Merge tag 'pci-v3.15-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaa...
[deliverable/linux.git] / drivers / infiniband / hw / amso1100 / c2.c
1 /*
2 * Copyright (c) 2005 Ammasso, Inc. All rights reserved.
3 * Copyright (c) 2005 Open Grid Computing, Inc. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/pci.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/inetdevice.h>
39 #include <linux/interrupt.h>
40 #include <linux/delay.h>
41 #include <linux/ethtool.h>
42 #include <linux/mii.h>
43 #include <linux/if_vlan.h>
44 #include <linux/crc32.h>
45 #include <linux/in.h>
46 #include <linux/ip.h>
47 #include <linux/tcp.h>
48 #include <linux/init.h>
49 #include <linux/dma-mapping.h>
50 #include <linux/slab.h>
51 #include <linux/prefetch.h>
52
53 #include <asm/io.h>
54 #include <asm/irq.h>
55 #include <asm/byteorder.h>
56
57 #include <rdma/ib_smi.h>
58 #include "c2.h"
59 #include "c2_provider.h"
60
61 MODULE_AUTHOR("Tom Tucker <tom@opengridcomputing.com>");
62 MODULE_DESCRIPTION("Ammasso AMSO1100 Low-level iWARP Driver");
63 MODULE_LICENSE("Dual BSD/GPL");
64 MODULE_VERSION(DRV_VERSION);
65
66 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK
67 | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN;
68
69 static int debug = -1; /* defaults above */
70 module_param(debug, int, 0);
71 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
72
73 static int c2_up(struct net_device *netdev);
74 static int c2_down(struct net_device *netdev);
75 static int c2_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
76 static void c2_tx_interrupt(struct net_device *netdev);
77 static void c2_rx_interrupt(struct net_device *netdev);
78 static irqreturn_t c2_interrupt(int irq, void *dev_id);
79 static void c2_tx_timeout(struct net_device *netdev);
80 static int c2_change_mtu(struct net_device *netdev, int new_mtu);
81 static void c2_reset(struct c2_port *c2_port);
82
83 static struct pci_device_id c2_pci_table[] = {
84 { PCI_DEVICE(0x18b8, 0xb001) },
85 { 0 }
86 };
87
88 MODULE_DEVICE_TABLE(pci, c2_pci_table);
89
90 static void c2_print_macaddr(struct net_device *netdev)
91 {
92 pr_debug("%s: MAC %pM, IRQ %u\n", netdev->name, netdev->dev_addr, netdev->irq);
93 }
94
95 static void c2_set_rxbufsize(struct c2_port *c2_port)
96 {
97 struct net_device *netdev = c2_port->netdev;
98
99 if (netdev->mtu > RX_BUF_SIZE)
100 c2_port->rx_buf_size =
101 netdev->mtu + ETH_HLEN + sizeof(struct c2_rxp_hdr) +
102 NET_IP_ALIGN;
103 else
104 c2_port->rx_buf_size = sizeof(struct c2_rxp_hdr) + RX_BUF_SIZE;
105 }
106
107 /*
108 * Allocate TX ring elements and chain them together.
109 * One-to-one association of adapter descriptors with ring elements.
110 */
111 static int c2_tx_ring_alloc(struct c2_ring *tx_ring, void *vaddr,
112 dma_addr_t base, void __iomem * mmio_txp_ring)
113 {
114 struct c2_tx_desc *tx_desc;
115 struct c2_txp_desc __iomem *txp_desc;
116 struct c2_element *elem;
117 int i;
118
119 tx_ring->start = kmalloc(sizeof(*elem) * tx_ring->count, GFP_KERNEL);
120 if (!tx_ring->start)
121 return -ENOMEM;
122
123 elem = tx_ring->start;
124 tx_desc = vaddr;
125 txp_desc = mmio_txp_ring;
126 for (i = 0; i < tx_ring->count; i++, elem++, tx_desc++, txp_desc++) {
127 tx_desc->len = 0;
128 tx_desc->status = 0;
129
130 /* Set TXP_HTXD_UNINIT */
131 __raw_writeq((__force u64) cpu_to_be64(0x1122334455667788ULL),
132 (void __iomem *) txp_desc + C2_TXP_ADDR);
133 __raw_writew(0, (void __iomem *) txp_desc + C2_TXP_LEN);
134 __raw_writew((__force u16) cpu_to_be16(TXP_HTXD_UNINIT),
135 (void __iomem *) txp_desc + C2_TXP_FLAGS);
136
137 elem->skb = NULL;
138 elem->ht_desc = tx_desc;
139 elem->hw_desc = txp_desc;
140
141 if (i == tx_ring->count - 1) {
142 elem->next = tx_ring->start;
143 tx_desc->next_offset = base;
144 } else {
145 elem->next = elem + 1;
146 tx_desc->next_offset =
147 base + (i + 1) * sizeof(*tx_desc);
148 }
149 }
150
151 tx_ring->to_use = tx_ring->to_clean = tx_ring->start;
152
153 return 0;
154 }
155
156 /*
157 * Allocate RX ring elements and chain them together.
158 * One-to-one association of adapter descriptors with ring elements.
159 */
160 static int c2_rx_ring_alloc(struct c2_ring *rx_ring, void *vaddr,
161 dma_addr_t base, void __iomem * mmio_rxp_ring)
162 {
163 struct c2_rx_desc *rx_desc;
164 struct c2_rxp_desc __iomem *rxp_desc;
165 struct c2_element *elem;
166 int i;
167
168 rx_ring->start = kmalloc(sizeof(*elem) * rx_ring->count, GFP_KERNEL);
169 if (!rx_ring->start)
170 return -ENOMEM;
171
172 elem = rx_ring->start;
173 rx_desc = vaddr;
174 rxp_desc = mmio_rxp_ring;
175 for (i = 0; i < rx_ring->count; i++, elem++, rx_desc++, rxp_desc++) {
176 rx_desc->len = 0;
177 rx_desc->status = 0;
178
179 /* Set RXP_HRXD_UNINIT */
180 __raw_writew((__force u16) cpu_to_be16(RXP_HRXD_OK),
181 (void __iomem *) rxp_desc + C2_RXP_STATUS);
182 __raw_writew(0, (void __iomem *) rxp_desc + C2_RXP_COUNT);
183 __raw_writew(0, (void __iomem *) rxp_desc + C2_RXP_LEN);
184 __raw_writeq((__force u64) cpu_to_be64(0x99aabbccddeeffULL),
185 (void __iomem *) rxp_desc + C2_RXP_ADDR);
186 __raw_writew((__force u16) cpu_to_be16(RXP_HRXD_UNINIT),
187 (void __iomem *) rxp_desc + C2_RXP_FLAGS);
188
189 elem->skb = NULL;
190 elem->ht_desc = rx_desc;
191 elem->hw_desc = rxp_desc;
192
193 if (i == rx_ring->count - 1) {
194 elem->next = rx_ring->start;
195 rx_desc->next_offset = base;
196 } else {
197 elem->next = elem + 1;
198 rx_desc->next_offset =
199 base + (i + 1) * sizeof(*rx_desc);
200 }
201 }
202
203 rx_ring->to_use = rx_ring->to_clean = rx_ring->start;
204
205 return 0;
206 }
207
208 /* Setup buffer for receiving */
209 static inline int c2_rx_alloc(struct c2_port *c2_port, struct c2_element *elem)
210 {
211 struct c2_dev *c2dev = c2_port->c2dev;
212 struct c2_rx_desc *rx_desc = elem->ht_desc;
213 struct sk_buff *skb;
214 dma_addr_t mapaddr;
215 u32 maplen;
216 struct c2_rxp_hdr *rxp_hdr;
217
218 skb = dev_alloc_skb(c2_port->rx_buf_size);
219 if (unlikely(!skb)) {
220 pr_debug("%s: out of memory for receive\n",
221 c2_port->netdev->name);
222 return -ENOMEM;
223 }
224
225 /* Zero out the rxp hdr in the sk_buff */
226 memset(skb->data, 0, sizeof(*rxp_hdr));
227
228 skb->dev = c2_port->netdev;
229
230 maplen = c2_port->rx_buf_size;
231 mapaddr =
232 pci_map_single(c2dev->pcidev, skb->data, maplen,
233 PCI_DMA_FROMDEVICE);
234
235 /* Set the sk_buff RXP_header to RXP_HRXD_READY */
236 rxp_hdr = (struct c2_rxp_hdr *) skb->data;
237 rxp_hdr->flags = RXP_HRXD_READY;
238
239 __raw_writew(0, elem->hw_desc + C2_RXP_STATUS);
240 __raw_writew((__force u16) cpu_to_be16((u16) maplen - sizeof(*rxp_hdr)),
241 elem->hw_desc + C2_RXP_LEN);
242 __raw_writeq((__force u64) cpu_to_be64(mapaddr), elem->hw_desc + C2_RXP_ADDR);
243 __raw_writew((__force u16) cpu_to_be16(RXP_HRXD_READY),
244 elem->hw_desc + C2_RXP_FLAGS);
245
246 elem->skb = skb;
247 elem->mapaddr = mapaddr;
248 elem->maplen = maplen;
249 rx_desc->len = maplen;
250
251 return 0;
252 }
253
254 /*
255 * Allocate buffers for the Rx ring
256 * For receive: rx_ring.to_clean is next received frame
257 */
258 static int c2_rx_fill(struct c2_port *c2_port)
259 {
260 struct c2_ring *rx_ring = &c2_port->rx_ring;
261 struct c2_element *elem;
262 int ret = 0;
263
264 elem = rx_ring->start;
265 do {
266 if (c2_rx_alloc(c2_port, elem)) {
267 ret = 1;
268 break;
269 }
270 } while ((elem = elem->next) != rx_ring->start);
271
272 rx_ring->to_clean = rx_ring->start;
273 return ret;
274 }
275
276 /* Free all buffers in RX ring, assumes receiver stopped */
277 static void c2_rx_clean(struct c2_port *c2_port)
278 {
279 struct c2_dev *c2dev = c2_port->c2dev;
280 struct c2_ring *rx_ring = &c2_port->rx_ring;
281 struct c2_element *elem;
282 struct c2_rx_desc *rx_desc;
283
284 elem = rx_ring->start;
285 do {
286 rx_desc = elem->ht_desc;
287 rx_desc->len = 0;
288
289 __raw_writew(0, elem->hw_desc + C2_RXP_STATUS);
290 __raw_writew(0, elem->hw_desc + C2_RXP_COUNT);
291 __raw_writew(0, elem->hw_desc + C2_RXP_LEN);
292 __raw_writeq((__force u64) cpu_to_be64(0x99aabbccddeeffULL),
293 elem->hw_desc + C2_RXP_ADDR);
294 __raw_writew((__force u16) cpu_to_be16(RXP_HRXD_UNINIT),
295 elem->hw_desc + C2_RXP_FLAGS);
296
297 if (elem->skb) {
298 pci_unmap_single(c2dev->pcidev, elem->mapaddr,
299 elem->maplen, PCI_DMA_FROMDEVICE);
300 dev_kfree_skb(elem->skb);
301 elem->skb = NULL;
302 }
303 } while ((elem = elem->next) != rx_ring->start);
304 }
305
306 static inline int c2_tx_free(struct c2_dev *c2dev, struct c2_element *elem)
307 {
308 struct c2_tx_desc *tx_desc = elem->ht_desc;
309
310 tx_desc->len = 0;
311
312 pci_unmap_single(c2dev->pcidev, elem->mapaddr, elem->maplen,
313 PCI_DMA_TODEVICE);
314
315 if (elem->skb) {
316 dev_kfree_skb_any(elem->skb);
317 elem->skb = NULL;
318 }
319
320 return 0;
321 }
322
323 /* Free all buffers in TX ring, assumes transmitter stopped */
324 static void c2_tx_clean(struct c2_port *c2_port)
325 {
326 struct c2_ring *tx_ring = &c2_port->tx_ring;
327 struct c2_element *elem;
328 struct c2_txp_desc txp_htxd;
329 int retry;
330 unsigned long flags;
331
332 spin_lock_irqsave(&c2_port->tx_lock, flags);
333
334 elem = tx_ring->start;
335
336 do {
337 retry = 0;
338 do {
339 txp_htxd.flags =
340 readw(elem->hw_desc + C2_TXP_FLAGS);
341
342 if (txp_htxd.flags == TXP_HTXD_READY) {
343 retry = 1;
344 __raw_writew(0,
345 elem->hw_desc + C2_TXP_LEN);
346 __raw_writeq(0,
347 elem->hw_desc + C2_TXP_ADDR);
348 __raw_writew((__force u16) cpu_to_be16(TXP_HTXD_DONE),
349 elem->hw_desc + C2_TXP_FLAGS);
350 c2_port->netdev->stats.tx_dropped++;
351 break;
352 } else {
353 __raw_writew(0,
354 elem->hw_desc + C2_TXP_LEN);
355 __raw_writeq((__force u64) cpu_to_be64(0x1122334455667788ULL),
356 elem->hw_desc + C2_TXP_ADDR);
357 __raw_writew((__force u16) cpu_to_be16(TXP_HTXD_UNINIT),
358 elem->hw_desc + C2_TXP_FLAGS);
359 }
360
361 c2_tx_free(c2_port->c2dev, elem);
362
363 } while ((elem = elem->next) != tx_ring->start);
364 } while (retry);
365
366 c2_port->tx_avail = c2_port->tx_ring.count - 1;
367 c2_port->c2dev->cur_tx = tx_ring->to_use - tx_ring->start;
368
369 if (c2_port->tx_avail > MAX_SKB_FRAGS + 1)
370 netif_wake_queue(c2_port->netdev);
371
372 spin_unlock_irqrestore(&c2_port->tx_lock, flags);
373 }
374
375 /*
376 * Process transmit descriptors marked 'DONE' by the firmware,
377 * freeing up their unneeded sk_buffs.
378 */
379 static void c2_tx_interrupt(struct net_device *netdev)
380 {
381 struct c2_port *c2_port = netdev_priv(netdev);
382 struct c2_dev *c2dev = c2_port->c2dev;
383 struct c2_ring *tx_ring = &c2_port->tx_ring;
384 struct c2_element *elem;
385 struct c2_txp_desc txp_htxd;
386
387 spin_lock(&c2_port->tx_lock);
388
389 for (elem = tx_ring->to_clean; elem != tx_ring->to_use;
390 elem = elem->next) {
391 txp_htxd.flags =
392 be16_to_cpu((__force __be16) readw(elem->hw_desc + C2_TXP_FLAGS));
393
394 if (txp_htxd.flags != TXP_HTXD_DONE)
395 break;
396
397 if (netif_msg_tx_done(c2_port)) {
398 /* PCI reads are expensive in fast path */
399 txp_htxd.len =
400 be16_to_cpu((__force __be16) readw(elem->hw_desc + C2_TXP_LEN));
401 pr_debug("%s: tx done slot %3Zu status 0x%x len "
402 "%5u bytes\n",
403 netdev->name, elem - tx_ring->start,
404 txp_htxd.flags, txp_htxd.len);
405 }
406
407 c2_tx_free(c2dev, elem);
408 ++(c2_port->tx_avail);
409 }
410
411 tx_ring->to_clean = elem;
412
413 if (netif_queue_stopped(netdev)
414 && c2_port->tx_avail > MAX_SKB_FRAGS + 1)
415 netif_wake_queue(netdev);
416
417 spin_unlock(&c2_port->tx_lock);
418 }
419
420 static void c2_rx_error(struct c2_port *c2_port, struct c2_element *elem)
421 {
422 struct c2_rx_desc *rx_desc = elem->ht_desc;
423 struct c2_rxp_hdr *rxp_hdr = (struct c2_rxp_hdr *) elem->skb->data;
424
425 if (rxp_hdr->status != RXP_HRXD_OK ||
426 rxp_hdr->len > (rx_desc->len - sizeof(*rxp_hdr))) {
427 pr_debug("BAD RXP_HRXD\n");
428 pr_debug(" rx_desc : %p\n", rx_desc);
429 pr_debug(" index : %Zu\n",
430 elem - c2_port->rx_ring.start);
431 pr_debug(" len : %u\n", rx_desc->len);
432 pr_debug(" rxp_hdr : %p [PA %p]\n", rxp_hdr,
433 (void *) __pa((unsigned long) rxp_hdr));
434 pr_debug(" flags : 0x%x\n", rxp_hdr->flags);
435 pr_debug(" status: 0x%x\n", rxp_hdr->status);
436 pr_debug(" len : %u\n", rxp_hdr->len);
437 pr_debug(" rsvd : 0x%x\n", rxp_hdr->rsvd);
438 }
439
440 /* Setup the skb for reuse since we're dropping this pkt */
441 elem->skb->data = elem->skb->head;
442 skb_reset_tail_pointer(elem->skb);
443
444 /* Zero out the rxp hdr in the sk_buff */
445 memset(elem->skb->data, 0, sizeof(*rxp_hdr));
446
447 /* Write the descriptor to the adapter's rx ring */
448 __raw_writew(0, elem->hw_desc + C2_RXP_STATUS);
449 __raw_writew(0, elem->hw_desc + C2_RXP_COUNT);
450 __raw_writew((__force u16) cpu_to_be16((u16) elem->maplen - sizeof(*rxp_hdr)),
451 elem->hw_desc + C2_RXP_LEN);
452 __raw_writeq((__force u64) cpu_to_be64(elem->mapaddr),
453 elem->hw_desc + C2_RXP_ADDR);
454 __raw_writew((__force u16) cpu_to_be16(RXP_HRXD_READY),
455 elem->hw_desc + C2_RXP_FLAGS);
456
457 pr_debug("packet dropped\n");
458 c2_port->netdev->stats.rx_dropped++;
459 }
460
461 static void c2_rx_interrupt(struct net_device *netdev)
462 {
463 struct c2_port *c2_port = netdev_priv(netdev);
464 struct c2_dev *c2dev = c2_port->c2dev;
465 struct c2_ring *rx_ring = &c2_port->rx_ring;
466 struct c2_element *elem;
467 struct c2_rx_desc *rx_desc;
468 struct c2_rxp_hdr *rxp_hdr;
469 struct sk_buff *skb;
470 dma_addr_t mapaddr;
471 u32 maplen, buflen;
472 unsigned long flags;
473
474 spin_lock_irqsave(&c2dev->lock, flags);
475
476 /* Begin where we left off */
477 rx_ring->to_clean = rx_ring->start + c2dev->cur_rx;
478
479 for (elem = rx_ring->to_clean; elem->next != rx_ring->to_clean;
480 elem = elem->next) {
481 rx_desc = elem->ht_desc;
482 mapaddr = elem->mapaddr;
483 maplen = elem->maplen;
484 skb = elem->skb;
485 rxp_hdr = (struct c2_rxp_hdr *) skb->data;
486
487 if (rxp_hdr->flags != RXP_HRXD_DONE)
488 break;
489 buflen = rxp_hdr->len;
490
491 /* Sanity check the RXP header */
492 if (rxp_hdr->status != RXP_HRXD_OK ||
493 buflen > (rx_desc->len - sizeof(*rxp_hdr))) {
494 c2_rx_error(c2_port, elem);
495 continue;
496 }
497
498 /*
499 * Allocate and map a new skb for replenishing the host
500 * RX desc
501 */
502 if (c2_rx_alloc(c2_port, elem)) {
503 c2_rx_error(c2_port, elem);
504 continue;
505 }
506
507 /* Unmap the old skb */
508 pci_unmap_single(c2dev->pcidev, mapaddr, maplen,
509 PCI_DMA_FROMDEVICE);
510
511 prefetch(skb->data);
512
513 /*
514 * Skip past the leading 8 bytes comprising of the
515 * "struct c2_rxp_hdr", prepended by the adapter
516 * to the usual Ethernet header ("struct ethhdr"),
517 * to the start of the raw Ethernet packet.
518 *
519 * Fix up the various fields in the sk_buff before
520 * passing it up to netif_rx(). The transfer size
521 * (in bytes) specified by the adapter len field of
522 * the "struct rxp_hdr_t" does NOT include the
523 * "sizeof(struct c2_rxp_hdr)".
524 */
525 skb->data += sizeof(*rxp_hdr);
526 skb_set_tail_pointer(skb, buflen);
527 skb->len = buflen;
528 skb->protocol = eth_type_trans(skb, netdev);
529
530 netif_rx(skb);
531
532 netdev->stats.rx_packets++;
533 netdev->stats.rx_bytes += buflen;
534 }
535
536 /* Save where we left off */
537 rx_ring->to_clean = elem;
538 c2dev->cur_rx = elem - rx_ring->start;
539 C2_SET_CUR_RX(c2dev, c2dev->cur_rx);
540
541 spin_unlock_irqrestore(&c2dev->lock, flags);
542 }
543
544 /*
545 * Handle netisr0 TX & RX interrupts.
546 */
547 static irqreturn_t c2_interrupt(int irq, void *dev_id)
548 {
549 unsigned int netisr0, dmaisr;
550 int handled = 0;
551 struct c2_dev *c2dev = (struct c2_dev *) dev_id;
552
553 /* Process CCILNET interrupts */
554 netisr0 = readl(c2dev->regs + C2_NISR0);
555 if (netisr0) {
556
557 /*
558 * There is an issue with the firmware that always
559 * provides the status of RX for both TX & RX
560 * interrupts. So process both queues here.
561 */
562 c2_rx_interrupt(c2dev->netdev);
563 c2_tx_interrupt(c2dev->netdev);
564
565 /* Clear the interrupt */
566 writel(netisr0, c2dev->regs + C2_NISR0);
567 handled++;
568 }
569
570 /* Process RNIC interrupts */
571 dmaisr = readl(c2dev->regs + C2_DISR);
572 if (dmaisr) {
573 writel(dmaisr, c2dev->regs + C2_DISR);
574 c2_rnic_interrupt(c2dev);
575 handled++;
576 }
577
578 if (handled) {
579 return IRQ_HANDLED;
580 } else {
581 return IRQ_NONE;
582 }
583 }
584
585 static int c2_up(struct net_device *netdev)
586 {
587 struct c2_port *c2_port = netdev_priv(netdev);
588 struct c2_dev *c2dev = c2_port->c2dev;
589 struct c2_element *elem;
590 struct c2_rxp_hdr *rxp_hdr;
591 struct in_device *in_dev;
592 size_t rx_size, tx_size;
593 int ret, i;
594 unsigned int netimr0;
595
596 if (netif_msg_ifup(c2_port))
597 pr_debug("%s: enabling interface\n", netdev->name);
598
599 /* Set the Rx buffer size based on MTU */
600 c2_set_rxbufsize(c2_port);
601
602 /* Allocate DMA'able memory for Tx/Rx host descriptor rings */
603 rx_size = c2_port->rx_ring.count * sizeof(struct c2_rx_desc);
604 tx_size = c2_port->tx_ring.count * sizeof(struct c2_tx_desc);
605
606 c2_port->mem_size = tx_size + rx_size;
607 c2_port->mem = pci_alloc_consistent(c2dev->pcidev, c2_port->mem_size,
608 &c2_port->dma);
609 if (c2_port->mem == NULL) {
610 pr_debug("Unable to allocate memory for "
611 "host descriptor rings\n");
612 return -ENOMEM;
613 }
614
615 memset(c2_port->mem, 0, c2_port->mem_size);
616
617 /* Create the Rx host descriptor ring */
618 if ((ret =
619 c2_rx_ring_alloc(&c2_port->rx_ring, c2_port->mem, c2_port->dma,
620 c2dev->mmio_rxp_ring))) {
621 pr_debug("Unable to create RX ring\n");
622 goto bail0;
623 }
624
625 /* Allocate Rx buffers for the host descriptor ring */
626 if (c2_rx_fill(c2_port)) {
627 pr_debug("Unable to fill RX ring\n");
628 goto bail1;
629 }
630
631 /* Create the Tx host descriptor ring */
632 if ((ret = c2_tx_ring_alloc(&c2_port->tx_ring, c2_port->mem + rx_size,
633 c2_port->dma + rx_size,
634 c2dev->mmio_txp_ring))) {
635 pr_debug("Unable to create TX ring\n");
636 goto bail1;
637 }
638
639 /* Set the TX pointer to where we left off */
640 c2_port->tx_avail = c2_port->tx_ring.count - 1;
641 c2_port->tx_ring.to_use = c2_port->tx_ring.to_clean =
642 c2_port->tx_ring.start + c2dev->cur_tx;
643
644 /* missing: Initialize MAC */
645
646 BUG_ON(c2_port->tx_ring.to_use != c2_port->tx_ring.to_clean);
647
648 /* Reset the adapter, ensures the driver is in sync with the RXP */
649 c2_reset(c2_port);
650
651 /* Reset the READY bit in the sk_buff RXP headers & adapter HRXDQ */
652 for (i = 0, elem = c2_port->rx_ring.start; i < c2_port->rx_ring.count;
653 i++, elem++) {
654 rxp_hdr = (struct c2_rxp_hdr *) elem->skb->data;
655 rxp_hdr->flags = 0;
656 __raw_writew((__force u16) cpu_to_be16(RXP_HRXD_READY),
657 elem->hw_desc + C2_RXP_FLAGS);
658 }
659
660 /* Enable network packets */
661 netif_start_queue(netdev);
662
663 /* Enable IRQ */
664 writel(0, c2dev->regs + C2_IDIS);
665 netimr0 = readl(c2dev->regs + C2_NIMR0);
666 netimr0 &= ~(C2_PCI_HTX_INT | C2_PCI_HRX_INT);
667 writel(netimr0, c2dev->regs + C2_NIMR0);
668
669 /* Tell the stack to ignore arp requests for ipaddrs bound to
670 * other interfaces. This is needed to prevent the host stack
671 * from responding to arp requests to the ipaddr bound on the
672 * rdma interface.
673 */
674 in_dev = in_dev_get(netdev);
675 IN_DEV_CONF_SET(in_dev, ARP_IGNORE, 1);
676 in_dev_put(in_dev);
677
678 return 0;
679
680 bail1:
681 c2_rx_clean(c2_port);
682 kfree(c2_port->rx_ring.start);
683
684 bail0:
685 pci_free_consistent(c2dev->pcidev, c2_port->mem_size, c2_port->mem,
686 c2_port->dma);
687
688 return ret;
689 }
690
691 static int c2_down(struct net_device *netdev)
692 {
693 struct c2_port *c2_port = netdev_priv(netdev);
694 struct c2_dev *c2dev = c2_port->c2dev;
695
696 if (netif_msg_ifdown(c2_port))
697 pr_debug("%s: disabling interface\n",
698 netdev->name);
699
700 /* Wait for all the queued packets to get sent */
701 c2_tx_interrupt(netdev);
702
703 /* Disable network packets */
704 netif_stop_queue(netdev);
705
706 /* Disable IRQs by clearing the interrupt mask */
707 writel(1, c2dev->regs + C2_IDIS);
708 writel(0, c2dev->regs + C2_NIMR0);
709
710 /* missing: Stop transmitter */
711
712 /* missing: Stop receiver */
713
714 /* Reset the adapter, ensures the driver is in sync with the RXP */
715 c2_reset(c2_port);
716
717 /* missing: Turn off LEDs here */
718
719 /* Free all buffers in the host descriptor rings */
720 c2_tx_clean(c2_port);
721 c2_rx_clean(c2_port);
722
723 /* Free the host descriptor rings */
724 kfree(c2_port->rx_ring.start);
725 kfree(c2_port->tx_ring.start);
726 pci_free_consistent(c2dev->pcidev, c2_port->mem_size, c2_port->mem,
727 c2_port->dma);
728
729 return 0;
730 }
731
732 static void c2_reset(struct c2_port *c2_port)
733 {
734 struct c2_dev *c2dev = c2_port->c2dev;
735 unsigned int cur_rx = c2dev->cur_rx;
736
737 /* Tell the hardware to quiesce */
738 C2_SET_CUR_RX(c2dev, cur_rx | C2_PCI_HRX_QUI);
739
740 /*
741 * The hardware will reset the C2_PCI_HRX_QUI bit once
742 * the RXP is quiesced. Wait 2 seconds for this.
743 */
744 ssleep(2);
745
746 cur_rx = C2_GET_CUR_RX(c2dev);
747
748 if (cur_rx & C2_PCI_HRX_QUI)
749 pr_debug("c2_reset: failed to quiesce the hardware!\n");
750
751 cur_rx &= ~C2_PCI_HRX_QUI;
752
753 c2dev->cur_rx = cur_rx;
754
755 pr_debug("Current RX: %u\n", c2dev->cur_rx);
756 }
757
758 static int c2_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
759 {
760 struct c2_port *c2_port = netdev_priv(netdev);
761 struct c2_dev *c2dev = c2_port->c2dev;
762 struct c2_ring *tx_ring = &c2_port->tx_ring;
763 struct c2_element *elem;
764 dma_addr_t mapaddr;
765 u32 maplen;
766 unsigned long flags;
767 unsigned int i;
768
769 spin_lock_irqsave(&c2_port->tx_lock, flags);
770
771 if (unlikely(c2_port->tx_avail < (skb_shinfo(skb)->nr_frags + 1))) {
772 netif_stop_queue(netdev);
773 spin_unlock_irqrestore(&c2_port->tx_lock, flags);
774
775 pr_debug("%s: Tx ring full when queue awake!\n",
776 netdev->name);
777 return NETDEV_TX_BUSY;
778 }
779
780 maplen = skb_headlen(skb);
781 mapaddr =
782 pci_map_single(c2dev->pcidev, skb->data, maplen, PCI_DMA_TODEVICE);
783
784 elem = tx_ring->to_use;
785 elem->skb = skb;
786 elem->mapaddr = mapaddr;
787 elem->maplen = maplen;
788
789 /* Tell HW to xmit */
790 __raw_writeq((__force u64) cpu_to_be64(mapaddr),
791 elem->hw_desc + C2_TXP_ADDR);
792 __raw_writew((__force u16) cpu_to_be16(maplen),
793 elem->hw_desc + C2_TXP_LEN);
794 __raw_writew((__force u16) cpu_to_be16(TXP_HTXD_READY),
795 elem->hw_desc + C2_TXP_FLAGS);
796
797 netdev->stats.tx_packets++;
798 netdev->stats.tx_bytes += maplen;
799
800 /* Loop thru additional data fragments and queue them */
801 if (skb_shinfo(skb)->nr_frags) {
802 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
803 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
804 maplen = skb_frag_size(frag);
805 mapaddr = skb_frag_dma_map(&c2dev->pcidev->dev, frag,
806 0, maplen, DMA_TO_DEVICE);
807 elem = elem->next;
808 elem->skb = NULL;
809 elem->mapaddr = mapaddr;
810 elem->maplen = maplen;
811
812 /* Tell HW to xmit */
813 __raw_writeq((__force u64) cpu_to_be64(mapaddr),
814 elem->hw_desc + C2_TXP_ADDR);
815 __raw_writew((__force u16) cpu_to_be16(maplen),
816 elem->hw_desc + C2_TXP_LEN);
817 __raw_writew((__force u16) cpu_to_be16(TXP_HTXD_READY),
818 elem->hw_desc + C2_TXP_FLAGS);
819
820 netdev->stats.tx_packets++;
821 netdev->stats.tx_bytes += maplen;
822 }
823 }
824
825 tx_ring->to_use = elem->next;
826 c2_port->tx_avail -= (skb_shinfo(skb)->nr_frags + 1);
827
828 if (c2_port->tx_avail <= MAX_SKB_FRAGS + 1) {
829 netif_stop_queue(netdev);
830 if (netif_msg_tx_queued(c2_port))
831 pr_debug("%s: transmit queue full\n",
832 netdev->name);
833 }
834
835 spin_unlock_irqrestore(&c2_port->tx_lock, flags);
836
837 netdev->trans_start = jiffies;
838
839 return NETDEV_TX_OK;
840 }
841
842 static void c2_tx_timeout(struct net_device *netdev)
843 {
844 struct c2_port *c2_port = netdev_priv(netdev);
845
846 if (netif_msg_timer(c2_port))
847 pr_debug("%s: tx timeout\n", netdev->name);
848
849 c2_tx_clean(c2_port);
850 }
851
852 static int c2_change_mtu(struct net_device *netdev, int new_mtu)
853 {
854 int ret = 0;
855
856 if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
857 return -EINVAL;
858
859 netdev->mtu = new_mtu;
860
861 if (netif_running(netdev)) {
862 c2_down(netdev);
863
864 c2_up(netdev);
865 }
866
867 return ret;
868 }
869
870 static const struct net_device_ops c2_netdev = {
871 .ndo_open = c2_up,
872 .ndo_stop = c2_down,
873 .ndo_start_xmit = c2_xmit_frame,
874 .ndo_tx_timeout = c2_tx_timeout,
875 .ndo_change_mtu = c2_change_mtu,
876 .ndo_set_mac_address = eth_mac_addr,
877 .ndo_validate_addr = eth_validate_addr,
878 };
879
880 /* Initialize network device */
881 static struct net_device *c2_devinit(struct c2_dev *c2dev,
882 void __iomem * mmio_addr)
883 {
884 struct c2_port *c2_port = NULL;
885 struct net_device *netdev = alloc_etherdev(sizeof(*c2_port));
886
887 if (!netdev) {
888 pr_debug("c2_port etherdev alloc failed");
889 return NULL;
890 }
891
892 SET_NETDEV_DEV(netdev, &c2dev->pcidev->dev);
893
894 netdev->netdev_ops = &c2_netdev;
895 netdev->watchdog_timeo = C2_TX_TIMEOUT;
896 netdev->irq = c2dev->pcidev->irq;
897
898 c2_port = netdev_priv(netdev);
899 c2_port->netdev = netdev;
900 c2_port->c2dev = c2dev;
901 c2_port->msg_enable = netif_msg_init(debug, default_msg);
902 c2_port->tx_ring.count = C2_NUM_TX_DESC;
903 c2_port->rx_ring.count = C2_NUM_RX_DESC;
904
905 spin_lock_init(&c2_port->tx_lock);
906
907 /* Copy our 48-bit ethernet hardware address */
908 memcpy_fromio(netdev->dev_addr, mmio_addr + C2_REGS_ENADDR, 6);
909
910 /* Validate the MAC address */
911 if (!is_valid_ether_addr(netdev->dev_addr)) {
912 pr_debug("Invalid MAC Address\n");
913 c2_print_macaddr(netdev);
914 free_netdev(netdev);
915 return NULL;
916 }
917
918 c2dev->netdev = netdev;
919
920 return netdev;
921 }
922
923 static int c2_probe(struct pci_dev *pcidev, const struct pci_device_id *ent)
924 {
925 int ret = 0, i;
926 unsigned long reg0_start, reg0_flags, reg0_len;
927 unsigned long reg2_start, reg2_flags, reg2_len;
928 unsigned long reg4_start, reg4_flags, reg4_len;
929 unsigned kva_map_size;
930 struct net_device *netdev = NULL;
931 struct c2_dev *c2dev = NULL;
932 void __iomem *mmio_regs = NULL;
933
934 printk(KERN_INFO PFX "AMSO1100 Gigabit Ethernet driver v%s loaded\n",
935 DRV_VERSION);
936
937 /* Enable PCI device */
938 ret = pci_enable_device(pcidev);
939 if (ret) {
940 printk(KERN_ERR PFX "%s: Unable to enable PCI device\n",
941 pci_name(pcidev));
942 goto bail0;
943 }
944
945 reg0_start = pci_resource_start(pcidev, BAR_0);
946 reg0_len = pci_resource_len(pcidev, BAR_0);
947 reg0_flags = pci_resource_flags(pcidev, BAR_0);
948
949 reg2_start = pci_resource_start(pcidev, BAR_2);
950 reg2_len = pci_resource_len(pcidev, BAR_2);
951 reg2_flags = pci_resource_flags(pcidev, BAR_2);
952
953 reg4_start = pci_resource_start(pcidev, BAR_4);
954 reg4_len = pci_resource_len(pcidev, BAR_4);
955 reg4_flags = pci_resource_flags(pcidev, BAR_4);
956
957 pr_debug("BAR0 size = 0x%lX bytes\n", reg0_len);
958 pr_debug("BAR2 size = 0x%lX bytes\n", reg2_len);
959 pr_debug("BAR4 size = 0x%lX bytes\n", reg4_len);
960
961 /* Make sure PCI base addr are MMIO */
962 if (!(reg0_flags & IORESOURCE_MEM) ||
963 !(reg2_flags & IORESOURCE_MEM) || !(reg4_flags & IORESOURCE_MEM)) {
964 printk(KERN_ERR PFX "PCI regions not an MMIO resource\n");
965 ret = -ENODEV;
966 goto bail1;
967 }
968
969 /* Check for weird/broken PCI region reporting */
970 if ((reg0_len < C2_REG0_SIZE) ||
971 (reg2_len < C2_REG2_SIZE) || (reg4_len < C2_REG4_SIZE)) {
972 printk(KERN_ERR PFX "Invalid PCI region sizes\n");
973 ret = -ENODEV;
974 goto bail1;
975 }
976
977 /* Reserve PCI I/O and memory resources */
978 ret = pci_request_regions(pcidev, DRV_NAME);
979 if (ret) {
980 printk(KERN_ERR PFX "%s: Unable to request regions\n",
981 pci_name(pcidev));
982 goto bail1;
983 }
984
985 if ((sizeof(dma_addr_t) > 4)) {
986 ret = pci_set_dma_mask(pcidev, DMA_BIT_MASK(64));
987 if (ret < 0) {
988 printk(KERN_ERR PFX "64b DMA configuration failed\n");
989 goto bail2;
990 }
991 } else {
992 ret = pci_set_dma_mask(pcidev, DMA_BIT_MASK(32));
993 if (ret < 0) {
994 printk(KERN_ERR PFX "32b DMA configuration failed\n");
995 goto bail2;
996 }
997 }
998
999 /* Enables bus-mastering on the device */
1000 pci_set_master(pcidev);
1001
1002 /* Remap the adapter PCI registers in BAR4 */
1003 mmio_regs = ioremap_nocache(reg4_start + C2_PCI_REGS_OFFSET,
1004 sizeof(struct c2_adapter_pci_regs));
1005 if (!mmio_regs) {
1006 printk(KERN_ERR PFX
1007 "Unable to remap adapter PCI registers in BAR4\n");
1008 ret = -EIO;
1009 goto bail2;
1010 }
1011
1012 /* Validate PCI regs magic */
1013 for (i = 0; i < sizeof(c2_magic); i++) {
1014 if (c2_magic[i] != readb(mmio_regs + C2_REGS_MAGIC + i)) {
1015 printk(KERN_ERR PFX "Downlevel Firmware boot loader "
1016 "[%d/%Zd: got 0x%x, exp 0x%x]. Use the cc_flash "
1017 "utility to update your boot loader\n",
1018 i + 1, sizeof(c2_magic),
1019 readb(mmio_regs + C2_REGS_MAGIC + i),
1020 c2_magic[i]);
1021 printk(KERN_ERR PFX "Adapter not claimed\n");
1022 iounmap(mmio_regs);
1023 ret = -EIO;
1024 goto bail2;
1025 }
1026 }
1027
1028 /* Validate the adapter version */
1029 if (be32_to_cpu((__force __be32) readl(mmio_regs + C2_REGS_VERS)) != C2_VERSION) {
1030 printk(KERN_ERR PFX "Version mismatch "
1031 "[fw=%u, c2=%u], Adapter not claimed\n",
1032 be32_to_cpu((__force __be32) readl(mmio_regs + C2_REGS_VERS)),
1033 C2_VERSION);
1034 ret = -EINVAL;
1035 iounmap(mmio_regs);
1036 goto bail2;
1037 }
1038
1039 /* Validate the adapter IVN */
1040 if (be32_to_cpu((__force __be32) readl(mmio_regs + C2_REGS_IVN)) != C2_IVN) {
1041 printk(KERN_ERR PFX "Downlevel FIrmware level. You should be using "
1042 "the OpenIB device support kit. "
1043 "[fw=0x%x, c2=0x%x], Adapter not claimed\n",
1044 be32_to_cpu((__force __be32) readl(mmio_regs + C2_REGS_IVN)),
1045 C2_IVN);
1046 ret = -EINVAL;
1047 iounmap(mmio_regs);
1048 goto bail2;
1049 }
1050
1051 /* Allocate hardware structure */
1052 c2dev = (struct c2_dev *) ib_alloc_device(sizeof(*c2dev));
1053 if (!c2dev) {
1054 printk(KERN_ERR PFX "%s: Unable to alloc hardware struct\n",
1055 pci_name(pcidev));
1056 ret = -ENOMEM;
1057 iounmap(mmio_regs);
1058 goto bail2;
1059 }
1060
1061 memset(c2dev, 0, sizeof(*c2dev));
1062 spin_lock_init(&c2dev->lock);
1063 c2dev->pcidev = pcidev;
1064 c2dev->cur_tx = 0;
1065
1066 /* Get the last RX index */
1067 c2dev->cur_rx =
1068 (be32_to_cpu((__force __be32) readl(mmio_regs + C2_REGS_HRX_CUR)) -
1069 0xffffc000) / sizeof(struct c2_rxp_desc);
1070
1071 /* Request an interrupt line for the driver */
1072 ret = request_irq(pcidev->irq, c2_interrupt, IRQF_SHARED, DRV_NAME, c2dev);
1073 if (ret) {
1074 printk(KERN_ERR PFX "%s: requested IRQ %u is busy\n",
1075 pci_name(pcidev), pcidev->irq);
1076 iounmap(mmio_regs);
1077 goto bail3;
1078 }
1079
1080 /* Set driver specific data */
1081 pci_set_drvdata(pcidev, c2dev);
1082
1083 /* Initialize network device */
1084 if ((netdev = c2_devinit(c2dev, mmio_regs)) == NULL) {
1085 ret = -ENOMEM;
1086 iounmap(mmio_regs);
1087 goto bail4;
1088 }
1089
1090 /* Save off the actual size prior to unmapping mmio_regs */
1091 kva_map_size = be32_to_cpu((__force __be32) readl(mmio_regs + C2_REGS_PCI_WINSIZE));
1092
1093 /* Unmap the adapter PCI registers in BAR4 */
1094 iounmap(mmio_regs);
1095
1096 /* Register network device */
1097 ret = register_netdev(netdev);
1098 if (ret) {
1099 printk(KERN_ERR PFX "Unable to register netdev, ret = %d\n",
1100 ret);
1101 goto bail5;
1102 }
1103
1104 /* Disable network packets */
1105 netif_stop_queue(netdev);
1106
1107 /* Remap the adapter HRXDQ PA space to kernel VA space */
1108 c2dev->mmio_rxp_ring = ioremap_nocache(reg4_start + C2_RXP_HRXDQ_OFFSET,
1109 C2_RXP_HRXDQ_SIZE);
1110 if (!c2dev->mmio_rxp_ring) {
1111 printk(KERN_ERR PFX "Unable to remap MMIO HRXDQ region\n");
1112 ret = -EIO;
1113 goto bail6;
1114 }
1115
1116 /* Remap the adapter HTXDQ PA space to kernel VA space */
1117 c2dev->mmio_txp_ring = ioremap_nocache(reg4_start + C2_TXP_HTXDQ_OFFSET,
1118 C2_TXP_HTXDQ_SIZE);
1119 if (!c2dev->mmio_txp_ring) {
1120 printk(KERN_ERR PFX "Unable to remap MMIO HTXDQ region\n");
1121 ret = -EIO;
1122 goto bail7;
1123 }
1124
1125 /* Save off the current RX index in the last 4 bytes of the TXP Ring */
1126 C2_SET_CUR_RX(c2dev, c2dev->cur_rx);
1127
1128 /* Remap the PCI registers in adapter BAR0 to kernel VA space */
1129 c2dev->regs = ioremap_nocache(reg0_start, reg0_len);
1130 if (!c2dev->regs) {
1131 printk(KERN_ERR PFX "Unable to remap BAR0\n");
1132 ret = -EIO;
1133 goto bail8;
1134 }
1135
1136 /* Remap the PCI registers in adapter BAR4 to kernel VA space */
1137 c2dev->pa = reg4_start + C2_PCI_REGS_OFFSET;
1138 c2dev->kva = ioremap_nocache(reg4_start + C2_PCI_REGS_OFFSET,
1139 kva_map_size);
1140 if (!c2dev->kva) {
1141 printk(KERN_ERR PFX "Unable to remap BAR4\n");
1142 ret = -EIO;
1143 goto bail9;
1144 }
1145
1146 /* Print out the MAC address */
1147 c2_print_macaddr(netdev);
1148
1149 ret = c2_rnic_init(c2dev);
1150 if (ret) {
1151 printk(KERN_ERR PFX "c2_rnic_init failed: %d\n", ret);
1152 goto bail10;
1153 }
1154
1155 ret = c2_register_device(c2dev);
1156 if (ret)
1157 goto bail10;
1158
1159 return 0;
1160
1161 bail10:
1162 iounmap(c2dev->kva);
1163
1164 bail9:
1165 iounmap(c2dev->regs);
1166
1167 bail8:
1168 iounmap(c2dev->mmio_txp_ring);
1169
1170 bail7:
1171 iounmap(c2dev->mmio_rxp_ring);
1172
1173 bail6:
1174 unregister_netdev(netdev);
1175
1176 bail5:
1177 free_netdev(netdev);
1178
1179 bail4:
1180 free_irq(pcidev->irq, c2dev);
1181
1182 bail3:
1183 ib_dealloc_device(&c2dev->ibdev);
1184
1185 bail2:
1186 pci_release_regions(pcidev);
1187
1188 bail1:
1189 pci_disable_device(pcidev);
1190
1191 bail0:
1192 return ret;
1193 }
1194
1195 static void c2_remove(struct pci_dev *pcidev)
1196 {
1197 struct c2_dev *c2dev = pci_get_drvdata(pcidev);
1198 struct net_device *netdev = c2dev->netdev;
1199
1200 /* Unregister with OpenIB */
1201 c2_unregister_device(c2dev);
1202
1203 /* Clean up the RNIC resources */
1204 c2_rnic_term(c2dev);
1205
1206 /* Remove network device from the kernel */
1207 unregister_netdev(netdev);
1208
1209 /* Free network device */
1210 free_netdev(netdev);
1211
1212 /* Free the interrupt line */
1213 free_irq(pcidev->irq, c2dev);
1214
1215 /* missing: Turn LEDs off here */
1216
1217 /* Unmap adapter PA space */
1218 iounmap(c2dev->kva);
1219 iounmap(c2dev->regs);
1220 iounmap(c2dev->mmio_txp_ring);
1221 iounmap(c2dev->mmio_rxp_ring);
1222
1223 /* Free the hardware structure */
1224 ib_dealloc_device(&c2dev->ibdev);
1225
1226 /* Release reserved PCI I/O and memory resources */
1227 pci_release_regions(pcidev);
1228
1229 /* Disable PCI device */
1230 pci_disable_device(pcidev);
1231
1232 /* Clear driver specific data */
1233 pci_set_drvdata(pcidev, NULL);
1234 }
1235
1236 static struct pci_driver c2_pci_driver = {
1237 .name = DRV_NAME,
1238 .id_table = c2_pci_table,
1239 .probe = c2_probe,
1240 .remove = c2_remove,
1241 };
1242
1243 module_pci_driver(c2_pci_driver);
This page took 0.056114 seconds and 5 git commands to generate.