IB/hfi1: Fix TID caching actions
[deliverable/linux.git] / drivers / iio / adc / mxs-lradc.c
1 /*
2 * Freescale MXS LRADC driver
3 *
4 * Copyright (c) 2012 DENX Software Engineering, GmbH.
5 * Marek Vasut <marex@denx.de>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 */
17
18 #include <linux/bitops.h>
19 #include <linux/clk.h>
20 #include <linux/completion.h>
21 #include <linux/device.h>
22 #include <linux/err.h>
23 #include <linux/input.h>
24 #include <linux/interrupt.h>
25 #include <linux/io.h>
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/mutex.h>
29 #include <linux/of.h>
30 #include <linux/of_device.h>
31 #include <linux/platform_device.h>
32 #include <linux/slab.h>
33 #include <linux/stmp_device.h>
34 #include <linux/sysfs.h>
35
36 #include <linux/iio/buffer.h>
37 #include <linux/iio/iio.h>
38 #include <linux/iio/trigger.h>
39 #include <linux/iio/trigger_consumer.h>
40 #include <linux/iio/triggered_buffer.h>
41 #include <linux/iio/sysfs.h>
42
43 #define DRIVER_NAME "mxs-lradc"
44
45 #define LRADC_MAX_DELAY_CHANS 4
46 #define LRADC_MAX_MAPPED_CHANS 8
47 #define LRADC_MAX_TOTAL_CHANS 16
48
49 #define LRADC_DELAY_TIMER_HZ 2000
50
51 /*
52 * Make this runtime configurable if necessary. Currently, if the buffered mode
53 * is enabled, the LRADC takes LRADC_DELAY_TIMER_LOOP samples of data before
54 * triggering IRQ. The sampling happens every (LRADC_DELAY_TIMER_PER / 2000)
55 * seconds. The result is that the samples arrive every 500mS.
56 */
57 #define LRADC_DELAY_TIMER_PER 200
58 #define LRADC_DELAY_TIMER_LOOP 5
59
60 /*
61 * Once the pen touches the touchscreen, the touchscreen switches from
62 * IRQ-driven mode to polling mode to prevent interrupt storm. The polling
63 * is realized by worker thread, which is called every 20 or so milliseconds.
64 * This gives the touchscreen enough fluency and does not strain the system
65 * too much.
66 */
67 #define LRADC_TS_SAMPLE_DELAY_MS 5
68
69 /*
70 * The LRADC reads the following amount of samples from each touchscreen
71 * channel and the driver then computes average of these.
72 */
73 #define LRADC_TS_SAMPLE_AMOUNT 4
74
75 enum mxs_lradc_id {
76 IMX23_LRADC,
77 IMX28_LRADC,
78 };
79
80 static const char * const mx23_lradc_irq_names[] = {
81 "mxs-lradc-touchscreen",
82 "mxs-lradc-channel0",
83 "mxs-lradc-channel1",
84 "mxs-lradc-channel2",
85 "mxs-lradc-channel3",
86 "mxs-lradc-channel4",
87 "mxs-lradc-channel5",
88 "mxs-lradc-channel6",
89 "mxs-lradc-channel7",
90 };
91
92 static const char * const mx28_lradc_irq_names[] = {
93 "mxs-lradc-touchscreen",
94 "mxs-lradc-thresh0",
95 "mxs-lradc-thresh1",
96 "mxs-lradc-channel0",
97 "mxs-lradc-channel1",
98 "mxs-lradc-channel2",
99 "mxs-lradc-channel3",
100 "mxs-lradc-channel4",
101 "mxs-lradc-channel5",
102 "mxs-lradc-channel6",
103 "mxs-lradc-channel7",
104 "mxs-lradc-button0",
105 "mxs-lradc-button1",
106 };
107
108 struct mxs_lradc_of_config {
109 const int irq_count;
110 const char * const *irq_name;
111 const u32 *vref_mv;
112 };
113
114 #define VREF_MV_BASE 1850
115
116 static const u32 mx23_vref_mv[LRADC_MAX_TOTAL_CHANS] = {
117 VREF_MV_BASE, /* CH0 */
118 VREF_MV_BASE, /* CH1 */
119 VREF_MV_BASE, /* CH2 */
120 VREF_MV_BASE, /* CH3 */
121 VREF_MV_BASE, /* CH4 */
122 VREF_MV_BASE, /* CH5 */
123 VREF_MV_BASE * 2, /* CH6 VDDIO */
124 VREF_MV_BASE * 4, /* CH7 VBATT */
125 VREF_MV_BASE, /* CH8 Temp sense 0 */
126 VREF_MV_BASE, /* CH9 Temp sense 1 */
127 VREF_MV_BASE, /* CH10 */
128 VREF_MV_BASE, /* CH11 */
129 VREF_MV_BASE, /* CH12 USB_DP */
130 VREF_MV_BASE, /* CH13 USB_DN */
131 VREF_MV_BASE, /* CH14 VBG */
132 VREF_MV_BASE * 4, /* CH15 VDD5V */
133 };
134
135 static const u32 mx28_vref_mv[LRADC_MAX_TOTAL_CHANS] = {
136 VREF_MV_BASE, /* CH0 */
137 VREF_MV_BASE, /* CH1 */
138 VREF_MV_BASE, /* CH2 */
139 VREF_MV_BASE, /* CH3 */
140 VREF_MV_BASE, /* CH4 */
141 VREF_MV_BASE, /* CH5 */
142 VREF_MV_BASE, /* CH6 */
143 VREF_MV_BASE * 4, /* CH7 VBATT */
144 VREF_MV_BASE, /* CH8 Temp sense 0 */
145 VREF_MV_BASE, /* CH9 Temp sense 1 */
146 VREF_MV_BASE * 2, /* CH10 VDDIO */
147 VREF_MV_BASE, /* CH11 VTH */
148 VREF_MV_BASE * 2, /* CH12 VDDA */
149 VREF_MV_BASE, /* CH13 VDDD */
150 VREF_MV_BASE, /* CH14 VBG */
151 VREF_MV_BASE * 4, /* CH15 VDD5V */
152 };
153
154 static const struct mxs_lradc_of_config mxs_lradc_of_config[] = {
155 [IMX23_LRADC] = {
156 .irq_count = ARRAY_SIZE(mx23_lradc_irq_names),
157 .irq_name = mx23_lradc_irq_names,
158 .vref_mv = mx23_vref_mv,
159 },
160 [IMX28_LRADC] = {
161 .irq_count = ARRAY_SIZE(mx28_lradc_irq_names),
162 .irq_name = mx28_lradc_irq_names,
163 .vref_mv = mx28_vref_mv,
164 },
165 };
166
167 enum mxs_lradc_ts {
168 MXS_LRADC_TOUCHSCREEN_NONE = 0,
169 MXS_LRADC_TOUCHSCREEN_4WIRE,
170 MXS_LRADC_TOUCHSCREEN_5WIRE,
171 };
172
173 /*
174 * Touchscreen handling
175 */
176 enum lradc_ts_plate {
177 LRADC_TOUCH = 0,
178 LRADC_SAMPLE_X,
179 LRADC_SAMPLE_Y,
180 LRADC_SAMPLE_PRESSURE,
181 LRADC_SAMPLE_VALID,
182 };
183
184 enum mxs_lradc_divbytwo {
185 MXS_LRADC_DIV_DISABLED = 0,
186 MXS_LRADC_DIV_ENABLED,
187 };
188
189 struct mxs_lradc_scale {
190 unsigned int integer;
191 unsigned int nano;
192 };
193
194 struct mxs_lradc {
195 struct device *dev;
196 void __iomem *base;
197 int irq[13];
198
199 struct clk *clk;
200
201 u32 *buffer;
202 struct iio_trigger *trig;
203
204 struct mutex lock;
205
206 struct completion completion;
207
208 const u32 *vref_mv;
209 struct mxs_lradc_scale scale_avail[LRADC_MAX_TOTAL_CHANS][2];
210 unsigned long is_divided;
211
212 /*
213 * When the touchscreen is enabled, we give it two private virtual
214 * channels: #6 and #7. This means that only 6 virtual channels (instead
215 * of 8) will be available for buffered capture.
216 */
217 #define TOUCHSCREEN_VCHANNEL1 7
218 #define TOUCHSCREEN_VCHANNEL2 6
219 #define BUFFER_VCHANS_LIMITED 0x3f
220 #define BUFFER_VCHANS_ALL 0xff
221 u8 buffer_vchans;
222
223 /*
224 * Furthermore, certain LRADC channels are shared between touchscreen
225 * and/or touch-buttons and generic LRADC block. Therefore when using
226 * either of these, these channels are not available for the regular
227 * sampling. The shared channels are as follows:
228 *
229 * CH0 -- Touch button #0
230 * CH1 -- Touch button #1
231 * CH2 -- Touch screen XPUL
232 * CH3 -- Touch screen YPLL
233 * CH4 -- Touch screen XNUL
234 * CH5 -- Touch screen YNLR
235 * CH6 -- Touch screen WIPER (5-wire only)
236 *
237 * The bit fields below represents which parts of the LRADC block are
238 * switched into special mode of operation. These channels can not
239 * be sampled as regular LRADC channels. The driver will refuse any
240 * attempt to sample these channels.
241 */
242 #define CHAN_MASK_TOUCHBUTTON (BIT(1) | BIT(0))
243 #define CHAN_MASK_TOUCHSCREEN_4WIRE (0xf << 2)
244 #define CHAN_MASK_TOUCHSCREEN_5WIRE (0x1f << 2)
245 enum mxs_lradc_ts use_touchscreen;
246 bool use_touchbutton;
247
248 struct input_dev *ts_input;
249
250 enum mxs_lradc_id soc;
251 enum lradc_ts_plate cur_plate; /* state machine */
252 bool ts_valid;
253 unsigned ts_x_pos;
254 unsigned ts_y_pos;
255 unsigned ts_pressure;
256
257 /* handle touchscreen's physical behaviour */
258 /* samples per coordinate */
259 unsigned over_sample_cnt;
260 /* time clocks between samples */
261 unsigned over_sample_delay;
262 /* time in clocks to wait after the plates where switched */
263 unsigned settling_delay;
264 };
265
266 #define LRADC_CTRL0 0x00
267 # define LRADC_CTRL0_MX28_TOUCH_DETECT_ENABLE BIT(23)
268 # define LRADC_CTRL0_MX28_TOUCH_SCREEN_TYPE BIT(22)
269 # define LRADC_CTRL0_MX28_YNNSW /* YM */ BIT(21)
270 # define LRADC_CTRL0_MX28_YPNSW /* YP */ BIT(20)
271 # define LRADC_CTRL0_MX28_YPPSW /* YP */ BIT(19)
272 # define LRADC_CTRL0_MX28_XNNSW /* XM */ BIT(18)
273 # define LRADC_CTRL0_MX28_XNPSW /* XM */ BIT(17)
274 # define LRADC_CTRL0_MX28_XPPSW /* XP */ BIT(16)
275
276 # define LRADC_CTRL0_MX23_TOUCH_DETECT_ENABLE BIT(20)
277 # define LRADC_CTRL0_MX23_YM BIT(19)
278 # define LRADC_CTRL0_MX23_XM BIT(18)
279 # define LRADC_CTRL0_MX23_YP BIT(17)
280 # define LRADC_CTRL0_MX23_XP BIT(16)
281
282 # define LRADC_CTRL0_MX28_PLATE_MASK \
283 (LRADC_CTRL0_MX28_TOUCH_DETECT_ENABLE | \
284 LRADC_CTRL0_MX28_YNNSW | LRADC_CTRL0_MX28_YPNSW | \
285 LRADC_CTRL0_MX28_YPPSW | LRADC_CTRL0_MX28_XNNSW | \
286 LRADC_CTRL0_MX28_XNPSW | LRADC_CTRL0_MX28_XPPSW)
287
288 # define LRADC_CTRL0_MX23_PLATE_MASK \
289 (LRADC_CTRL0_MX23_TOUCH_DETECT_ENABLE | \
290 LRADC_CTRL0_MX23_YM | LRADC_CTRL0_MX23_XM | \
291 LRADC_CTRL0_MX23_YP | LRADC_CTRL0_MX23_XP)
292
293 #define LRADC_CTRL1 0x10
294 #define LRADC_CTRL1_TOUCH_DETECT_IRQ_EN BIT(24)
295 #define LRADC_CTRL1_LRADC_IRQ_EN(n) (1 << ((n) + 16))
296 #define LRADC_CTRL1_MX28_LRADC_IRQ_EN_MASK (0x1fff << 16)
297 #define LRADC_CTRL1_MX23_LRADC_IRQ_EN_MASK (0x01ff << 16)
298 #define LRADC_CTRL1_LRADC_IRQ_EN_OFFSET 16
299 #define LRADC_CTRL1_TOUCH_DETECT_IRQ BIT(8)
300 #define LRADC_CTRL1_LRADC_IRQ(n) (1 << (n))
301 #define LRADC_CTRL1_MX28_LRADC_IRQ_MASK 0x1fff
302 #define LRADC_CTRL1_MX23_LRADC_IRQ_MASK 0x01ff
303 #define LRADC_CTRL1_LRADC_IRQ_OFFSET 0
304
305 #define LRADC_CTRL2 0x20
306 #define LRADC_CTRL2_DIVIDE_BY_TWO_OFFSET 24
307 #define LRADC_CTRL2_TEMPSENSE_PWD BIT(15)
308
309 #define LRADC_STATUS 0x40
310 #define LRADC_STATUS_TOUCH_DETECT_RAW BIT(0)
311
312 #define LRADC_CH(n) (0x50 + (0x10 * (n)))
313 #define LRADC_CH_ACCUMULATE BIT(29)
314 #define LRADC_CH_NUM_SAMPLES_MASK (0x1f << 24)
315 #define LRADC_CH_NUM_SAMPLES_OFFSET 24
316 #define LRADC_CH_NUM_SAMPLES(x) \
317 ((x) << LRADC_CH_NUM_SAMPLES_OFFSET)
318 #define LRADC_CH_VALUE_MASK 0x3ffff
319 #define LRADC_CH_VALUE_OFFSET 0
320
321 #define LRADC_DELAY(n) (0xd0 + (0x10 * (n)))
322 #define LRADC_DELAY_TRIGGER_LRADCS_MASK (0xffUL << 24)
323 #define LRADC_DELAY_TRIGGER_LRADCS_OFFSET 24
324 #define LRADC_DELAY_TRIGGER(x) \
325 (((x) << LRADC_DELAY_TRIGGER_LRADCS_OFFSET) & \
326 LRADC_DELAY_TRIGGER_LRADCS_MASK)
327 #define LRADC_DELAY_KICK BIT(20)
328 #define LRADC_DELAY_TRIGGER_DELAYS_MASK (0xf << 16)
329 #define LRADC_DELAY_TRIGGER_DELAYS_OFFSET 16
330 #define LRADC_DELAY_TRIGGER_DELAYS(x) \
331 (((x) << LRADC_DELAY_TRIGGER_DELAYS_OFFSET) & \
332 LRADC_DELAY_TRIGGER_DELAYS_MASK)
333 #define LRADC_DELAY_LOOP_COUNT_MASK (0x1f << 11)
334 #define LRADC_DELAY_LOOP_COUNT_OFFSET 11
335 #define LRADC_DELAY_LOOP(x) \
336 (((x) << LRADC_DELAY_LOOP_COUNT_OFFSET) & \
337 LRADC_DELAY_LOOP_COUNT_MASK)
338 #define LRADC_DELAY_DELAY_MASK 0x7ff
339 #define LRADC_DELAY_DELAY_OFFSET 0
340 #define LRADC_DELAY_DELAY(x) \
341 (((x) << LRADC_DELAY_DELAY_OFFSET) & \
342 LRADC_DELAY_DELAY_MASK)
343
344 #define LRADC_CTRL4 0x140
345 #define LRADC_CTRL4_LRADCSELECT_MASK(n) (0xf << ((n) * 4))
346 #define LRADC_CTRL4_LRADCSELECT_OFFSET(n) ((n) * 4)
347 #define LRADC_CTRL4_LRADCSELECT(n, x) \
348 (((x) << LRADC_CTRL4_LRADCSELECT_OFFSET(n)) & \
349 LRADC_CTRL4_LRADCSELECT_MASK(n))
350
351 #define LRADC_RESOLUTION 12
352 #define LRADC_SINGLE_SAMPLE_MASK ((1 << LRADC_RESOLUTION) - 1)
353
354 static void mxs_lradc_reg_set(struct mxs_lradc *lradc, u32 val, u32 reg)
355 {
356 writel(val, lradc->base + reg + STMP_OFFSET_REG_SET);
357 }
358
359 static void mxs_lradc_reg_clear(struct mxs_lradc *lradc, u32 val, u32 reg)
360 {
361 writel(val, lradc->base + reg + STMP_OFFSET_REG_CLR);
362 }
363
364 static void mxs_lradc_reg_wrt(struct mxs_lradc *lradc, u32 val, u32 reg)
365 {
366 writel(val, lradc->base + reg);
367 }
368
369 static u32 mxs_lradc_plate_mask(struct mxs_lradc *lradc)
370 {
371 if (lradc->soc == IMX23_LRADC)
372 return LRADC_CTRL0_MX23_PLATE_MASK;
373 return LRADC_CTRL0_MX28_PLATE_MASK;
374 }
375
376 static u32 mxs_lradc_irq_en_mask(struct mxs_lradc *lradc)
377 {
378 if (lradc->soc == IMX23_LRADC)
379 return LRADC_CTRL1_MX23_LRADC_IRQ_EN_MASK;
380 return LRADC_CTRL1_MX28_LRADC_IRQ_EN_MASK;
381 }
382
383 static u32 mxs_lradc_irq_mask(struct mxs_lradc *lradc)
384 {
385 if (lradc->soc == IMX23_LRADC)
386 return LRADC_CTRL1_MX23_LRADC_IRQ_MASK;
387 return LRADC_CTRL1_MX28_LRADC_IRQ_MASK;
388 }
389
390 static u32 mxs_lradc_touch_detect_bit(struct mxs_lradc *lradc)
391 {
392 if (lradc->soc == IMX23_LRADC)
393 return LRADC_CTRL0_MX23_TOUCH_DETECT_ENABLE;
394 return LRADC_CTRL0_MX28_TOUCH_DETECT_ENABLE;
395 }
396
397 static u32 mxs_lradc_drive_x_plate(struct mxs_lradc *lradc)
398 {
399 if (lradc->soc == IMX23_LRADC)
400 return LRADC_CTRL0_MX23_XP | LRADC_CTRL0_MX23_XM;
401 return LRADC_CTRL0_MX28_XPPSW | LRADC_CTRL0_MX28_XNNSW;
402 }
403
404 static u32 mxs_lradc_drive_y_plate(struct mxs_lradc *lradc)
405 {
406 if (lradc->soc == IMX23_LRADC)
407 return LRADC_CTRL0_MX23_YP | LRADC_CTRL0_MX23_YM;
408 return LRADC_CTRL0_MX28_YPPSW | LRADC_CTRL0_MX28_YNNSW;
409 }
410
411 static u32 mxs_lradc_drive_pressure(struct mxs_lradc *lradc)
412 {
413 if (lradc->soc == IMX23_LRADC)
414 return LRADC_CTRL0_MX23_YP | LRADC_CTRL0_MX23_XM;
415 return LRADC_CTRL0_MX28_YPPSW | LRADC_CTRL0_MX28_XNNSW;
416 }
417
418 static bool mxs_lradc_check_touch_event(struct mxs_lradc *lradc)
419 {
420 return !!(readl(lradc->base + LRADC_STATUS) &
421 LRADC_STATUS_TOUCH_DETECT_RAW);
422 }
423
424 static void mxs_lradc_map_channel(struct mxs_lradc *lradc, unsigned vch,
425 unsigned ch)
426 {
427 mxs_lradc_reg_clear(lradc, LRADC_CTRL4_LRADCSELECT_MASK(vch),
428 LRADC_CTRL4);
429 mxs_lradc_reg_set(lradc, LRADC_CTRL4_LRADCSELECT(vch, ch), LRADC_CTRL4);
430 }
431
432 static void mxs_lradc_setup_ts_channel(struct mxs_lradc *lradc, unsigned ch)
433 {
434 /*
435 * prepare for oversampling conversion
436 *
437 * from the datasheet:
438 * "The ACCUMULATE bit in the appropriate channel register
439 * HW_LRADC_CHn must be set to 1 if NUM_SAMPLES is greater then 0;
440 * otherwise, the IRQs will not fire."
441 */
442 mxs_lradc_reg_wrt(lradc, LRADC_CH_ACCUMULATE |
443 LRADC_CH_NUM_SAMPLES(lradc->over_sample_cnt - 1),
444 LRADC_CH(ch));
445
446 /*
447 * from the datasheet:
448 * "Software must clear this register in preparation for a
449 * multi-cycle accumulation.
450 */
451 mxs_lradc_reg_clear(lradc, LRADC_CH_VALUE_MASK, LRADC_CH(ch));
452
453 /*
454 * prepare the delay/loop unit according to the oversampling count
455 *
456 * from the datasheet:
457 * "The DELAY fields in HW_LRADC_DELAY0, HW_LRADC_DELAY1,
458 * HW_LRADC_DELAY2, and HW_LRADC_DELAY3 must be non-zero; otherwise,
459 * the LRADC will not trigger the delay group."
460 */
461 mxs_lradc_reg_wrt(lradc, LRADC_DELAY_TRIGGER(1 << ch) |
462 LRADC_DELAY_TRIGGER_DELAYS(0) |
463 LRADC_DELAY_LOOP(lradc->over_sample_cnt - 1) |
464 LRADC_DELAY_DELAY(lradc->over_sample_delay - 1),
465 LRADC_DELAY(3));
466
467 mxs_lradc_reg_clear(lradc, LRADC_CTRL1_LRADC_IRQ(ch), LRADC_CTRL1);
468
469 /*
470 * after changing the touchscreen plates setting
471 * the signals need some initial time to settle. Start the
472 * SoC's delay unit and start the conversion later
473 * and automatically.
474 */
475 mxs_lradc_reg_wrt(
476 lradc,
477 LRADC_DELAY_TRIGGER(0) | /* don't trigger ADC */
478 LRADC_DELAY_TRIGGER_DELAYS(BIT(3)) | /* trigger DELAY unit#3 */
479 LRADC_DELAY_KICK |
480 LRADC_DELAY_DELAY(lradc->settling_delay),
481 LRADC_DELAY(2));
482 }
483
484 /*
485 * Pressure detection is special:
486 * We want to do both required measurements for the pressure detection in
487 * one turn. Use the hardware features to chain both conversions and let the
488 * hardware report one interrupt if both conversions are done
489 */
490 static void mxs_lradc_setup_ts_pressure(struct mxs_lradc *lradc, unsigned ch1,
491 unsigned ch2)
492 {
493 u32 reg;
494
495 /*
496 * prepare for oversampling conversion
497 *
498 * from the datasheet:
499 * "The ACCUMULATE bit in the appropriate channel register
500 * HW_LRADC_CHn must be set to 1 if NUM_SAMPLES is greater then 0;
501 * otherwise, the IRQs will not fire."
502 */
503 reg = LRADC_CH_ACCUMULATE |
504 LRADC_CH_NUM_SAMPLES(lradc->over_sample_cnt - 1);
505 mxs_lradc_reg_wrt(lradc, reg, LRADC_CH(ch1));
506 mxs_lradc_reg_wrt(lradc, reg, LRADC_CH(ch2));
507
508 /*
509 * from the datasheet:
510 * "Software must clear this register in preparation for a
511 * multi-cycle accumulation.
512 */
513 mxs_lradc_reg_clear(lradc, LRADC_CH_VALUE_MASK, LRADC_CH(ch1));
514 mxs_lradc_reg_clear(lradc, LRADC_CH_VALUE_MASK, LRADC_CH(ch2));
515
516 /* prepare the delay/loop unit according to the oversampling count */
517 mxs_lradc_reg_wrt(
518 lradc,
519 LRADC_DELAY_TRIGGER(1 << ch1) |
520 LRADC_DELAY_TRIGGER(1 << ch2) | /* start both channels */
521 LRADC_DELAY_TRIGGER_DELAYS(0) |
522 LRADC_DELAY_LOOP(lradc->over_sample_cnt - 1) |
523 LRADC_DELAY_DELAY(lradc->over_sample_delay - 1),
524 LRADC_DELAY(3));
525
526 mxs_lradc_reg_clear(lradc, LRADC_CTRL1_LRADC_IRQ(ch2), LRADC_CTRL1);
527
528 /*
529 * after changing the touchscreen plates setting
530 * the signals need some initial time to settle. Start the
531 * SoC's delay unit and start the conversion later
532 * and automatically.
533 */
534 mxs_lradc_reg_wrt(
535 lradc,
536 LRADC_DELAY_TRIGGER(0) | /* don't trigger ADC */
537 LRADC_DELAY_TRIGGER_DELAYS(BIT(3)) | /* trigger DELAY unit#3 */
538 LRADC_DELAY_KICK |
539 LRADC_DELAY_DELAY(lradc->settling_delay), LRADC_DELAY(2));
540 }
541
542 static unsigned mxs_lradc_read_raw_channel(struct mxs_lradc *lradc,
543 unsigned channel)
544 {
545 u32 reg;
546 unsigned num_samples, val;
547
548 reg = readl(lradc->base + LRADC_CH(channel));
549 if (reg & LRADC_CH_ACCUMULATE)
550 num_samples = lradc->over_sample_cnt;
551 else
552 num_samples = 1;
553
554 val = (reg & LRADC_CH_VALUE_MASK) >> LRADC_CH_VALUE_OFFSET;
555 return val / num_samples;
556 }
557
558 static unsigned mxs_lradc_read_ts_pressure(struct mxs_lradc *lradc,
559 unsigned ch1, unsigned ch2)
560 {
561 u32 reg, mask;
562 unsigned pressure, m1, m2;
563
564 mask = LRADC_CTRL1_LRADC_IRQ(ch1) | LRADC_CTRL1_LRADC_IRQ(ch2);
565 reg = readl(lradc->base + LRADC_CTRL1) & mask;
566
567 while (reg != mask) {
568 reg = readl(lradc->base + LRADC_CTRL1) & mask;
569 dev_dbg(lradc->dev, "One channel is still busy: %X\n", reg);
570 }
571
572 m1 = mxs_lradc_read_raw_channel(lradc, ch1);
573 m2 = mxs_lradc_read_raw_channel(lradc, ch2);
574
575 if (m2 == 0) {
576 dev_warn(lradc->dev, "Cannot calculate pressure\n");
577 return 1 << (LRADC_RESOLUTION - 1);
578 }
579
580 /* simply scale the value from 0 ... max ADC resolution */
581 pressure = m1;
582 pressure *= (1 << LRADC_RESOLUTION);
583 pressure /= m2;
584
585 dev_dbg(lradc->dev, "Pressure = %u\n", pressure);
586 return pressure;
587 }
588
589 #define TS_CH_XP 2
590 #define TS_CH_YP 3
591 #define TS_CH_XM 4
592 #define TS_CH_YM 5
593
594 /*
595 * YP(open)--+-------------+
596 * | |--+
597 * | | |
598 * YM(-)--+-------------+ |
599 * +--------------+
600 * | |
601 * XP(weak+) XM(open)
602 *
603 * "weak+" means 200k Ohm VDDIO
604 * (-) means GND
605 */
606 static void mxs_lradc_setup_touch_detection(struct mxs_lradc *lradc)
607 {
608 /*
609 * In order to detect a touch event the 'touch detect enable' bit
610 * enables:
611 * - a weak pullup to the X+ connector
612 * - a strong ground at the Y- connector
613 */
614 mxs_lradc_reg_clear(lradc, mxs_lradc_plate_mask(lradc), LRADC_CTRL0);
615 mxs_lradc_reg_set(lradc, mxs_lradc_touch_detect_bit(lradc),
616 LRADC_CTRL0);
617 }
618
619 /*
620 * YP(meas)--+-------------+
621 * | |--+
622 * | | |
623 * YM(open)--+-------------+ |
624 * +--------------+
625 * | |
626 * XP(+) XM(-)
627 *
628 * (+) means here 1.85 V
629 * (-) means here GND
630 */
631 static void mxs_lradc_prepare_x_pos(struct mxs_lradc *lradc)
632 {
633 mxs_lradc_reg_clear(lradc, mxs_lradc_plate_mask(lradc), LRADC_CTRL0);
634 mxs_lradc_reg_set(lradc, mxs_lradc_drive_x_plate(lradc), LRADC_CTRL0);
635
636 lradc->cur_plate = LRADC_SAMPLE_X;
637 mxs_lradc_map_channel(lradc, TOUCHSCREEN_VCHANNEL1, TS_CH_YP);
638 mxs_lradc_setup_ts_channel(lradc, TOUCHSCREEN_VCHANNEL1);
639 }
640
641 /*
642 * YP(+)--+-------------+
643 * | |--+
644 * | | |
645 * YM(-)--+-------------+ |
646 * +--------------+
647 * | |
648 * XP(open) XM(meas)
649 *
650 * (+) means here 1.85 V
651 * (-) means here GND
652 */
653 static void mxs_lradc_prepare_y_pos(struct mxs_lradc *lradc)
654 {
655 mxs_lradc_reg_clear(lradc, mxs_lradc_plate_mask(lradc), LRADC_CTRL0);
656 mxs_lradc_reg_set(lradc, mxs_lradc_drive_y_plate(lradc), LRADC_CTRL0);
657
658 lradc->cur_plate = LRADC_SAMPLE_Y;
659 mxs_lradc_map_channel(lradc, TOUCHSCREEN_VCHANNEL1, TS_CH_XM);
660 mxs_lradc_setup_ts_channel(lradc, TOUCHSCREEN_VCHANNEL1);
661 }
662
663 /*
664 * YP(+)--+-------------+
665 * | |--+
666 * | | |
667 * YM(meas)--+-------------+ |
668 * +--------------+
669 * | |
670 * XP(meas) XM(-)
671 *
672 * (+) means here 1.85 V
673 * (-) means here GND
674 */
675 static void mxs_lradc_prepare_pressure(struct mxs_lradc *lradc)
676 {
677 mxs_lradc_reg_clear(lradc, mxs_lradc_plate_mask(lradc), LRADC_CTRL0);
678 mxs_lradc_reg_set(lradc, mxs_lradc_drive_pressure(lradc), LRADC_CTRL0);
679
680 lradc->cur_plate = LRADC_SAMPLE_PRESSURE;
681 mxs_lradc_map_channel(lradc, TOUCHSCREEN_VCHANNEL1, TS_CH_YM);
682 mxs_lradc_map_channel(lradc, TOUCHSCREEN_VCHANNEL2, TS_CH_XP);
683 mxs_lradc_setup_ts_pressure(lradc, TOUCHSCREEN_VCHANNEL2,
684 TOUCHSCREEN_VCHANNEL1);
685 }
686
687 static void mxs_lradc_enable_touch_detection(struct mxs_lradc *lradc)
688 {
689 /* Configure the touchscreen type */
690 if (lradc->soc == IMX28_LRADC) {
691 mxs_lradc_reg_clear(lradc, LRADC_CTRL0_MX28_TOUCH_SCREEN_TYPE,
692 LRADC_CTRL0);
693
694 if (lradc->use_touchscreen == MXS_LRADC_TOUCHSCREEN_5WIRE)
695 mxs_lradc_reg_set(lradc,
696 LRADC_CTRL0_MX28_TOUCH_SCREEN_TYPE,
697 LRADC_CTRL0);
698 }
699
700 mxs_lradc_setup_touch_detection(lradc);
701
702 lradc->cur_plate = LRADC_TOUCH;
703 mxs_lradc_reg_clear(lradc, LRADC_CTRL1_TOUCH_DETECT_IRQ |
704 LRADC_CTRL1_TOUCH_DETECT_IRQ_EN, LRADC_CTRL1);
705 mxs_lradc_reg_set(lradc, LRADC_CTRL1_TOUCH_DETECT_IRQ_EN, LRADC_CTRL1);
706 }
707
708 static void mxs_lradc_start_touch_event(struct mxs_lradc *lradc)
709 {
710 mxs_lradc_reg_clear(lradc,
711 LRADC_CTRL1_TOUCH_DETECT_IRQ_EN,
712 LRADC_CTRL1);
713 mxs_lradc_reg_set(lradc,
714 LRADC_CTRL1_LRADC_IRQ_EN(TOUCHSCREEN_VCHANNEL1),
715 LRADC_CTRL1);
716 /*
717 * start with the Y-pos, because it uses nearly the same plate
718 * settings like the touch detection
719 */
720 mxs_lradc_prepare_y_pos(lradc);
721 }
722
723 static void mxs_lradc_report_ts_event(struct mxs_lradc *lradc)
724 {
725 input_report_abs(lradc->ts_input, ABS_X, lradc->ts_x_pos);
726 input_report_abs(lradc->ts_input, ABS_Y, lradc->ts_y_pos);
727 input_report_abs(lradc->ts_input, ABS_PRESSURE, lradc->ts_pressure);
728 input_report_key(lradc->ts_input, BTN_TOUCH, 1);
729 input_sync(lradc->ts_input);
730 }
731
732 static void mxs_lradc_complete_touch_event(struct mxs_lradc *lradc)
733 {
734 mxs_lradc_setup_touch_detection(lradc);
735 lradc->cur_plate = LRADC_SAMPLE_VALID;
736 /*
737 * start a dummy conversion to burn time to settle the signals
738 * note: we are not interested in the conversion's value
739 */
740 mxs_lradc_reg_wrt(lradc, 0, LRADC_CH(TOUCHSCREEN_VCHANNEL1));
741 mxs_lradc_reg_clear(lradc,
742 LRADC_CTRL1_LRADC_IRQ(TOUCHSCREEN_VCHANNEL1) |
743 LRADC_CTRL1_LRADC_IRQ(TOUCHSCREEN_VCHANNEL2),
744 LRADC_CTRL1);
745 mxs_lradc_reg_wrt(
746 lradc,
747 LRADC_DELAY_TRIGGER(1 << TOUCHSCREEN_VCHANNEL1) |
748 LRADC_DELAY_KICK | LRADC_DELAY_DELAY(10), /* waste 5 ms */
749 LRADC_DELAY(2));
750 }
751
752 /*
753 * in order to avoid false measurements, report only samples where
754 * the surface is still touched after the position measurement
755 */
756 static void mxs_lradc_finish_touch_event(struct mxs_lradc *lradc, bool valid)
757 {
758 /* if it is still touched, report the sample */
759 if (valid && mxs_lradc_check_touch_event(lradc)) {
760 lradc->ts_valid = true;
761 mxs_lradc_report_ts_event(lradc);
762 }
763
764 /* if it is even still touched, continue with the next measurement */
765 if (mxs_lradc_check_touch_event(lradc)) {
766 mxs_lradc_prepare_y_pos(lradc);
767 return;
768 }
769
770 if (lradc->ts_valid) {
771 /* signal the release */
772 lradc->ts_valid = false;
773 input_report_key(lradc->ts_input, BTN_TOUCH, 0);
774 input_sync(lradc->ts_input);
775 }
776
777 /* if it is released, wait for the next touch via IRQ */
778 lradc->cur_plate = LRADC_TOUCH;
779 mxs_lradc_reg_wrt(lradc, 0, LRADC_DELAY(2));
780 mxs_lradc_reg_wrt(lradc, 0, LRADC_DELAY(3));
781 mxs_lradc_reg_clear(lradc,
782 LRADC_CTRL1_TOUCH_DETECT_IRQ |
783 LRADC_CTRL1_LRADC_IRQ_EN(TOUCHSCREEN_VCHANNEL1) |
784 LRADC_CTRL1_LRADC_IRQ(TOUCHSCREEN_VCHANNEL1),
785 LRADC_CTRL1);
786 mxs_lradc_reg_set(lradc, LRADC_CTRL1_TOUCH_DETECT_IRQ_EN, LRADC_CTRL1);
787 }
788
789 /* touchscreen's state machine */
790 static void mxs_lradc_handle_touch(struct mxs_lradc *lradc)
791 {
792 switch (lradc->cur_plate) {
793 case LRADC_TOUCH:
794 if (mxs_lradc_check_touch_event(lradc))
795 mxs_lradc_start_touch_event(lradc);
796 mxs_lradc_reg_clear(lradc, LRADC_CTRL1_TOUCH_DETECT_IRQ,
797 LRADC_CTRL1);
798 return;
799
800 case LRADC_SAMPLE_Y:
801 lradc->ts_y_pos =
802 mxs_lradc_read_raw_channel(lradc,
803 TOUCHSCREEN_VCHANNEL1);
804 mxs_lradc_prepare_x_pos(lradc);
805 return;
806
807 case LRADC_SAMPLE_X:
808 lradc->ts_x_pos =
809 mxs_lradc_read_raw_channel(lradc,
810 TOUCHSCREEN_VCHANNEL1);
811 mxs_lradc_prepare_pressure(lradc);
812 return;
813
814 case LRADC_SAMPLE_PRESSURE:
815 lradc->ts_pressure =
816 mxs_lradc_read_ts_pressure(lradc,
817 TOUCHSCREEN_VCHANNEL2,
818 TOUCHSCREEN_VCHANNEL1);
819 mxs_lradc_complete_touch_event(lradc);
820 return;
821
822 case LRADC_SAMPLE_VALID:
823 mxs_lradc_finish_touch_event(lradc, 1);
824 break;
825 }
826 }
827
828 /*
829 * Raw I/O operations
830 */
831 static int mxs_lradc_read_single(struct iio_dev *iio_dev, int chan, int *val)
832 {
833 struct mxs_lradc *lradc = iio_priv(iio_dev);
834 int ret;
835
836 /*
837 * See if there is no buffered operation in progress. If there is, simply
838 * bail out. This can be improved to support both buffered and raw IO at
839 * the same time, yet the code becomes horribly complicated. Therefore I
840 * applied KISS principle here.
841 */
842 ret = mutex_trylock(&lradc->lock);
843 if (!ret)
844 return -EBUSY;
845
846 reinit_completion(&lradc->completion);
847
848 /*
849 * No buffered operation in progress, map the channel and trigger it.
850 * Virtual channel 0 is always used here as the others are always not
851 * used if doing raw sampling.
852 */
853 if (lradc->soc == IMX28_LRADC)
854 mxs_lradc_reg_clear(lradc, LRADC_CTRL1_LRADC_IRQ_EN(0),
855 LRADC_CTRL1);
856 mxs_lradc_reg_clear(lradc, 0x1, LRADC_CTRL0);
857
858 /* Enable / disable the divider per requirement */
859 if (test_bit(chan, &lradc->is_divided))
860 mxs_lradc_reg_set(lradc,
861 1 << LRADC_CTRL2_DIVIDE_BY_TWO_OFFSET,
862 LRADC_CTRL2);
863 else
864 mxs_lradc_reg_clear(lradc,
865 1 << LRADC_CTRL2_DIVIDE_BY_TWO_OFFSET,
866 LRADC_CTRL2);
867
868 /* Clean the slot's previous content, then set new one. */
869 mxs_lradc_reg_clear(lradc, LRADC_CTRL4_LRADCSELECT_MASK(0),
870 LRADC_CTRL4);
871 mxs_lradc_reg_set(lradc, chan, LRADC_CTRL4);
872
873 mxs_lradc_reg_wrt(lradc, 0, LRADC_CH(0));
874
875 /* Enable the IRQ and start sampling the channel. */
876 mxs_lradc_reg_set(lradc, LRADC_CTRL1_LRADC_IRQ_EN(0), LRADC_CTRL1);
877 mxs_lradc_reg_set(lradc, BIT(0), LRADC_CTRL0);
878
879 /* Wait for completion on the channel, 1 second max. */
880 ret = wait_for_completion_killable_timeout(&lradc->completion, HZ);
881 if (!ret)
882 ret = -ETIMEDOUT;
883 if (ret < 0)
884 goto err;
885
886 /* Read the data. */
887 *val = readl(lradc->base + LRADC_CH(0)) & LRADC_CH_VALUE_MASK;
888 ret = IIO_VAL_INT;
889
890 err:
891 mxs_lradc_reg_clear(lradc, LRADC_CTRL1_LRADC_IRQ_EN(0), LRADC_CTRL1);
892
893 mutex_unlock(&lradc->lock);
894
895 return ret;
896 }
897
898 static int mxs_lradc_read_temp(struct iio_dev *iio_dev, int *val)
899 {
900 int ret, min, max;
901
902 ret = mxs_lradc_read_single(iio_dev, 8, &min);
903 if (ret != IIO_VAL_INT)
904 return ret;
905
906 ret = mxs_lradc_read_single(iio_dev, 9, &max);
907 if (ret != IIO_VAL_INT)
908 return ret;
909
910 *val = max - min;
911
912 return IIO_VAL_INT;
913 }
914
915 static int mxs_lradc_read_raw(struct iio_dev *iio_dev,
916 const struct iio_chan_spec *chan,
917 int *val, int *val2, long m)
918 {
919 struct mxs_lradc *lradc = iio_priv(iio_dev);
920
921 switch (m) {
922 case IIO_CHAN_INFO_RAW:
923 if (chan->type == IIO_TEMP)
924 return mxs_lradc_read_temp(iio_dev, val);
925
926 return mxs_lradc_read_single(iio_dev, chan->channel, val);
927
928 case IIO_CHAN_INFO_SCALE:
929 if (chan->type == IIO_TEMP) {
930 /*
931 * From the datasheet, we have to multiply by 1.012 and
932 * divide by 4
933 */
934 *val = 0;
935 *val2 = 253000;
936 return IIO_VAL_INT_PLUS_MICRO;
937 }
938
939 *val = lradc->vref_mv[chan->channel];
940 *val2 = chan->scan_type.realbits -
941 test_bit(chan->channel, &lradc->is_divided);
942 return IIO_VAL_FRACTIONAL_LOG2;
943
944 case IIO_CHAN_INFO_OFFSET:
945 if (chan->type == IIO_TEMP) {
946 /*
947 * The calculated value from the ADC is in Kelvin, we
948 * want Celsius for hwmon so the offset is -273.15
949 * The offset is applied before scaling so it is
950 * actually -213.15 * 4 / 1.012 = -1079.644268
951 */
952 *val = -1079;
953 *val2 = 644268;
954
955 return IIO_VAL_INT_PLUS_MICRO;
956 }
957
958 return -EINVAL;
959
960 default:
961 break;
962 }
963
964 return -EINVAL;
965 }
966
967 static int mxs_lradc_write_raw(struct iio_dev *iio_dev,
968 const struct iio_chan_spec *chan,
969 int val, int val2, long m)
970 {
971 struct mxs_lradc *lradc = iio_priv(iio_dev);
972 struct mxs_lradc_scale *scale_avail =
973 lradc->scale_avail[chan->channel];
974 int ret;
975
976 ret = mutex_trylock(&lradc->lock);
977 if (!ret)
978 return -EBUSY;
979
980 switch (m) {
981 case IIO_CHAN_INFO_SCALE:
982 ret = -EINVAL;
983 if (val == scale_avail[MXS_LRADC_DIV_DISABLED].integer &&
984 val2 == scale_avail[MXS_LRADC_DIV_DISABLED].nano) {
985 /* divider by two disabled */
986 clear_bit(chan->channel, &lradc->is_divided);
987 ret = 0;
988 } else if (val == scale_avail[MXS_LRADC_DIV_ENABLED].integer &&
989 val2 == scale_avail[MXS_LRADC_DIV_ENABLED].nano) {
990 /* divider by two enabled */
991 set_bit(chan->channel, &lradc->is_divided);
992 ret = 0;
993 }
994
995 break;
996 default:
997 ret = -EINVAL;
998 break;
999 }
1000
1001 mutex_unlock(&lradc->lock);
1002
1003 return ret;
1004 }
1005
1006 static int mxs_lradc_write_raw_get_fmt(struct iio_dev *iio_dev,
1007 const struct iio_chan_spec *chan,
1008 long m)
1009 {
1010 return IIO_VAL_INT_PLUS_NANO;
1011 }
1012
1013 static ssize_t mxs_lradc_show_scale_available_ch(struct device *dev,
1014 struct device_attribute *attr,
1015 char *buf,
1016 int ch)
1017 {
1018 struct iio_dev *iio = dev_to_iio_dev(dev);
1019 struct mxs_lradc *lradc = iio_priv(iio);
1020 int i, len = 0;
1021
1022 for (i = 0; i < ARRAY_SIZE(lradc->scale_avail[ch]); i++)
1023 len += sprintf(buf + len, "%u.%09u ",
1024 lradc->scale_avail[ch][i].integer,
1025 lradc->scale_avail[ch][i].nano);
1026
1027 len += sprintf(buf + len, "\n");
1028
1029 return len;
1030 }
1031
1032 static ssize_t mxs_lradc_show_scale_available(struct device *dev,
1033 struct device_attribute *attr,
1034 char *buf)
1035 {
1036 struct iio_dev_attr *iio_attr = to_iio_dev_attr(attr);
1037
1038 return mxs_lradc_show_scale_available_ch(dev, attr, buf,
1039 iio_attr->address);
1040 }
1041
1042 #define SHOW_SCALE_AVAILABLE_ATTR(ch) \
1043 static IIO_DEVICE_ATTR(in_voltage##ch##_scale_available, S_IRUGO, \
1044 mxs_lradc_show_scale_available, NULL, ch)
1045
1046 SHOW_SCALE_AVAILABLE_ATTR(0);
1047 SHOW_SCALE_AVAILABLE_ATTR(1);
1048 SHOW_SCALE_AVAILABLE_ATTR(2);
1049 SHOW_SCALE_AVAILABLE_ATTR(3);
1050 SHOW_SCALE_AVAILABLE_ATTR(4);
1051 SHOW_SCALE_AVAILABLE_ATTR(5);
1052 SHOW_SCALE_AVAILABLE_ATTR(6);
1053 SHOW_SCALE_AVAILABLE_ATTR(7);
1054 SHOW_SCALE_AVAILABLE_ATTR(10);
1055 SHOW_SCALE_AVAILABLE_ATTR(11);
1056 SHOW_SCALE_AVAILABLE_ATTR(12);
1057 SHOW_SCALE_AVAILABLE_ATTR(13);
1058 SHOW_SCALE_AVAILABLE_ATTR(14);
1059 SHOW_SCALE_AVAILABLE_ATTR(15);
1060
1061 static struct attribute *mxs_lradc_attributes[] = {
1062 &iio_dev_attr_in_voltage0_scale_available.dev_attr.attr,
1063 &iio_dev_attr_in_voltage1_scale_available.dev_attr.attr,
1064 &iio_dev_attr_in_voltage2_scale_available.dev_attr.attr,
1065 &iio_dev_attr_in_voltage3_scale_available.dev_attr.attr,
1066 &iio_dev_attr_in_voltage4_scale_available.dev_attr.attr,
1067 &iio_dev_attr_in_voltage5_scale_available.dev_attr.attr,
1068 &iio_dev_attr_in_voltage6_scale_available.dev_attr.attr,
1069 &iio_dev_attr_in_voltage7_scale_available.dev_attr.attr,
1070 &iio_dev_attr_in_voltage10_scale_available.dev_attr.attr,
1071 &iio_dev_attr_in_voltage11_scale_available.dev_attr.attr,
1072 &iio_dev_attr_in_voltage12_scale_available.dev_attr.attr,
1073 &iio_dev_attr_in_voltage13_scale_available.dev_attr.attr,
1074 &iio_dev_attr_in_voltage14_scale_available.dev_attr.attr,
1075 &iio_dev_attr_in_voltage15_scale_available.dev_attr.attr,
1076 NULL
1077 };
1078
1079 static const struct attribute_group mxs_lradc_attribute_group = {
1080 .attrs = mxs_lradc_attributes,
1081 };
1082
1083 static const struct iio_info mxs_lradc_iio_info = {
1084 .driver_module = THIS_MODULE,
1085 .read_raw = mxs_lradc_read_raw,
1086 .write_raw = mxs_lradc_write_raw,
1087 .write_raw_get_fmt = mxs_lradc_write_raw_get_fmt,
1088 .attrs = &mxs_lradc_attribute_group,
1089 };
1090
1091 static int mxs_lradc_ts_open(struct input_dev *dev)
1092 {
1093 struct mxs_lradc *lradc = input_get_drvdata(dev);
1094
1095 /* Enable the touch-detect circuitry. */
1096 mxs_lradc_enable_touch_detection(lradc);
1097
1098 return 0;
1099 }
1100
1101 static void mxs_lradc_disable_ts(struct mxs_lradc *lradc)
1102 {
1103 /* stop all interrupts from firing */
1104 mxs_lradc_reg_clear(lradc, LRADC_CTRL1_TOUCH_DETECT_IRQ_EN |
1105 LRADC_CTRL1_LRADC_IRQ_EN(TOUCHSCREEN_VCHANNEL1) |
1106 LRADC_CTRL1_LRADC_IRQ_EN(TOUCHSCREEN_VCHANNEL2), LRADC_CTRL1);
1107
1108 /* Power-down touchscreen touch-detect circuitry. */
1109 mxs_lradc_reg_clear(lradc, mxs_lradc_plate_mask(lradc), LRADC_CTRL0);
1110 }
1111
1112 static void mxs_lradc_ts_close(struct input_dev *dev)
1113 {
1114 struct mxs_lradc *lradc = input_get_drvdata(dev);
1115
1116 mxs_lradc_disable_ts(lradc);
1117 }
1118
1119 static int mxs_lradc_ts_register(struct mxs_lradc *lradc)
1120 {
1121 struct input_dev *input;
1122 struct device *dev = lradc->dev;
1123 int ret;
1124
1125 if (!lradc->use_touchscreen)
1126 return 0;
1127
1128 input = input_allocate_device();
1129 if (!input)
1130 return -ENOMEM;
1131
1132 input->name = DRIVER_NAME;
1133 input->id.bustype = BUS_HOST;
1134 input->dev.parent = dev;
1135 input->open = mxs_lradc_ts_open;
1136 input->close = mxs_lradc_ts_close;
1137
1138 __set_bit(EV_ABS, input->evbit);
1139 __set_bit(EV_KEY, input->evbit);
1140 __set_bit(BTN_TOUCH, input->keybit);
1141 __set_bit(INPUT_PROP_DIRECT, input->propbit);
1142 input_set_abs_params(input, ABS_X, 0, LRADC_SINGLE_SAMPLE_MASK, 0, 0);
1143 input_set_abs_params(input, ABS_Y, 0, LRADC_SINGLE_SAMPLE_MASK, 0, 0);
1144 input_set_abs_params(input, ABS_PRESSURE, 0, LRADC_SINGLE_SAMPLE_MASK,
1145 0, 0);
1146
1147 lradc->ts_input = input;
1148 input_set_drvdata(input, lradc);
1149 ret = input_register_device(input);
1150 if (ret)
1151 input_free_device(lradc->ts_input);
1152
1153 return ret;
1154 }
1155
1156 static void mxs_lradc_ts_unregister(struct mxs_lradc *lradc)
1157 {
1158 if (!lradc->use_touchscreen)
1159 return;
1160
1161 mxs_lradc_disable_ts(lradc);
1162 input_unregister_device(lradc->ts_input);
1163 }
1164
1165 /*
1166 * IRQ Handling
1167 */
1168 static irqreturn_t mxs_lradc_handle_irq(int irq, void *data)
1169 {
1170 struct iio_dev *iio = data;
1171 struct mxs_lradc *lradc = iio_priv(iio);
1172 unsigned long reg = readl(lradc->base + LRADC_CTRL1);
1173 u32 clr_irq = mxs_lradc_irq_mask(lradc);
1174 const u32 ts_irq_mask =
1175 LRADC_CTRL1_TOUCH_DETECT_IRQ |
1176 LRADC_CTRL1_LRADC_IRQ(TOUCHSCREEN_VCHANNEL1) |
1177 LRADC_CTRL1_LRADC_IRQ(TOUCHSCREEN_VCHANNEL2);
1178
1179 if (!(reg & mxs_lradc_irq_mask(lradc)))
1180 return IRQ_NONE;
1181
1182 if (lradc->use_touchscreen && (reg & ts_irq_mask)) {
1183 mxs_lradc_handle_touch(lradc);
1184
1185 /* Make sure we don't clear the next conversion's interrupt. */
1186 clr_irq &= ~(LRADC_CTRL1_LRADC_IRQ(TOUCHSCREEN_VCHANNEL1) |
1187 LRADC_CTRL1_LRADC_IRQ(TOUCHSCREEN_VCHANNEL2));
1188 }
1189
1190 if (iio_buffer_enabled(iio)) {
1191 if (reg & lradc->buffer_vchans)
1192 iio_trigger_poll(iio->trig);
1193 } else if (reg & LRADC_CTRL1_LRADC_IRQ(0)) {
1194 complete(&lradc->completion);
1195 }
1196
1197 mxs_lradc_reg_clear(lradc, reg & clr_irq, LRADC_CTRL1);
1198
1199 return IRQ_HANDLED;
1200 }
1201
1202 /*
1203 * Trigger handling
1204 */
1205 static irqreturn_t mxs_lradc_trigger_handler(int irq, void *p)
1206 {
1207 struct iio_poll_func *pf = p;
1208 struct iio_dev *iio = pf->indio_dev;
1209 struct mxs_lradc *lradc = iio_priv(iio);
1210 const u32 chan_value = LRADC_CH_ACCUMULATE |
1211 ((LRADC_DELAY_TIMER_LOOP - 1) << LRADC_CH_NUM_SAMPLES_OFFSET);
1212 unsigned int i, j = 0;
1213
1214 for_each_set_bit(i, iio->active_scan_mask, LRADC_MAX_TOTAL_CHANS) {
1215 lradc->buffer[j] = readl(lradc->base + LRADC_CH(j));
1216 mxs_lradc_reg_wrt(lradc, chan_value, LRADC_CH(j));
1217 lradc->buffer[j] &= LRADC_CH_VALUE_MASK;
1218 lradc->buffer[j] /= LRADC_DELAY_TIMER_LOOP;
1219 j++;
1220 }
1221
1222 iio_push_to_buffers_with_timestamp(iio, lradc->buffer, pf->timestamp);
1223
1224 iio_trigger_notify_done(iio->trig);
1225
1226 return IRQ_HANDLED;
1227 }
1228
1229 static int mxs_lradc_configure_trigger(struct iio_trigger *trig, bool state)
1230 {
1231 struct iio_dev *iio = iio_trigger_get_drvdata(trig);
1232 struct mxs_lradc *lradc = iio_priv(iio);
1233 const u32 st = state ? STMP_OFFSET_REG_SET : STMP_OFFSET_REG_CLR;
1234
1235 mxs_lradc_reg_wrt(lradc, LRADC_DELAY_KICK, LRADC_DELAY(0) + st);
1236
1237 return 0;
1238 }
1239
1240 static const struct iio_trigger_ops mxs_lradc_trigger_ops = {
1241 .owner = THIS_MODULE,
1242 .set_trigger_state = &mxs_lradc_configure_trigger,
1243 };
1244
1245 static int mxs_lradc_trigger_init(struct iio_dev *iio)
1246 {
1247 int ret;
1248 struct iio_trigger *trig;
1249 struct mxs_lradc *lradc = iio_priv(iio);
1250
1251 trig = iio_trigger_alloc("%s-dev%i", iio->name, iio->id);
1252 if (!trig)
1253 return -ENOMEM;
1254
1255 trig->dev.parent = lradc->dev;
1256 iio_trigger_set_drvdata(trig, iio);
1257 trig->ops = &mxs_lradc_trigger_ops;
1258
1259 ret = iio_trigger_register(trig);
1260 if (ret) {
1261 iio_trigger_free(trig);
1262 return ret;
1263 }
1264
1265 lradc->trig = trig;
1266
1267 return 0;
1268 }
1269
1270 static void mxs_lradc_trigger_remove(struct iio_dev *iio)
1271 {
1272 struct mxs_lradc *lradc = iio_priv(iio);
1273
1274 iio_trigger_unregister(lradc->trig);
1275 iio_trigger_free(lradc->trig);
1276 }
1277
1278 static int mxs_lradc_buffer_preenable(struct iio_dev *iio)
1279 {
1280 struct mxs_lradc *lradc = iio_priv(iio);
1281 int ret = 0, chan, ofs = 0;
1282 unsigned long enable = 0;
1283 u32 ctrl4_set = 0;
1284 u32 ctrl4_clr = 0;
1285 u32 ctrl1_irq = 0;
1286 const u32 chan_value = LRADC_CH_ACCUMULATE |
1287 ((LRADC_DELAY_TIMER_LOOP - 1) << LRADC_CH_NUM_SAMPLES_OFFSET);
1288 const int len = bitmap_weight(iio->active_scan_mask,
1289 LRADC_MAX_TOTAL_CHANS);
1290
1291 if (!len)
1292 return -EINVAL;
1293
1294 /*
1295 * Lock the driver so raw access can not be done during buffered
1296 * operation. This simplifies the code a lot.
1297 */
1298 ret = mutex_trylock(&lradc->lock);
1299 if (!ret)
1300 return -EBUSY;
1301
1302 lradc->buffer = kmalloc_array(len, sizeof(*lradc->buffer), GFP_KERNEL);
1303 if (!lradc->buffer) {
1304 ret = -ENOMEM;
1305 goto err_mem;
1306 }
1307
1308 if (lradc->soc == IMX28_LRADC)
1309 mxs_lradc_reg_clear(
1310 lradc,
1311 lradc->buffer_vchans << LRADC_CTRL1_LRADC_IRQ_EN_OFFSET,
1312 LRADC_CTRL1);
1313 mxs_lradc_reg_clear(lradc, lradc->buffer_vchans, LRADC_CTRL0);
1314
1315 for_each_set_bit(chan, iio->active_scan_mask, LRADC_MAX_TOTAL_CHANS) {
1316 ctrl4_set |= chan << LRADC_CTRL4_LRADCSELECT_OFFSET(ofs);
1317 ctrl4_clr |= LRADC_CTRL4_LRADCSELECT_MASK(ofs);
1318 ctrl1_irq |= LRADC_CTRL1_LRADC_IRQ_EN(ofs);
1319 mxs_lradc_reg_wrt(lradc, chan_value, LRADC_CH(ofs));
1320 bitmap_set(&enable, ofs, 1);
1321 ofs++;
1322 }
1323
1324 mxs_lradc_reg_clear(lradc, LRADC_DELAY_TRIGGER_LRADCS_MASK |
1325 LRADC_DELAY_KICK, LRADC_DELAY(0));
1326 mxs_lradc_reg_clear(lradc, ctrl4_clr, LRADC_CTRL4);
1327 mxs_lradc_reg_set(lradc, ctrl4_set, LRADC_CTRL4);
1328 mxs_lradc_reg_set(lradc, ctrl1_irq, LRADC_CTRL1);
1329 mxs_lradc_reg_set(lradc, enable << LRADC_DELAY_TRIGGER_LRADCS_OFFSET,
1330 LRADC_DELAY(0));
1331
1332 return 0;
1333
1334 err_mem:
1335 mutex_unlock(&lradc->lock);
1336 return ret;
1337 }
1338
1339 static int mxs_lradc_buffer_postdisable(struct iio_dev *iio)
1340 {
1341 struct mxs_lradc *lradc = iio_priv(iio);
1342
1343 mxs_lradc_reg_clear(lradc, LRADC_DELAY_TRIGGER_LRADCS_MASK |
1344 LRADC_DELAY_KICK, LRADC_DELAY(0));
1345
1346 mxs_lradc_reg_clear(lradc, lradc->buffer_vchans, LRADC_CTRL0);
1347 if (lradc->soc == IMX28_LRADC)
1348 mxs_lradc_reg_clear(
1349 lradc,
1350 lradc->buffer_vchans << LRADC_CTRL1_LRADC_IRQ_EN_OFFSET,
1351 LRADC_CTRL1);
1352
1353 kfree(lradc->buffer);
1354 mutex_unlock(&lradc->lock);
1355
1356 return 0;
1357 }
1358
1359 static bool mxs_lradc_validate_scan_mask(struct iio_dev *iio,
1360 const unsigned long *mask)
1361 {
1362 struct mxs_lradc *lradc = iio_priv(iio);
1363 const int map_chans = bitmap_weight(mask, LRADC_MAX_TOTAL_CHANS);
1364 int rsvd_chans = 0;
1365 unsigned long rsvd_mask = 0;
1366
1367 if (lradc->use_touchbutton)
1368 rsvd_mask |= CHAN_MASK_TOUCHBUTTON;
1369 if (lradc->use_touchscreen == MXS_LRADC_TOUCHSCREEN_4WIRE)
1370 rsvd_mask |= CHAN_MASK_TOUCHSCREEN_4WIRE;
1371 if (lradc->use_touchscreen == MXS_LRADC_TOUCHSCREEN_5WIRE)
1372 rsvd_mask |= CHAN_MASK_TOUCHSCREEN_5WIRE;
1373
1374 if (lradc->use_touchbutton)
1375 rsvd_chans++;
1376 if (lradc->use_touchscreen)
1377 rsvd_chans += 2;
1378
1379 /* Test for attempts to map channels with special mode of operation. */
1380 if (bitmap_intersects(mask, &rsvd_mask, LRADC_MAX_TOTAL_CHANS))
1381 return false;
1382
1383 /* Test for attempts to map more channels then available slots. */
1384 if (map_chans + rsvd_chans > LRADC_MAX_MAPPED_CHANS)
1385 return false;
1386
1387 return true;
1388 }
1389
1390 static const struct iio_buffer_setup_ops mxs_lradc_buffer_ops = {
1391 .preenable = &mxs_lradc_buffer_preenable,
1392 .postenable = &iio_triggered_buffer_postenable,
1393 .predisable = &iio_triggered_buffer_predisable,
1394 .postdisable = &mxs_lradc_buffer_postdisable,
1395 .validate_scan_mask = &mxs_lradc_validate_scan_mask,
1396 };
1397
1398 /*
1399 * Driver initialization
1400 */
1401
1402 #define MXS_ADC_CHAN(idx, chan_type, name) { \
1403 .type = (chan_type), \
1404 .indexed = 1, \
1405 .scan_index = (idx), \
1406 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
1407 BIT(IIO_CHAN_INFO_SCALE), \
1408 .channel = (idx), \
1409 .address = (idx), \
1410 .scan_type = { \
1411 .sign = 'u', \
1412 .realbits = LRADC_RESOLUTION, \
1413 .storagebits = 32, \
1414 }, \
1415 .datasheet_name = (name), \
1416 }
1417
1418 static const struct iio_chan_spec mx23_lradc_chan_spec[] = {
1419 MXS_ADC_CHAN(0, IIO_VOLTAGE, "LRADC0"),
1420 MXS_ADC_CHAN(1, IIO_VOLTAGE, "LRADC1"),
1421 MXS_ADC_CHAN(2, IIO_VOLTAGE, "LRADC2"),
1422 MXS_ADC_CHAN(3, IIO_VOLTAGE, "LRADC3"),
1423 MXS_ADC_CHAN(4, IIO_VOLTAGE, "LRADC4"),
1424 MXS_ADC_CHAN(5, IIO_VOLTAGE, "LRADC5"),
1425 MXS_ADC_CHAN(6, IIO_VOLTAGE, "VDDIO"),
1426 MXS_ADC_CHAN(7, IIO_VOLTAGE, "VBATT"),
1427 /* Combined Temperature sensors */
1428 {
1429 .type = IIO_TEMP,
1430 .indexed = 1,
1431 .scan_index = 8,
1432 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
1433 BIT(IIO_CHAN_INFO_OFFSET) |
1434 BIT(IIO_CHAN_INFO_SCALE),
1435 .channel = 8,
1436 .scan_type = {.sign = 'u', .realbits = 18, .storagebits = 32,},
1437 .datasheet_name = "TEMP_DIE",
1438 },
1439 /* Hidden channel to keep indexes */
1440 {
1441 .type = IIO_TEMP,
1442 .indexed = 1,
1443 .scan_index = -1,
1444 .channel = 9,
1445 },
1446 MXS_ADC_CHAN(10, IIO_VOLTAGE, NULL),
1447 MXS_ADC_CHAN(11, IIO_VOLTAGE, NULL),
1448 MXS_ADC_CHAN(12, IIO_VOLTAGE, "USB_DP"),
1449 MXS_ADC_CHAN(13, IIO_VOLTAGE, "USB_DN"),
1450 MXS_ADC_CHAN(14, IIO_VOLTAGE, "VBG"),
1451 MXS_ADC_CHAN(15, IIO_VOLTAGE, "VDD5V"),
1452 };
1453
1454 static const struct iio_chan_spec mx28_lradc_chan_spec[] = {
1455 MXS_ADC_CHAN(0, IIO_VOLTAGE, "LRADC0"),
1456 MXS_ADC_CHAN(1, IIO_VOLTAGE, "LRADC1"),
1457 MXS_ADC_CHAN(2, IIO_VOLTAGE, "LRADC2"),
1458 MXS_ADC_CHAN(3, IIO_VOLTAGE, "LRADC3"),
1459 MXS_ADC_CHAN(4, IIO_VOLTAGE, "LRADC4"),
1460 MXS_ADC_CHAN(5, IIO_VOLTAGE, "LRADC5"),
1461 MXS_ADC_CHAN(6, IIO_VOLTAGE, "LRADC6"),
1462 MXS_ADC_CHAN(7, IIO_VOLTAGE, "VBATT"),
1463 /* Combined Temperature sensors */
1464 {
1465 .type = IIO_TEMP,
1466 .indexed = 1,
1467 .scan_index = 8,
1468 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
1469 BIT(IIO_CHAN_INFO_OFFSET) |
1470 BIT(IIO_CHAN_INFO_SCALE),
1471 .channel = 8,
1472 .scan_type = {.sign = 'u', .realbits = 18, .storagebits = 32,},
1473 .datasheet_name = "TEMP_DIE",
1474 },
1475 /* Hidden channel to keep indexes */
1476 {
1477 .type = IIO_TEMP,
1478 .indexed = 1,
1479 .scan_index = -1,
1480 .channel = 9,
1481 },
1482 MXS_ADC_CHAN(10, IIO_VOLTAGE, "VDDIO"),
1483 MXS_ADC_CHAN(11, IIO_VOLTAGE, "VTH"),
1484 MXS_ADC_CHAN(12, IIO_VOLTAGE, "VDDA"),
1485 MXS_ADC_CHAN(13, IIO_VOLTAGE, "VDDD"),
1486 MXS_ADC_CHAN(14, IIO_VOLTAGE, "VBG"),
1487 MXS_ADC_CHAN(15, IIO_VOLTAGE, "VDD5V"),
1488 };
1489
1490 static void mxs_lradc_hw_init(struct mxs_lradc *lradc)
1491 {
1492 /* The ADC always uses DELAY CHANNEL 0. */
1493 const u32 adc_cfg =
1494 (1 << (LRADC_DELAY_TRIGGER_DELAYS_OFFSET + 0)) |
1495 (LRADC_DELAY_TIMER_PER << LRADC_DELAY_DELAY_OFFSET);
1496
1497 /* Configure DELAY CHANNEL 0 for generic ADC sampling. */
1498 mxs_lradc_reg_wrt(lradc, adc_cfg, LRADC_DELAY(0));
1499
1500 /* Disable remaining DELAY CHANNELs */
1501 mxs_lradc_reg_wrt(lradc, 0, LRADC_DELAY(1));
1502 mxs_lradc_reg_wrt(lradc, 0, LRADC_DELAY(2));
1503 mxs_lradc_reg_wrt(lradc, 0, LRADC_DELAY(3));
1504
1505 /* Start internal temperature sensing. */
1506 mxs_lradc_reg_wrt(lradc, 0, LRADC_CTRL2);
1507 }
1508
1509 static void mxs_lradc_hw_stop(struct mxs_lradc *lradc)
1510 {
1511 int i;
1512
1513 mxs_lradc_reg_clear(lradc, mxs_lradc_irq_en_mask(lradc), LRADC_CTRL1);
1514
1515 for (i = 0; i < LRADC_MAX_DELAY_CHANS; i++)
1516 mxs_lradc_reg_wrt(lradc, 0, LRADC_DELAY(i));
1517 }
1518
1519 static const struct of_device_id mxs_lradc_dt_ids[] = {
1520 { .compatible = "fsl,imx23-lradc", .data = (void *)IMX23_LRADC, },
1521 { .compatible = "fsl,imx28-lradc", .data = (void *)IMX28_LRADC, },
1522 { /* sentinel */ }
1523 };
1524 MODULE_DEVICE_TABLE(of, mxs_lradc_dt_ids);
1525
1526 static int mxs_lradc_probe_touchscreen(struct mxs_lradc *lradc,
1527 struct device_node *lradc_node)
1528 {
1529 int ret;
1530 u32 ts_wires = 0, adapt;
1531
1532 ret = of_property_read_u32(lradc_node, "fsl,lradc-touchscreen-wires",
1533 &ts_wires);
1534 if (ret)
1535 return -ENODEV; /* touchscreen feature disabled */
1536
1537 switch (ts_wires) {
1538 case 4:
1539 lradc->use_touchscreen = MXS_LRADC_TOUCHSCREEN_4WIRE;
1540 break;
1541 case 5:
1542 if (lradc->soc == IMX28_LRADC) {
1543 lradc->use_touchscreen = MXS_LRADC_TOUCHSCREEN_5WIRE;
1544 break;
1545 }
1546 /* fall through an error message for i.MX23 */
1547 default:
1548 dev_err(lradc->dev,
1549 "Unsupported number of touchscreen wires (%d)\n",
1550 ts_wires);
1551 return -EINVAL;
1552 }
1553
1554 if (of_property_read_u32(lradc_node, "fsl,ave-ctrl", &adapt)) {
1555 lradc->over_sample_cnt = 4;
1556 } else {
1557 if (adapt < 1 || adapt > 32) {
1558 dev_err(lradc->dev, "Invalid sample count (%u)\n",
1559 adapt);
1560 return -EINVAL;
1561 }
1562 lradc->over_sample_cnt = adapt;
1563 }
1564
1565 if (of_property_read_u32(lradc_node, "fsl,ave-delay", &adapt)) {
1566 lradc->over_sample_delay = 2;
1567 } else {
1568 if (adapt < 2 || adapt > LRADC_DELAY_DELAY_MASK + 1) {
1569 dev_err(lradc->dev, "Invalid sample delay (%u)\n",
1570 adapt);
1571 return -EINVAL;
1572 }
1573 lradc->over_sample_delay = adapt;
1574 }
1575
1576 if (of_property_read_u32(lradc_node, "fsl,settling", &adapt)) {
1577 lradc->settling_delay = 10;
1578 } else {
1579 if (adapt < 1 || adapt > LRADC_DELAY_DELAY_MASK) {
1580 dev_err(lradc->dev, "Invalid settling delay (%u)\n",
1581 adapt);
1582 return -EINVAL;
1583 }
1584 lradc->settling_delay = adapt;
1585 }
1586
1587 return 0;
1588 }
1589
1590 static int mxs_lradc_probe(struct platform_device *pdev)
1591 {
1592 const struct of_device_id *of_id =
1593 of_match_device(mxs_lradc_dt_ids, &pdev->dev);
1594 const struct mxs_lradc_of_config *of_cfg =
1595 &mxs_lradc_of_config[(enum mxs_lradc_id)of_id->data];
1596 struct device *dev = &pdev->dev;
1597 struct device_node *node = dev->of_node;
1598 struct mxs_lradc *lradc;
1599 struct iio_dev *iio;
1600 struct resource *iores;
1601 int ret = 0, touch_ret;
1602 int i, s;
1603 u64 scale_uv;
1604
1605 /* Allocate the IIO device. */
1606 iio = devm_iio_device_alloc(dev, sizeof(*lradc));
1607 if (!iio) {
1608 dev_err(dev, "Failed to allocate IIO device\n");
1609 return -ENOMEM;
1610 }
1611
1612 lradc = iio_priv(iio);
1613 lradc->soc = (enum mxs_lradc_id)of_id->data;
1614
1615 /* Grab the memory area */
1616 iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1617 lradc->dev = &pdev->dev;
1618 lradc->base = devm_ioremap_resource(dev, iores);
1619 if (IS_ERR(lradc->base))
1620 return PTR_ERR(lradc->base);
1621
1622 lradc->clk = devm_clk_get(&pdev->dev, NULL);
1623 if (IS_ERR(lradc->clk)) {
1624 dev_err(dev, "Failed to get the delay unit clock\n");
1625 return PTR_ERR(lradc->clk);
1626 }
1627 ret = clk_prepare_enable(lradc->clk);
1628 if (ret != 0) {
1629 dev_err(dev, "Failed to enable the delay unit clock\n");
1630 return ret;
1631 }
1632
1633 touch_ret = mxs_lradc_probe_touchscreen(lradc, node);
1634
1635 if (touch_ret == 0)
1636 lradc->buffer_vchans = BUFFER_VCHANS_LIMITED;
1637 else
1638 lradc->buffer_vchans = BUFFER_VCHANS_ALL;
1639
1640 /* Grab all IRQ sources */
1641 for (i = 0; i < of_cfg->irq_count; i++) {
1642 lradc->irq[i] = platform_get_irq(pdev, i);
1643 if (lradc->irq[i] < 0) {
1644 ret = lradc->irq[i];
1645 goto err_clk;
1646 }
1647
1648 ret = devm_request_irq(dev, lradc->irq[i],
1649 mxs_lradc_handle_irq, 0,
1650 of_cfg->irq_name[i], iio);
1651 if (ret)
1652 goto err_clk;
1653 }
1654
1655 lradc->vref_mv = of_cfg->vref_mv;
1656
1657 platform_set_drvdata(pdev, iio);
1658
1659 init_completion(&lradc->completion);
1660 mutex_init(&lradc->lock);
1661
1662 iio->name = pdev->name;
1663 iio->dev.parent = &pdev->dev;
1664 iio->info = &mxs_lradc_iio_info;
1665 iio->modes = INDIO_DIRECT_MODE;
1666 iio->masklength = LRADC_MAX_TOTAL_CHANS;
1667
1668 if (lradc->soc == IMX23_LRADC) {
1669 iio->channels = mx23_lradc_chan_spec;
1670 iio->num_channels = ARRAY_SIZE(mx23_lradc_chan_spec);
1671 } else {
1672 iio->channels = mx28_lradc_chan_spec;
1673 iio->num_channels = ARRAY_SIZE(mx28_lradc_chan_spec);
1674 }
1675
1676 ret = iio_triggered_buffer_setup(iio, &iio_pollfunc_store_time,
1677 &mxs_lradc_trigger_handler,
1678 &mxs_lradc_buffer_ops);
1679 if (ret)
1680 goto err_clk;
1681
1682 ret = mxs_lradc_trigger_init(iio);
1683 if (ret)
1684 goto err_trig;
1685
1686 /* Populate available ADC input ranges */
1687 for (i = 0; i < LRADC_MAX_TOTAL_CHANS; i++) {
1688 for (s = 0; s < ARRAY_SIZE(lradc->scale_avail[i]); s++) {
1689 /*
1690 * [s=0] = optional divider by two disabled (default)
1691 * [s=1] = optional divider by two enabled
1692 *
1693 * The scale is calculated by doing:
1694 * Vref >> (realbits - s)
1695 * which multiplies by two on the second component
1696 * of the array.
1697 */
1698 scale_uv = ((u64)lradc->vref_mv[i] * 100000000) >>
1699 (LRADC_RESOLUTION - s);
1700 lradc->scale_avail[i][s].nano =
1701 do_div(scale_uv, 100000000) * 10;
1702 lradc->scale_avail[i][s].integer = scale_uv;
1703 }
1704 }
1705
1706 ret = stmp_reset_block(lradc->base);
1707 if (ret)
1708 goto err_dev;
1709
1710 /* Configure the hardware. */
1711 mxs_lradc_hw_init(lradc);
1712
1713 /* Register the touchscreen input device. */
1714 if (touch_ret == 0) {
1715 ret = mxs_lradc_ts_register(lradc);
1716 if (ret)
1717 goto err_ts_register;
1718 }
1719
1720 /* Register IIO device. */
1721 ret = iio_device_register(iio);
1722 if (ret) {
1723 dev_err(dev, "Failed to register IIO device\n");
1724 goto err_ts;
1725 }
1726
1727 return 0;
1728
1729 err_ts:
1730 mxs_lradc_ts_unregister(lradc);
1731 err_ts_register:
1732 mxs_lradc_hw_stop(lradc);
1733 err_dev:
1734 mxs_lradc_trigger_remove(iio);
1735 err_trig:
1736 iio_triggered_buffer_cleanup(iio);
1737 err_clk:
1738 clk_disable_unprepare(lradc->clk);
1739 return ret;
1740 }
1741
1742 static int mxs_lradc_remove(struct platform_device *pdev)
1743 {
1744 struct iio_dev *iio = platform_get_drvdata(pdev);
1745 struct mxs_lradc *lradc = iio_priv(iio);
1746
1747 iio_device_unregister(iio);
1748 mxs_lradc_ts_unregister(lradc);
1749 mxs_lradc_hw_stop(lradc);
1750 mxs_lradc_trigger_remove(iio);
1751 iio_triggered_buffer_cleanup(iio);
1752
1753 clk_disable_unprepare(lradc->clk);
1754
1755 return 0;
1756 }
1757
1758 static struct platform_driver mxs_lradc_driver = {
1759 .driver = {
1760 .name = DRIVER_NAME,
1761 .of_match_table = mxs_lradc_dt_ids,
1762 },
1763 .probe = mxs_lradc_probe,
1764 .remove = mxs_lradc_remove,
1765 };
1766
1767 module_platform_driver(mxs_lradc_driver);
1768
1769 MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
1770 MODULE_DESCRIPTION("Freescale MXS LRADC driver");
1771 MODULE_LICENSE("GPL v2");
1772 MODULE_ALIAS("platform:" DRIVER_NAME);
This page took 0.260435 seconds and 5 git commands to generate.