Merge branches 'cxgb4' and 'mlx5' into k.o/for-4.8
[deliverable/linux.git] / drivers / infiniband / core / verbs.c
1 /*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved.
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
37 */
38
39 #include <linux/errno.h>
40 #include <linux/err.h>
41 #include <linux/export.h>
42 #include <linux/string.h>
43 #include <linux/slab.h>
44 #include <linux/in.h>
45 #include <linux/in6.h>
46 #include <net/addrconf.h>
47
48 #include <rdma/ib_verbs.h>
49 #include <rdma/ib_cache.h>
50 #include <rdma/ib_addr.h>
51 #include <rdma/rw.h>
52
53 #include "core_priv.h"
54
55 static const char * const ib_events[] = {
56 [IB_EVENT_CQ_ERR] = "CQ error",
57 [IB_EVENT_QP_FATAL] = "QP fatal error",
58 [IB_EVENT_QP_REQ_ERR] = "QP request error",
59 [IB_EVENT_QP_ACCESS_ERR] = "QP access error",
60 [IB_EVENT_COMM_EST] = "communication established",
61 [IB_EVENT_SQ_DRAINED] = "send queue drained",
62 [IB_EVENT_PATH_MIG] = "path migration successful",
63 [IB_EVENT_PATH_MIG_ERR] = "path migration error",
64 [IB_EVENT_DEVICE_FATAL] = "device fatal error",
65 [IB_EVENT_PORT_ACTIVE] = "port active",
66 [IB_EVENT_PORT_ERR] = "port error",
67 [IB_EVENT_LID_CHANGE] = "LID change",
68 [IB_EVENT_PKEY_CHANGE] = "P_key change",
69 [IB_EVENT_SM_CHANGE] = "SM change",
70 [IB_EVENT_SRQ_ERR] = "SRQ error",
71 [IB_EVENT_SRQ_LIMIT_REACHED] = "SRQ limit reached",
72 [IB_EVENT_QP_LAST_WQE_REACHED] = "last WQE reached",
73 [IB_EVENT_CLIENT_REREGISTER] = "client reregister",
74 [IB_EVENT_GID_CHANGE] = "GID changed",
75 };
76
77 const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
78 {
79 size_t index = event;
80
81 return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
82 ib_events[index] : "unrecognized event";
83 }
84 EXPORT_SYMBOL(ib_event_msg);
85
86 static const char * const wc_statuses[] = {
87 [IB_WC_SUCCESS] = "success",
88 [IB_WC_LOC_LEN_ERR] = "local length error",
89 [IB_WC_LOC_QP_OP_ERR] = "local QP operation error",
90 [IB_WC_LOC_EEC_OP_ERR] = "local EE context operation error",
91 [IB_WC_LOC_PROT_ERR] = "local protection error",
92 [IB_WC_WR_FLUSH_ERR] = "WR flushed",
93 [IB_WC_MW_BIND_ERR] = "memory management operation error",
94 [IB_WC_BAD_RESP_ERR] = "bad response error",
95 [IB_WC_LOC_ACCESS_ERR] = "local access error",
96 [IB_WC_REM_INV_REQ_ERR] = "invalid request error",
97 [IB_WC_REM_ACCESS_ERR] = "remote access error",
98 [IB_WC_REM_OP_ERR] = "remote operation error",
99 [IB_WC_RETRY_EXC_ERR] = "transport retry counter exceeded",
100 [IB_WC_RNR_RETRY_EXC_ERR] = "RNR retry counter exceeded",
101 [IB_WC_LOC_RDD_VIOL_ERR] = "local RDD violation error",
102 [IB_WC_REM_INV_RD_REQ_ERR] = "remote invalid RD request",
103 [IB_WC_REM_ABORT_ERR] = "operation aborted",
104 [IB_WC_INV_EECN_ERR] = "invalid EE context number",
105 [IB_WC_INV_EEC_STATE_ERR] = "invalid EE context state",
106 [IB_WC_FATAL_ERR] = "fatal error",
107 [IB_WC_RESP_TIMEOUT_ERR] = "response timeout error",
108 [IB_WC_GENERAL_ERR] = "general error",
109 };
110
111 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
112 {
113 size_t index = status;
114
115 return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
116 wc_statuses[index] : "unrecognized status";
117 }
118 EXPORT_SYMBOL(ib_wc_status_msg);
119
120 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
121 {
122 switch (rate) {
123 case IB_RATE_2_5_GBPS: return 1;
124 case IB_RATE_5_GBPS: return 2;
125 case IB_RATE_10_GBPS: return 4;
126 case IB_RATE_20_GBPS: return 8;
127 case IB_RATE_30_GBPS: return 12;
128 case IB_RATE_40_GBPS: return 16;
129 case IB_RATE_60_GBPS: return 24;
130 case IB_RATE_80_GBPS: return 32;
131 case IB_RATE_120_GBPS: return 48;
132 default: return -1;
133 }
134 }
135 EXPORT_SYMBOL(ib_rate_to_mult);
136
137 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
138 {
139 switch (mult) {
140 case 1: return IB_RATE_2_5_GBPS;
141 case 2: return IB_RATE_5_GBPS;
142 case 4: return IB_RATE_10_GBPS;
143 case 8: return IB_RATE_20_GBPS;
144 case 12: return IB_RATE_30_GBPS;
145 case 16: return IB_RATE_40_GBPS;
146 case 24: return IB_RATE_60_GBPS;
147 case 32: return IB_RATE_80_GBPS;
148 case 48: return IB_RATE_120_GBPS;
149 default: return IB_RATE_PORT_CURRENT;
150 }
151 }
152 EXPORT_SYMBOL(mult_to_ib_rate);
153
154 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
155 {
156 switch (rate) {
157 case IB_RATE_2_5_GBPS: return 2500;
158 case IB_RATE_5_GBPS: return 5000;
159 case IB_RATE_10_GBPS: return 10000;
160 case IB_RATE_20_GBPS: return 20000;
161 case IB_RATE_30_GBPS: return 30000;
162 case IB_RATE_40_GBPS: return 40000;
163 case IB_RATE_60_GBPS: return 60000;
164 case IB_RATE_80_GBPS: return 80000;
165 case IB_RATE_120_GBPS: return 120000;
166 case IB_RATE_14_GBPS: return 14062;
167 case IB_RATE_56_GBPS: return 56250;
168 case IB_RATE_112_GBPS: return 112500;
169 case IB_RATE_168_GBPS: return 168750;
170 case IB_RATE_25_GBPS: return 25781;
171 case IB_RATE_100_GBPS: return 103125;
172 case IB_RATE_200_GBPS: return 206250;
173 case IB_RATE_300_GBPS: return 309375;
174 default: return -1;
175 }
176 }
177 EXPORT_SYMBOL(ib_rate_to_mbps);
178
179 __attribute_const__ enum rdma_transport_type
180 rdma_node_get_transport(enum rdma_node_type node_type)
181 {
182 switch (node_type) {
183 case RDMA_NODE_IB_CA:
184 case RDMA_NODE_IB_SWITCH:
185 case RDMA_NODE_IB_ROUTER:
186 return RDMA_TRANSPORT_IB;
187 case RDMA_NODE_RNIC:
188 return RDMA_TRANSPORT_IWARP;
189 case RDMA_NODE_USNIC:
190 return RDMA_TRANSPORT_USNIC;
191 case RDMA_NODE_USNIC_UDP:
192 return RDMA_TRANSPORT_USNIC_UDP;
193 default:
194 BUG();
195 return 0;
196 }
197 }
198 EXPORT_SYMBOL(rdma_node_get_transport);
199
200 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
201 {
202 if (device->get_link_layer)
203 return device->get_link_layer(device, port_num);
204
205 switch (rdma_node_get_transport(device->node_type)) {
206 case RDMA_TRANSPORT_IB:
207 return IB_LINK_LAYER_INFINIBAND;
208 case RDMA_TRANSPORT_IWARP:
209 case RDMA_TRANSPORT_USNIC:
210 case RDMA_TRANSPORT_USNIC_UDP:
211 return IB_LINK_LAYER_ETHERNET;
212 default:
213 return IB_LINK_LAYER_UNSPECIFIED;
214 }
215 }
216 EXPORT_SYMBOL(rdma_port_get_link_layer);
217
218 /* Protection domains */
219
220 /**
221 * ib_alloc_pd - Allocates an unused protection domain.
222 * @device: The device on which to allocate the protection domain.
223 *
224 * A protection domain object provides an association between QPs, shared
225 * receive queues, address handles, memory regions, and memory windows.
226 *
227 * Every PD has a local_dma_lkey which can be used as the lkey value for local
228 * memory operations.
229 */
230 struct ib_pd *ib_alloc_pd(struct ib_device *device)
231 {
232 struct ib_pd *pd;
233
234 pd = device->alloc_pd(device, NULL, NULL);
235 if (IS_ERR(pd))
236 return pd;
237
238 pd->device = device;
239 pd->uobject = NULL;
240 pd->local_mr = NULL;
241 atomic_set(&pd->usecnt, 0);
242
243 if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
244 pd->local_dma_lkey = device->local_dma_lkey;
245 else {
246 struct ib_mr *mr;
247
248 mr = ib_get_dma_mr(pd, IB_ACCESS_LOCAL_WRITE);
249 if (IS_ERR(mr)) {
250 ib_dealloc_pd(pd);
251 return (struct ib_pd *)mr;
252 }
253
254 pd->local_mr = mr;
255 pd->local_dma_lkey = pd->local_mr->lkey;
256 }
257 return pd;
258 }
259 EXPORT_SYMBOL(ib_alloc_pd);
260
261 /**
262 * ib_dealloc_pd - Deallocates a protection domain.
263 * @pd: The protection domain to deallocate.
264 *
265 * It is an error to call this function while any resources in the pd still
266 * exist. The caller is responsible to synchronously destroy them and
267 * guarantee no new allocations will happen.
268 */
269 void ib_dealloc_pd(struct ib_pd *pd)
270 {
271 int ret;
272
273 if (pd->local_mr) {
274 ret = ib_dereg_mr(pd->local_mr);
275 WARN_ON(ret);
276 pd->local_mr = NULL;
277 }
278
279 /* uverbs manipulates usecnt with proper locking, while the kabi
280 requires the caller to guarantee we can't race here. */
281 WARN_ON(atomic_read(&pd->usecnt));
282
283 /* Making delalloc_pd a void return is a WIP, no driver should return
284 an error here. */
285 ret = pd->device->dealloc_pd(pd);
286 WARN_ONCE(ret, "Infiniband HW driver failed dealloc_pd");
287 }
288 EXPORT_SYMBOL(ib_dealloc_pd);
289
290 /* Address handles */
291
292 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr)
293 {
294 struct ib_ah *ah;
295
296 ah = pd->device->create_ah(pd, ah_attr);
297
298 if (!IS_ERR(ah)) {
299 ah->device = pd->device;
300 ah->pd = pd;
301 ah->uobject = NULL;
302 atomic_inc(&pd->usecnt);
303 }
304
305 return ah;
306 }
307 EXPORT_SYMBOL(ib_create_ah);
308
309 static int ib_get_header_version(const union rdma_network_hdr *hdr)
310 {
311 const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
312 struct iphdr ip4h_checked;
313 const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
314
315 /* If it's IPv6, the version must be 6, otherwise, the first
316 * 20 bytes (before the IPv4 header) are garbled.
317 */
318 if (ip6h->version != 6)
319 return (ip4h->version == 4) ? 4 : 0;
320 /* version may be 6 or 4 because the first 20 bytes could be garbled */
321
322 /* RoCE v2 requires no options, thus header length
323 * must be 5 words
324 */
325 if (ip4h->ihl != 5)
326 return 6;
327
328 /* Verify checksum.
329 * We can't write on scattered buffers so we need to copy to
330 * temp buffer.
331 */
332 memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
333 ip4h_checked.check = 0;
334 ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
335 /* if IPv4 header checksum is OK, believe it */
336 if (ip4h->check == ip4h_checked.check)
337 return 4;
338 return 6;
339 }
340
341 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
342 u8 port_num,
343 const struct ib_grh *grh)
344 {
345 int grh_version;
346
347 if (rdma_protocol_ib(device, port_num))
348 return RDMA_NETWORK_IB;
349
350 grh_version = ib_get_header_version((union rdma_network_hdr *)grh);
351
352 if (grh_version == 4)
353 return RDMA_NETWORK_IPV4;
354
355 if (grh->next_hdr == IPPROTO_UDP)
356 return RDMA_NETWORK_IPV6;
357
358 return RDMA_NETWORK_ROCE_V1;
359 }
360
361 struct find_gid_index_context {
362 u16 vlan_id;
363 enum ib_gid_type gid_type;
364 };
365
366 static bool find_gid_index(const union ib_gid *gid,
367 const struct ib_gid_attr *gid_attr,
368 void *context)
369 {
370 struct find_gid_index_context *ctx =
371 (struct find_gid_index_context *)context;
372
373 if (ctx->gid_type != gid_attr->gid_type)
374 return false;
375
376 if ((!!(ctx->vlan_id != 0xffff) == !is_vlan_dev(gid_attr->ndev)) ||
377 (is_vlan_dev(gid_attr->ndev) &&
378 vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id))
379 return false;
380
381 return true;
382 }
383
384 static int get_sgid_index_from_eth(struct ib_device *device, u8 port_num,
385 u16 vlan_id, const union ib_gid *sgid,
386 enum ib_gid_type gid_type,
387 u16 *gid_index)
388 {
389 struct find_gid_index_context context = {.vlan_id = vlan_id,
390 .gid_type = gid_type};
391
392 return ib_find_gid_by_filter(device, sgid, port_num, find_gid_index,
393 &context, gid_index);
394 }
395
396 static int get_gids_from_rdma_hdr(union rdma_network_hdr *hdr,
397 enum rdma_network_type net_type,
398 union ib_gid *sgid, union ib_gid *dgid)
399 {
400 struct sockaddr_in src_in;
401 struct sockaddr_in dst_in;
402 __be32 src_saddr, dst_saddr;
403
404 if (!sgid || !dgid)
405 return -EINVAL;
406
407 if (net_type == RDMA_NETWORK_IPV4) {
408 memcpy(&src_in.sin_addr.s_addr,
409 &hdr->roce4grh.saddr, 4);
410 memcpy(&dst_in.sin_addr.s_addr,
411 &hdr->roce4grh.daddr, 4);
412 src_saddr = src_in.sin_addr.s_addr;
413 dst_saddr = dst_in.sin_addr.s_addr;
414 ipv6_addr_set_v4mapped(src_saddr,
415 (struct in6_addr *)sgid);
416 ipv6_addr_set_v4mapped(dst_saddr,
417 (struct in6_addr *)dgid);
418 return 0;
419 } else if (net_type == RDMA_NETWORK_IPV6 ||
420 net_type == RDMA_NETWORK_IB) {
421 *dgid = hdr->ibgrh.dgid;
422 *sgid = hdr->ibgrh.sgid;
423 return 0;
424 } else {
425 return -EINVAL;
426 }
427 }
428
429 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
430 const struct ib_wc *wc, const struct ib_grh *grh,
431 struct ib_ah_attr *ah_attr)
432 {
433 u32 flow_class;
434 u16 gid_index;
435 int ret;
436 enum rdma_network_type net_type = RDMA_NETWORK_IB;
437 enum ib_gid_type gid_type = IB_GID_TYPE_IB;
438 int hoplimit = 0xff;
439 union ib_gid dgid;
440 union ib_gid sgid;
441
442 memset(ah_attr, 0, sizeof *ah_attr);
443 if (rdma_cap_eth_ah(device, port_num)) {
444 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
445 net_type = wc->network_hdr_type;
446 else
447 net_type = ib_get_net_type_by_grh(device, port_num, grh);
448 gid_type = ib_network_to_gid_type(net_type);
449 }
450 ret = get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
451 &sgid, &dgid);
452 if (ret)
453 return ret;
454
455 if (rdma_protocol_roce(device, port_num)) {
456 int if_index = 0;
457 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
458 wc->vlan_id : 0xffff;
459 struct net_device *idev;
460 struct net_device *resolved_dev;
461
462 if (!(wc->wc_flags & IB_WC_GRH))
463 return -EPROTOTYPE;
464
465 if (!device->get_netdev)
466 return -EOPNOTSUPP;
467
468 idev = device->get_netdev(device, port_num);
469 if (!idev)
470 return -ENODEV;
471
472 ret = rdma_addr_find_l2_eth_by_grh(&dgid, &sgid,
473 ah_attr->dmac,
474 wc->wc_flags & IB_WC_WITH_VLAN ?
475 NULL : &vlan_id,
476 &if_index, &hoplimit);
477 if (ret) {
478 dev_put(idev);
479 return ret;
480 }
481
482 resolved_dev = dev_get_by_index(&init_net, if_index);
483 if (resolved_dev->flags & IFF_LOOPBACK) {
484 dev_put(resolved_dev);
485 resolved_dev = idev;
486 dev_hold(resolved_dev);
487 }
488 rcu_read_lock();
489 if (resolved_dev != idev && !rdma_is_upper_dev_rcu(idev,
490 resolved_dev))
491 ret = -EHOSTUNREACH;
492 rcu_read_unlock();
493 dev_put(idev);
494 dev_put(resolved_dev);
495 if (ret)
496 return ret;
497
498 ret = get_sgid_index_from_eth(device, port_num, vlan_id,
499 &dgid, gid_type, &gid_index);
500 if (ret)
501 return ret;
502 }
503
504 ah_attr->dlid = wc->slid;
505 ah_attr->sl = wc->sl;
506 ah_attr->src_path_bits = wc->dlid_path_bits;
507 ah_attr->port_num = port_num;
508
509 if (wc->wc_flags & IB_WC_GRH) {
510 ah_attr->ah_flags = IB_AH_GRH;
511 ah_attr->grh.dgid = sgid;
512
513 if (!rdma_cap_eth_ah(device, port_num)) {
514 ret = ib_find_cached_gid_by_port(device, &dgid,
515 IB_GID_TYPE_IB,
516 port_num, NULL,
517 &gid_index);
518 if (ret)
519 return ret;
520 }
521
522 ah_attr->grh.sgid_index = (u8) gid_index;
523 flow_class = be32_to_cpu(grh->version_tclass_flow);
524 ah_attr->grh.flow_label = flow_class & 0xFFFFF;
525 ah_attr->grh.hop_limit = hoplimit;
526 ah_attr->grh.traffic_class = (flow_class >> 20) & 0xFF;
527 }
528 return 0;
529 }
530 EXPORT_SYMBOL(ib_init_ah_from_wc);
531
532 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
533 const struct ib_grh *grh, u8 port_num)
534 {
535 struct ib_ah_attr ah_attr;
536 int ret;
537
538 ret = ib_init_ah_from_wc(pd->device, port_num, wc, grh, &ah_attr);
539 if (ret)
540 return ERR_PTR(ret);
541
542 return ib_create_ah(pd, &ah_attr);
543 }
544 EXPORT_SYMBOL(ib_create_ah_from_wc);
545
546 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
547 {
548 return ah->device->modify_ah ?
549 ah->device->modify_ah(ah, ah_attr) :
550 -ENOSYS;
551 }
552 EXPORT_SYMBOL(ib_modify_ah);
553
554 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
555 {
556 return ah->device->query_ah ?
557 ah->device->query_ah(ah, ah_attr) :
558 -ENOSYS;
559 }
560 EXPORT_SYMBOL(ib_query_ah);
561
562 int ib_destroy_ah(struct ib_ah *ah)
563 {
564 struct ib_pd *pd;
565 int ret;
566
567 pd = ah->pd;
568 ret = ah->device->destroy_ah(ah);
569 if (!ret)
570 atomic_dec(&pd->usecnt);
571
572 return ret;
573 }
574 EXPORT_SYMBOL(ib_destroy_ah);
575
576 /* Shared receive queues */
577
578 struct ib_srq *ib_create_srq(struct ib_pd *pd,
579 struct ib_srq_init_attr *srq_init_attr)
580 {
581 struct ib_srq *srq;
582
583 if (!pd->device->create_srq)
584 return ERR_PTR(-ENOSYS);
585
586 srq = pd->device->create_srq(pd, srq_init_attr, NULL);
587
588 if (!IS_ERR(srq)) {
589 srq->device = pd->device;
590 srq->pd = pd;
591 srq->uobject = NULL;
592 srq->event_handler = srq_init_attr->event_handler;
593 srq->srq_context = srq_init_attr->srq_context;
594 srq->srq_type = srq_init_attr->srq_type;
595 if (srq->srq_type == IB_SRQT_XRC) {
596 srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
597 srq->ext.xrc.cq = srq_init_attr->ext.xrc.cq;
598 atomic_inc(&srq->ext.xrc.xrcd->usecnt);
599 atomic_inc(&srq->ext.xrc.cq->usecnt);
600 }
601 atomic_inc(&pd->usecnt);
602 atomic_set(&srq->usecnt, 0);
603 }
604
605 return srq;
606 }
607 EXPORT_SYMBOL(ib_create_srq);
608
609 int ib_modify_srq(struct ib_srq *srq,
610 struct ib_srq_attr *srq_attr,
611 enum ib_srq_attr_mask srq_attr_mask)
612 {
613 return srq->device->modify_srq ?
614 srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) :
615 -ENOSYS;
616 }
617 EXPORT_SYMBOL(ib_modify_srq);
618
619 int ib_query_srq(struct ib_srq *srq,
620 struct ib_srq_attr *srq_attr)
621 {
622 return srq->device->query_srq ?
623 srq->device->query_srq(srq, srq_attr) : -ENOSYS;
624 }
625 EXPORT_SYMBOL(ib_query_srq);
626
627 int ib_destroy_srq(struct ib_srq *srq)
628 {
629 struct ib_pd *pd;
630 enum ib_srq_type srq_type;
631 struct ib_xrcd *uninitialized_var(xrcd);
632 struct ib_cq *uninitialized_var(cq);
633 int ret;
634
635 if (atomic_read(&srq->usecnt))
636 return -EBUSY;
637
638 pd = srq->pd;
639 srq_type = srq->srq_type;
640 if (srq_type == IB_SRQT_XRC) {
641 xrcd = srq->ext.xrc.xrcd;
642 cq = srq->ext.xrc.cq;
643 }
644
645 ret = srq->device->destroy_srq(srq);
646 if (!ret) {
647 atomic_dec(&pd->usecnt);
648 if (srq_type == IB_SRQT_XRC) {
649 atomic_dec(&xrcd->usecnt);
650 atomic_dec(&cq->usecnt);
651 }
652 }
653
654 return ret;
655 }
656 EXPORT_SYMBOL(ib_destroy_srq);
657
658 /* Queue pairs */
659
660 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
661 {
662 struct ib_qp *qp = context;
663 unsigned long flags;
664
665 spin_lock_irqsave(&qp->device->event_handler_lock, flags);
666 list_for_each_entry(event->element.qp, &qp->open_list, open_list)
667 if (event->element.qp->event_handler)
668 event->element.qp->event_handler(event, event->element.qp->qp_context);
669 spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
670 }
671
672 static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
673 {
674 mutex_lock(&xrcd->tgt_qp_mutex);
675 list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
676 mutex_unlock(&xrcd->tgt_qp_mutex);
677 }
678
679 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
680 void (*event_handler)(struct ib_event *, void *),
681 void *qp_context)
682 {
683 struct ib_qp *qp;
684 unsigned long flags;
685
686 qp = kzalloc(sizeof *qp, GFP_KERNEL);
687 if (!qp)
688 return ERR_PTR(-ENOMEM);
689
690 qp->real_qp = real_qp;
691 atomic_inc(&real_qp->usecnt);
692 qp->device = real_qp->device;
693 qp->event_handler = event_handler;
694 qp->qp_context = qp_context;
695 qp->qp_num = real_qp->qp_num;
696 qp->qp_type = real_qp->qp_type;
697
698 spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
699 list_add(&qp->open_list, &real_qp->open_list);
700 spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
701
702 return qp;
703 }
704
705 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
706 struct ib_qp_open_attr *qp_open_attr)
707 {
708 struct ib_qp *qp, *real_qp;
709
710 if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
711 return ERR_PTR(-EINVAL);
712
713 qp = ERR_PTR(-EINVAL);
714 mutex_lock(&xrcd->tgt_qp_mutex);
715 list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
716 if (real_qp->qp_num == qp_open_attr->qp_num) {
717 qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
718 qp_open_attr->qp_context);
719 break;
720 }
721 }
722 mutex_unlock(&xrcd->tgt_qp_mutex);
723 return qp;
724 }
725 EXPORT_SYMBOL(ib_open_qp);
726
727 static struct ib_qp *ib_create_xrc_qp(struct ib_qp *qp,
728 struct ib_qp_init_attr *qp_init_attr)
729 {
730 struct ib_qp *real_qp = qp;
731
732 qp->event_handler = __ib_shared_qp_event_handler;
733 qp->qp_context = qp;
734 qp->pd = NULL;
735 qp->send_cq = qp->recv_cq = NULL;
736 qp->srq = NULL;
737 qp->xrcd = qp_init_attr->xrcd;
738 atomic_inc(&qp_init_attr->xrcd->usecnt);
739 INIT_LIST_HEAD(&qp->open_list);
740
741 qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
742 qp_init_attr->qp_context);
743 if (!IS_ERR(qp))
744 __ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
745 else
746 real_qp->device->destroy_qp(real_qp);
747 return qp;
748 }
749
750 struct ib_qp *ib_create_qp(struct ib_pd *pd,
751 struct ib_qp_init_attr *qp_init_attr)
752 {
753 struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
754 struct ib_qp *qp;
755 int ret;
756
757 if (qp_init_attr->rwq_ind_tbl &&
758 (qp_init_attr->recv_cq ||
759 qp_init_attr->srq || qp_init_attr->cap.max_recv_wr ||
760 qp_init_attr->cap.max_recv_sge))
761 return ERR_PTR(-EINVAL);
762
763 /*
764 * If the callers is using the RDMA API calculate the resources
765 * needed for the RDMA READ/WRITE operations.
766 *
767 * Note that these callers need to pass in a port number.
768 */
769 if (qp_init_attr->cap.max_rdma_ctxs)
770 rdma_rw_init_qp(device, qp_init_attr);
771
772 qp = device->create_qp(pd, qp_init_attr, NULL);
773 if (IS_ERR(qp))
774 return qp;
775
776 qp->device = device;
777 qp->real_qp = qp;
778 qp->uobject = NULL;
779 qp->qp_type = qp_init_attr->qp_type;
780 qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl;
781
782 atomic_set(&qp->usecnt, 0);
783 qp->mrs_used = 0;
784 spin_lock_init(&qp->mr_lock);
785 INIT_LIST_HEAD(&qp->rdma_mrs);
786 INIT_LIST_HEAD(&qp->sig_mrs);
787
788 if (qp_init_attr->qp_type == IB_QPT_XRC_TGT)
789 return ib_create_xrc_qp(qp, qp_init_attr);
790
791 qp->event_handler = qp_init_attr->event_handler;
792 qp->qp_context = qp_init_attr->qp_context;
793 if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
794 qp->recv_cq = NULL;
795 qp->srq = NULL;
796 } else {
797 qp->recv_cq = qp_init_attr->recv_cq;
798 if (qp_init_attr->recv_cq)
799 atomic_inc(&qp_init_attr->recv_cq->usecnt);
800 qp->srq = qp_init_attr->srq;
801 if (qp->srq)
802 atomic_inc(&qp_init_attr->srq->usecnt);
803 }
804
805 qp->pd = pd;
806 qp->send_cq = qp_init_attr->send_cq;
807 qp->xrcd = NULL;
808
809 atomic_inc(&pd->usecnt);
810 if (qp_init_attr->send_cq)
811 atomic_inc(&qp_init_attr->send_cq->usecnt);
812 if (qp_init_attr->rwq_ind_tbl)
813 atomic_inc(&qp->rwq_ind_tbl->usecnt);
814
815 if (qp_init_attr->cap.max_rdma_ctxs) {
816 ret = rdma_rw_init_mrs(qp, qp_init_attr);
817 if (ret) {
818 pr_err("failed to init MR pool ret= %d\n", ret);
819 ib_destroy_qp(qp);
820 qp = ERR_PTR(ret);
821 }
822 }
823
824 return qp;
825 }
826 EXPORT_SYMBOL(ib_create_qp);
827
828 static const struct {
829 int valid;
830 enum ib_qp_attr_mask req_param[IB_QPT_MAX];
831 enum ib_qp_attr_mask opt_param[IB_QPT_MAX];
832 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
833 [IB_QPS_RESET] = {
834 [IB_QPS_RESET] = { .valid = 1 },
835 [IB_QPS_INIT] = {
836 .valid = 1,
837 .req_param = {
838 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
839 IB_QP_PORT |
840 IB_QP_QKEY),
841 [IB_QPT_RAW_PACKET] = IB_QP_PORT,
842 [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
843 IB_QP_PORT |
844 IB_QP_ACCESS_FLAGS),
845 [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
846 IB_QP_PORT |
847 IB_QP_ACCESS_FLAGS),
848 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
849 IB_QP_PORT |
850 IB_QP_ACCESS_FLAGS),
851 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
852 IB_QP_PORT |
853 IB_QP_ACCESS_FLAGS),
854 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
855 IB_QP_QKEY),
856 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
857 IB_QP_QKEY),
858 }
859 },
860 },
861 [IB_QPS_INIT] = {
862 [IB_QPS_RESET] = { .valid = 1 },
863 [IB_QPS_ERR] = { .valid = 1 },
864 [IB_QPS_INIT] = {
865 .valid = 1,
866 .opt_param = {
867 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
868 IB_QP_PORT |
869 IB_QP_QKEY),
870 [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
871 IB_QP_PORT |
872 IB_QP_ACCESS_FLAGS),
873 [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
874 IB_QP_PORT |
875 IB_QP_ACCESS_FLAGS),
876 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
877 IB_QP_PORT |
878 IB_QP_ACCESS_FLAGS),
879 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
880 IB_QP_PORT |
881 IB_QP_ACCESS_FLAGS),
882 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
883 IB_QP_QKEY),
884 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
885 IB_QP_QKEY),
886 }
887 },
888 [IB_QPS_RTR] = {
889 .valid = 1,
890 .req_param = {
891 [IB_QPT_UC] = (IB_QP_AV |
892 IB_QP_PATH_MTU |
893 IB_QP_DEST_QPN |
894 IB_QP_RQ_PSN),
895 [IB_QPT_RC] = (IB_QP_AV |
896 IB_QP_PATH_MTU |
897 IB_QP_DEST_QPN |
898 IB_QP_RQ_PSN |
899 IB_QP_MAX_DEST_RD_ATOMIC |
900 IB_QP_MIN_RNR_TIMER),
901 [IB_QPT_XRC_INI] = (IB_QP_AV |
902 IB_QP_PATH_MTU |
903 IB_QP_DEST_QPN |
904 IB_QP_RQ_PSN),
905 [IB_QPT_XRC_TGT] = (IB_QP_AV |
906 IB_QP_PATH_MTU |
907 IB_QP_DEST_QPN |
908 IB_QP_RQ_PSN |
909 IB_QP_MAX_DEST_RD_ATOMIC |
910 IB_QP_MIN_RNR_TIMER),
911 },
912 .opt_param = {
913 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
914 IB_QP_QKEY),
915 [IB_QPT_UC] = (IB_QP_ALT_PATH |
916 IB_QP_ACCESS_FLAGS |
917 IB_QP_PKEY_INDEX),
918 [IB_QPT_RC] = (IB_QP_ALT_PATH |
919 IB_QP_ACCESS_FLAGS |
920 IB_QP_PKEY_INDEX),
921 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH |
922 IB_QP_ACCESS_FLAGS |
923 IB_QP_PKEY_INDEX),
924 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH |
925 IB_QP_ACCESS_FLAGS |
926 IB_QP_PKEY_INDEX),
927 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
928 IB_QP_QKEY),
929 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
930 IB_QP_QKEY),
931 },
932 },
933 },
934 [IB_QPS_RTR] = {
935 [IB_QPS_RESET] = { .valid = 1 },
936 [IB_QPS_ERR] = { .valid = 1 },
937 [IB_QPS_RTS] = {
938 .valid = 1,
939 .req_param = {
940 [IB_QPT_UD] = IB_QP_SQ_PSN,
941 [IB_QPT_UC] = IB_QP_SQ_PSN,
942 [IB_QPT_RC] = (IB_QP_TIMEOUT |
943 IB_QP_RETRY_CNT |
944 IB_QP_RNR_RETRY |
945 IB_QP_SQ_PSN |
946 IB_QP_MAX_QP_RD_ATOMIC),
947 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT |
948 IB_QP_RETRY_CNT |
949 IB_QP_RNR_RETRY |
950 IB_QP_SQ_PSN |
951 IB_QP_MAX_QP_RD_ATOMIC),
952 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT |
953 IB_QP_SQ_PSN),
954 [IB_QPT_SMI] = IB_QP_SQ_PSN,
955 [IB_QPT_GSI] = IB_QP_SQ_PSN,
956 },
957 .opt_param = {
958 [IB_QPT_UD] = (IB_QP_CUR_STATE |
959 IB_QP_QKEY),
960 [IB_QPT_UC] = (IB_QP_CUR_STATE |
961 IB_QP_ALT_PATH |
962 IB_QP_ACCESS_FLAGS |
963 IB_QP_PATH_MIG_STATE),
964 [IB_QPT_RC] = (IB_QP_CUR_STATE |
965 IB_QP_ALT_PATH |
966 IB_QP_ACCESS_FLAGS |
967 IB_QP_MIN_RNR_TIMER |
968 IB_QP_PATH_MIG_STATE),
969 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
970 IB_QP_ALT_PATH |
971 IB_QP_ACCESS_FLAGS |
972 IB_QP_PATH_MIG_STATE),
973 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
974 IB_QP_ALT_PATH |
975 IB_QP_ACCESS_FLAGS |
976 IB_QP_MIN_RNR_TIMER |
977 IB_QP_PATH_MIG_STATE),
978 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
979 IB_QP_QKEY),
980 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
981 IB_QP_QKEY),
982 }
983 }
984 },
985 [IB_QPS_RTS] = {
986 [IB_QPS_RESET] = { .valid = 1 },
987 [IB_QPS_ERR] = { .valid = 1 },
988 [IB_QPS_RTS] = {
989 .valid = 1,
990 .opt_param = {
991 [IB_QPT_UD] = (IB_QP_CUR_STATE |
992 IB_QP_QKEY),
993 [IB_QPT_UC] = (IB_QP_CUR_STATE |
994 IB_QP_ACCESS_FLAGS |
995 IB_QP_ALT_PATH |
996 IB_QP_PATH_MIG_STATE),
997 [IB_QPT_RC] = (IB_QP_CUR_STATE |
998 IB_QP_ACCESS_FLAGS |
999 IB_QP_ALT_PATH |
1000 IB_QP_PATH_MIG_STATE |
1001 IB_QP_MIN_RNR_TIMER),
1002 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1003 IB_QP_ACCESS_FLAGS |
1004 IB_QP_ALT_PATH |
1005 IB_QP_PATH_MIG_STATE),
1006 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1007 IB_QP_ACCESS_FLAGS |
1008 IB_QP_ALT_PATH |
1009 IB_QP_PATH_MIG_STATE |
1010 IB_QP_MIN_RNR_TIMER),
1011 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1012 IB_QP_QKEY),
1013 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1014 IB_QP_QKEY),
1015 }
1016 },
1017 [IB_QPS_SQD] = {
1018 .valid = 1,
1019 .opt_param = {
1020 [IB_QPT_UD] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1021 [IB_QPT_UC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1022 [IB_QPT_RC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1023 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1024 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1025 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1026 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1027 }
1028 },
1029 },
1030 [IB_QPS_SQD] = {
1031 [IB_QPS_RESET] = { .valid = 1 },
1032 [IB_QPS_ERR] = { .valid = 1 },
1033 [IB_QPS_RTS] = {
1034 .valid = 1,
1035 .opt_param = {
1036 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1037 IB_QP_QKEY),
1038 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1039 IB_QP_ALT_PATH |
1040 IB_QP_ACCESS_FLAGS |
1041 IB_QP_PATH_MIG_STATE),
1042 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1043 IB_QP_ALT_PATH |
1044 IB_QP_ACCESS_FLAGS |
1045 IB_QP_MIN_RNR_TIMER |
1046 IB_QP_PATH_MIG_STATE),
1047 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1048 IB_QP_ALT_PATH |
1049 IB_QP_ACCESS_FLAGS |
1050 IB_QP_PATH_MIG_STATE),
1051 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1052 IB_QP_ALT_PATH |
1053 IB_QP_ACCESS_FLAGS |
1054 IB_QP_MIN_RNR_TIMER |
1055 IB_QP_PATH_MIG_STATE),
1056 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1057 IB_QP_QKEY),
1058 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1059 IB_QP_QKEY),
1060 }
1061 },
1062 [IB_QPS_SQD] = {
1063 .valid = 1,
1064 .opt_param = {
1065 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1066 IB_QP_QKEY),
1067 [IB_QPT_UC] = (IB_QP_AV |
1068 IB_QP_ALT_PATH |
1069 IB_QP_ACCESS_FLAGS |
1070 IB_QP_PKEY_INDEX |
1071 IB_QP_PATH_MIG_STATE),
1072 [IB_QPT_RC] = (IB_QP_PORT |
1073 IB_QP_AV |
1074 IB_QP_TIMEOUT |
1075 IB_QP_RETRY_CNT |
1076 IB_QP_RNR_RETRY |
1077 IB_QP_MAX_QP_RD_ATOMIC |
1078 IB_QP_MAX_DEST_RD_ATOMIC |
1079 IB_QP_ALT_PATH |
1080 IB_QP_ACCESS_FLAGS |
1081 IB_QP_PKEY_INDEX |
1082 IB_QP_MIN_RNR_TIMER |
1083 IB_QP_PATH_MIG_STATE),
1084 [IB_QPT_XRC_INI] = (IB_QP_PORT |
1085 IB_QP_AV |
1086 IB_QP_TIMEOUT |
1087 IB_QP_RETRY_CNT |
1088 IB_QP_RNR_RETRY |
1089 IB_QP_MAX_QP_RD_ATOMIC |
1090 IB_QP_ALT_PATH |
1091 IB_QP_ACCESS_FLAGS |
1092 IB_QP_PKEY_INDEX |
1093 IB_QP_PATH_MIG_STATE),
1094 [IB_QPT_XRC_TGT] = (IB_QP_PORT |
1095 IB_QP_AV |
1096 IB_QP_TIMEOUT |
1097 IB_QP_MAX_DEST_RD_ATOMIC |
1098 IB_QP_ALT_PATH |
1099 IB_QP_ACCESS_FLAGS |
1100 IB_QP_PKEY_INDEX |
1101 IB_QP_MIN_RNR_TIMER |
1102 IB_QP_PATH_MIG_STATE),
1103 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1104 IB_QP_QKEY),
1105 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1106 IB_QP_QKEY),
1107 }
1108 }
1109 },
1110 [IB_QPS_SQE] = {
1111 [IB_QPS_RESET] = { .valid = 1 },
1112 [IB_QPS_ERR] = { .valid = 1 },
1113 [IB_QPS_RTS] = {
1114 .valid = 1,
1115 .opt_param = {
1116 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1117 IB_QP_QKEY),
1118 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1119 IB_QP_ACCESS_FLAGS),
1120 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1121 IB_QP_QKEY),
1122 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1123 IB_QP_QKEY),
1124 }
1125 }
1126 },
1127 [IB_QPS_ERR] = {
1128 [IB_QPS_RESET] = { .valid = 1 },
1129 [IB_QPS_ERR] = { .valid = 1 }
1130 }
1131 };
1132
1133 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1134 enum ib_qp_type type, enum ib_qp_attr_mask mask,
1135 enum rdma_link_layer ll)
1136 {
1137 enum ib_qp_attr_mask req_param, opt_param;
1138
1139 if (cur_state < 0 || cur_state > IB_QPS_ERR ||
1140 next_state < 0 || next_state > IB_QPS_ERR)
1141 return 0;
1142
1143 if (mask & IB_QP_CUR_STATE &&
1144 cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1145 cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1146 return 0;
1147
1148 if (!qp_state_table[cur_state][next_state].valid)
1149 return 0;
1150
1151 req_param = qp_state_table[cur_state][next_state].req_param[type];
1152 opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1153
1154 if ((mask & req_param) != req_param)
1155 return 0;
1156
1157 if (mask & ~(req_param | opt_param | IB_QP_STATE))
1158 return 0;
1159
1160 return 1;
1161 }
1162 EXPORT_SYMBOL(ib_modify_qp_is_ok);
1163
1164 int ib_resolve_eth_dmac(struct ib_qp *qp,
1165 struct ib_qp_attr *qp_attr, int *qp_attr_mask)
1166 {
1167 int ret = 0;
1168
1169 if (*qp_attr_mask & IB_QP_AV) {
1170 if (qp_attr->ah_attr.port_num < rdma_start_port(qp->device) ||
1171 qp_attr->ah_attr.port_num > rdma_end_port(qp->device))
1172 return -EINVAL;
1173
1174 if (!rdma_cap_eth_ah(qp->device, qp_attr->ah_attr.port_num))
1175 return 0;
1176
1177 if (rdma_link_local_addr((struct in6_addr *)qp_attr->ah_attr.grh.dgid.raw)) {
1178 rdma_get_ll_mac((struct in6_addr *)qp_attr->ah_attr.grh.dgid.raw,
1179 qp_attr->ah_attr.dmac);
1180 } else {
1181 union ib_gid sgid;
1182 struct ib_gid_attr sgid_attr;
1183 int ifindex;
1184 int hop_limit;
1185
1186 ret = ib_query_gid(qp->device,
1187 qp_attr->ah_attr.port_num,
1188 qp_attr->ah_attr.grh.sgid_index,
1189 &sgid, &sgid_attr);
1190
1191 if (ret || !sgid_attr.ndev) {
1192 if (!ret)
1193 ret = -ENXIO;
1194 goto out;
1195 }
1196
1197 ifindex = sgid_attr.ndev->ifindex;
1198
1199 ret = rdma_addr_find_l2_eth_by_grh(&sgid,
1200 &qp_attr->ah_attr.grh.dgid,
1201 qp_attr->ah_attr.dmac,
1202 NULL, &ifindex, &hop_limit);
1203
1204 dev_put(sgid_attr.ndev);
1205
1206 qp_attr->ah_attr.grh.hop_limit = hop_limit;
1207 }
1208 }
1209 out:
1210 return ret;
1211 }
1212 EXPORT_SYMBOL(ib_resolve_eth_dmac);
1213
1214
1215 int ib_modify_qp(struct ib_qp *qp,
1216 struct ib_qp_attr *qp_attr,
1217 int qp_attr_mask)
1218 {
1219 int ret;
1220
1221 ret = ib_resolve_eth_dmac(qp, qp_attr, &qp_attr_mask);
1222 if (ret)
1223 return ret;
1224
1225 return qp->device->modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
1226 }
1227 EXPORT_SYMBOL(ib_modify_qp);
1228
1229 int ib_query_qp(struct ib_qp *qp,
1230 struct ib_qp_attr *qp_attr,
1231 int qp_attr_mask,
1232 struct ib_qp_init_attr *qp_init_attr)
1233 {
1234 return qp->device->query_qp ?
1235 qp->device->query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) :
1236 -ENOSYS;
1237 }
1238 EXPORT_SYMBOL(ib_query_qp);
1239
1240 int ib_close_qp(struct ib_qp *qp)
1241 {
1242 struct ib_qp *real_qp;
1243 unsigned long flags;
1244
1245 real_qp = qp->real_qp;
1246 if (real_qp == qp)
1247 return -EINVAL;
1248
1249 spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1250 list_del(&qp->open_list);
1251 spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1252
1253 atomic_dec(&real_qp->usecnt);
1254 kfree(qp);
1255
1256 return 0;
1257 }
1258 EXPORT_SYMBOL(ib_close_qp);
1259
1260 static int __ib_destroy_shared_qp(struct ib_qp *qp)
1261 {
1262 struct ib_xrcd *xrcd;
1263 struct ib_qp *real_qp;
1264 int ret;
1265
1266 real_qp = qp->real_qp;
1267 xrcd = real_qp->xrcd;
1268
1269 mutex_lock(&xrcd->tgt_qp_mutex);
1270 ib_close_qp(qp);
1271 if (atomic_read(&real_qp->usecnt) == 0)
1272 list_del(&real_qp->xrcd_list);
1273 else
1274 real_qp = NULL;
1275 mutex_unlock(&xrcd->tgt_qp_mutex);
1276
1277 if (real_qp) {
1278 ret = ib_destroy_qp(real_qp);
1279 if (!ret)
1280 atomic_dec(&xrcd->usecnt);
1281 else
1282 __ib_insert_xrcd_qp(xrcd, real_qp);
1283 }
1284
1285 return 0;
1286 }
1287
1288 int ib_destroy_qp(struct ib_qp *qp)
1289 {
1290 struct ib_pd *pd;
1291 struct ib_cq *scq, *rcq;
1292 struct ib_srq *srq;
1293 struct ib_rwq_ind_table *ind_tbl;
1294 int ret;
1295
1296 WARN_ON_ONCE(qp->mrs_used > 0);
1297
1298 if (atomic_read(&qp->usecnt))
1299 return -EBUSY;
1300
1301 if (qp->real_qp != qp)
1302 return __ib_destroy_shared_qp(qp);
1303
1304 pd = qp->pd;
1305 scq = qp->send_cq;
1306 rcq = qp->recv_cq;
1307 srq = qp->srq;
1308 ind_tbl = qp->rwq_ind_tbl;
1309
1310 if (!qp->uobject)
1311 rdma_rw_cleanup_mrs(qp);
1312
1313 ret = qp->device->destroy_qp(qp);
1314 if (!ret) {
1315 if (pd)
1316 atomic_dec(&pd->usecnt);
1317 if (scq)
1318 atomic_dec(&scq->usecnt);
1319 if (rcq)
1320 atomic_dec(&rcq->usecnt);
1321 if (srq)
1322 atomic_dec(&srq->usecnt);
1323 if (ind_tbl)
1324 atomic_dec(&ind_tbl->usecnt);
1325 }
1326
1327 return ret;
1328 }
1329 EXPORT_SYMBOL(ib_destroy_qp);
1330
1331 /* Completion queues */
1332
1333 struct ib_cq *ib_create_cq(struct ib_device *device,
1334 ib_comp_handler comp_handler,
1335 void (*event_handler)(struct ib_event *, void *),
1336 void *cq_context,
1337 const struct ib_cq_init_attr *cq_attr)
1338 {
1339 struct ib_cq *cq;
1340
1341 cq = device->create_cq(device, cq_attr, NULL, NULL);
1342
1343 if (!IS_ERR(cq)) {
1344 cq->device = device;
1345 cq->uobject = NULL;
1346 cq->comp_handler = comp_handler;
1347 cq->event_handler = event_handler;
1348 cq->cq_context = cq_context;
1349 atomic_set(&cq->usecnt, 0);
1350 }
1351
1352 return cq;
1353 }
1354 EXPORT_SYMBOL(ib_create_cq);
1355
1356 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period)
1357 {
1358 return cq->device->modify_cq ?
1359 cq->device->modify_cq(cq, cq_count, cq_period) : -ENOSYS;
1360 }
1361 EXPORT_SYMBOL(ib_modify_cq);
1362
1363 int ib_destroy_cq(struct ib_cq *cq)
1364 {
1365 if (atomic_read(&cq->usecnt))
1366 return -EBUSY;
1367
1368 return cq->device->destroy_cq(cq);
1369 }
1370 EXPORT_SYMBOL(ib_destroy_cq);
1371
1372 int ib_resize_cq(struct ib_cq *cq, int cqe)
1373 {
1374 return cq->device->resize_cq ?
1375 cq->device->resize_cq(cq, cqe, NULL) : -ENOSYS;
1376 }
1377 EXPORT_SYMBOL(ib_resize_cq);
1378
1379 /* Memory regions */
1380
1381 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags)
1382 {
1383 struct ib_mr *mr;
1384 int err;
1385
1386 err = ib_check_mr_access(mr_access_flags);
1387 if (err)
1388 return ERR_PTR(err);
1389
1390 mr = pd->device->get_dma_mr(pd, mr_access_flags);
1391
1392 if (!IS_ERR(mr)) {
1393 mr->device = pd->device;
1394 mr->pd = pd;
1395 mr->uobject = NULL;
1396 atomic_inc(&pd->usecnt);
1397 mr->need_inval = false;
1398 }
1399
1400 return mr;
1401 }
1402 EXPORT_SYMBOL(ib_get_dma_mr);
1403
1404 int ib_dereg_mr(struct ib_mr *mr)
1405 {
1406 struct ib_pd *pd = mr->pd;
1407 int ret;
1408
1409 ret = mr->device->dereg_mr(mr);
1410 if (!ret)
1411 atomic_dec(&pd->usecnt);
1412
1413 return ret;
1414 }
1415 EXPORT_SYMBOL(ib_dereg_mr);
1416
1417 /**
1418 * ib_alloc_mr() - Allocates a memory region
1419 * @pd: protection domain associated with the region
1420 * @mr_type: memory region type
1421 * @max_num_sg: maximum sg entries available for registration.
1422 *
1423 * Notes:
1424 * Memory registeration page/sg lists must not exceed max_num_sg.
1425 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
1426 * max_num_sg * used_page_size.
1427 *
1428 */
1429 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
1430 enum ib_mr_type mr_type,
1431 u32 max_num_sg)
1432 {
1433 struct ib_mr *mr;
1434
1435 if (!pd->device->alloc_mr)
1436 return ERR_PTR(-ENOSYS);
1437
1438 mr = pd->device->alloc_mr(pd, mr_type, max_num_sg);
1439 if (!IS_ERR(mr)) {
1440 mr->device = pd->device;
1441 mr->pd = pd;
1442 mr->uobject = NULL;
1443 atomic_inc(&pd->usecnt);
1444 mr->need_inval = false;
1445 }
1446
1447 return mr;
1448 }
1449 EXPORT_SYMBOL(ib_alloc_mr);
1450
1451 /* "Fast" memory regions */
1452
1453 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
1454 int mr_access_flags,
1455 struct ib_fmr_attr *fmr_attr)
1456 {
1457 struct ib_fmr *fmr;
1458
1459 if (!pd->device->alloc_fmr)
1460 return ERR_PTR(-ENOSYS);
1461
1462 fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr);
1463 if (!IS_ERR(fmr)) {
1464 fmr->device = pd->device;
1465 fmr->pd = pd;
1466 atomic_inc(&pd->usecnt);
1467 }
1468
1469 return fmr;
1470 }
1471 EXPORT_SYMBOL(ib_alloc_fmr);
1472
1473 int ib_unmap_fmr(struct list_head *fmr_list)
1474 {
1475 struct ib_fmr *fmr;
1476
1477 if (list_empty(fmr_list))
1478 return 0;
1479
1480 fmr = list_entry(fmr_list->next, struct ib_fmr, list);
1481 return fmr->device->unmap_fmr(fmr_list);
1482 }
1483 EXPORT_SYMBOL(ib_unmap_fmr);
1484
1485 int ib_dealloc_fmr(struct ib_fmr *fmr)
1486 {
1487 struct ib_pd *pd;
1488 int ret;
1489
1490 pd = fmr->pd;
1491 ret = fmr->device->dealloc_fmr(fmr);
1492 if (!ret)
1493 atomic_dec(&pd->usecnt);
1494
1495 return ret;
1496 }
1497 EXPORT_SYMBOL(ib_dealloc_fmr);
1498
1499 /* Multicast groups */
1500
1501 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1502 {
1503 int ret;
1504
1505 if (!qp->device->attach_mcast)
1506 return -ENOSYS;
1507 if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD)
1508 return -EINVAL;
1509
1510 ret = qp->device->attach_mcast(qp, gid, lid);
1511 if (!ret)
1512 atomic_inc(&qp->usecnt);
1513 return ret;
1514 }
1515 EXPORT_SYMBOL(ib_attach_mcast);
1516
1517 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1518 {
1519 int ret;
1520
1521 if (!qp->device->detach_mcast)
1522 return -ENOSYS;
1523 if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD)
1524 return -EINVAL;
1525
1526 ret = qp->device->detach_mcast(qp, gid, lid);
1527 if (!ret)
1528 atomic_dec(&qp->usecnt);
1529 return ret;
1530 }
1531 EXPORT_SYMBOL(ib_detach_mcast);
1532
1533 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device)
1534 {
1535 struct ib_xrcd *xrcd;
1536
1537 if (!device->alloc_xrcd)
1538 return ERR_PTR(-ENOSYS);
1539
1540 xrcd = device->alloc_xrcd(device, NULL, NULL);
1541 if (!IS_ERR(xrcd)) {
1542 xrcd->device = device;
1543 xrcd->inode = NULL;
1544 atomic_set(&xrcd->usecnt, 0);
1545 mutex_init(&xrcd->tgt_qp_mutex);
1546 INIT_LIST_HEAD(&xrcd->tgt_qp_list);
1547 }
1548
1549 return xrcd;
1550 }
1551 EXPORT_SYMBOL(ib_alloc_xrcd);
1552
1553 int ib_dealloc_xrcd(struct ib_xrcd *xrcd)
1554 {
1555 struct ib_qp *qp;
1556 int ret;
1557
1558 if (atomic_read(&xrcd->usecnt))
1559 return -EBUSY;
1560
1561 while (!list_empty(&xrcd->tgt_qp_list)) {
1562 qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
1563 ret = ib_destroy_qp(qp);
1564 if (ret)
1565 return ret;
1566 }
1567
1568 return xrcd->device->dealloc_xrcd(xrcd);
1569 }
1570 EXPORT_SYMBOL(ib_dealloc_xrcd);
1571
1572 /**
1573 * ib_create_wq - Creates a WQ associated with the specified protection
1574 * domain.
1575 * @pd: The protection domain associated with the WQ.
1576 * @wq_init_attr: A list of initial attributes required to create the
1577 * WQ. If WQ creation succeeds, then the attributes are updated to
1578 * the actual capabilities of the created WQ.
1579 *
1580 * wq_init_attr->max_wr and wq_init_attr->max_sge determine
1581 * the requested size of the WQ, and set to the actual values allocated
1582 * on return.
1583 * If ib_create_wq() succeeds, then max_wr and max_sge will always be
1584 * at least as large as the requested values.
1585 */
1586 struct ib_wq *ib_create_wq(struct ib_pd *pd,
1587 struct ib_wq_init_attr *wq_attr)
1588 {
1589 struct ib_wq *wq;
1590
1591 if (!pd->device->create_wq)
1592 return ERR_PTR(-ENOSYS);
1593
1594 wq = pd->device->create_wq(pd, wq_attr, NULL);
1595 if (!IS_ERR(wq)) {
1596 wq->event_handler = wq_attr->event_handler;
1597 wq->wq_context = wq_attr->wq_context;
1598 wq->wq_type = wq_attr->wq_type;
1599 wq->cq = wq_attr->cq;
1600 wq->device = pd->device;
1601 wq->pd = pd;
1602 wq->uobject = NULL;
1603 atomic_inc(&pd->usecnt);
1604 atomic_inc(&wq_attr->cq->usecnt);
1605 atomic_set(&wq->usecnt, 0);
1606 }
1607 return wq;
1608 }
1609 EXPORT_SYMBOL(ib_create_wq);
1610
1611 /**
1612 * ib_destroy_wq - Destroys the specified WQ.
1613 * @wq: The WQ to destroy.
1614 */
1615 int ib_destroy_wq(struct ib_wq *wq)
1616 {
1617 int err;
1618 struct ib_cq *cq = wq->cq;
1619 struct ib_pd *pd = wq->pd;
1620
1621 if (atomic_read(&wq->usecnt))
1622 return -EBUSY;
1623
1624 err = wq->device->destroy_wq(wq);
1625 if (!err) {
1626 atomic_dec(&pd->usecnt);
1627 atomic_dec(&cq->usecnt);
1628 }
1629 return err;
1630 }
1631 EXPORT_SYMBOL(ib_destroy_wq);
1632
1633 /**
1634 * ib_modify_wq - Modifies the specified WQ.
1635 * @wq: The WQ to modify.
1636 * @wq_attr: On input, specifies the WQ attributes to modify.
1637 * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
1638 * are being modified.
1639 * On output, the current values of selected WQ attributes are returned.
1640 */
1641 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr,
1642 u32 wq_attr_mask)
1643 {
1644 int err;
1645
1646 if (!wq->device->modify_wq)
1647 return -ENOSYS;
1648
1649 err = wq->device->modify_wq(wq, wq_attr, wq_attr_mask, NULL);
1650 return err;
1651 }
1652 EXPORT_SYMBOL(ib_modify_wq);
1653
1654 /*
1655 * ib_create_rwq_ind_table - Creates a RQ Indirection Table.
1656 * @device: The device on which to create the rwq indirection table.
1657 * @ib_rwq_ind_table_init_attr: A list of initial attributes required to
1658 * create the Indirection Table.
1659 *
1660 * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less
1661 * than the created ib_rwq_ind_table object and the caller is responsible
1662 * for its memory allocation/free.
1663 */
1664 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
1665 struct ib_rwq_ind_table_init_attr *init_attr)
1666 {
1667 struct ib_rwq_ind_table *rwq_ind_table;
1668 int i;
1669 u32 table_size;
1670
1671 if (!device->create_rwq_ind_table)
1672 return ERR_PTR(-ENOSYS);
1673
1674 table_size = (1 << init_attr->log_ind_tbl_size);
1675 rwq_ind_table = device->create_rwq_ind_table(device,
1676 init_attr, NULL);
1677 if (IS_ERR(rwq_ind_table))
1678 return rwq_ind_table;
1679
1680 rwq_ind_table->ind_tbl = init_attr->ind_tbl;
1681 rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size;
1682 rwq_ind_table->device = device;
1683 rwq_ind_table->uobject = NULL;
1684 atomic_set(&rwq_ind_table->usecnt, 0);
1685
1686 for (i = 0; i < table_size; i++)
1687 atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt);
1688
1689 return rwq_ind_table;
1690 }
1691 EXPORT_SYMBOL(ib_create_rwq_ind_table);
1692
1693 /*
1694 * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table.
1695 * @wq_ind_table: The Indirection Table to destroy.
1696 */
1697 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table)
1698 {
1699 int err, i;
1700 u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size);
1701 struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl;
1702
1703 if (atomic_read(&rwq_ind_table->usecnt))
1704 return -EBUSY;
1705
1706 err = rwq_ind_table->device->destroy_rwq_ind_table(rwq_ind_table);
1707 if (!err) {
1708 for (i = 0; i < table_size; i++)
1709 atomic_dec(&ind_tbl[i]->usecnt);
1710 }
1711
1712 return err;
1713 }
1714 EXPORT_SYMBOL(ib_destroy_rwq_ind_table);
1715
1716 struct ib_flow *ib_create_flow(struct ib_qp *qp,
1717 struct ib_flow_attr *flow_attr,
1718 int domain)
1719 {
1720 struct ib_flow *flow_id;
1721 if (!qp->device->create_flow)
1722 return ERR_PTR(-ENOSYS);
1723
1724 flow_id = qp->device->create_flow(qp, flow_attr, domain);
1725 if (!IS_ERR(flow_id))
1726 atomic_inc(&qp->usecnt);
1727 return flow_id;
1728 }
1729 EXPORT_SYMBOL(ib_create_flow);
1730
1731 int ib_destroy_flow(struct ib_flow *flow_id)
1732 {
1733 int err;
1734 struct ib_qp *qp = flow_id->qp;
1735
1736 err = qp->device->destroy_flow(flow_id);
1737 if (!err)
1738 atomic_dec(&qp->usecnt);
1739 return err;
1740 }
1741 EXPORT_SYMBOL(ib_destroy_flow);
1742
1743 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
1744 struct ib_mr_status *mr_status)
1745 {
1746 return mr->device->check_mr_status ?
1747 mr->device->check_mr_status(mr, check_mask, mr_status) : -ENOSYS;
1748 }
1749 EXPORT_SYMBOL(ib_check_mr_status);
1750
1751 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
1752 int state)
1753 {
1754 if (!device->set_vf_link_state)
1755 return -ENOSYS;
1756
1757 return device->set_vf_link_state(device, vf, port, state);
1758 }
1759 EXPORT_SYMBOL(ib_set_vf_link_state);
1760
1761 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
1762 struct ifla_vf_info *info)
1763 {
1764 if (!device->get_vf_config)
1765 return -ENOSYS;
1766
1767 return device->get_vf_config(device, vf, port, info);
1768 }
1769 EXPORT_SYMBOL(ib_get_vf_config);
1770
1771 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
1772 struct ifla_vf_stats *stats)
1773 {
1774 if (!device->get_vf_stats)
1775 return -ENOSYS;
1776
1777 return device->get_vf_stats(device, vf, port, stats);
1778 }
1779 EXPORT_SYMBOL(ib_get_vf_stats);
1780
1781 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
1782 int type)
1783 {
1784 if (!device->set_vf_guid)
1785 return -ENOSYS;
1786
1787 return device->set_vf_guid(device, vf, port, guid, type);
1788 }
1789 EXPORT_SYMBOL(ib_set_vf_guid);
1790
1791 /**
1792 * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
1793 * and set it the memory region.
1794 * @mr: memory region
1795 * @sg: dma mapped scatterlist
1796 * @sg_nents: number of entries in sg
1797 * @sg_offset: offset in bytes into sg
1798 * @page_size: page vector desired page size
1799 *
1800 * Constraints:
1801 * - The first sg element is allowed to have an offset.
1802 * - Each sg element must be aligned to page_size (or physically
1803 * contiguous to the previous element). In case an sg element has a
1804 * non contiguous offset, the mapping prefix will not include it.
1805 * - The last sg element is allowed to have length less than page_size.
1806 * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
1807 * then only max_num_sg entries will be mapped.
1808 * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS_REG, non of these
1809 * constraints holds and the page_size argument is ignored.
1810 *
1811 * Returns the number of sg elements that were mapped to the memory region.
1812 *
1813 * After this completes successfully, the memory region
1814 * is ready for registration.
1815 */
1816 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
1817 unsigned int *sg_offset, unsigned int page_size)
1818 {
1819 if (unlikely(!mr->device->map_mr_sg))
1820 return -ENOSYS;
1821
1822 mr->page_size = page_size;
1823
1824 return mr->device->map_mr_sg(mr, sg, sg_nents, sg_offset);
1825 }
1826 EXPORT_SYMBOL(ib_map_mr_sg);
1827
1828 /**
1829 * ib_sg_to_pages() - Convert the largest prefix of a sg list
1830 * to a page vector
1831 * @mr: memory region
1832 * @sgl: dma mapped scatterlist
1833 * @sg_nents: number of entries in sg
1834 * @sg_offset_p: IN: start offset in bytes into sg
1835 * OUT: offset in bytes for element n of the sg of the first
1836 * byte that has not been processed where n is the return
1837 * value of this function.
1838 * @set_page: driver page assignment function pointer
1839 *
1840 * Core service helper for drivers to convert the largest
1841 * prefix of given sg list to a page vector. The sg list
1842 * prefix converted is the prefix that meet the requirements
1843 * of ib_map_mr_sg.
1844 *
1845 * Returns the number of sg elements that were assigned to
1846 * a page vector.
1847 */
1848 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
1849 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
1850 {
1851 struct scatterlist *sg;
1852 u64 last_end_dma_addr = 0;
1853 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
1854 unsigned int last_page_off = 0;
1855 u64 page_mask = ~((u64)mr->page_size - 1);
1856 int i, ret;
1857
1858 if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
1859 return -EINVAL;
1860
1861 mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
1862 mr->length = 0;
1863
1864 for_each_sg(sgl, sg, sg_nents, i) {
1865 u64 dma_addr = sg_dma_address(sg) + sg_offset;
1866 u64 prev_addr = dma_addr;
1867 unsigned int dma_len = sg_dma_len(sg) - sg_offset;
1868 u64 end_dma_addr = dma_addr + dma_len;
1869 u64 page_addr = dma_addr & page_mask;
1870
1871 /*
1872 * For the second and later elements, check whether either the
1873 * end of element i-1 or the start of element i is not aligned
1874 * on a page boundary.
1875 */
1876 if (i && (last_page_off != 0 || page_addr != dma_addr)) {
1877 /* Stop mapping if there is a gap. */
1878 if (last_end_dma_addr != dma_addr)
1879 break;
1880
1881 /*
1882 * Coalesce this element with the last. If it is small
1883 * enough just update mr->length. Otherwise start
1884 * mapping from the next page.
1885 */
1886 goto next_page;
1887 }
1888
1889 do {
1890 ret = set_page(mr, page_addr);
1891 if (unlikely(ret < 0)) {
1892 sg_offset = prev_addr - sg_dma_address(sg);
1893 mr->length += prev_addr - dma_addr;
1894 if (sg_offset_p)
1895 *sg_offset_p = sg_offset;
1896 return i || sg_offset ? i : ret;
1897 }
1898 prev_addr = page_addr;
1899 next_page:
1900 page_addr += mr->page_size;
1901 } while (page_addr < end_dma_addr);
1902
1903 mr->length += dma_len;
1904 last_end_dma_addr = end_dma_addr;
1905 last_page_off = end_dma_addr & ~page_mask;
1906
1907 sg_offset = 0;
1908 }
1909
1910 if (sg_offset_p)
1911 *sg_offset_p = 0;
1912 return i;
1913 }
1914 EXPORT_SYMBOL(ib_sg_to_pages);
1915
1916 struct ib_drain_cqe {
1917 struct ib_cqe cqe;
1918 struct completion done;
1919 };
1920
1921 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
1922 {
1923 struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
1924 cqe);
1925
1926 complete(&cqe->done);
1927 }
1928
1929 /*
1930 * Post a WR and block until its completion is reaped for the SQ.
1931 */
1932 static void __ib_drain_sq(struct ib_qp *qp)
1933 {
1934 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
1935 struct ib_drain_cqe sdrain;
1936 struct ib_send_wr swr = {}, *bad_swr;
1937 int ret;
1938
1939 if (qp->send_cq->poll_ctx == IB_POLL_DIRECT) {
1940 WARN_ONCE(qp->send_cq->poll_ctx == IB_POLL_DIRECT,
1941 "IB_POLL_DIRECT poll_ctx not supported for drain\n");
1942 return;
1943 }
1944
1945 swr.wr_cqe = &sdrain.cqe;
1946 sdrain.cqe.done = ib_drain_qp_done;
1947 init_completion(&sdrain.done);
1948
1949 ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
1950 if (ret) {
1951 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
1952 return;
1953 }
1954
1955 ret = ib_post_send(qp, &swr, &bad_swr);
1956 if (ret) {
1957 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
1958 return;
1959 }
1960
1961 wait_for_completion(&sdrain.done);
1962 }
1963
1964 /*
1965 * Post a WR and block until its completion is reaped for the RQ.
1966 */
1967 static void __ib_drain_rq(struct ib_qp *qp)
1968 {
1969 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
1970 struct ib_drain_cqe rdrain;
1971 struct ib_recv_wr rwr = {}, *bad_rwr;
1972 int ret;
1973
1974 if (qp->recv_cq->poll_ctx == IB_POLL_DIRECT) {
1975 WARN_ONCE(qp->recv_cq->poll_ctx == IB_POLL_DIRECT,
1976 "IB_POLL_DIRECT poll_ctx not supported for drain\n");
1977 return;
1978 }
1979
1980 rwr.wr_cqe = &rdrain.cqe;
1981 rdrain.cqe.done = ib_drain_qp_done;
1982 init_completion(&rdrain.done);
1983
1984 ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
1985 if (ret) {
1986 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
1987 return;
1988 }
1989
1990 ret = ib_post_recv(qp, &rwr, &bad_rwr);
1991 if (ret) {
1992 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
1993 return;
1994 }
1995
1996 wait_for_completion(&rdrain.done);
1997 }
1998
1999 /**
2000 * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2001 * application.
2002 * @qp: queue pair to drain
2003 *
2004 * If the device has a provider-specific drain function, then
2005 * call that. Otherwise call the generic drain function
2006 * __ib_drain_sq().
2007 *
2008 * The caller must:
2009 *
2010 * ensure there is room in the CQ and SQ for the drain work request and
2011 * completion.
2012 *
2013 * allocate the CQ using ib_alloc_cq() and the CQ poll context cannot be
2014 * IB_POLL_DIRECT.
2015 *
2016 * ensure that there are no other contexts that are posting WRs concurrently.
2017 * Otherwise the drain is not guaranteed.
2018 */
2019 void ib_drain_sq(struct ib_qp *qp)
2020 {
2021 if (qp->device->drain_sq)
2022 qp->device->drain_sq(qp);
2023 else
2024 __ib_drain_sq(qp);
2025 }
2026 EXPORT_SYMBOL(ib_drain_sq);
2027
2028 /**
2029 * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2030 * application.
2031 * @qp: queue pair to drain
2032 *
2033 * If the device has a provider-specific drain function, then
2034 * call that. Otherwise call the generic drain function
2035 * __ib_drain_rq().
2036 *
2037 * The caller must:
2038 *
2039 * ensure there is room in the CQ and RQ for the drain work request and
2040 * completion.
2041 *
2042 * allocate the CQ using ib_alloc_cq() and the CQ poll context cannot be
2043 * IB_POLL_DIRECT.
2044 *
2045 * ensure that there are no other contexts that are posting WRs concurrently.
2046 * Otherwise the drain is not guaranteed.
2047 */
2048 void ib_drain_rq(struct ib_qp *qp)
2049 {
2050 if (qp->device->drain_rq)
2051 qp->device->drain_rq(qp);
2052 else
2053 __ib_drain_rq(qp);
2054 }
2055 EXPORT_SYMBOL(ib_drain_rq);
2056
2057 /**
2058 * ib_drain_qp() - Block until all CQEs have been consumed by the
2059 * application on both the RQ and SQ.
2060 * @qp: queue pair to drain
2061 *
2062 * The caller must:
2063 *
2064 * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2065 * and completions.
2066 *
2067 * allocate the CQs using ib_alloc_cq() and the CQ poll context cannot be
2068 * IB_POLL_DIRECT.
2069 *
2070 * ensure that there are no other contexts that are posting WRs concurrently.
2071 * Otherwise the drain is not guaranteed.
2072 */
2073 void ib_drain_qp(struct ib_qp *qp)
2074 {
2075 ib_drain_sq(qp);
2076 if (!qp->srq)
2077 ib_drain_rq(qp);
2078 }
2079 EXPORT_SYMBOL(ib_drain_qp);
This page took 0.077487 seconds and 6 git commands to generate.