Merge branch 'for-linus-4.6' of git://git.kernel.org/pub/scm/linux/kernel/git/mason...
[deliverable/linux.git] / drivers / infiniband / core / addr.c
1 /*
2 * Copyright (c) 2005 Voltaire Inc. All rights reserved.
3 * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved.
4 * Copyright (c) 1999-2005, Mellanox Technologies, Inc. All rights reserved.
5 * Copyright (c) 2005 Intel Corporation. All rights reserved.
6 *
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
12 *
13 * Redistribution and use in source and binary forms, with or
14 * without modification, are permitted provided that the following
15 * conditions are met:
16 *
17 * - Redistributions of source code must retain the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer.
20 *
21 * - Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials
24 * provided with the distribution.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 * SOFTWARE.
34 */
35
36 #include <linux/mutex.h>
37 #include <linux/inetdevice.h>
38 #include <linux/slab.h>
39 #include <linux/workqueue.h>
40 #include <linux/module.h>
41 #include <net/arp.h>
42 #include <net/neighbour.h>
43 #include <net/route.h>
44 #include <net/netevent.h>
45 #include <net/addrconf.h>
46 #include <net/ip6_route.h>
47 #include <rdma/ib_addr.h>
48 #include <rdma/ib.h>
49
50 MODULE_AUTHOR("Sean Hefty");
51 MODULE_DESCRIPTION("IB Address Translation");
52 MODULE_LICENSE("Dual BSD/GPL");
53
54 struct addr_req {
55 struct list_head list;
56 struct sockaddr_storage src_addr;
57 struct sockaddr_storage dst_addr;
58 struct rdma_dev_addr *addr;
59 struct rdma_addr_client *client;
60 void *context;
61 void (*callback)(int status, struct sockaddr *src_addr,
62 struct rdma_dev_addr *addr, void *context);
63 unsigned long timeout;
64 int status;
65 };
66
67 static void process_req(struct work_struct *work);
68
69 static DEFINE_MUTEX(lock);
70 static LIST_HEAD(req_list);
71 static DECLARE_DELAYED_WORK(work, process_req);
72 static struct workqueue_struct *addr_wq;
73
74 int rdma_addr_size(struct sockaddr *addr)
75 {
76 switch (addr->sa_family) {
77 case AF_INET:
78 return sizeof(struct sockaddr_in);
79 case AF_INET6:
80 return sizeof(struct sockaddr_in6);
81 case AF_IB:
82 return sizeof(struct sockaddr_ib);
83 default:
84 return 0;
85 }
86 }
87 EXPORT_SYMBOL(rdma_addr_size);
88
89 static struct rdma_addr_client self;
90
91 void rdma_addr_register_client(struct rdma_addr_client *client)
92 {
93 atomic_set(&client->refcount, 1);
94 init_completion(&client->comp);
95 }
96 EXPORT_SYMBOL(rdma_addr_register_client);
97
98 static inline void put_client(struct rdma_addr_client *client)
99 {
100 if (atomic_dec_and_test(&client->refcount))
101 complete(&client->comp);
102 }
103
104 void rdma_addr_unregister_client(struct rdma_addr_client *client)
105 {
106 put_client(client);
107 wait_for_completion(&client->comp);
108 }
109 EXPORT_SYMBOL(rdma_addr_unregister_client);
110
111 int rdma_copy_addr(struct rdma_dev_addr *dev_addr, struct net_device *dev,
112 const unsigned char *dst_dev_addr)
113 {
114 dev_addr->dev_type = dev->type;
115 memcpy(dev_addr->src_dev_addr, dev->dev_addr, MAX_ADDR_LEN);
116 memcpy(dev_addr->broadcast, dev->broadcast, MAX_ADDR_LEN);
117 if (dst_dev_addr)
118 memcpy(dev_addr->dst_dev_addr, dst_dev_addr, MAX_ADDR_LEN);
119 dev_addr->bound_dev_if = dev->ifindex;
120 return 0;
121 }
122 EXPORT_SYMBOL(rdma_copy_addr);
123
124 int rdma_translate_ip(const struct sockaddr *addr,
125 struct rdma_dev_addr *dev_addr,
126 u16 *vlan_id)
127 {
128 struct net_device *dev;
129 int ret = -EADDRNOTAVAIL;
130
131 if (dev_addr->bound_dev_if) {
132 dev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if);
133 if (!dev)
134 return -ENODEV;
135 ret = rdma_copy_addr(dev_addr, dev, NULL);
136 dev_put(dev);
137 return ret;
138 }
139
140 switch (addr->sa_family) {
141 case AF_INET:
142 dev = ip_dev_find(dev_addr->net,
143 ((const struct sockaddr_in *)addr)->sin_addr.s_addr);
144
145 if (!dev)
146 return ret;
147
148 ret = rdma_copy_addr(dev_addr, dev, NULL);
149 if (vlan_id)
150 *vlan_id = rdma_vlan_dev_vlan_id(dev);
151 dev_put(dev);
152 break;
153 #if IS_ENABLED(CONFIG_IPV6)
154 case AF_INET6:
155 rcu_read_lock();
156 for_each_netdev_rcu(dev_addr->net, dev) {
157 if (ipv6_chk_addr(dev_addr->net,
158 &((const struct sockaddr_in6 *)addr)->sin6_addr,
159 dev, 1)) {
160 ret = rdma_copy_addr(dev_addr, dev, NULL);
161 if (vlan_id)
162 *vlan_id = rdma_vlan_dev_vlan_id(dev);
163 break;
164 }
165 }
166 rcu_read_unlock();
167 break;
168 #endif
169 }
170 return ret;
171 }
172 EXPORT_SYMBOL(rdma_translate_ip);
173
174 static void set_timeout(unsigned long time)
175 {
176 unsigned long delay;
177
178 delay = time - jiffies;
179 if ((long)delay < 0)
180 delay = 0;
181
182 mod_delayed_work(addr_wq, &work, delay);
183 }
184
185 static void queue_req(struct addr_req *req)
186 {
187 struct addr_req *temp_req;
188
189 mutex_lock(&lock);
190 list_for_each_entry_reverse(temp_req, &req_list, list) {
191 if (time_after_eq(req->timeout, temp_req->timeout))
192 break;
193 }
194
195 list_add(&req->list, &temp_req->list);
196
197 if (req_list.next == &req->list)
198 set_timeout(req->timeout);
199 mutex_unlock(&lock);
200 }
201
202 static int dst_fetch_ha(struct dst_entry *dst, struct rdma_dev_addr *dev_addr,
203 const void *daddr)
204 {
205 struct neighbour *n;
206 int ret;
207
208 n = dst_neigh_lookup(dst, daddr);
209
210 rcu_read_lock();
211 if (!n || !(n->nud_state & NUD_VALID)) {
212 if (n)
213 neigh_event_send(n, NULL);
214 ret = -ENODATA;
215 } else {
216 ret = rdma_copy_addr(dev_addr, dst->dev, n->ha);
217 }
218 rcu_read_unlock();
219
220 if (n)
221 neigh_release(n);
222
223 return ret;
224 }
225
226 static int addr4_resolve(struct sockaddr_in *src_in,
227 const struct sockaddr_in *dst_in,
228 struct rdma_dev_addr *addr,
229 struct rtable **prt)
230 {
231 __be32 src_ip = src_in->sin_addr.s_addr;
232 __be32 dst_ip = dst_in->sin_addr.s_addr;
233 struct rtable *rt;
234 struct flowi4 fl4;
235 int ret;
236
237 memset(&fl4, 0, sizeof(fl4));
238 fl4.daddr = dst_ip;
239 fl4.saddr = src_ip;
240 fl4.flowi4_oif = addr->bound_dev_if;
241 rt = ip_route_output_key(addr->net, &fl4);
242 if (IS_ERR(rt)) {
243 ret = PTR_ERR(rt);
244 goto out;
245 }
246 src_in->sin_family = AF_INET;
247 src_in->sin_addr.s_addr = fl4.saddr;
248
249 /* If there's a gateway, we're definitely in RoCE v2 (as RoCE v1 isn't
250 * routable) and we could set the network type accordingly.
251 */
252 if (rt->rt_uses_gateway)
253 addr->network = RDMA_NETWORK_IPV4;
254
255 addr->hoplimit = ip4_dst_hoplimit(&rt->dst);
256
257 *prt = rt;
258 return 0;
259 out:
260 return ret;
261 }
262
263 #if IS_ENABLED(CONFIG_IPV6)
264 static int addr6_resolve(struct sockaddr_in6 *src_in,
265 const struct sockaddr_in6 *dst_in,
266 struct rdma_dev_addr *addr,
267 struct dst_entry **pdst)
268 {
269 struct flowi6 fl6;
270 struct dst_entry *dst;
271 struct rt6_info *rt;
272 int ret;
273
274 memset(&fl6, 0, sizeof fl6);
275 fl6.daddr = dst_in->sin6_addr;
276 fl6.saddr = src_in->sin6_addr;
277 fl6.flowi6_oif = addr->bound_dev_if;
278
279 dst = ip6_route_output(addr->net, NULL, &fl6);
280 if ((ret = dst->error))
281 goto put;
282
283 rt = (struct rt6_info *)dst;
284 if (ipv6_addr_any(&fl6.saddr)) {
285 ret = ipv6_dev_get_saddr(addr->net, ip6_dst_idev(dst)->dev,
286 &fl6.daddr, 0, &fl6.saddr);
287 if (ret)
288 goto put;
289
290 src_in->sin6_family = AF_INET6;
291 src_in->sin6_addr = fl6.saddr;
292 }
293
294 /* If there's a gateway, we're definitely in RoCE v2 (as RoCE v1 isn't
295 * routable) and we could set the network type accordingly.
296 */
297 if (rt->rt6i_flags & RTF_GATEWAY)
298 addr->network = RDMA_NETWORK_IPV6;
299
300 addr->hoplimit = ip6_dst_hoplimit(dst);
301
302 *pdst = dst;
303 return 0;
304 put:
305 dst_release(dst);
306 return ret;
307 }
308 #else
309 static int addr6_resolve(struct sockaddr_in6 *src_in,
310 const struct sockaddr_in6 *dst_in,
311 struct rdma_dev_addr *addr,
312 struct dst_entry **pdst)
313 {
314 return -EADDRNOTAVAIL;
315 }
316 #endif
317
318 static int addr_resolve_neigh(struct dst_entry *dst,
319 const struct sockaddr *dst_in,
320 struct rdma_dev_addr *addr)
321 {
322 if (dst->dev->flags & IFF_LOOPBACK) {
323 int ret;
324
325 ret = rdma_translate_ip(dst_in, addr, NULL);
326 if (!ret)
327 memcpy(addr->dst_dev_addr, addr->src_dev_addr,
328 MAX_ADDR_LEN);
329
330 return ret;
331 }
332
333 /* If the device doesn't do ARP internally */
334 if (!(dst->dev->flags & IFF_NOARP)) {
335 const struct sockaddr_in *dst_in4 =
336 (const struct sockaddr_in *)dst_in;
337 const struct sockaddr_in6 *dst_in6 =
338 (const struct sockaddr_in6 *)dst_in;
339
340 return dst_fetch_ha(dst, addr,
341 dst_in->sa_family == AF_INET ?
342 (const void *)&dst_in4->sin_addr.s_addr :
343 (const void *)&dst_in6->sin6_addr);
344 }
345
346 return rdma_copy_addr(addr, dst->dev, NULL);
347 }
348
349 static int addr_resolve(struct sockaddr *src_in,
350 const struct sockaddr *dst_in,
351 struct rdma_dev_addr *addr,
352 bool resolve_neigh)
353 {
354 struct net_device *ndev;
355 struct dst_entry *dst;
356 int ret;
357
358 if (src_in->sa_family == AF_INET) {
359 struct rtable *rt = NULL;
360 const struct sockaddr_in *dst_in4 =
361 (const struct sockaddr_in *)dst_in;
362
363 ret = addr4_resolve((struct sockaddr_in *)src_in,
364 dst_in4, addr, &rt);
365 if (ret)
366 return ret;
367
368 if (resolve_neigh)
369 ret = addr_resolve_neigh(&rt->dst, dst_in, addr);
370
371 ndev = rt->dst.dev;
372 dev_hold(ndev);
373
374 ip_rt_put(rt);
375 } else {
376 const struct sockaddr_in6 *dst_in6 =
377 (const struct sockaddr_in6 *)dst_in;
378
379 ret = addr6_resolve((struct sockaddr_in6 *)src_in,
380 dst_in6, addr,
381 &dst);
382 if (ret)
383 return ret;
384
385 if (resolve_neigh)
386 ret = addr_resolve_neigh(dst, dst_in, addr);
387
388 ndev = dst->dev;
389 dev_hold(ndev);
390
391 dst_release(dst);
392 }
393
394 addr->bound_dev_if = ndev->ifindex;
395 addr->net = dev_net(ndev);
396 dev_put(ndev);
397
398 return ret;
399 }
400
401 static void process_req(struct work_struct *work)
402 {
403 struct addr_req *req, *temp_req;
404 struct sockaddr *src_in, *dst_in;
405 struct list_head done_list;
406
407 INIT_LIST_HEAD(&done_list);
408
409 mutex_lock(&lock);
410 list_for_each_entry_safe(req, temp_req, &req_list, list) {
411 if (req->status == -ENODATA) {
412 src_in = (struct sockaddr *) &req->src_addr;
413 dst_in = (struct sockaddr *) &req->dst_addr;
414 req->status = addr_resolve(src_in, dst_in, req->addr,
415 true);
416 if (req->status && time_after_eq(jiffies, req->timeout))
417 req->status = -ETIMEDOUT;
418 else if (req->status == -ENODATA)
419 continue;
420 }
421 list_move_tail(&req->list, &done_list);
422 }
423
424 if (!list_empty(&req_list)) {
425 req = list_entry(req_list.next, struct addr_req, list);
426 set_timeout(req->timeout);
427 }
428 mutex_unlock(&lock);
429
430 list_for_each_entry_safe(req, temp_req, &done_list, list) {
431 list_del(&req->list);
432 req->callback(req->status, (struct sockaddr *) &req->src_addr,
433 req->addr, req->context);
434 put_client(req->client);
435 kfree(req);
436 }
437 }
438
439 int rdma_resolve_ip(struct rdma_addr_client *client,
440 struct sockaddr *src_addr, struct sockaddr *dst_addr,
441 struct rdma_dev_addr *addr, int timeout_ms,
442 void (*callback)(int status, struct sockaddr *src_addr,
443 struct rdma_dev_addr *addr, void *context),
444 void *context)
445 {
446 struct sockaddr *src_in, *dst_in;
447 struct addr_req *req;
448 int ret = 0;
449
450 req = kzalloc(sizeof *req, GFP_KERNEL);
451 if (!req)
452 return -ENOMEM;
453
454 src_in = (struct sockaddr *) &req->src_addr;
455 dst_in = (struct sockaddr *) &req->dst_addr;
456
457 if (src_addr) {
458 if (src_addr->sa_family != dst_addr->sa_family) {
459 ret = -EINVAL;
460 goto err;
461 }
462
463 memcpy(src_in, src_addr, rdma_addr_size(src_addr));
464 } else {
465 src_in->sa_family = dst_addr->sa_family;
466 }
467
468 memcpy(dst_in, dst_addr, rdma_addr_size(dst_addr));
469 req->addr = addr;
470 req->callback = callback;
471 req->context = context;
472 req->client = client;
473 atomic_inc(&client->refcount);
474
475 req->status = addr_resolve(src_in, dst_in, addr, true);
476 switch (req->status) {
477 case 0:
478 req->timeout = jiffies;
479 queue_req(req);
480 break;
481 case -ENODATA:
482 req->timeout = msecs_to_jiffies(timeout_ms) + jiffies;
483 queue_req(req);
484 break;
485 default:
486 ret = req->status;
487 atomic_dec(&client->refcount);
488 goto err;
489 }
490 return ret;
491 err:
492 kfree(req);
493 return ret;
494 }
495 EXPORT_SYMBOL(rdma_resolve_ip);
496
497 int rdma_resolve_ip_route(struct sockaddr *src_addr,
498 const struct sockaddr *dst_addr,
499 struct rdma_dev_addr *addr)
500 {
501 struct sockaddr_storage ssrc_addr = {};
502 struct sockaddr *src_in = (struct sockaddr *)&ssrc_addr;
503
504 if (src_addr) {
505 if (src_addr->sa_family != dst_addr->sa_family)
506 return -EINVAL;
507
508 memcpy(src_in, src_addr, rdma_addr_size(src_addr));
509 } else {
510 src_in->sa_family = dst_addr->sa_family;
511 }
512
513 return addr_resolve(src_in, dst_addr, addr, false);
514 }
515 EXPORT_SYMBOL(rdma_resolve_ip_route);
516
517 void rdma_addr_cancel(struct rdma_dev_addr *addr)
518 {
519 struct addr_req *req, *temp_req;
520
521 mutex_lock(&lock);
522 list_for_each_entry_safe(req, temp_req, &req_list, list) {
523 if (req->addr == addr) {
524 req->status = -ECANCELED;
525 req->timeout = jiffies;
526 list_move(&req->list, &req_list);
527 set_timeout(req->timeout);
528 break;
529 }
530 }
531 mutex_unlock(&lock);
532 }
533 EXPORT_SYMBOL(rdma_addr_cancel);
534
535 struct resolve_cb_context {
536 struct rdma_dev_addr *addr;
537 struct completion comp;
538 };
539
540 static void resolve_cb(int status, struct sockaddr *src_addr,
541 struct rdma_dev_addr *addr, void *context)
542 {
543 memcpy(((struct resolve_cb_context *)context)->addr, addr, sizeof(struct
544 rdma_dev_addr));
545 complete(&((struct resolve_cb_context *)context)->comp);
546 }
547
548 int rdma_addr_find_l2_eth_by_grh(const union ib_gid *sgid,
549 const union ib_gid *dgid,
550 u8 *dmac, u16 *vlan_id, int *if_index,
551 int *hoplimit)
552 {
553 int ret = 0;
554 struct rdma_dev_addr dev_addr;
555 struct resolve_cb_context ctx;
556 struct net_device *dev;
557
558 union {
559 struct sockaddr _sockaddr;
560 struct sockaddr_in _sockaddr_in;
561 struct sockaddr_in6 _sockaddr_in6;
562 } sgid_addr, dgid_addr;
563
564
565 rdma_gid2ip(&sgid_addr._sockaddr, sgid);
566 rdma_gid2ip(&dgid_addr._sockaddr, dgid);
567
568 memset(&dev_addr, 0, sizeof(dev_addr));
569 if (if_index)
570 dev_addr.bound_dev_if = *if_index;
571 dev_addr.net = &init_net;
572
573 ctx.addr = &dev_addr;
574 init_completion(&ctx.comp);
575 ret = rdma_resolve_ip(&self, &sgid_addr._sockaddr, &dgid_addr._sockaddr,
576 &dev_addr, 1000, resolve_cb, &ctx);
577 if (ret)
578 return ret;
579
580 wait_for_completion(&ctx.comp);
581
582 memcpy(dmac, dev_addr.dst_dev_addr, ETH_ALEN);
583 dev = dev_get_by_index(&init_net, dev_addr.bound_dev_if);
584 if (!dev)
585 return -ENODEV;
586 if (if_index)
587 *if_index = dev_addr.bound_dev_if;
588 if (vlan_id)
589 *vlan_id = rdma_vlan_dev_vlan_id(dev);
590 if (hoplimit)
591 *hoplimit = dev_addr.hoplimit;
592 dev_put(dev);
593 return ret;
594 }
595 EXPORT_SYMBOL(rdma_addr_find_l2_eth_by_grh);
596
597 int rdma_addr_find_smac_by_sgid(union ib_gid *sgid, u8 *smac, u16 *vlan_id)
598 {
599 int ret = 0;
600 struct rdma_dev_addr dev_addr;
601 union {
602 struct sockaddr _sockaddr;
603 struct sockaddr_in _sockaddr_in;
604 struct sockaddr_in6 _sockaddr_in6;
605 } gid_addr;
606
607 rdma_gid2ip(&gid_addr._sockaddr, sgid);
608
609 memset(&dev_addr, 0, sizeof(dev_addr));
610 dev_addr.net = &init_net;
611 ret = rdma_translate_ip(&gid_addr._sockaddr, &dev_addr, vlan_id);
612 if (ret)
613 return ret;
614
615 memcpy(smac, dev_addr.src_dev_addr, ETH_ALEN);
616 return ret;
617 }
618 EXPORT_SYMBOL(rdma_addr_find_smac_by_sgid);
619
620 static int netevent_callback(struct notifier_block *self, unsigned long event,
621 void *ctx)
622 {
623 if (event == NETEVENT_NEIGH_UPDATE) {
624 struct neighbour *neigh = ctx;
625
626 if (neigh->nud_state & NUD_VALID) {
627 set_timeout(jiffies);
628 }
629 }
630 return 0;
631 }
632
633 static struct notifier_block nb = {
634 .notifier_call = netevent_callback
635 };
636
637 static int __init addr_init(void)
638 {
639 addr_wq = create_singlethread_workqueue("ib_addr");
640 if (!addr_wq)
641 return -ENOMEM;
642
643 register_netevent_notifier(&nb);
644 rdma_addr_register_client(&self);
645 return 0;
646 }
647
648 static void __exit addr_cleanup(void)
649 {
650 rdma_addr_unregister_client(&self);
651 unregister_netevent_notifier(&nb);
652 destroy_workqueue(addr_wq);
653 }
654
655 module_init(addr_init);
656 module_exit(addr_cleanup);
This page took 0.056619 seconds and 5 git commands to generate.