154 *
155 * So far only bridges from Oxford Semiconductor are known to support
156 * concurrent logins. Depending on firmware, four or two concurrent logins
157 * are possible on OXFW911 and newer Oxsemi bridges.
158 */
159 static int sbp2_exclusive_login = 1;
160 module_param_named(exclusive_login, sbp2_exclusive_login, bool, 0644);
161 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
162 "(default = Y, use N for concurrent initiators)");
163
164 /*
165 * If any of the following workarounds is required for your device to work,
166 * please submit the kernel messages logged by sbp2 to the linux1394-devel
167 * mailing list.
168 *
169 * - 128kB max transfer
170 * Limit transfer size. Necessary for some old bridges.
171 *
172 * - 36 byte inquiry
173 * When scsi_mod probes the device, let the inquiry command look like that
174 * from MS Windows.
175 *
176 * - skip mode page 8
177 * Suppress sending of mode_sense for mode page 8 if the device pretends to
178 * support the SCSI Primary Block commands instead of Reduced Block Commands.
179 *
180 * - fix capacity
181 * Tell sd_mod to correct the last sector number reported by read_capacity.
182 * Avoids access beyond actual disk limits on devices with an off-by-one bug.
183 * Don't use this with devices which don't have this bug.
184 *
185 * - delay inquiry
186 * Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
187 *
188 * - power condition
189 * Set the power condition field in the START STOP UNIT commands sent by
190 * sd_mod on suspend, resume, and shutdown (if manage_start_stop is on).
191 * Some disks need this to spin down or to resume properly.
192 *
193 * - override internal blacklist
194 * Instead of adding to the built-in blacklist, use only the workarounds
195 * specified in the module load parameter.
196 * Useful if a blacklist entry interfered with a non-broken device.
197 */
198 static int sbp2_default_workarounds;
199 module_param_named(workarounds, sbp2_default_workarounds, int, 0644);
200 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
201 ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
202 ", 36 byte inquiry = " __stringify(SBP2_WORKAROUND_INQUIRY_36)
203 ", skip mode page 8 = " __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
204 ", fix capacity = " __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
205 ", delay inquiry = " __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
206 ", set power condition in start stop unit = "
207 __stringify(SBP2_WORKAROUND_POWER_CONDITION)
208 ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
209 ", or a combination)");
210
211 /*
212 * This influences the format of the sysfs attribute
213 * /sys/bus/scsi/devices/.../ieee1394_id.
214 *
215 * The default format is like in older kernels: %016Lx:%d:%d
216 * It contains the target's EUI-64, a number given to the logical unit by
217 * the ieee1394 driver's nodemgr (starting at 0), and the LUN.
218 *
219 * The long format is: %016Lx:%06x:%04x
220 * It contains the target's EUI-64, the unit directory's directory_ID as per
221 * IEEE 1212 clause 7.7.19, and the LUN. This format comes closest to the
222 * format of SBP(-3) target port and logical unit identifier as per SAM (SCSI
223 * Architecture Model) rev.2 to 4 annex A. Therefore and because it is
224 * independent of the implementation of the ieee1394 nodemgr, the longer format
225 * is recommended for future use.
226 */
227 static int sbp2_long_sysfs_ieee1394_id;
228 module_param_named(long_ieee1394_id, sbp2_long_sysfs_ieee1394_id, bool, 0644);
229 MODULE_PARM_DESC(long_ieee1394_id, "8+3+2 bytes format of ieee1394_id in sysfs "
230 "(default = backwards-compatible = N, SAM-conforming = Y)");
231
232
233 #define SBP2_INFO(fmt, args...) HPSB_INFO("sbp2: "fmt, ## args)
234 #define SBP2_ERR(fmt, args...) HPSB_ERR("sbp2: "fmt, ## args)
235
236 /*
237 * Globals
238 */
239 static void sbp2scsi_complete_all_commands(struct sbp2_lu *, u32);
240 static void sbp2scsi_complete_command(struct sbp2_lu *, u32, struct scsi_cmnd *,
241 void (*)(struct scsi_cmnd *));
242 static struct sbp2_lu *sbp2_alloc_device(struct unit_directory *);
243 static int sbp2_start_device(struct sbp2_lu *);
244 static void sbp2_remove_device(struct sbp2_lu *);
245 static int sbp2_login_device(struct sbp2_lu *);
246 static int sbp2_reconnect_device(struct sbp2_lu *);
247 static int sbp2_logout_device(struct sbp2_lu *);
248 static void sbp2_host_reset(struct hpsb_host *);
249 static int sbp2_handle_status_write(struct hpsb_host *, int, int, quadlet_t *,
250 u64, size_t, u16);
251 static int sbp2_agent_reset(struct sbp2_lu *, int);
252 static void sbp2_parse_unit_directory(struct sbp2_lu *,
253 struct unit_directory *);
254 static int sbp2_set_busy_timeout(struct sbp2_lu *);
255 static int sbp2_max_speed_and_size(struct sbp2_lu *);
256
257
258 static const u8 sbp2_speedto_max_payload[] = { 0x7, 0x8, 0x9, 0xa, 0xa, 0xa };
259
260 static DEFINE_RWLOCK(sbp2_hi_logical_units_lock);
261
262 static struct hpsb_highlevel sbp2_highlevel = {
263 .name = SBP2_DEVICE_NAME,
264 .host_reset = sbp2_host_reset,
265 };
266
267 static const struct hpsb_address_ops sbp2_ops = {
268 .write = sbp2_handle_status_write
269 };
270
271 #ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
272 static int sbp2_handle_physdma_write(struct hpsb_host *, int, int, quadlet_t *,
273 u64, size_t, u16);
274 static int sbp2_handle_physdma_read(struct hpsb_host *, int, quadlet_t *, u64,
275 size_t, u16);
276
277 static const struct hpsb_address_ops sbp2_physdma_ops = {
278 .read = sbp2_handle_physdma_read,
279 .write = sbp2_handle_physdma_write,
280 };
281 #endif
282
283
284 /*
285 * Interface to driver core and IEEE 1394 core
286 */
287 static const struct ieee1394_device_id sbp2_id_table[] = {
288 {
289 .match_flags = IEEE1394_MATCH_SPECIFIER_ID | IEEE1394_MATCH_VERSION,
290 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY & 0xffffff,
291 .version = SBP2_SW_VERSION_ENTRY & 0xffffff},
292 {}
293 };
294 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
295
296 static int sbp2_probe(struct device *);
297 static int sbp2_remove(struct device *);
298 static int sbp2_update(struct unit_directory *);
299
300 static struct hpsb_protocol_driver sbp2_driver = {
301 .name = SBP2_DEVICE_NAME,
302 .id_table = sbp2_id_table,
303 .update = sbp2_update,
304 .driver = {
305 .probe = sbp2_probe,
306 .remove = sbp2_remove,
307 },
308 };
309
310
311 /*
312 * Interface to SCSI core
313 */
314 static int sbp2scsi_queuecommand(struct scsi_cmnd *,
315 void (*)(struct scsi_cmnd *));
316 static int sbp2scsi_abort(struct scsi_cmnd *);
317 static int sbp2scsi_reset(struct scsi_cmnd *);
318 static int sbp2scsi_slave_alloc(struct scsi_device *);
319 static int sbp2scsi_slave_configure(struct scsi_device *);
320 static void sbp2scsi_slave_destroy(struct scsi_device *);
321 static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *,
322 struct device_attribute *, char *);
323
324 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
325
326 static struct device_attribute *sbp2_sysfs_sdev_attrs[] = {
327 &dev_attr_ieee1394_id,
328 NULL
329 };
330
331 static struct scsi_host_template sbp2_shost_template = {
332 .module = THIS_MODULE,
333 .name = "SBP-2 IEEE-1394",
334 .proc_name = SBP2_DEVICE_NAME,
335 .queuecommand = sbp2scsi_queuecommand,
336 .eh_abort_handler = sbp2scsi_abort,
337 .eh_device_reset_handler = sbp2scsi_reset,
338 .slave_alloc = sbp2scsi_slave_alloc,
339 .slave_configure = sbp2scsi_slave_configure,
340 .slave_destroy = sbp2scsi_slave_destroy,
341 .this_id = -1,
342 .sg_tablesize = SG_ALL,
343 .use_clustering = ENABLE_CLUSTERING,
344 .cmd_per_lun = SBP2_MAX_CMDS,
345 .can_queue = SBP2_MAX_CMDS,
346 .sdev_attrs = sbp2_sysfs_sdev_attrs,
347 };
348
349 #define SBP2_ROM_VALUE_WILDCARD ~0 /* match all */
350 #define SBP2_ROM_VALUE_MISSING 0xff000000 /* not present in the unit dir. */
351
352 /*
353 * List of devices with known bugs.
354 *
355 * The firmware_revision field, masked with 0xffff00, is the best indicator
356 * for the type of bridge chip of a device. It yields a few false positives
357 * but this did not break correctly behaving devices so far.
358 */
359 static const struct {
360 u32 firmware_revision;
361 u32 model;
362 unsigned workarounds;
363 } sbp2_workarounds_table[] = {
364 /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
365 .firmware_revision = 0x002800,
366 .model = 0x001010,
367 .workarounds = SBP2_WORKAROUND_INQUIRY_36 |
368 SBP2_WORKAROUND_MODE_SENSE_8 |
369 SBP2_WORKAROUND_POWER_CONDITION,
370 },
371 /* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
372 .firmware_revision = 0x002800,
373 .model = 0x000000,
374 .workarounds = SBP2_WORKAROUND_POWER_CONDITION,
375 },
376 /* Initio bridges, actually only needed for some older ones */ {
377 .firmware_revision = 0x000200,
378 .model = SBP2_ROM_VALUE_WILDCARD,
379 .workarounds = SBP2_WORKAROUND_INQUIRY_36,
380 },
381 /* PL-3507 bridge with Prolific firmware */ {
382 .firmware_revision = 0x012800,
383 .model = SBP2_ROM_VALUE_WILDCARD,
384 .workarounds = SBP2_WORKAROUND_POWER_CONDITION,
385 },
386 /* Symbios bridge */ {
387 .firmware_revision = 0xa0b800,
388 .model = SBP2_ROM_VALUE_WILDCARD,
389 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
390 },
391 /* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ {
392 .firmware_revision = 0x002600,
393 .model = SBP2_ROM_VALUE_WILDCARD,
394 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
395 },
396 /*
397 * iPod 2nd generation: needs 128k max transfer size workaround
398 * iPod 3rd generation: needs fix capacity workaround
399 */
400 {
401 .firmware_revision = 0x0a2700,
402 .model = 0x000000,
403 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS |
404 SBP2_WORKAROUND_FIX_CAPACITY,
405 },
406 /* iPod 4th generation */ {
407 .firmware_revision = 0x0a2700,
408 .model = 0x000021,
409 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
410 },
411 /* iPod mini */ {
412 .firmware_revision = 0x0a2700,
413 .model = 0x000022,
414 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
415 },
416 /* iPod mini */ {
417 .firmware_revision = 0x0a2700,
418 .model = 0x000023,
419 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
420 },
421 /* iPod Photo */ {
422 .firmware_revision = 0x0a2700,
423 .model = 0x00007e,
424 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
425 }
426 };
427
428 /**************************************
429 * General utility functions
430 **************************************/
431
432 #ifndef __BIG_ENDIAN
433 /*
434 * Converts a buffer from be32 to cpu byte ordering. Length is in bytes.
435 */
436 static inline void sbp2util_be32_to_cpu_buffer(void *buffer, int length)
437 {
438 u32 *temp = buffer;
439
440 for (length = (length >> 2); length--; )
441 temp[length] = be32_to_cpu(temp[length]);
442 }
443
444 /*
445 * Converts a buffer from cpu to be32 byte ordering. Length is in bytes.
446 */
447 static inline void sbp2util_cpu_to_be32_buffer(void *buffer, int length)
448 {
449 u32 *temp = buffer;
450
451 for (length = (length >> 2); length--; )
452 temp[length] = cpu_to_be32(temp[length]);
453 }
454 #else /* BIG_ENDIAN */
455 /* Why waste the cpu cycles? */
456 #define sbp2util_be32_to_cpu_buffer(x,y) do {} while (0)
457 #define sbp2util_cpu_to_be32_buffer(x,y) do {} while (0)
458 #endif
459
460 static DECLARE_WAIT_QUEUE_HEAD(sbp2_access_wq);
461
462 /*
463 * Waits for completion of an SBP-2 access request.
464 * Returns nonzero if timed out or prematurely interrupted.
465 */
466 static int sbp2util_access_timeout(struct sbp2_lu *lu, int timeout)
467 {
468 long leftover;
469
470 leftover = wait_event_interruptible_timeout(
471 sbp2_access_wq, lu->access_complete, timeout);
472 lu->access_complete = 0;
473 return leftover <= 0;
474 }
475
476 static void sbp2_free_packet(void *packet)
477 {
478 hpsb_free_tlabel(packet);
479 hpsb_free_packet(packet);
480 }
481
482 /*
483 * This is much like hpsb_node_write(), except it ignores the response
484 * subaction and returns immediately. Can be used from atomic context.
485 */
486 static int sbp2util_node_write_no_wait(struct node_entry *ne, u64 addr,
487 quadlet_t *buf, size_t len)
488 {
489 struct hpsb_packet *packet;
490
491 packet = hpsb_make_writepacket(ne->host, ne->nodeid, addr, buf, len);
492 if (!packet)
493 return -ENOMEM;
494
495 hpsb_set_packet_complete_task(packet, sbp2_free_packet, packet);
496 hpsb_node_fill_packet(ne, packet);
497 if (hpsb_send_packet(packet) < 0) {
498 sbp2_free_packet(packet);
499 return -EIO;
500 }
501 return 0;
502 }
503
504 static void sbp2util_notify_fetch_agent(struct sbp2_lu *lu, u64 offset,
505 quadlet_t *data, size_t len)
506 {
507 /* There is a small window after a bus reset within which the node
508 * entry's generation is current but the reconnect wasn't completed. */
509 if (unlikely(atomic_read(&lu->state) == SBP2LU_STATE_IN_RESET))
510 return;
511
512 if (hpsb_node_write(lu->ne, lu->command_block_agent_addr + offset,
513 data, len))
514 SBP2_ERR("sbp2util_notify_fetch_agent failed.");
515
516 /* Now accept new SCSI commands, unless a bus reset happended during
517 * hpsb_node_write. */
518 if (likely(atomic_read(&lu->state) != SBP2LU_STATE_IN_RESET))
519 scsi_unblock_requests(lu->shost);
520 }
521
522 static void sbp2util_write_orb_pointer(struct work_struct *work)
523 {
524 struct sbp2_lu *lu = container_of(work, struct sbp2_lu, protocol_work);
525 quadlet_t data[2];
526
527 data[0] = ORB_SET_NODE_ID(lu->hi->host->node_id);
528 data[1] = lu->last_orb_dma;
529 sbp2util_cpu_to_be32_buffer(data, 8);
530 sbp2util_notify_fetch_agent(lu, SBP2_ORB_POINTER_OFFSET, data, 8);
531 }
532
533 static void sbp2util_write_doorbell(struct work_struct *work)
534 {
535 struct sbp2_lu *lu = container_of(work, struct sbp2_lu, protocol_work);
536
537 sbp2util_notify_fetch_agent(lu, SBP2_DOORBELL_OFFSET, NULL, 4);
538 }
539
540 static int sbp2util_create_command_orb_pool(struct sbp2_lu *lu)
541 {
542 struct sbp2_command_info *cmd;
543 struct device *dmadev = lu->hi->host->device.parent;
544 int i, orbs = sbp2_serialize_io ? 2 : SBP2_MAX_CMDS;
545
546 for (i = 0; i < orbs; i++) {
547 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
548 if (!cmd)
549 goto failed_alloc;
550
551 cmd->command_orb_dma =
552 dma_map_single(dmadev, &cmd->command_orb,
553 sizeof(struct sbp2_command_orb),
554 DMA_TO_DEVICE);
555 if (dma_mapping_error(dmadev, cmd->command_orb_dma))
556 goto failed_orb;
557
558 cmd->sge_dma =
559 dma_map_single(dmadev, &cmd->scatter_gather_element,
560 sizeof(cmd->scatter_gather_element),
561 DMA_TO_DEVICE);
562 if (dma_mapping_error(dmadev, cmd->sge_dma))
563 goto failed_sge;
564
565 INIT_LIST_HEAD(&cmd->list);
566 list_add_tail(&cmd->list, &lu->cmd_orb_completed);
567 }
568 return 0;
569
570 failed_sge:
571 dma_unmap_single(dmadev, cmd->command_orb_dma,
572 sizeof(struct sbp2_command_orb), DMA_TO_DEVICE);
573 failed_orb:
574 kfree(cmd);
575 failed_alloc:
576 return -ENOMEM;
577 }
578
579 static void sbp2util_remove_command_orb_pool(struct sbp2_lu *lu,
580 struct hpsb_host *host)
581 {
582 struct list_head *lh, *next;
583 struct sbp2_command_info *cmd;
584 unsigned long flags;
585
586 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
587 if (!list_empty(&lu->cmd_orb_completed))
588 list_for_each_safe(lh, next, &lu->cmd_orb_completed) {
589 cmd = list_entry(lh, struct sbp2_command_info, list);
590 dma_unmap_single(host->device.parent,
591 cmd->command_orb_dma,
592 sizeof(struct sbp2_command_orb),
593 DMA_TO_DEVICE);
594 dma_unmap_single(host->device.parent, cmd->sge_dma,
595 sizeof(cmd->scatter_gather_element),
596 DMA_TO_DEVICE);
597 kfree(cmd);
598 }
599 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
600 return;
601 }
602
603 /*
604 * Finds the sbp2_command for a given outstanding command ORB.
605 * Only looks at the in-use list.
606 */
607 static struct sbp2_command_info *sbp2util_find_command_for_orb(
608 struct sbp2_lu *lu, dma_addr_t orb)
609 {
610 struct sbp2_command_info *cmd;
611 unsigned long flags;
612
613 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
614 if (!list_empty(&lu->cmd_orb_inuse))
615 list_for_each_entry(cmd, &lu->cmd_orb_inuse, list)
616 if (cmd->command_orb_dma == orb) {
617 spin_unlock_irqrestore(
618 &lu->cmd_orb_lock, flags);
619 return cmd;
620 }
621 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
622 return NULL;
623 }
624
625 /*
626 * Finds the sbp2_command for a given outstanding SCpnt.
627 * Only looks at the in-use list.
628 * Must be called with lu->cmd_orb_lock held.
629 */
630 static struct sbp2_command_info *sbp2util_find_command_for_SCpnt(
631 struct sbp2_lu *lu, void *SCpnt)
632 {
633 struct sbp2_command_info *cmd;
634
635 if (!list_empty(&lu->cmd_orb_inuse))
636 list_for_each_entry(cmd, &lu->cmd_orb_inuse, list)
637 if (cmd->Current_SCpnt == SCpnt)
638 return cmd;
639 return NULL;
640 }
641
642 static struct sbp2_command_info *sbp2util_allocate_command_orb(
643 struct sbp2_lu *lu,
644 struct scsi_cmnd *Current_SCpnt,
645 void (*Current_done)(struct scsi_cmnd *))
646 {
647 struct list_head *lh;
648 struct sbp2_command_info *cmd = NULL;
649 unsigned long flags;
650
651 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
652 if (!list_empty(&lu->cmd_orb_completed)) {
653 lh = lu->cmd_orb_completed.next;
654 list_del(lh);
655 cmd = list_entry(lh, struct sbp2_command_info, list);
656 cmd->Current_done = Current_done;
657 cmd->Current_SCpnt = Current_SCpnt;
658 list_add_tail(&cmd->list, &lu->cmd_orb_inuse);
659 } else
660 SBP2_ERR("%s: no orbs available", __func__);
661 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
662 return cmd;
663 }
664
665 /*
666 * Unmaps the DMAs of a command and moves the command to the completed ORB list.
667 * Must be called with lu->cmd_orb_lock held.
668 */
669 static void sbp2util_mark_command_completed(struct sbp2_lu *lu,
670 struct sbp2_command_info *cmd)
671 {
672 if (scsi_sg_count(cmd->Current_SCpnt))
673 dma_unmap_sg(lu->ud->ne->host->device.parent,
674 scsi_sglist(cmd->Current_SCpnt),
675 scsi_sg_count(cmd->Current_SCpnt),
676 cmd->Current_SCpnt->sc_data_direction);
677 list_move_tail(&cmd->list, &lu->cmd_orb_completed);
678 }
679
680 /*
681 * Is lu valid? Is the 1394 node still present?
682 */
683 static inline int sbp2util_node_is_available(struct sbp2_lu *lu)
684 {
685 return lu && lu->ne && !lu->ne->in_limbo;
686 }
687
688 /*********************************************
689 * IEEE-1394 core driver stack related section
690 *********************************************/
691
692 static int sbp2_probe(struct device *dev)
693 {
694 struct unit_directory *ud;
695 struct sbp2_lu *lu;
696
697 ud = container_of(dev, struct unit_directory, device);
698
699 /* Don't probe UD's that have the LUN flag. We'll probe the LUN(s)
700 * instead. */
701 if (ud->flags & UNIT_DIRECTORY_HAS_LUN_DIRECTORY)
702 return -ENODEV;
703
704 lu = sbp2_alloc_device(ud);
705 if (!lu)
706 return -ENOMEM;
707
708 sbp2_parse_unit_directory(lu, ud);
709 return sbp2_start_device(lu);
710 }
711
712 static int sbp2_remove(struct device *dev)
713 {
714 struct unit_directory *ud;
715 struct sbp2_lu *lu;
716 struct scsi_device *sdev;
717
718 ud = container_of(dev, struct unit_directory, device);
719 lu = dev_get_drvdata(&ud->device);
720 if (!lu)
721 return 0;
722
723 if (lu->shost) {
724 /* Get rid of enqueued commands if there is no chance to
725 * send them. */
726 if (!sbp2util_node_is_available(lu))
727 sbp2scsi_complete_all_commands(lu, DID_NO_CONNECT);
728 /* scsi_remove_device() may trigger shutdown functions of SCSI
729 * highlevel drivers which would deadlock if blocked. */
730 atomic_set(&lu->state, SBP2LU_STATE_IN_SHUTDOWN);
731 scsi_unblock_requests(lu->shost);
732 }
733 sdev = lu->sdev;
734 if (sdev) {
735 lu->sdev = NULL;
736 scsi_remove_device(sdev);
737 }
738
739 sbp2_logout_device(lu);
740 sbp2_remove_device(lu);
741
742 return 0;
743 }
744
745 static int sbp2_update(struct unit_directory *ud)
746 {
747 struct sbp2_lu *lu = dev_get_drvdata(&ud->device);
748
749 if (sbp2_reconnect_device(lu) != 0) {
750 /*
751 * Reconnect failed. If another bus reset happened,
752 * let nodemgr proceed and call sbp2_update again later
753 * (or sbp2_remove if this node went away).
754 */
755 if (!hpsb_node_entry_valid(lu->ne))
756 return 0;
757 /*
758 * Or the target rejected the reconnect because we weren't
759 * fast enough. Try a regular login, but first log out
760 * just in case of any weirdness.
761 */
762 sbp2_logout_device(lu);
763
764 if (sbp2_login_device(lu) != 0) {
765 if (!hpsb_node_entry_valid(lu->ne))
766 return 0;
767
768 /* Maybe another initiator won the login. */
769 SBP2_ERR("Failed to reconnect to sbp2 device!");
770 return -EBUSY;
771 }
772 }
773
774 sbp2_set_busy_timeout(lu);
775 sbp2_agent_reset(lu, 1);
776 sbp2_max_speed_and_size(lu);
777
778 /* Complete any pending commands with busy (so they get retried)
779 * and remove them from our queue. */
780 sbp2scsi_complete_all_commands(lu, DID_BUS_BUSY);
781
782 /* Accept new commands unless there was another bus reset in the
783 * meantime. */
784 if (hpsb_node_entry_valid(lu->ne)) {
785 atomic_set(&lu->state, SBP2LU_STATE_RUNNING);
786 scsi_unblock_requests(lu->shost);
787 }
788 return 0;
789 }
790
791 static struct sbp2_lu *sbp2_alloc_device(struct unit_directory *ud)
792 {
793 struct sbp2_fwhost_info *hi;
794 struct Scsi_Host *shost = NULL;
795 struct sbp2_lu *lu = NULL;
796 unsigned long flags;
797
798 lu = kzalloc(sizeof(*lu), GFP_KERNEL);
799 if (!lu) {
800 SBP2_ERR("failed to create lu");
801 goto failed_alloc;
802 }
803
804 lu->ne = ud->ne;
805 lu->ud = ud;
806 lu->speed_code = IEEE1394_SPEED_100;
807 lu->max_payload_size = sbp2_speedto_max_payload[IEEE1394_SPEED_100];
808 lu->status_fifo_addr = CSR1212_INVALID_ADDR_SPACE;
809 INIT_LIST_HEAD(&lu->cmd_orb_inuse);
810 INIT_LIST_HEAD(&lu->cmd_orb_completed);
811 INIT_LIST_HEAD(&lu->lu_list);
812 spin_lock_init(&lu->cmd_orb_lock);
813 atomic_set(&lu->state, SBP2LU_STATE_RUNNING);
814 INIT_WORK(&lu->protocol_work, NULL);
815
816 dev_set_drvdata(&ud->device, lu);
817
818 hi = hpsb_get_hostinfo(&sbp2_highlevel, ud->ne->host);
819 if (!hi) {
820 hi = hpsb_create_hostinfo(&sbp2_highlevel, ud->ne->host,
821 sizeof(*hi));
822 if (!hi) {
823 SBP2_ERR("failed to allocate hostinfo");
824 goto failed_alloc;
825 }
826 hi->host = ud->ne->host;
827 INIT_LIST_HEAD(&hi->logical_units);
828
829 #ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
830 /* Handle data movement if physical dma is not
831 * enabled or not supported on host controller */
832 if (!hpsb_register_addrspace(&sbp2_highlevel, ud->ne->host,
833 &sbp2_physdma_ops,
834 0x0ULL, 0xfffffffcULL)) {
835 SBP2_ERR("failed to register lower 4GB address range");
836 goto failed_alloc;
837 }
838 #endif
839 }
840
841 if (dma_get_max_seg_size(hi->host->device.parent) > SBP2_MAX_SEG_SIZE)
842 BUG_ON(dma_set_max_seg_size(hi->host->device.parent,
843 SBP2_MAX_SEG_SIZE));
844
845 /* Prevent unloading of the 1394 host */
846 if (!try_module_get(hi->host->driver->owner)) {
847 SBP2_ERR("failed to get a reference on 1394 host driver");
848 goto failed_alloc;
849 }
850
851 lu->hi = hi;
852
853 write_lock_irqsave(&sbp2_hi_logical_units_lock, flags);
854 list_add_tail(&lu->lu_list, &hi->logical_units);
855 write_unlock_irqrestore(&sbp2_hi_logical_units_lock, flags);
856
857 /* Register the status FIFO address range. We could use the same FIFO
858 * for targets at different nodes. However we need different FIFOs per
859 * target in order to support multi-unit devices.
860 * The FIFO is located out of the local host controller's physical range
861 * but, if possible, within the posted write area. Status writes will
862 * then be performed as unified transactions. This slightly reduces
863 * bandwidth usage, and some Prolific based devices seem to require it.
864 */
865 lu->status_fifo_addr = hpsb_allocate_and_register_addrspace(
866 &sbp2_highlevel, ud->ne->host, &sbp2_ops,
867 sizeof(struct sbp2_status_block), sizeof(quadlet_t),
868 ud->ne->host->low_addr_space, CSR1212_ALL_SPACE_END);
869 if (lu->status_fifo_addr == CSR1212_INVALID_ADDR_SPACE) {
870 SBP2_ERR("failed to allocate status FIFO address range");
871 goto failed_alloc;
872 }
873
874 shost = scsi_host_alloc(&sbp2_shost_template, sizeof(unsigned long));
875 if (!shost) {
876 SBP2_ERR("failed to register scsi host");
877 goto failed_alloc;
878 }
879
880 shost->hostdata[0] = (unsigned long)lu;
881 shost->max_cmd_len = SBP2_MAX_CDB_SIZE;
882
883 if (!scsi_add_host(shost, &ud->device)) {
884 lu->shost = shost;
885 return lu;
886 }
887
888 SBP2_ERR("failed to add scsi host");
889 scsi_host_put(shost);
890
891 failed_alloc:
892 sbp2_remove_device(lu);
893 return NULL;
894 }
895
896 static void sbp2_host_reset(struct hpsb_host *host)
897 {
898 struct sbp2_fwhost_info *hi;
899 struct sbp2_lu *lu;
900 unsigned long flags;
901
902 hi = hpsb_get_hostinfo(&sbp2_highlevel, host);
903 if (!hi)
904 return;
905
906 read_lock_irqsave(&sbp2_hi_logical_units_lock, flags);
907
908 list_for_each_entry(lu, &hi->logical_units, lu_list)
909 if (atomic_cmpxchg(&lu->state,
910 SBP2LU_STATE_RUNNING, SBP2LU_STATE_IN_RESET)
911 == SBP2LU_STATE_RUNNING)
912 scsi_block_requests(lu->shost);
913
914 read_unlock_irqrestore(&sbp2_hi_logical_units_lock, flags);
915 }
916
917 static int sbp2_start_device(struct sbp2_lu *lu)
918 {
919 struct sbp2_fwhost_info *hi = lu->hi;
920 int error;
921
922 lu->login_response = dma_alloc_coherent(hi->host->device.parent,
923 sizeof(struct sbp2_login_response),
924 &lu->login_response_dma, GFP_KERNEL);
925 if (!lu->login_response)
926 goto alloc_fail;
927
928 lu->query_logins_orb = dma_alloc_coherent(hi->host->device.parent,
929 sizeof(struct sbp2_query_logins_orb),
930 &lu->query_logins_orb_dma, GFP_KERNEL);
931 if (!lu->query_logins_orb)
932 goto alloc_fail;
933
934 lu->query_logins_response = dma_alloc_coherent(hi->host->device.parent,
935 sizeof(struct sbp2_query_logins_response),
936 &lu->query_logins_response_dma, GFP_KERNEL);
937 if (!lu->query_logins_response)
938 goto alloc_fail;
939
940 lu->reconnect_orb = dma_alloc_coherent(hi->host->device.parent,
941 sizeof(struct sbp2_reconnect_orb),
942 &lu->reconnect_orb_dma, GFP_KERNEL);
943 if (!lu->reconnect_orb)
944 goto alloc_fail;
945
946 lu->logout_orb = dma_alloc_coherent(hi->host->device.parent,
947 sizeof(struct sbp2_logout_orb),
948 &lu->logout_orb_dma, GFP_KERNEL);
949 if (!lu->logout_orb)
950 goto alloc_fail;
951
952 lu->login_orb = dma_alloc_coherent(hi->host->device.parent,
953 sizeof(struct sbp2_login_orb),
954 &lu->login_orb_dma, GFP_KERNEL);
955 if (!lu->login_orb)
956 goto alloc_fail;
957
958 if (sbp2util_create_command_orb_pool(lu))
959 goto alloc_fail;
960
961 /* Wait a second before trying to log in. Previously logged in
962 * initiators need a chance to reconnect. */
963 if (msleep_interruptible(1000)) {
964 sbp2_remove_device(lu);
965 return -EINTR;
966 }
967
968 if (sbp2_login_device(lu)) {
969 sbp2_remove_device(lu);
970 return -EBUSY;
971 }
972
973 sbp2_set_busy_timeout(lu);
974 sbp2_agent_reset(lu, 1);
975 sbp2_max_speed_and_size(lu);
976
977 if (lu->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
978 ssleep(SBP2_INQUIRY_DELAY);
979
980 error = scsi_add_device(lu->shost, 0, lu->ud->id, 0);
981 if (error) {
982 SBP2_ERR("scsi_add_device failed");
983 sbp2_logout_device(lu);
984 sbp2_remove_device(lu);
985 return error;
986 }
987
988 return 0;
989
990 alloc_fail:
991 SBP2_ERR("Could not allocate memory for lu");
992 sbp2_remove_device(lu);
993 return -ENOMEM;
994 }
995
996 static void sbp2_remove_device(struct sbp2_lu *lu)
997 {
998 struct sbp2_fwhost_info *hi;
999 unsigned long flags;
1000
1001 if (!lu)
1002 return;
1003 hi = lu->hi;
1004 if (!hi)
1005 goto no_hi;
1006
1007 if (lu->shost) {
1008 scsi_remove_host(lu->shost);
1009 scsi_host_put(lu->shost);
1010 }
1011 flush_scheduled_work();
1012 sbp2util_remove_command_orb_pool(lu, hi->host);
1013
1014 write_lock_irqsave(&sbp2_hi_logical_units_lock, flags);
1015 list_del(&lu->lu_list);
1016 write_unlock_irqrestore(&sbp2_hi_logical_units_lock, flags);
1017
1018 if (lu->login_response)
1019 dma_free_coherent(hi->host->device.parent,
1020 sizeof(struct sbp2_login_response),
1021 lu->login_response,
1022 lu->login_response_dma);
1023 if (lu->login_orb)
1024 dma_free_coherent(hi->host->device.parent,
1025 sizeof(struct sbp2_login_orb),
1026 lu->login_orb,
1027 lu->login_orb_dma);
1028 if (lu->reconnect_orb)
1029 dma_free_coherent(hi->host->device.parent,
1030 sizeof(struct sbp2_reconnect_orb),
1031 lu->reconnect_orb,
1032 lu->reconnect_orb_dma);
1033 if (lu->logout_orb)
1034 dma_free_coherent(hi->host->device.parent,
1035 sizeof(struct sbp2_logout_orb),
1036 lu->logout_orb,
1037 lu->logout_orb_dma);
1038 if (lu->query_logins_orb)
1039 dma_free_coherent(hi->host->device.parent,
1040 sizeof(struct sbp2_query_logins_orb),
1041 lu->query_logins_orb,
1042 lu->query_logins_orb_dma);
1043 if (lu->query_logins_response)
1044 dma_free_coherent(hi->host->device.parent,
1045 sizeof(struct sbp2_query_logins_response),
1046 lu->query_logins_response,
1047 lu->query_logins_response_dma);
1048
1049 if (lu->status_fifo_addr != CSR1212_INVALID_ADDR_SPACE)
1050 hpsb_unregister_addrspace(&sbp2_highlevel, hi->host,
1051 lu->status_fifo_addr);
1052
1053 dev_set_drvdata(&lu->ud->device, NULL);
1054
1055 module_put(hi->host->driver->owner);
1056 no_hi:
1057 kfree(lu);
1058 }
1059
1060 #ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
1061 /*
1062 * Deal with write requests on adapters which do not support physical DMA or
1063 * have it switched off.
1064 */
1065 static int sbp2_handle_physdma_write(struct hpsb_host *host, int nodeid,
1066 int destid, quadlet_t *data, u64 addr,
1067 size_t length, u16 flags)
1068 {
1069 memcpy(bus_to_virt((u32) addr), data, length);
1070 return RCODE_COMPLETE;
1071 }
1072
1073 /*
1074 * Deal with read requests on adapters which do not support physical DMA or
1075 * have it switched off.
1076 */
1077 static int sbp2_handle_physdma_read(struct hpsb_host *host, int nodeid,
1078 quadlet_t *data, u64 addr, size_t length,
1079 u16 flags)
1080 {
1081 memcpy(data, bus_to_virt((u32) addr), length);
1082 return RCODE_COMPLETE;
1083 }
1084 #endif
1085
1086 /**************************************
1087 * SBP-2 protocol related section
1088 **************************************/
1089
1090 static int sbp2_query_logins(struct sbp2_lu *lu)
1091 {
1092 struct sbp2_fwhost_info *hi = lu->hi;
1093 quadlet_t data[2];
1094 int max_logins;
1095 int active_logins;
1096
1097 lu->query_logins_orb->reserved1 = 0x0;
1098 lu->query_logins_orb->reserved2 = 0x0;
1099
1100 lu->query_logins_orb->query_response_lo = lu->query_logins_response_dma;
1101 lu->query_logins_orb->query_response_hi =
1102 ORB_SET_NODE_ID(hi->host->node_id);
1103 lu->query_logins_orb->lun_misc =
1104 ORB_SET_FUNCTION(SBP2_QUERY_LOGINS_REQUEST);
1105 lu->query_logins_orb->lun_misc |= ORB_SET_NOTIFY(1);
1106 lu->query_logins_orb->lun_misc |= ORB_SET_LUN(lu->lun);
1107
1108 lu->query_logins_orb->reserved_resp_length =
1109 ORB_SET_QUERY_LOGINS_RESP_LENGTH(
1110 sizeof(struct sbp2_query_logins_response));
1111
1112 lu->query_logins_orb->status_fifo_hi =
1113 ORB_SET_STATUS_FIFO_HI(lu->status_fifo_addr, hi->host->node_id);
1114 lu->query_logins_orb->status_fifo_lo =
1115 ORB_SET_STATUS_FIFO_LO(lu->status_fifo_addr);
1116
1117 sbp2util_cpu_to_be32_buffer(lu->query_logins_orb,
1118 sizeof(struct sbp2_query_logins_orb));
1119
1120 memset(lu->query_logins_response, 0,
1121 sizeof(struct sbp2_query_logins_response));
1122
1123 data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1124 data[1] = lu->query_logins_orb_dma;
1125 sbp2util_cpu_to_be32_buffer(data, 8);
1126
1127 hpsb_node_write(lu->ne, lu->management_agent_addr, data, 8);
1128
1129 if (sbp2util_access_timeout(lu, 2*HZ)) {
1130 SBP2_INFO("Error querying logins to SBP-2 device - timed out");
1131 return -EIO;
1132 }
1133
1134 if (lu->status_block.ORB_offset_lo != lu->query_logins_orb_dma) {
1135 SBP2_INFO("Error querying logins to SBP-2 device - timed out");
1136 return -EIO;
1137 }
1138
1139 if (STATUS_TEST_RDS(lu->status_block.ORB_offset_hi_misc)) {
1140 SBP2_INFO("Error querying logins to SBP-2 device - failed");
1141 return -EIO;
1142 }
1143
1144 sbp2util_cpu_to_be32_buffer(lu->query_logins_response,
1145 sizeof(struct sbp2_query_logins_response));
1146
1147 max_logins = RESPONSE_GET_MAX_LOGINS(
1148 lu->query_logins_response->length_max_logins);
1149 SBP2_INFO("Maximum concurrent logins supported: %d", max_logins);
1150
1151 active_logins = RESPONSE_GET_ACTIVE_LOGINS(
1152 lu->query_logins_response->length_max_logins);
1153 SBP2_INFO("Number of active logins: %d", active_logins);
1154
1155 if (active_logins >= max_logins) {
1156 return -EIO;
1157 }
1158
1159 return 0;
1160 }
1161
1162 static int sbp2_login_device(struct sbp2_lu *lu)
1163 {
1164 struct sbp2_fwhost_info *hi = lu->hi;
1165 quadlet_t data[2];
1166
1167 if (!lu->login_orb)
1168 return -EIO;
1169
1170 if (!sbp2_exclusive_login && sbp2_query_logins(lu)) {
1171 SBP2_INFO("Device does not support any more concurrent logins");
1172 return -EIO;
1173 }
1174
1175 /* assume no password */
1176 lu->login_orb->password_hi = 0;
1177 lu->login_orb->password_lo = 0;
1178
1179 lu->login_orb->login_response_lo = lu->login_response_dma;
1180 lu->login_orb->login_response_hi = ORB_SET_NODE_ID(hi->host->node_id);
1181 lu->login_orb->lun_misc = ORB_SET_FUNCTION(SBP2_LOGIN_REQUEST);
1182
1183 /* one second reconnect time */
1184 lu->login_orb->lun_misc |= ORB_SET_RECONNECT(0);
1185 lu->login_orb->lun_misc |= ORB_SET_EXCLUSIVE(sbp2_exclusive_login);
1186 lu->login_orb->lun_misc |= ORB_SET_NOTIFY(1);
1187 lu->login_orb->lun_misc |= ORB_SET_LUN(lu->lun);
1188
1189 lu->login_orb->passwd_resp_lengths =
1190 ORB_SET_LOGIN_RESP_LENGTH(sizeof(struct sbp2_login_response));
1191
1192 lu->login_orb->status_fifo_hi =
1193 ORB_SET_STATUS_FIFO_HI(lu->status_fifo_addr, hi->host->node_id);
1194 lu->login_orb->status_fifo_lo =
1195 ORB_SET_STATUS_FIFO_LO(lu->status_fifo_addr);
1196
1197 sbp2util_cpu_to_be32_buffer(lu->login_orb,
1198 sizeof(struct sbp2_login_orb));
1199
1200 memset(lu->login_response, 0, sizeof(struct sbp2_login_response));
1201
1202 data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1203 data[1] = lu->login_orb_dma;
1204 sbp2util_cpu_to_be32_buffer(data, 8);
1205
1206 hpsb_node_write(lu->ne, lu->management_agent_addr, data, 8);
1207
1208 /* wait up to 20 seconds for login status */
1209 if (sbp2util_access_timeout(lu, 20*HZ)) {
1210 SBP2_ERR("Error logging into SBP-2 device - timed out");
1211 return -EIO;
1212 }
1213
1214 /* make sure that the returned status matches the login ORB */
1215 if (lu->status_block.ORB_offset_lo != lu->login_orb_dma) {
1216 SBP2_ERR("Error logging into SBP-2 device - timed out");
1217 return -EIO;
1218 }
1219
1220 if (STATUS_TEST_RDS(lu->status_block.ORB_offset_hi_misc)) {
1221 SBP2_ERR("Error logging into SBP-2 device - failed");
1222 return -EIO;
1223 }
1224
1225 sbp2util_cpu_to_be32_buffer(lu->login_response,
1226 sizeof(struct sbp2_login_response));
1227 lu->command_block_agent_addr =
1228 ((u64)lu->login_response->command_block_agent_hi) << 32;
1229 lu->command_block_agent_addr |=
1230 ((u64)lu->login_response->command_block_agent_lo);
1231 lu->command_block_agent_addr &= 0x0000ffffffffffffULL;
1232
1233 SBP2_INFO("Logged into SBP-2 device");
1234 return 0;
1235 }
1236
1237 static int sbp2_logout_device(struct sbp2_lu *lu)
1238 {
1239 struct sbp2_fwhost_info *hi = lu->hi;
1240 quadlet_t data[2];
1241 int error;
1242
1243 lu->logout_orb->reserved1 = 0x0;
1244 lu->logout_orb->reserved2 = 0x0;
1245 lu->logout_orb->reserved3 = 0x0;
1246 lu->logout_orb->reserved4 = 0x0;
1247
1248 lu->logout_orb->login_ID_misc = ORB_SET_FUNCTION(SBP2_LOGOUT_REQUEST);
1249 lu->logout_orb->login_ID_misc |=
1250 ORB_SET_LOGIN_ID(lu->login_response->length_login_ID);
1251 lu->logout_orb->login_ID_misc |= ORB_SET_NOTIFY(1);
1252
1253 lu->logout_orb->reserved5 = 0x0;
1254 lu->logout_orb->status_fifo_hi =
1255 ORB_SET_STATUS_FIFO_HI(lu->status_fifo_addr, hi->host->node_id);
1256 lu->logout_orb->status_fifo_lo =
1257 ORB_SET_STATUS_FIFO_LO(lu->status_fifo_addr);
1258
1259 sbp2util_cpu_to_be32_buffer(lu->logout_orb,
1260 sizeof(struct sbp2_logout_orb));
1261
1262 data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1263 data[1] = lu->logout_orb_dma;
1264 sbp2util_cpu_to_be32_buffer(data, 8);
1265
1266 error = hpsb_node_write(lu->ne, lu->management_agent_addr, data, 8);
1267 if (error)
1268 return error;
1269
1270 /* wait up to 1 second for the device to complete logout */
1271 if (sbp2util_access_timeout(lu, HZ))
1272 return -EIO;
1273
1274 SBP2_INFO("Logged out of SBP-2 device");
1275 return 0;
1276 }
1277
1278 static int sbp2_reconnect_device(struct sbp2_lu *lu)
1279 {
1280 struct sbp2_fwhost_info *hi = lu->hi;
1281 quadlet_t data[2];
1282 int error;
1283
1284 lu->reconnect_orb->reserved1 = 0x0;
1285 lu->reconnect_orb->reserved2 = 0x0;
1286 lu->reconnect_orb->reserved3 = 0x0;
1287 lu->reconnect_orb->reserved4 = 0x0;
1288
1289 lu->reconnect_orb->login_ID_misc =
1290 ORB_SET_FUNCTION(SBP2_RECONNECT_REQUEST);
1291 lu->reconnect_orb->login_ID_misc |=
1292 ORB_SET_LOGIN_ID(lu->login_response->length_login_ID);
1293 lu->reconnect_orb->login_ID_misc |= ORB_SET_NOTIFY(1);
1294
1295 lu->reconnect_orb->reserved5 = 0x0;
1296 lu->reconnect_orb->status_fifo_hi =
1297 ORB_SET_STATUS_FIFO_HI(lu->status_fifo_addr, hi->host->node_id);
1298 lu->reconnect_orb->status_fifo_lo =
1299 ORB_SET_STATUS_FIFO_LO(lu->status_fifo_addr);
1300
1301 sbp2util_cpu_to_be32_buffer(lu->reconnect_orb,
1302 sizeof(struct sbp2_reconnect_orb));
1303
1304 data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1305 data[1] = lu->reconnect_orb_dma;
1306 sbp2util_cpu_to_be32_buffer(data, 8);
1307
1308 error = hpsb_node_write(lu->ne, lu->management_agent_addr, data, 8);
1309 if (error)
1310 return error;
1311
1312 /* wait up to 1 second for reconnect status */
1313 if (sbp2util_access_timeout(lu, HZ)) {
1314 SBP2_ERR("Error reconnecting to SBP-2 device - timed out");
1315 return -EIO;
1316 }
1317
1318 /* make sure that the returned status matches the reconnect ORB */
1319 if (lu->status_block.ORB_offset_lo != lu->reconnect_orb_dma) {
1320 SBP2_ERR("Error reconnecting to SBP-2 device - timed out");
1321 return -EIO;
1322 }
1323
1324 if (STATUS_TEST_RDS(lu->status_block.ORB_offset_hi_misc)) {
1325 SBP2_ERR("Error reconnecting to SBP-2 device - failed");
1326 return -EIO;
1327 }
1328
1329 SBP2_INFO("Reconnected to SBP-2 device");
1330 return 0;
1331 }
1332
1333 /*
1334 * Set the target node's Single Phase Retry limit. Affects the target's retry
1335 * behaviour if our node is too busy to accept requests.
1336 */
1337 static int sbp2_set_busy_timeout(struct sbp2_lu *lu)
1338 {
1339 quadlet_t data;
1340
1341 data = cpu_to_be32(SBP2_BUSY_TIMEOUT_VALUE);
1342 if (hpsb_node_write(lu->ne, SBP2_BUSY_TIMEOUT_ADDRESS, &data, 4))
1343 SBP2_ERR("%s error", __func__);
1344 return 0;
1345 }
1346
1347 static void sbp2_parse_unit_directory(struct sbp2_lu *lu,
1348 struct unit_directory *ud)
1349 {
1350 struct csr1212_keyval *kv;
1351 struct csr1212_dentry *dentry;
1352 u64 management_agent_addr;
1353 u32 unit_characteristics, firmware_revision, model;
1354 unsigned workarounds;
1355 int i;
1356
1357 management_agent_addr = 0;
1358 unit_characteristics = 0;
1359 firmware_revision = SBP2_ROM_VALUE_MISSING;
1360 model = ud->flags & UNIT_DIRECTORY_MODEL_ID ?
1361 ud->model_id : SBP2_ROM_VALUE_MISSING;
1362
1363 csr1212_for_each_dir_entry(ud->ne->csr, kv, ud->ud_kv, dentry) {
1364 switch (kv->key.id) {
1365 case CSR1212_KV_ID_DEPENDENT_INFO:
1366 if (kv->key.type == CSR1212_KV_TYPE_CSR_OFFSET)
1367 management_agent_addr =
1368 CSR1212_REGISTER_SPACE_BASE +
1369 (kv->value.csr_offset << 2);
1370
1371 else if (kv->key.type == CSR1212_KV_TYPE_IMMEDIATE)
1372 lu->lun = ORB_SET_LUN(kv->value.immediate);
1373 break;
1374
1375 case SBP2_UNIT_CHARACTERISTICS_KEY:
1376 /* FIXME: This is ignored so far.
1377 * See SBP-2 clause 7.4.8. */
1378 unit_characteristics = kv->value.immediate;
1379 break;
1380
1381 case SBP2_FIRMWARE_REVISION_KEY:
1382 firmware_revision = kv->value.immediate;
1383 break;
1384
1385 default:
1386 /* FIXME: Check for SBP2_DEVICE_TYPE_AND_LUN_KEY.
1387 * Its "ordered" bit has consequences for command ORB
1388 * list handling. See SBP-2 clauses 4.6, 7.4.11, 10.2 */
1389 break;
1390 }
1391 }
1392
1393 workarounds = sbp2_default_workarounds;
1394
1395 if (!(workarounds & SBP2_WORKAROUND_OVERRIDE))
1396 for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1397 if (sbp2_workarounds_table[i].firmware_revision !=
1398 SBP2_ROM_VALUE_WILDCARD &&
1399 sbp2_workarounds_table[i].firmware_revision !=
1400 (firmware_revision & 0xffff00))
1401 continue;
1402 if (sbp2_workarounds_table[i].model !=
1403 SBP2_ROM_VALUE_WILDCARD &&
1404 sbp2_workarounds_table[i].model != model)
1405 continue;
1406 workarounds |= sbp2_workarounds_table[i].workarounds;
1407 break;
1408 }
1409
1410 if (workarounds)
1411 SBP2_INFO("Workarounds for node " NODE_BUS_FMT ": 0x%x "
1412 "(firmware_revision 0x%06x, vendor_id 0x%06x,"
1413 " model_id 0x%06x)",
1414 NODE_BUS_ARGS(ud->ne->host, ud->ne->nodeid),
1415 workarounds, firmware_revision, ud->vendor_id,
1416 model);
1417
1418 /* We would need one SCSI host template for each target to adjust
1419 * max_sectors on the fly, therefore warn only. */
1420 if (workarounds & SBP2_WORKAROUND_128K_MAX_TRANS &&
1421 (sbp2_max_sectors * 512) > (128 * 1024))
1422 SBP2_INFO("Node " NODE_BUS_FMT ": Bridge only supports 128KB "
1423 "max transfer size. WARNING: Current max_sectors "
1424 "setting is larger than 128KB (%d sectors)",
1425 NODE_BUS_ARGS(ud->ne->host, ud->ne->nodeid),
1426 sbp2_max_sectors);
1427
1428 /* If this is a logical unit directory entry, process the parent
1429 * to get the values. */
1430 if (ud->flags & UNIT_DIRECTORY_LUN_DIRECTORY) {
1431 struct unit_directory *parent_ud = container_of(
1432 ud->device.parent, struct unit_directory, device);
1433 sbp2_parse_unit_directory(lu, parent_ud);
1434 } else {
1435 lu->management_agent_addr = management_agent_addr;
1436 lu->workarounds = workarounds;
1437 if (ud->flags & UNIT_DIRECTORY_HAS_LUN)
1438 lu->lun = ORB_SET_LUN(ud->lun);
1439 }
1440 }
1441
1442 #define SBP2_PAYLOAD_TO_BYTES(p) (1 << ((p) + 2))
1443
1444 /*
1445 * This function is called in order to determine the max speed and packet
1446 * size we can use in our ORBs. Note, that we (the driver and host) only
1447 * initiate the transaction. The SBP-2 device actually transfers the data
1448 * (by reading from the DMA area we tell it). This means that the SBP-2
1449 * device decides the actual maximum data it can transfer. We just tell it
1450 * the speed that it needs to use, and the max_rec the host supports, and
1451 * it takes care of the rest.
1452 */
1453 static int sbp2_max_speed_and_size(struct sbp2_lu *lu)
1454 {
1455 struct sbp2_fwhost_info *hi = lu->hi;
1456 u8 payload;
1457
1458 lu->speed_code = hi->host->speed[NODEID_TO_NODE(lu->ne->nodeid)];
1459
1460 if (lu->speed_code > sbp2_max_speed) {
1461 lu->speed_code = sbp2_max_speed;
1462 SBP2_INFO("Reducing speed to %s",
1463 hpsb_speedto_str[sbp2_max_speed]);
1464 }
1465
1466 /* Payload size is the lesser of what our speed supports and what
1467 * our host supports. */
1468 payload = min(sbp2_speedto_max_payload[lu->speed_code],
1469 (u8) (hi->host->csr.max_rec - 1));
1470
1471 /* If physical DMA is off, work around limitation in ohci1394:
1472 * packet size must not exceed PAGE_SIZE */
1473 if (lu->ne->host->low_addr_space < (1ULL << 32))
1474 while (SBP2_PAYLOAD_TO_BYTES(payload) + 24 > PAGE_SIZE &&
1475 payload)
1476 payload--;
1477
1478 SBP2_INFO("Node " NODE_BUS_FMT ": Max speed [%s] - Max payload [%u]",
1479 NODE_BUS_ARGS(hi->host, lu->ne->nodeid),
1480 hpsb_speedto_str[lu->speed_code],
1481 SBP2_PAYLOAD_TO_BYTES(payload));
1482
1483 lu->max_payload_size = payload;
1484 return 0;
1485 }
1486
1487 static int sbp2_agent_reset(struct sbp2_lu *lu, int wait)
1488 {
1489 quadlet_t data;
1490 u64 addr;
1491 int retval;
1492 unsigned long flags;
1493
1494 /* flush lu->protocol_work */
1495 if (wait)
1496 flush_scheduled_work();
1497
1498 data = ntohl(SBP2_AGENT_RESET_DATA);
1499 addr = lu->command_block_agent_addr + SBP2_AGENT_RESET_OFFSET;
1500
1501 if (wait)
1502 retval = hpsb_node_write(lu->ne, addr, &data, 4);
1503 else
1504 retval = sbp2util_node_write_no_wait(lu->ne, addr, &data, 4);
1505
1506 if (retval < 0) {
1507 SBP2_ERR("hpsb_node_write failed.\n");
1508 return -EIO;
1509 }
1510
1511 /* make sure that the ORB_POINTER is written on next command */
1512 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1513 lu->last_orb = NULL;
1514 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1515
1516 return 0;
1517 }
1518
1519 static int sbp2_prep_command_orb_sg(struct sbp2_command_orb *orb,
1520 struct sbp2_fwhost_info *hi,
1521 struct sbp2_command_info *cmd,
1522 unsigned int sg_count,
1523 struct scatterlist *sg,
1524 u32 orb_direction,
1525 enum dma_data_direction dma_dir)
1526 {
1527 struct device *dmadev = hi->host->device.parent;
1528 struct sbp2_unrestricted_page_table *pt;
1529 int i, n;
1530
1531 n = dma_map_sg(dmadev, sg, sg_count, dma_dir);
1532 if (n == 0)
1533 return -ENOMEM;
1534
1535 orb->data_descriptor_hi = ORB_SET_NODE_ID(hi->host->node_id);
1536 orb->misc |= ORB_SET_DIRECTION(orb_direction);
1537
1538 /* special case if only one element (and less than 64KB in size) */
1539 if (n == 1) {
1540 orb->misc |= ORB_SET_DATA_SIZE(sg_dma_len(sg));
1541 orb->data_descriptor_lo = sg_dma_address(sg);
1542 } else {
1543 pt = &cmd->scatter_gather_element[0];
1544
1545 dma_sync_single_for_cpu(dmadev, cmd->sge_dma,
1546 sizeof(cmd->scatter_gather_element),
1547 DMA_TO_DEVICE);
1548
1549 for_each_sg(sg, sg, n, i) {
1550 pt[i].high = cpu_to_be32(sg_dma_len(sg) << 16);
1551 pt[i].low = cpu_to_be32(sg_dma_address(sg));
1552 }
1553
1554 orb->misc |= ORB_SET_PAGE_TABLE_PRESENT(0x1) |
1555 ORB_SET_DATA_SIZE(n);
1556 orb->data_descriptor_lo = cmd->sge_dma;
1557
1558 dma_sync_single_for_device(dmadev, cmd->sge_dma,
1559 sizeof(cmd->scatter_gather_element),
1560 DMA_TO_DEVICE);
1561 }
1562 return 0;
1563 }
1564
1565 static int sbp2_create_command_orb(struct sbp2_lu *lu,
1566 struct sbp2_command_info *cmd,
1567 struct scsi_cmnd *SCpnt)
1568 {
1569 struct device *dmadev = lu->hi->host->device.parent;
1570 struct sbp2_command_orb *orb = &cmd->command_orb;
1571 unsigned int scsi_request_bufflen = scsi_bufflen(SCpnt);
1572 enum dma_data_direction dma_dir = SCpnt->sc_data_direction;
1573 u32 orb_direction;
1574 int ret;
1575
1576 dma_sync_single_for_cpu(dmadev, cmd->command_orb_dma,
1577 sizeof(struct sbp2_command_orb), DMA_TO_DEVICE);
1578 /*
1579 * Set-up our command ORB.
1580 *
1581 * NOTE: We're doing unrestricted page tables (s/g), as this is
1582 * best performance (at least with the devices I have). This means
1583 * that data_size becomes the number of s/g elements, and
1584 * page_size should be zero (for unrestricted).
1585 */
1586 orb->next_ORB_hi = ORB_SET_NULL_PTR(1);
1587 orb->next_ORB_lo = 0x0;
1588 orb->misc = ORB_SET_MAX_PAYLOAD(lu->max_payload_size);
1589 orb->misc |= ORB_SET_SPEED(lu->speed_code);
1590 orb->misc |= ORB_SET_NOTIFY(1);
1591
1592 if (dma_dir == DMA_NONE)
1593 orb_direction = ORB_DIRECTION_NO_DATA_TRANSFER;
1594 else if (dma_dir == DMA_TO_DEVICE && scsi_request_bufflen)
1595 orb_direction = ORB_DIRECTION_WRITE_TO_MEDIA;
1596 else if (dma_dir == DMA_FROM_DEVICE && scsi_request_bufflen)
1597 orb_direction = ORB_DIRECTION_READ_FROM_MEDIA;
1598 else {
1599 SBP2_INFO("Falling back to DMA_NONE");
1600 orb_direction = ORB_DIRECTION_NO_DATA_TRANSFER;
1601 }
1602
1603 /* set up our page table stuff */
1604 if (orb_direction == ORB_DIRECTION_NO_DATA_TRANSFER) {
1605 orb->data_descriptor_hi = 0x0;
1606 orb->data_descriptor_lo = 0x0;
1607 orb->misc |= ORB_SET_DIRECTION(1);
1608 ret = 0;
1609 } else {
1610 ret = sbp2_prep_command_orb_sg(orb, lu->hi, cmd,
1611 scsi_sg_count(SCpnt),
1612 scsi_sglist(SCpnt),
1613 orb_direction, dma_dir);
1614 }
1615 sbp2util_cpu_to_be32_buffer(orb, sizeof(*orb));
1616
1617 memset(orb->cdb, 0, sizeof(orb->cdb));
1618 memcpy(orb->cdb, SCpnt->cmnd, SCpnt->cmd_len);
1619
1620 dma_sync_single_for_device(dmadev, cmd->command_orb_dma,
1621 sizeof(struct sbp2_command_orb), DMA_TO_DEVICE);
1622 return ret;
1623 }
1624
1625 static void sbp2_link_orb_command(struct sbp2_lu *lu,
1626 struct sbp2_command_info *cmd)
1627 {
1628 struct sbp2_fwhost_info *hi = lu->hi;
1629 struct sbp2_command_orb *last_orb;
1630 dma_addr_t last_orb_dma;
1631 u64 addr = lu->command_block_agent_addr;
1632 quadlet_t data[2];
1633 size_t length;
1634 unsigned long flags;
1635
1636 /* check to see if there are any previous orbs to use */
1637 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1638 last_orb = lu->last_orb;
1639 last_orb_dma = lu->last_orb_dma;
1640 if (!last_orb) {
1641 /*
1642 * last_orb == NULL means: We know that the target's fetch agent
1643 * is not active right now.
1644 */
1645 addr += SBP2_ORB_POINTER_OFFSET;
1646 data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1647 data[1] = cmd->command_orb_dma;
1648 sbp2util_cpu_to_be32_buffer(data, 8);
1649 length = 8;
1650 } else {
1651 /*
1652 * last_orb != NULL means: We know that the target's fetch agent
1653 * is (very probably) not dead or in reset state right now.
1654 * We have an ORB already sent that we can append a new one to.
1655 * The target's fetch agent may or may not have read this
1656 * previous ORB yet.
1657 */
1658 dma_sync_single_for_cpu(hi->host->device.parent, last_orb_dma,
1659 sizeof(struct sbp2_command_orb),
1660 DMA_TO_DEVICE);
1661 last_orb->next_ORB_lo = cpu_to_be32(cmd->command_orb_dma);
1662 wmb();
1663 /* Tells hardware that this pointer is valid */
1664 last_orb->next_ORB_hi = 0;
1665 dma_sync_single_for_device(hi->host->device.parent,
1666 last_orb_dma,
1667 sizeof(struct sbp2_command_orb),
1668 DMA_TO_DEVICE);
1669 addr += SBP2_DOORBELL_OFFSET;
1670 data[0] = 0;
1671 length = 4;
1672 }
1673 lu->last_orb = &cmd->command_orb;
1674 lu->last_orb_dma = cmd->command_orb_dma;
1675 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1676
1677 if (sbp2util_node_write_no_wait(lu->ne, addr, data, length)) {
1678 /*
1679 * sbp2util_node_write_no_wait failed. We certainly ran out
1680 * of transaction labels, perhaps just because there were no
1681 * context switches which gave khpsbpkt a chance to collect
1682 * free tlabels. Try again in non-atomic context. If necessary,
1683 * the workqueue job will sleep to guaranteedly get a tlabel.
1684 * We do not accept new commands until the job is over.
1685 */
1686 scsi_block_requests(lu->shost);
1687 PREPARE_WORK(&lu->protocol_work,
1688 last_orb ? sbp2util_write_doorbell:
1689 sbp2util_write_orb_pointer);
1690 schedule_work(&lu->protocol_work);
1691 }
1692 }
1693
1694 static int sbp2_send_command(struct sbp2_lu *lu, struct scsi_cmnd *SCpnt,
1695 void (*done)(struct scsi_cmnd *))
1696 {
1697 struct sbp2_command_info *cmd;
1698
1699 cmd = sbp2util_allocate_command_orb(lu, SCpnt, done);
1700 if (!cmd)
1701 return -EIO;
1702
1703 if (sbp2_create_command_orb(lu, cmd, SCpnt))
1704 return -ENOMEM;
1705
1706 sbp2_link_orb_command(lu, cmd);
1707 return 0;
1708 }
1709
1710 /*
1711 * Translates SBP-2 status into SCSI sense data for check conditions
1712 */
1713 static unsigned int sbp2_status_to_sense_data(unchar *sbp2_status,
1714 unchar *sense_data)
1715 {
1716 /* OK, it's pretty ugly... ;-) */
1717 sense_data[0] = 0x70;
1718 sense_data[1] = 0x0;
1719 sense_data[2] = sbp2_status[9];
1720 sense_data[3] = sbp2_status[12];
1721 sense_data[4] = sbp2_status[13];
1722 sense_data[5] = sbp2_status[14];
1723 sense_data[6] = sbp2_status[15];
1724 sense_data[7] = 10;
1725 sense_data[8] = sbp2_status[16];
1726 sense_data[9] = sbp2_status[17];
1727 sense_data[10] = sbp2_status[18];
1728 sense_data[11] = sbp2_status[19];
1729 sense_data[12] = sbp2_status[10];
1730 sense_data[13] = sbp2_status[11];
1731 sense_data[14] = sbp2_status[20];
1732 sense_data[15] = sbp2_status[21];
1733
1734 return sbp2_status[8] & 0x3f;
1735 }
1736
1737 static int sbp2_handle_status_write(struct hpsb_host *host, int nodeid,
1738 int destid, quadlet_t *data, u64 addr,
1739 size_t length, u16 fl)
1740 {
1741 struct sbp2_fwhost_info *hi;
1742 struct sbp2_lu *lu = NULL, *lu_tmp;
1743 struct scsi_cmnd *SCpnt = NULL;
1744 struct sbp2_status_block *sb;
1745 u32 scsi_status = SBP2_SCSI_STATUS_GOOD;
1746 struct sbp2_command_info *cmd;
1747 unsigned long flags;
1748
1749 if (unlikely(length < 8 || length > sizeof(struct sbp2_status_block))) {
1750 SBP2_ERR("Wrong size of status block");
1751 return RCODE_ADDRESS_ERROR;
1752 }
1753 if (unlikely(!host)) {
1754 SBP2_ERR("host is NULL - this is bad!");
1755 return RCODE_ADDRESS_ERROR;
1756 }
1757 hi = hpsb_get_hostinfo(&sbp2_highlevel, host);
1758 if (unlikely(!hi)) {
1759 SBP2_ERR("host info is NULL - this is bad!");
1760 return RCODE_ADDRESS_ERROR;
1761 }
1762
1763 /* Find the unit which wrote the status. */
1764 read_lock_irqsave(&sbp2_hi_logical_units_lock, flags);
1765 list_for_each_entry(lu_tmp, &hi->logical_units, lu_list) {
1766 if (lu_tmp->ne->nodeid == nodeid &&
1767 lu_tmp->status_fifo_addr == addr) {
1768 lu = lu_tmp;
1769 break;
1770 }
1771 }
1772 read_unlock_irqrestore(&sbp2_hi_logical_units_lock, flags);
1773
1774 if (unlikely(!lu)) {
1775 SBP2_ERR("lu is NULL - device is gone?");
1776 return RCODE_ADDRESS_ERROR;
1777 }
1778
1779 /* Put response into lu status fifo buffer. The first two bytes
1780 * come in big endian bit order. Often the target writes only a
1781 * truncated status block, minimally the first two quadlets. The rest
1782 * is implied to be zeros. */
1783 sb = &lu->status_block;
1784 memset(sb->command_set_dependent, 0, sizeof(sb->command_set_dependent));
1785 memcpy(sb, data, length);
1786 sbp2util_be32_to_cpu_buffer(sb, 8);
1787
1788 /* Ignore unsolicited status. Handle command ORB status. */
1789 if (unlikely(STATUS_GET_SRC(sb->ORB_offset_hi_misc) == 2))
1790 cmd = NULL;
1791 else
1792 cmd = sbp2util_find_command_for_orb(lu, sb->ORB_offset_lo);
1793 if (cmd) {
1794 /* Grab SCSI command pointers and check status. */
1795 /*
1796 * FIXME: If the src field in the status is 1, the ORB DMA must
1797 * not be reused until status for a subsequent ORB is received.
1798 */
1799 SCpnt = cmd->Current_SCpnt;
1800 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1801 sbp2util_mark_command_completed(lu, cmd);
1802 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1803
1804 if (SCpnt) {
1805 u32 h = sb->ORB_offset_hi_misc;
1806 u32 r = STATUS_GET_RESP(h);
1807
1808 if (r != RESP_STATUS_REQUEST_COMPLETE) {
1809 SBP2_INFO("resp 0x%x, sbp_status 0x%x",
1810 r, STATUS_GET_SBP_STATUS(h));
1811 scsi_status =
1812 r == RESP_STATUS_TRANSPORT_FAILURE ?
1813 SBP2_SCSI_STATUS_BUSY :
1814 SBP2_SCSI_STATUS_COMMAND_TERMINATED;
1815 }
1816
1817 if (STATUS_GET_LEN(h) > 1)
1818 scsi_status = sbp2_status_to_sense_data(
1819 (unchar *)sb, SCpnt->sense_buffer);
1820
1821 if (STATUS_TEST_DEAD(h))
1822 sbp2_agent_reset(lu, 0);
1823 }
1824
1825 /* Check here to see if there are no commands in-use. If there
1826 * are none, we know that the fetch agent left the active state
1827 * _and_ that we did not reactivate it yet. Therefore clear
1828 * last_orb so that next time we write directly to the
1829 * ORB_POINTER register. That way the fetch agent does not need
1830 * to refetch the next_ORB. */
1831 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1832 if (list_empty(&lu->cmd_orb_inuse))
1833 lu->last_orb = NULL;
1834 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1835
1836 } else {
1837 /* It's probably status after a management request. */
1838 if ((sb->ORB_offset_lo == lu->reconnect_orb_dma) ||
1839 (sb->ORB_offset_lo == lu->login_orb_dma) ||
1840 (sb->ORB_offset_lo == lu->query_logins_orb_dma) ||
1841 (sb->ORB_offset_lo == lu->logout_orb_dma)) {
1842 lu->access_complete = 1;
1843 wake_up_interruptible(&sbp2_access_wq);
1844 }
1845 }
1846
1847 if (SCpnt)
1848 sbp2scsi_complete_command(lu, scsi_status, SCpnt,
1849 cmd->Current_done);
1850 return RCODE_COMPLETE;
1851 }
1852
1853 /**************************************
1854 * SCSI interface related section
1855 **************************************/
1856
1857 static int sbp2scsi_queuecommand(struct scsi_cmnd *SCpnt,
1858 void (*done)(struct scsi_cmnd *))
1859 {
1860 struct sbp2_lu *lu = (struct sbp2_lu *)SCpnt->device->host->hostdata[0];
1861 struct sbp2_fwhost_info *hi;
1862 int result = DID_NO_CONNECT << 16;
1863
1864 if (unlikely(!sbp2util_node_is_available(lu)))
1865 goto done;
1866
1867 hi = lu->hi;
1868
1869 if (unlikely(!hi)) {
1870 SBP2_ERR("sbp2_fwhost_info is NULL - this is bad!");
1871 goto done;
1872 }
1873
1874 /* Multiple units are currently represented to the SCSI core as separate
1875 * targets, not as one target with multiple LUs. Therefore return
1876 * selection time-out to any IO directed at non-zero LUNs. */
1877 if (unlikely(SCpnt->device->lun))
1878 goto done;
1879
1880 if (unlikely(!hpsb_node_entry_valid(lu->ne))) {
1881 SBP2_ERR("Bus reset in progress - rejecting command");
1882 result = DID_BUS_BUSY << 16;
1883 goto done;
1884 }
1885
1886 /* Bidirectional commands are not yet implemented,
1887 * and unknown transfer direction not handled. */
1888 if (unlikely(SCpnt->sc_data_direction == DMA_BIDIRECTIONAL)) {
1889 SBP2_ERR("Cannot handle DMA_BIDIRECTIONAL - rejecting command");
1890 result = DID_ERROR << 16;
1891 goto done;
1892 }
1893
1894 if (sbp2_send_command(lu, SCpnt, done)) {
1895 SBP2_ERR("Error sending SCSI command");
1896 sbp2scsi_complete_command(lu,
1897 SBP2_SCSI_STATUS_SELECTION_TIMEOUT,
1898 SCpnt, done);
1899 }
1900 return 0;
1901
1902 done:
1903 SCpnt->result = result;
1904 done(SCpnt);
1905 return 0;
1906 }
1907
1908 static void sbp2scsi_complete_all_commands(struct sbp2_lu *lu, u32 status)
1909 {
1910 struct list_head *lh;
1911 struct sbp2_command_info *cmd;
1912 unsigned long flags;
1913
1914 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1915 while (!list_empty(&lu->cmd_orb_inuse)) {
1916 lh = lu->cmd_orb_inuse.next;
1917 cmd = list_entry(lh, struct sbp2_command_info, list);
1918 sbp2util_mark_command_completed(lu, cmd);
1919 if (cmd->Current_SCpnt) {
1920 cmd->Current_SCpnt->result = status << 16;
1921 cmd->Current_done(cmd->Current_SCpnt);
1922 }
1923 }
1924 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1925
1926 return;
1927 }
1928
1929 /*
1930 * Complete a regular SCSI command. Can be called in atomic context.
1931 */
1932 static void sbp2scsi_complete_command(struct sbp2_lu *lu, u32 scsi_status,
1933 struct scsi_cmnd *SCpnt,
1934 void (*done)(struct scsi_cmnd *))
1935 {
1936 if (!SCpnt) {
1937 SBP2_ERR("SCpnt is NULL");
1938 return;
1939 }
1940
1941 switch (scsi_status) {
1942 case SBP2_SCSI_STATUS_GOOD:
1943 SCpnt->result = DID_OK << 16;
1944 break;
1945
1946 case SBP2_SCSI_STATUS_BUSY:
1947 SBP2_ERR("SBP2_SCSI_STATUS_BUSY");
1948 SCpnt->result = DID_BUS_BUSY << 16;
1949 break;
1950
1951 case SBP2_SCSI_STATUS_CHECK_CONDITION:
1952 SCpnt->result = CHECK_CONDITION << 1 | DID_OK << 16;
1953 break;
1954
1955 case SBP2_SCSI_STATUS_SELECTION_TIMEOUT:
1956 SBP2_ERR("SBP2_SCSI_STATUS_SELECTION_TIMEOUT");
1957 SCpnt->result = DID_NO_CONNECT << 16;
1958 scsi_print_command(SCpnt);
1959 break;
1960
1961 case SBP2_SCSI_STATUS_CONDITION_MET:
1962 case SBP2_SCSI_STATUS_RESERVATION_CONFLICT:
1963 case SBP2_SCSI_STATUS_COMMAND_TERMINATED:
1964 SBP2_ERR("Bad SCSI status = %x", scsi_status);
1965 SCpnt->result = DID_ERROR << 16;
1966 scsi_print_command(SCpnt);
1967 break;
1968
1969 default:
1970 SBP2_ERR("Unsupported SCSI status = %x", scsi_status);
1971 SCpnt->result = DID_ERROR << 16;
1972 }
1973
1974 /* If a bus reset is in progress and there was an error, complete
1975 * the command as busy so that it will get retried. */
1976 if (!hpsb_node_entry_valid(lu->ne)
1977 && (scsi_status != SBP2_SCSI_STATUS_GOOD)) {
1978 SBP2_ERR("Completing command with busy (bus reset)");
1979 SCpnt->result = DID_BUS_BUSY << 16;
1980 }
1981
1982 /* Tell the SCSI stack that we're done with this command. */
1983 done(SCpnt);
1984 }
1985
1986 static int sbp2scsi_slave_alloc(struct scsi_device *sdev)
1987 {
1988 struct sbp2_lu *lu = (struct sbp2_lu *)sdev->host->hostdata[0];
1989
1990 if (sdev->lun != 0 || sdev->id != lu->ud->id || sdev->channel != 0)
1991 return -ENODEV;
1992
1993 lu->sdev = sdev;
1994 sdev->allow_restart = 1;
1995
1996 /* SBP-2 requires quadlet alignment of the data buffers. */
1997 blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1);
1998
1999 if (lu->workarounds & SBP2_WORKAROUND_INQUIRY_36)
2000 sdev->inquiry_len = 36;
2001 return 0;
2002 }
2003
2004 static int sbp2scsi_slave_configure(struct scsi_device *sdev)
2005 {
2006 struct sbp2_lu *lu = (struct sbp2_lu *)sdev->host->hostdata[0];
2007
2008 sdev->use_10_for_rw = 1;
2009
2010 if (sbp2_exclusive_login)
2011 sdev->manage_start_stop = 1;
2012 if (sdev->type == TYPE_ROM)
2013 sdev->use_10_for_ms = 1;
2014 if (sdev->type == TYPE_DISK &&
2015 lu->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
2016 sdev->skip_ms_page_8 = 1;
2017 if (lu->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
2018 sdev->fix_capacity = 1;
2019 if (lu->workarounds & SBP2_WORKAROUND_POWER_CONDITION)
2020 sdev->start_stop_pwr_cond = 1;
2021 if (lu->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
2022 blk_queue_max_hw_sectors(sdev->request_queue, 128 * 1024 / 512);
2023
2024 blk_queue_max_segment_size(sdev->request_queue, SBP2_MAX_SEG_SIZE);
2025 return 0;
2026 }
2027
2028 static void sbp2scsi_slave_destroy(struct scsi_device *sdev)
2029 {
2030 ((struct sbp2_lu *)sdev->host->hostdata[0])->sdev = NULL;
2031 return;
2032 }
2033
2034 /*
2035 * Called by scsi stack when something has really gone wrong.
2036 * Usually called when a command has timed-out for some reason.
2037 */
2038 static int sbp2scsi_abort(struct scsi_cmnd *SCpnt)
2039 {
2040 struct sbp2_lu *lu = (struct sbp2_lu *)SCpnt->device->host->hostdata[0];
2041 struct sbp2_command_info *cmd;
2042 unsigned long flags;
2043
2044 SBP2_INFO("aborting sbp2 command");
2045 scsi_print_command(SCpnt);
2046
2047 if (sbp2util_node_is_available(lu)) {
2048 sbp2_agent_reset(lu, 1);
2049
2050 /* Return a matching command structure to the free pool. */
2051 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
2052 cmd = sbp2util_find_command_for_SCpnt(lu, SCpnt);
2053 if (cmd) {
2054 sbp2util_mark_command_completed(lu, cmd);
2055 if (cmd->Current_SCpnt) {
2056 cmd->Current_SCpnt->result = DID_ABORT << 16;
2057 cmd->Current_done(cmd->Current_SCpnt);
2058 }
2059 }
2060 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
2061
2062 sbp2scsi_complete_all_commands(lu, DID_BUS_BUSY);
2063 }
2064
2065 return SUCCESS;
2066 }
2067
2068 /*
2069 * Called by scsi stack when something has really gone wrong.
2070 */
2071 static int sbp2scsi_reset(struct scsi_cmnd *SCpnt)
2072 {
2073 struct sbp2_lu *lu = (struct sbp2_lu *)SCpnt->device->host->hostdata[0];
2074
2075 SBP2_INFO("reset requested");
2076
2077 if (sbp2util_node_is_available(lu)) {
2078 SBP2_INFO("generating sbp2 fetch agent reset");
2079 sbp2_agent_reset(lu, 1);
2080 }
2081
2082 return SUCCESS;
2083 }
2084
2085 static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev,
2086 struct device_attribute *attr,
2087 char *buf)
2088 {
2089 struct scsi_device *sdev;
2090 struct sbp2_lu *lu;
2091
2092 if (!(sdev = to_scsi_device(dev)))
2093 return 0;
2094
2095 if (!(lu = (struct sbp2_lu *)sdev->host->hostdata[0]))
2096 return 0;
2097
2098 if (sbp2_long_sysfs_ieee1394_id)
2099 return sprintf(buf, "%016Lx:%06x:%04x\n",
2100 (unsigned long long)lu->ne->guid,
2101 lu->ud->directory_id, ORB_SET_LUN(lu->lun));
2102 else
2103 return sprintf(buf, "%016Lx:%d:%d\n",
2104 (unsigned long long)lu->ne->guid,
2105 lu->ud->id, ORB_SET_LUN(lu->lun));
2106 }
2107
2108 MODULE_AUTHOR("Ben Collins <bcollins@debian.org>");
2109 MODULE_DESCRIPTION("IEEE-1394 SBP-2 protocol driver");
2110 MODULE_SUPPORTED_DEVICE(SBP2_DEVICE_NAME);
2111 MODULE_LICENSE("GPL");
2112
2113 static int sbp2_module_init(void)
2114 {
2115 int ret;
2116
2117 if (sbp2_serialize_io) {
2118 sbp2_shost_template.can_queue = 1;
2119 sbp2_shost_template.cmd_per_lun = 1;
2120 }
2121
2122 sbp2_shost_template.max_sectors = sbp2_max_sectors;
2123
2124 hpsb_register_highlevel(&sbp2_highlevel);
2125 ret = hpsb_register_protocol(&sbp2_driver);
2126 if (ret) {
2127 SBP2_ERR("Failed to register protocol");
2128 hpsb_unregister_highlevel(&sbp2_highlevel);
2129 return ret;
2130 }
2131 return 0;
2132 }
2133
2134 static void __exit sbp2_module_exit(void)
2135 {
2136 hpsb_unregister_protocol(&sbp2_driver);
2137 hpsb_unregister_highlevel(&sbp2_highlevel);
2138 }
2139
2140 module_init(sbp2_module_init);
2141 module_exit(sbp2_module_exit);
This page took 0.075965 seconds and 5 git commands to generate.