Merge branch 'kconfig-for-40' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek...
[deliverable/linux.git] / drivers / infiniband / hw / cxgb3 / iwch_cm.c
1 /*
2 * Copyright (c) 2006 Chelsio, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32 #include <linux/module.h>
33 #include <linux/list.h>
34 #include <linux/slab.h>
35 #include <linux/workqueue.h>
36 #include <linux/skbuff.h>
37 #include <linux/timer.h>
38 #include <linux/notifier.h>
39 #include <linux/inetdevice.h>
40
41 #include <net/neighbour.h>
42 #include <net/netevent.h>
43 #include <net/route.h>
44
45 #include "tcb.h"
46 #include "cxgb3_offload.h"
47 #include "iwch.h"
48 #include "iwch_provider.h"
49 #include "iwch_cm.h"
50
51 static char *states[] = {
52 "idle",
53 "listen",
54 "connecting",
55 "mpa_wait_req",
56 "mpa_req_sent",
57 "mpa_req_rcvd",
58 "mpa_rep_sent",
59 "fpdu_mode",
60 "aborting",
61 "closing",
62 "moribund",
63 "dead",
64 NULL,
65 };
66
67 int peer2peer = 0;
68 module_param(peer2peer, int, 0644);
69 MODULE_PARM_DESC(peer2peer, "Support peer2peer ULPs (default=0)");
70
71 static int ep_timeout_secs = 60;
72 module_param(ep_timeout_secs, int, 0644);
73 MODULE_PARM_DESC(ep_timeout_secs, "CM Endpoint operation timeout "
74 "in seconds (default=60)");
75
76 static int mpa_rev = 1;
77 module_param(mpa_rev, int, 0644);
78 MODULE_PARM_DESC(mpa_rev, "MPA Revision, 0 supports amso1100, "
79 "1 is spec compliant. (default=1)");
80
81 static int markers_enabled = 0;
82 module_param(markers_enabled, int, 0644);
83 MODULE_PARM_DESC(markers_enabled, "Enable MPA MARKERS (default(0)=disabled)");
84
85 static int crc_enabled = 1;
86 module_param(crc_enabled, int, 0644);
87 MODULE_PARM_DESC(crc_enabled, "Enable MPA CRC (default(1)=enabled)");
88
89 static int rcv_win = 256 * 1024;
90 module_param(rcv_win, int, 0644);
91 MODULE_PARM_DESC(rcv_win, "TCP receive window in bytes (default=256)");
92
93 static int snd_win = 32 * 1024;
94 module_param(snd_win, int, 0644);
95 MODULE_PARM_DESC(snd_win, "TCP send window in bytes (default=32KB)");
96
97 static unsigned int nocong = 0;
98 module_param(nocong, uint, 0644);
99 MODULE_PARM_DESC(nocong, "Turn off congestion control (default=0)");
100
101 static unsigned int cong_flavor = 1;
102 module_param(cong_flavor, uint, 0644);
103 MODULE_PARM_DESC(cong_flavor, "TCP Congestion control flavor (default=1)");
104
105 static struct workqueue_struct *workq;
106
107 static struct sk_buff_head rxq;
108
109 static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp);
110 static void ep_timeout(unsigned long arg);
111 static void connect_reply_upcall(struct iwch_ep *ep, int status);
112
113 static void start_ep_timer(struct iwch_ep *ep)
114 {
115 PDBG("%s ep %p\n", __func__, ep);
116 if (timer_pending(&ep->timer)) {
117 PDBG("%s stopped / restarted timer ep %p\n", __func__, ep);
118 del_timer_sync(&ep->timer);
119 } else
120 get_ep(&ep->com);
121 ep->timer.expires = jiffies + ep_timeout_secs * HZ;
122 ep->timer.data = (unsigned long)ep;
123 ep->timer.function = ep_timeout;
124 add_timer(&ep->timer);
125 }
126
127 static void stop_ep_timer(struct iwch_ep *ep)
128 {
129 PDBG("%s ep %p\n", __func__, ep);
130 if (!timer_pending(&ep->timer)) {
131 printk(KERN_ERR "%s timer stopped when its not running! ep %p state %u\n",
132 __func__, ep, ep->com.state);
133 WARN_ON(1);
134 return;
135 }
136 del_timer_sync(&ep->timer);
137 put_ep(&ep->com);
138 }
139
140 static int iwch_l2t_send(struct t3cdev *tdev, struct sk_buff *skb, struct l2t_entry *l2e)
141 {
142 int error = 0;
143 struct cxio_rdev *rdev;
144
145 rdev = (struct cxio_rdev *)tdev->ulp;
146 if (cxio_fatal_error(rdev)) {
147 kfree_skb(skb);
148 return -EIO;
149 }
150 error = l2t_send(tdev, skb, l2e);
151 if (error < 0)
152 kfree_skb(skb);
153 return error;
154 }
155
156 int iwch_cxgb3_ofld_send(struct t3cdev *tdev, struct sk_buff *skb)
157 {
158 int error = 0;
159 struct cxio_rdev *rdev;
160
161 rdev = (struct cxio_rdev *)tdev->ulp;
162 if (cxio_fatal_error(rdev)) {
163 kfree_skb(skb);
164 return -EIO;
165 }
166 error = cxgb3_ofld_send(tdev, skb);
167 if (error < 0)
168 kfree_skb(skb);
169 return error;
170 }
171
172 static void release_tid(struct t3cdev *tdev, u32 hwtid, struct sk_buff *skb)
173 {
174 struct cpl_tid_release *req;
175
176 skb = get_skb(skb, sizeof *req, GFP_KERNEL);
177 if (!skb)
178 return;
179 req = (struct cpl_tid_release *) skb_put(skb, sizeof(*req));
180 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
181 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, hwtid));
182 skb->priority = CPL_PRIORITY_SETUP;
183 iwch_cxgb3_ofld_send(tdev, skb);
184 return;
185 }
186
187 int iwch_quiesce_tid(struct iwch_ep *ep)
188 {
189 struct cpl_set_tcb_field *req;
190 struct sk_buff *skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
191
192 if (!skb)
193 return -ENOMEM;
194 req = (struct cpl_set_tcb_field *) skb_put(skb, sizeof(*req));
195 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
196 req->wr.wr_lo = htonl(V_WR_TID(ep->hwtid));
197 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, ep->hwtid));
198 req->reply = 0;
199 req->cpu_idx = 0;
200 req->word = htons(W_TCB_RX_QUIESCE);
201 req->mask = cpu_to_be64(1ULL << S_TCB_RX_QUIESCE);
202 req->val = cpu_to_be64(1 << S_TCB_RX_QUIESCE);
203
204 skb->priority = CPL_PRIORITY_DATA;
205 return iwch_cxgb3_ofld_send(ep->com.tdev, skb);
206 }
207
208 int iwch_resume_tid(struct iwch_ep *ep)
209 {
210 struct cpl_set_tcb_field *req;
211 struct sk_buff *skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
212
213 if (!skb)
214 return -ENOMEM;
215 req = (struct cpl_set_tcb_field *) skb_put(skb, sizeof(*req));
216 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
217 req->wr.wr_lo = htonl(V_WR_TID(ep->hwtid));
218 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, ep->hwtid));
219 req->reply = 0;
220 req->cpu_idx = 0;
221 req->word = htons(W_TCB_RX_QUIESCE);
222 req->mask = cpu_to_be64(1ULL << S_TCB_RX_QUIESCE);
223 req->val = 0;
224
225 skb->priority = CPL_PRIORITY_DATA;
226 return iwch_cxgb3_ofld_send(ep->com.tdev, skb);
227 }
228
229 static void set_emss(struct iwch_ep *ep, u16 opt)
230 {
231 PDBG("%s ep %p opt %u\n", __func__, ep, opt);
232 ep->emss = T3C_DATA(ep->com.tdev)->mtus[G_TCPOPT_MSS(opt)] - 40;
233 if (G_TCPOPT_TSTAMP(opt))
234 ep->emss -= 12;
235 if (ep->emss < 128)
236 ep->emss = 128;
237 PDBG("emss=%d\n", ep->emss);
238 }
239
240 static enum iwch_ep_state state_read(struct iwch_ep_common *epc)
241 {
242 unsigned long flags;
243 enum iwch_ep_state state;
244
245 spin_lock_irqsave(&epc->lock, flags);
246 state = epc->state;
247 spin_unlock_irqrestore(&epc->lock, flags);
248 return state;
249 }
250
251 static void __state_set(struct iwch_ep_common *epc, enum iwch_ep_state new)
252 {
253 epc->state = new;
254 }
255
256 static void state_set(struct iwch_ep_common *epc, enum iwch_ep_state new)
257 {
258 unsigned long flags;
259
260 spin_lock_irqsave(&epc->lock, flags);
261 PDBG("%s - %s -> %s\n", __func__, states[epc->state], states[new]);
262 __state_set(epc, new);
263 spin_unlock_irqrestore(&epc->lock, flags);
264 return;
265 }
266
267 static void *alloc_ep(int size, gfp_t gfp)
268 {
269 struct iwch_ep_common *epc;
270
271 epc = kzalloc(size, gfp);
272 if (epc) {
273 kref_init(&epc->kref);
274 spin_lock_init(&epc->lock);
275 init_waitqueue_head(&epc->waitq);
276 }
277 PDBG("%s alloc ep %p\n", __func__, epc);
278 return epc;
279 }
280
281 void __free_ep(struct kref *kref)
282 {
283 struct iwch_ep *ep;
284 ep = container_of(container_of(kref, struct iwch_ep_common, kref),
285 struct iwch_ep, com);
286 PDBG("%s ep %p state %s\n", __func__, ep, states[state_read(&ep->com)]);
287 if (test_bit(RELEASE_RESOURCES, &ep->com.flags)) {
288 cxgb3_remove_tid(ep->com.tdev, (void *)ep, ep->hwtid);
289 dst_release(ep->dst);
290 l2t_release(L2DATA(ep->com.tdev), ep->l2t);
291 }
292 kfree(ep);
293 }
294
295 static void release_ep_resources(struct iwch_ep *ep)
296 {
297 PDBG("%s ep %p tid %d\n", __func__, ep, ep->hwtid);
298 set_bit(RELEASE_RESOURCES, &ep->com.flags);
299 put_ep(&ep->com);
300 }
301
302 static int status2errno(int status)
303 {
304 switch (status) {
305 case CPL_ERR_NONE:
306 return 0;
307 case CPL_ERR_CONN_RESET:
308 return -ECONNRESET;
309 case CPL_ERR_ARP_MISS:
310 return -EHOSTUNREACH;
311 case CPL_ERR_CONN_TIMEDOUT:
312 return -ETIMEDOUT;
313 case CPL_ERR_TCAM_FULL:
314 return -ENOMEM;
315 case CPL_ERR_CONN_EXIST:
316 return -EADDRINUSE;
317 default:
318 return -EIO;
319 }
320 }
321
322 /*
323 * Try and reuse skbs already allocated...
324 */
325 static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp)
326 {
327 if (skb && !skb_is_nonlinear(skb) && !skb_cloned(skb)) {
328 skb_trim(skb, 0);
329 skb_get(skb);
330 } else {
331 skb = alloc_skb(len, gfp);
332 }
333 return skb;
334 }
335
336 static struct rtable *find_route(struct t3cdev *dev, __be32 local_ip,
337 __be32 peer_ip, __be16 local_port,
338 __be16 peer_port, u8 tos)
339 {
340 struct rtable *rt;
341 struct flowi4 fl4;
342
343 rt = ip_route_output_ports(&init_net, &fl4, NULL, peer_ip, local_ip,
344 peer_port, local_port, IPPROTO_TCP,
345 tos, 0);
346 if (IS_ERR(rt))
347 return NULL;
348 return rt;
349 }
350
351 static unsigned int find_best_mtu(const struct t3c_data *d, unsigned short mtu)
352 {
353 int i = 0;
354
355 while (i < d->nmtus - 1 && d->mtus[i + 1] <= mtu)
356 ++i;
357 return i;
358 }
359
360 static void arp_failure_discard(struct t3cdev *dev, struct sk_buff *skb)
361 {
362 PDBG("%s t3cdev %p\n", __func__, dev);
363 kfree_skb(skb);
364 }
365
366 /*
367 * Handle an ARP failure for an active open.
368 */
369 static void act_open_req_arp_failure(struct t3cdev *dev, struct sk_buff *skb)
370 {
371 printk(KERN_ERR MOD "ARP failure duing connect\n");
372 kfree_skb(skb);
373 }
374
375 /*
376 * Handle an ARP failure for a CPL_ABORT_REQ. Change it into a no RST variant
377 * and send it along.
378 */
379 static void abort_arp_failure(struct t3cdev *dev, struct sk_buff *skb)
380 {
381 struct cpl_abort_req *req = cplhdr(skb);
382
383 PDBG("%s t3cdev %p\n", __func__, dev);
384 req->cmd = CPL_ABORT_NO_RST;
385 iwch_cxgb3_ofld_send(dev, skb);
386 }
387
388 static int send_halfclose(struct iwch_ep *ep, gfp_t gfp)
389 {
390 struct cpl_close_con_req *req;
391 struct sk_buff *skb;
392
393 PDBG("%s ep %p\n", __func__, ep);
394 skb = get_skb(NULL, sizeof(*req), gfp);
395 if (!skb) {
396 printk(KERN_ERR MOD "%s - failed to alloc skb\n", __func__);
397 return -ENOMEM;
398 }
399 skb->priority = CPL_PRIORITY_DATA;
400 set_arp_failure_handler(skb, arp_failure_discard);
401 req = (struct cpl_close_con_req *) skb_put(skb, sizeof(*req));
402 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_CLOSE_CON));
403 req->wr.wr_lo = htonl(V_WR_TID(ep->hwtid));
404 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_CON_REQ, ep->hwtid));
405 return iwch_l2t_send(ep->com.tdev, skb, ep->l2t);
406 }
407
408 static int send_abort(struct iwch_ep *ep, struct sk_buff *skb, gfp_t gfp)
409 {
410 struct cpl_abort_req *req;
411
412 PDBG("%s ep %p\n", __func__, ep);
413 skb = get_skb(skb, sizeof(*req), gfp);
414 if (!skb) {
415 printk(KERN_ERR MOD "%s - failed to alloc skb.\n",
416 __func__);
417 return -ENOMEM;
418 }
419 skb->priority = CPL_PRIORITY_DATA;
420 set_arp_failure_handler(skb, abort_arp_failure);
421 req = (struct cpl_abort_req *) skb_put(skb, sizeof(*req));
422 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_HOST_ABORT_CON_REQ));
423 req->wr.wr_lo = htonl(V_WR_TID(ep->hwtid));
424 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_ABORT_REQ, ep->hwtid));
425 req->cmd = CPL_ABORT_SEND_RST;
426 return iwch_l2t_send(ep->com.tdev, skb, ep->l2t);
427 }
428
429 static int send_connect(struct iwch_ep *ep)
430 {
431 struct cpl_act_open_req *req;
432 struct sk_buff *skb;
433 u32 opt0h, opt0l, opt2;
434 unsigned int mtu_idx;
435 int wscale;
436
437 PDBG("%s ep %p\n", __func__, ep);
438
439 skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
440 if (!skb) {
441 printk(KERN_ERR MOD "%s - failed to alloc skb.\n",
442 __func__);
443 return -ENOMEM;
444 }
445 mtu_idx = find_best_mtu(T3C_DATA(ep->com.tdev), dst_mtu(ep->dst));
446 wscale = compute_wscale(rcv_win);
447 opt0h = V_NAGLE(0) |
448 V_NO_CONG(nocong) |
449 V_KEEP_ALIVE(1) |
450 F_TCAM_BYPASS |
451 V_WND_SCALE(wscale) |
452 V_MSS_IDX(mtu_idx) |
453 V_L2T_IDX(ep->l2t->idx) | V_TX_CHANNEL(ep->l2t->smt_idx);
454 opt0l = V_TOS((ep->tos >> 2) & M_TOS) | V_RCV_BUFSIZ(rcv_win>>10);
455 opt2 = F_RX_COALESCE_VALID | V_RX_COALESCE(0) | V_FLAVORS_VALID(1) |
456 V_CONG_CONTROL_FLAVOR(cong_flavor);
457 skb->priority = CPL_PRIORITY_SETUP;
458 set_arp_failure_handler(skb, act_open_req_arp_failure);
459
460 req = (struct cpl_act_open_req *) skb_put(skb, sizeof(*req));
461 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
462 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_ACT_OPEN_REQ, ep->atid));
463 req->local_port = ep->com.local_addr.sin_port;
464 req->peer_port = ep->com.remote_addr.sin_port;
465 req->local_ip = ep->com.local_addr.sin_addr.s_addr;
466 req->peer_ip = ep->com.remote_addr.sin_addr.s_addr;
467 req->opt0h = htonl(opt0h);
468 req->opt0l = htonl(opt0l);
469 req->params = 0;
470 req->opt2 = htonl(opt2);
471 return iwch_l2t_send(ep->com.tdev, skb, ep->l2t);
472 }
473
474 static void send_mpa_req(struct iwch_ep *ep, struct sk_buff *skb)
475 {
476 int mpalen;
477 struct tx_data_wr *req;
478 struct mpa_message *mpa;
479 int len;
480
481 PDBG("%s ep %p pd_len %d\n", __func__, ep, ep->plen);
482
483 BUG_ON(skb_cloned(skb));
484
485 mpalen = sizeof(*mpa) + ep->plen;
486 if (skb->data + mpalen + sizeof(*req) > skb_end_pointer(skb)) {
487 kfree_skb(skb);
488 skb=alloc_skb(mpalen + sizeof(*req), GFP_KERNEL);
489 if (!skb) {
490 connect_reply_upcall(ep, -ENOMEM);
491 return;
492 }
493 }
494 skb_trim(skb, 0);
495 skb_reserve(skb, sizeof(*req));
496 skb_put(skb, mpalen);
497 skb->priority = CPL_PRIORITY_DATA;
498 mpa = (struct mpa_message *) skb->data;
499 memset(mpa, 0, sizeof(*mpa));
500 memcpy(mpa->key, MPA_KEY_REQ, sizeof(mpa->key));
501 mpa->flags = (crc_enabled ? MPA_CRC : 0) |
502 (markers_enabled ? MPA_MARKERS : 0);
503 mpa->private_data_size = htons(ep->plen);
504 mpa->revision = mpa_rev;
505
506 if (ep->plen)
507 memcpy(mpa->private_data, ep->mpa_pkt + sizeof(*mpa), ep->plen);
508
509 /*
510 * Reference the mpa skb. This ensures the data area
511 * will remain in memory until the hw acks the tx.
512 * Function tx_ack() will deref it.
513 */
514 skb_get(skb);
515 set_arp_failure_handler(skb, arp_failure_discard);
516 skb_reset_transport_header(skb);
517 len = skb->len;
518 req = (struct tx_data_wr *) skb_push(skb, sizeof(*req));
519 req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_TX_DATA)|F_WR_COMPL);
520 req->wr_lo = htonl(V_WR_TID(ep->hwtid));
521 req->len = htonl(len);
522 req->param = htonl(V_TX_PORT(ep->l2t->smt_idx) |
523 V_TX_SNDBUF(snd_win>>15));
524 req->flags = htonl(F_TX_INIT);
525 req->sndseq = htonl(ep->snd_seq);
526 BUG_ON(ep->mpa_skb);
527 ep->mpa_skb = skb;
528 iwch_l2t_send(ep->com.tdev, skb, ep->l2t);
529 start_ep_timer(ep);
530 state_set(&ep->com, MPA_REQ_SENT);
531 return;
532 }
533
534 static int send_mpa_reject(struct iwch_ep *ep, const void *pdata, u8 plen)
535 {
536 int mpalen;
537 struct tx_data_wr *req;
538 struct mpa_message *mpa;
539 struct sk_buff *skb;
540
541 PDBG("%s ep %p plen %d\n", __func__, ep, plen);
542
543 mpalen = sizeof(*mpa) + plen;
544
545 skb = get_skb(NULL, mpalen + sizeof(*req), GFP_KERNEL);
546 if (!skb) {
547 printk(KERN_ERR MOD "%s - cannot alloc skb!\n", __func__);
548 return -ENOMEM;
549 }
550 skb_reserve(skb, sizeof(*req));
551 mpa = (struct mpa_message *) skb_put(skb, mpalen);
552 memset(mpa, 0, sizeof(*mpa));
553 memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key));
554 mpa->flags = MPA_REJECT;
555 mpa->revision = mpa_rev;
556 mpa->private_data_size = htons(plen);
557 if (plen)
558 memcpy(mpa->private_data, pdata, plen);
559
560 /*
561 * Reference the mpa skb again. This ensures the data area
562 * will remain in memory until the hw acks the tx.
563 * Function tx_ack() will deref it.
564 */
565 skb_get(skb);
566 skb->priority = CPL_PRIORITY_DATA;
567 set_arp_failure_handler(skb, arp_failure_discard);
568 skb_reset_transport_header(skb);
569 req = (struct tx_data_wr *) skb_push(skb, sizeof(*req));
570 req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_TX_DATA)|F_WR_COMPL);
571 req->wr_lo = htonl(V_WR_TID(ep->hwtid));
572 req->len = htonl(mpalen);
573 req->param = htonl(V_TX_PORT(ep->l2t->smt_idx) |
574 V_TX_SNDBUF(snd_win>>15));
575 req->flags = htonl(F_TX_INIT);
576 req->sndseq = htonl(ep->snd_seq);
577 BUG_ON(ep->mpa_skb);
578 ep->mpa_skb = skb;
579 return iwch_l2t_send(ep->com.tdev, skb, ep->l2t);
580 }
581
582 static int send_mpa_reply(struct iwch_ep *ep, const void *pdata, u8 plen)
583 {
584 int mpalen;
585 struct tx_data_wr *req;
586 struct mpa_message *mpa;
587 int len;
588 struct sk_buff *skb;
589
590 PDBG("%s ep %p plen %d\n", __func__, ep, plen);
591
592 mpalen = sizeof(*mpa) + plen;
593
594 skb = get_skb(NULL, mpalen + sizeof(*req), GFP_KERNEL);
595 if (!skb) {
596 printk(KERN_ERR MOD "%s - cannot alloc skb!\n", __func__);
597 return -ENOMEM;
598 }
599 skb->priority = CPL_PRIORITY_DATA;
600 skb_reserve(skb, sizeof(*req));
601 mpa = (struct mpa_message *) skb_put(skb, mpalen);
602 memset(mpa, 0, sizeof(*mpa));
603 memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key));
604 mpa->flags = (ep->mpa_attr.crc_enabled ? MPA_CRC : 0) |
605 (markers_enabled ? MPA_MARKERS : 0);
606 mpa->revision = mpa_rev;
607 mpa->private_data_size = htons(plen);
608 if (plen)
609 memcpy(mpa->private_data, pdata, plen);
610
611 /*
612 * Reference the mpa skb. This ensures the data area
613 * will remain in memory until the hw acks the tx.
614 * Function tx_ack() will deref it.
615 */
616 skb_get(skb);
617 set_arp_failure_handler(skb, arp_failure_discard);
618 skb_reset_transport_header(skb);
619 len = skb->len;
620 req = (struct tx_data_wr *) skb_push(skb, sizeof(*req));
621 req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_TX_DATA)|F_WR_COMPL);
622 req->wr_lo = htonl(V_WR_TID(ep->hwtid));
623 req->len = htonl(len);
624 req->param = htonl(V_TX_PORT(ep->l2t->smt_idx) |
625 V_TX_SNDBUF(snd_win>>15));
626 req->flags = htonl(F_TX_INIT);
627 req->sndseq = htonl(ep->snd_seq);
628 ep->mpa_skb = skb;
629 state_set(&ep->com, MPA_REP_SENT);
630 return iwch_l2t_send(ep->com.tdev, skb, ep->l2t);
631 }
632
633 static int act_establish(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
634 {
635 struct iwch_ep *ep = ctx;
636 struct cpl_act_establish *req = cplhdr(skb);
637 unsigned int tid = GET_TID(req);
638
639 PDBG("%s ep %p tid %d\n", __func__, ep, tid);
640
641 dst_confirm(ep->dst);
642
643 /* setup the hwtid for this connection */
644 ep->hwtid = tid;
645 cxgb3_insert_tid(ep->com.tdev, &t3c_client, ep, tid);
646
647 ep->snd_seq = ntohl(req->snd_isn);
648 ep->rcv_seq = ntohl(req->rcv_isn);
649
650 set_emss(ep, ntohs(req->tcp_opt));
651
652 /* dealloc the atid */
653 cxgb3_free_atid(ep->com.tdev, ep->atid);
654
655 /* start MPA negotiation */
656 send_mpa_req(ep, skb);
657
658 return 0;
659 }
660
661 static void abort_connection(struct iwch_ep *ep, struct sk_buff *skb, gfp_t gfp)
662 {
663 PDBG("%s ep %p\n", __FILE__, ep);
664 state_set(&ep->com, ABORTING);
665 send_abort(ep, skb, gfp);
666 }
667
668 static void close_complete_upcall(struct iwch_ep *ep)
669 {
670 struct iw_cm_event event;
671
672 PDBG("%s ep %p\n", __func__, ep);
673 memset(&event, 0, sizeof(event));
674 event.event = IW_CM_EVENT_CLOSE;
675 if (ep->com.cm_id) {
676 PDBG("close complete delivered ep %p cm_id %p tid %d\n",
677 ep, ep->com.cm_id, ep->hwtid);
678 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
679 ep->com.cm_id->rem_ref(ep->com.cm_id);
680 ep->com.cm_id = NULL;
681 ep->com.qp = NULL;
682 }
683 }
684
685 static void peer_close_upcall(struct iwch_ep *ep)
686 {
687 struct iw_cm_event event;
688
689 PDBG("%s ep %p\n", __func__, ep);
690 memset(&event, 0, sizeof(event));
691 event.event = IW_CM_EVENT_DISCONNECT;
692 if (ep->com.cm_id) {
693 PDBG("peer close delivered ep %p cm_id %p tid %d\n",
694 ep, ep->com.cm_id, ep->hwtid);
695 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
696 }
697 }
698
699 static void peer_abort_upcall(struct iwch_ep *ep)
700 {
701 struct iw_cm_event event;
702
703 PDBG("%s ep %p\n", __func__, ep);
704 memset(&event, 0, sizeof(event));
705 event.event = IW_CM_EVENT_CLOSE;
706 event.status = -ECONNRESET;
707 if (ep->com.cm_id) {
708 PDBG("abort delivered ep %p cm_id %p tid %d\n", ep,
709 ep->com.cm_id, ep->hwtid);
710 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
711 ep->com.cm_id->rem_ref(ep->com.cm_id);
712 ep->com.cm_id = NULL;
713 ep->com.qp = NULL;
714 }
715 }
716
717 static void connect_reply_upcall(struct iwch_ep *ep, int status)
718 {
719 struct iw_cm_event event;
720
721 PDBG("%s ep %p status %d\n", __func__, ep, status);
722 memset(&event, 0, sizeof(event));
723 event.event = IW_CM_EVENT_CONNECT_REPLY;
724 event.status = status;
725 event.local_addr = ep->com.local_addr;
726 event.remote_addr = ep->com.remote_addr;
727
728 if ((status == 0) || (status == -ECONNREFUSED)) {
729 event.private_data_len = ep->plen;
730 event.private_data = ep->mpa_pkt + sizeof(struct mpa_message);
731 }
732 if (ep->com.cm_id) {
733 PDBG("%s ep %p tid %d status %d\n", __func__, ep,
734 ep->hwtid, status);
735 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
736 }
737 if (status < 0) {
738 ep->com.cm_id->rem_ref(ep->com.cm_id);
739 ep->com.cm_id = NULL;
740 ep->com.qp = NULL;
741 }
742 }
743
744 static void connect_request_upcall(struct iwch_ep *ep)
745 {
746 struct iw_cm_event event;
747
748 PDBG("%s ep %p tid %d\n", __func__, ep, ep->hwtid);
749 memset(&event, 0, sizeof(event));
750 event.event = IW_CM_EVENT_CONNECT_REQUEST;
751 event.local_addr = ep->com.local_addr;
752 event.remote_addr = ep->com.remote_addr;
753 event.private_data_len = ep->plen;
754 event.private_data = ep->mpa_pkt + sizeof(struct mpa_message);
755 event.provider_data = ep;
756 if (state_read(&ep->parent_ep->com) != DEAD) {
757 get_ep(&ep->com);
758 ep->parent_ep->com.cm_id->event_handler(
759 ep->parent_ep->com.cm_id,
760 &event);
761 }
762 put_ep(&ep->parent_ep->com);
763 ep->parent_ep = NULL;
764 }
765
766 static void established_upcall(struct iwch_ep *ep)
767 {
768 struct iw_cm_event event;
769
770 PDBG("%s ep %p\n", __func__, ep);
771 memset(&event, 0, sizeof(event));
772 event.event = IW_CM_EVENT_ESTABLISHED;
773 if (ep->com.cm_id) {
774 PDBG("%s ep %p tid %d\n", __func__, ep, ep->hwtid);
775 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
776 }
777 }
778
779 static int update_rx_credits(struct iwch_ep *ep, u32 credits)
780 {
781 struct cpl_rx_data_ack *req;
782 struct sk_buff *skb;
783
784 PDBG("%s ep %p credits %u\n", __func__, ep, credits);
785 skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
786 if (!skb) {
787 printk(KERN_ERR MOD "update_rx_credits - cannot alloc skb!\n");
788 return 0;
789 }
790
791 req = (struct cpl_rx_data_ack *) skb_put(skb, sizeof(*req));
792 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
793 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_RX_DATA_ACK, ep->hwtid));
794 req->credit_dack = htonl(V_RX_CREDITS(credits) | V_RX_FORCE_ACK(1));
795 skb->priority = CPL_PRIORITY_ACK;
796 iwch_cxgb3_ofld_send(ep->com.tdev, skb);
797 return credits;
798 }
799
800 static void process_mpa_reply(struct iwch_ep *ep, struct sk_buff *skb)
801 {
802 struct mpa_message *mpa;
803 u16 plen;
804 struct iwch_qp_attributes attrs;
805 enum iwch_qp_attr_mask mask;
806 int err;
807
808 PDBG("%s ep %p\n", __func__, ep);
809
810 /*
811 * Stop mpa timer. If it expired, then the state has
812 * changed and we bail since ep_timeout already aborted
813 * the connection.
814 */
815 stop_ep_timer(ep);
816 if (state_read(&ep->com) != MPA_REQ_SENT)
817 return;
818
819 /*
820 * If we get more than the supported amount of private data
821 * then we must fail this connection.
822 */
823 if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt)) {
824 err = -EINVAL;
825 goto err;
826 }
827
828 /*
829 * copy the new data into our accumulation buffer.
830 */
831 skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]),
832 skb->len);
833 ep->mpa_pkt_len += skb->len;
834
835 /*
836 * if we don't even have the mpa message, then bail.
837 */
838 if (ep->mpa_pkt_len < sizeof(*mpa))
839 return;
840 mpa = (struct mpa_message *) ep->mpa_pkt;
841
842 /* Validate MPA header. */
843 if (mpa->revision != mpa_rev) {
844 err = -EPROTO;
845 goto err;
846 }
847 if (memcmp(mpa->key, MPA_KEY_REP, sizeof(mpa->key))) {
848 err = -EPROTO;
849 goto err;
850 }
851
852 plen = ntohs(mpa->private_data_size);
853
854 /*
855 * Fail if there's too much private data.
856 */
857 if (plen > MPA_MAX_PRIVATE_DATA) {
858 err = -EPROTO;
859 goto err;
860 }
861
862 /*
863 * If plen does not account for pkt size
864 */
865 if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) {
866 err = -EPROTO;
867 goto err;
868 }
869
870 ep->plen = (u8) plen;
871
872 /*
873 * If we don't have all the pdata yet, then bail.
874 * We'll continue process when more data arrives.
875 */
876 if (ep->mpa_pkt_len < (sizeof(*mpa) + plen))
877 return;
878
879 if (mpa->flags & MPA_REJECT) {
880 err = -ECONNREFUSED;
881 goto err;
882 }
883
884 /*
885 * If we get here we have accumulated the entire mpa
886 * start reply message including private data. And
887 * the MPA header is valid.
888 */
889 state_set(&ep->com, FPDU_MODE);
890 ep->mpa_attr.initiator = 1;
891 ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0;
892 ep->mpa_attr.recv_marker_enabled = markers_enabled;
893 ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0;
894 ep->mpa_attr.version = mpa_rev;
895 PDBG("%s - crc_enabled=%d, recv_marker_enabled=%d, "
896 "xmit_marker_enabled=%d, version=%d\n", __func__,
897 ep->mpa_attr.crc_enabled, ep->mpa_attr.recv_marker_enabled,
898 ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version);
899
900 attrs.mpa_attr = ep->mpa_attr;
901 attrs.max_ird = ep->ird;
902 attrs.max_ord = ep->ord;
903 attrs.llp_stream_handle = ep;
904 attrs.next_state = IWCH_QP_STATE_RTS;
905
906 mask = IWCH_QP_ATTR_NEXT_STATE |
907 IWCH_QP_ATTR_LLP_STREAM_HANDLE | IWCH_QP_ATTR_MPA_ATTR |
908 IWCH_QP_ATTR_MAX_IRD | IWCH_QP_ATTR_MAX_ORD;
909
910 /* bind QP and TID with INIT_WR */
911 err = iwch_modify_qp(ep->com.qp->rhp,
912 ep->com.qp, mask, &attrs, 1);
913 if (err)
914 goto err;
915
916 if (peer2peer && iwch_rqes_posted(ep->com.qp) == 0) {
917 iwch_post_zb_read(ep->com.qp);
918 }
919
920 goto out;
921 err:
922 abort_connection(ep, skb, GFP_KERNEL);
923 out:
924 connect_reply_upcall(ep, err);
925 return;
926 }
927
928 static void process_mpa_request(struct iwch_ep *ep, struct sk_buff *skb)
929 {
930 struct mpa_message *mpa;
931 u16 plen;
932
933 PDBG("%s ep %p\n", __func__, ep);
934
935 /*
936 * Stop mpa timer. If it expired, then the state has
937 * changed and we bail since ep_timeout already aborted
938 * the connection.
939 */
940 stop_ep_timer(ep);
941 if (state_read(&ep->com) != MPA_REQ_WAIT)
942 return;
943
944 /*
945 * If we get more than the supported amount of private data
946 * then we must fail this connection.
947 */
948 if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt)) {
949 abort_connection(ep, skb, GFP_KERNEL);
950 return;
951 }
952
953 PDBG("%s enter (%s line %u)\n", __func__, __FILE__, __LINE__);
954
955 /*
956 * Copy the new data into our accumulation buffer.
957 */
958 skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]),
959 skb->len);
960 ep->mpa_pkt_len += skb->len;
961
962 /*
963 * If we don't even have the mpa message, then bail.
964 * We'll continue process when more data arrives.
965 */
966 if (ep->mpa_pkt_len < sizeof(*mpa))
967 return;
968 PDBG("%s enter (%s line %u)\n", __func__, __FILE__, __LINE__);
969 mpa = (struct mpa_message *) ep->mpa_pkt;
970
971 /*
972 * Validate MPA Header.
973 */
974 if (mpa->revision != mpa_rev) {
975 abort_connection(ep, skb, GFP_KERNEL);
976 return;
977 }
978
979 if (memcmp(mpa->key, MPA_KEY_REQ, sizeof(mpa->key))) {
980 abort_connection(ep, skb, GFP_KERNEL);
981 return;
982 }
983
984 plen = ntohs(mpa->private_data_size);
985
986 /*
987 * Fail if there's too much private data.
988 */
989 if (plen > MPA_MAX_PRIVATE_DATA) {
990 abort_connection(ep, skb, GFP_KERNEL);
991 return;
992 }
993
994 /*
995 * If plen does not account for pkt size
996 */
997 if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) {
998 abort_connection(ep, skb, GFP_KERNEL);
999 return;
1000 }
1001 ep->plen = (u8) plen;
1002
1003 /*
1004 * If we don't have all the pdata yet, then bail.
1005 */
1006 if (ep->mpa_pkt_len < (sizeof(*mpa) + plen))
1007 return;
1008
1009 /*
1010 * If we get here we have accumulated the entire mpa
1011 * start reply message including private data.
1012 */
1013 ep->mpa_attr.initiator = 0;
1014 ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0;
1015 ep->mpa_attr.recv_marker_enabled = markers_enabled;
1016 ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0;
1017 ep->mpa_attr.version = mpa_rev;
1018 PDBG("%s - crc_enabled=%d, recv_marker_enabled=%d, "
1019 "xmit_marker_enabled=%d, version=%d\n", __func__,
1020 ep->mpa_attr.crc_enabled, ep->mpa_attr.recv_marker_enabled,
1021 ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version);
1022
1023 state_set(&ep->com, MPA_REQ_RCVD);
1024
1025 /* drive upcall */
1026 connect_request_upcall(ep);
1027 return;
1028 }
1029
1030 static int rx_data(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1031 {
1032 struct iwch_ep *ep = ctx;
1033 struct cpl_rx_data *hdr = cplhdr(skb);
1034 unsigned int dlen = ntohs(hdr->len);
1035
1036 PDBG("%s ep %p dlen %u\n", __func__, ep, dlen);
1037
1038 skb_pull(skb, sizeof(*hdr));
1039 skb_trim(skb, dlen);
1040
1041 ep->rcv_seq += dlen;
1042 BUG_ON(ep->rcv_seq != (ntohl(hdr->seq) + dlen));
1043
1044 switch (state_read(&ep->com)) {
1045 case MPA_REQ_SENT:
1046 process_mpa_reply(ep, skb);
1047 break;
1048 case MPA_REQ_WAIT:
1049 process_mpa_request(ep, skb);
1050 break;
1051 case MPA_REP_SENT:
1052 break;
1053 default:
1054 printk(KERN_ERR MOD "%s Unexpected streaming data."
1055 " ep %p state %d tid %d\n",
1056 __func__, ep, state_read(&ep->com), ep->hwtid);
1057
1058 /*
1059 * The ep will timeout and inform the ULP of the failure.
1060 * See ep_timeout().
1061 */
1062 break;
1063 }
1064
1065 /* update RX credits */
1066 update_rx_credits(ep, dlen);
1067
1068 return CPL_RET_BUF_DONE;
1069 }
1070
1071 /*
1072 * Upcall from the adapter indicating data has been transmitted.
1073 * For us its just the single MPA request or reply. We can now free
1074 * the skb holding the mpa message.
1075 */
1076 static int tx_ack(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1077 {
1078 struct iwch_ep *ep = ctx;
1079 struct cpl_wr_ack *hdr = cplhdr(skb);
1080 unsigned int credits = ntohs(hdr->credits);
1081
1082 PDBG("%s ep %p credits %u\n", __func__, ep, credits);
1083
1084 if (credits == 0) {
1085 PDBG("%s 0 credit ack ep %p state %u\n",
1086 __func__, ep, state_read(&ep->com));
1087 return CPL_RET_BUF_DONE;
1088 }
1089
1090 BUG_ON(credits != 1);
1091 dst_confirm(ep->dst);
1092 if (!ep->mpa_skb) {
1093 PDBG("%s rdma_init wr_ack ep %p state %u\n",
1094 __func__, ep, state_read(&ep->com));
1095 if (ep->mpa_attr.initiator) {
1096 PDBG("%s initiator ep %p state %u\n",
1097 __func__, ep, state_read(&ep->com));
1098 if (peer2peer)
1099 iwch_post_zb_read(ep->com.qp);
1100 } else {
1101 PDBG("%s responder ep %p state %u\n",
1102 __func__, ep, state_read(&ep->com));
1103 ep->com.rpl_done = 1;
1104 wake_up(&ep->com.waitq);
1105 }
1106 } else {
1107 PDBG("%s lsm ack ep %p state %u freeing skb\n",
1108 __func__, ep, state_read(&ep->com));
1109 kfree_skb(ep->mpa_skb);
1110 ep->mpa_skb = NULL;
1111 }
1112 return CPL_RET_BUF_DONE;
1113 }
1114
1115 static int abort_rpl(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1116 {
1117 struct iwch_ep *ep = ctx;
1118 unsigned long flags;
1119 int release = 0;
1120
1121 PDBG("%s ep %p\n", __func__, ep);
1122 BUG_ON(!ep);
1123
1124 /*
1125 * We get 2 abort replies from the HW. The first one must
1126 * be ignored except for scribbling that we need one more.
1127 */
1128 if (!test_and_set_bit(ABORT_REQ_IN_PROGRESS, &ep->com.flags)) {
1129 return CPL_RET_BUF_DONE;
1130 }
1131
1132 spin_lock_irqsave(&ep->com.lock, flags);
1133 switch (ep->com.state) {
1134 case ABORTING:
1135 close_complete_upcall(ep);
1136 __state_set(&ep->com, DEAD);
1137 release = 1;
1138 break;
1139 default:
1140 printk(KERN_ERR "%s ep %p state %d\n",
1141 __func__, ep, ep->com.state);
1142 break;
1143 }
1144 spin_unlock_irqrestore(&ep->com.lock, flags);
1145
1146 if (release)
1147 release_ep_resources(ep);
1148 return CPL_RET_BUF_DONE;
1149 }
1150
1151 /*
1152 * Return whether a failed active open has allocated a TID
1153 */
1154 static inline int act_open_has_tid(int status)
1155 {
1156 return status != CPL_ERR_TCAM_FULL && status != CPL_ERR_CONN_EXIST &&
1157 status != CPL_ERR_ARP_MISS;
1158 }
1159
1160 static int act_open_rpl(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1161 {
1162 struct iwch_ep *ep = ctx;
1163 struct cpl_act_open_rpl *rpl = cplhdr(skb);
1164
1165 PDBG("%s ep %p status %u errno %d\n", __func__, ep, rpl->status,
1166 status2errno(rpl->status));
1167 connect_reply_upcall(ep, status2errno(rpl->status));
1168 state_set(&ep->com, DEAD);
1169 if (ep->com.tdev->type != T3A && act_open_has_tid(rpl->status))
1170 release_tid(ep->com.tdev, GET_TID(rpl), NULL);
1171 cxgb3_free_atid(ep->com.tdev, ep->atid);
1172 dst_release(ep->dst);
1173 l2t_release(L2DATA(ep->com.tdev), ep->l2t);
1174 put_ep(&ep->com);
1175 return CPL_RET_BUF_DONE;
1176 }
1177
1178 static int listen_start(struct iwch_listen_ep *ep)
1179 {
1180 struct sk_buff *skb;
1181 struct cpl_pass_open_req *req;
1182
1183 PDBG("%s ep %p\n", __func__, ep);
1184 skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
1185 if (!skb) {
1186 printk(KERN_ERR MOD "t3c_listen_start failed to alloc skb!\n");
1187 return -ENOMEM;
1188 }
1189
1190 req = (struct cpl_pass_open_req *) skb_put(skb, sizeof(*req));
1191 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
1192 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, ep->stid));
1193 req->local_port = ep->com.local_addr.sin_port;
1194 req->local_ip = ep->com.local_addr.sin_addr.s_addr;
1195 req->peer_port = 0;
1196 req->peer_ip = 0;
1197 req->peer_netmask = 0;
1198 req->opt0h = htonl(F_DELACK | F_TCAM_BYPASS);
1199 req->opt0l = htonl(V_RCV_BUFSIZ(rcv_win>>10));
1200 req->opt1 = htonl(V_CONN_POLICY(CPL_CONN_POLICY_ASK));
1201
1202 skb->priority = 1;
1203 return iwch_cxgb3_ofld_send(ep->com.tdev, skb);
1204 }
1205
1206 static int pass_open_rpl(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1207 {
1208 struct iwch_listen_ep *ep = ctx;
1209 struct cpl_pass_open_rpl *rpl = cplhdr(skb);
1210
1211 PDBG("%s ep %p status %d error %d\n", __func__, ep,
1212 rpl->status, status2errno(rpl->status));
1213 ep->com.rpl_err = status2errno(rpl->status);
1214 ep->com.rpl_done = 1;
1215 wake_up(&ep->com.waitq);
1216
1217 return CPL_RET_BUF_DONE;
1218 }
1219
1220 static int listen_stop(struct iwch_listen_ep *ep)
1221 {
1222 struct sk_buff *skb;
1223 struct cpl_close_listserv_req *req;
1224
1225 PDBG("%s ep %p\n", __func__, ep);
1226 skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
1227 if (!skb) {
1228 printk(KERN_ERR MOD "%s - failed to alloc skb\n", __func__);
1229 return -ENOMEM;
1230 }
1231 req = (struct cpl_close_listserv_req *) skb_put(skb, sizeof(*req));
1232 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
1233 req->cpu_idx = 0;
1234 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, ep->stid));
1235 skb->priority = 1;
1236 return iwch_cxgb3_ofld_send(ep->com.tdev, skb);
1237 }
1238
1239 static int close_listsrv_rpl(struct t3cdev *tdev, struct sk_buff *skb,
1240 void *ctx)
1241 {
1242 struct iwch_listen_ep *ep = ctx;
1243 struct cpl_close_listserv_rpl *rpl = cplhdr(skb);
1244
1245 PDBG("%s ep %p\n", __func__, ep);
1246 ep->com.rpl_err = status2errno(rpl->status);
1247 ep->com.rpl_done = 1;
1248 wake_up(&ep->com.waitq);
1249 return CPL_RET_BUF_DONE;
1250 }
1251
1252 static void accept_cr(struct iwch_ep *ep, __be32 peer_ip, struct sk_buff *skb)
1253 {
1254 struct cpl_pass_accept_rpl *rpl;
1255 unsigned int mtu_idx;
1256 u32 opt0h, opt0l, opt2;
1257 int wscale;
1258
1259 PDBG("%s ep %p\n", __func__, ep);
1260 BUG_ON(skb_cloned(skb));
1261 skb_trim(skb, sizeof(*rpl));
1262 skb_get(skb);
1263 mtu_idx = find_best_mtu(T3C_DATA(ep->com.tdev), dst_mtu(ep->dst));
1264 wscale = compute_wscale(rcv_win);
1265 opt0h = V_NAGLE(0) |
1266 V_NO_CONG(nocong) |
1267 V_KEEP_ALIVE(1) |
1268 F_TCAM_BYPASS |
1269 V_WND_SCALE(wscale) |
1270 V_MSS_IDX(mtu_idx) |
1271 V_L2T_IDX(ep->l2t->idx) | V_TX_CHANNEL(ep->l2t->smt_idx);
1272 opt0l = V_TOS((ep->tos >> 2) & M_TOS) | V_RCV_BUFSIZ(rcv_win>>10);
1273 opt2 = F_RX_COALESCE_VALID | V_RX_COALESCE(0) | V_FLAVORS_VALID(1) |
1274 V_CONG_CONTROL_FLAVOR(cong_flavor);
1275
1276 rpl = cplhdr(skb);
1277 rpl->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
1278 OPCODE_TID(rpl) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_RPL, ep->hwtid));
1279 rpl->peer_ip = peer_ip;
1280 rpl->opt0h = htonl(opt0h);
1281 rpl->opt0l_status = htonl(opt0l | CPL_PASS_OPEN_ACCEPT);
1282 rpl->opt2 = htonl(opt2);
1283 rpl->rsvd = rpl->opt2; /* workaround for HW bug */
1284 skb->priority = CPL_PRIORITY_SETUP;
1285 iwch_l2t_send(ep->com.tdev, skb, ep->l2t);
1286
1287 return;
1288 }
1289
1290 static void reject_cr(struct t3cdev *tdev, u32 hwtid, __be32 peer_ip,
1291 struct sk_buff *skb)
1292 {
1293 PDBG("%s t3cdev %p tid %u peer_ip %x\n", __func__, tdev, hwtid,
1294 peer_ip);
1295 BUG_ON(skb_cloned(skb));
1296 skb_trim(skb, sizeof(struct cpl_tid_release));
1297 skb_get(skb);
1298
1299 if (tdev->type != T3A)
1300 release_tid(tdev, hwtid, skb);
1301 else {
1302 struct cpl_pass_accept_rpl *rpl;
1303
1304 rpl = cplhdr(skb);
1305 skb->priority = CPL_PRIORITY_SETUP;
1306 rpl->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
1307 OPCODE_TID(rpl) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_RPL,
1308 hwtid));
1309 rpl->peer_ip = peer_ip;
1310 rpl->opt0h = htonl(F_TCAM_BYPASS);
1311 rpl->opt0l_status = htonl(CPL_PASS_OPEN_REJECT);
1312 rpl->opt2 = 0;
1313 rpl->rsvd = rpl->opt2;
1314 iwch_cxgb3_ofld_send(tdev, skb);
1315 }
1316 }
1317
1318 static int pass_accept_req(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1319 {
1320 struct iwch_ep *child_ep, *parent_ep = ctx;
1321 struct cpl_pass_accept_req *req = cplhdr(skb);
1322 unsigned int hwtid = GET_TID(req);
1323 struct dst_entry *dst;
1324 struct l2t_entry *l2t;
1325 struct rtable *rt;
1326 struct iff_mac tim;
1327
1328 PDBG("%s parent ep %p tid %u\n", __func__, parent_ep, hwtid);
1329
1330 if (state_read(&parent_ep->com) != LISTEN) {
1331 printk(KERN_ERR "%s - listening ep not in LISTEN\n",
1332 __func__);
1333 goto reject;
1334 }
1335
1336 /*
1337 * Find the netdev for this connection request.
1338 */
1339 tim.mac_addr = req->dst_mac;
1340 tim.vlan_tag = ntohs(req->vlan_tag);
1341 if (tdev->ctl(tdev, GET_IFF_FROM_MAC, &tim) < 0 || !tim.dev) {
1342 printk(KERN_ERR "%s bad dst mac %pM\n",
1343 __func__, req->dst_mac);
1344 goto reject;
1345 }
1346
1347 /* Find output route */
1348 rt = find_route(tdev,
1349 req->local_ip,
1350 req->peer_ip,
1351 req->local_port,
1352 req->peer_port, G_PASS_OPEN_TOS(ntohl(req->tos_tid)));
1353 if (!rt) {
1354 printk(KERN_ERR MOD "%s - failed to find dst entry!\n",
1355 __func__);
1356 goto reject;
1357 }
1358 dst = &rt->dst;
1359 l2t = t3_l2t_get(tdev, dst->neighbour, dst->neighbour->dev);
1360 if (!l2t) {
1361 printk(KERN_ERR MOD "%s - failed to allocate l2t entry!\n",
1362 __func__);
1363 dst_release(dst);
1364 goto reject;
1365 }
1366 child_ep = alloc_ep(sizeof(*child_ep), GFP_KERNEL);
1367 if (!child_ep) {
1368 printk(KERN_ERR MOD "%s - failed to allocate ep entry!\n",
1369 __func__);
1370 l2t_release(L2DATA(tdev), l2t);
1371 dst_release(dst);
1372 goto reject;
1373 }
1374 state_set(&child_ep->com, CONNECTING);
1375 child_ep->com.tdev = tdev;
1376 child_ep->com.cm_id = NULL;
1377 child_ep->com.local_addr.sin_family = PF_INET;
1378 child_ep->com.local_addr.sin_port = req->local_port;
1379 child_ep->com.local_addr.sin_addr.s_addr = req->local_ip;
1380 child_ep->com.remote_addr.sin_family = PF_INET;
1381 child_ep->com.remote_addr.sin_port = req->peer_port;
1382 child_ep->com.remote_addr.sin_addr.s_addr = req->peer_ip;
1383 get_ep(&parent_ep->com);
1384 child_ep->parent_ep = parent_ep;
1385 child_ep->tos = G_PASS_OPEN_TOS(ntohl(req->tos_tid));
1386 child_ep->l2t = l2t;
1387 child_ep->dst = dst;
1388 child_ep->hwtid = hwtid;
1389 init_timer(&child_ep->timer);
1390 cxgb3_insert_tid(tdev, &t3c_client, child_ep, hwtid);
1391 accept_cr(child_ep, req->peer_ip, skb);
1392 goto out;
1393 reject:
1394 reject_cr(tdev, hwtid, req->peer_ip, skb);
1395 out:
1396 return CPL_RET_BUF_DONE;
1397 }
1398
1399 static int pass_establish(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1400 {
1401 struct iwch_ep *ep = ctx;
1402 struct cpl_pass_establish *req = cplhdr(skb);
1403
1404 PDBG("%s ep %p\n", __func__, ep);
1405 ep->snd_seq = ntohl(req->snd_isn);
1406 ep->rcv_seq = ntohl(req->rcv_isn);
1407
1408 set_emss(ep, ntohs(req->tcp_opt));
1409
1410 dst_confirm(ep->dst);
1411 state_set(&ep->com, MPA_REQ_WAIT);
1412 start_ep_timer(ep);
1413
1414 return CPL_RET_BUF_DONE;
1415 }
1416
1417 static int peer_close(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1418 {
1419 struct iwch_ep *ep = ctx;
1420 struct iwch_qp_attributes attrs;
1421 unsigned long flags;
1422 int disconnect = 1;
1423 int release = 0;
1424
1425 PDBG("%s ep %p\n", __func__, ep);
1426 dst_confirm(ep->dst);
1427
1428 spin_lock_irqsave(&ep->com.lock, flags);
1429 switch (ep->com.state) {
1430 case MPA_REQ_WAIT:
1431 __state_set(&ep->com, CLOSING);
1432 break;
1433 case MPA_REQ_SENT:
1434 __state_set(&ep->com, CLOSING);
1435 connect_reply_upcall(ep, -ECONNRESET);
1436 break;
1437 case MPA_REQ_RCVD:
1438
1439 /*
1440 * We're gonna mark this puppy DEAD, but keep
1441 * the reference on it until the ULP accepts or
1442 * rejects the CR. Also wake up anyone waiting
1443 * in rdma connection migration (see iwch_accept_cr()).
1444 */
1445 __state_set(&ep->com, CLOSING);
1446 ep->com.rpl_done = 1;
1447 ep->com.rpl_err = -ECONNRESET;
1448 PDBG("waking up ep %p\n", ep);
1449 wake_up(&ep->com.waitq);
1450 break;
1451 case MPA_REP_SENT:
1452 __state_set(&ep->com, CLOSING);
1453 ep->com.rpl_done = 1;
1454 ep->com.rpl_err = -ECONNRESET;
1455 PDBG("waking up ep %p\n", ep);
1456 wake_up(&ep->com.waitq);
1457 break;
1458 case FPDU_MODE:
1459 start_ep_timer(ep);
1460 __state_set(&ep->com, CLOSING);
1461 attrs.next_state = IWCH_QP_STATE_CLOSING;
1462 iwch_modify_qp(ep->com.qp->rhp, ep->com.qp,
1463 IWCH_QP_ATTR_NEXT_STATE, &attrs, 1);
1464 peer_close_upcall(ep);
1465 break;
1466 case ABORTING:
1467 disconnect = 0;
1468 break;
1469 case CLOSING:
1470 __state_set(&ep->com, MORIBUND);
1471 disconnect = 0;
1472 break;
1473 case MORIBUND:
1474 stop_ep_timer(ep);
1475 if (ep->com.cm_id && ep->com.qp) {
1476 attrs.next_state = IWCH_QP_STATE_IDLE;
1477 iwch_modify_qp(ep->com.qp->rhp, ep->com.qp,
1478 IWCH_QP_ATTR_NEXT_STATE, &attrs, 1);
1479 }
1480 close_complete_upcall(ep);
1481 __state_set(&ep->com, DEAD);
1482 release = 1;
1483 disconnect = 0;
1484 break;
1485 case DEAD:
1486 disconnect = 0;
1487 break;
1488 default:
1489 BUG_ON(1);
1490 }
1491 spin_unlock_irqrestore(&ep->com.lock, flags);
1492 if (disconnect)
1493 iwch_ep_disconnect(ep, 0, GFP_KERNEL);
1494 if (release)
1495 release_ep_resources(ep);
1496 return CPL_RET_BUF_DONE;
1497 }
1498
1499 /*
1500 * Returns whether an ABORT_REQ_RSS message is a negative advice.
1501 */
1502 static int is_neg_adv_abort(unsigned int status)
1503 {
1504 return status == CPL_ERR_RTX_NEG_ADVICE ||
1505 status == CPL_ERR_PERSIST_NEG_ADVICE;
1506 }
1507
1508 static int peer_abort(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1509 {
1510 struct cpl_abort_req_rss *req = cplhdr(skb);
1511 struct iwch_ep *ep = ctx;
1512 struct cpl_abort_rpl *rpl;
1513 struct sk_buff *rpl_skb;
1514 struct iwch_qp_attributes attrs;
1515 int ret;
1516 int release = 0;
1517 unsigned long flags;
1518
1519 if (is_neg_adv_abort(req->status)) {
1520 PDBG("%s neg_adv_abort ep %p tid %d\n", __func__, ep,
1521 ep->hwtid);
1522 t3_l2t_send_event(ep->com.tdev, ep->l2t);
1523 return CPL_RET_BUF_DONE;
1524 }
1525
1526 /*
1527 * We get 2 peer aborts from the HW. The first one must
1528 * be ignored except for scribbling that we need one more.
1529 */
1530 if (!test_and_set_bit(PEER_ABORT_IN_PROGRESS, &ep->com.flags)) {
1531 return CPL_RET_BUF_DONE;
1532 }
1533
1534 spin_lock_irqsave(&ep->com.lock, flags);
1535 PDBG("%s ep %p state %u\n", __func__, ep, ep->com.state);
1536 switch (ep->com.state) {
1537 case CONNECTING:
1538 break;
1539 case MPA_REQ_WAIT:
1540 stop_ep_timer(ep);
1541 break;
1542 case MPA_REQ_SENT:
1543 stop_ep_timer(ep);
1544 connect_reply_upcall(ep, -ECONNRESET);
1545 break;
1546 case MPA_REP_SENT:
1547 ep->com.rpl_done = 1;
1548 ep->com.rpl_err = -ECONNRESET;
1549 PDBG("waking up ep %p\n", ep);
1550 wake_up(&ep->com.waitq);
1551 break;
1552 case MPA_REQ_RCVD:
1553
1554 /*
1555 * We're gonna mark this puppy DEAD, but keep
1556 * the reference on it until the ULP accepts or
1557 * rejects the CR. Also wake up anyone waiting
1558 * in rdma connection migration (see iwch_accept_cr()).
1559 */
1560 ep->com.rpl_done = 1;
1561 ep->com.rpl_err = -ECONNRESET;
1562 PDBG("waking up ep %p\n", ep);
1563 wake_up(&ep->com.waitq);
1564 break;
1565 case MORIBUND:
1566 case CLOSING:
1567 stop_ep_timer(ep);
1568 /*FALLTHROUGH*/
1569 case FPDU_MODE:
1570 if (ep->com.cm_id && ep->com.qp) {
1571 attrs.next_state = IWCH_QP_STATE_ERROR;
1572 ret = iwch_modify_qp(ep->com.qp->rhp,
1573 ep->com.qp, IWCH_QP_ATTR_NEXT_STATE,
1574 &attrs, 1);
1575 if (ret)
1576 printk(KERN_ERR MOD
1577 "%s - qp <- error failed!\n",
1578 __func__);
1579 }
1580 peer_abort_upcall(ep);
1581 break;
1582 case ABORTING:
1583 break;
1584 case DEAD:
1585 PDBG("%s PEER_ABORT IN DEAD STATE!!!!\n", __func__);
1586 spin_unlock_irqrestore(&ep->com.lock, flags);
1587 return CPL_RET_BUF_DONE;
1588 default:
1589 BUG_ON(1);
1590 break;
1591 }
1592 dst_confirm(ep->dst);
1593 if (ep->com.state != ABORTING) {
1594 __state_set(&ep->com, DEAD);
1595 release = 1;
1596 }
1597 spin_unlock_irqrestore(&ep->com.lock, flags);
1598
1599 rpl_skb = get_skb(skb, sizeof(*rpl), GFP_KERNEL);
1600 if (!rpl_skb) {
1601 printk(KERN_ERR MOD "%s - cannot allocate skb!\n",
1602 __func__);
1603 release = 1;
1604 goto out;
1605 }
1606 rpl_skb->priority = CPL_PRIORITY_DATA;
1607 rpl = (struct cpl_abort_rpl *) skb_put(rpl_skb, sizeof(*rpl));
1608 rpl->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_HOST_ABORT_CON_RPL));
1609 rpl->wr.wr_lo = htonl(V_WR_TID(ep->hwtid));
1610 OPCODE_TID(rpl) = htonl(MK_OPCODE_TID(CPL_ABORT_RPL, ep->hwtid));
1611 rpl->cmd = CPL_ABORT_NO_RST;
1612 iwch_cxgb3_ofld_send(ep->com.tdev, rpl_skb);
1613 out:
1614 if (release)
1615 release_ep_resources(ep);
1616 return CPL_RET_BUF_DONE;
1617 }
1618
1619 static int close_con_rpl(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1620 {
1621 struct iwch_ep *ep = ctx;
1622 struct iwch_qp_attributes attrs;
1623 unsigned long flags;
1624 int release = 0;
1625
1626 PDBG("%s ep %p\n", __func__, ep);
1627 BUG_ON(!ep);
1628
1629 /* The cm_id may be null if we failed to connect */
1630 spin_lock_irqsave(&ep->com.lock, flags);
1631 switch (ep->com.state) {
1632 case CLOSING:
1633 __state_set(&ep->com, MORIBUND);
1634 break;
1635 case MORIBUND:
1636 stop_ep_timer(ep);
1637 if ((ep->com.cm_id) && (ep->com.qp)) {
1638 attrs.next_state = IWCH_QP_STATE_IDLE;
1639 iwch_modify_qp(ep->com.qp->rhp,
1640 ep->com.qp,
1641 IWCH_QP_ATTR_NEXT_STATE,
1642 &attrs, 1);
1643 }
1644 close_complete_upcall(ep);
1645 __state_set(&ep->com, DEAD);
1646 release = 1;
1647 break;
1648 case ABORTING:
1649 case DEAD:
1650 break;
1651 default:
1652 BUG_ON(1);
1653 break;
1654 }
1655 spin_unlock_irqrestore(&ep->com.lock, flags);
1656 if (release)
1657 release_ep_resources(ep);
1658 return CPL_RET_BUF_DONE;
1659 }
1660
1661 /*
1662 * T3A does 3 things when a TERM is received:
1663 * 1) send up a CPL_RDMA_TERMINATE message with the TERM packet
1664 * 2) generate an async event on the QP with the TERMINATE opcode
1665 * 3) post a TERMINATE opcde cqe into the associated CQ.
1666 *
1667 * For (1), we save the message in the qp for later consumer consumption.
1668 * For (2), we move the QP into TERMINATE, post a QP event and disconnect.
1669 * For (3), we toss the CQE in cxio_poll_cq().
1670 *
1671 * terminate() handles case (1)...
1672 */
1673 static int terminate(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1674 {
1675 struct iwch_ep *ep = ctx;
1676
1677 if (state_read(&ep->com) != FPDU_MODE)
1678 return CPL_RET_BUF_DONE;
1679
1680 PDBG("%s ep %p\n", __func__, ep);
1681 skb_pull(skb, sizeof(struct cpl_rdma_terminate));
1682 PDBG("%s saving %d bytes of term msg\n", __func__, skb->len);
1683 skb_copy_from_linear_data(skb, ep->com.qp->attr.terminate_buffer,
1684 skb->len);
1685 ep->com.qp->attr.terminate_msg_len = skb->len;
1686 ep->com.qp->attr.is_terminate_local = 0;
1687 return CPL_RET_BUF_DONE;
1688 }
1689
1690 static int ec_status(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1691 {
1692 struct cpl_rdma_ec_status *rep = cplhdr(skb);
1693 struct iwch_ep *ep = ctx;
1694
1695 PDBG("%s ep %p tid %u status %d\n", __func__, ep, ep->hwtid,
1696 rep->status);
1697 if (rep->status) {
1698 struct iwch_qp_attributes attrs;
1699
1700 printk(KERN_ERR MOD "%s BAD CLOSE - Aborting tid %u\n",
1701 __func__, ep->hwtid);
1702 stop_ep_timer(ep);
1703 attrs.next_state = IWCH_QP_STATE_ERROR;
1704 iwch_modify_qp(ep->com.qp->rhp,
1705 ep->com.qp, IWCH_QP_ATTR_NEXT_STATE,
1706 &attrs, 1);
1707 abort_connection(ep, NULL, GFP_KERNEL);
1708 }
1709 return CPL_RET_BUF_DONE;
1710 }
1711
1712 static void ep_timeout(unsigned long arg)
1713 {
1714 struct iwch_ep *ep = (struct iwch_ep *)arg;
1715 struct iwch_qp_attributes attrs;
1716 unsigned long flags;
1717 int abort = 1;
1718
1719 spin_lock_irqsave(&ep->com.lock, flags);
1720 PDBG("%s ep %p tid %u state %d\n", __func__, ep, ep->hwtid,
1721 ep->com.state);
1722 switch (ep->com.state) {
1723 case MPA_REQ_SENT:
1724 __state_set(&ep->com, ABORTING);
1725 connect_reply_upcall(ep, -ETIMEDOUT);
1726 break;
1727 case MPA_REQ_WAIT:
1728 __state_set(&ep->com, ABORTING);
1729 break;
1730 case CLOSING:
1731 case MORIBUND:
1732 if (ep->com.cm_id && ep->com.qp) {
1733 attrs.next_state = IWCH_QP_STATE_ERROR;
1734 iwch_modify_qp(ep->com.qp->rhp,
1735 ep->com.qp, IWCH_QP_ATTR_NEXT_STATE,
1736 &attrs, 1);
1737 }
1738 __state_set(&ep->com, ABORTING);
1739 break;
1740 default:
1741 printk(KERN_ERR "%s unexpected state ep %p state %u\n",
1742 __func__, ep, ep->com.state);
1743 WARN_ON(1);
1744 abort = 0;
1745 }
1746 spin_unlock_irqrestore(&ep->com.lock, flags);
1747 if (abort)
1748 abort_connection(ep, NULL, GFP_ATOMIC);
1749 put_ep(&ep->com);
1750 }
1751
1752 int iwch_reject_cr(struct iw_cm_id *cm_id, const void *pdata, u8 pdata_len)
1753 {
1754 int err;
1755 struct iwch_ep *ep = to_ep(cm_id);
1756 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1757
1758 if (state_read(&ep->com) == DEAD) {
1759 put_ep(&ep->com);
1760 return -ECONNRESET;
1761 }
1762 BUG_ON(state_read(&ep->com) != MPA_REQ_RCVD);
1763 if (mpa_rev == 0)
1764 abort_connection(ep, NULL, GFP_KERNEL);
1765 else {
1766 err = send_mpa_reject(ep, pdata, pdata_len);
1767 err = iwch_ep_disconnect(ep, 0, GFP_KERNEL);
1768 }
1769 put_ep(&ep->com);
1770 return 0;
1771 }
1772
1773 int iwch_accept_cr(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param)
1774 {
1775 int err;
1776 struct iwch_qp_attributes attrs;
1777 enum iwch_qp_attr_mask mask;
1778 struct iwch_ep *ep = to_ep(cm_id);
1779 struct iwch_dev *h = to_iwch_dev(cm_id->device);
1780 struct iwch_qp *qp = get_qhp(h, conn_param->qpn);
1781
1782 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1783 if (state_read(&ep->com) == DEAD) {
1784 err = -ECONNRESET;
1785 goto err;
1786 }
1787
1788 BUG_ON(state_read(&ep->com) != MPA_REQ_RCVD);
1789 BUG_ON(!qp);
1790
1791 if ((conn_param->ord > qp->rhp->attr.max_rdma_read_qp_depth) ||
1792 (conn_param->ird > qp->rhp->attr.max_rdma_reads_per_qp)) {
1793 abort_connection(ep, NULL, GFP_KERNEL);
1794 err = -EINVAL;
1795 goto err;
1796 }
1797
1798 cm_id->add_ref(cm_id);
1799 ep->com.cm_id = cm_id;
1800 ep->com.qp = qp;
1801
1802 ep->ird = conn_param->ird;
1803 ep->ord = conn_param->ord;
1804
1805 if (peer2peer && ep->ird == 0)
1806 ep->ird = 1;
1807
1808 PDBG("%s %d ird %d ord %d\n", __func__, __LINE__, ep->ird, ep->ord);
1809
1810 /* bind QP to EP and move to RTS */
1811 attrs.mpa_attr = ep->mpa_attr;
1812 attrs.max_ird = ep->ird;
1813 attrs.max_ord = ep->ord;
1814 attrs.llp_stream_handle = ep;
1815 attrs.next_state = IWCH_QP_STATE_RTS;
1816
1817 /* bind QP and TID with INIT_WR */
1818 mask = IWCH_QP_ATTR_NEXT_STATE |
1819 IWCH_QP_ATTR_LLP_STREAM_HANDLE |
1820 IWCH_QP_ATTR_MPA_ATTR |
1821 IWCH_QP_ATTR_MAX_IRD |
1822 IWCH_QP_ATTR_MAX_ORD;
1823
1824 err = iwch_modify_qp(ep->com.qp->rhp,
1825 ep->com.qp, mask, &attrs, 1);
1826 if (err)
1827 goto err1;
1828
1829 /* if needed, wait for wr_ack */
1830 if (iwch_rqes_posted(qp)) {
1831 wait_event(ep->com.waitq, ep->com.rpl_done);
1832 err = ep->com.rpl_err;
1833 if (err)
1834 goto err1;
1835 }
1836
1837 err = send_mpa_reply(ep, conn_param->private_data,
1838 conn_param->private_data_len);
1839 if (err)
1840 goto err1;
1841
1842
1843 state_set(&ep->com, FPDU_MODE);
1844 established_upcall(ep);
1845 put_ep(&ep->com);
1846 return 0;
1847 err1:
1848 ep->com.cm_id = NULL;
1849 ep->com.qp = NULL;
1850 cm_id->rem_ref(cm_id);
1851 err:
1852 put_ep(&ep->com);
1853 return err;
1854 }
1855
1856 static int is_loopback_dst(struct iw_cm_id *cm_id)
1857 {
1858 struct net_device *dev;
1859
1860 dev = ip_dev_find(&init_net, cm_id->remote_addr.sin_addr.s_addr);
1861 if (!dev)
1862 return 0;
1863 dev_put(dev);
1864 return 1;
1865 }
1866
1867 int iwch_connect(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param)
1868 {
1869 int err = 0;
1870 struct iwch_dev *h = to_iwch_dev(cm_id->device);
1871 struct iwch_ep *ep;
1872 struct rtable *rt;
1873
1874 if (is_loopback_dst(cm_id)) {
1875 err = -ENOSYS;
1876 goto out;
1877 }
1878
1879 ep = alloc_ep(sizeof(*ep), GFP_KERNEL);
1880 if (!ep) {
1881 printk(KERN_ERR MOD "%s - cannot alloc ep.\n", __func__);
1882 err = -ENOMEM;
1883 goto out;
1884 }
1885 init_timer(&ep->timer);
1886 ep->plen = conn_param->private_data_len;
1887 if (ep->plen)
1888 memcpy(ep->mpa_pkt + sizeof(struct mpa_message),
1889 conn_param->private_data, ep->plen);
1890 ep->ird = conn_param->ird;
1891 ep->ord = conn_param->ord;
1892
1893 if (peer2peer && ep->ord == 0)
1894 ep->ord = 1;
1895
1896 ep->com.tdev = h->rdev.t3cdev_p;
1897
1898 cm_id->add_ref(cm_id);
1899 ep->com.cm_id = cm_id;
1900 ep->com.qp = get_qhp(h, conn_param->qpn);
1901 BUG_ON(!ep->com.qp);
1902 PDBG("%s qpn 0x%x qp %p cm_id %p\n", __func__, conn_param->qpn,
1903 ep->com.qp, cm_id);
1904
1905 /*
1906 * Allocate an active TID to initiate a TCP connection.
1907 */
1908 ep->atid = cxgb3_alloc_atid(h->rdev.t3cdev_p, &t3c_client, ep);
1909 if (ep->atid == -1) {
1910 printk(KERN_ERR MOD "%s - cannot alloc atid.\n", __func__);
1911 err = -ENOMEM;
1912 goto fail2;
1913 }
1914
1915 /* find a route */
1916 rt = find_route(h->rdev.t3cdev_p,
1917 cm_id->local_addr.sin_addr.s_addr,
1918 cm_id->remote_addr.sin_addr.s_addr,
1919 cm_id->local_addr.sin_port,
1920 cm_id->remote_addr.sin_port, IPTOS_LOWDELAY);
1921 if (!rt) {
1922 printk(KERN_ERR MOD "%s - cannot find route.\n", __func__);
1923 err = -EHOSTUNREACH;
1924 goto fail3;
1925 }
1926 ep->dst = &rt->dst;
1927
1928 /* get a l2t entry */
1929 ep->l2t = t3_l2t_get(ep->com.tdev, ep->dst->neighbour,
1930 ep->dst->neighbour->dev);
1931 if (!ep->l2t) {
1932 printk(KERN_ERR MOD "%s - cannot alloc l2e.\n", __func__);
1933 err = -ENOMEM;
1934 goto fail4;
1935 }
1936
1937 state_set(&ep->com, CONNECTING);
1938 ep->tos = IPTOS_LOWDELAY;
1939 ep->com.local_addr = cm_id->local_addr;
1940 ep->com.remote_addr = cm_id->remote_addr;
1941
1942 /* send connect request to rnic */
1943 err = send_connect(ep);
1944 if (!err)
1945 goto out;
1946
1947 l2t_release(L2DATA(h->rdev.t3cdev_p), ep->l2t);
1948 fail4:
1949 dst_release(ep->dst);
1950 fail3:
1951 cxgb3_free_atid(ep->com.tdev, ep->atid);
1952 fail2:
1953 cm_id->rem_ref(cm_id);
1954 put_ep(&ep->com);
1955 out:
1956 return err;
1957 }
1958
1959 int iwch_create_listen(struct iw_cm_id *cm_id, int backlog)
1960 {
1961 int err = 0;
1962 struct iwch_dev *h = to_iwch_dev(cm_id->device);
1963 struct iwch_listen_ep *ep;
1964
1965
1966 might_sleep();
1967
1968 ep = alloc_ep(sizeof(*ep), GFP_KERNEL);
1969 if (!ep) {
1970 printk(KERN_ERR MOD "%s - cannot alloc ep.\n", __func__);
1971 err = -ENOMEM;
1972 goto fail1;
1973 }
1974 PDBG("%s ep %p\n", __func__, ep);
1975 ep->com.tdev = h->rdev.t3cdev_p;
1976 cm_id->add_ref(cm_id);
1977 ep->com.cm_id = cm_id;
1978 ep->backlog = backlog;
1979 ep->com.local_addr = cm_id->local_addr;
1980
1981 /*
1982 * Allocate a server TID.
1983 */
1984 ep->stid = cxgb3_alloc_stid(h->rdev.t3cdev_p, &t3c_client, ep);
1985 if (ep->stid == -1) {
1986 printk(KERN_ERR MOD "%s - cannot alloc atid.\n", __func__);
1987 err = -ENOMEM;
1988 goto fail2;
1989 }
1990
1991 state_set(&ep->com, LISTEN);
1992 err = listen_start(ep);
1993 if (err)
1994 goto fail3;
1995
1996 /* wait for pass_open_rpl */
1997 wait_event(ep->com.waitq, ep->com.rpl_done);
1998 err = ep->com.rpl_err;
1999 if (!err) {
2000 cm_id->provider_data = ep;
2001 goto out;
2002 }
2003 fail3:
2004 cxgb3_free_stid(ep->com.tdev, ep->stid);
2005 fail2:
2006 cm_id->rem_ref(cm_id);
2007 put_ep(&ep->com);
2008 fail1:
2009 out:
2010 return err;
2011 }
2012
2013 int iwch_destroy_listen(struct iw_cm_id *cm_id)
2014 {
2015 int err;
2016 struct iwch_listen_ep *ep = to_listen_ep(cm_id);
2017
2018 PDBG("%s ep %p\n", __func__, ep);
2019
2020 might_sleep();
2021 state_set(&ep->com, DEAD);
2022 ep->com.rpl_done = 0;
2023 ep->com.rpl_err = 0;
2024 err = listen_stop(ep);
2025 if (err)
2026 goto done;
2027 wait_event(ep->com.waitq, ep->com.rpl_done);
2028 cxgb3_free_stid(ep->com.tdev, ep->stid);
2029 done:
2030 err = ep->com.rpl_err;
2031 cm_id->rem_ref(cm_id);
2032 put_ep(&ep->com);
2033 return err;
2034 }
2035
2036 int iwch_ep_disconnect(struct iwch_ep *ep, int abrupt, gfp_t gfp)
2037 {
2038 int ret=0;
2039 unsigned long flags;
2040 int close = 0;
2041 int fatal = 0;
2042 struct t3cdev *tdev;
2043 struct cxio_rdev *rdev;
2044
2045 spin_lock_irqsave(&ep->com.lock, flags);
2046
2047 PDBG("%s ep %p state %s, abrupt %d\n", __func__, ep,
2048 states[ep->com.state], abrupt);
2049
2050 tdev = (struct t3cdev *)ep->com.tdev;
2051 rdev = (struct cxio_rdev *)tdev->ulp;
2052 if (cxio_fatal_error(rdev)) {
2053 fatal = 1;
2054 close_complete_upcall(ep);
2055 ep->com.state = DEAD;
2056 }
2057 switch (ep->com.state) {
2058 case MPA_REQ_WAIT:
2059 case MPA_REQ_SENT:
2060 case MPA_REQ_RCVD:
2061 case MPA_REP_SENT:
2062 case FPDU_MODE:
2063 close = 1;
2064 if (abrupt)
2065 ep->com.state = ABORTING;
2066 else {
2067 ep->com.state = CLOSING;
2068 start_ep_timer(ep);
2069 }
2070 set_bit(CLOSE_SENT, &ep->com.flags);
2071 break;
2072 case CLOSING:
2073 if (!test_and_set_bit(CLOSE_SENT, &ep->com.flags)) {
2074 close = 1;
2075 if (abrupt) {
2076 stop_ep_timer(ep);
2077 ep->com.state = ABORTING;
2078 } else
2079 ep->com.state = MORIBUND;
2080 }
2081 break;
2082 case MORIBUND:
2083 case ABORTING:
2084 case DEAD:
2085 PDBG("%s ignoring disconnect ep %p state %u\n",
2086 __func__, ep, ep->com.state);
2087 break;
2088 default:
2089 BUG();
2090 break;
2091 }
2092
2093 spin_unlock_irqrestore(&ep->com.lock, flags);
2094 if (close) {
2095 if (abrupt)
2096 ret = send_abort(ep, NULL, gfp);
2097 else
2098 ret = send_halfclose(ep, gfp);
2099 if (ret)
2100 fatal = 1;
2101 }
2102 if (fatal)
2103 release_ep_resources(ep);
2104 return ret;
2105 }
2106
2107 int iwch_ep_redirect(void *ctx, struct dst_entry *old, struct dst_entry *new,
2108 struct l2t_entry *l2t)
2109 {
2110 struct iwch_ep *ep = ctx;
2111
2112 if (ep->dst != old)
2113 return 0;
2114
2115 PDBG("%s ep %p redirect to dst %p l2t %p\n", __func__, ep, new,
2116 l2t);
2117 dst_hold(new);
2118 l2t_release(L2DATA(ep->com.tdev), ep->l2t);
2119 ep->l2t = l2t;
2120 dst_release(old);
2121 ep->dst = new;
2122 return 1;
2123 }
2124
2125 /*
2126 * All the CM events are handled on a work queue to have a safe context.
2127 * These are the real handlers that are called from the work queue.
2128 */
2129 static const cxgb3_cpl_handler_func work_handlers[NUM_CPL_CMDS] = {
2130 [CPL_ACT_ESTABLISH] = act_establish,
2131 [CPL_ACT_OPEN_RPL] = act_open_rpl,
2132 [CPL_RX_DATA] = rx_data,
2133 [CPL_TX_DMA_ACK] = tx_ack,
2134 [CPL_ABORT_RPL_RSS] = abort_rpl,
2135 [CPL_ABORT_RPL] = abort_rpl,
2136 [CPL_PASS_OPEN_RPL] = pass_open_rpl,
2137 [CPL_CLOSE_LISTSRV_RPL] = close_listsrv_rpl,
2138 [CPL_PASS_ACCEPT_REQ] = pass_accept_req,
2139 [CPL_PASS_ESTABLISH] = pass_establish,
2140 [CPL_PEER_CLOSE] = peer_close,
2141 [CPL_ABORT_REQ_RSS] = peer_abort,
2142 [CPL_CLOSE_CON_RPL] = close_con_rpl,
2143 [CPL_RDMA_TERMINATE] = terminate,
2144 [CPL_RDMA_EC_STATUS] = ec_status,
2145 };
2146
2147 static void process_work(struct work_struct *work)
2148 {
2149 struct sk_buff *skb = NULL;
2150 void *ep;
2151 struct t3cdev *tdev;
2152 int ret;
2153
2154 while ((skb = skb_dequeue(&rxq))) {
2155 ep = *((void **) (skb->cb));
2156 tdev = *((struct t3cdev **) (skb->cb + sizeof(void *)));
2157 ret = work_handlers[G_OPCODE(ntohl((__force __be32)skb->csum))](tdev, skb, ep);
2158 if (ret & CPL_RET_BUF_DONE)
2159 kfree_skb(skb);
2160
2161 /*
2162 * ep was referenced in sched(), and is freed here.
2163 */
2164 put_ep((struct iwch_ep_common *)ep);
2165 }
2166 }
2167
2168 static DECLARE_WORK(skb_work, process_work);
2169
2170 static int sched(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
2171 {
2172 struct iwch_ep_common *epc = ctx;
2173
2174 get_ep(epc);
2175
2176 /*
2177 * Save ctx and tdev in the skb->cb area.
2178 */
2179 *((void **) skb->cb) = ctx;
2180 *((struct t3cdev **) (skb->cb + sizeof(void *))) = tdev;
2181
2182 /*
2183 * Queue the skb and schedule the worker thread.
2184 */
2185 skb_queue_tail(&rxq, skb);
2186 queue_work(workq, &skb_work);
2187 return 0;
2188 }
2189
2190 static int set_tcb_rpl(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
2191 {
2192 struct cpl_set_tcb_rpl *rpl = cplhdr(skb);
2193
2194 if (rpl->status != CPL_ERR_NONE) {
2195 printk(KERN_ERR MOD "Unexpected SET_TCB_RPL status %u "
2196 "for tid %u\n", rpl->status, GET_TID(rpl));
2197 }
2198 return CPL_RET_BUF_DONE;
2199 }
2200
2201 /*
2202 * All upcalls from the T3 Core go to sched() to schedule the
2203 * processing on a work queue.
2204 */
2205 cxgb3_cpl_handler_func t3c_handlers[NUM_CPL_CMDS] = {
2206 [CPL_ACT_ESTABLISH] = sched,
2207 [CPL_ACT_OPEN_RPL] = sched,
2208 [CPL_RX_DATA] = sched,
2209 [CPL_TX_DMA_ACK] = sched,
2210 [CPL_ABORT_RPL_RSS] = sched,
2211 [CPL_ABORT_RPL] = sched,
2212 [CPL_PASS_OPEN_RPL] = sched,
2213 [CPL_CLOSE_LISTSRV_RPL] = sched,
2214 [CPL_PASS_ACCEPT_REQ] = sched,
2215 [CPL_PASS_ESTABLISH] = sched,
2216 [CPL_PEER_CLOSE] = sched,
2217 [CPL_CLOSE_CON_RPL] = sched,
2218 [CPL_ABORT_REQ_RSS] = sched,
2219 [CPL_RDMA_TERMINATE] = sched,
2220 [CPL_RDMA_EC_STATUS] = sched,
2221 [CPL_SET_TCB_RPL] = set_tcb_rpl,
2222 };
2223
2224 int __init iwch_cm_init(void)
2225 {
2226 skb_queue_head_init(&rxq);
2227
2228 workq = create_singlethread_workqueue("iw_cxgb3");
2229 if (!workq)
2230 return -ENOMEM;
2231
2232 return 0;
2233 }
2234
2235 void __exit iwch_cm_term(void)
2236 {
2237 flush_workqueue(workq);
2238 destroy_workqueue(workq);
2239 }
This page took 0.08109 seconds and 6 git commands to generate.