Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dledford/rdma
[deliverable/linux.git] / drivers / infiniband / core / verbs.c
1 /*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved.
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
37 */
38
39 #include <linux/errno.h>
40 #include <linux/err.h>
41 #include <linux/export.h>
42 #include <linux/string.h>
43 #include <linux/slab.h>
44 #include <linux/in.h>
45 #include <linux/in6.h>
46 #include <net/addrconf.h>
47
48 #include <rdma/ib_verbs.h>
49 #include <rdma/ib_cache.h>
50 #include <rdma/ib_addr.h>
51 #include <rdma/rw.h>
52
53 #include "core_priv.h"
54
55 static const char * const ib_events[] = {
56 [IB_EVENT_CQ_ERR] = "CQ error",
57 [IB_EVENT_QP_FATAL] = "QP fatal error",
58 [IB_EVENT_QP_REQ_ERR] = "QP request error",
59 [IB_EVENT_QP_ACCESS_ERR] = "QP access error",
60 [IB_EVENT_COMM_EST] = "communication established",
61 [IB_EVENT_SQ_DRAINED] = "send queue drained",
62 [IB_EVENT_PATH_MIG] = "path migration successful",
63 [IB_EVENT_PATH_MIG_ERR] = "path migration error",
64 [IB_EVENT_DEVICE_FATAL] = "device fatal error",
65 [IB_EVENT_PORT_ACTIVE] = "port active",
66 [IB_EVENT_PORT_ERR] = "port error",
67 [IB_EVENT_LID_CHANGE] = "LID change",
68 [IB_EVENT_PKEY_CHANGE] = "P_key change",
69 [IB_EVENT_SM_CHANGE] = "SM change",
70 [IB_EVENT_SRQ_ERR] = "SRQ error",
71 [IB_EVENT_SRQ_LIMIT_REACHED] = "SRQ limit reached",
72 [IB_EVENT_QP_LAST_WQE_REACHED] = "last WQE reached",
73 [IB_EVENT_CLIENT_REREGISTER] = "client reregister",
74 [IB_EVENT_GID_CHANGE] = "GID changed",
75 };
76
77 const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
78 {
79 size_t index = event;
80
81 return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
82 ib_events[index] : "unrecognized event";
83 }
84 EXPORT_SYMBOL(ib_event_msg);
85
86 static const char * const wc_statuses[] = {
87 [IB_WC_SUCCESS] = "success",
88 [IB_WC_LOC_LEN_ERR] = "local length error",
89 [IB_WC_LOC_QP_OP_ERR] = "local QP operation error",
90 [IB_WC_LOC_EEC_OP_ERR] = "local EE context operation error",
91 [IB_WC_LOC_PROT_ERR] = "local protection error",
92 [IB_WC_WR_FLUSH_ERR] = "WR flushed",
93 [IB_WC_MW_BIND_ERR] = "memory management operation error",
94 [IB_WC_BAD_RESP_ERR] = "bad response error",
95 [IB_WC_LOC_ACCESS_ERR] = "local access error",
96 [IB_WC_REM_INV_REQ_ERR] = "invalid request error",
97 [IB_WC_REM_ACCESS_ERR] = "remote access error",
98 [IB_WC_REM_OP_ERR] = "remote operation error",
99 [IB_WC_RETRY_EXC_ERR] = "transport retry counter exceeded",
100 [IB_WC_RNR_RETRY_EXC_ERR] = "RNR retry counter exceeded",
101 [IB_WC_LOC_RDD_VIOL_ERR] = "local RDD violation error",
102 [IB_WC_REM_INV_RD_REQ_ERR] = "remote invalid RD request",
103 [IB_WC_REM_ABORT_ERR] = "operation aborted",
104 [IB_WC_INV_EECN_ERR] = "invalid EE context number",
105 [IB_WC_INV_EEC_STATE_ERR] = "invalid EE context state",
106 [IB_WC_FATAL_ERR] = "fatal error",
107 [IB_WC_RESP_TIMEOUT_ERR] = "response timeout error",
108 [IB_WC_GENERAL_ERR] = "general error",
109 };
110
111 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
112 {
113 size_t index = status;
114
115 return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
116 wc_statuses[index] : "unrecognized status";
117 }
118 EXPORT_SYMBOL(ib_wc_status_msg);
119
120 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
121 {
122 switch (rate) {
123 case IB_RATE_2_5_GBPS: return 1;
124 case IB_RATE_5_GBPS: return 2;
125 case IB_RATE_10_GBPS: return 4;
126 case IB_RATE_20_GBPS: return 8;
127 case IB_RATE_30_GBPS: return 12;
128 case IB_RATE_40_GBPS: return 16;
129 case IB_RATE_60_GBPS: return 24;
130 case IB_RATE_80_GBPS: return 32;
131 case IB_RATE_120_GBPS: return 48;
132 default: return -1;
133 }
134 }
135 EXPORT_SYMBOL(ib_rate_to_mult);
136
137 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
138 {
139 switch (mult) {
140 case 1: return IB_RATE_2_5_GBPS;
141 case 2: return IB_RATE_5_GBPS;
142 case 4: return IB_RATE_10_GBPS;
143 case 8: return IB_RATE_20_GBPS;
144 case 12: return IB_RATE_30_GBPS;
145 case 16: return IB_RATE_40_GBPS;
146 case 24: return IB_RATE_60_GBPS;
147 case 32: return IB_RATE_80_GBPS;
148 case 48: return IB_RATE_120_GBPS;
149 default: return IB_RATE_PORT_CURRENT;
150 }
151 }
152 EXPORT_SYMBOL(mult_to_ib_rate);
153
154 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
155 {
156 switch (rate) {
157 case IB_RATE_2_5_GBPS: return 2500;
158 case IB_RATE_5_GBPS: return 5000;
159 case IB_RATE_10_GBPS: return 10000;
160 case IB_RATE_20_GBPS: return 20000;
161 case IB_RATE_30_GBPS: return 30000;
162 case IB_RATE_40_GBPS: return 40000;
163 case IB_RATE_60_GBPS: return 60000;
164 case IB_RATE_80_GBPS: return 80000;
165 case IB_RATE_120_GBPS: return 120000;
166 case IB_RATE_14_GBPS: return 14062;
167 case IB_RATE_56_GBPS: return 56250;
168 case IB_RATE_112_GBPS: return 112500;
169 case IB_RATE_168_GBPS: return 168750;
170 case IB_RATE_25_GBPS: return 25781;
171 case IB_RATE_100_GBPS: return 103125;
172 case IB_RATE_200_GBPS: return 206250;
173 case IB_RATE_300_GBPS: return 309375;
174 default: return -1;
175 }
176 }
177 EXPORT_SYMBOL(ib_rate_to_mbps);
178
179 __attribute_const__ enum rdma_transport_type
180 rdma_node_get_transport(enum rdma_node_type node_type)
181 {
182 switch (node_type) {
183 case RDMA_NODE_IB_CA:
184 case RDMA_NODE_IB_SWITCH:
185 case RDMA_NODE_IB_ROUTER:
186 return RDMA_TRANSPORT_IB;
187 case RDMA_NODE_RNIC:
188 return RDMA_TRANSPORT_IWARP;
189 case RDMA_NODE_USNIC:
190 return RDMA_TRANSPORT_USNIC;
191 case RDMA_NODE_USNIC_UDP:
192 return RDMA_TRANSPORT_USNIC_UDP;
193 default:
194 BUG();
195 return 0;
196 }
197 }
198 EXPORT_SYMBOL(rdma_node_get_transport);
199
200 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
201 {
202 if (device->get_link_layer)
203 return device->get_link_layer(device, port_num);
204
205 switch (rdma_node_get_transport(device->node_type)) {
206 case RDMA_TRANSPORT_IB:
207 return IB_LINK_LAYER_INFINIBAND;
208 case RDMA_TRANSPORT_IWARP:
209 case RDMA_TRANSPORT_USNIC:
210 case RDMA_TRANSPORT_USNIC_UDP:
211 return IB_LINK_LAYER_ETHERNET;
212 default:
213 return IB_LINK_LAYER_UNSPECIFIED;
214 }
215 }
216 EXPORT_SYMBOL(rdma_port_get_link_layer);
217
218 /* Protection domains */
219
220 /**
221 * ib_alloc_pd - Allocates an unused protection domain.
222 * @device: The device on which to allocate the protection domain.
223 *
224 * A protection domain object provides an association between QPs, shared
225 * receive queues, address handles, memory regions, and memory windows.
226 *
227 * Every PD has a local_dma_lkey which can be used as the lkey value for local
228 * memory operations.
229 */
230 struct ib_pd *ib_alloc_pd(struct ib_device *device)
231 {
232 struct ib_pd *pd;
233
234 pd = device->alloc_pd(device, NULL, NULL);
235 if (IS_ERR(pd))
236 return pd;
237
238 pd->device = device;
239 pd->uobject = NULL;
240 pd->local_mr = NULL;
241 atomic_set(&pd->usecnt, 0);
242
243 if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
244 pd->local_dma_lkey = device->local_dma_lkey;
245 else {
246 struct ib_mr *mr;
247
248 mr = ib_get_dma_mr(pd, IB_ACCESS_LOCAL_WRITE);
249 if (IS_ERR(mr)) {
250 ib_dealloc_pd(pd);
251 return (struct ib_pd *)mr;
252 }
253
254 pd->local_mr = mr;
255 pd->local_dma_lkey = pd->local_mr->lkey;
256 }
257 return pd;
258 }
259 EXPORT_SYMBOL(ib_alloc_pd);
260
261 /**
262 * ib_dealloc_pd - Deallocates a protection domain.
263 * @pd: The protection domain to deallocate.
264 *
265 * It is an error to call this function while any resources in the pd still
266 * exist. The caller is responsible to synchronously destroy them and
267 * guarantee no new allocations will happen.
268 */
269 void ib_dealloc_pd(struct ib_pd *pd)
270 {
271 int ret;
272
273 if (pd->local_mr) {
274 ret = ib_dereg_mr(pd->local_mr);
275 WARN_ON(ret);
276 pd->local_mr = NULL;
277 }
278
279 /* uverbs manipulates usecnt with proper locking, while the kabi
280 requires the caller to guarantee we can't race here. */
281 WARN_ON(atomic_read(&pd->usecnt));
282
283 /* Making delalloc_pd a void return is a WIP, no driver should return
284 an error here. */
285 ret = pd->device->dealloc_pd(pd);
286 WARN_ONCE(ret, "Infiniband HW driver failed dealloc_pd");
287 }
288 EXPORT_SYMBOL(ib_dealloc_pd);
289
290 /* Address handles */
291
292 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr)
293 {
294 struct ib_ah *ah;
295
296 ah = pd->device->create_ah(pd, ah_attr);
297
298 if (!IS_ERR(ah)) {
299 ah->device = pd->device;
300 ah->pd = pd;
301 ah->uobject = NULL;
302 atomic_inc(&pd->usecnt);
303 }
304
305 return ah;
306 }
307 EXPORT_SYMBOL(ib_create_ah);
308
309 static int ib_get_header_version(const union rdma_network_hdr *hdr)
310 {
311 const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
312 struct iphdr ip4h_checked;
313 const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
314
315 /* If it's IPv6, the version must be 6, otherwise, the first
316 * 20 bytes (before the IPv4 header) are garbled.
317 */
318 if (ip6h->version != 6)
319 return (ip4h->version == 4) ? 4 : 0;
320 /* version may be 6 or 4 because the first 20 bytes could be garbled */
321
322 /* RoCE v2 requires no options, thus header length
323 * must be 5 words
324 */
325 if (ip4h->ihl != 5)
326 return 6;
327
328 /* Verify checksum.
329 * We can't write on scattered buffers so we need to copy to
330 * temp buffer.
331 */
332 memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
333 ip4h_checked.check = 0;
334 ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
335 /* if IPv4 header checksum is OK, believe it */
336 if (ip4h->check == ip4h_checked.check)
337 return 4;
338 return 6;
339 }
340
341 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
342 u8 port_num,
343 const struct ib_grh *grh)
344 {
345 int grh_version;
346
347 if (rdma_protocol_ib(device, port_num))
348 return RDMA_NETWORK_IB;
349
350 grh_version = ib_get_header_version((union rdma_network_hdr *)grh);
351
352 if (grh_version == 4)
353 return RDMA_NETWORK_IPV4;
354
355 if (grh->next_hdr == IPPROTO_UDP)
356 return RDMA_NETWORK_IPV6;
357
358 return RDMA_NETWORK_ROCE_V1;
359 }
360
361 struct find_gid_index_context {
362 u16 vlan_id;
363 enum ib_gid_type gid_type;
364 };
365
366 static bool find_gid_index(const union ib_gid *gid,
367 const struct ib_gid_attr *gid_attr,
368 void *context)
369 {
370 struct find_gid_index_context *ctx =
371 (struct find_gid_index_context *)context;
372
373 if (ctx->gid_type != gid_attr->gid_type)
374 return false;
375
376 if ((!!(ctx->vlan_id != 0xffff) == !is_vlan_dev(gid_attr->ndev)) ||
377 (is_vlan_dev(gid_attr->ndev) &&
378 vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id))
379 return false;
380
381 return true;
382 }
383
384 static int get_sgid_index_from_eth(struct ib_device *device, u8 port_num,
385 u16 vlan_id, const union ib_gid *sgid,
386 enum ib_gid_type gid_type,
387 u16 *gid_index)
388 {
389 struct find_gid_index_context context = {.vlan_id = vlan_id,
390 .gid_type = gid_type};
391
392 return ib_find_gid_by_filter(device, sgid, port_num, find_gid_index,
393 &context, gid_index);
394 }
395
396 static int get_gids_from_rdma_hdr(union rdma_network_hdr *hdr,
397 enum rdma_network_type net_type,
398 union ib_gid *sgid, union ib_gid *dgid)
399 {
400 struct sockaddr_in src_in;
401 struct sockaddr_in dst_in;
402 __be32 src_saddr, dst_saddr;
403
404 if (!sgid || !dgid)
405 return -EINVAL;
406
407 if (net_type == RDMA_NETWORK_IPV4) {
408 memcpy(&src_in.sin_addr.s_addr,
409 &hdr->roce4grh.saddr, 4);
410 memcpy(&dst_in.sin_addr.s_addr,
411 &hdr->roce4grh.daddr, 4);
412 src_saddr = src_in.sin_addr.s_addr;
413 dst_saddr = dst_in.sin_addr.s_addr;
414 ipv6_addr_set_v4mapped(src_saddr,
415 (struct in6_addr *)sgid);
416 ipv6_addr_set_v4mapped(dst_saddr,
417 (struct in6_addr *)dgid);
418 return 0;
419 } else if (net_type == RDMA_NETWORK_IPV6 ||
420 net_type == RDMA_NETWORK_IB) {
421 *dgid = hdr->ibgrh.dgid;
422 *sgid = hdr->ibgrh.sgid;
423 return 0;
424 } else {
425 return -EINVAL;
426 }
427 }
428
429 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
430 const struct ib_wc *wc, const struct ib_grh *grh,
431 struct ib_ah_attr *ah_attr)
432 {
433 u32 flow_class;
434 u16 gid_index;
435 int ret;
436 enum rdma_network_type net_type = RDMA_NETWORK_IB;
437 enum ib_gid_type gid_type = IB_GID_TYPE_IB;
438 int hoplimit = 0xff;
439 union ib_gid dgid;
440 union ib_gid sgid;
441
442 memset(ah_attr, 0, sizeof *ah_attr);
443 if (rdma_cap_eth_ah(device, port_num)) {
444 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
445 net_type = wc->network_hdr_type;
446 else
447 net_type = ib_get_net_type_by_grh(device, port_num, grh);
448 gid_type = ib_network_to_gid_type(net_type);
449 }
450 ret = get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
451 &sgid, &dgid);
452 if (ret)
453 return ret;
454
455 if (rdma_protocol_roce(device, port_num)) {
456 int if_index = 0;
457 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
458 wc->vlan_id : 0xffff;
459 struct net_device *idev;
460 struct net_device *resolved_dev;
461
462 if (!(wc->wc_flags & IB_WC_GRH))
463 return -EPROTOTYPE;
464
465 if (!device->get_netdev)
466 return -EOPNOTSUPP;
467
468 idev = device->get_netdev(device, port_num);
469 if (!idev)
470 return -ENODEV;
471
472 ret = rdma_addr_find_l2_eth_by_grh(&dgid, &sgid,
473 ah_attr->dmac,
474 wc->wc_flags & IB_WC_WITH_VLAN ?
475 NULL : &vlan_id,
476 &if_index, &hoplimit);
477 if (ret) {
478 dev_put(idev);
479 return ret;
480 }
481
482 resolved_dev = dev_get_by_index(&init_net, if_index);
483 if (resolved_dev->flags & IFF_LOOPBACK) {
484 dev_put(resolved_dev);
485 resolved_dev = idev;
486 dev_hold(resolved_dev);
487 }
488 rcu_read_lock();
489 if (resolved_dev != idev && !rdma_is_upper_dev_rcu(idev,
490 resolved_dev))
491 ret = -EHOSTUNREACH;
492 rcu_read_unlock();
493 dev_put(idev);
494 dev_put(resolved_dev);
495 if (ret)
496 return ret;
497
498 ret = get_sgid_index_from_eth(device, port_num, vlan_id,
499 &dgid, gid_type, &gid_index);
500 if (ret)
501 return ret;
502 }
503
504 ah_attr->dlid = wc->slid;
505 ah_attr->sl = wc->sl;
506 ah_attr->src_path_bits = wc->dlid_path_bits;
507 ah_attr->port_num = port_num;
508
509 if (wc->wc_flags & IB_WC_GRH) {
510 ah_attr->ah_flags = IB_AH_GRH;
511 ah_attr->grh.dgid = sgid;
512
513 if (!rdma_cap_eth_ah(device, port_num)) {
514 if (dgid.global.interface_id != cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
515 ret = ib_find_cached_gid_by_port(device, &dgid,
516 IB_GID_TYPE_IB,
517 port_num, NULL,
518 &gid_index);
519 if (ret)
520 return ret;
521 } else {
522 gid_index = 0;
523 }
524 }
525
526 ah_attr->grh.sgid_index = (u8) gid_index;
527 flow_class = be32_to_cpu(grh->version_tclass_flow);
528 ah_attr->grh.flow_label = flow_class & 0xFFFFF;
529 ah_attr->grh.hop_limit = hoplimit;
530 ah_attr->grh.traffic_class = (flow_class >> 20) & 0xFF;
531 }
532 return 0;
533 }
534 EXPORT_SYMBOL(ib_init_ah_from_wc);
535
536 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
537 const struct ib_grh *grh, u8 port_num)
538 {
539 struct ib_ah_attr ah_attr;
540 int ret;
541
542 ret = ib_init_ah_from_wc(pd->device, port_num, wc, grh, &ah_attr);
543 if (ret)
544 return ERR_PTR(ret);
545
546 return ib_create_ah(pd, &ah_attr);
547 }
548 EXPORT_SYMBOL(ib_create_ah_from_wc);
549
550 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
551 {
552 return ah->device->modify_ah ?
553 ah->device->modify_ah(ah, ah_attr) :
554 -ENOSYS;
555 }
556 EXPORT_SYMBOL(ib_modify_ah);
557
558 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
559 {
560 return ah->device->query_ah ?
561 ah->device->query_ah(ah, ah_attr) :
562 -ENOSYS;
563 }
564 EXPORT_SYMBOL(ib_query_ah);
565
566 int ib_destroy_ah(struct ib_ah *ah)
567 {
568 struct ib_pd *pd;
569 int ret;
570
571 pd = ah->pd;
572 ret = ah->device->destroy_ah(ah);
573 if (!ret)
574 atomic_dec(&pd->usecnt);
575
576 return ret;
577 }
578 EXPORT_SYMBOL(ib_destroy_ah);
579
580 /* Shared receive queues */
581
582 struct ib_srq *ib_create_srq(struct ib_pd *pd,
583 struct ib_srq_init_attr *srq_init_attr)
584 {
585 struct ib_srq *srq;
586
587 if (!pd->device->create_srq)
588 return ERR_PTR(-ENOSYS);
589
590 srq = pd->device->create_srq(pd, srq_init_attr, NULL);
591
592 if (!IS_ERR(srq)) {
593 srq->device = pd->device;
594 srq->pd = pd;
595 srq->uobject = NULL;
596 srq->event_handler = srq_init_attr->event_handler;
597 srq->srq_context = srq_init_attr->srq_context;
598 srq->srq_type = srq_init_attr->srq_type;
599 if (srq->srq_type == IB_SRQT_XRC) {
600 srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
601 srq->ext.xrc.cq = srq_init_attr->ext.xrc.cq;
602 atomic_inc(&srq->ext.xrc.xrcd->usecnt);
603 atomic_inc(&srq->ext.xrc.cq->usecnt);
604 }
605 atomic_inc(&pd->usecnt);
606 atomic_set(&srq->usecnt, 0);
607 }
608
609 return srq;
610 }
611 EXPORT_SYMBOL(ib_create_srq);
612
613 int ib_modify_srq(struct ib_srq *srq,
614 struct ib_srq_attr *srq_attr,
615 enum ib_srq_attr_mask srq_attr_mask)
616 {
617 return srq->device->modify_srq ?
618 srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) :
619 -ENOSYS;
620 }
621 EXPORT_SYMBOL(ib_modify_srq);
622
623 int ib_query_srq(struct ib_srq *srq,
624 struct ib_srq_attr *srq_attr)
625 {
626 return srq->device->query_srq ?
627 srq->device->query_srq(srq, srq_attr) : -ENOSYS;
628 }
629 EXPORT_SYMBOL(ib_query_srq);
630
631 int ib_destroy_srq(struct ib_srq *srq)
632 {
633 struct ib_pd *pd;
634 enum ib_srq_type srq_type;
635 struct ib_xrcd *uninitialized_var(xrcd);
636 struct ib_cq *uninitialized_var(cq);
637 int ret;
638
639 if (atomic_read(&srq->usecnt))
640 return -EBUSY;
641
642 pd = srq->pd;
643 srq_type = srq->srq_type;
644 if (srq_type == IB_SRQT_XRC) {
645 xrcd = srq->ext.xrc.xrcd;
646 cq = srq->ext.xrc.cq;
647 }
648
649 ret = srq->device->destroy_srq(srq);
650 if (!ret) {
651 atomic_dec(&pd->usecnt);
652 if (srq_type == IB_SRQT_XRC) {
653 atomic_dec(&xrcd->usecnt);
654 atomic_dec(&cq->usecnt);
655 }
656 }
657
658 return ret;
659 }
660 EXPORT_SYMBOL(ib_destroy_srq);
661
662 /* Queue pairs */
663
664 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
665 {
666 struct ib_qp *qp = context;
667 unsigned long flags;
668
669 spin_lock_irqsave(&qp->device->event_handler_lock, flags);
670 list_for_each_entry(event->element.qp, &qp->open_list, open_list)
671 if (event->element.qp->event_handler)
672 event->element.qp->event_handler(event, event->element.qp->qp_context);
673 spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
674 }
675
676 static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
677 {
678 mutex_lock(&xrcd->tgt_qp_mutex);
679 list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
680 mutex_unlock(&xrcd->tgt_qp_mutex);
681 }
682
683 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
684 void (*event_handler)(struct ib_event *, void *),
685 void *qp_context)
686 {
687 struct ib_qp *qp;
688 unsigned long flags;
689
690 qp = kzalloc(sizeof *qp, GFP_KERNEL);
691 if (!qp)
692 return ERR_PTR(-ENOMEM);
693
694 qp->real_qp = real_qp;
695 atomic_inc(&real_qp->usecnt);
696 qp->device = real_qp->device;
697 qp->event_handler = event_handler;
698 qp->qp_context = qp_context;
699 qp->qp_num = real_qp->qp_num;
700 qp->qp_type = real_qp->qp_type;
701
702 spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
703 list_add(&qp->open_list, &real_qp->open_list);
704 spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
705
706 return qp;
707 }
708
709 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
710 struct ib_qp_open_attr *qp_open_attr)
711 {
712 struct ib_qp *qp, *real_qp;
713
714 if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
715 return ERR_PTR(-EINVAL);
716
717 qp = ERR_PTR(-EINVAL);
718 mutex_lock(&xrcd->tgt_qp_mutex);
719 list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
720 if (real_qp->qp_num == qp_open_attr->qp_num) {
721 qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
722 qp_open_attr->qp_context);
723 break;
724 }
725 }
726 mutex_unlock(&xrcd->tgt_qp_mutex);
727 return qp;
728 }
729 EXPORT_SYMBOL(ib_open_qp);
730
731 static struct ib_qp *ib_create_xrc_qp(struct ib_qp *qp,
732 struct ib_qp_init_attr *qp_init_attr)
733 {
734 struct ib_qp *real_qp = qp;
735
736 qp->event_handler = __ib_shared_qp_event_handler;
737 qp->qp_context = qp;
738 qp->pd = NULL;
739 qp->send_cq = qp->recv_cq = NULL;
740 qp->srq = NULL;
741 qp->xrcd = qp_init_attr->xrcd;
742 atomic_inc(&qp_init_attr->xrcd->usecnt);
743 INIT_LIST_HEAD(&qp->open_list);
744
745 qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
746 qp_init_attr->qp_context);
747 if (!IS_ERR(qp))
748 __ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
749 else
750 real_qp->device->destroy_qp(real_qp);
751 return qp;
752 }
753
754 struct ib_qp *ib_create_qp(struct ib_pd *pd,
755 struct ib_qp_init_attr *qp_init_attr)
756 {
757 struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
758 struct ib_qp *qp;
759 int ret;
760
761 if (qp_init_attr->rwq_ind_tbl &&
762 (qp_init_attr->recv_cq ||
763 qp_init_attr->srq || qp_init_attr->cap.max_recv_wr ||
764 qp_init_attr->cap.max_recv_sge))
765 return ERR_PTR(-EINVAL);
766
767 /*
768 * If the callers is using the RDMA API calculate the resources
769 * needed for the RDMA READ/WRITE operations.
770 *
771 * Note that these callers need to pass in a port number.
772 */
773 if (qp_init_attr->cap.max_rdma_ctxs)
774 rdma_rw_init_qp(device, qp_init_attr);
775
776 qp = device->create_qp(pd, qp_init_attr, NULL);
777 if (IS_ERR(qp))
778 return qp;
779
780 qp->device = device;
781 qp->real_qp = qp;
782 qp->uobject = NULL;
783 qp->qp_type = qp_init_attr->qp_type;
784 qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl;
785
786 atomic_set(&qp->usecnt, 0);
787 qp->mrs_used = 0;
788 spin_lock_init(&qp->mr_lock);
789 INIT_LIST_HEAD(&qp->rdma_mrs);
790 INIT_LIST_HEAD(&qp->sig_mrs);
791
792 if (qp_init_attr->qp_type == IB_QPT_XRC_TGT)
793 return ib_create_xrc_qp(qp, qp_init_attr);
794
795 qp->event_handler = qp_init_attr->event_handler;
796 qp->qp_context = qp_init_attr->qp_context;
797 if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
798 qp->recv_cq = NULL;
799 qp->srq = NULL;
800 } else {
801 qp->recv_cq = qp_init_attr->recv_cq;
802 if (qp_init_attr->recv_cq)
803 atomic_inc(&qp_init_attr->recv_cq->usecnt);
804 qp->srq = qp_init_attr->srq;
805 if (qp->srq)
806 atomic_inc(&qp_init_attr->srq->usecnt);
807 }
808
809 qp->pd = pd;
810 qp->send_cq = qp_init_attr->send_cq;
811 qp->xrcd = NULL;
812
813 atomic_inc(&pd->usecnt);
814 if (qp_init_attr->send_cq)
815 atomic_inc(&qp_init_attr->send_cq->usecnt);
816 if (qp_init_attr->rwq_ind_tbl)
817 atomic_inc(&qp->rwq_ind_tbl->usecnt);
818
819 if (qp_init_attr->cap.max_rdma_ctxs) {
820 ret = rdma_rw_init_mrs(qp, qp_init_attr);
821 if (ret) {
822 pr_err("failed to init MR pool ret= %d\n", ret);
823 ib_destroy_qp(qp);
824 qp = ERR_PTR(ret);
825 }
826 }
827
828 return qp;
829 }
830 EXPORT_SYMBOL(ib_create_qp);
831
832 static const struct {
833 int valid;
834 enum ib_qp_attr_mask req_param[IB_QPT_MAX];
835 enum ib_qp_attr_mask opt_param[IB_QPT_MAX];
836 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
837 [IB_QPS_RESET] = {
838 [IB_QPS_RESET] = { .valid = 1 },
839 [IB_QPS_INIT] = {
840 .valid = 1,
841 .req_param = {
842 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
843 IB_QP_PORT |
844 IB_QP_QKEY),
845 [IB_QPT_RAW_PACKET] = IB_QP_PORT,
846 [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
847 IB_QP_PORT |
848 IB_QP_ACCESS_FLAGS),
849 [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
850 IB_QP_PORT |
851 IB_QP_ACCESS_FLAGS),
852 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
853 IB_QP_PORT |
854 IB_QP_ACCESS_FLAGS),
855 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
856 IB_QP_PORT |
857 IB_QP_ACCESS_FLAGS),
858 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
859 IB_QP_QKEY),
860 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
861 IB_QP_QKEY),
862 }
863 },
864 },
865 [IB_QPS_INIT] = {
866 [IB_QPS_RESET] = { .valid = 1 },
867 [IB_QPS_ERR] = { .valid = 1 },
868 [IB_QPS_INIT] = {
869 .valid = 1,
870 .opt_param = {
871 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
872 IB_QP_PORT |
873 IB_QP_QKEY),
874 [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
875 IB_QP_PORT |
876 IB_QP_ACCESS_FLAGS),
877 [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
878 IB_QP_PORT |
879 IB_QP_ACCESS_FLAGS),
880 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
881 IB_QP_PORT |
882 IB_QP_ACCESS_FLAGS),
883 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
884 IB_QP_PORT |
885 IB_QP_ACCESS_FLAGS),
886 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
887 IB_QP_QKEY),
888 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
889 IB_QP_QKEY),
890 }
891 },
892 [IB_QPS_RTR] = {
893 .valid = 1,
894 .req_param = {
895 [IB_QPT_UC] = (IB_QP_AV |
896 IB_QP_PATH_MTU |
897 IB_QP_DEST_QPN |
898 IB_QP_RQ_PSN),
899 [IB_QPT_RC] = (IB_QP_AV |
900 IB_QP_PATH_MTU |
901 IB_QP_DEST_QPN |
902 IB_QP_RQ_PSN |
903 IB_QP_MAX_DEST_RD_ATOMIC |
904 IB_QP_MIN_RNR_TIMER),
905 [IB_QPT_XRC_INI] = (IB_QP_AV |
906 IB_QP_PATH_MTU |
907 IB_QP_DEST_QPN |
908 IB_QP_RQ_PSN),
909 [IB_QPT_XRC_TGT] = (IB_QP_AV |
910 IB_QP_PATH_MTU |
911 IB_QP_DEST_QPN |
912 IB_QP_RQ_PSN |
913 IB_QP_MAX_DEST_RD_ATOMIC |
914 IB_QP_MIN_RNR_TIMER),
915 },
916 .opt_param = {
917 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
918 IB_QP_QKEY),
919 [IB_QPT_UC] = (IB_QP_ALT_PATH |
920 IB_QP_ACCESS_FLAGS |
921 IB_QP_PKEY_INDEX),
922 [IB_QPT_RC] = (IB_QP_ALT_PATH |
923 IB_QP_ACCESS_FLAGS |
924 IB_QP_PKEY_INDEX),
925 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH |
926 IB_QP_ACCESS_FLAGS |
927 IB_QP_PKEY_INDEX),
928 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH |
929 IB_QP_ACCESS_FLAGS |
930 IB_QP_PKEY_INDEX),
931 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
932 IB_QP_QKEY),
933 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
934 IB_QP_QKEY),
935 },
936 },
937 },
938 [IB_QPS_RTR] = {
939 [IB_QPS_RESET] = { .valid = 1 },
940 [IB_QPS_ERR] = { .valid = 1 },
941 [IB_QPS_RTS] = {
942 .valid = 1,
943 .req_param = {
944 [IB_QPT_UD] = IB_QP_SQ_PSN,
945 [IB_QPT_UC] = IB_QP_SQ_PSN,
946 [IB_QPT_RC] = (IB_QP_TIMEOUT |
947 IB_QP_RETRY_CNT |
948 IB_QP_RNR_RETRY |
949 IB_QP_SQ_PSN |
950 IB_QP_MAX_QP_RD_ATOMIC),
951 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT |
952 IB_QP_RETRY_CNT |
953 IB_QP_RNR_RETRY |
954 IB_QP_SQ_PSN |
955 IB_QP_MAX_QP_RD_ATOMIC),
956 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT |
957 IB_QP_SQ_PSN),
958 [IB_QPT_SMI] = IB_QP_SQ_PSN,
959 [IB_QPT_GSI] = IB_QP_SQ_PSN,
960 },
961 .opt_param = {
962 [IB_QPT_UD] = (IB_QP_CUR_STATE |
963 IB_QP_QKEY),
964 [IB_QPT_UC] = (IB_QP_CUR_STATE |
965 IB_QP_ALT_PATH |
966 IB_QP_ACCESS_FLAGS |
967 IB_QP_PATH_MIG_STATE),
968 [IB_QPT_RC] = (IB_QP_CUR_STATE |
969 IB_QP_ALT_PATH |
970 IB_QP_ACCESS_FLAGS |
971 IB_QP_MIN_RNR_TIMER |
972 IB_QP_PATH_MIG_STATE),
973 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
974 IB_QP_ALT_PATH |
975 IB_QP_ACCESS_FLAGS |
976 IB_QP_PATH_MIG_STATE),
977 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
978 IB_QP_ALT_PATH |
979 IB_QP_ACCESS_FLAGS |
980 IB_QP_MIN_RNR_TIMER |
981 IB_QP_PATH_MIG_STATE),
982 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
983 IB_QP_QKEY),
984 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
985 IB_QP_QKEY),
986 }
987 }
988 },
989 [IB_QPS_RTS] = {
990 [IB_QPS_RESET] = { .valid = 1 },
991 [IB_QPS_ERR] = { .valid = 1 },
992 [IB_QPS_RTS] = {
993 .valid = 1,
994 .opt_param = {
995 [IB_QPT_UD] = (IB_QP_CUR_STATE |
996 IB_QP_QKEY),
997 [IB_QPT_UC] = (IB_QP_CUR_STATE |
998 IB_QP_ACCESS_FLAGS |
999 IB_QP_ALT_PATH |
1000 IB_QP_PATH_MIG_STATE),
1001 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1002 IB_QP_ACCESS_FLAGS |
1003 IB_QP_ALT_PATH |
1004 IB_QP_PATH_MIG_STATE |
1005 IB_QP_MIN_RNR_TIMER),
1006 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1007 IB_QP_ACCESS_FLAGS |
1008 IB_QP_ALT_PATH |
1009 IB_QP_PATH_MIG_STATE),
1010 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1011 IB_QP_ACCESS_FLAGS |
1012 IB_QP_ALT_PATH |
1013 IB_QP_PATH_MIG_STATE |
1014 IB_QP_MIN_RNR_TIMER),
1015 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1016 IB_QP_QKEY),
1017 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1018 IB_QP_QKEY),
1019 }
1020 },
1021 [IB_QPS_SQD] = {
1022 .valid = 1,
1023 .opt_param = {
1024 [IB_QPT_UD] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1025 [IB_QPT_UC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1026 [IB_QPT_RC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1027 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1028 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1029 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1030 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1031 }
1032 },
1033 },
1034 [IB_QPS_SQD] = {
1035 [IB_QPS_RESET] = { .valid = 1 },
1036 [IB_QPS_ERR] = { .valid = 1 },
1037 [IB_QPS_RTS] = {
1038 .valid = 1,
1039 .opt_param = {
1040 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1041 IB_QP_QKEY),
1042 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1043 IB_QP_ALT_PATH |
1044 IB_QP_ACCESS_FLAGS |
1045 IB_QP_PATH_MIG_STATE),
1046 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1047 IB_QP_ALT_PATH |
1048 IB_QP_ACCESS_FLAGS |
1049 IB_QP_MIN_RNR_TIMER |
1050 IB_QP_PATH_MIG_STATE),
1051 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1052 IB_QP_ALT_PATH |
1053 IB_QP_ACCESS_FLAGS |
1054 IB_QP_PATH_MIG_STATE),
1055 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1056 IB_QP_ALT_PATH |
1057 IB_QP_ACCESS_FLAGS |
1058 IB_QP_MIN_RNR_TIMER |
1059 IB_QP_PATH_MIG_STATE),
1060 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1061 IB_QP_QKEY),
1062 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1063 IB_QP_QKEY),
1064 }
1065 },
1066 [IB_QPS_SQD] = {
1067 .valid = 1,
1068 .opt_param = {
1069 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1070 IB_QP_QKEY),
1071 [IB_QPT_UC] = (IB_QP_AV |
1072 IB_QP_ALT_PATH |
1073 IB_QP_ACCESS_FLAGS |
1074 IB_QP_PKEY_INDEX |
1075 IB_QP_PATH_MIG_STATE),
1076 [IB_QPT_RC] = (IB_QP_PORT |
1077 IB_QP_AV |
1078 IB_QP_TIMEOUT |
1079 IB_QP_RETRY_CNT |
1080 IB_QP_RNR_RETRY |
1081 IB_QP_MAX_QP_RD_ATOMIC |
1082 IB_QP_MAX_DEST_RD_ATOMIC |
1083 IB_QP_ALT_PATH |
1084 IB_QP_ACCESS_FLAGS |
1085 IB_QP_PKEY_INDEX |
1086 IB_QP_MIN_RNR_TIMER |
1087 IB_QP_PATH_MIG_STATE),
1088 [IB_QPT_XRC_INI] = (IB_QP_PORT |
1089 IB_QP_AV |
1090 IB_QP_TIMEOUT |
1091 IB_QP_RETRY_CNT |
1092 IB_QP_RNR_RETRY |
1093 IB_QP_MAX_QP_RD_ATOMIC |
1094 IB_QP_ALT_PATH |
1095 IB_QP_ACCESS_FLAGS |
1096 IB_QP_PKEY_INDEX |
1097 IB_QP_PATH_MIG_STATE),
1098 [IB_QPT_XRC_TGT] = (IB_QP_PORT |
1099 IB_QP_AV |
1100 IB_QP_TIMEOUT |
1101 IB_QP_MAX_DEST_RD_ATOMIC |
1102 IB_QP_ALT_PATH |
1103 IB_QP_ACCESS_FLAGS |
1104 IB_QP_PKEY_INDEX |
1105 IB_QP_MIN_RNR_TIMER |
1106 IB_QP_PATH_MIG_STATE),
1107 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1108 IB_QP_QKEY),
1109 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1110 IB_QP_QKEY),
1111 }
1112 }
1113 },
1114 [IB_QPS_SQE] = {
1115 [IB_QPS_RESET] = { .valid = 1 },
1116 [IB_QPS_ERR] = { .valid = 1 },
1117 [IB_QPS_RTS] = {
1118 .valid = 1,
1119 .opt_param = {
1120 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1121 IB_QP_QKEY),
1122 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1123 IB_QP_ACCESS_FLAGS),
1124 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1125 IB_QP_QKEY),
1126 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1127 IB_QP_QKEY),
1128 }
1129 }
1130 },
1131 [IB_QPS_ERR] = {
1132 [IB_QPS_RESET] = { .valid = 1 },
1133 [IB_QPS_ERR] = { .valid = 1 }
1134 }
1135 };
1136
1137 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1138 enum ib_qp_type type, enum ib_qp_attr_mask mask,
1139 enum rdma_link_layer ll)
1140 {
1141 enum ib_qp_attr_mask req_param, opt_param;
1142
1143 if (cur_state < 0 || cur_state > IB_QPS_ERR ||
1144 next_state < 0 || next_state > IB_QPS_ERR)
1145 return 0;
1146
1147 if (mask & IB_QP_CUR_STATE &&
1148 cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1149 cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1150 return 0;
1151
1152 if (!qp_state_table[cur_state][next_state].valid)
1153 return 0;
1154
1155 req_param = qp_state_table[cur_state][next_state].req_param[type];
1156 opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1157
1158 if ((mask & req_param) != req_param)
1159 return 0;
1160
1161 if (mask & ~(req_param | opt_param | IB_QP_STATE))
1162 return 0;
1163
1164 return 1;
1165 }
1166 EXPORT_SYMBOL(ib_modify_qp_is_ok);
1167
1168 int ib_resolve_eth_dmac(struct ib_qp *qp,
1169 struct ib_qp_attr *qp_attr, int *qp_attr_mask)
1170 {
1171 int ret = 0;
1172
1173 if (*qp_attr_mask & IB_QP_AV) {
1174 if (qp_attr->ah_attr.port_num < rdma_start_port(qp->device) ||
1175 qp_attr->ah_attr.port_num > rdma_end_port(qp->device))
1176 return -EINVAL;
1177
1178 if (!rdma_cap_eth_ah(qp->device, qp_attr->ah_attr.port_num))
1179 return 0;
1180
1181 if (rdma_link_local_addr((struct in6_addr *)qp_attr->ah_attr.grh.dgid.raw)) {
1182 rdma_get_ll_mac((struct in6_addr *)qp_attr->ah_attr.grh.dgid.raw,
1183 qp_attr->ah_attr.dmac);
1184 } else {
1185 union ib_gid sgid;
1186 struct ib_gid_attr sgid_attr;
1187 int ifindex;
1188 int hop_limit;
1189
1190 ret = ib_query_gid(qp->device,
1191 qp_attr->ah_attr.port_num,
1192 qp_attr->ah_attr.grh.sgid_index,
1193 &sgid, &sgid_attr);
1194
1195 if (ret || !sgid_attr.ndev) {
1196 if (!ret)
1197 ret = -ENXIO;
1198 goto out;
1199 }
1200
1201 ifindex = sgid_attr.ndev->ifindex;
1202
1203 ret = rdma_addr_find_l2_eth_by_grh(&sgid,
1204 &qp_attr->ah_attr.grh.dgid,
1205 qp_attr->ah_attr.dmac,
1206 NULL, &ifindex, &hop_limit);
1207
1208 dev_put(sgid_attr.ndev);
1209
1210 qp_attr->ah_attr.grh.hop_limit = hop_limit;
1211 }
1212 }
1213 out:
1214 return ret;
1215 }
1216 EXPORT_SYMBOL(ib_resolve_eth_dmac);
1217
1218
1219 int ib_modify_qp(struct ib_qp *qp,
1220 struct ib_qp_attr *qp_attr,
1221 int qp_attr_mask)
1222 {
1223 int ret;
1224
1225 ret = ib_resolve_eth_dmac(qp, qp_attr, &qp_attr_mask);
1226 if (ret)
1227 return ret;
1228
1229 return qp->device->modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
1230 }
1231 EXPORT_SYMBOL(ib_modify_qp);
1232
1233 int ib_query_qp(struct ib_qp *qp,
1234 struct ib_qp_attr *qp_attr,
1235 int qp_attr_mask,
1236 struct ib_qp_init_attr *qp_init_attr)
1237 {
1238 return qp->device->query_qp ?
1239 qp->device->query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) :
1240 -ENOSYS;
1241 }
1242 EXPORT_SYMBOL(ib_query_qp);
1243
1244 int ib_close_qp(struct ib_qp *qp)
1245 {
1246 struct ib_qp *real_qp;
1247 unsigned long flags;
1248
1249 real_qp = qp->real_qp;
1250 if (real_qp == qp)
1251 return -EINVAL;
1252
1253 spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1254 list_del(&qp->open_list);
1255 spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1256
1257 atomic_dec(&real_qp->usecnt);
1258 kfree(qp);
1259
1260 return 0;
1261 }
1262 EXPORT_SYMBOL(ib_close_qp);
1263
1264 static int __ib_destroy_shared_qp(struct ib_qp *qp)
1265 {
1266 struct ib_xrcd *xrcd;
1267 struct ib_qp *real_qp;
1268 int ret;
1269
1270 real_qp = qp->real_qp;
1271 xrcd = real_qp->xrcd;
1272
1273 mutex_lock(&xrcd->tgt_qp_mutex);
1274 ib_close_qp(qp);
1275 if (atomic_read(&real_qp->usecnt) == 0)
1276 list_del(&real_qp->xrcd_list);
1277 else
1278 real_qp = NULL;
1279 mutex_unlock(&xrcd->tgt_qp_mutex);
1280
1281 if (real_qp) {
1282 ret = ib_destroy_qp(real_qp);
1283 if (!ret)
1284 atomic_dec(&xrcd->usecnt);
1285 else
1286 __ib_insert_xrcd_qp(xrcd, real_qp);
1287 }
1288
1289 return 0;
1290 }
1291
1292 int ib_destroy_qp(struct ib_qp *qp)
1293 {
1294 struct ib_pd *pd;
1295 struct ib_cq *scq, *rcq;
1296 struct ib_srq *srq;
1297 struct ib_rwq_ind_table *ind_tbl;
1298 int ret;
1299
1300 WARN_ON_ONCE(qp->mrs_used > 0);
1301
1302 if (atomic_read(&qp->usecnt))
1303 return -EBUSY;
1304
1305 if (qp->real_qp != qp)
1306 return __ib_destroy_shared_qp(qp);
1307
1308 pd = qp->pd;
1309 scq = qp->send_cq;
1310 rcq = qp->recv_cq;
1311 srq = qp->srq;
1312 ind_tbl = qp->rwq_ind_tbl;
1313
1314 if (!qp->uobject)
1315 rdma_rw_cleanup_mrs(qp);
1316
1317 ret = qp->device->destroy_qp(qp);
1318 if (!ret) {
1319 if (pd)
1320 atomic_dec(&pd->usecnt);
1321 if (scq)
1322 atomic_dec(&scq->usecnt);
1323 if (rcq)
1324 atomic_dec(&rcq->usecnt);
1325 if (srq)
1326 atomic_dec(&srq->usecnt);
1327 if (ind_tbl)
1328 atomic_dec(&ind_tbl->usecnt);
1329 }
1330
1331 return ret;
1332 }
1333 EXPORT_SYMBOL(ib_destroy_qp);
1334
1335 /* Completion queues */
1336
1337 struct ib_cq *ib_create_cq(struct ib_device *device,
1338 ib_comp_handler comp_handler,
1339 void (*event_handler)(struct ib_event *, void *),
1340 void *cq_context,
1341 const struct ib_cq_init_attr *cq_attr)
1342 {
1343 struct ib_cq *cq;
1344
1345 cq = device->create_cq(device, cq_attr, NULL, NULL);
1346
1347 if (!IS_ERR(cq)) {
1348 cq->device = device;
1349 cq->uobject = NULL;
1350 cq->comp_handler = comp_handler;
1351 cq->event_handler = event_handler;
1352 cq->cq_context = cq_context;
1353 atomic_set(&cq->usecnt, 0);
1354 }
1355
1356 return cq;
1357 }
1358 EXPORT_SYMBOL(ib_create_cq);
1359
1360 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period)
1361 {
1362 return cq->device->modify_cq ?
1363 cq->device->modify_cq(cq, cq_count, cq_period) : -ENOSYS;
1364 }
1365 EXPORT_SYMBOL(ib_modify_cq);
1366
1367 int ib_destroy_cq(struct ib_cq *cq)
1368 {
1369 if (atomic_read(&cq->usecnt))
1370 return -EBUSY;
1371
1372 return cq->device->destroy_cq(cq);
1373 }
1374 EXPORT_SYMBOL(ib_destroy_cq);
1375
1376 int ib_resize_cq(struct ib_cq *cq, int cqe)
1377 {
1378 return cq->device->resize_cq ?
1379 cq->device->resize_cq(cq, cqe, NULL) : -ENOSYS;
1380 }
1381 EXPORT_SYMBOL(ib_resize_cq);
1382
1383 /* Memory regions */
1384
1385 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags)
1386 {
1387 struct ib_mr *mr;
1388 int err;
1389
1390 err = ib_check_mr_access(mr_access_flags);
1391 if (err)
1392 return ERR_PTR(err);
1393
1394 mr = pd->device->get_dma_mr(pd, mr_access_flags);
1395
1396 if (!IS_ERR(mr)) {
1397 mr->device = pd->device;
1398 mr->pd = pd;
1399 mr->uobject = NULL;
1400 atomic_inc(&pd->usecnt);
1401 mr->need_inval = false;
1402 }
1403
1404 return mr;
1405 }
1406 EXPORT_SYMBOL(ib_get_dma_mr);
1407
1408 int ib_dereg_mr(struct ib_mr *mr)
1409 {
1410 struct ib_pd *pd = mr->pd;
1411 int ret;
1412
1413 ret = mr->device->dereg_mr(mr);
1414 if (!ret)
1415 atomic_dec(&pd->usecnt);
1416
1417 return ret;
1418 }
1419 EXPORT_SYMBOL(ib_dereg_mr);
1420
1421 /**
1422 * ib_alloc_mr() - Allocates a memory region
1423 * @pd: protection domain associated with the region
1424 * @mr_type: memory region type
1425 * @max_num_sg: maximum sg entries available for registration.
1426 *
1427 * Notes:
1428 * Memory registeration page/sg lists must not exceed max_num_sg.
1429 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
1430 * max_num_sg * used_page_size.
1431 *
1432 */
1433 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
1434 enum ib_mr_type mr_type,
1435 u32 max_num_sg)
1436 {
1437 struct ib_mr *mr;
1438
1439 if (!pd->device->alloc_mr)
1440 return ERR_PTR(-ENOSYS);
1441
1442 mr = pd->device->alloc_mr(pd, mr_type, max_num_sg);
1443 if (!IS_ERR(mr)) {
1444 mr->device = pd->device;
1445 mr->pd = pd;
1446 mr->uobject = NULL;
1447 atomic_inc(&pd->usecnt);
1448 mr->need_inval = false;
1449 }
1450
1451 return mr;
1452 }
1453 EXPORT_SYMBOL(ib_alloc_mr);
1454
1455 /* "Fast" memory regions */
1456
1457 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
1458 int mr_access_flags,
1459 struct ib_fmr_attr *fmr_attr)
1460 {
1461 struct ib_fmr *fmr;
1462
1463 if (!pd->device->alloc_fmr)
1464 return ERR_PTR(-ENOSYS);
1465
1466 fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr);
1467 if (!IS_ERR(fmr)) {
1468 fmr->device = pd->device;
1469 fmr->pd = pd;
1470 atomic_inc(&pd->usecnt);
1471 }
1472
1473 return fmr;
1474 }
1475 EXPORT_SYMBOL(ib_alloc_fmr);
1476
1477 int ib_unmap_fmr(struct list_head *fmr_list)
1478 {
1479 struct ib_fmr *fmr;
1480
1481 if (list_empty(fmr_list))
1482 return 0;
1483
1484 fmr = list_entry(fmr_list->next, struct ib_fmr, list);
1485 return fmr->device->unmap_fmr(fmr_list);
1486 }
1487 EXPORT_SYMBOL(ib_unmap_fmr);
1488
1489 int ib_dealloc_fmr(struct ib_fmr *fmr)
1490 {
1491 struct ib_pd *pd;
1492 int ret;
1493
1494 pd = fmr->pd;
1495 ret = fmr->device->dealloc_fmr(fmr);
1496 if (!ret)
1497 atomic_dec(&pd->usecnt);
1498
1499 return ret;
1500 }
1501 EXPORT_SYMBOL(ib_dealloc_fmr);
1502
1503 /* Multicast groups */
1504
1505 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1506 {
1507 int ret;
1508
1509 if (!qp->device->attach_mcast)
1510 return -ENOSYS;
1511 if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD)
1512 return -EINVAL;
1513
1514 ret = qp->device->attach_mcast(qp, gid, lid);
1515 if (!ret)
1516 atomic_inc(&qp->usecnt);
1517 return ret;
1518 }
1519 EXPORT_SYMBOL(ib_attach_mcast);
1520
1521 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1522 {
1523 int ret;
1524
1525 if (!qp->device->detach_mcast)
1526 return -ENOSYS;
1527 if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD)
1528 return -EINVAL;
1529
1530 ret = qp->device->detach_mcast(qp, gid, lid);
1531 if (!ret)
1532 atomic_dec(&qp->usecnt);
1533 return ret;
1534 }
1535 EXPORT_SYMBOL(ib_detach_mcast);
1536
1537 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device)
1538 {
1539 struct ib_xrcd *xrcd;
1540
1541 if (!device->alloc_xrcd)
1542 return ERR_PTR(-ENOSYS);
1543
1544 xrcd = device->alloc_xrcd(device, NULL, NULL);
1545 if (!IS_ERR(xrcd)) {
1546 xrcd->device = device;
1547 xrcd->inode = NULL;
1548 atomic_set(&xrcd->usecnt, 0);
1549 mutex_init(&xrcd->tgt_qp_mutex);
1550 INIT_LIST_HEAD(&xrcd->tgt_qp_list);
1551 }
1552
1553 return xrcd;
1554 }
1555 EXPORT_SYMBOL(ib_alloc_xrcd);
1556
1557 int ib_dealloc_xrcd(struct ib_xrcd *xrcd)
1558 {
1559 struct ib_qp *qp;
1560 int ret;
1561
1562 if (atomic_read(&xrcd->usecnt))
1563 return -EBUSY;
1564
1565 while (!list_empty(&xrcd->tgt_qp_list)) {
1566 qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
1567 ret = ib_destroy_qp(qp);
1568 if (ret)
1569 return ret;
1570 }
1571
1572 return xrcd->device->dealloc_xrcd(xrcd);
1573 }
1574 EXPORT_SYMBOL(ib_dealloc_xrcd);
1575
1576 /**
1577 * ib_create_wq - Creates a WQ associated with the specified protection
1578 * domain.
1579 * @pd: The protection domain associated with the WQ.
1580 * @wq_init_attr: A list of initial attributes required to create the
1581 * WQ. If WQ creation succeeds, then the attributes are updated to
1582 * the actual capabilities of the created WQ.
1583 *
1584 * wq_init_attr->max_wr and wq_init_attr->max_sge determine
1585 * the requested size of the WQ, and set to the actual values allocated
1586 * on return.
1587 * If ib_create_wq() succeeds, then max_wr and max_sge will always be
1588 * at least as large as the requested values.
1589 */
1590 struct ib_wq *ib_create_wq(struct ib_pd *pd,
1591 struct ib_wq_init_attr *wq_attr)
1592 {
1593 struct ib_wq *wq;
1594
1595 if (!pd->device->create_wq)
1596 return ERR_PTR(-ENOSYS);
1597
1598 wq = pd->device->create_wq(pd, wq_attr, NULL);
1599 if (!IS_ERR(wq)) {
1600 wq->event_handler = wq_attr->event_handler;
1601 wq->wq_context = wq_attr->wq_context;
1602 wq->wq_type = wq_attr->wq_type;
1603 wq->cq = wq_attr->cq;
1604 wq->device = pd->device;
1605 wq->pd = pd;
1606 wq->uobject = NULL;
1607 atomic_inc(&pd->usecnt);
1608 atomic_inc(&wq_attr->cq->usecnt);
1609 atomic_set(&wq->usecnt, 0);
1610 }
1611 return wq;
1612 }
1613 EXPORT_SYMBOL(ib_create_wq);
1614
1615 /**
1616 * ib_destroy_wq - Destroys the specified WQ.
1617 * @wq: The WQ to destroy.
1618 */
1619 int ib_destroy_wq(struct ib_wq *wq)
1620 {
1621 int err;
1622 struct ib_cq *cq = wq->cq;
1623 struct ib_pd *pd = wq->pd;
1624
1625 if (atomic_read(&wq->usecnt))
1626 return -EBUSY;
1627
1628 err = wq->device->destroy_wq(wq);
1629 if (!err) {
1630 atomic_dec(&pd->usecnt);
1631 atomic_dec(&cq->usecnt);
1632 }
1633 return err;
1634 }
1635 EXPORT_SYMBOL(ib_destroy_wq);
1636
1637 /**
1638 * ib_modify_wq - Modifies the specified WQ.
1639 * @wq: The WQ to modify.
1640 * @wq_attr: On input, specifies the WQ attributes to modify.
1641 * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
1642 * are being modified.
1643 * On output, the current values of selected WQ attributes are returned.
1644 */
1645 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr,
1646 u32 wq_attr_mask)
1647 {
1648 int err;
1649
1650 if (!wq->device->modify_wq)
1651 return -ENOSYS;
1652
1653 err = wq->device->modify_wq(wq, wq_attr, wq_attr_mask, NULL);
1654 return err;
1655 }
1656 EXPORT_SYMBOL(ib_modify_wq);
1657
1658 /*
1659 * ib_create_rwq_ind_table - Creates a RQ Indirection Table.
1660 * @device: The device on which to create the rwq indirection table.
1661 * @ib_rwq_ind_table_init_attr: A list of initial attributes required to
1662 * create the Indirection Table.
1663 *
1664 * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less
1665 * than the created ib_rwq_ind_table object and the caller is responsible
1666 * for its memory allocation/free.
1667 */
1668 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
1669 struct ib_rwq_ind_table_init_attr *init_attr)
1670 {
1671 struct ib_rwq_ind_table *rwq_ind_table;
1672 int i;
1673 u32 table_size;
1674
1675 if (!device->create_rwq_ind_table)
1676 return ERR_PTR(-ENOSYS);
1677
1678 table_size = (1 << init_attr->log_ind_tbl_size);
1679 rwq_ind_table = device->create_rwq_ind_table(device,
1680 init_attr, NULL);
1681 if (IS_ERR(rwq_ind_table))
1682 return rwq_ind_table;
1683
1684 rwq_ind_table->ind_tbl = init_attr->ind_tbl;
1685 rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size;
1686 rwq_ind_table->device = device;
1687 rwq_ind_table->uobject = NULL;
1688 atomic_set(&rwq_ind_table->usecnt, 0);
1689
1690 for (i = 0; i < table_size; i++)
1691 atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt);
1692
1693 return rwq_ind_table;
1694 }
1695 EXPORT_SYMBOL(ib_create_rwq_ind_table);
1696
1697 /*
1698 * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table.
1699 * @wq_ind_table: The Indirection Table to destroy.
1700 */
1701 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table)
1702 {
1703 int err, i;
1704 u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size);
1705 struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl;
1706
1707 if (atomic_read(&rwq_ind_table->usecnt))
1708 return -EBUSY;
1709
1710 err = rwq_ind_table->device->destroy_rwq_ind_table(rwq_ind_table);
1711 if (!err) {
1712 for (i = 0; i < table_size; i++)
1713 atomic_dec(&ind_tbl[i]->usecnt);
1714 }
1715
1716 return err;
1717 }
1718 EXPORT_SYMBOL(ib_destroy_rwq_ind_table);
1719
1720 struct ib_flow *ib_create_flow(struct ib_qp *qp,
1721 struct ib_flow_attr *flow_attr,
1722 int domain)
1723 {
1724 struct ib_flow *flow_id;
1725 if (!qp->device->create_flow)
1726 return ERR_PTR(-ENOSYS);
1727
1728 flow_id = qp->device->create_flow(qp, flow_attr, domain);
1729 if (!IS_ERR(flow_id))
1730 atomic_inc(&qp->usecnt);
1731 return flow_id;
1732 }
1733 EXPORT_SYMBOL(ib_create_flow);
1734
1735 int ib_destroy_flow(struct ib_flow *flow_id)
1736 {
1737 int err;
1738 struct ib_qp *qp = flow_id->qp;
1739
1740 err = qp->device->destroy_flow(flow_id);
1741 if (!err)
1742 atomic_dec(&qp->usecnt);
1743 return err;
1744 }
1745 EXPORT_SYMBOL(ib_destroy_flow);
1746
1747 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
1748 struct ib_mr_status *mr_status)
1749 {
1750 return mr->device->check_mr_status ?
1751 mr->device->check_mr_status(mr, check_mask, mr_status) : -ENOSYS;
1752 }
1753 EXPORT_SYMBOL(ib_check_mr_status);
1754
1755 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
1756 int state)
1757 {
1758 if (!device->set_vf_link_state)
1759 return -ENOSYS;
1760
1761 return device->set_vf_link_state(device, vf, port, state);
1762 }
1763 EXPORT_SYMBOL(ib_set_vf_link_state);
1764
1765 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
1766 struct ifla_vf_info *info)
1767 {
1768 if (!device->get_vf_config)
1769 return -ENOSYS;
1770
1771 return device->get_vf_config(device, vf, port, info);
1772 }
1773 EXPORT_SYMBOL(ib_get_vf_config);
1774
1775 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
1776 struct ifla_vf_stats *stats)
1777 {
1778 if (!device->get_vf_stats)
1779 return -ENOSYS;
1780
1781 return device->get_vf_stats(device, vf, port, stats);
1782 }
1783 EXPORT_SYMBOL(ib_get_vf_stats);
1784
1785 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
1786 int type)
1787 {
1788 if (!device->set_vf_guid)
1789 return -ENOSYS;
1790
1791 return device->set_vf_guid(device, vf, port, guid, type);
1792 }
1793 EXPORT_SYMBOL(ib_set_vf_guid);
1794
1795 /**
1796 * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
1797 * and set it the memory region.
1798 * @mr: memory region
1799 * @sg: dma mapped scatterlist
1800 * @sg_nents: number of entries in sg
1801 * @sg_offset: offset in bytes into sg
1802 * @page_size: page vector desired page size
1803 *
1804 * Constraints:
1805 * - The first sg element is allowed to have an offset.
1806 * - Each sg element must be aligned to page_size (or physically
1807 * contiguous to the previous element). In case an sg element has a
1808 * non contiguous offset, the mapping prefix will not include it.
1809 * - The last sg element is allowed to have length less than page_size.
1810 * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
1811 * then only max_num_sg entries will be mapped.
1812 * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS_REG, non of these
1813 * constraints holds and the page_size argument is ignored.
1814 *
1815 * Returns the number of sg elements that were mapped to the memory region.
1816 *
1817 * After this completes successfully, the memory region
1818 * is ready for registration.
1819 */
1820 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
1821 unsigned int *sg_offset, unsigned int page_size)
1822 {
1823 if (unlikely(!mr->device->map_mr_sg))
1824 return -ENOSYS;
1825
1826 mr->page_size = page_size;
1827
1828 return mr->device->map_mr_sg(mr, sg, sg_nents, sg_offset);
1829 }
1830 EXPORT_SYMBOL(ib_map_mr_sg);
1831
1832 /**
1833 * ib_sg_to_pages() - Convert the largest prefix of a sg list
1834 * to a page vector
1835 * @mr: memory region
1836 * @sgl: dma mapped scatterlist
1837 * @sg_nents: number of entries in sg
1838 * @sg_offset_p: IN: start offset in bytes into sg
1839 * OUT: offset in bytes for element n of the sg of the first
1840 * byte that has not been processed where n is the return
1841 * value of this function.
1842 * @set_page: driver page assignment function pointer
1843 *
1844 * Core service helper for drivers to convert the largest
1845 * prefix of given sg list to a page vector. The sg list
1846 * prefix converted is the prefix that meet the requirements
1847 * of ib_map_mr_sg.
1848 *
1849 * Returns the number of sg elements that were assigned to
1850 * a page vector.
1851 */
1852 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
1853 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
1854 {
1855 struct scatterlist *sg;
1856 u64 last_end_dma_addr = 0;
1857 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
1858 unsigned int last_page_off = 0;
1859 u64 page_mask = ~((u64)mr->page_size - 1);
1860 int i, ret;
1861
1862 if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
1863 return -EINVAL;
1864
1865 mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
1866 mr->length = 0;
1867
1868 for_each_sg(sgl, sg, sg_nents, i) {
1869 u64 dma_addr = sg_dma_address(sg) + sg_offset;
1870 u64 prev_addr = dma_addr;
1871 unsigned int dma_len = sg_dma_len(sg) - sg_offset;
1872 u64 end_dma_addr = dma_addr + dma_len;
1873 u64 page_addr = dma_addr & page_mask;
1874
1875 /*
1876 * For the second and later elements, check whether either the
1877 * end of element i-1 or the start of element i is not aligned
1878 * on a page boundary.
1879 */
1880 if (i && (last_page_off != 0 || page_addr != dma_addr)) {
1881 /* Stop mapping if there is a gap. */
1882 if (last_end_dma_addr != dma_addr)
1883 break;
1884
1885 /*
1886 * Coalesce this element with the last. If it is small
1887 * enough just update mr->length. Otherwise start
1888 * mapping from the next page.
1889 */
1890 goto next_page;
1891 }
1892
1893 do {
1894 ret = set_page(mr, page_addr);
1895 if (unlikely(ret < 0)) {
1896 sg_offset = prev_addr - sg_dma_address(sg);
1897 mr->length += prev_addr - dma_addr;
1898 if (sg_offset_p)
1899 *sg_offset_p = sg_offset;
1900 return i || sg_offset ? i : ret;
1901 }
1902 prev_addr = page_addr;
1903 next_page:
1904 page_addr += mr->page_size;
1905 } while (page_addr < end_dma_addr);
1906
1907 mr->length += dma_len;
1908 last_end_dma_addr = end_dma_addr;
1909 last_page_off = end_dma_addr & ~page_mask;
1910
1911 sg_offset = 0;
1912 }
1913
1914 if (sg_offset_p)
1915 *sg_offset_p = 0;
1916 return i;
1917 }
1918 EXPORT_SYMBOL(ib_sg_to_pages);
1919
1920 struct ib_drain_cqe {
1921 struct ib_cqe cqe;
1922 struct completion done;
1923 };
1924
1925 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
1926 {
1927 struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
1928 cqe);
1929
1930 complete(&cqe->done);
1931 }
1932
1933 /*
1934 * Post a WR and block until its completion is reaped for the SQ.
1935 */
1936 static void __ib_drain_sq(struct ib_qp *qp)
1937 {
1938 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
1939 struct ib_drain_cqe sdrain;
1940 struct ib_send_wr swr = {}, *bad_swr;
1941 int ret;
1942
1943 if (qp->send_cq->poll_ctx == IB_POLL_DIRECT) {
1944 WARN_ONCE(qp->send_cq->poll_ctx == IB_POLL_DIRECT,
1945 "IB_POLL_DIRECT poll_ctx not supported for drain\n");
1946 return;
1947 }
1948
1949 swr.wr_cqe = &sdrain.cqe;
1950 sdrain.cqe.done = ib_drain_qp_done;
1951 init_completion(&sdrain.done);
1952
1953 ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
1954 if (ret) {
1955 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
1956 return;
1957 }
1958
1959 ret = ib_post_send(qp, &swr, &bad_swr);
1960 if (ret) {
1961 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
1962 return;
1963 }
1964
1965 wait_for_completion(&sdrain.done);
1966 }
1967
1968 /*
1969 * Post a WR and block until its completion is reaped for the RQ.
1970 */
1971 static void __ib_drain_rq(struct ib_qp *qp)
1972 {
1973 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
1974 struct ib_drain_cqe rdrain;
1975 struct ib_recv_wr rwr = {}, *bad_rwr;
1976 int ret;
1977
1978 if (qp->recv_cq->poll_ctx == IB_POLL_DIRECT) {
1979 WARN_ONCE(qp->recv_cq->poll_ctx == IB_POLL_DIRECT,
1980 "IB_POLL_DIRECT poll_ctx not supported for drain\n");
1981 return;
1982 }
1983
1984 rwr.wr_cqe = &rdrain.cqe;
1985 rdrain.cqe.done = ib_drain_qp_done;
1986 init_completion(&rdrain.done);
1987
1988 ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
1989 if (ret) {
1990 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
1991 return;
1992 }
1993
1994 ret = ib_post_recv(qp, &rwr, &bad_rwr);
1995 if (ret) {
1996 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
1997 return;
1998 }
1999
2000 wait_for_completion(&rdrain.done);
2001 }
2002
2003 /**
2004 * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2005 * application.
2006 * @qp: queue pair to drain
2007 *
2008 * If the device has a provider-specific drain function, then
2009 * call that. Otherwise call the generic drain function
2010 * __ib_drain_sq().
2011 *
2012 * The caller must:
2013 *
2014 * ensure there is room in the CQ and SQ for the drain work request and
2015 * completion.
2016 *
2017 * allocate the CQ using ib_alloc_cq() and the CQ poll context cannot be
2018 * IB_POLL_DIRECT.
2019 *
2020 * ensure that there are no other contexts that are posting WRs concurrently.
2021 * Otherwise the drain is not guaranteed.
2022 */
2023 void ib_drain_sq(struct ib_qp *qp)
2024 {
2025 if (qp->device->drain_sq)
2026 qp->device->drain_sq(qp);
2027 else
2028 __ib_drain_sq(qp);
2029 }
2030 EXPORT_SYMBOL(ib_drain_sq);
2031
2032 /**
2033 * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2034 * application.
2035 * @qp: queue pair to drain
2036 *
2037 * If the device has a provider-specific drain function, then
2038 * call that. Otherwise call the generic drain function
2039 * __ib_drain_rq().
2040 *
2041 * The caller must:
2042 *
2043 * ensure there is room in the CQ and RQ for the drain work request and
2044 * completion.
2045 *
2046 * allocate the CQ using ib_alloc_cq() and the CQ poll context cannot be
2047 * IB_POLL_DIRECT.
2048 *
2049 * ensure that there are no other contexts that are posting WRs concurrently.
2050 * Otherwise the drain is not guaranteed.
2051 */
2052 void ib_drain_rq(struct ib_qp *qp)
2053 {
2054 if (qp->device->drain_rq)
2055 qp->device->drain_rq(qp);
2056 else
2057 __ib_drain_rq(qp);
2058 }
2059 EXPORT_SYMBOL(ib_drain_rq);
2060
2061 /**
2062 * ib_drain_qp() - Block until all CQEs have been consumed by the
2063 * application on both the RQ and SQ.
2064 * @qp: queue pair to drain
2065 *
2066 * The caller must:
2067 *
2068 * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2069 * and completions.
2070 *
2071 * allocate the CQs using ib_alloc_cq() and the CQ poll context cannot be
2072 * IB_POLL_DIRECT.
2073 *
2074 * ensure that there are no other contexts that are posting WRs concurrently.
2075 * Otherwise the drain is not guaranteed.
2076 */
2077 void ib_drain_qp(struct ib_qp *qp)
2078 {
2079 ib_drain_sq(qp);
2080 if (!qp->srq)
2081 ib_drain_rq(qp);
2082 }
2083 EXPORT_SYMBOL(ib_drain_qp);
This page took 0.078997 seconds and 5 git commands to generate.