Merge tag 'armsoc-soc' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[deliverable/linux.git] / drivers / infiniband / core / verbs.c
1 /*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved.
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
37 */
38
39 #include <linux/errno.h>
40 #include <linux/err.h>
41 #include <linux/export.h>
42 #include <linux/string.h>
43 #include <linux/slab.h>
44 #include <linux/in.h>
45 #include <linux/in6.h>
46 #include <net/addrconf.h>
47
48 #include <rdma/ib_verbs.h>
49 #include <rdma/ib_cache.h>
50 #include <rdma/ib_addr.h>
51 #include <rdma/rw.h>
52
53 #include "core_priv.h"
54
55 static const char * const ib_events[] = {
56 [IB_EVENT_CQ_ERR] = "CQ error",
57 [IB_EVENT_QP_FATAL] = "QP fatal error",
58 [IB_EVENT_QP_REQ_ERR] = "QP request error",
59 [IB_EVENT_QP_ACCESS_ERR] = "QP access error",
60 [IB_EVENT_COMM_EST] = "communication established",
61 [IB_EVENT_SQ_DRAINED] = "send queue drained",
62 [IB_EVENT_PATH_MIG] = "path migration successful",
63 [IB_EVENT_PATH_MIG_ERR] = "path migration error",
64 [IB_EVENT_DEVICE_FATAL] = "device fatal error",
65 [IB_EVENT_PORT_ACTIVE] = "port active",
66 [IB_EVENT_PORT_ERR] = "port error",
67 [IB_EVENT_LID_CHANGE] = "LID change",
68 [IB_EVENT_PKEY_CHANGE] = "P_key change",
69 [IB_EVENT_SM_CHANGE] = "SM change",
70 [IB_EVENT_SRQ_ERR] = "SRQ error",
71 [IB_EVENT_SRQ_LIMIT_REACHED] = "SRQ limit reached",
72 [IB_EVENT_QP_LAST_WQE_REACHED] = "last WQE reached",
73 [IB_EVENT_CLIENT_REREGISTER] = "client reregister",
74 [IB_EVENT_GID_CHANGE] = "GID changed",
75 };
76
77 const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
78 {
79 size_t index = event;
80
81 return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
82 ib_events[index] : "unrecognized event";
83 }
84 EXPORT_SYMBOL(ib_event_msg);
85
86 static const char * const wc_statuses[] = {
87 [IB_WC_SUCCESS] = "success",
88 [IB_WC_LOC_LEN_ERR] = "local length error",
89 [IB_WC_LOC_QP_OP_ERR] = "local QP operation error",
90 [IB_WC_LOC_EEC_OP_ERR] = "local EE context operation error",
91 [IB_WC_LOC_PROT_ERR] = "local protection error",
92 [IB_WC_WR_FLUSH_ERR] = "WR flushed",
93 [IB_WC_MW_BIND_ERR] = "memory management operation error",
94 [IB_WC_BAD_RESP_ERR] = "bad response error",
95 [IB_WC_LOC_ACCESS_ERR] = "local access error",
96 [IB_WC_REM_INV_REQ_ERR] = "invalid request error",
97 [IB_WC_REM_ACCESS_ERR] = "remote access error",
98 [IB_WC_REM_OP_ERR] = "remote operation error",
99 [IB_WC_RETRY_EXC_ERR] = "transport retry counter exceeded",
100 [IB_WC_RNR_RETRY_EXC_ERR] = "RNR retry counter exceeded",
101 [IB_WC_LOC_RDD_VIOL_ERR] = "local RDD violation error",
102 [IB_WC_REM_INV_RD_REQ_ERR] = "remote invalid RD request",
103 [IB_WC_REM_ABORT_ERR] = "operation aborted",
104 [IB_WC_INV_EECN_ERR] = "invalid EE context number",
105 [IB_WC_INV_EEC_STATE_ERR] = "invalid EE context state",
106 [IB_WC_FATAL_ERR] = "fatal error",
107 [IB_WC_RESP_TIMEOUT_ERR] = "response timeout error",
108 [IB_WC_GENERAL_ERR] = "general error",
109 };
110
111 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
112 {
113 size_t index = status;
114
115 return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
116 wc_statuses[index] : "unrecognized status";
117 }
118 EXPORT_SYMBOL(ib_wc_status_msg);
119
120 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
121 {
122 switch (rate) {
123 case IB_RATE_2_5_GBPS: return 1;
124 case IB_RATE_5_GBPS: return 2;
125 case IB_RATE_10_GBPS: return 4;
126 case IB_RATE_20_GBPS: return 8;
127 case IB_RATE_30_GBPS: return 12;
128 case IB_RATE_40_GBPS: return 16;
129 case IB_RATE_60_GBPS: return 24;
130 case IB_RATE_80_GBPS: return 32;
131 case IB_RATE_120_GBPS: return 48;
132 default: return -1;
133 }
134 }
135 EXPORT_SYMBOL(ib_rate_to_mult);
136
137 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
138 {
139 switch (mult) {
140 case 1: return IB_RATE_2_5_GBPS;
141 case 2: return IB_RATE_5_GBPS;
142 case 4: return IB_RATE_10_GBPS;
143 case 8: return IB_RATE_20_GBPS;
144 case 12: return IB_RATE_30_GBPS;
145 case 16: return IB_RATE_40_GBPS;
146 case 24: return IB_RATE_60_GBPS;
147 case 32: return IB_RATE_80_GBPS;
148 case 48: return IB_RATE_120_GBPS;
149 default: return IB_RATE_PORT_CURRENT;
150 }
151 }
152 EXPORT_SYMBOL(mult_to_ib_rate);
153
154 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
155 {
156 switch (rate) {
157 case IB_RATE_2_5_GBPS: return 2500;
158 case IB_RATE_5_GBPS: return 5000;
159 case IB_RATE_10_GBPS: return 10000;
160 case IB_RATE_20_GBPS: return 20000;
161 case IB_RATE_30_GBPS: return 30000;
162 case IB_RATE_40_GBPS: return 40000;
163 case IB_RATE_60_GBPS: return 60000;
164 case IB_RATE_80_GBPS: return 80000;
165 case IB_RATE_120_GBPS: return 120000;
166 case IB_RATE_14_GBPS: return 14062;
167 case IB_RATE_56_GBPS: return 56250;
168 case IB_RATE_112_GBPS: return 112500;
169 case IB_RATE_168_GBPS: return 168750;
170 case IB_RATE_25_GBPS: return 25781;
171 case IB_RATE_100_GBPS: return 103125;
172 case IB_RATE_200_GBPS: return 206250;
173 case IB_RATE_300_GBPS: return 309375;
174 default: return -1;
175 }
176 }
177 EXPORT_SYMBOL(ib_rate_to_mbps);
178
179 __attribute_const__ enum rdma_transport_type
180 rdma_node_get_transport(enum rdma_node_type node_type)
181 {
182 switch (node_type) {
183 case RDMA_NODE_IB_CA:
184 case RDMA_NODE_IB_SWITCH:
185 case RDMA_NODE_IB_ROUTER:
186 return RDMA_TRANSPORT_IB;
187 case RDMA_NODE_RNIC:
188 return RDMA_TRANSPORT_IWARP;
189 case RDMA_NODE_USNIC:
190 return RDMA_TRANSPORT_USNIC;
191 case RDMA_NODE_USNIC_UDP:
192 return RDMA_TRANSPORT_USNIC_UDP;
193 default:
194 BUG();
195 return 0;
196 }
197 }
198 EXPORT_SYMBOL(rdma_node_get_transport);
199
200 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
201 {
202 if (device->get_link_layer)
203 return device->get_link_layer(device, port_num);
204
205 switch (rdma_node_get_transport(device->node_type)) {
206 case RDMA_TRANSPORT_IB:
207 return IB_LINK_LAYER_INFINIBAND;
208 case RDMA_TRANSPORT_IWARP:
209 case RDMA_TRANSPORT_USNIC:
210 case RDMA_TRANSPORT_USNIC_UDP:
211 return IB_LINK_LAYER_ETHERNET;
212 default:
213 return IB_LINK_LAYER_UNSPECIFIED;
214 }
215 }
216 EXPORT_SYMBOL(rdma_port_get_link_layer);
217
218 /* Protection domains */
219
220 /**
221 * ib_alloc_pd - Allocates an unused protection domain.
222 * @device: The device on which to allocate the protection domain.
223 *
224 * A protection domain object provides an association between QPs, shared
225 * receive queues, address handles, memory regions, and memory windows.
226 *
227 * Every PD has a local_dma_lkey which can be used as the lkey value for local
228 * memory operations.
229 */
230 struct ib_pd *ib_alloc_pd(struct ib_device *device)
231 {
232 struct ib_pd *pd;
233
234 pd = device->alloc_pd(device, NULL, NULL);
235 if (IS_ERR(pd))
236 return pd;
237
238 pd->device = device;
239 pd->uobject = NULL;
240 pd->local_mr = NULL;
241 atomic_set(&pd->usecnt, 0);
242
243 if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
244 pd->local_dma_lkey = device->local_dma_lkey;
245 else {
246 struct ib_mr *mr;
247
248 mr = ib_get_dma_mr(pd, IB_ACCESS_LOCAL_WRITE);
249 if (IS_ERR(mr)) {
250 ib_dealloc_pd(pd);
251 return (struct ib_pd *)mr;
252 }
253
254 pd->local_mr = mr;
255 pd->local_dma_lkey = pd->local_mr->lkey;
256 }
257 return pd;
258 }
259 EXPORT_SYMBOL(ib_alloc_pd);
260
261 /**
262 * ib_dealloc_pd - Deallocates a protection domain.
263 * @pd: The protection domain to deallocate.
264 *
265 * It is an error to call this function while any resources in the pd still
266 * exist. The caller is responsible to synchronously destroy them and
267 * guarantee no new allocations will happen.
268 */
269 void ib_dealloc_pd(struct ib_pd *pd)
270 {
271 int ret;
272
273 if (pd->local_mr) {
274 ret = ib_dereg_mr(pd->local_mr);
275 WARN_ON(ret);
276 pd->local_mr = NULL;
277 }
278
279 /* uverbs manipulates usecnt with proper locking, while the kabi
280 requires the caller to guarantee we can't race here. */
281 WARN_ON(atomic_read(&pd->usecnt));
282
283 /* Making delalloc_pd a void return is a WIP, no driver should return
284 an error here. */
285 ret = pd->device->dealloc_pd(pd);
286 WARN_ONCE(ret, "Infiniband HW driver failed dealloc_pd");
287 }
288 EXPORT_SYMBOL(ib_dealloc_pd);
289
290 /* Address handles */
291
292 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr)
293 {
294 struct ib_ah *ah;
295
296 ah = pd->device->create_ah(pd, ah_attr);
297
298 if (!IS_ERR(ah)) {
299 ah->device = pd->device;
300 ah->pd = pd;
301 ah->uobject = NULL;
302 atomic_inc(&pd->usecnt);
303 }
304
305 return ah;
306 }
307 EXPORT_SYMBOL(ib_create_ah);
308
309 static int ib_get_header_version(const union rdma_network_hdr *hdr)
310 {
311 const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
312 struct iphdr ip4h_checked;
313 const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
314
315 /* If it's IPv6, the version must be 6, otherwise, the first
316 * 20 bytes (before the IPv4 header) are garbled.
317 */
318 if (ip6h->version != 6)
319 return (ip4h->version == 4) ? 4 : 0;
320 /* version may be 6 or 4 because the first 20 bytes could be garbled */
321
322 /* RoCE v2 requires no options, thus header length
323 * must be 5 words
324 */
325 if (ip4h->ihl != 5)
326 return 6;
327
328 /* Verify checksum.
329 * We can't write on scattered buffers so we need to copy to
330 * temp buffer.
331 */
332 memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
333 ip4h_checked.check = 0;
334 ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
335 /* if IPv4 header checksum is OK, believe it */
336 if (ip4h->check == ip4h_checked.check)
337 return 4;
338 return 6;
339 }
340
341 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
342 u8 port_num,
343 const struct ib_grh *grh)
344 {
345 int grh_version;
346
347 if (rdma_protocol_ib(device, port_num))
348 return RDMA_NETWORK_IB;
349
350 grh_version = ib_get_header_version((union rdma_network_hdr *)grh);
351
352 if (grh_version == 4)
353 return RDMA_NETWORK_IPV4;
354
355 if (grh->next_hdr == IPPROTO_UDP)
356 return RDMA_NETWORK_IPV6;
357
358 return RDMA_NETWORK_ROCE_V1;
359 }
360
361 struct find_gid_index_context {
362 u16 vlan_id;
363 enum ib_gid_type gid_type;
364 };
365
366 static bool find_gid_index(const union ib_gid *gid,
367 const struct ib_gid_attr *gid_attr,
368 void *context)
369 {
370 struct find_gid_index_context *ctx =
371 (struct find_gid_index_context *)context;
372
373 if (ctx->gid_type != gid_attr->gid_type)
374 return false;
375
376 if ((!!(ctx->vlan_id != 0xffff) == !is_vlan_dev(gid_attr->ndev)) ||
377 (is_vlan_dev(gid_attr->ndev) &&
378 vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id))
379 return false;
380
381 return true;
382 }
383
384 static int get_sgid_index_from_eth(struct ib_device *device, u8 port_num,
385 u16 vlan_id, const union ib_gid *sgid,
386 enum ib_gid_type gid_type,
387 u16 *gid_index)
388 {
389 struct find_gid_index_context context = {.vlan_id = vlan_id,
390 .gid_type = gid_type};
391
392 return ib_find_gid_by_filter(device, sgid, port_num, find_gid_index,
393 &context, gid_index);
394 }
395
396 static int get_gids_from_rdma_hdr(union rdma_network_hdr *hdr,
397 enum rdma_network_type net_type,
398 union ib_gid *sgid, union ib_gid *dgid)
399 {
400 struct sockaddr_in src_in;
401 struct sockaddr_in dst_in;
402 __be32 src_saddr, dst_saddr;
403
404 if (!sgid || !dgid)
405 return -EINVAL;
406
407 if (net_type == RDMA_NETWORK_IPV4) {
408 memcpy(&src_in.sin_addr.s_addr,
409 &hdr->roce4grh.saddr, 4);
410 memcpy(&dst_in.sin_addr.s_addr,
411 &hdr->roce4grh.daddr, 4);
412 src_saddr = src_in.sin_addr.s_addr;
413 dst_saddr = dst_in.sin_addr.s_addr;
414 ipv6_addr_set_v4mapped(src_saddr,
415 (struct in6_addr *)sgid);
416 ipv6_addr_set_v4mapped(dst_saddr,
417 (struct in6_addr *)dgid);
418 return 0;
419 } else if (net_type == RDMA_NETWORK_IPV6 ||
420 net_type == RDMA_NETWORK_IB) {
421 *dgid = hdr->ibgrh.dgid;
422 *sgid = hdr->ibgrh.sgid;
423 return 0;
424 } else {
425 return -EINVAL;
426 }
427 }
428
429 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
430 const struct ib_wc *wc, const struct ib_grh *grh,
431 struct ib_ah_attr *ah_attr)
432 {
433 u32 flow_class;
434 u16 gid_index;
435 int ret;
436 enum rdma_network_type net_type = RDMA_NETWORK_IB;
437 enum ib_gid_type gid_type = IB_GID_TYPE_IB;
438 int hoplimit = 0xff;
439 union ib_gid dgid;
440 union ib_gid sgid;
441
442 memset(ah_attr, 0, sizeof *ah_attr);
443 if (rdma_cap_eth_ah(device, port_num)) {
444 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
445 net_type = wc->network_hdr_type;
446 else
447 net_type = ib_get_net_type_by_grh(device, port_num, grh);
448 gid_type = ib_network_to_gid_type(net_type);
449 }
450 ret = get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
451 &sgid, &dgid);
452 if (ret)
453 return ret;
454
455 if (rdma_protocol_roce(device, port_num)) {
456 int if_index = 0;
457 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
458 wc->vlan_id : 0xffff;
459 struct net_device *idev;
460 struct net_device *resolved_dev;
461
462 if (!(wc->wc_flags & IB_WC_GRH))
463 return -EPROTOTYPE;
464
465 if (!device->get_netdev)
466 return -EOPNOTSUPP;
467
468 idev = device->get_netdev(device, port_num);
469 if (!idev)
470 return -ENODEV;
471
472 ret = rdma_addr_find_l2_eth_by_grh(&dgid, &sgid,
473 ah_attr->dmac,
474 wc->wc_flags & IB_WC_WITH_VLAN ?
475 NULL : &vlan_id,
476 &if_index, &hoplimit);
477 if (ret) {
478 dev_put(idev);
479 return ret;
480 }
481
482 resolved_dev = dev_get_by_index(&init_net, if_index);
483 if (resolved_dev->flags & IFF_LOOPBACK) {
484 dev_put(resolved_dev);
485 resolved_dev = idev;
486 dev_hold(resolved_dev);
487 }
488 rcu_read_lock();
489 if (resolved_dev != idev && !rdma_is_upper_dev_rcu(idev,
490 resolved_dev))
491 ret = -EHOSTUNREACH;
492 rcu_read_unlock();
493 dev_put(idev);
494 dev_put(resolved_dev);
495 if (ret)
496 return ret;
497
498 ret = get_sgid_index_from_eth(device, port_num, vlan_id,
499 &dgid, gid_type, &gid_index);
500 if (ret)
501 return ret;
502 }
503
504 ah_attr->dlid = wc->slid;
505 ah_attr->sl = wc->sl;
506 ah_attr->src_path_bits = wc->dlid_path_bits;
507 ah_attr->port_num = port_num;
508
509 if (wc->wc_flags & IB_WC_GRH) {
510 ah_attr->ah_flags = IB_AH_GRH;
511 ah_attr->grh.dgid = sgid;
512
513 if (!rdma_cap_eth_ah(device, port_num)) {
514 if (dgid.global.interface_id != cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
515 ret = ib_find_cached_gid_by_port(device, &dgid,
516 IB_GID_TYPE_IB,
517 port_num, NULL,
518 &gid_index);
519 if (ret)
520 return ret;
521 } else {
522 gid_index = 0;
523 }
524 }
525
526 ah_attr->grh.sgid_index = (u8) gid_index;
527 flow_class = be32_to_cpu(grh->version_tclass_flow);
528 ah_attr->grh.flow_label = flow_class & 0xFFFFF;
529 ah_attr->grh.hop_limit = hoplimit;
530 ah_attr->grh.traffic_class = (flow_class >> 20) & 0xFF;
531 }
532 return 0;
533 }
534 EXPORT_SYMBOL(ib_init_ah_from_wc);
535
536 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
537 const struct ib_grh *grh, u8 port_num)
538 {
539 struct ib_ah_attr ah_attr;
540 int ret;
541
542 ret = ib_init_ah_from_wc(pd->device, port_num, wc, grh, &ah_attr);
543 if (ret)
544 return ERR_PTR(ret);
545
546 return ib_create_ah(pd, &ah_attr);
547 }
548 EXPORT_SYMBOL(ib_create_ah_from_wc);
549
550 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
551 {
552 return ah->device->modify_ah ?
553 ah->device->modify_ah(ah, ah_attr) :
554 -ENOSYS;
555 }
556 EXPORT_SYMBOL(ib_modify_ah);
557
558 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
559 {
560 return ah->device->query_ah ?
561 ah->device->query_ah(ah, ah_attr) :
562 -ENOSYS;
563 }
564 EXPORT_SYMBOL(ib_query_ah);
565
566 int ib_destroy_ah(struct ib_ah *ah)
567 {
568 struct ib_pd *pd;
569 int ret;
570
571 pd = ah->pd;
572 ret = ah->device->destroy_ah(ah);
573 if (!ret)
574 atomic_dec(&pd->usecnt);
575
576 return ret;
577 }
578 EXPORT_SYMBOL(ib_destroy_ah);
579
580 /* Shared receive queues */
581
582 struct ib_srq *ib_create_srq(struct ib_pd *pd,
583 struct ib_srq_init_attr *srq_init_attr)
584 {
585 struct ib_srq *srq;
586
587 if (!pd->device->create_srq)
588 return ERR_PTR(-ENOSYS);
589
590 srq = pd->device->create_srq(pd, srq_init_attr, NULL);
591
592 if (!IS_ERR(srq)) {
593 srq->device = pd->device;
594 srq->pd = pd;
595 srq->uobject = NULL;
596 srq->event_handler = srq_init_attr->event_handler;
597 srq->srq_context = srq_init_attr->srq_context;
598 srq->srq_type = srq_init_attr->srq_type;
599 if (srq->srq_type == IB_SRQT_XRC) {
600 srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
601 srq->ext.xrc.cq = srq_init_attr->ext.xrc.cq;
602 atomic_inc(&srq->ext.xrc.xrcd->usecnt);
603 atomic_inc(&srq->ext.xrc.cq->usecnt);
604 }
605 atomic_inc(&pd->usecnt);
606 atomic_set(&srq->usecnt, 0);
607 }
608
609 return srq;
610 }
611 EXPORT_SYMBOL(ib_create_srq);
612
613 int ib_modify_srq(struct ib_srq *srq,
614 struct ib_srq_attr *srq_attr,
615 enum ib_srq_attr_mask srq_attr_mask)
616 {
617 return srq->device->modify_srq ?
618 srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) :
619 -ENOSYS;
620 }
621 EXPORT_SYMBOL(ib_modify_srq);
622
623 int ib_query_srq(struct ib_srq *srq,
624 struct ib_srq_attr *srq_attr)
625 {
626 return srq->device->query_srq ?
627 srq->device->query_srq(srq, srq_attr) : -ENOSYS;
628 }
629 EXPORT_SYMBOL(ib_query_srq);
630
631 int ib_destroy_srq(struct ib_srq *srq)
632 {
633 struct ib_pd *pd;
634 enum ib_srq_type srq_type;
635 struct ib_xrcd *uninitialized_var(xrcd);
636 struct ib_cq *uninitialized_var(cq);
637 int ret;
638
639 if (atomic_read(&srq->usecnt))
640 return -EBUSY;
641
642 pd = srq->pd;
643 srq_type = srq->srq_type;
644 if (srq_type == IB_SRQT_XRC) {
645 xrcd = srq->ext.xrc.xrcd;
646 cq = srq->ext.xrc.cq;
647 }
648
649 ret = srq->device->destroy_srq(srq);
650 if (!ret) {
651 atomic_dec(&pd->usecnt);
652 if (srq_type == IB_SRQT_XRC) {
653 atomic_dec(&xrcd->usecnt);
654 atomic_dec(&cq->usecnt);
655 }
656 }
657
658 return ret;
659 }
660 EXPORT_SYMBOL(ib_destroy_srq);
661
662 /* Queue pairs */
663
664 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
665 {
666 struct ib_qp *qp = context;
667 unsigned long flags;
668
669 spin_lock_irqsave(&qp->device->event_handler_lock, flags);
670 list_for_each_entry(event->element.qp, &qp->open_list, open_list)
671 if (event->element.qp->event_handler)
672 event->element.qp->event_handler(event, event->element.qp->qp_context);
673 spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
674 }
675
676 static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
677 {
678 mutex_lock(&xrcd->tgt_qp_mutex);
679 list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
680 mutex_unlock(&xrcd->tgt_qp_mutex);
681 }
682
683 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
684 void (*event_handler)(struct ib_event *, void *),
685 void *qp_context)
686 {
687 struct ib_qp *qp;
688 unsigned long flags;
689
690 qp = kzalloc(sizeof *qp, GFP_KERNEL);
691 if (!qp)
692 return ERR_PTR(-ENOMEM);
693
694 qp->real_qp = real_qp;
695 atomic_inc(&real_qp->usecnt);
696 qp->device = real_qp->device;
697 qp->event_handler = event_handler;
698 qp->qp_context = qp_context;
699 qp->qp_num = real_qp->qp_num;
700 qp->qp_type = real_qp->qp_type;
701
702 spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
703 list_add(&qp->open_list, &real_qp->open_list);
704 spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
705
706 return qp;
707 }
708
709 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
710 struct ib_qp_open_attr *qp_open_attr)
711 {
712 struct ib_qp *qp, *real_qp;
713
714 if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
715 return ERR_PTR(-EINVAL);
716
717 qp = ERR_PTR(-EINVAL);
718 mutex_lock(&xrcd->tgt_qp_mutex);
719 list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
720 if (real_qp->qp_num == qp_open_attr->qp_num) {
721 qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
722 qp_open_attr->qp_context);
723 break;
724 }
725 }
726 mutex_unlock(&xrcd->tgt_qp_mutex);
727 return qp;
728 }
729 EXPORT_SYMBOL(ib_open_qp);
730
731 static struct ib_qp *ib_create_xrc_qp(struct ib_qp *qp,
732 struct ib_qp_init_attr *qp_init_attr)
733 {
734 struct ib_qp *real_qp = qp;
735
736 qp->event_handler = __ib_shared_qp_event_handler;
737 qp->qp_context = qp;
738 qp->pd = NULL;
739 qp->send_cq = qp->recv_cq = NULL;
740 qp->srq = NULL;
741 qp->xrcd = qp_init_attr->xrcd;
742 atomic_inc(&qp_init_attr->xrcd->usecnt);
743 INIT_LIST_HEAD(&qp->open_list);
744
745 qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
746 qp_init_attr->qp_context);
747 if (!IS_ERR(qp))
748 __ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
749 else
750 real_qp->device->destroy_qp(real_qp);
751 return qp;
752 }
753
754 struct ib_qp *ib_create_qp(struct ib_pd *pd,
755 struct ib_qp_init_attr *qp_init_attr)
756 {
757 struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
758 struct ib_qp *qp;
759 int ret;
760
761 /*
762 * If the callers is using the RDMA API calculate the resources
763 * needed for the RDMA READ/WRITE operations.
764 *
765 * Note that these callers need to pass in a port number.
766 */
767 if (qp_init_attr->cap.max_rdma_ctxs)
768 rdma_rw_init_qp(device, qp_init_attr);
769
770 qp = device->create_qp(pd, qp_init_attr, NULL);
771 if (IS_ERR(qp))
772 return qp;
773
774 qp->device = device;
775 qp->real_qp = qp;
776 qp->uobject = NULL;
777 qp->qp_type = qp_init_attr->qp_type;
778
779 atomic_set(&qp->usecnt, 0);
780 qp->mrs_used = 0;
781 spin_lock_init(&qp->mr_lock);
782 INIT_LIST_HEAD(&qp->rdma_mrs);
783 INIT_LIST_HEAD(&qp->sig_mrs);
784
785 if (qp_init_attr->qp_type == IB_QPT_XRC_TGT)
786 return ib_create_xrc_qp(qp, qp_init_attr);
787
788 qp->event_handler = qp_init_attr->event_handler;
789 qp->qp_context = qp_init_attr->qp_context;
790 if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
791 qp->recv_cq = NULL;
792 qp->srq = NULL;
793 } else {
794 qp->recv_cq = qp_init_attr->recv_cq;
795 atomic_inc(&qp_init_attr->recv_cq->usecnt);
796 qp->srq = qp_init_attr->srq;
797 if (qp->srq)
798 atomic_inc(&qp_init_attr->srq->usecnt);
799 }
800
801 qp->pd = pd;
802 qp->send_cq = qp_init_attr->send_cq;
803 qp->xrcd = NULL;
804
805 atomic_inc(&pd->usecnt);
806 atomic_inc(&qp_init_attr->send_cq->usecnt);
807
808 if (qp_init_attr->cap.max_rdma_ctxs) {
809 ret = rdma_rw_init_mrs(qp, qp_init_attr);
810 if (ret) {
811 pr_err("failed to init MR pool ret= %d\n", ret);
812 ib_destroy_qp(qp);
813 qp = ERR_PTR(ret);
814 }
815 }
816
817 return qp;
818 }
819 EXPORT_SYMBOL(ib_create_qp);
820
821 static const struct {
822 int valid;
823 enum ib_qp_attr_mask req_param[IB_QPT_MAX];
824 enum ib_qp_attr_mask opt_param[IB_QPT_MAX];
825 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
826 [IB_QPS_RESET] = {
827 [IB_QPS_RESET] = { .valid = 1 },
828 [IB_QPS_INIT] = {
829 .valid = 1,
830 .req_param = {
831 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
832 IB_QP_PORT |
833 IB_QP_QKEY),
834 [IB_QPT_RAW_PACKET] = IB_QP_PORT,
835 [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
836 IB_QP_PORT |
837 IB_QP_ACCESS_FLAGS),
838 [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
839 IB_QP_PORT |
840 IB_QP_ACCESS_FLAGS),
841 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
842 IB_QP_PORT |
843 IB_QP_ACCESS_FLAGS),
844 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
845 IB_QP_PORT |
846 IB_QP_ACCESS_FLAGS),
847 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
848 IB_QP_QKEY),
849 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
850 IB_QP_QKEY),
851 }
852 },
853 },
854 [IB_QPS_INIT] = {
855 [IB_QPS_RESET] = { .valid = 1 },
856 [IB_QPS_ERR] = { .valid = 1 },
857 [IB_QPS_INIT] = {
858 .valid = 1,
859 .opt_param = {
860 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
861 IB_QP_PORT |
862 IB_QP_QKEY),
863 [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
864 IB_QP_PORT |
865 IB_QP_ACCESS_FLAGS),
866 [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
867 IB_QP_PORT |
868 IB_QP_ACCESS_FLAGS),
869 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
870 IB_QP_PORT |
871 IB_QP_ACCESS_FLAGS),
872 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
873 IB_QP_PORT |
874 IB_QP_ACCESS_FLAGS),
875 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
876 IB_QP_QKEY),
877 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
878 IB_QP_QKEY),
879 }
880 },
881 [IB_QPS_RTR] = {
882 .valid = 1,
883 .req_param = {
884 [IB_QPT_UC] = (IB_QP_AV |
885 IB_QP_PATH_MTU |
886 IB_QP_DEST_QPN |
887 IB_QP_RQ_PSN),
888 [IB_QPT_RC] = (IB_QP_AV |
889 IB_QP_PATH_MTU |
890 IB_QP_DEST_QPN |
891 IB_QP_RQ_PSN |
892 IB_QP_MAX_DEST_RD_ATOMIC |
893 IB_QP_MIN_RNR_TIMER),
894 [IB_QPT_XRC_INI] = (IB_QP_AV |
895 IB_QP_PATH_MTU |
896 IB_QP_DEST_QPN |
897 IB_QP_RQ_PSN),
898 [IB_QPT_XRC_TGT] = (IB_QP_AV |
899 IB_QP_PATH_MTU |
900 IB_QP_DEST_QPN |
901 IB_QP_RQ_PSN |
902 IB_QP_MAX_DEST_RD_ATOMIC |
903 IB_QP_MIN_RNR_TIMER),
904 },
905 .opt_param = {
906 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
907 IB_QP_QKEY),
908 [IB_QPT_UC] = (IB_QP_ALT_PATH |
909 IB_QP_ACCESS_FLAGS |
910 IB_QP_PKEY_INDEX),
911 [IB_QPT_RC] = (IB_QP_ALT_PATH |
912 IB_QP_ACCESS_FLAGS |
913 IB_QP_PKEY_INDEX),
914 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH |
915 IB_QP_ACCESS_FLAGS |
916 IB_QP_PKEY_INDEX),
917 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH |
918 IB_QP_ACCESS_FLAGS |
919 IB_QP_PKEY_INDEX),
920 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
921 IB_QP_QKEY),
922 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
923 IB_QP_QKEY),
924 },
925 },
926 },
927 [IB_QPS_RTR] = {
928 [IB_QPS_RESET] = { .valid = 1 },
929 [IB_QPS_ERR] = { .valid = 1 },
930 [IB_QPS_RTS] = {
931 .valid = 1,
932 .req_param = {
933 [IB_QPT_UD] = IB_QP_SQ_PSN,
934 [IB_QPT_UC] = IB_QP_SQ_PSN,
935 [IB_QPT_RC] = (IB_QP_TIMEOUT |
936 IB_QP_RETRY_CNT |
937 IB_QP_RNR_RETRY |
938 IB_QP_SQ_PSN |
939 IB_QP_MAX_QP_RD_ATOMIC),
940 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT |
941 IB_QP_RETRY_CNT |
942 IB_QP_RNR_RETRY |
943 IB_QP_SQ_PSN |
944 IB_QP_MAX_QP_RD_ATOMIC),
945 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT |
946 IB_QP_SQ_PSN),
947 [IB_QPT_SMI] = IB_QP_SQ_PSN,
948 [IB_QPT_GSI] = IB_QP_SQ_PSN,
949 },
950 .opt_param = {
951 [IB_QPT_UD] = (IB_QP_CUR_STATE |
952 IB_QP_QKEY),
953 [IB_QPT_UC] = (IB_QP_CUR_STATE |
954 IB_QP_ALT_PATH |
955 IB_QP_ACCESS_FLAGS |
956 IB_QP_PATH_MIG_STATE),
957 [IB_QPT_RC] = (IB_QP_CUR_STATE |
958 IB_QP_ALT_PATH |
959 IB_QP_ACCESS_FLAGS |
960 IB_QP_MIN_RNR_TIMER |
961 IB_QP_PATH_MIG_STATE),
962 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
963 IB_QP_ALT_PATH |
964 IB_QP_ACCESS_FLAGS |
965 IB_QP_PATH_MIG_STATE),
966 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
967 IB_QP_ALT_PATH |
968 IB_QP_ACCESS_FLAGS |
969 IB_QP_MIN_RNR_TIMER |
970 IB_QP_PATH_MIG_STATE),
971 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
972 IB_QP_QKEY),
973 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
974 IB_QP_QKEY),
975 }
976 }
977 },
978 [IB_QPS_RTS] = {
979 [IB_QPS_RESET] = { .valid = 1 },
980 [IB_QPS_ERR] = { .valid = 1 },
981 [IB_QPS_RTS] = {
982 .valid = 1,
983 .opt_param = {
984 [IB_QPT_UD] = (IB_QP_CUR_STATE |
985 IB_QP_QKEY),
986 [IB_QPT_UC] = (IB_QP_CUR_STATE |
987 IB_QP_ACCESS_FLAGS |
988 IB_QP_ALT_PATH |
989 IB_QP_PATH_MIG_STATE),
990 [IB_QPT_RC] = (IB_QP_CUR_STATE |
991 IB_QP_ACCESS_FLAGS |
992 IB_QP_ALT_PATH |
993 IB_QP_PATH_MIG_STATE |
994 IB_QP_MIN_RNR_TIMER),
995 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
996 IB_QP_ACCESS_FLAGS |
997 IB_QP_ALT_PATH |
998 IB_QP_PATH_MIG_STATE),
999 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1000 IB_QP_ACCESS_FLAGS |
1001 IB_QP_ALT_PATH |
1002 IB_QP_PATH_MIG_STATE |
1003 IB_QP_MIN_RNR_TIMER),
1004 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1005 IB_QP_QKEY),
1006 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1007 IB_QP_QKEY),
1008 }
1009 },
1010 [IB_QPS_SQD] = {
1011 .valid = 1,
1012 .opt_param = {
1013 [IB_QPT_UD] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1014 [IB_QPT_UC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1015 [IB_QPT_RC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1016 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1017 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1018 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1019 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1020 }
1021 },
1022 },
1023 [IB_QPS_SQD] = {
1024 [IB_QPS_RESET] = { .valid = 1 },
1025 [IB_QPS_ERR] = { .valid = 1 },
1026 [IB_QPS_RTS] = {
1027 .valid = 1,
1028 .opt_param = {
1029 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1030 IB_QP_QKEY),
1031 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1032 IB_QP_ALT_PATH |
1033 IB_QP_ACCESS_FLAGS |
1034 IB_QP_PATH_MIG_STATE),
1035 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1036 IB_QP_ALT_PATH |
1037 IB_QP_ACCESS_FLAGS |
1038 IB_QP_MIN_RNR_TIMER |
1039 IB_QP_PATH_MIG_STATE),
1040 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1041 IB_QP_ALT_PATH |
1042 IB_QP_ACCESS_FLAGS |
1043 IB_QP_PATH_MIG_STATE),
1044 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1045 IB_QP_ALT_PATH |
1046 IB_QP_ACCESS_FLAGS |
1047 IB_QP_MIN_RNR_TIMER |
1048 IB_QP_PATH_MIG_STATE),
1049 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1050 IB_QP_QKEY),
1051 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1052 IB_QP_QKEY),
1053 }
1054 },
1055 [IB_QPS_SQD] = {
1056 .valid = 1,
1057 .opt_param = {
1058 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1059 IB_QP_QKEY),
1060 [IB_QPT_UC] = (IB_QP_AV |
1061 IB_QP_ALT_PATH |
1062 IB_QP_ACCESS_FLAGS |
1063 IB_QP_PKEY_INDEX |
1064 IB_QP_PATH_MIG_STATE),
1065 [IB_QPT_RC] = (IB_QP_PORT |
1066 IB_QP_AV |
1067 IB_QP_TIMEOUT |
1068 IB_QP_RETRY_CNT |
1069 IB_QP_RNR_RETRY |
1070 IB_QP_MAX_QP_RD_ATOMIC |
1071 IB_QP_MAX_DEST_RD_ATOMIC |
1072 IB_QP_ALT_PATH |
1073 IB_QP_ACCESS_FLAGS |
1074 IB_QP_PKEY_INDEX |
1075 IB_QP_MIN_RNR_TIMER |
1076 IB_QP_PATH_MIG_STATE),
1077 [IB_QPT_XRC_INI] = (IB_QP_PORT |
1078 IB_QP_AV |
1079 IB_QP_TIMEOUT |
1080 IB_QP_RETRY_CNT |
1081 IB_QP_RNR_RETRY |
1082 IB_QP_MAX_QP_RD_ATOMIC |
1083 IB_QP_ALT_PATH |
1084 IB_QP_ACCESS_FLAGS |
1085 IB_QP_PKEY_INDEX |
1086 IB_QP_PATH_MIG_STATE),
1087 [IB_QPT_XRC_TGT] = (IB_QP_PORT |
1088 IB_QP_AV |
1089 IB_QP_TIMEOUT |
1090 IB_QP_MAX_DEST_RD_ATOMIC |
1091 IB_QP_ALT_PATH |
1092 IB_QP_ACCESS_FLAGS |
1093 IB_QP_PKEY_INDEX |
1094 IB_QP_MIN_RNR_TIMER |
1095 IB_QP_PATH_MIG_STATE),
1096 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1097 IB_QP_QKEY),
1098 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1099 IB_QP_QKEY),
1100 }
1101 }
1102 },
1103 [IB_QPS_SQE] = {
1104 [IB_QPS_RESET] = { .valid = 1 },
1105 [IB_QPS_ERR] = { .valid = 1 },
1106 [IB_QPS_RTS] = {
1107 .valid = 1,
1108 .opt_param = {
1109 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1110 IB_QP_QKEY),
1111 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1112 IB_QP_ACCESS_FLAGS),
1113 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1114 IB_QP_QKEY),
1115 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1116 IB_QP_QKEY),
1117 }
1118 }
1119 },
1120 [IB_QPS_ERR] = {
1121 [IB_QPS_RESET] = { .valid = 1 },
1122 [IB_QPS_ERR] = { .valid = 1 }
1123 }
1124 };
1125
1126 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1127 enum ib_qp_type type, enum ib_qp_attr_mask mask,
1128 enum rdma_link_layer ll)
1129 {
1130 enum ib_qp_attr_mask req_param, opt_param;
1131
1132 if (cur_state < 0 || cur_state > IB_QPS_ERR ||
1133 next_state < 0 || next_state > IB_QPS_ERR)
1134 return 0;
1135
1136 if (mask & IB_QP_CUR_STATE &&
1137 cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1138 cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1139 return 0;
1140
1141 if (!qp_state_table[cur_state][next_state].valid)
1142 return 0;
1143
1144 req_param = qp_state_table[cur_state][next_state].req_param[type];
1145 opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1146
1147 if ((mask & req_param) != req_param)
1148 return 0;
1149
1150 if (mask & ~(req_param | opt_param | IB_QP_STATE))
1151 return 0;
1152
1153 return 1;
1154 }
1155 EXPORT_SYMBOL(ib_modify_qp_is_ok);
1156
1157 int ib_resolve_eth_dmac(struct ib_qp *qp,
1158 struct ib_qp_attr *qp_attr, int *qp_attr_mask)
1159 {
1160 int ret = 0;
1161
1162 if (*qp_attr_mask & IB_QP_AV) {
1163 if (qp_attr->ah_attr.port_num < rdma_start_port(qp->device) ||
1164 qp_attr->ah_attr.port_num > rdma_end_port(qp->device))
1165 return -EINVAL;
1166
1167 if (!rdma_cap_eth_ah(qp->device, qp_attr->ah_attr.port_num))
1168 return 0;
1169
1170 if (rdma_link_local_addr((struct in6_addr *)qp_attr->ah_attr.grh.dgid.raw)) {
1171 rdma_get_ll_mac((struct in6_addr *)qp_attr->ah_attr.grh.dgid.raw,
1172 qp_attr->ah_attr.dmac);
1173 } else {
1174 union ib_gid sgid;
1175 struct ib_gid_attr sgid_attr;
1176 int ifindex;
1177 int hop_limit;
1178
1179 ret = ib_query_gid(qp->device,
1180 qp_attr->ah_attr.port_num,
1181 qp_attr->ah_attr.grh.sgid_index,
1182 &sgid, &sgid_attr);
1183
1184 if (ret || !sgid_attr.ndev) {
1185 if (!ret)
1186 ret = -ENXIO;
1187 goto out;
1188 }
1189
1190 ifindex = sgid_attr.ndev->ifindex;
1191
1192 ret = rdma_addr_find_l2_eth_by_grh(&sgid,
1193 &qp_attr->ah_attr.grh.dgid,
1194 qp_attr->ah_attr.dmac,
1195 NULL, &ifindex, &hop_limit);
1196
1197 dev_put(sgid_attr.ndev);
1198
1199 qp_attr->ah_attr.grh.hop_limit = hop_limit;
1200 }
1201 }
1202 out:
1203 return ret;
1204 }
1205 EXPORT_SYMBOL(ib_resolve_eth_dmac);
1206
1207
1208 int ib_modify_qp(struct ib_qp *qp,
1209 struct ib_qp_attr *qp_attr,
1210 int qp_attr_mask)
1211 {
1212 int ret;
1213
1214 ret = ib_resolve_eth_dmac(qp, qp_attr, &qp_attr_mask);
1215 if (ret)
1216 return ret;
1217
1218 return qp->device->modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
1219 }
1220 EXPORT_SYMBOL(ib_modify_qp);
1221
1222 int ib_query_qp(struct ib_qp *qp,
1223 struct ib_qp_attr *qp_attr,
1224 int qp_attr_mask,
1225 struct ib_qp_init_attr *qp_init_attr)
1226 {
1227 return qp->device->query_qp ?
1228 qp->device->query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) :
1229 -ENOSYS;
1230 }
1231 EXPORT_SYMBOL(ib_query_qp);
1232
1233 int ib_close_qp(struct ib_qp *qp)
1234 {
1235 struct ib_qp *real_qp;
1236 unsigned long flags;
1237
1238 real_qp = qp->real_qp;
1239 if (real_qp == qp)
1240 return -EINVAL;
1241
1242 spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1243 list_del(&qp->open_list);
1244 spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1245
1246 atomic_dec(&real_qp->usecnt);
1247 kfree(qp);
1248
1249 return 0;
1250 }
1251 EXPORT_SYMBOL(ib_close_qp);
1252
1253 static int __ib_destroy_shared_qp(struct ib_qp *qp)
1254 {
1255 struct ib_xrcd *xrcd;
1256 struct ib_qp *real_qp;
1257 int ret;
1258
1259 real_qp = qp->real_qp;
1260 xrcd = real_qp->xrcd;
1261
1262 mutex_lock(&xrcd->tgt_qp_mutex);
1263 ib_close_qp(qp);
1264 if (atomic_read(&real_qp->usecnt) == 0)
1265 list_del(&real_qp->xrcd_list);
1266 else
1267 real_qp = NULL;
1268 mutex_unlock(&xrcd->tgt_qp_mutex);
1269
1270 if (real_qp) {
1271 ret = ib_destroy_qp(real_qp);
1272 if (!ret)
1273 atomic_dec(&xrcd->usecnt);
1274 else
1275 __ib_insert_xrcd_qp(xrcd, real_qp);
1276 }
1277
1278 return 0;
1279 }
1280
1281 int ib_destroy_qp(struct ib_qp *qp)
1282 {
1283 struct ib_pd *pd;
1284 struct ib_cq *scq, *rcq;
1285 struct ib_srq *srq;
1286 int ret;
1287
1288 WARN_ON_ONCE(qp->mrs_used > 0);
1289
1290 if (atomic_read(&qp->usecnt))
1291 return -EBUSY;
1292
1293 if (qp->real_qp != qp)
1294 return __ib_destroy_shared_qp(qp);
1295
1296 pd = qp->pd;
1297 scq = qp->send_cq;
1298 rcq = qp->recv_cq;
1299 srq = qp->srq;
1300
1301 if (!qp->uobject)
1302 rdma_rw_cleanup_mrs(qp);
1303
1304 ret = qp->device->destroy_qp(qp);
1305 if (!ret) {
1306 if (pd)
1307 atomic_dec(&pd->usecnt);
1308 if (scq)
1309 atomic_dec(&scq->usecnt);
1310 if (rcq)
1311 atomic_dec(&rcq->usecnt);
1312 if (srq)
1313 atomic_dec(&srq->usecnt);
1314 }
1315
1316 return ret;
1317 }
1318 EXPORT_SYMBOL(ib_destroy_qp);
1319
1320 /* Completion queues */
1321
1322 struct ib_cq *ib_create_cq(struct ib_device *device,
1323 ib_comp_handler comp_handler,
1324 void (*event_handler)(struct ib_event *, void *),
1325 void *cq_context,
1326 const struct ib_cq_init_attr *cq_attr)
1327 {
1328 struct ib_cq *cq;
1329
1330 cq = device->create_cq(device, cq_attr, NULL, NULL);
1331
1332 if (!IS_ERR(cq)) {
1333 cq->device = device;
1334 cq->uobject = NULL;
1335 cq->comp_handler = comp_handler;
1336 cq->event_handler = event_handler;
1337 cq->cq_context = cq_context;
1338 atomic_set(&cq->usecnt, 0);
1339 }
1340
1341 return cq;
1342 }
1343 EXPORT_SYMBOL(ib_create_cq);
1344
1345 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period)
1346 {
1347 return cq->device->modify_cq ?
1348 cq->device->modify_cq(cq, cq_count, cq_period) : -ENOSYS;
1349 }
1350 EXPORT_SYMBOL(ib_modify_cq);
1351
1352 int ib_destroy_cq(struct ib_cq *cq)
1353 {
1354 if (atomic_read(&cq->usecnt))
1355 return -EBUSY;
1356
1357 return cq->device->destroy_cq(cq);
1358 }
1359 EXPORT_SYMBOL(ib_destroy_cq);
1360
1361 int ib_resize_cq(struct ib_cq *cq, int cqe)
1362 {
1363 return cq->device->resize_cq ?
1364 cq->device->resize_cq(cq, cqe, NULL) : -ENOSYS;
1365 }
1366 EXPORT_SYMBOL(ib_resize_cq);
1367
1368 /* Memory regions */
1369
1370 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags)
1371 {
1372 struct ib_mr *mr;
1373 int err;
1374
1375 err = ib_check_mr_access(mr_access_flags);
1376 if (err)
1377 return ERR_PTR(err);
1378
1379 mr = pd->device->get_dma_mr(pd, mr_access_flags);
1380
1381 if (!IS_ERR(mr)) {
1382 mr->device = pd->device;
1383 mr->pd = pd;
1384 mr->uobject = NULL;
1385 atomic_inc(&pd->usecnt);
1386 mr->need_inval = false;
1387 }
1388
1389 return mr;
1390 }
1391 EXPORT_SYMBOL(ib_get_dma_mr);
1392
1393 int ib_dereg_mr(struct ib_mr *mr)
1394 {
1395 struct ib_pd *pd = mr->pd;
1396 int ret;
1397
1398 ret = mr->device->dereg_mr(mr);
1399 if (!ret)
1400 atomic_dec(&pd->usecnt);
1401
1402 return ret;
1403 }
1404 EXPORT_SYMBOL(ib_dereg_mr);
1405
1406 /**
1407 * ib_alloc_mr() - Allocates a memory region
1408 * @pd: protection domain associated with the region
1409 * @mr_type: memory region type
1410 * @max_num_sg: maximum sg entries available for registration.
1411 *
1412 * Notes:
1413 * Memory registeration page/sg lists must not exceed max_num_sg.
1414 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
1415 * max_num_sg * used_page_size.
1416 *
1417 */
1418 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
1419 enum ib_mr_type mr_type,
1420 u32 max_num_sg)
1421 {
1422 struct ib_mr *mr;
1423
1424 if (!pd->device->alloc_mr)
1425 return ERR_PTR(-ENOSYS);
1426
1427 mr = pd->device->alloc_mr(pd, mr_type, max_num_sg);
1428 if (!IS_ERR(mr)) {
1429 mr->device = pd->device;
1430 mr->pd = pd;
1431 mr->uobject = NULL;
1432 atomic_inc(&pd->usecnt);
1433 mr->need_inval = false;
1434 }
1435
1436 return mr;
1437 }
1438 EXPORT_SYMBOL(ib_alloc_mr);
1439
1440 /* "Fast" memory regions */
1441
1442 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
1443 int mr_access_flags,
1444 struct ib_fmr_attr *fmr_attr)
1445 {
1446 struct ib_fmr *fmr;
1447
1448 if (!pd->device->alloc_fmr)
1449 return ERR_PTR(-ENOSYS);
1450
1451 fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr);
1452 if (!IS_ERR(fmr)) {
1453 fmr->device = pd->device;
1454 fmr->pd = pd;
1455 atomic_inc(&pd->usecnt);
1456 }
1457
1458 return fmr;
1459 }
1460 EXPORT_SYMBOL(ib_alloc_fmr);
1461
1462 int ib_unmap_fmr(struct list_head *fmr_list)
1463 {
1464 struct ib_fmr *fmr;
1465
1466 if (list_empty(fmr_list))
1467 return 0;
1468
1469 fmr = list_entry(fmr_list->next, struct ib_fmr, list);
1470 return fmr->device->unmap_fmr(fmr_list);
1471 }
1472 EXPORT_SYMBOL(ib_unmap_fmr);
1473
1474 int ib_dealloc_fmr(struct ib_fmr *fmr)
1475 {
1476 struct ib_pd *pd;
1477 int ret;
1478
1479 pd = fmr->pd;
1480 ret = fmr->device->dealloc_fmr(fmr);
1481 if (!ret)
1482 atomic_dec(&pd->usecnt);
1483
1484 return ret;
1485 }
1486 EXPORT_SYMBOL(ib_dealloc_fmr);
1487
1488 /* Multicast groups */
1489
1490 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1491 {
1492 int ret;
1493
1494 if (!qp->device->attach_mcast)
1495 return -ENOSYS;
1496 if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD)
1497 return -EINVAL;
1498
1499 ret = qp->device->attach_mcast(qp, gid, lid);
1500 if (!ret)
1501 atomic_inc(&qp->usecnt);
1502 return ret;
1503 }
1504 EXPORT_SYMBOL(ib_attach_mcast);
1505
1506 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1507 {
1508 int ret;
1509
1510 if (!qp->device->detach_mcast)
1511 return -ENOSYS;
1512 if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD)
1513 return -EINVAL;
1514
1515 ret = qp->device->detach_mcast(qp, gid, lid);
1516 if (!ret)
1517 atomic_dec(&qp->usecnt);
1518 return ret;
1519 }
1520 EXPORT_SYMBOL(ib_detach_mcast);
1521
1522 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device)
1523 {
1524 struct ib_xrcd *xrcd;
1525
1526 if (!device->alloc_xrcd)
1527 return ERR_PTR(-ENOSYS);
1528
1529 xrcd = device->alloc_xrcd(device, NULL, NULL);
1530 if (!IS_ERR(xrcd)) {
1531 xrcd->device = device;
1532 xrcd->inode = NULL;
1533 atomic_set(&xrcd->usecnt, 0);
1534 mutex_init(&xrcd->tgt_qp_mutex);
1535 INIT_LIST_HEAD(&xrcd->tgt_qp_list);
1536 }
1537
1538 return xrcd;
1539 }
1540 EXPORT_SYMBOL(ib_alloc_xrcd);
1541
1542 int ib_dealloc_xrcd(struct ib_xrcd *xrcd)
1543 {
1544 struct ib_qp *qp;
1545 int ret;
1546
1547 if (atomic_read(&xrcd->usecnt))
1548 return -EBUSY;
1549
1550 while (!list_empty(&xrcd->tgt_qp_list)) {
1551 qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
1552 ret = ib_destroy_qp(qp);
1553 if (ret)
1554 return ret;
1555 }
1556
1557 return xrcd->device->dealloc_xrcd(xrcd);
1558 }
1559 EXPORT_SYMBOL(ib_dealloc_xrcd);
1560
1561 struct ib_flow *ib_create_flow(struct ib_qp *qp,
1562 struct ib_flow_attr *flow_attr,
1563 int domain)
1564 {
1565 struct ib_flow *flow_id;
1566 if (!qp->device->create_flow)
1567 return ERR_PTR(-ENOSYS);
1568
1569 flow_id = qp->device->create_flow(qp, flow_attr, domain);
1570 if (!IS_ERR(flow_id))
1571 atomic_inc(&qp->usecnt);
1572 return flow_id;
1573 }
1574 EXPORT_SYMBOL(ib_create_flow);
1575
1576 int ib_destroy_flow(struct ib_flow *flow_id)
1577 {
1578 int err;
1579 struct ib_qp *qp = flow_id->qp;
1580
1581 err = qp->device->destroy_flow(flow_id);
1582 if (!err)
1583 atomic_dec(&qp->usecnt);
1584 return err;
1585 }
1586 EXPORT_SYMBOL(ib_destroy_flow);
1587
1588 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
1589 struct ib_mr_status *mr_status)
1590 {
1591 return mr->device->check_mr_status ?
1592 mr->device->check_mr_status(mr, check_mask, mr_status) : -ENOSYS;
1593 }
1594 EXPORT_SYMBOL(ib_check_mr_status);
1595
1596 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
1597 int state)
1598 {
1599 if (!device->set_vf_link_state)
1600 return -ENOSYS;
1601
1602 return device->set_vf_link_state(device, vf, port, state);
1603 }
1604 EXPORT_SYMBOL(ib_set_vf_link_state);
1605
1606 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
1607 struct ifla_vf_info *info)
1608 {
1609 if (!device->get_vf_config)
1610 return -ENOSYS;
1611
1612 return device->get_vf_config(device, vf, port, info);
1613 }
1614 EXPORT_SYMBOL(ib_get_vf_config);
1615
1616 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
1617 struct ifla_vf_stats *stats)
1618 {
1619 if (!device->get_vf_stats)
1620 return -ENOSYS;
1621
1622 return device->get_vf_stats(device, vf, port, stats);
1623 }
1624 EXPORT_SYMBOL(ib_get_vf_stats);
1625
1626 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
1627 int type)
1628 {
1629 if (!device->set_vf_guid)
1630 return -ENOSYS;
1631
1632 return device->set_vf_guid(device, vf, port, guid, type);
1633 }
1634 EXPORT_SYMBOL(ib_set_vf_guid);
1635
1636 /**
1637 * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
1638 * and set it the memory region.
1639 * @mr: memory region
1640 * @sg: dma mapped scatterlist
1641 * @sg_nents: number of entries in sg
1642 * @sg_offset: offset in bytes into sg
1643 * @page_size: page vector desired page size
1644 *
1645 * Constraints:
1646 * - The first sg element is allowed to have an offset.
1647 * - Each sg element must be aligned to page_size (or physically
1648 * contiguous to the previous element). In case an sg element has a
1649 * non contiguous offset, the mapping prefix will not include it.
1650 * - The last sg element is allowed to have length less than page_size.
1651 * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
1652 * then only max_num_sg entries will be mapped.
1653 * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS_REG, non of these
1654 * constraints holds and the page_size argument is ignored.
1655 *
1656 * Returns the number of sg elements that were mapped to the memory region.
1657 *
1658 * After this completes successfully, the memory region
1659 * is ready for registration.
1660 */
1661 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
1662 unsigned int *sg_offset, unsigned int page_size)
1663 {
1664 if (unlikely(!mr->device->map_mr_sg))
1665 return -ENOSYS;
1666
1667 mr->page_size = page_size;
1668
1669 return mr->device->map_mr_sg(mr, sg, sg_nents, sg_offset);
1670 }
1671 EXPORT_SYMBOL(ib_map_mr_sg);
1672
1673 /**
1674 * ib_sg_to_pages() - Convert the largest prefix of a sg list
1675 * to a page vector
1676 * @mr: memory region
1677 * @sgl: dma mapped scatterlist
1678 * @sg_nents: number of entries in sg
1679 * @sg_offset_p: IN: start offset in bytes into sg
1680 * OUT: offset in bytes for element n of the sg of the first
1681 * byte that has not been processed where n is the return
1682 * value of this function.
1683 * @set_page: driver page assignment function pointer
1684 *
1685 * Core service helper for drivers to convert the largest
1686 * prefix of given sg list to a page vector. The sg list
1687 * prefix converted is the prefix that meet the requirements
1688 * of ib_map_mr_sg.
1689 *
1690 * Returns the number of sg elements that were assigned to
1691 * a page vector.
1692 */
1693 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
1694 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
1695 {
1696 struct scatterlist *sg;
1697 u64 last_end_dma_addr = 0;
1698 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
1699 unsigned int last_page_off = 0;
1700 u64 page_mask = ~((u64)mr->page_size - 1);
1701 int i, ret;
1702
1703 if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
1704 return -EINVAL;
1705
1706 mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
1707 mr->length = 0;
1708
1709 for_each_sg(sgl, sg, sg_nents, i) {
1710 u64 dma_addr = sg_dma_address(sg) + sg_offset;
1711 u64 prev_addr = dma_addr;
1712 unsigned int dma_len = sg_dma_len(sg) - sg_offset;
1713 u64 end_dma_addr = dma_addr + dma_len;
1714 u64 page_addr = dma_addr & page_mask;
1715
1716 /*
1717 * For the second and later elements, check whether either the
1718 * end of element i-1 or the start of element i is not aligned
1719 * on a page boundary.
1720 */
1721 if (i && (last_page_off != 0 || page_addr != dma_addr)) {
1722 /* Stop mapping if there is a gap. */
1723 if (last_end_dma_addr != dma_addr)
1724 break;
1725
1726 /*
1727 * Coalesce this element with the last. If it is small
1728 * enough just update mr->length. Otherwise start
1729 * mapping from the next page.
1730 */
1731 goto next_page;
1732 }
1733
1734 do {
1735 ret = set_page(mr, page_addr);
1736 if (unlikely(ret < 0)) {
1737 sg_offset = prev_addr - sg_dma_address(sg);
1738 mr->length += prev_addr - dma_addr;
1739 if (sg_offset_p)
1740 *sg_offset_p = sg_offset;
1741 return i || sg_offset ? i : ret;
1742 }
1743 prev_addr = page_addr;
1744 next_page:
1745 page_addr += mr->page_size;
1746 } while (page_addr < end_dma_addr);
1747
1748 mr->length += dma_len;
1749 last_end_dma_addr = end_dma_addr;
1750 last_page_off = end_dma_addr & ~page_mask;
1751
1752 sg_offset = 0;
1753 }
1754
1755 if (sg_offset_p)
1756 *sg_offset_p = 0;
1757 return i;
1758 }
1759 EXPORT_SYMBOL(ib_sg_to_pages);
1760
1761 struct ib_drain_cqe {
1762 struct ib_cqe cqe;
1763 struct completion done;
1764 };
1765
1766 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
1767 {
1768 struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
1769 cqe);
1770
1771 complete(&cqe->done);
1772 }
1773
1774 /*
1775 * Post a WR and block until its completion is reaped for the SQ.
1776 */
1777 static void __ib_drain_sq(struct ib_qp *qp)
1778 {
1779 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
1780 struct ib_drain_cqe sdrain;
1781 struct ib_send_wr swr = {}, *bad_swr;
1782 int ret;
1783
1784 if (qp->send_cq->poll_ctx == IB_POLL_DIRECT) {
1785 WARN_ONCE(qp->send_cq->poll_ctx == IB_POLL_DIRECT,
1786 "IB_POLL_DIRECT poll_ctx not supported for drain\n");
1787 return;
1788 }
1789
1790 swr.wr_cqe = &sdrain.cqe;
1791 sdrain.cqe.done = ib_drain_qp_done;
1792 init_completion(&sdrain.done);
1793
1794 ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
1795 if (ret) {
1796 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
1797 return;
1798 }
1799
1800 ret = ib_post_send(qp, &swr, &bad_swr);
1801 if (ret) {
1802 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
1803 return;
1804 }
1805
1806 wait_for_completion(&sdrain.done);
1807 }
1808
1809 /*
1810 * Post a WR and block until its completion is reaped for the RQ.
1811 */
1812 static void __ib_drain_rq(struct ib_qp *qp)
1813 {
1814 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
1815 struct ib_drain_cqe rdrain;
1816 struct ib_recv_wr rwr = {}, *bad_rwr;
1817 int ret;
1818
1819 if (qp->recv_cq->poll_ctx == IB_POLL_DIRECT) {
1820 WARN_ONCE(qp->recv_cq->poll_ctx == IB_POLL_DIRECT,
1821 "IB_POLL_DIRECT poll_ctx not supported for drain\n");
1822 return;
1823 }
1824
1825 rwr.wr_cqe = &rdrain.cqe;
1826 rdrain.cqe.done = ib_drain_qp_done;
1827 init_completion(&rdrain.done);
1828
1829 ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
1830 if (ret) {
1831 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
1832 return;
1833 }
1834
1835 ret = ib_post_recv(qp, &rwr, &bad_rwr);
1836 if (ret) {
1837 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
1838 return;
1839 }
1840
1841 wait_for_completion(&rdrain.done);
1842 }
1843
1844 /**
1845 * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
1846 * application.
1847 * @qp: queue pair to drain
1848 *
1849 * If the device has a provider-specific drain function, then
1850 * call that. Otherwise call the generic drain function
1851 * __ib_drain_sq().
1852 *
1853 * The caller must:
1854 *
1855 * ensure there is room in the CQ and SQ for the drain work request and
1856 * completion.
1857 *
1858 * allocate the CQ using ib_alloc_cq() and the CQ poll context cannot be
1859 * IB_POLL_DIRECT.
1860 *
1861 * ensure that there are no other contexts that are posting WRs concurrently.
1862 * Otherwise the drain is not guaranteed.
1863 */
1864 void ib_drain_sq(struct ib_qp *qp)
1865 {
1866 if (qp->device->drain_sq)
1867 qp->device->drain_sq(qp);
1868 else
1869 __ib_drain_sq(qp);
1870 }
1871 EXPORT_SYMBOL(ib_drain_sq);
1872
1873 /**
1874 * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
1875 * application.
1876 * @qp: queue pair to drain
1877 *
1878 * If the device has a provider-specific drain function, then
1879 * call that. Otherwise call the generic drain function
1880 * __ib_drain_rq().
1881 *
1882 * The caller must:
1883 *
1884 * ensure there is room in the CQ and RQ for the drain work request and
1885 * completion.
1886 *
1887 * allocate the CQ using ib_alloc_cq() and the CQ poll context cannot be
1888 * IB_POLL_DIRECT.
1889 *
1890 * ensure that there are no other contexts that are posting WRs concurrently.
1891 * Otherwise the drain is not guaranteed.
1892 */
1893 void ib_drain_rq(struct ib_qp *qp)
1894 {
1895 if (qp->device->drain_rq)
1896 qp->device->drain_rq(qp);
1897 else
1898 __ib_drain_rq(qp);
1899 }
1900 EXPORT_SYMBOL(ib_drain_rq);
1901
1902 /**
1903 * ib_drain_qp() - Block until all CQEs have been consumed by the
1904 * application on both the RQ and SQ.
1905 * @qp: queue pair to drain
1906 *
1907 * The caller must:
1908 *
1909 * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
1910 * and completions.
1911 *
1912 * allocate the CQs using ib_alloc_cq() and the CQ poll context cannot be
1913 * IB_POLL_DIRECT.
1914 *
1915 * ensure that there are no other contexts that are posting WRs concurrently.
1916 * Otherwise the drain is not guaranteed.
1917 */
1918 void ib_drain_qp(struct ib_qp *qp)
1919 {
1920 ib_drain_sq(qp);
1921 if (!qp->srq)
1922 ib_drain_rq(qp);
1923 }
1924 EXPORT_SYMBOL(ib_drain_qp);
This page took 0.089884 seconds and 6 git commands to generate.