651711370d557f1798fdac34e2b57b9f15c1b3cf
[deliverable/linux.git] / drivers / infiniband / hw / cxgb4 / cm.c
1 /*
2 * Copyright (c) 2009-2014 Chelsio, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32 #include <linux/module.h>
33 #include <linux/list.h>
34 #include <linux/workqueue.h>
35 #include <linux/skbuff.h>
36 #include <linux/timer.h>
37 #include <linux/notifier.h>
38 #include <linux/inetdevice.h>
39 #include <linux/ip.h>
40 #include <linux/tcp.h>
41 #include <linux/if_vlan.h>
42
43 #include <net/neighbour.h>
44 #include <net/netevent.h>
45 #include <net/route.h>
46 #include <net/tcp.h>
47 #include <net/ip6_route.h>
48 #include <net/addrconf.h>
49
50 #include <rdma/ib_addr.h>
51
52 #include "iw_cxgb4.h"
53 #include "clip_tbl.h"
54
55 static char *states[] = {
56 "idle",
57 "listen",
58 "connecting",
59 "mpa_wait_req",
60 "mpa_req_sent",
61 "mpa_req_rcvd",
62 "mpa_rep_sent",
63 "fpdu_mode",
64 "aborting",
65 "closing",
66 "moribund",
67 "dead",
68 NULL,
69 };
70
71 static int nocong;
72 module_param(nocong, int, 0644);
73 MODULE_PARM_DESC(nocong, "Turn of congestion control (default=0)");
74
75 static int enable_ecn;
76 module_param(enable_ecn, int, 0644);
77 MODULE_PARM_DESC(enable_ecn, "Enable ECN (default=0/disabled)");
78
79 static int dack_mode = 1;
80 module_param(dack_mode, int, 0644);
81 MODULE_PARM_DESC(dack_mode, "Delayed ack mode (default=1)");
82
83 uint c4iw_max_read_depth = 32;
84 module_param(c4iw_max_read_depth, int, 0644);
85 MODULE_PARM_DESC(c4iw_max_read_depth,
86 "Per-connection max ORD/IRD (default=32)");
87
88 static int enable_tcp_timestamps;
89 module_param(enable_tcp_timestamps, int, 0644);
90 MODULE_PARM_DESC(enable_tcp_timestamps, "Enable tcp timestamps (default=0)");
91
92 static int enable_tcp_sack;
93 module_param(enable_tcp_sack, int, 0644);
94 MODULE_PARM_DESC(enable_tcp_sack, "Enable tcp SACK (default=0)");
95
96 static int enable_tcp_window_scaling = 1;
97 module_param(enable_tcp_window_scaling, int, 0644);
98 MODULE_PARM_DESC(enable_tcp_window_scaling,
99 "Enable tcp window scaling (default=1)");
100
101 int c4iw_debug;
102 module_param(c4iw_debug, int, 0644);
103 MODULE_PARM_DESC(c4iw_debug, "Enable debug logging (default=0)");
104
105 static int peer2peer = 1;
106 module_param(peer2peer, int, 0644);
107 MODULE_PARM_DESC(peer2peer, "Support peer2peer ULPs (default=1)");
108
109 static int p2p_type = FW_RI_INIT_P2PTYPE_READ_REQ;
110 module_param(p2p_type, int, 0644);
111 MODULE_PARM_DESC(p2p_type, "RDMAP opcode to use for the RTR message: "
112 "1=RDMA_READ 0=RDMA_WRITE (default 1)");
113
114 static int ep_timeout_secs = 60;
115 module_param(ep_timeout_secs, int, 0644);
116 MODULE_PARM_DESC(ep_timeout_secs, "CM Endpoint operation timeout "
117 "in seconds (default=60)");
118
119 static int mpa_rev = 2;
120 module_param(mpa_rev, int, 0644);
121 MODULE_PARM_DESC(mpa_rev, "MPA Revision, 0 supports amso1100, "
122 "1 is RFC0544 spec compliant, 2 is IETF MPA Peer Connect Draft"
123 " compliant (default=2)");
124
125 static int markers_enabled;
126 module_param(markers_enabled, int, 0644);
127 MODULE_PARM_DESC(markers_enabled, "Enable MPA MARKERS (default(0)=disabled)");
128
129 static int crc_enabled = 1;
130 module_param(crc_enabled, int, 0644);
131 MODULE_PARM_DESC(crc_enabled, "Enable MPA CRC (default(1)=enabled)");
132
133 static int rcv_win = 256 * 1024;
134 module_param(rcv_win, int, 0644);
135 MODULE_PARM_DESC(rcv_win, "TCP receive window in bytes (default=256KB)");
136
137 static int snd_win = 128 * 1024;
138 module_param(snd_win, int, 0644);
139 MODULE_PARM_DESC(snd_win, "TCP send window in bytes (default=128KB)");
140
141 static struct workqueue_struct *workq;
142
143 static struct sk_buff_head rxq;
144
145 static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp);
146 static void ep_timeout(unsigned long arg);
147 static void connect_reply_upcall(struct c4iw_ep *ep, int status);
148
149 static LIST_HEAD(timeout_list);
150 static spinlock_t timeout_lock;
151
152 static void deref_qp(struct c4iw_ep *ep)
153 {
154 c4iw_qp_rem_ref(&ep->com.qp->ibqp);
155 clear_bit(QP_REFERENCED, &ep->com.flags);
156 }
157
158 static void ref_qp(struct c4iw_ep *ep)
159 {
160 set_bit(QP_REFERENCED, &ep->com.flags);
161 c4iw_qp_add_ref(&ep->com.qp->ibqp);
162 }
163
164 static void start_ep_timer(struct c4iw_ep *ep)
165 {
166 PDBG("%s ep %p\n", __func__, ep);
167 if (timer_pending(&ep->timer)) {
168 pr_err("%s timer already started! ep %p\n",
169 __func__, ep);
170 return;
171 }
172 clear_bit(TIMEOUT, &ep->com.flags);
173 c4iw_get_ep(&ep->com);
174 ep->timer.expires = jiffies + ep_timeout_secs * HZ;
175 ep->timer.data = (unsigned long)ep;
176 ep->timer.function = ep_timeout;
177 add_timer(&ep->timer);
178 }
179
180 static int stop_ep_timer(struct c4iw_ep *ep)
181 {
182 PDBG("%s ep %p stopping\n", __func__, ep);
183 del_timer_sync(&ep->timer);
184 if (!test_and_set_bit(TIMEOUT, &ep->com.flags)) {
185 c4iw_put_ep(&ep->com);
186 return 0;
187 }
188 return 1;
189 }
190
191 static int c4iw_l2t_send(struct c4iw_rdev *rdev, struct sk_buff *skb,
192 struct l2t_entry *l2e)
193 {
194 int error = 0;
195
196 if (c4iw_fatal_error(rdev)) {
197 kfree_skb(skb);
198 PDBG("%s - device in error state - dropping\n", __func__);
199 return -EIO;
200 }
201 error = cxgb4_l2t_send(rdev->lldi.ports[0], skb, l2e);
202 if (error < 0)
203 kfree_skb(skb);
204 return error < 0 ? error : 0;
205 }
206
207 int c4iw_ofld_send(struct c4iw_rdev *rdev, struct sk_buff *skb)
208 {
209 int error = 0;
210
211 if (c4iw_fatal_error(rdev)) {
212 kfree_skb(skb);
213 PDBG("%s - device in error state - dropping\n", __func__);
214 return -EIO;
215 }
216 error = cxgb4_ofld_send(rdev->lldi.ports[0], skb);
217 if (error < 0)
218 kfree_skb(skb);
219 return error < 0 ? error : 0;
220 }
221
222 static void release_tid(struct c4iw_rdev *rdev, u32 hwtid, struct sk_buff *skb)
223 {
224 struct cpl_tid_release *req;
225
226 skb = get_skb(skb, sizeof *req, GFP_KERNEL);
227 if (!skb)
228 return;
229 req = (struct cpl_tid_release *) skb_put(skb, sizeof(*req));
230 INIT_TP_WR(req, hwtid);
231 OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_TID_RELEASE, hwtid));
232 set_wr_txq(skb, CPL_PRIORITY_SETUP, 0);
233 c4iw_ofld_send(rdev, skb);
234 return;
235 }
236
237 static void set_emss(struct c4iw_ep *ep, u16 opt)
238 {
239 ep->emss = ep->com.dev->rdev.lldi.mtus[TCPOPT_MSS_G(opt)] -
240 ((AF_INET == ep->com.remote_addr.ss_family) ?
241 sizeof(struct iphdr) : sizeof(struct ipv6hdr)) -
242 sizeof(struct tcphdr);
243 ep->mss = ep->emss;
244 if (TCPOPT_TSTAMP_G(opt))
245 ep->emss -= round_up(TCPOLEN_TIMESTAMP, 4);
246 if (ep->emss < 128)
247 ep->emss = 128;
248 if (ep->emss & 7)
249 PDBG("Warning: misaligned mtu idx %u mss %u emss=%u\n",
250 TCPOPT_MSS_G(opt), ep->mss, ep->emss);
251 PDBG("%s mss_idx %u mss %u emss=%u\n", __func__, TCPOPT_MSS_G(opt),
252 ep->mss, ep->emss);
253 }
254
255 static enum c4iw_ep_state state_read(struct c4iw_ep_common *epc)
256 {
257 enum c4iw_ep_state state;
258
259 mutex_lock(&epc->mutex);
260 state = epc->state;
261 mutex_unlock(&epc->mutex);
262 return state;
263 }
264
265 static void __state_set(struct c4iw_ep_common *epc, enum c4iw_ep_state new)
266 {
267 epc->state = new;
268 }
269
270 static void state_set(struct c4iw_ep_common *epc, enum c4iw_ep_state new)
271 {
272 mutex_lock(&epc->mutex);
273 PDBG("%s - %s -> %s\n", __func__, states[epc->state], states[new]);
274 __state_set(epc, new);
275 mutex_unlock(&epc->mutex);
276 return;
277 }
278
279 static void *alloc_ep(int size, gfp_t gfp)
280 {
281 struct c4iw_ep_common *epc;
282
283 epc = kzalloc(size, gfp);
284 if (epc) {
285 kref_init(&epc->kref);
286 mutex_init(&epc->mutex);
287 c4iw_init_wr_wait(&epc->wr_wait);
288 }
289 PDBG("%s alloc ep %p\n", __func__, epc);
290 return epc;
291 }
292
293 void _c4iw_free_ep(struct kref *kref)
294 {
295 struct c4iw_ep *ep;
296
297 ep = container_of(kref, struct c4iw_ep, com.kref);
298 PDBG("%s ep %p state %s\n", __func__, ep, states[state_read(&ep->com)]);
299 if (test_bit(QP_REFERENCED, &ep->com.flags))
300 deref_qp(ep);
301 if (test_bit(RELEASE_RESOURCES, &ep->com.flags)) {
302 if (ep->com.remote_addr.ss_family == AF_INET6) {
303 struct sockaddr_in6 *sin6 =
304 (struct sockaddr_in6 *)
305 &ep->com.local_addr;
306
307 cxgb4_clip_release(
308 ep->com.dev->rdev.lldi.ports[0],
309 (const u32 *)&sin6->sin6_addr.s6_addr,
310 1);
311 }
312 remove_handle(ep->com.dev, &ep->com.dev->hwtid_idr, ep->hwtid);
313 cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, ep->hwtid);
314 dst_release(ep->dst);
315 cxgb4_l2t_release(ep->l2t);
316 }
317 kfree(ep);
318 }
319
320 static void release_ep_resources(struct c4iw_ep *ep)
321 {
322 set_bit(RELEASE_RESOURCES, &ep->com.flags);
323 c4iw_put_ep(&ep->com);
324 }
325
326 static int status2errno(int status)
327 {
328 switch (status) {
329 case CPL_ERR_NONE:
330 return 0;
331 case CPL_ERR_CONN_RESET:
332 return -ECONNRESET;
333 case CPL_ERR_ARP_MISS:
334 return -EHOSTUNREACH;
335 case CPL_ERR_CONN_TIMEDOUT:
336 return -ETIMEDOUT;
337 case CPL_ERR_TCAM_FULL:
338 return -ENOMEM;
339 case CPL_ERR_CONN_EXIST:
340 return -EADDRINUSE;
341 default:
342 return -EIO;
343 }
344 }
345
346 /*
347 * Try and reuse skbs already allocated...
348 */
349 static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp)
350 {
351 if (skb && !skb_is_nonlinear(skb) && !skb_cloned(skb)) {
352 skb_trim(skb, 0);
353 skb_get(skb);
354 skb_reset_transport_header(skb);
355 } else {
356 skb = alloc_skb(len, gfp);
357 }
358 t4_set_arp_err_handler(skb, NULL, NULL);
359 return skb;
360 }
361
362 static struct net_device *get_real_dev(struct net_device *egress_dev)
363 {
364 return rdma_vlan_dev_real_dev(egress_dev) ? : egress_dev;
365 }
366
367 static int our_interface(struct c4iw_dev *dev, struct net_device *egress_dev)
368 {
369 int i;
370
371 egress_dev = get_real_dev(egress_dev);
372 for (i = 0; i < dev->rdev.lldi.nports; i++)
373 if (dev->rdev.lldi.ports[i] == egress_dev)
374 return 1;
375 return 0;
376 }
377
378 static struct dst_entry *find_route6(struct c4iw_dev *dev, __u8 *local_ip,
379 __u8 *peer_ip, __be16 local_port,
380 __be16 peer_port, u8 tos,
381 __u32 sin6_scope_id)
382 {
383 struct dst_entry *dst = NULL;
384
385 if (IS_ENABLED(CONFIG_IPV6)) {
386 struct flowi6 fl6;
387
388 memset(&fl6, 0, sizeof(fl6));
389 memcpy(&fl6.daddr, peer_ip, 16);
390 memcpy(&fl6.saddr, local_ip, 16);
391 if (ipv6_addr_type(&fl6.daddr) & IPV6_ADDR_LINKLOCAL)
392 fl6.flowi6_oif = sin6_scope_id;
393 dst = ip6_route_output(&init_net, NULL, &fl6);
394 if (!dst)
395 goto out;
396 if (!our_interface(dev, ip6_dst_idev(dst)->dev) &&
397 !(ip6_dst_idev(dst)->dev->flags & IFF_LOOPBACK)) {
398 dst_release(dst);
399 dst = NULL;
400 }
401 }
402
403 out:
404 return dst;
405 }
406
407 static struct dst_entry *find_route(struct c4iw_dev *dev, __be32 local_ip,
408 __be32 peer_ip, __be16 local_port,
409 __be16 peer_port, u8 tos)
410 {
411 struct rtable *rt;
412 struct flowi4 fl4;
413 struct neighbour *n;
414
415 rt = ip_route_output_ports(&init_net, &fl4, NULL, peer_ip, local_ip,
416 peer_port, local_port, IPPROTO_TCP,
417 tos, 0);
418 if (IS_ERR(rt))
419 return NULL;
420 n = dst_neigh_lookup(&rt->dst, &peer_ip);
421 if (!n)
422 return NULL;
423 if (!our_interface(dev, n->dev) &&
424 !(n->dev->flags & IFF_LOOPBACK)) {
425 neigh_release(n);
426 dst_release(&rt->dst);
427 return NULL;
428 }
429 neigh_release(n);
430 return &rt->dst;
431 }
432
433 static void arp_failure_discard(void *handle, struct sk_buff *skb)
434 {
435 PDBG("%s c4iw_dev %p\n", __func__, handle);
436 kfree_skb(skb);
437 }
438
439 /*
440 * Handle an ARP failure for an active open.
441 */
442 static void act_open_req_arp_failure(void *handle, struct sk_buff *skb)
443 {
444 struct c4iw_ep *ep = handle;
445
446 printk(KERN_ERR MOD "ARP failure during connect\n");
447 kfree_skb(skb);
448 connect_reply_upcall(ep, -EHOSTUNREACH);
449 state_set(&ep->com, DEAD);
450 if (ep->com.remote_addr.ss_family == AF_INET6) {
451 struct sockaddr_in6 *sin6 =
452 (struct sockaddr_in6 *)&ep->com.local_addr;
453 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
454 (const u32 *)&sin6->sin6_addr.s6_addr, 1);
455 }
456 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, ep->atid);
457 cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid);
458 dst_release(ep->dst);
459 cxgb4_l2t_release(ep->l2t);
460 c4iw_put_ep(&ep->com);
461 }
462
463 /*
464 * Handle an ARP failure for a CPL_ABORT_REQ. Change it into a no RST variant
465 * and send it along.
466 */
467 static void abort_arp_failure(void *handle, struct sk_buff *skb)
468 {
469 struct c4iw_rdev *rdev = handle;
470 struct cpl_abort_req *req = cplhdr(skb);
471
472 PDBG("%s rdev %p\n", __func__, rdev);
473 req->cmd = CPL_ABORT_NO_RST;
474 c4iw_ofld_send(rdev, skb);
475 }
476
477 static void send_flowc(struct c4iw_ep *ep, struct sk_buff *skb)
478 {
479 unsigned int flowclen = 80;
480 struct fw_flowc_wr *flowc;
481 int i;
482 u16 vlan = ep->l2t->vlan;
483 int nparams;
484
485 if (vlan == CPL_L2T_VLAN_NONE)
486 nparams = 8;
487 else
488 nparams = 9;
489
490 skb = get_skb(skb, flowclen, GFP_KERNEL);
491 flowc = (struct fw_flowc_wr *)__skb_put(skb, flowclen);
492
493 flowc->op_to_nparams = cpu_to_be32(FW_WR_OP_V(FW_FLOWC_WR) |
494 FW_FLOWC_WR_NPARAMS_V(nparams));
495 flowc->flowid_len16 = cpu_to_be32(FW_WR_LEN16_V(DIV_ROUND_UP(flowclen,
496 16)) | FW_WR_FLOWID_V(ep->hwtid));
497
498 flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN;
499 flowc->mnemval[0].val = cpu_to_be32(FW_PFVF_CMD_PFN_V
500 (ep->com.dev->rdev.lldi.pf));
501 flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH;
502 flowc->mnemval[1].val = cpu_to_be32(ep->tx_chan);
503 flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT;
504 flowc->mnemval[2].val = cpu_to_be32(ep->tx_chan);
505 flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID;
506 flowc->mnemval[3].val = cpu_to_be32(ep->rss_qid);
507 flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_SNDNXT;
508 flowc->mnemval[4].val = cpu_to_be32(ep->snd_seq);
509 flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_RCVNXT;
510 flowc->mnemval[5].val = cpu_to_be32(ep->rcv_seq);
511 flowc->mnemval[6].mnemonic = FW_FLOWC_MNEM_SNDBUF;
512 flowc->mnemval[6].val = cpu_to_be32(ep->snd_win);
513 flowc->mnemval[7].mnemonic = FW_FLOWC_MNEM_MSS;
514 flowc->mnemval[7].val = cpu_to_be32(ep->emss);
515 if (nparams == 9) {
516 u16 pri;
517
518 pri = (vlan & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
519 flowc->mnemval[8].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS;
520 flowc->mnemval[8].val = cpu_to_be32(pri);
521 } else {
522 /* Pad WR to 16 byte boundary */
523 flowc->mnemval[8].mnemonic = 0;
524 flowc->mnemval[8].val = 0;
525 }
526 for (i = 0; i < 9; i++) {
527 flowc->mnemval[i].r4[0] = 0;
528 flowc->mnemval[i].r4[1] = 0;
529 flowc->mnemval[i].r4[2] = 0;
530 }
531
532 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
533 c4iw_ofld_send(&ep->com.dev->rdev, skb);
534 }
535
536 static int send_halfclose(struct c4iw_ep *ep, gfp_t gfp)
537 {
538 struct cpl_close_con_req *req;
539 struct sk_buff *skb;
540 int wrlen = roundup(sizeof *req, 16);
541
542 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
543 skb = get_skb(NULL, wrlen, gfp);
544 if (!skb) {
545 printk(KERN_ERR MOD "%s - failed to alloc skb\n", __func__);
546 return -ENOMEM;
547 }
548 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
549 t4_set_arp_err_handler(skb, NULL, arp_failure_discard);
550 req = (struct cpl_close_con_req *) skb_put(skb, wrlen);
551 memset(req, 0, wrlen);
552 INIT_TP_WR(req, ep->hwtid);
553 OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_CLOSE_CON_REQ,
554 ep->hwtid));
555 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
556 }
557
558 static int send_abort(struct c4iw_ep *ep, struct sk_buff *skb, gfp_t gfp)
559 {
560 struct cpl_abort_req *req;
561 int wrlen = roundup(sizeof *req, 16);
562
563 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
564 skb = get_skb(skb, wrlen, gfp);
565 if (!skb) {
566 printk(KERN_ERR MOD "%s - failed to alloc skb.\n",
567 __func__);
568 return -ENOMEM;
569 }
570 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
571 t4_set_arp_err_handler(skb, &ep->com.dev->rdev, abort_arp_failure);
572 req = (struct cpl_abort_req *) skb_put(skb, wrlen);
573 memset(req, 0, wrlen);
574 INIT_TP_WR(req, ep->hwtid);
575 OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_ABORT_REQ, ep->hwtid));
576 req->cmd = CPL_ABORT_SEND_RST;
577 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
578 }
579
580 static void best_mtu(const unsigned short *mtus, unsigned short mtu,
581 unsigned int *idx, int use_ts, int ipv6)
582 {
583 unsigned short hdr_size = (ipv6 ?
584 sizeof(struct ipv6hdr) :
585 sizeof(struct iphdr)) +
586 sizeof(struct tcphdr) +
587 (use_ts ?
588 round_up(TCPOLEN_TIMESTAMP, 4) : 0);
589 unsigned short data_size = mtu - hdr_size;
590
591 cxgb4_best_aligned_mtu(mtus, hdr_size, data_size, 8, idx);
592 }
593
594 static int send_connect(struct c4iw_ep *ep)
595 {
596 struct cpl_act_open_req *req = NULL;
597 struct cpl_t5_act_open_req *t5req = NULL;
598 struct cpl_t6_act_open_req *t6req = NULL;
599 struct cpl_act_open_req6 *req6 = NULL;
600 struct cpl_t5_act_open_req6 *t5req6 = NULL;
601 struct cpl_t6_act_open_req6 *t6req6 = NULL;
602 struct sk_buff *skb;
603 u64 opt0;
604 u32 opt2;
605 unsigned int mtu_idx;
606 int wscale;
607 int win, sizev4, sizev6, wrlen;
608 struct sockaddr_in *la = (struct sockaddr_in *)
609 &ep->com.local_addr;
610 struct sockaddr_in *ra = (struct sockaddr_in *)
611 &ep->com.remote_addr;
612 struct sockaddr_in6 *la6 = (struct sockaddr_in6 *)
613 &ep->com.local_addr;
614 struct sockaddr_in6 *ra6 = (struct sockaddr_in6 *)
615 &ep->com.remote_addr;
616 int ret;
617 enum chip_type adapter_type = ep->com.dev->rdev.lldi.adapter_type;
618 u32 isn = (prandom_u32() & ~7UL) - 1;
619
620 switch (CHELSIO_CHIP_VERSION(adapter_type)) {
621 case CHELSIO_T4:
622 sizev4 = sizeof(struct cpl_act_open_req);
623 sizev6 = sizeof(struct cpl_act_open_req6);
624 break;
625 case CHELSIO_T5:
626 sizev4 = sizeof(struct cpl_t5_act_open_req);
627 sizev6 = sizeof(struct cpl_t5_act_open_req6);
628 break;
629 case CHELSIO_T6:
630 sizev4 = sizeof(struct cpl_t6_act_open_req);
631 sizev6 = sizeof(struct cpl_t6_act_open_req6);
632 break;
633 default:
634 pr_err("T%d Chip is not supported\n",
635 CHELSIO_CHIP_VERSION(adapter_type));
636 return -EINVAL;
637 }
638
639 wrlen = (ep->com.remote_addr.ss_family == AF_INET) ?
640 roundup(sizev4, 16) :
641 roundup(sizev6, 16);
642
643 PDBG("%s ep %p atid %u\n", __func__, ep, ep->atid);
644
645 skb = get_skb(NULL, wrlen, GFP_KERNEL);
646 if (!skb) {
647 printk(KERN_ERR MOD "%s - failed to alloc skb.\n",
648 __func__);
649 return -ENOMEM;
650 }
651 set_wr_txq(skb, CPL_PRIORITY_SETUP, ep->ctrlq_idx);
652
653 best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx,
654 enable_tcp_timestamps,
655 (AF_INET == ep->com.remote_addr.ss_family) ? 0 : 1);
656 wscale = compute_wscale(rcv_win);
657
658 /*
659 * Specify the largest window that will fit in opt0. The
660 * remainder will be specified in the rx_data_ack.
661 */
662 win = ep->rcv_win >> 10;
663 if (win > RCV_BUFSIZ_M)
664 win = RCV_BUFSIZ_M;
665
666 opt0 = (nocong ? NO_CONG_F : 0) |
667 KEEP_ALIVE_F |
668 DELACK_F |
669 WND_SCALE_V(wscale) |
670 MSS_IDX_V(mtu_idx) |
671 L2T_IDX_V(ep->l2t->idx) |
672 TX_CHAN_V(ep->tx_chan) |
673 SMAC_SEL_V(ep->smac_idx) |
674 DSCP_V(ep->tos >> 2) |
675 ULP_MODE_V(ULP_MODE_TCPDDP) |
676 RCV_BUFSIZ_V(win);
677 opt2 = RX_CHANNEL_V(0) |
678 CCTRL_ECN_V(enable_ecn) |
679 RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid);
680 if (enable_tcp_timestamps)
681 opt2 |= TSTAMPS_EN_F;
682 if (enable_tcp_sack)
683 opt2 |= SACK_EN_F;
684 if (wscale && enable_tcp_window_scaling)
685 opt2 |= WND_SCALE_EN_F;
686 if (CHELSIO_CHIP_VERSION(adapter_type) > CHELSIO_T4) {
687 if (peer2peer)
688 isn += 4;
689
690 opt2 |= T5_OPT_2_VALID_F;
691 opt2 |= CONG_CNTRL_V(CONG_ALG_TAHOE);
692 opt2 |= T5_ISS_F;
693 }
694
695 if (ep->com.remote_addr.ss_family == AF_INET6)
696 cxgb4_clip_get(ep->com.dev->rdev.lldi.ports[0],
697 (const u32 *)&la6->sin6_addr.s6_addr, 1);
698
699 t4_set_arp_err_handler(skb, ep, act_open_req_arp_failure);
700
701 if (ep->com.remote_addr.ss_family == AF_INET) {
702 switch (CHELSIO_CHIP_VERSION(adapter_type)) {
703 case CHELSIO_T4:
704 req = (struct cpl_act_open_req *)skb_put(skb, wrlen);
705 INIT_TP_WR(req, 0);
706 break;
707 case CHELSIO_T5:
708 t5req = (struct cpl_t5_act_open_req *)skb_put(skb,
709 wrlen);
710 INIT_TP_WR(t5req, 0);
711 req = (struct cpl_act_open_req *)t5req;
712 break;
713 case CHELSIO_T6:
714 t6req = (struct cpl_t6_act_open_req *)skb_put(skb,
715 wrlen);
716 INIT_TP_WR(t6req, 0);
717 req = (struct cpl_act_open_req *)t6req;
718 t5req = (struct cpl_t5_act_open_req *)t6req;
719 break;
720 default:
721 pr_err("T%d Chip is not supported\n",
722 CHELSIO_CHIP_VERSION(adapter_type));
723 ret = -EINVAL;
724 goto clip_release;
725 }
726
727 OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_ACT_OPEN_REQ,
728 ((ep->rss_qid<<14) | ep->atid)));
729 req->local_port = la->sin_port;
730 req->peer_port = ra->sin_port;
731 req->local_ip = la->sin_addr.s_addr;
732 req->peer_ip = ra->sin_addr.s_addr;
733 req->opt0 = cpu_to_be64(opt0);
734
735 if (is_t4(ep->com.dev->rdev.lldi.adapter_type)) {
736 req->params = cpu_to_be32(cxgb4_select_ntuple(
737 ep->com.dev->rdev.lldi.ports[0],
738 ep->l2t));
739 req->opt2 = cpu_to_be32(opt2);
740 } else {
741 t5req->params = cpu_to_be64(FILTER_TUPLE_V(
742 cxgb4_select_ntuple(
743 ep->com.dev->rdev.lldi.ports[0],
744 ep->l2t)));
745 t5req->rsvd = cpu_to_be32(isn);
746 PDBG("%s snd_isn %u\n", __func__, t5req->rsvd);
747 t5req->opt2 = cpu_to_be32(opt2);
748 }
749 } else {
750 switch (CHELSIO_CHIP_VERSION(adapter_type)) {
751 case CHELSIO_T4:
752 req6 = (struct cpl_act_open_req6 *)skb_put(skb, wrlen);
753 INIT_TP_WR(req6, 0);
754 break;
755 case CHELSIO_T5:
756 t5req6 = (struct cpl_t5_act_open_req6 *)skb_put(skb,
757 wrlen);
758 INIT_TP_WR(t5req6, 0);
759 req6 = (struct cpl_act_open_req6 *)t5req6;
760 break;
761 case CHELSIO_T6:
762 t6req6 = (struct cpl_t6_act_open_req6 *)skb_put(skb,
763 wrlen);
764 INIT_TP_WR(t6req6, 0);
765 req6 = (struct cpl_act_open_req6 *)t6req6;
766 t5req6 = (struct cpl_t5_act_open_req6 *)t6req6;
767 break;
768 default:
769 pr_err("T%d Chip is not supported\n",
770 CHELSIO_CHIP_VERSION(adapter_type));
771 ret = -EINVAL;
772 goto clip_release;
773 }
774
775 OPCODE_TID(req6) = cpu_to_be32(MK_OPCODE_TID(CPL_ACT_OPEN_REQ6,
776 ((ep->rss_qid<<14)|ep->atid)));
777 req6->local_port = la6->sin6_port;
778 req6->peer_port = ra6->sin6_port;
779 req6->local_ip_hi = *((__be64 *)(la6->sin6_addr.s6_addr));
780 req6->local_ip_lo = *((__be64 *)(la6->sin6_addr.s6_addr + 8));
781 req6->peer_ip_hi = *((__be64 *)(ra6->sin6_addr.s6_addr));
782 req6->peer_ip_lo = *((__be64 *)(ra6->sin6_addr.s6_addr + 8));
783 req6->opt0 = cpu_to_be64(opt0);
784
785 if (is_t4(ep->com.dev->rdev.lldi.adapter_type)) {
786 req6->params = cpu_to_be32(cxgb4_select_ntuple(
787 ep->com.dev->rdev.lldi.ports[0],
788 ep->l2t));
789 req6->opt2 = cpu_to_be32(opt2);
790 } else {
791 t5req6->params = cpu_to_be64(FILTER_TUPLE_V(
792 cxgb4_select_ntuple(
793 ep->com.dev->rdev.lldi.ports[0],
794 ep->l2t)));
795 t5req6->rsvd = cpu_to_be32(isn);
796 PDBG("%s snd_isn %u\n", __func__, t5req6->rsvd);
797 t5req6->opt2 = cpu_to_be32(opt2);
798 }
799 }
800
801 set_bit(ACT_OPEN_REQ, &ep->com.history);
802 ret = c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
803 clip_release:
804 if (ret && ep->com.remote_addr.ss_family == AF_INET6)
805 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
806 (const u32 *)&la6->sin6_addr.s6_addr, 1);
807 return ret;
808 }
809
810 static void send_mpa_req(struct c4iw_ep *ep, struct sk_buff *skb,
811 u8 mpa_rev_to_use)
812 {
813 int mpalen, wrlen;
814 struct fw_ofld_tx_data_wr *req;
815 struct mpa_message *mpa;
816 struct mpa_v2_conn_params mpa_v2_params;
817
818 PDBG("%s ep %p tid %u pd_len %d\n", __func__, ep, ep->hwtid, ep->plen);
819
820 BUG_ON(skb_cloned(skb));
821
822 mpalen = sizeof(*mpa) + ep->plen;
823 if (mpa_rev_to_use == 2)
824 mpalen += sizeof(struct mpa_v2_conn_params);
825 wrlen = roundup(mpalen + sizeof *req, 16);
826 skb = get_skb(skb, wrlen, GFP_KERNEL);
827 if (!skb) {
828 connect_reply_upcall(ep, -ENOMEM);
829 return;
830 }
831 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
832
833 req = (struct fw_ofld_tx_data_wr *)skb_put(skb, wrlen);
834 memset(req, 0, wrlen);
835 req->op_to_immdlen = cpu_to_be32(
836 FW_WR_OP_V(FW_OFLD_TX_DATA_WR) |
837 FW_WR_COMPL_F |
838 FW_WR_IMMDLEN_V(mpalen));
839 req->flowid_len16 = cpu_to_be32(
840 FW_WR_FLOWID_V(ep->hwtid) |
841 FW_WR_LEN16_V(wrlen >> 4));
842 req->plen = cpu_to_be32(mpalen);
843 req->tunnel_to_proxy = cpu_to_be32(
844 FW_OFLD_TX_DATA_WR_FLUSH_F |
845 FW_OFLD_TX_DATA_WR_SHOVE_F);
846
847 mpa = (struct mpa_message *)(req + 1);
848 memcpy(mpa->key, MPA_KEY_REQ, sizeof(mpa->key));
849 mpa->flags = (crc_enabled ? MPA_CRC : 0) |
850 (markers_enabled ? MPA_MARKERS : 0) |
851 (mpa_rev_to_use == 2 ? MPA_ENHANCED_RDMA_CONN : 0);
852 mpa->private_data_size = htons(ep->plen);
853 mpa->revision = mpa_rev_to_use;
854 if (mpa_rev_to_use == 1) {
855 ep->tried_with_mpa_v1 = 1;
856 ep->retry_with_mpa_v1 = 0;
857 }
858
859 if (mpa_rev_to_use == 2) {
860 mpa->private_data_size = htons(ntohs(mpa->private_data_size) +
861 sizeof (struct mpa_v2_conn_params));
862 PDBG("%s initiator ird %u ord %u\n", __func__, ep->ird,
863 ep->ord);
864 mpa_v2_params.ird = htons((u16)ep->ird);
865 mpa_v2_params.ord = htons((u16)ep->ord);
866
867 if (peer2peer) {
868 mpa_v2_params.ird |= htons(MPA_V2_PEER2PEER_MODEL);
869 if (p2p_type == FW_RI_INIT_P2PTYPE_RDMA_WRITE)
870 mpa_v2_params.ord |=
871 htons(MPA_V2_RDMA_WRITE_RTR);
872 else if (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ)
873 mpa_v2_params.ord |=
874 htons(MPA_V2_RDMA_READ_RTR);
875 }
876 memcpy(mpa->private_data, &mpa_v2_params,
877 sizeof(struct mpa_v2_conn_params));
878
879 if (ep->plen)
880 memcpy(mpa->private_data +
881 sizeof(struct mpa_v2_conn_params),
882 ep->mpa_pkt + sizeof(*mpa), ep->plen);
883 } else
884 if (ep->plen)
885 memcpy(mpa->private_data,
886 ep->mpa_pkt + sizeof(*mpa), ep->plen);
887
888 /*
889 * Reference the mpa skb. This ensures the data area
890 * will remain in memory until the hw acks the tx.
891 * Function fw4_ack() will deref it.
892 */
893 skb_get(skb);
894 t4_set_arp_err_handler(skb, NULL, arp_failure_discard);
895 BUG_ON(ep->mpa_skb);
896 ep->mpa_skb = skb;
897 c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
898 start_ep_timer(ep);
899 __state_set(&ep->com, MPA_REQ_SENT);
900 ep->mpa_attr.initiator = 1;
901 ep->snd_seq += mpalen;
902 return;
903 }
904
905 static int send_mpa_reject(struct c4iw_ep *ep, const void *pdata, u8 plen)
906 {
907 int mpalen, wrlen;
908 struct fw_ofld_tx_data_wr *req;
909 struct mpa_message *mpa;
910 struct sk_buff *skb;
911 struct mpa_v2_conn_params mpa_v2_params;
912
913 PDBG("%s ep %p tid %u pd_len %d\n", __func__, ep, ep->hwtid, ep->plen);
914
915 mpalen = sizeof(*mpa) + plen;
916 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn)
917 mpalen += sizeof(struct mpa_v2_conn_params);
918 wrlen = roundup(mpalen + sizeof *req, 16);
919
920 skb = get_skb(NULL, wrlen, GFP_KERNEL);
921 if (!skb) {
922 printk(KERN_ERR MOD "%s - cannot alloc skb!\n", __func__);
923 return -ENOMEM;
924 }
925 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
926
927 req = (struct fw_ofld_tx_data_wr *)skb_put(skb, wrlen);
928 memset(req, 0, wrlen);
929 req->op_to_immdlen = cpu_to_be32(
930 FW_WR_OP_V(FW_OFLD_TX_DATA_WR) |
931 FW_WR_COMPL_F |
932 FW_WR_IMMDLEN_V(mpalen));
933 req->flowid_len16 = cpu_to_be32(
934 FW_WR_FLOWID_V(ep->hwtid) |
935 FW_WR_LEN16_V(wrlen >> 4));
936 req->plen = cpu_to_be32(mpalen);
937 req->tunnel_to_proxy = cpu_to_be32(
938 FW_OFLD_TX_DATA_WR_FLUSH_F |
939 FW_OFLD_TX_DATA_WR_SHOVE_F);
940
941 mpa = (struct mpa_message *)(req + 1);
942 memset(mpa, 0, sizeof(*mpa));
943 memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key));
944 mpa->flags = MPA_REJECT;
945 mpa->revision = ep->mpa_attr.version;
946 mpa->private_data_size = htons(plen);
947
948 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) {
949 mpa->flags |= MPA_ENHANCED_RDMA_CONN;
950 mpa->private_data_size = htons(ntohs(mpa->private_data_size) +
951 sizeof (struct mpa_v2_conn_params));
952 mpa_v2_params.ird = htons(((u16)ep->ird) |
953 (peer2peer ? MPA_V2_PEER2PEER_MODEL :
954 0));
955 mpa_v2_params.ord = htons(((u16)ep->ord) | (peer2peer ?
956 (p2p_type ==
957 FW_RI_INIT_P2PTYPE_RDMA_WRITE ?
958 MPA_V2_RDMA_WRITE_RTR : p2p_type ==
959 FW_RI_INIT_P2PTYPE_READ_REQ ?
960 MPA_V2_RDMA_READ_RTR : 0) : 0));
961 memcpy(mpa->private_data, &mpa_v2_params,
962 sizeof(struct mpa_v2_conn_params));
963
964 if (ep->plen)
965 memcpy(mpa->private_data +
966 sizeof(struct mpa_v2_conn_params), pdata, plen);
967 } else
968 if (plen)
969 memcpy(mpa->private_data, pdata, plen);
970
971 /*
972 * Reference the mpa skb again. This ensures the data area
973 * will remain in memory until the hw acks the tx.
974 * Function fw4_ack() will deref it.
975 */
976 skb_get(skb);
977 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
978 t4_set_arp_err_handler(skb, NULL, arp_failure_discard);
979 BUG_ON(ep->mpa_skb);
980 ep->mpa_skb = skb;
981 ep->snd_seq += mpalen;
982 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
983 }
984
985 static int send_mpa_reply(struct c4iw_ep *ep, const void *pdata, u8 plen)
986 {
987 int mpalen, wrlen;
988 struct fw_ofld_tx_data_wr *req;
989 struct mpa_message *mpa;
990 struct sk_buff *skb;
991 struct mpa_v2_conn_params mpa_v2_params;
992
993 PDBG("%s ep %p tid %u pd_len %d\n", __func__, ep, ep->hwtid, ep->plen);
994
995 mpalen = sizeof(*mpa) + plen;
996 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn)
997 mpalen += sizeof(struct mpa_v2_conn_params);
998 wrlen = roundup(mpalen + sizeof *req, 16);
999
1000 skb = get_skb(NULL, wrlen, GFP_KERNEL);
1001 if (!skb) {
1002 printk(KERN_ERR MOD "%s - cannot alloc skb!\n", __func__);
1003 return -ENOMEM;
1004 }
1005 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
1006
1007 req = (struct fw_ofld_tx_data_wr *) skb_put(skb, wrlen);
1008 memset(req, 0, wrlen);
1009 req->op_to_immdlen = cpu_to_be32(
1010 FW_WR_OP_V(FW_OFLD_TX_DATA_WR) |
1011 FW_WR_COMPL_F |
1012 FW_WR_IMMDLEN_V(mpalen));
1013 req->flowid_len16 = cpu_to_be32(
1014 FW_WR_FLOWID_V(ep->hwtid) |
1015 FW_WR_LEN16_V(wrlen >> 4));
1016 req->plen = cpu_to_be32(mpalen);
1017 req->tunnel_to_proxy = cpu_to_be32(
1018 FW_OFLD_TX_DATA_WR_FLUSH_F |
1019 FW_OFLD_TX_DATA_WR_SHOVE_F);
1020
1021 mpa = (struct mpa_message *)(req + 1);
1022 memset(mpa, 0, sizeof(*mpa));
1023 memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key));
1024 mpa->flags = (ep->mpa_attr.crc_enabled ? MPA_CRC : 0) |
1025 (markers_enabled ? MPA_MARKERS : 0);
1026 mpa->revision = ep->mpa_attr.version;
1027 mpa->private_data_size = htons(plen);
1028
1029 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) {
1030 mpa->flags |= MPA_ENHANCED_RDMA_CONN;
1031 mpa->private_data_size = htons(ntohs(mpa->private_data_size) +
1032 sizeof (struct mpa_v2_conn_params));
1033 mpa_v2_params.ird = htons((u16)ep->ird);
1034 mpa_v2_params.ord = htons((u16)ep->ord);
1035 if (peer2peer && (ep->mpa_attr.p2p_type !=
1036 FW_RI_INIT_P2PTYPE_DISABLED)) {
1037 mpa_v2_params.ird |= htons(MPA_V2_PEER2PEER_MODEL);
1038
1039 if (p2p_type == FW_RI_INIT_P2PTYPE_RDMA_WRITE)
1040 mpa_v2_params.ord |=
1041 htons(MPA_V2_RDMA_WRITE_RTR);
1042 else if (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ)
1043 mpa_v2_params.ord |=
1044 htons(MPA_V2_RDMA_READ_RTR);
1045 }
1046
1047 memcpy(mpa->private_data, &mpa_v2_params,
1048 sizeof(struct mpa_v2_conn_params));
1049
1050 if (ep->plen)
1051 memcpy(mpa->private_data +
1052 sizeof(struct mpa_v2_conn_params), pdata, plen);
1053 } else
1054 if (plen)
1055 memcpy(mpa->private_data, pdata, plen);
1056
1057 /*
1058 * Reference the mpa skb. This ensures the data area
1059 * will remain in memory until the hw acks the tx.
1060 * Function fw4_ack() will deref it.
1061 */
1062 skb_get(skb);
1063 t4_set_arp_err_handler(skb, NULL, arp_failure_discard);
1064 ep->mpa_skb = skb;
1065 __state_set(&ep->com, MPA_REP_SENT);
1066 ep->snd_seq += mpalen;
1067 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
1068 }
1069
1070 static int act_establish(struct c4iw_dev *dev, struct sk_buff *skb)
1071 {
1072 struct c4iw_ep *ep;
1073 struct cpl_act_establish *req = cplhdr(skb);
1074 unsigned int tid = GET_TID(req);
1075 unsigned int atid = TID_TID_G(ntohl(req->tos_atid));
1076 struct tid_info *t = dev->rdev.lldi.tids;
1077
1078 ep = lookup_atid(t, atid);
1079
1080 PDBG("%s ep %p tid %u snd_isn %u rcv_isn %u\n", __func__, ep, tid,
1081 be32_to_cpu(req->snd_isn), be32_to_cpu(req->rcv_isn));
1082
1083 mutex_lock(&ep->com.mutex);
1084 dst_confirm(ep->dst);
1085
1086 /* setup the hwtid for this connection */
1087 ep->hwtid = tid;
1088 cxgb4_insert_tid(t, ep, tid);
1089 insert_handle(dev, &dev->hwtid_idr, ep, ep->hwtid);
1090
1091 ep->snd_seq = be32_to_cpu(req->snd_isn);
1092 ep->rcv_seq = be32_to_cpu(req->rcv_isn);
1093
1094 set_emss(ep, ntohs(req->tcp_opt));
1095
1096 /* dealloc the atid */
1097 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, atid);
1098 cxgb4_free_atid(t, atid);
1099 set_bit(ACT_ESTAB, &ep->com.history);
1100
1101 /* start MPA negotiation */
1102 send_flowc(ep, NULL);
1103 if (ep->retry_with_mpa_v1)
1104 send_mpa_req(ep, skb, 1);
1105 else
1106 send_mpa_req(ep, skb, mpa_rev);
1107 mutex_unlock(&ep->com.mutex);
1108 return 0;
1109 }
1110
1111 static void close_complete_upcall(struct c4iw_ep *ep, int status)
1112 {
1113 struct iw_cm_event event;
1114
1115 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1116 memset(&event, 0, sizeof(event));
1117 event.event = IW_CM_EVENT_CLOSE;
1118 event.status = status;
1119 if (ep->com.cm_id) {
1120 PDBG("close complete delivered ep %p cm_id %p tid %u\n",
1121 ep, ep->com.cm_id, ep->hwtid);
1122 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1123 ep->com.cm_id->rem_ref(ep->com.cm_id);
1124 ep->com.cm_id = NULL;
1125 set_bit(CLOSE_UPCALL, &ep->com.history);
1126 }
1127 }
1128
1129 static int abort_connection(struct c4iw_ep *ep, struct sk_buff *skb, gfp_t gfp)
1130 {
1131 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1132 __state_set(&ep->com, ABORTING);
1133 set_bit(ABORT_CONN, &ep->com.history);
1134 return send_abort(ep, skb, gfp);
1135 }
1136
1137 static void peer_close_upcall(struct c4iw_ep *ep)
1138 {
1139 struct iw_cm_event event;
1140
1141 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1142 memset(&event, 0, sizeof(event));
1143 event.event = IW_CM_EVENT_DISCONNECT;
1144 if (ep->com.cm_id) {
1145 PDBG("peer close delivered ep %p cm_id %p tid %u\n",
1146 ep, ep->com.cm_id, ep->hwtid);
1147 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1148 set_bit(DISCONN_UPCALL, &ep->com.history);
1149 }
1150 }
1151
1152 static void peer_abort_upcall(struct c4iw_ep *ep)
1153 {
1154 struct iw_cm_event event;
1155
1156 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1157 memset(&event, 0, sizeof(event));
1158 event.event = IW_CM_EVENT_CLOSE;
1159 event.status = -ECONNRESET;
1160 if (ep->com.cm_id) {
1161 PDBG("abort delivered ep %p cm_id %p tid %u\n", ep,
1162 ep->com.cm_id, ep->hwtid);
1163 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1164 ep->com.cm_id->rem_ref(ep->com.cm_id);
1165 ep->com.cm_id = NULL;
1166 set_bit(ABORT_UPCALL, &ep->com.history);
1167 }
1168 }
1169
1170 static void connect_reply_upcall(struct c4iw_ep *ep, int status)
1171 {
1172 struct iw_cm_event event;
1173
1174 PDBG("%s ep %p tid %u status %d\n", __func__, ep, ep->hwtid, status);
1175 memset(&event, 0, sizeof(event));
1176 event.event = IW_CM_EVENT_CONNECT_REPLY;
1177 event.status = status;
1178 memcpy(&event.local_addr, &ep->com.local_addr,
1179 sizeof(ep->com.local_addr));
1180 memcpy(&event.remote_addr, &ep->com.remote_addr,
1181 sizeof(ep->com.remote_addr));
1182
1183 if ((status == 0) || (status == -ECONNREFUSED)) {
1184 if (!ep->tried_with_mpa_v1) {
1185 /* this means MPA_v2 is used */
1186 event.ord = ep->ird;
1187 event.ird = ep->ord;
1188 event.private_data_len = ep->plen -
1189 sizeof(struct mpa_v2_conn_params);
1190 event.private_data = ep->mpa_pkt +
1191 sizeof(struct mpa_message) +
1192 sizeof(struct mpa_v2_conn_params);
1193 } else {
1194 /* this means MPA_v1 is used */
1195 event.ord = cur_max_read_depth(ep->com.dev);
1196 event.ird = cur_max_read_depth(ep->com.dev);
1197 event.private_data_len = ep->plen;
1198 event.private_data = ep->mpa_pkt +
1199 sizeof(struct mpa_message);
1200 }
1201 }
1202
1203 PDBG("%s ep %p tid %u status %d\n", __func__, ep,
1204 ep->hwtid, status);
1205 set_bit(CONN_RPL_UPCALL, &ep->com.history);
1206 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1207
1208 if (status < 0) {
1209 ep->com.cm_id->rem_ref(ep->com.cm_id);
1210 ep->com.cm_id = NULL;
1211 }
1212 }
1213
1214 static int connect_request_upcall(struct c4iw_ep *ep)
1215 {
1216 struct iw_cm_event event;
1217 int ret;
1218
1219 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1220 memset(&event, 0, sizeof(event));
1221 event.event = IW_CM_EVENT_CONNECT_REQUEST;
1222 memcpy(&event.local_addr, &ep->com.local_addr,
1223 sizeof(ep->com.local_addr));
1224 memcpy(&event.remote_addr, &ep->com.remote_addr,
1225 sizeof(ep->com.remote_addr));
1226 event.provider_data = ep;
1227 if (!ep->tried_with_mpa_v1) {
1228 /* this means MPA_v2 is used */
1229 event.ord = ep->ord;
1230 event.ird = ep->ird;
1231 event.private_data_len = ep->plen -
1232 sizeof(struct mpa_v2_conn_params);
1233 event.private_data = ep->mpa_pkt + sizeof(struct mpa_message) +
1234 sizeof(struct mpa_v2_conn_params);
1235 } else {
1236 /* this means MPA_v1 is used. Send max supported */
1237 event.ord = cur_max_read_depth(ep->com.dev);
1238 event.ird = cur_max_read_depth(ep->com.dev);
1239 event.private_data_len = ep->plen;
1240 event.private_data = ep->mpa_pkt + sizeof(struct mpa_message);
1241 }
1242 c4iw_get_ep(&ep->com);
1243 ret = ep->parent_ep->com.cm_id->event_handler(ep->parent_ep->com.cm_id,
1244 &event);
1245 if (ret)
1246 c4iw_put_ep(&ep->com);
1247 set_bit(CONNREQ_UPCALL, &ep->com.history);
1248 c4iw_put_ep(&ep->parent_ep->com);
1249 return ret;
1250 }
1251
1252 static void established_upcall(struct c4iw_ep *ep)
1253 {
1254 struct iw_cm_event event;
1255
1256 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1257 memset(&event, 0, sizeof(event));
1258 event.event = IW_CM_EVENT_ESTABLISHED;
1259 event.ird = ep->ord;
1260 event.ord = ep->ird;
1261 if (ep->com.cm_id) {
1262 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1263 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1264 set_bit(ESTAB_UPCALL, &ep->com.history);
1265 }
1266 }
1267
1268 static int update_rx_credits(struct c4iw_ep *ep, u32 credits)
1269 {
1270 struct cpl_rx_data_ack *req;
1271 struct sk_buff *skb;
1272 int wrlen = roundup(sizeof *req, 16);
1273
1274 PDBG("%s ep %p tid %u credits %u\n", __func__, ep, ep->hwtid, credits);
1275 skb = get_skb(NULL, wrlen, GFP_KERNEL);
1276 if (!skb) {
1277 printk(KERN_ERR MOD "update_rx_credits - cannot alloc skb!\n");
1278 return 0;
1279 }
1280
1281 /*
1282 * If we couldn't specify the entire rcv window at connection setup
1283 * due to the limit in the number of bits in the RCV_BUFSIZ field,
1284 * then add the overage in to the credits returned.
1285 */
1286 if (ep->rcv_win > RCV_BUFSIZ_M * 1024)
1287 credits += ep->rcv_win - RCV_BUFSIZ_M * 1024;
1288
1289 req = (struct cpl_rx_data_ack *) skb_put(skb, wrlen);
1290 memset(req, 0, wrlen);
1291 INIT_TP_WR(req, ep->hwtid);
1292 OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_RX_DATA_ACK,
1293 ep->hwtid));
1294 req->credit_dack = cpu_to_be32(credits | RX_FORCE_ACK_F |
1295 RX_DACK_CHANGE_F |
1296 RX_DACK_MODE_V(dack_mode));
1297 set_wr_txq(skb, CPL_PRIORITY_ACK, ep->ctrlq_idx);
1298 c4iw_ofld_send(&ep->com.dev->rdev, skb);
1299 return credits;
1300 }
1301
1302 #define RELAXED_IRD_NEGOTIATION 1
1303
1304 static int process_mpa_reply(struct c4iw_ep *ep, struct sk_buff *skb)
1305 {
1306 struct mpa_message *mpa;
1307 struct mpa_v2_conn_params *mpa_v2_params;
1308 u16 plen;
1309 u16 resp_ird, resp_ord;
1310 u8 rtr_mismatch = 0, insuff_ird = 0;
1311 struct c4iw_qp_attributes attrs;
1312 enum c4iw_qp_attr_mask mask;
1313 int err;
1314 int disconnect = 0;
1315
1316 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1317
1318 /*
1319 * Stop mpa timer. If it expired, then
1320 * we ignore the MPA reply. process_timeout()
1321 * will abort the connection.
1322 */
1323 if (stop_ep_timer(ep))
1324 return 0;
1325
1326 /*
1327 * If we get more than the supported amount of private data
1328 * then we must fail this connection.
1329 */
1330 if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt)) {
1331 err = -EINVAL;
1332 goto err;
1333 }
1334
1335 /*
1336 * copy the new data into our accumulation buffer.
1337 */
1338 skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]),
1339 skb->len);
1340 ep->mpa_pkt_len += skb->len;
1341
1342 /*
1343 * if we don't even have the mpa message, then bail.
1344 */
1345 if (ep->mpa_pkt_len < sizeof(*mpa))
1346 return 0;
1347 mpa = (struct mpa_message *) ep->mpa_pkt;
1348
1349 /* Validate MPA header. */
1350 if (mpa->revision > mpa_rev) {
1351 printk(KERN_ERR MOD "%s MPA version mismatch. Local = %d,"
1352 " Received = %d\n", __func__, mpa_rev, mpa->revision);
1353 err = -EPROTO;
1354 goto err;
1355 }
1356 if (memcmp(mpa->key, MPA_KEY_REP, sizeof(mpa->key))) {
1357 err = -EPROTO;
1358 goto err;
1359 }
1360
1361 plen = ntohs(mpa->private_data_size);
1362
1363 /*
1364 * Fail if there's too much private data.
1365 */
1366 if (plen > MPA_MAX_PRIVATE_DATA) {
1367 err = -EPROTO;
1368 goto err;
1369 }
1370
1371 /*
1372 * If plen does not account for pkt size
1373 */
1374 if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) {
1375 err = -EPROTO;
1376 goto err;
1377 }
1378
1379 ep->plen = (u8) plen;
1380
1381 /*
1382 * If we don't have all the pdata yet, then bail.
1383 * We'll continue process when more data arrives.
1384 */
1385 if (ep->mpa_pkt_len < (sizeof(*mpa) + plen))
1386 return 0;
1387
1388 if (mpa->flags & MPA_REJECT) {
1389 err = -ECONNREFUSED;
1390 goto err;
1391 }
1392
1393 /*
1394 * If we get here we have accumulated the entire mpa
1395 * start reply message including private data. And
1396 * the MPA header is valid.
1397 */
1398 __state_set(&ep->com, FPDU_MODE);
1399 ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0;
1400 ep->mpa_attr.recv_marker_enabled = markers_enabled;
1401 ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0;
1402 ep->mpa_attr.version = mpa->revision;
1403 ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED;
1404
1405 if (mpa->revision == 2) {
1406 ep->mpa_attr.enhanced_rdma_conn =
1407 mpa->flags & MPA_ENHANCED_RDMA_CONN ? 1 : 0;
1408 if (ep->mpa_attr.enhanced_rdma_conn) {
1409 mpa_v2_params = (struct mpa_v2_conn_params *)
1410 (ep->mpa_pkt + sizeof(*mpa));
1411 resp_ird = ntohs(mpa_v2_params->ird) &
1412 MPA_V2_IRD_ORD_MASK;
1413 resp_ord = ntohs(mpa_v2_params->ord) &
1414 MPA_V2_IRD_ORD_MASK;
1415 PDBG("%s responder ird %u ord %u ep ird %u ord %u\n",
1416 __func__, resp_ird, resp_ord, ep->ird, ep->ord);
1417
1418 /*
1419 * This is a double-check. Ideally, below checks are
1420 * not required since ird/ord stuff has been taken
1421 * care of in c4iw_accept_cr
1422 */
1423 if (ep->ird < resp_ord) {
1424 if (RELAXED_IRD_NEGOTIATION && resp_ord <=
1425 ep->com.dev->rdev.lldi.max_ordird_qp)
1426 ep->ird = resp_ord;
1427 else
1428 insuff_ird = 1;
1429 } else if (ep->ird > resp_ord) {
1430 ep->ird = resp_ord;
1431 }
1432 if (ep->ord > resp_ird) {
1433 if (RELAXED_IRD_NEGOTIATION)
1434 ep->ord = resp_ird;
1435 else
1436 insuff_ird = 1;
1437 }
1438 if (insuff_ird) {
1439 err = -ENOMEM;
1440 ep->ird = resp_ord;
1441 ep->ord = resp_ird;
1442 }
1443
1444 if (ntohs(mpa_v2_params->ird) &
1445 MPA_V2_PEER2PEER_MODEL) {
1446 if (ntohs(mpa_v2_params->ord) &
1447 MPA_V2_RDMA_WRITE_RTR)
1448 ep->mpa_attr.p2p_type =
1449 FW_RI_INIT_P2PTYPE_RDMA_WRITE;
1450 else if (ntohs(mpa_v2_params->ord) &
1451 MPA_V2_RDMA_READ_RTR)
1452 ep->mpa_attr.p2p_type =
1453 FW_RI_INIT_P2PTYPE_READ_REQ;
1454 }
1455 }
1456 } else if (mpa->revision == 1)
1457 if (peer2peer)
1458 ep->mpa_attr.p2p_type = p2p_type;
1459
1460 PDBG("%s - crc_enabled=%d, recv_marker_enabled=%d, "
1461 "xmit_marker_enabled=%d, version=%d p2p_type=%d local-p2p_type = "
1462 "%d\n", __func__, ep->mpa_attr.crc_enabled,
1463 ep->mpa_attr.recv_marker_enabled,
1464 ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version,
1465 ep->mpa_attr.p2p_type, p2p_type);
1466
1467 /*
1468 * If responder's RTR does not match with that of initiator, assign
1469 * FW_RI_INIT_P2PTYPE_DISABLED in mpa attributes so that RTR is not
1470 * generated when moving QP to RTS state.
1471 * A TERM message will be sent after QP has moved to RTS state
1472 */
1473 if ((ep->mpa_attr.version == 2) && peer2peer &&
1474 (ep->mpa_attr.p2p_type != p2p_type)) {
1475 ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED;
1476 rtr_mismatch = 1;
1477 }
1478
1479 attrs.mpa_attr = ep->mpa_attr;
1480 attrs.max_ird = ep->ird;
1481 attrs.max_ord = ep->ord;
1482 attrs.llp_stream_handle = ep;
1483 attrs.next_state = C4IW_QP_STATE_RTS;
1484
1485 mask = C4IW_QP_ATTR_NEXT_STATE |
1486 C4IW_QP_ATTR_LLP_STREAM_HANDLE | C4IW_QP_ATTR_MPA_ATTR |
1487 C4IW_QP_ATTR_MAX_IRD | C4IW_QP_ATTR_MAX_ORD;
1488
1489 /* bind QP and TID with INIT_WR */
1490 err = c4iw_modify_qp(ep->com.qp->rhp,
1491 ep->com.qp, mask, &attrs, 1);
1492 if (err)
1493 goto err;
1494
1495 /*
1496 * If responder's RTR requirement did not match with what initiator
1497 * supports, generate TERM message
1498 */
1499 if (rtr_mismatch) {
1500 printk(KERN_ERR "%s: RTR mismatch, sending TERM\n", __func__);
1501 attrs.layer_etype = LAYER_MPA | DDP_LLP;
1502 attrs.ecode = MPA_NOMATCH_RTR;
1503 attrs.next_state = C4IW_QP_STATE_TERMINATE;
1504 attrs.send_term = 1;
1505 err = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
1506 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
1507 err = -ENOMEM;
1508 disconnect = 1;
1509 goto out;
1510 }
1511
1512 /*
1513 * Generate TERM if initiator IRD is not sufficient for responder
1514 * provided ORD. Currently, we do the same behaviour even when
1515 * responder provided IRD is also not sufficient as regards to
1516 * initiator ORD.
1517 */
1518 if (insuff_ird) {
1519 printk(KERN_ERR "%s: Insufficient IRD, sending TERM\n",
1520 __func__);
1521 attrs.layer_etype = LAYER_MPA | DDP_LLP;
1522 attrs.ecode = MPA_INSUFF_IRD;
1523 attrs.next_state = C4IW_QP_STATE_TERMINATE;
1524 attrs.send_term = 1;
1525 err = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
1526 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
1527 err = -ENOMEM;
1528 disconnect = 1;
1529 goto out;
1530 }
1531 goto out;
1532 err:
1533 __state_set(&ep->com, ABORTING);
1534 send_abort(ep, skb, GFP_KERNEL);
1535 out:
1536 connect_reply_upcall(ep, err);
1537 return disconnect;
1538 }
1539
1540 static void process_mpa_request(struct c4iw_ep *ep, struct sk_buff *skb)
1541 {
1542 struct mpa_message *mpa;
1543 struct mpa_v2_conn_params *mpa_v2_params;
1544 u16 plen;
1545
1546 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1547
1548 /*
1549 * If we get more than the supported amount of private data
1550 * then we must fail this connection.
1551 */
1552 if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt)) {
1553 (void)stop_ep_timer(ep);
1554 abort_connection(ep, skb, GFP_KERNEL);
1555 return;
1556 }
1557
1558 PDBG("%s enter (%s line %u)\n", __func__, __FILE__, __LINE__);
1559
1560 /*
1561 * Copy the new data into our accumulation buffer.
1562 */
1563 skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]),
1564 skb->len);
1565 ep->mpa_pkt_len += skb->len;
1566
1567 /*
1568 * If we don't even have the mpa message, then bail.
1569 * We'll continue process when more data arrives.
1570 */
1571 if (ep->mpa_pkt_len < sizeof(*mpa))
1572 return;
1573
1574 PDBG("%s enter (%s line %u)\n", __func__, __FILE__, __LINE__);
1575 mpa = (struct mpa_message *) ep->mpa_pkt;
1576
1577 /*
1578 * Validate MPA Header.
1579 */
1580 if (mpa->revision > mpa_rev) {
1581 printk(KERN_ERR MOD "%s MPA version mismatch. Local = %d,"
1582 " Received = %d\n", __func__, mpa_rev, mpa->revision);
1583 (void)stop_ep_timer(ep);
1584 abort_connection(ep, skb, GFP_KERNEL);
1585 return;
1586 }
1587
1588 if (memcmp(mpa->key, MPA_KEY_REQ, sizeof(mpa->key))) {
1589 (void)stop_ep_timer(ep);
1590 abort_connection(ep, skb, GFP_KERNEL);
1591 return;
1592 }
1593
1594 plen = ntohs(mpa->private_data_size);
1595
1596 /*
1597 * Fail if there's too much private data.
1598 */
1599 if (plen > MPA_MAX_PRIVATE_DATA) {
1600 (void)stop_ep_timer(ep);
1601 abort_connection(ep, skb, GFP_KERNEL);
1602 return;
1603 }
1604
1605 /*
1606 * If plen does not account for pkt size
1607 */
1608 if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) {
1609 (void)stop_ep_timer(ep);
1610 abort_connection(ep, skb, GFP_KERNEL);
1611 return;
1612 }
1613 ep->plen = (u8) plen;
1614
1615 /*
1616 * If we don't have all the pdata yet, then bail.
1617 */
1618 if (ep->mpa_pkt_len < (sizeof(*mpa) + plen))
1619 return;
1620
1621 /*
1622 * If we get here we have accumulated the entire mpa
1623 * start reply message including private data.
1624 */
1625 ep->mpa_attr.initiator = 0;
1626 ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0;
1627 ep->mpa_attr.recv_marker_enabled = markers_enabled;
1628 ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0;
1629 ep->mpa_attr.version = mpa->revision;
1630 if (mpa->revision == 1)
1631 ep->tried_with_mpa_v1 = 1;
1632 ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED;
1633
1634 if (mpa->revision == 2) {
1635 ep->mpa_attr.enhanced_rdma_conn =
1636 mpa->flags & MPA_ENHANCED_RDMA_CONN ? 1 : 0;
1637 if (ep->mpa_attr.enhanced_rdma_conn) {
1638 mpa_v2_params = (struct mpa_v2_conn_params *)
1639 (ep->mpa_pkt + sizeof(*mpa));
1640 ep->ird = ntohs(mpa_v2_params->ird) &
1641 MPA_V2_IRD_ORD_MASK;
1642 ep->ord = ntohs(mpa_v2_params->ord) &
1643 MPA_V2_IRD_ORD_MASK;
1644 PDBG("%s initiator ird %u ord %u\n", __func__, ep->ird,
1645 ep->ord);
1646 if (ntohs(mpa_v2_params->ird) & MPA_V2_PEER2PEER_MODEL)
1647 if (peer2peer) {
1648 if (ntohs(mpa_v2_params->ord) &
1649 MPA_V2_RDMA_WRITE_RTR)
1650 ep->mpa_attr.p2p_type =
1651 FW_RI_INIT_P2PTYPE_RDMA_WRITE;
1652 else if (ntohs(mpa_v2_params->ord) &
1653 MPA_V2_RDMA_READ_RTR)
1654 ep->mpa_attr.p2p_type =
1655 FW_RI_INIT_P2PTYPE_READ_REQ;
1656 }
1657 }
1658 } else if (mpa->revision == 1)
1659 if (peer2peer)
1660 ep->mpa_attr.p2p_type = p2p_type;
1661
1662 PDBG("%s - crc_enabled=%d, recv_marker_enabled=%d, "
1663 "xmit_marker_enabled=%d, version=%d p2p_type=%d\n", __func__,
1664 ep->mpa_attr.crc_enabled, ep->mpa_attr.recv_marker_enabled,
1665 ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version,
1666 ep->mpa_attr.p2p_type);
1667
1668 /*
1669 * If the endpoint timer already expired, then we ignore
1670 * the start request. process_timeout() will abort
1671 * the connection.
1672 */
1673 if (!stop_ep_timer(ep)) {
1674 __state_set(&ep->com, MPA_REQ_RCVD);
1675
1676 /* drive upcall */
1677 mutex_lock_nested(&ep->parent_ep->com.mutex,
1678 SINGLE_DEPTH_NESTING);
1679 if (ep->parent_ep->com.state != DEAD) {
1680 if (connect_request_upcall(ep))
1681 abort_connection(ep, skb, GFP_KERNEL);
1682 } else {
1683 abort_connection(ep, skb, GFP_KERNEL);
1684 }
1685 mutex_unlock(&ep->parent_ep->com.mutex);
1686 }
1687 return;
1688 }
1689
1690 static int rx_data(struct c4iw_dev *dev, struct sk_buff *skb)
1691 {
1692 struct c4iw_ep *ep;
1693 struct cpl_rx_data *hdr = cplhdr(skb);
1694 unsigned int dlen = ntohs(hdr->len);
1695 unsigned int tid = GET_TID(hdr);
1696 struct tid_info *t = dev->rdev.lldi.tids;
1697 __u8 status = hdr->status;
1698 int disconnect = 0;
1699
1700 ep = lookup_tid(t, tid);
1701 if (!ep)
1702 return 0;
1703 PDBG("%s ep %p tid %u dlen %u\n", __func__, ep, ep->hwtid, dlen);
1704 skb_pull(skb, sizeof(*hdr));
1705 skb_trim(skb, dlen);
1706 mutex_lock(&ep->com.mutex);
1707
1708 /* update RX credits */
1709 update_rx_credits(ep, dlen);
1710
1711 switch (ep->com.state) {
1712 case MPA_REQ_SENT:
1713 ep->rcv_seq += dlen;
1714 disconnect = process_mpa_reply(ep, skb);
1715 break;
1716 case MPA_REQ_WAIT:
1717 ep->rcv_seq += dlen;
1718 process_mpa_request(ep, skb);
1719 break;
1720 case FPDU_MODE: {
1721 struct c4iw_qp_attributes attrs;
1722 BUG_ON(!ep->com.qp);
1723 if (status)
1724 pr_err("%s Unexpected streaming data." \
1725 " qpid %u ep %p state %d tid %u status %d\n",
1726 __func__, ep->com.qp->wq.sq.qid, ep,
1727 ep->com.state, ep->hwtid, status);
1728 attrs.next_state = C4IW_QP_STATE_TERMINATE;
1729 c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
1730 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
1731 disconnect = 1;
1732 break;
1733 }
1734 default:
1735 break;
1736 }
1737 mutex_unlock(&ep->com.mutex);
1738 if (disconnect)
1739 c4iw_ep_disconnect(ep, 0, GFP_KERNEL);
1740 return 0;
1741 }
1742
1743 static int abort_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
1744 {
1745 struct c4iw_ep *ep;
1746 struct cpl_abort_rpl_rss *rpl = cplhdr(skb);
1747 int release = 0;
1748 unsigned int tid = GET_TID(rpl);
1749 struct tid_info *t = dev->rdev.lldi.tids;
1750
1751 ep = lookup_tid(t, tid);
1752 if (!ep) {
1753 printk(KERN_WARNING MOD "Abort rpl to freed endpoint\n");
1754 return 0;
1755 }
1756 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1757 mutex_lock(&ep->com.mutex);
1758 switch (ep->com.state) {
1759 case ABORTING:
1760 c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET);
1761 __state_set(&ep->com, DEAD);
1762 release = 1;
1763 break;
1764 default:
1765 printk(KERN_ERR "%s ep %p state %d\n",
1766 __func__, ep, ep->com.state);
1767 break;
1768 }
1769 mutex_unlock(&ep->com.mutex);
1770
1771 if (release)
1772 release_ep_resources(ep);
1773 return 0;
1774 }
1775
1776 static void send_fw_act_open_req(struct c4iw_ep *ep, unsigned int atid)
1777 {
1778 struct sk_buff *skb;
1779 struct fw_ofld_connection_wr *req;
1780 unsigned int mtu_idx;
1781 int wscale;
1782 struct sockaddr_in *sin;
1783 int win;
1784
1785 skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
1786 req = (struct fw_ofld_connection_wr *)__skb_put(skb, sizeof(*req));
1787 memset(req, 0, sizeof(*req));
1788 req->op_compl = htonl(WR_OP_V(FW_OFLD_CONNECTION_WR));
1789 req->len16_pkd = htonl(FW_WR_LEN16_V(DIV_ROUND_UP(sizeof(*req), 16)));
1790 req->le.filter = cpu_to_be32(cxgb4_select_ntuple(
1791 ep->com.dev->rdev.lldi.ports[0],
1792 ep->l2t));
1793 sin = (struct sockaddr_in *)&ep->com.local_addr;
1794 req->le.lport = sin->sin_port;
1795 req->le.u.ipv4.lip = sin->sin_addr.s_addr;
1796 sin = (struct sockaddr_in *)&ep->com.remote_addr;
1797 req->le.pport = sin->sin_port;
1798 req->le.u.ipv4.pip = sin->sin_addr.s_addr;
1799 req->tcb.t_state_to_astid =
1800 htonl(FW_OFLD_CONNECTION_WR_T_STATE_V(TCP_SYN_SENT) |
1801 FW_OFLD_CONNECTION_WR_ASTID_V(atid));
1802 req->tcb.cplrxdataack_cplpassacceptrpl =
1803 htons(FW_OFLD_CONNECTION_WR_CPLRXDATAACK_F);
1804 req->tcb.tx_max = (__force __be32) jiffies;
1805 req->tcb.rcv_adv = htons(1);
1806 best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx,
1807 enable_tcp_timestamps,
1808 (AF_INET == ep->com.remote_addr.ss_family) ? 0 : 1);
1809 wscale = compute_wscale(rcv_win);
1810
1811 /*
1812 * Specify the largest window that will fit in opt0. The
1813 * remainder will be specified in the rx_data_ack.
1814 */
1815 win = ep->rcv_win >> 10;
1816 if (win > RCV_BUFSIZ_M)
1817 win = RCV_BUFSIZ_M;
1818
1819 req->tcb.opt0 = (__force __be64) (TCAM_BYPASS_F |
1820 (nocong ? NO_CONG_F : 0) |
1821 KEEP_ALIVE_F |
1822 DELACK_F |
1823 WND_SCALE_V(wscale) |
1824 MSS_IDX_V(mtu_idx) |
1825 L2T_IDX_V(ep->l2t->idx) |
1826 TX_CHAN_V(ep->tx_chan) |
1827 SMAC_SEL_V(ep->smac_idx) |
1828 DSCP_V(ep->tos >> 2) |
1829 ULP_MODE_V(ULP_MODE_TCPDDP) |
1830 RCV_BUFSIZ_V(win));
1831 req->tcb.opt2 = (__force __be32) (PACE_V(1) |
1832 TX_QUEUE_V(ep->com.dev->rdev.lldi.tx_modq[ep->tx_chan]) |
1833 RX_CHANNEL_V(0) |
1834 CCTRL_ECN_V(enable_ecn) |
1835 RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid));
1836 if (enable_tcp_timestamps)
1837 req->tcb.opt2 |= (__force __be32)TSTAMPS_EN_F;
1838 if (enable_tcp_sack)
1839 req->tcb.opt2 |= (__force __be32)SACK_EN_F;
1840 if (wscale && enable_tcp_window_scaling)
1841 req->tcb.opt2 |= (__force __be32)WND_SCALE_EN_F;
1842 req->tcb.opt0 = cpu_to_be64((__force u64)req->tcb.opt0);
1843 req->tcb.opt2 = cpu_to_be32((__force u32)req->tcb.opt2);
1844 set_wr_txq(skb, CPL_PRIORITY_CONTROL, ep->ctrlq_idx);
1845 set_bit(ACT_OFLD_CONN, &ep->com.history);
1846 c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
1847 }
1848
1849 /*
1850 * Return whether a failed active open has allocated a TID
1851 */
1852 static inline int act_open_has_tid(int status)
1853 {
1854 return status != CPL_ERR_TCAM_FULL && status != CPL_ERR_CONN_EXIST &&
1855 status != CPL_ERR_ARP_MISS;
1856 }
1857
1858 /* Returns whether a CPL status conveys negative advice.
1859 */
1860 static int is_neg_adv(unsigned int status)
1861 {
1862 return status == CPL_ERR_RTX_NEG_ADVICE ||
1863 status == CPL_ERR_PERSIST_NEG_ADVICE ||
1864 status == CPL_ERR_KEEPALV_NEG_ADVICE;
1865 }
1866
1867 static char *neg_adv_str(unsigned int status)
1868 {
1869 switch (status) {
1870 case CPL_ERR_RTX_NEG_ADVICE:
1871 return "Retransmit timeout";
1872 case CPL_ERR_PERSIST_NEG_ADVICE:
1873 return "Persist timeout";
1874 case CPL_ERR_KEEPALV_NEG_ADVICE:
1875 return "Keepalive timeout";
1876 default:
1877 return "Unknown";
1878 }
1879 }
1880
1881 static void set_tcp_window(struct c4iw_ep *ep, struct port_info *pi)
1882 {
1883 ep->snd_win = snd_win;
1884 ep->rcv_win = rcv_win;
1885 PDBG("%s snd_win %d rcv_win %d\n", __func__, ep->snd_win, ep->rcv_win);
1886 }
1887
1888 #define ACT_OPEN_RETRY_COUNT 2
1889
1890 static int import_ep(struct c4iw_ep *ep, int iptype, __u8 *peer_ip,
1891 struct dst_entry *dst, struct c4iw_dev *cdev,
1892 bool clear_mpa_v1, enum chip_type adapter_type, u8 tos)
1893 {
1894 struct neighbour *n;
1895 int err, step;
1896 struct net_device *pdev;
1897
1898 n = dst_neigh_lookup(dst, peer_ip);
1899 if (!n)
1900 return -ENODEV;
1901
1902 rcu_read_lock();
1903 err = -ENOMEM;
1904 if (n->dev->flags & IFF_LOOPBACK) {
1905 if (iptype == 4)
1906 pdev = ip_dev_find(&init_net, *(__be32 *)peer_ip);
1907 else if (IS_ENABLED(CONFIG_IPV6))
1908 for_each_netdev(&init_net, pdev) {
1909 if (ipv6_chk_addr(&init_net,
1910 (struct in6_addr *)peer_ip,
1911 pdev, 1))
1912 break;
1913 }
1914 else
1915 pdev = NULL;
1916
1917 if (!pdev) {
1918 err = -ENODEV;
1919 goto out;
1920 }
1921 ep->l2t = cxgb4_l2t_get(cdev->rdev.lldi.l2t,
1922 n, pdev, rt_tos2priority(tos));
1923 if (!ep->l2t)
1924 goto out;
1925 ep->mtu = pdev->mtu;
1926 ep->tx_chan = cxgb4_port_chan(pdev);
1927 ep->smac_idx = cxgb4_tp_smt_idx(adapter_type,
1928 cxgb4_port_viid(pdev));
1929 step = cdev->rdev.lldi.ntxq /
1930 cdev->rdev.lldi.nchan;
1931 ep->txq_idx = cxgb4_port_idx(pdev) * step;
1932 step = cdev->rdev.lldi.nrxq /
1933 cdev->rdev.lldi.nchan;
1934 ep->ctrlq_idx = cxgb4_port_idx(pdev);
1935 ep->rss_qid = cdev->rdev.lldi.rxq_ids[
1936 cxgb4_port_idx(pdev) * step];
1937 set_tcp_window(ep, (struct port_info *)netdev_priv(pdev));
1938 dev_put(pdev);
1939 } else {
1940 pdev = get_real_dev(n->dev);
1941 ep->l2t = cxgb4_l2t_get(cdev->rdev.lldi.l2t,
1942 n, pdev, 0);
1943 if (!ep->l2t)
1944 goto out;
1945 ep->mtu = dst_mtu(dst);
1946 ep->tx_chan = cxgb4_port_chan(pdev);
1947 ep->smac_idx = cxgb4_tp_smt_idx(adapter_type,
1948 cxgb4_port_viid(pdev));
1949 step = cdev->rdev.lldi.ntxq /
1950 cdev->rdev.lldi.nchan;
1951 ep->txq_idx = cxgb4_port_idx(pdev) * step;
1952 ep->ctrlq_idx = cxgb4_port_idx(pdev);
1953 step = cdev->rdev.lldi.nrxq /
1954 cdev->rdev.lldi.nchan;
1955 ep->rss_qid = cdev->rdev.lldi.rxq_ids[
1956 cxgb4_port_idx(pdev) * step];
1957 set_tcp_window(ep, (struct port_info *)netdev_priv(pdev));
1958
1959 if (clear_mpa_v1) {
1960 ep->retry_with_mpa_v1 = 0;
1961 ep->tried_with_mpa_v1 = 0;
1962 }
1963 }
1964 err = 0;
1965 out:
1966 rcu_read_unlock();
1967
1968 neigh_release(n);
1969
1970 return err;
1971 }
1972
1973 static int c4iw_reconnect(struct c4iw_ep *ep)
1974 {
1975 int err = 0;
1976 struct sockaddr_in *laddr = (struct sockaddr_in *)
1977 &ep->com.cm_id->m_local_addr;
1978 struct sockaddr_in *raddr = (struct sockaddr_in *)
1979 &ep->com.cm_id->m_remote_addr;
1980 struct sockaddr_in6 *laddr6 = (struct sockaddr_in6 *)
1981 &ep->com.cm_id->m_local_addr;
1982 struct sockaddr_in6 *raddr6 = (struct sockaddr_in6 *)
1983 &ep->com.cm_id->m_remote_addr;
1984 int iptype;
1985 __u8 *ra;
1986
1987 PDBG("%s qp %p cm_id %p\n", __func__, ep->com.qp, ep->com.cm_id);
1988 init_timer(&ep->timer);
1989
1990 /*
1991 * Allocate an active TID to initiate a TCP connection.
1992 */
1993 ep->atid = cxgb4_alloc_atid(ep->com.dev->rdev.lldi.tids, ep);
1994 if (ep->atid == -1) {
1995 pr_err("%s - cannot alloc atid.\n", __func__);
1996 err = -ENOMEM;
1997 goto fail2;
1998 }
1999 insert_handle(ep->com.dev, &ep->com.dev->atid_idr, ep, ep->atid);
2000
2001 /* find a route */
2002 if (ep->com.cm_id->m_local_addr.ss_family == AF_INET) {
2003 ep->dst = find_route(ep->com.dev, laddr->sin_addr.s_addr,
2004 raddr->sin_addr.s_addr, laddr->sin_port,
2005 raddr->sin_port, ep->com.cm_id->tos);
2006 iptype = 4;
2007 ra = (__u8 *)&raddr->sin_addr;
2008 } else {
2009 ep->dst = find_route6(ep->com.dev, laddr6->sin6_addr.s6_addr,
2010 raddr6->sin6_addr.s6_addr,
2011 laddr6->sin6_port, raddr6->sin6_port, 0,
2012 raddr6->sin6_scope_id);
2013 iptype = 6;
2014 ra = (__u8 *)&raddr6->sin6_addr;
2015 }
2016 if (!ep->dst) {
2017 pr_err("%s - cannot find route.\n", __func__);
2018 err = -EHOSTUNREACH;
2019 goto fail3;
2020 }
2021 err = import_ep(ep, iptype, ra, ep->dst, ep->com.dev, false,
2022 ep->com.dev->rdev.lldi.adapter_type,
2023 ep->com.cm_id->tos);
2024 if (err) {
2025 pr_err("%s - cannot alloc l2e.\n", __func__);
2026 goto fail4;
2027 }
2028
2029 PDBG("%s txq_idx %u tx_chan %u smac_idx %u rss_qid %u l2t_idx %u\n",
2030 __func__, ep->txq_idx, ep->tx_chan, ep->smac_idx, ep->rss_qid,
2031 ep->l2t->idx);
2032
2033 state_set(&ep->com, CONNECTING);
2034 ep->tos = ep->com.cm_id->tos;
2035
2036 /* send connect request to rnic */
2037 err = send_connect(ep);
2038 if (!err)
2039 goto out;
2040
2041 cxgb4_l2t_release(ep->l2t);
2042 fail4:
2043 dst_release(ep->dst);
2044 fail3:
2045 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, ep->atid);
2046 cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid);
2047 fail2:
2048 /*
2049 * remember to send notification to upper layer.
2050 * We are in here so the upper layer is not aware that this is
2051 * re-connect attempt and so, upper layer is still waiting for
2052 * response of 1st connect request.
2053 */
2054 connect_reply_upcall(ep, -ECONNRESET);
2055 c4iw_put_ep(&ep->com);
2056 out:
2057 return err;
2058 }
2059
2060 static int act_open_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
2061 {
2062 struct c4iw_ep *ep;
2063 struct cpl_act_open_rpl *rpl = cplhdr(skb);
2064 unsigned int atid = TID_TID_G(AOPEN_ATID_G(
2065 ntohl(rpl->atid_status)));
2066 struct tid_info *t = dev->rdev.lldi.tids;
2067 int status = AOPEN_STATUS_G(ntohl(rpl->atid_status));
2068 struct sockaddr_in *la;
2069 struct sockaddr_in *ra;
2070 struct sockaddr_in6 *la6;
2071 struct sockaddr_in6 *ra6;
2072
2073 ep = lookup_atid(t, atid);
2074 la = (struct sockaddr_in *)&ep->com.local_addr;
2075 ra = (struct sockaddr_in *)&ep->com.remote_addr;
2076 la6 = (struct sockaddr_in6 *)&ep->com.local_addr;
2077 ra6 = (struct sockaddr_in6 *)&ep->com.remote_addr;
2078
2079 PDBG("%s ep %p atid %u status %u errno %d\n", __func__, ep, atid,
2080 status, status2errno(status));
2081
2082 if (is_neg_adv(status)) {
2083 PDBG("%s Connection problems for atid %u status %u (%s)\n",
2084 __func__, atid, status, neg_adv_str(status));
2085 ep->stats.connect_neg_adv++;
2086 mutex_lock(&dev->rdev.stats.lock);
2087 dev->rdev.stats.neg_adv++;
2088 mutex_unlock(&dev->rdev.stats.lock);
2089 return 0;
2090 }
2091
2092 set_bit(ACT_OPEN_RPL, &ep->com.history);
2093
2094 /*
2095 * Log interesting failures.
2096 */
2097 switch (status) {
2098 case CPL_ERR_CONN_RESET:
2099 case CPL_ERR_CONN_TIMEDOUT:
2100 break;
2101 case CPL_ERR_TCAM_FULL:
2102 mutex_lock(&dev->rdev.stats.lock);
2103 dev->rdev.stats.tcam_full++;
2104 mutex_unlock(&dev->rdev.stats.lock);
2105 if (ep->com.local_addr.ss_family == AF_INET &&
2106 dev->rdev.lldi.enable_fw_ofld_conn) {
2107 send_fw_act_open_req(ep,
2108 TID_TID_G(AOPEN_ATID_G(
2109 ntohl(rpl->atid_status))));
2110 return 0;
2111 }
2112 break;
2113 case CPL_ERR_CONN_EXIST:
2114 if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) {
2115 set_bit(ACT_RETRY_INUSE, &ep->com.history);
2116 if (ep->com.remote_addr.ss_family == AF_INET6) {
2117 struct sockaddr_in6 *sin6 =
2118 (struct sockaddr_in6 *)
2119 &ep->com.local_addr;
2120 cxgb4_clip_release(
2121 ep->com.dev->rdev.lldi.ports[0],
2122 (const u32 *)
2123 &sin6->sin6_addr.s6_addr, 1);
2124 }
2125 remove_handle(ep->com.dev, &ep->com.dev->atid_idr,
2126 atid);
2127 cxgb4_free_atid(t, atid);
2128 dst_release(ep->dst);
2129 cxgb4_l2t_release(ep->l2t);
2130 c4iw_reconnect(ep);
2131 return 0;
2132 }
2133 break;
2134 default:
2135 if (ep->com.local_addr.ss_family == AF_INET) {
2136 pr_info("Active open failure - atid %u status %u errno %d %pI4:%u->%pI4:%u\n",
2137 atid, status, status2errno(status),
2138 &la->sin_addr.s_addr, ntohs(la->sin_port),
2139 &ra->sin_addr.s_addr, ntohs(ra->sin_port));
2140 } else {
2141 pr_info("Active open failure - atid %u status %u errno %d %pI6:%u->%pI6:%u\n",
2142 atid, status, status2errno(status),
2143 la6->sin6_addr.s6_addr, ntohs(la6->sin6_port),
2144 ra6->sin6_addr.s6_addr, ntohs(ra6->sin6_port));
2145 }
2146 break;
2147 }
2148
2149 connect_reply_upcall(ep, status2errno(status));
2150 state_set(&ep->com, DEAD);
2151
2152 if (ep->com.remote_addr.ss_family == AF_INET6) {
2153 struct sockaddr_in6 *sin6 =
2154 (struct sockaddr_in6 *)&ep->com.local_addr;
2155 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
2156 (const u32 *)&sin6->sin6_addr.s6_addr, 1);
2157 }
2158 if (status && act_open_has_tid(status))
2159 cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, GET_TID(rpl));
2160
2161 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, atid);
2162 cxgb4_free_atid(t, atid);
2163 dst_release(ep->dst);
2164 cxgb4_l2t_release(ep->l2t);
2165 c4iw_put_ep(&ep->com);
2166
2167 return 0;
2168 }
2169
2170 static int pass_open_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
2171 {
2172 struct cpl_pass_open_rpl *rpl = cplhdr(skb);
2173 struct tid_info *t = dev->rdev.lldi.tids;
2174 unsigned int stid = GET_TID(rpl);
2175 struct c4iw_listen_ep *ep = lookup_stid(t, stid);
2176
2177 if (!ep) {
2178 PDBG("%s stid %d lookup failure!\n", __func__, stid);
2179 goto out;
2180 }
2181 PDBG("%s ep %p status %d error %d\n", __func__, ep,
2182 rpl->status, status2errno(rpl->status));
2183 c4iw_wake_up(&ep->com.wr_wait, status2errno(rpl->status));
2184
2185 out:
2186 return 0;
2187 }
2188
2189 static int close_listsrv_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
2190 {
2191 struct cpl_close_listsvr_rpl *rpl = cplhdr(skb);
2192 struct tid_info *t = dev->rdev.lldi.tids;
2193 unsigned int stid = GET_TID(rpl);
2194 struct c4iw_listen_ep *ep = lookup_stid(t, stid);
2195
2196 PDBG("%s ep %p\n", __func__, ep);
2197 c4iw_wake_up(&ep->com.wr_wait, status2errno(rpl->status));
2198 return 0;
2199 }
2200
2201 static void accept_cr(struct c4iw_ep *ep, struct sk_buff *skb,
2202 struct cpl_pass_accept_req *req)
2203 {
2204 struct cpl_pass_accept_rpl *rpl;
2205 unsigned int mtu_idx;
2206 u64 opt0;
2207 u32 opt2;
2208 int wscale;
2209 struct cpl_t5_pass_accept_rpl *rpl5 = NULL;
2210 int win;
2211 enum chip_type adapter_type = ep->com.dev->rdev.lldi.adapter_type;
2212
2213 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
2214 BUG_ON(skb_cloned(skb));
2215
2216 skb_get(skb);
2217 rpl = cplhdr(skb);
2218 if (!is_t4(adapter_type)) {
2219 skb_trim(skb, roundup(sizeof(*rpl5), 16));
2220 rpl5 = (void *)rpl;
2221 INIT_TP_WR(rpl5, ep->hwtid);
2222 } else {
2223 skb_trim(skb, sizeof(*rpl));
2224 INIT_TP_WR(rpl, ep->hwtid);
2225 }
2226 OPCODE_TID(rpl) = cpu_to_be32(MK_OPCODE_TID(CPL_PASS_ACCEPT_RPL,
2227 ep->hwtid));
2228
2229 best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx,
2230 enable_tcp_timestamps && req->tcpopt.tstamp,
2231 (AF_INET == ep->com.remote_addr.ss_family) ? 0 : 1);
2232 wscale = compute_wscale(rcv_win);
2233
2234 /*
2235 * Specify the largest window that will fit in opt0. The
2236 * remainder will be specified in the rx_data_ack.
2237 */
2238 win = ep->rcv_win >> 10;
2239 if (win > RCV_BUFSIZ_M)
2240 win = RCV_BUFSIZ_M;
2241 opt0 = (nocong ? NO_CONG_F : 0) |
2242 KEEP_ALIVE_F |
2243 DELACK_F |
2244 WND_SCALE_V(wscale) |
2245 MSS_IDX_V(mtu_idx) |
2246 L2T_IDX_V(ep->l2t->idx) |
2247 TX_CHAN_V(ep->tx_chan) |
2248 SMAC_SEL_V(ep->smac_idx) |
2249 DSCP_V(ep->tos >> 2) |
2250 ULP_MODE_V(ULP_MODE_TCPDDP) |
2251 RCV_BUFSIZ_V(win);
2252 opt2 = RX_CHANNEL_V(0) |
2253 RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid);
2254
2255 if (enable_tcp_timestamps && req->tcpopt.tstamp)
2256 opt2 |= TSTAMPS_EN_F;
2257 if (enable_tcp_sack && req->tcpopt.sack)
2258 opt2 |= SACK_EN_F;
2259 if (wscale && enable_tcp_window_scaling)
2260 opt2 |= WND_SCALE_EN_F;
2261 if (enable_ecn) {
2262 const struct tcphdr *tcph;
2263 u32 hlen = ntohl(req->hdr_len);
2264
2265 if (CHELSIO_CHIP_VERSION(adapter_type) <= CHELSIO_T5)
2266 tcph = (const void *)(req + 1) + ETH_HDR_LEN_G(hlen) +
2267 IP_HDR_LEN_G(hlen);
2268 else
2269 tcph = (const void *)(req + 1) +
2270 T6_ETH_HDR_LEN_G(hlen) + T6_IP_HDR_LEN_G(hlen);
2271 if (tcph->ece && tcph->cwr)
2272 opt2 |= CCTRL_ECN_V(1);
2273 }
2274 if (CHELSIO_CHIP_VERSION(adapter_type) > CHELSIO_T4) {
2275 u32 isn = (prandom_u32() & ~7UL) - 1;
2276 opt2 |= T5_OPT_2_VALID_F;
2277 opt2 |= CONG_CNTRL_V(CONG_ALG_TAHOE);
2278 opt2 |= T5_ISS_F;
2279 rpl5 = (void *)rpl;
2280 memset(&rpl5->iss, 0, roundup(sizeof(*rpl5)-sizeof(*rpl), 16));
2281 if (peer2peer)
2282 isn += 4;
2283 rpl5->iss = cpu_to_be32(isn);
2284 PDBG("%s iss %u\n", __func__, be32_to_cpu(rpl5->iss));
2285 }
2286
2287 rpl->opt0 = cpu_to_be64(opt0);
2288 rpl->opt2 = cpu_to_be32(opt2);
2289 set_wr_txq(skb, CPL_PRIORITY_SETUP, ep->ctrlq_idx);
2290 t4_set_arp_err_handler(skb, NULL, arp_failure_discard);
2291 c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
2292
2293 return;
2294 }
2295
2296 static void reject_cr(struct c4iw_dev *dev, u32 hwtid, struct sk_buff *skb)
2297 {
2298 PDBG("%s c4iw_dev %p tid %u\n", __func__, dev, hwtid);
2299 BUG_ON(skb_cloned(skb));
2300 skb_trim(skb, sizeof(struct cpl_tid_release));
2301 release_tid(&dev->rdev, hwtid, skb);
2302 return;
2303 }
2304
2305 static void get_4tuple(struct cpl_pass_accept_req *req, enum chip_type type,
2306 int *iptype, __u8 *local_ip, __u8 *peer_ip,
2307 __be16 *local_port, __be16 *peer_port)
2308 {
2309 int eth_len = (CHELSIO_CHIP_VERSION(type) <= CHELSIO_T5) ?
2310 ETH_HDR_LEN_G(be32_to_cpu(req->hdr_len)) :
2311 T6_ETH_HDR_LEN_G(be32_to_cpu(req->hdr_len));
2312 int ip_len = (CHELSIO_CHIP_VERSION(type) <= CHELSIO_T5) ?
2313 IP_HDR_LEN_G(be32_to_cpu(req->hdr_len)) :
2314 T6_IP_HDR_LEN_G(be32_to_cpu(req->hdr_len));
2315 struct iphdr *ip = (struct iphdr *)((u8 *)(req + 1) + eth_len);
2316 struct ipv6hdr *ip6 = (struct ipv6hdr *)((u8 *)(req + 1) + eth_len);
2317 struct tcphdr *tcp = (struct tcphdr *)
2318 ((u8 *)(req + 1) + eth_len + ip_len);
2319
2320 if (ip->version == 4) {
2321 PDBG("%s saddr 0x%x daddr 0x%x sport %u dport %u\n", __func__,
2322 ntohl(ip->saddr), ntohl(ip->daddr), ntohs(tcp->source),
2323 ntohs(tcp->dest));
2324 *iptype = 4;
2325 memcpy(peer_ip, &ip->saddr, 4);
2326 memcpy(local_ip, &ip->daddr, 4);
2327 } else {
2328 PDBG("%s saddr %pI6 daddr %pI6 sport %u dport %u\n", __func__,
2329 ip6->saddr.s6_addr, ip6->daddr.s6_addr, ntohs(tcp->source),
2330 ntohs(tcp->dest));
2331 *iptype = 6;
2332 memcpy(peer_ip, ip6->saddr.s6_addr, 16);
2333 memcpy(local_ip, ip6->daddr.s6_addr, 16);
2334 }
2335 *peer_port = tcp->source;
2336 *local_port = tcp->dest;
2337
2338 return;
2339 }
2340
2341 static int pass_accept_req(struct c4iw_dev *dev, struct sk_buff *skb)
2342 {
2343 struct c4iw_ep *child_ep = NULL, *parent_ep;
2344 struct cpl_pass_accept_req *req = cplhdr(skb);
2345 unsigned int stid = PASS_OPEN_TID_G(ntohl(req->tos_stid));
2346 struct tid_info *t = dev->rdev.lldi.tids;
2347 unsigned int hwtid = GET_TID(req);
2348 struct dst_entry *dst;
2349 __u8 local_ip[16], peer_ip[16];
2350 __be16 local_port, peer_port;
2351 struct sockaddr_in6 *sin6;
2352 int err;
2353 u16 peer_mss = ntohs(req->tcpopt.mss);
2354 int iptype;
2355 unsigned short hdrs;
2356 u8 tos = PASS_OPEN_TOS_G(ntohl(req->tos_stid));
2357
2358 parent_ep = lookup_stid(t, stid);
2359 if (!parent_ep) {
2360 PDBG("%s connect request on invalid stid %d\n", __func__, stid);
2361 goto reject;
2362 }
2363
2364 if (state_read(&parent_ep->com) != LISTEN) {
2365 PDBG("%s - listening ep not in LISTEN\n", __func__);
2366 goto reject;
2367 }
2368
2369 get_4tuple(req, parent_ep->com.dev->rdev.lldi.adapter_type, &iptype,
2370 local_ip, peer_ip, &local_port, &peer_port);
2371
2372 /* Find output route */
2373 if (iptype == 4) {
2374 PDBG("%s parent ep %p hwtid %u laddr %pI4 raddr %pI4 lport %d rport %d peer_mss %d\n"
2375 , __func__, parent_ep, hwtid,
2376 local_ip, peer_ip, ntohs(local_port),
2377 ntohs(peer_port), peer_mss);
2378 dst = find_route(dev, *(__be32 *)local_ip, *(__be32 *)peer_ip,
2379 local_port, peer_port,
2380 tos);
2381 } else {
2382 PDBG("%s parent ep %p hwtid %u laddr %pI6 raddr %pI6 lport %d rport %d peer_mss %d\n"
2383 , __func__, parent_ep, hwtid,
2384 local_ip, peer_ip, ntohs(local_port),
2385 ntohs(peer_port), peer_mss);
2386 dst = find_route6(dev, local_ip, peer_ip, local_port, peer_port,
2387 PASS_OPEN_TOS_G(ntohl(req->tos_stid)),
2388 ((struct sockaddr_in6 *)
2389 &parent_ep->com.local_addr)->sin6_scope_id);
2390 }
2391 if (!dst) {
2392 printk(KERN_ERR MOD "%s - failed to find dst entry!\n",
2393 __func__);
2394 goto reject;
2395 }
2396
2397 child_ep = alloc_ep(sizeof(*child_ep), GFP_KERNEL);
2398 if (!child_ep) {
2399 printk(KERN_ERR MOD "%s - failed to allocate ep entry!\n",
2400 __func__);
2401 dst_release(dst);
2402 goto reject;
2403 }
2404
2405 err = import_ep(child_ep, iptype, peer_ip, dst, dev, false,
2406 parent_ep->com.dev->rdev.lldi.adapter_type, tos);
2407 if (err) {
2408 printk(KERN_ERR MOD "%s - failed to allocate l2t entry!\n",
2409 __func__);
2410 dst_release(dst);
2411 kfree(child_ep);
2412 goto reject;
2413 }
2414
2415 hdrs = sizeof(struct iphdr) + sizeof(struct tcphdr) +
2416 ((enable_tcp_timestamps && req->tcpopt.tstamp) ? 12 : 0);
2417 if (peer_mss && child_ep->mtu > (peer_mss + hdrs))
2418 child_ep->mtu = peer_mss + hdrs;
2419
2420 state_set(&child_ep->com, CONNECTING);
2421 child_ep->com.dev = dev;
2422 child_ep->com.cm_id = NULL;
2423
2424 if (iptype == 4) {
2425 struct sockaddr_in *sin = (struct sockaddr_in *)
2426 &child_ep->com.local_addr;
2427
2428 sin->sin_family = PF_INET;
2429 sin->sin_port = local_port;
2430 sin->sin_addr.s_addr = *(__be32 *)local_ip;
2431
2432 sin = (struct sockaddr_in *)&child_ep->com.local_addr;
2433 sin->sin_family = PF_INET;
2434 sin->sin_port = ((struct sockaddr_in *)
2435 &parent_ep->com.local_addr)->sin_port;
2436 sin->sin_addr.s_addr = *(__be32 *)local_ip;
2437
2438 sin = (struct sockaddr_in *)&child_ep->com.remote_addr;
2439 sin->sin_family = PF_INET;
2440 sin->sin_port = peer_port;
2441 sin->sin_addr.s_addr = *(__be32 *)peer_ip;
2442 } else {
2443 sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr;
2444 sin6->sin6_family = PF_INET6;
2445 sin6->sin6_port = local_port;
2446 memcpy(sin6->sin6_addr.s6_addr, local_ip, 16);
2447
2448 sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr;
2449 sin6->sin6_family = PF_INET6;
2450 sin6->sin6_port = ((struct sockaddr_in6 *)
2451 &parent_ep->com.local_addr)->sin6_port;
2452 memcpy(sin6->sin6_addr.s6_addr, local_ip, 16);
2453
2454 sin6 = (struct sockaddr_in6 *)&child_ep->com.remote_addr;
2455 sin6->sin6_family = PF_INET6;
2456 sin6->sin6_port = peer_port;
2457 memcpy(sin6->sin6_addr.s6_addr, peer_ip, 16);
2458 }
2459
2460 c4iw_get_ep(&parent_ep->com);
2461 child_ep->parent_ep = parent_ep;
2462 child_ep->tos = tos;
2463 child_ep->dst = dst;
2464 child_ep->hwtid = hwtid;
2465
2466 PDBG("%s tx_chan %u smac_idx %u rss_qid %u\n", __func__,
2467 child_ep->tx_chan, child_ep->smac_idx, child_ep->rss_qid);
2468
2469 init_timer(&child_ep->timer);
2470 cxgb4_insert_tid(t, child_ep, hwtid);
2471 insert_handle(dev, &dev->hwtid_idr, child_ep, child_ep->hwtid);
2472 accept_cr(child_ep, skb, req);
2473 set_bit(PASS_ACCEPT_REQ, &child_ep->com.history);
2474 if (iptype == 6) {
2475 sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr;
2476 cxgb4_clip_get(child_ep->com.dev->rdev.lldi.ports[0],
2477 (const u32 *)&sin6->sin6_addr.s6_addr, 1);
2478 }
2479 goto out;
2480 reject:
2481 reject_cr(dev, hwtid, skb);
2482 out:
2483 return 0;
2484 }
2485
2486 static int pass_establish(struct c4iw_dev *dev, struct sk_buff *skb)
2487 {
2488 struct c4iw_ep *ep;
2489 struct cpl_pass_establish *req = cplhdr(skb);
2490 struct tid_info *t = dev->rdev.lldi.tids;
2491 unsigned int tid = GET_TID(req);
2492
2493 ep = lookup_tid(t, tid);
2494 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
2495 ep->snd_seq = be32_to_cpu(req->snd_isn);
2496 ep->rcv_seq = be32_to_cpu(req->rcv_isn);
2497
2498 PDBG("%s ep %p hwtid %u tcp_opt 0x%02x\n", __func__, ep, tid,
2499 ntohs(req->tcp_opt));
2500
2501 set_emss(ep, ntohs(req->tcp_opt));
2502
2503 dst_confirm(ep->dst);
2504 state_set(&ep->com, MPA_REQ_WAIT);
2505 start_ep_timer(ep);
2506 send_flowc(ep, skb);
2507 set_bit(PASS_ESTAB, &ep->com.history);
2508
2509 return 0;
2510 }
2511
2512 static int peer_close(struct c4iw_dev *dev, struct sk_buff *skb)
2513 {
2514 struct cpl_peer_close *hdr = cplhdr(skb);
2515 struct c4iw_ep *ep;
2516 struct c4iw_qp_attributes attrs;
2517 int disconnect = 1;
2518 int release = 0;
2519 struct tid_info *t = dev->rdev.lldi.tids;
2520 unsigned int tid = GET_TID(hdr);
2521 int ret;
2522
2523 ep = lookup_tid(t, tid);
2524 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
2525 dst_confirm(ep->dst);
2526
2527 set_bit(PEER_CLOSE, &ep->com.history);
2528 mutex_lock(&ep->com.mutex);
2529 switch (ep->com.state) {
2530 case MPA_REQ_WAIT:
2531 __state_set(&ep->com, CLOSING);
2532 break;
2533 case MPA_REQ_SENT:
2534 __state_set(&ep->com, CLOSING);
2535 connect_reply_upcall(ep, -ECONNRESET);
2536 break;
2537 case MPA_REQ_RCVD:
2538
2539 /*
2540 * We're gonna mark this puppy DEAD, but keep
2541 * the reference on it until the ULP accepts or
2542 * rejects the CR. Also wake up anyone waiting
2543 * in rdma connection migration (see c4iw_accept_cr()).
2544 */
2545 __state_set(&ep->com, CLOSING);
2546 PDBG("waking up ep %p tid %u\n", ep, ep->hwtid);
2547 c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET);
2548 break;
2549 case MPA_REP_SENT:
2550 __state_set(&ep->com, CLOSING);
2551 PDBG("waking up ep %p tid %u\n", ep, ep->hwtid);
2552 c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET);
2553 break;
2554 case FPDU_MODE:
2555 start_ep_timer(ep);
2556 __state_set(&ep->com, CLOSING);
2557 attrs.next_state = C4IW_QP_STATE_CLOSING;
2558 ret = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
2559 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
2560 if (ret != -ECONNRESET) {
2561 peer_close_upcall(ep);
2562 disconnect = 1;
2563 }
2564 break;
2565 case ABORTING:
2566 disconnect = 0;
2567 break;
2568 case CLOSING:
2569 __state_set(&ep->com, MORIBUND);
2570 disconnect = 0;
2571 break;
2572 case MORIBUND:
2573 (void)stop_ep_timer(ep);
2574 if (ep->com.cm_id && ep->com.qp) {
2575 attrs.next_state = C4IW_QP_STATE_IDLE;
2576 c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
2577 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
2578 }
2579 close_complete_upcall(ep, 0);
2580 __state_set(&ep->com, DEAD);
2581 release = 1;
2582 disconnect = 0;
2583 break;
2584 case DEAD:
2585 disconnect = 0;
2586 break;
2587 default:
2588 BUG_ON(1);
2589 }
2590 mutex_unlock(&ep->com.mutex);
2591 if (disconnect)
2592 c4iw_ep_disconnect(ep, 0, GFP_KERNEL);
2593 if (release)
2594 release_ep_resources(ep);
2595 return 0;
2596 }
2597
2598 static int peer_abort(struct c4iw_dev *dev, struct sk_buff *skb)
2599 {
2600 struct cpl_abort_req_rss *req = cplhdr(skb);
2601 struct c4iw_ep *ep;
2602 struct cpl_abort_rpl *rpl;
2603 struct sk_buff *rpl_skb;
2604 struct c4iw_qp_attributes attrs;
2605 int ret;
2606 int release = 0;
2607 struct tid_info *t = dev->rdev.lldi.tids;
2608 unsigned int tid = GET_TID(req);
2609
2610 ep = lookup_tid(t, tid);
2611 if (is_neg_adv(req->status)) {
2612 PDBG("%s Negative advice on abort- tid %u status %d (%s)\n",
2613 __func__, ep->hwtid, req->status,
2614 neg_adv_str(req->status));
2615 ep->stats.abort_neg_adv++;
2616 mutex_lock(&dev->rdev.stats.lock);
2617 dev->rdev.stats.neg_adv++;
2618 mutex_unlock(&dev->rdev.stats.lock);
2619 return 0;
2620 }
2621 PDBG("%s ep %p tid %u state %u\n", __func__, ep, ep->hwtid,
2622 ep->com.state);
2623 set_bit(PEER_ABORT, &ep->com.history);
2624
2625 /*
2626 * Wake up any threads in rdma_init() or rdma_fini().
2627 * However, this is not needed if com state is just
2628 * MPA_REQ_SENT
2629 */
2630 if (ep->com.state != MPA_REQ_SENT)
2631 c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET);
2632
2633 mutex_lock(&ep->com.mutex);
2634 switch (ep->com.state) {
2635 case CONNECTING:
2636 break;
2637 case MPA_REQ_WAIT:
2638 (void)stop_ep_timer(ep);
2639 break;
2640 case MPA_REQ_SENT:
2641 (void)stop_ep_timer(ep);
2642 if (mpa_rev == 1 || (mpa_rev == 2 && ep->tried_with_mpa_v1))
2643 connect_reply_upcall(ep, -ECONNRESET);
2644 else {
2645 /*
2646 * we just don't send notification upwards because we
2647 * want to retry with mpa_v1 without upper layers even
2648 * knowing it.
2649 *
2650 * do some housekeeping so as to re-initiate the
2651 * connection
2652 */
2653 PDBG("%s: mpa_rev=%d. Retrying with mpav1\n", __func__,
2654 mpa_rev);
2655 ep->retry_with_mpa_v1 = 1;
2656 }
2657 break;
2658 case MPA_REP_SENT:
2659 break;
2660 case MPA_REQ_RCVD:
2661 break;
2662 case MORIBUND:
2663 case CLOSING:
2664 stop_ep_timer(ep);
2665 /*FALLTHROUGH*/
2666 case FPDU_MODE:
2667 if (ep->com.cm_id && ep->com.qp) {
2668 attrs.next_state = C4IW_QP_STATE_ERROR;
2669 ret = c4iw_modify_qp(ep->com.qp->rhp,
2670 ep->com.qp, C4IW_QP_ATTR_NEXT_STATE,
2671 &attrs, 1);
2672 if (ret)
2673 printk(KERN_ERR MOD
2674 "%s - qp <- error failed!\n",
2675 __func__);
2676 }
2677 peer_abort_upcall(ep);
2678 break;
2679 case ABORTING:
2680 break;
2681 case DEAD:
2682 PDBG("%s PEER_ABORT IN DEAD STATE!!!!\n", __func__);
2683 mutex_unlock(&ep->com.mutex);
2684 return 0;
2685 default:
2686 BUG_ON(1);
2687 break;
2688 }
2689 dst_confirm(ep->dst);
2690 if (ep->com.state != ABORTING) {
2691 __state_set(&ep->com, DEAD);
2692 /* we don't release if we want to retry with mpa_v1 */
2693 if (!ep->retry_with_mpa_v1)
2694 release = 1;
2695 }
2696 mutex_unlock(&ep->com.mutex);
2697
2698 rpl_skb = get_skb(skb, sizeof(*rpl), GFP_KERNEL);
2699 if (!rpl_skb) {
2700 printk(KERN_ERR MOD "%s - cannot allocate skb!\n",
2701 __func__);
2702 release = 1;
2703 goto out;
2704 }
2705 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
2706 rpl = (struct cpl_abort_rpl *) skb_put(rpl_skb, sizeof(*rpl));
2707 INIT_TP_WR(rpl, ep->hwtid);
2708 OPCODE_TID(rpl) = cpu_to_be32(MK_OPCODE_TID(CPL_ABORT_RPL, ep->hwtid));
2709 rpl->cmd = CPL_ABORT_NO_RST;
2710 c4iw_ofld_send(&ep->com.dev->rdev, rpl_skb);
2711 out:
2712 if (release)
2713 release_ep_resources(ep);
2714 else if (ep->retry_with_mpa_v1) {
2715 if (ep->com.remote_addr.ss_family == AF_INET6) {
2716 struct sockaddr_in6 *sin6 =
2717 (struct sockaddr_in6 *)
2718 &ep->com.local_addr;
2719 cxgb4_clip_release(
2720 ep->com.dev->rdev.lldi.ports[0],
2721 (const u32 *)&sin6->sin6_addr.s6_addr,
2722 1);
2723 }
2724 remove_handle(ep->com.dev, &ep->com.dev->hwtid_idr, ep->hwtid);
2725 cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, ep->hwtid);
2726 dst_release(ep->dst);
2727 cxgb4_l2t_release(ep->l2t);
2728 c4iw_reconnect(ep);
2729 }
2730
2731 return 0;
2732 }
2733
2734 static int close_con_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
2735 {
2736 struct c4iw_ep *ep;
2737 struct c4iw_qp_attributes attrs;
2738 struct cpl_close_con_rpl *rpl = cplhdr(skb);
2739 int release = 0;
2740 struct tid_info *t = dev->rdev.lldi.tids;
2741 unsigned int tid = GET_TID(rpl);
2742
2743 ep = lookup_tid(t, tid);
2744
2745 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
2746 BUG_ON(!ep);
2747
2748 /* The cm_id may be null if we failed to connect */
2749 mutex_lock(&ep->com.mutex);
2750 switch (ep->com.state) {
2751 case CLOSING:
2752 __state_set(&ep->com, MORIBUND);
2753 break;
2754 case MORIBUND:
2755 (void)stop_ep_timer(ep);
2756 if ((ep->com.cm_id) && (ep->com.qp)) {
2757 attrs.next_state = C4IW_QP_STATE_IDLE;
2758 c4iw_modify_qp(ep->com.qp->rhp,
2759 ep->com.qp,
2760 C4IW_QP_ATTR_NEXT_STATE,
2761 &attrs, 1);
2762 }
2763 close_complete_upcall(ep, 0);
2764 __state_set(&ep->com, DEAD);
2765 release = 1;
2766 break;
2767 case ABORTING:
2768 case DEAD:
2769 break;
2770 default:
2771 BUG_ON(1);
2772 break;
2773 }
2774 mutex_unlock(&ep->com.mutex);
2775 if (release)
2776 release_ep_resources(ep);
2777 return 0;
2778 }
2779
2780 static int terminate(struct c4iw_dev *dev, struct sk_buff *skb)
2781 {
2782 struct cpl_rdma_terminate *rpl = cplhdr(skb);
2783 struct tid_info *t = dev->rdev.lldi.tids;
2784 unsigned int tid = GET_TID(rpl);
2785 struct c4iw_ep *ep;
2786 struct c4iw_qp_attributes attrs;
2787
2788 ep = lookup_tid(t, tid);
2789 BUG_ON(!ep);
2790
2791 if (ep && ep->com.qp) {
2792 printk(KERN_WARNING MOD "TERM received tid %u qpid %u\n", tid,
2793 ep->com.qp->wq.sq.qid);
2794 attrs.next_state = C4IW_QP_STATE_TERMINATE;
2795 c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
2796 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
2797 } else
2798 printk(KERN_WARNING MOD "TERM received tid %u no ep/qp\n", tid);
2799
2800 return 0;
2801 }
2802
2803 /*
2804 * Upcall from the adapter indicating data has been transmitted.
2805 * For us its just the single MPA request or reply. We can now free
2806 * the skb holding the mpa message.
2807 */
2808 static int fw4_ack(struct c4iw_dev *dev, struct sk_buff *skb)
2809 {
2810 struct c4iw_ep *ep;
2811 struct cpl_fw4_ack *hdr = cplhdr(skb);
2812 u8 credits = hdr->credits;
2813 unsigned int tid = GET_TID(hdr);
2814 struct tid_info *t = dev->rdev.lldi.tids;
2815
2816
2817 ep = lookup_tid(t, tid);
2818 PDBG("%s ep %p tid %u credits %u\n", __func__, ep, ep->hwtid, credits);
2819 if (credits == 0) {
2820 PDBG("%s 0 credit ack ep %p tid %u state %u\n",
2821 __func__, ep, ep->hwtid, state_read(&ep->com));
2822 return 0;
2823 }
2824
2825 dst_confirm(ep->dst);
2826 if (ep->mpa_skb) {
2827 PDBG("%s last streaming msg ack ep %p tid %u state %u "
2828 "initiator %u freeing skb\n", __func__, ep, ep->hwtid,
2829 state_read(&ep->com), ep->mpa_attr.initiator ? 1 : 0);
2830 kfree_skb(ep->mpa_skb);
2831 ep->mpa_skb = NULL;
2832 }
2833 return 0;
2834 }
2835
2836 int c4iw_reject_cr(struct iw_cm_id *cm_id, const void *pdata, u8 pdata_len)
2837 {
2838 int err = 0;
2839 int disconnect = 0;
2840 struct c4iw_ep *ep = to_ep(cm_id);
2841 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
2842
2843 mutex_lock(&ep->com.mutex);
2844 if (ep->com.state == DEAD) {
2845 mutex_unlock(&ep->com.mutex);
2846 c4iw_put_ep(&ep->com);
2847 return -ECONNRESET;
2848 }
2849 set_bit(ULP_REJECT, &ep->com.history);
2850 BUG_ON(ep->com.state != MPA_REQ_RCVD);
2851 if (mpa_rev == 0)
2852 abort_connection(ep, NULL, GFP_KERNEL);
2853 else {
2854 err = send_mpa_reject(ep, pdata, pdata_len);
2855 disconnect = 1;
2856 }
2857 mutex_unlock(&ep->com.mutex);
2858 if (disconnect)
2859 err = c4iw_ep_disconnect(ep, 0, GFP_KERNEL);
2860 c4iw_put_ep(&ep->com);
2861 return 0;
2862 }
2863
2864 int c4iw_accept_cr(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param)
2865 {
2866 int err;
2867 struct c4iw_qp_attributes attrs;
2868 enum c4iw_qp_attr_mask mask;
2869 struct c4iw_ep *ep = to_ep(cm_id);
2870 struct c4iw_dev *h = to_c4iw_dev(cm_id->device);
2871 struct c4iw_qp *qp = get_qhp(h, conn_param->qpn);
2872
2873 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
2874
2875 mutex_lock(&ep->com.mutex);
2876 if (ep->com.state == DEAD) {
2877 err = -ECONNRESET;
2878 goto err;
2879 }
2880
2881 BUG_ON(ep->com.state != MPA_REQ_RCVD);
2882 BUG_ON(!qp);
2883
2884 set_bit(ULP_ACCEPT, &ep->com.history);
2885 if ((conn_param->ord > cur_max_read_depth(ep->com.dev)) ||
2886 (conn_param->ird > cur_max_read_depth(ep->com.dev))) {
2887 abort_connection(ep, NULL, GFP_KERNEL);
2888 err = -EINVAL;
2889 goto err;
2890 }
2891
2892 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) {
2893 if (conn_param->ord > ep->ird) {
2894 if (RELAXED_IRD_NEGOTIATION) {
2895 ep->ord = ep->ird;
2896 } else {
2897 ep->ird = conn_param->ird;
2898 ep->ord = conn_param->ord;
2899 send_mpa_reject(ep, conn_param->private_data,
2900 conn_param->private_data_len);
2901 abort_connection(ep, NULL, GFP_KERNEL);
2902 err = -ENOMEM;
2903 goto err;
2904 }
2905 }
2906 if (conn_param->ird < ep->ord) {
2907 if (RELAXED_IRD_NEGOTIATION &&
2908 ep->ord <= h->rdev.lldi.max_ordird_qp) {
2909 conn_param->ird = ep->ord;
2910 } else {
2911 abort_connection(ep, NULL, GFP_KERNEL);
2912 err = -ENOMEM;
2913 goto err;
2914 }
2915 }
2916 }
2917 ep->ird = conn_param->ird;
2918 ep->ord = conn_param->ord;
2919
2920 if (ep->mpa_attr.version == 1) {
2921 if (peer2peer && ep->ird == 0)
2922 ep->ird = 1;
2923 } else {
2924 if (peer2peer &&
2925 (ep->mpa_attr.p2p_type != FW_RI_INIT_P2PTYPE_DISABLED) &&
2926 (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ) && ep->ird == 0)
2927 ep->ird = 1;
2928 }
2929
2930 PDBG("%s %d ird %d ord %d\n", __func__, __LINE__, ep->ird, ep->ord);
2931
2932 cm_id->add_ref(cm_id);
2933 ep->com.cm_id = cm_id;
2934 ep->com.qp = qp;
2935 ref_qp(ep);
2936
2937 /* bind QP to EP and move to RTS */
2938 attrs.mpa_attr = ep->mpa_attr;
2939 attrs.max_ird = ep->ird;
2940 attrs.max_ord = ep->ord;
2941 attrs.llp_stream_handle = ep;
2942 attrs.next_state = C4IW_QP_STATE_RTS;
2943
2944 /* bind QP and TID with INIT_WR */
2945 mask = C4IW_QP_ATTR_NEXT_STATE |
2946 C4IW_QP_ATTR_LLP_STREAM_HANDLE |
2947 C4IW_QP_ATTR_MPA_ATTR |
2948 C4IW_QP_ATTR_MAX_IRD |
2949 C4IW_QP_ATTR_MAX_ORD;
2950
2951 err = c4iw_modify_qp(ep->com.qp->rhp,
2952 ep->com.qp, mask, &attrs, 1);
2953 if (err)
2954 goto err1;
2955 err = send_mpa_reply(ep, conn_param->private_data,
2956 conn_param->private_data_len);
2957 if (err)
2958 goto err1;
2959
2960 __state_set(&ep->com, FPDU_MODE);
2961 established_upcall(ep);
2962 mutex_unlock(&ep->com.mutex);
2963 c4iw_put_ep(&ep->com);
2964 return 0;
2965 err1:
2966 ep->com.cm_id = NULL;
2967 abort_connection(ep, NULL, GFP_KERNEL);
2968 cm_id->rem_ref(cm_id);
2969 err:
2970 mutex_unlock(&ep->com.mutex);
2971 c4iw_put_ep(&ep->com);
2972 return err;
2973 }
2974
2975 static int pick_local_ipaddrs(struct c4iw_dev *dev, struct iw_cm_id *cm_id)
2976 {
2977 struct in_device *ind;
2978 int found = 0;
2979 struct sockaddr_in *laddr = (struct sockaddr_in *)&cm_id->m_local_addr;
2980 struct sockaddr_in *raddr = (struct sockaddr_in *)&cm_id->m_remote_addr;
2981
2982 ind = in_dev_get(dev->rdev.lldi.ports[0]);
2983 if (!ind)
2984 return -EADDRNOTAVAIL;
2985 for_primary_ifa(ind) {
2986 laddr->sin_addr.s_addr = ifa->ifa_address;
2987 raddr->sin_addr.s_addr = ifa->ifa_address;
2988 found = 1;
2989 break;
2990 }
2991 endfor_ifa(ind);
2992 in_dev_put(ind);
2993 return found ? 0 : -EADDRNOTAVAIL;
2994 }
2995
2996 static int get_lladdr(struct net_device *dev, struct in6_addr *addr,
2997 unsigned char banned_flags)
2998 {
2999 struct inet6_dev *idev;
3000 int err = -EADDRNOTAVAIL;
3001
3002 rcu_read_lock();
3003 idev = __in6_dev_get(dev);
3004 if (idev != NULL) {
3005 struct inet6_ifaddr *ifp;
3006
3007 read_lock_bh(&idev->lock);
3008 list_for_each_entry(ifp, &idev->addr_list, if_list) {
3009 if (ifp->scope == IFA_LINK &&
3010 !(ifp->flags & banned_flags)) {
3011 memcpy(addr, &ifp->addr, 16);
3012 err = 0;
3013 break;
3014 }
3015 }
3016 read_unlock_bh(&idev->lock);
3017 }
3018 rcu_read_unlock();
3019 return err;
3020 }
3021
3022 static int pick_local_ip6addrs(struct c4iw_dev *dev, struct iw_cm_id *cm_id)
3023 {
3024 struct in6_addr uninitialized_var(addr);
3025 struct sockaddr_in6 *la6 = (struct sockaddr_in6 *)&cm_id->m_local_addr;
3026 struct sockaddr_in6 *ra6 = (struct sockaddr_in6 *)&cm_id->m_remote_addr;
3027
3028 if (!get_lladdr(dev->rdev.lldi.ports[0], &addr, IFA_F_TENTATIVE)) {
3029 memcpy(la6->sin6_addr.s6_addr, &addr, 16);
3030 memcpy(ra6->sin6_addr.s6_addr, &addr, 16);
3031 return 0;
3032 }
3033 return -EADDRNOTAVAIL;
3034 }
3035
3036 int c4iw_connect(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param)
3037 {
3038 struct c4iw_dev *dev = to_c4iw_dev(cm_id->device);
3039 struct c4iw_ep *ep;
3040 int err = 0;
3041 struct sockaddr_in *laddr;
3042 struct sockaddr_in *raddr;
3043 struct sockaddr_in6 *laddr6;
3044 struct sockaddr_in6 *raddr6;
3045 __u8 *ra;
3046 int iptype;
3047
3048 if ((conn_param->ord > cur_max_read_depth(dev)) ||
3049 (conn_param->ird > cur_max_read_depth(dev))) {
3050 err = -EINVAL;
3051 goto out;
3052 }
3053 ep = alloc_ep(sizeof(*ep), GFP_KERNEL);
3054 if (!ep) {
3055 printk(KERN_ERR MOD "%s - cannot alloc ep.\n", __func__);
3056 err = -ENOMEM;
3057 goto out;
3058 }
3059 init_timer(&ep->timer);
3060 ep->plen = conn_param->private_data_len;
3061 if (ep->plen)
3062 memcpy(ep->mpa_pkt + sizeof(struct mpa_message),
3063 conn_param->private_data, ep->plen);
3064 ep->ird = conn_param->ird;
3065 ep->ord = conn_param->ord;
3066
3067 if (peer2peer && ep->ord == 0)
3068 ep->ord = 1;
3069
3070 cm_id->add_ref(cm_id);
3071 ep->com.dev = dev;
3072 ep->com.cm_id = cm_id;
3073 ep->com.qp = get_qhp(dev, conn_param->qpn);
3074 if (!ep->com.qp) {
3075 PDBG("%s qpn 0x%x not found!\n", __func__, conn_param->qpn);
3076 err = -EINVAL;
3077 goto fail1;
3078 }
3079 ref_qp(ep);
3080 PDBG("%s qpn 0x%x qp %p cm_id %p\n", __func__, conn_param->qpn,
3081 ep->com.qp, cm_id);
3082
3083 /*
3084 * Allocate an active TID to initiate a TCP connection.
3085 */
3086 ep->atid = cxgb4_alloc_atid(dev->rdev.lldi.tids, ep);
3087 if (ep->atid == -1) {
3088 printk(KERN_ERR MOD "%s - cannot alloc atid.\n", __func__);
3089 err = -ENOMEM;
3090 goto fail1;
3091 }
3092 insert_handle(dev, &dev->atid_idr, ep, ep->atid);
3093
3094 memcpy(&ep->com.local_addr, &cm_id->m_local_addr,
3095 sizeof(ep->com.local_addr));
3096 memcpy(&ep->com.remote_addr, &cm_id->m_remote_addr,
3097 sizeof(ep->com.remote_addr));
3098
3099 laddr = (struct sockaddr_in *)&ep->com.local_addr;
3100 raddr = (struct sockaddr_in *)&ep->com.remote_addr;
3101 laddr6 = (struct sockaddr_in6 *)&ep->com.local_addr;
3102 raddr6 = (struct sockaddr_in6 *) &ep->com.remote_addr;
3103
3104 if (cm_id->m_remote_addr.ss_family == AF_INET) {
3105 iptype = 4;
3106 ra = (__u8 *)&raddr->sin_addr;
3107
3108 /*
3109 * Handle loopback requests to INADDR_ANY.
3110 */
3111 if ((__force int)raddr->sin_addr.s_addr == INADDR_ANY) {
3112 err = pick_local_ipaddrs(dev, cm_id);
3113 if (err)
3114 goto fail1;
3115 }
3116
3117 /* find a route */
3118 PDBG("%s saddr %pI4 sport 0x%x raddr %pI4 rport 0x%x\n",
3119 __func__, &laddr->sin_addr, ntohs(laddr->sin_port),
3120 ra, ntohs(raddr->sin_port));
3121 ep->dst = find_route(dev, laddr->sin_addr.s_addr,
3122 raddr->sin_addr.s_addr, laddr->sin_port,
3123 raddr->sin_port, cm_id->tos);
3124 } else {
3125 iptype = 6;
3126 ra = (__u8 *)&raddr6->sin6_addr;
3127
3128 /*
3129 * Handle loopback requests to INADDR_ANY.
3130 */
3131 if (ipv6_addr_type(&raddr6->sin6_addr) == IPV6_ADDR_ANY) {
3132 err = pick_local_ip6addrs(dev, cm_id);
3133 if (err)
3134 goto fail1;
3135 }
3136
3137 /* find a route */
3138 PDBG("%s saddr %pI6 sport 0x%x raddr %pI6 rport 0x%x\n",
3139 __func__, laddr6->sin6_addr.s6_addr,
3140 ntohs(laddr6->sin6_port),
3141 raddr6->sin6_addr.s6_addr, ntohs(raddr6->sin6_port));
3142 ep->dst = find_route6(dev, laddr6->sin6_addr.s6_addr,
3143 raddr6->sin6_addr.s6_addr,
3144 laddr6->sin6_port, raddr6->sin6_port, 0,
3145 raddr6->sin6_scope_id);
3146 }
3147 if (!ep->dst) {
3148 printk(KERN_ERR MOD "%s - cannot find route.\n", __func__);
3149 err = -EHOSTUNREACH;
3150 goto fail2;
3151 }
3152
3153 err = import_ep(ep, iptype, ra, ep->dst, ep->com.dev, true,
3154 ep->com.dev->rdev.lldi.adapter_type, cm_id->tos);
3155 if (err) {
3156 printk(KERN_ERR MOD "%s - cannot alloc l2e.\n", __func__);
3157 goto fail3;
3158 }
3159
3160 PDBG("%s txq_idx %u tx_chan %u smac_idx %u rss_qid %u l2t_idx %u\n",
3161 __func__, ep->txq_idx, ep->tx_chan, ep->smac_idx, ep->rss_qid,
3162 ep->l2t->idx);
3163
3164 state_set(&ep->com, CONNECTING);
3165 ep->tos = cm_id->tos;
3166
3167 /* send connect request to rnic */
3168 err = send_connect(ep);
3169 if (!err)
3170 goto out;
3171
3172 cxgb4_l2t_release(ep->l2t);
3173 fail3:
3174 dst_release(ep->dst);
3175 fail2:
3176 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, ep->atid);
3177 cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid);
3178 fail1:
3179 cm_id->rem_ref(cm_id);
3180 c4iw_put_ep(&ep->com);
3181 out:
3182 return err;
3183 }
3184
3185 static int create_server6(struct c4iw_dev *dev, struct c4iw_listen_ep *ep)
3186 {
3187 int err;
3188 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)
3189 &ep->com.local_addr;
3190
3191 if (ipv6_addr_type(&sin6->sin6_addr) != IPV6_ADDR_ANY) {
3192 err = cxgb4_clip_get(ep->com.dev->rdev.lldi.ports[0],
3193 (const u32 *)&sin6->sin6_addr.s6_addr, 1);
3194 if (err)
3195 return err;
3196 }
3197 c4iw_init_wr_wait(&ep->com.wr_wait);
3198 err = cxgb4_create_server6(ep->com.dev->rdev.lldi.ports[0],
3199 ep->stid, &sin6->sin6_addr,
3200 sin6->sin6_port,
3201 ep->com.dev->rdev.lldi.rxq_ids[0]);
3202 if (!err)
3203 err = c4iw_wait_for_reply(&ep->com.dev->rdev,
3204 &ep->com.wr_wait,
3205 0, 0, __func__);
3206 else if (err > 0)
3207 err = net_xmit_errno(err);
3208 if (err) {
3209 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
3210 (const u32 *)&sin6->sin6_addr.s6_addr, 1);
3211 pr_err("cxgb4_create_server6/filter failed err %d stid %d laddr %pI6 lport %d\n",
3212 err, ep->stid,
3213 sin6->sin6_addr.s6_addr, ntohs(sin6->sin6_port));
3214 }
3215 return err;
3216 }
3217
3218 static int create_server4(struct c4iw_dev *dev, struct c4iw_listen_ep *ep)
3219 {
3220 int err;
3221 struct sockaddr_in *sin = (struct sockaddr_in *)
3222 &ep->com.local_addr;
3223
3224 if (dev->rdev.lldi.enable_fw_ofld_conn) {
3225 do {
3226 err = cxgb4_create_server_filter(
3227 ep->com.dev->rdev.lldi.ports[0], ep->stid,
3228 sin->sin_addr.s_addr, sin->sin_port, 0,
3229 ep->com.dev->rdev.lldi.rxq_ids[0], 0, 0);
3230 if (err == -EBUSY) {
3231 if (c4iw_fatal_error(&ep->com.dev->rdev)) {
3232 err = -EIO;
3233 break;
3234 }
3235 set_current_state(TASK_UNINTERRUPTIBLE);
3236 schedule_timeout(usecs_to_jiffies(100));
3237 }
3238 } while (err == -EBUSY);
3239 } else {
3240 c4iw_init_wr_wait(&ep->com.wr_wait);
3241 err = cxgb4_create_server(ep->com.dev->rdev.lldi.ports[0],
3242 ep->stid, sin->sin_addr.s_addr, sin->sin_port,
3243 0, ep->com.dev->rdev.lldi.rxq_ids[0]);
3244 if (!err)
3245 err = c4iw_wait_for_reply(&ep->com.dev->rdev,
3246 &ep->com.wr_wait,
3247 0, 0, __func__);
3248 else if (err > 0)
3249 err = net_xmit_errno(err);
3250 }
3251 if (err)
3252 pr_err("cxgb4_create_server/filter failed err %d stid %d laddr %pI4 lport %d\n"
3253 , err, ep->stid,
3254 &sin->sin_addr, ntohs(sin->sin_port));
3255 return err;
3256 }
3257
3258 int c4iw_create_listen(struct iw_cm_id *cm_id, int backlog)
3259 {
3260 int err = 0;
3261 struct c4iw_dev *dev = to_c4iw_dev(cm_id->device);
3262 struct c4iw_listen_ep *ep;
3263
3264 might_sleep();
3265
3266 ep = alloc_ep(sizeof(*ep), GFP_KERNEL);
3267 if (!ep) {
3268 printk(KERN_ERR MOD "%s - cannot alloc ep.\n", __func__);
3269 err = -ENOMEM;
3270 goto fail1;
3271 }
3272 PDBG("%s ep %p\n", __func__, ep);
3273 cm_id->add_ref(cm_id);
3274 ep->com.cm_id = cm_id;
3275 ep->com.dev = dev;
3276 ep->backlog = backlog;
3277 memcpy(&ep->com.local_addr, &cm_id->m_local_addr,
3278 sizeof(ep->com.local_addr));
3279
3280 /*
3281 * Allocate a server TID.
3282 */
3283 if (dev->rdev.lldi.enable_fw_ofld_conn &&
3284 ep->com.local_addr.ss_family == AF_INET)
3285 ep->stid = cxgb4_alloc_sftid(dev->rdev.lldi.tids,
3286 cm_id->m_local_addr.ss_family, ep);
3287 else
3288 ep->stid = cxgb4_alloc_stid(dev->rdev.lldi.tids,
3289 cm_id->m_local_addr.ss_family, ep);
3290
3291 if (ep->stid == -1) {
3292 printk(KERN_ERR MOD "%s - cannot alloc stid.\n", __func__);
3293 err = -ENOMEM;
3294 goto fail2;
3295 }
3296 insert_handle(dev, &dev->stid_idr, ep, ep->stid);
3297
3298 memcpy(&ep->com.local_addr, &cm_id->m_local_addr,
3299 sizeof(ep->com.local_addr));
3300
3301 state_set(&ep->com, LISTEN);
3302 if (ep->com.local_addr.ss_family == AF_INET)
3303 err = create_server4(dev, ep);
3304 else
3305 err = create_server6(dev, ep);
3306 if (!err) {
3307 cm_id->provider_data = ep;
3308 goto out;
3309 }
3310
3311 cxgb4_free_stid(ep->com.dev->rdev.lldi.tids, ep->stid,
3312 ep->com.local_addr.ss_family);
3313 fail2:
3314 cm_id->rem_ref(cm_id);
3315 c4iw_put_ep(&ep->com);
3316 fail1:
3317 out:
3318 return err;
3319 }
3320
3321 int c4iw_destroy_listen(struct iw_cm_id *cm_id)
3322 {
3323 int err;
3324 struct c4iw_listen_ep *ep = to_listen_ep(cm_id);
3325
3326 PDBG("%s ep %p\n", __func__, ep);
3327
3328 might_sleep();
3329 state_set(&ep->com, DEAD);
3330 if (ep->com.dev->rdev.lldi.enable_fw_ofld_conn &&
3331 ep->com.local_addr.ss_family == AF_INET) {
3332 err = cxgb4_remove_server_filter(
3333 ep->com.dev->rdev.lldi.ports[0], ep->stid,
3334 ep->com.dev->rdev.lldi.rxq_ids[0], 0);
3335 } else {
3336 struct sockaddr_in6 *sin6;
3337 c4iw_init_wr_wait(&ep->com.wr_wait);
3338 err = cxgb4_remove_server(
3339 ep->com.dev->rdev.lldi.ports[0], ep->stid,
3340 ep->com.dev->rdev.lldi.rxq_ids[0], 0);
3341 if (err)
3342 goto done;
3343 err = c4iw_wait_for_reply(&ep->com.dev->rdev, &ep->com.wr_wait,
3344 0, 0, __func__);
3345 sin6 = (struct sockaddr_in6 *)&ep->com.local_addr;
3346 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
3347 (const u32 *)&sin6->sin6_addr.s6_addr, 1);
3348 }
3349 remove_handle(ep->com.dev, &ep->com.dev->stid_idr, ep->stid);
3350 cxgb4_free_stid(ep->com.dev->rdev.lldi.tids, ep->stid,
3351 ep->com.local_addr.ss_family);
3352 done:
3353 cm_id->rem_ref(cm_id);
3354 c4iw_put_ep(&ep->com);
3355 return err;
3356 }
3357
3358 int c4iw_ep_disconnect(struct c4iw_ep *ep, int abrupt, gfp_t gfp)
3359 {
3360 int ret = 0;
3361 int close = 0;
3362 int fatal = 0;
3363 struct c4iw_rdev *rdev;
3364
3365 mutex_lock(&ep->com.mutex);
3366
3367 PDBG("%s ep %p state %s, abrupt %d\n", __func__, ep,
3368 states[ep->com.state], abrupt);
3369
3370 rdev = &ep->com.dev->rdev;
3371 if (c4iw_fatal_error(rdev)) {
3372 fatal = 1;
3373 close_complete_upcall(ep, -EIO);
3374 ep->com.state = DEAD;
3375 }
3376 switch (ep->com.state) {
3377 case MPA_REQ_WAIT:
3378 case MPA_REQ_SENT:
3379 case MPA_REQ_RCVD:
3380 case MPA_REP_SENT:
3381 case FPDU_MODE:
3382 close = 1;
3383 if (abrupt)
3384 ep->com.state = ABORTING;
3385 else {
3386 ep->com.state = CLOSING;
3387 start_ep_timer(ep);
3388 }
3389 set_bit(CLOSE_SENT, &ep->com.flags);
3390 break;
3391 case CLOSING:
3392 if (!test_and_set_bit(CLOSE_SENT, &ep->com.flags)) {
3393 close = 1;
3394 if (abrupt) {
3395 (void)stop_ep_timer(ep);
3396 ep->com.state = ABORTING;
3397 } else
3398 ep->com.state = MORIBUND;
3399 }
3400 break;
3401 case MORIBUND:
3402 case ABORTING:
3403 case DEAD:
3404 PDBG("%s ignoring disconnect ep %p state %u\n",
3405 __func__, ep, ep->com.state);
3406 break;
3407 default:
3408 BUG();
3409 break;
3410 }
3411
3412 if (close) {
3413 if (abrupt) {
3414 set_bit(EP_DISC_ABORT, &ep->com.history);
3415 close_complete_upcall(ep, -ECONNRESET);
3416 ret = send_abort(ep, NULL, gfp);
3417 } else {
3418 set_bit(EP_DISC_CLOSE, &ep->com.history);
3419 ret = send_halfclose(ep, gfp);
3420 }
3421 if (ret)
3422 fatal = 1;
3423 }
3424 mutex_unlock(&ep->com.mutex);
3425 if (fatal)
3426 release_ep_resources(ep);
3427 return ret;
3428 }
3429
3430 static void active_ofld_conn_reply(struct c4iw_dev *dev, struct sk_buff *skb,
3431 struct cpl_fw6_msg_ofld_connection_wr_rpl *req)
3432 {
3433 struct c4iw_ep *ep;
3434 int atid = be32_to_cpu(req->tid);
3435
3436 ep = (struct c4iw_ep *)lookup_atid(dev->rdev.lldi.tids,
3437 (__force u32) req->tid);
3438 if (!ep)
3439 return;
3440
3441 switch (req->retval) {
3442 case FW_ENOMEM:
3443 set_bit(ACT_RETRY_NOMEM, &ep->com.history);
3444 if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) {
3445 send_fw_act_open_req(ep, atid);
3446 return;
3447 }
3448 case FW_EADDRINUSE:
3449 set_bit(ACT_RETRY_INUSE, &ep->com.history);
3450 if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) {
3451 send_fw_act_open_req(ep, atid);
3452 return;
3453 }
3454 break;
3455 default:
3456 pr_info("%s unexpected ofld conn wr retval %d\n",
3457 __func__, req->retval);
3458 break;
3459 }
3460 pr_err("active ofld_connect_wr failure %d atid %d\n",
3461 req->retval, atid);
3462 mutex_lock(&dev->rdev.stats.lock);
3463 dev->rdev.stats.act_ofld_conn_fails++;
3464 mutex_unlock(&dev->rdev.stats.lock);
3465 connect_reply_upcall(ep, status2errno(req->retval));
3466 state_set(&ep->com, DEAD);
3467 if (ep->com.remote_addr.ss_family == AF_INET6) {
3468 struct sockaddr_in6 *sin6 =
3469 (struct sockaddr_in6 *)&ep->com.local_addr;
3470 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
3471 (const u32 *)&sin6->sin6_addr.s6_addr, 1);
3472 }
3473 remove_handle(dev, &dev->atid_idr, atid);
3474 cxgb4_free_atid(dev->rdev.lldi.tids, atid);
3475 dst_release(ep->dst);
3476 cxgb4_l2t_release(ep->l2t);
3477 c4iw_put_ep(&ep->com);
3478 }
3479
3480 static void passive_ofld_conn_reply(struct c4iw_dev *dev, struct sk_buff *skb,
3481 struct cpl_fw6_msg_ofld_connection_wr_rpl *req)
3482 {
3483 struct sk_buff *rpl_skb;
3484 struct cpl_pass_accept_req *cpl;
3485 int ret;
3486
3487 rpl_skb = (struct sk_buff *)(unsigned long)req->cookie;
3488 BUG_ON(!rpl_skb);
3489 if (req->retval) {
3490 PDBG("%s passive open failure %d\n", __func__, req->retval);
3491 mutex_lock(&dev->rdev.stats.lock);
3492 dev->rdev.stats.pas_ofld_conn_fails++;
3493 mutex_unlock(&dev->rdev.stats.lock);
3494 kfree_skb(rpl_skb);
3495 } else {
3496 cpl = (struct cpl_pass_accept_req *)cplhdr(rpl_skb);
3497 OPCODE_TID(cpl) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_REQ,
3498 (__force u32) htonl(
3499 (__force u32) req->tid)));
3500 ret = pass_accept_req(dev, rpl_skb);
3501 if (!ret)
3502 kfree_skb(rpl_skb);
3503 }
3504 return;
3505 }
3506
3507 static int deferred_fw6_msg(struct c4iw_dev *dev, struct sk_buff *skb)
3508 {
3509 struct cpl_fw6_msg *rpl = cplhdr(skb);
3510 struct cpl_fw6_msg_ofld_connection_wr_rpl *req;
3511
3512 switch (rpl->type) {
3513 case FW6_TYPE_CQE:
3514 c4iw_ev_dispatch(dev, (struct t4_cqe *)&rpl->data[0]);
3515 break;
3516 case FW6_TYPE_OFLD_CONNECTION_WR_RPL:
3517 req = (struct cpl_fw6_msg_ofld_connection_wr_rpl *)rpl->data;
3518 switch (req->t_state) {
3519 case TCP_SYN_SENT:
3520 active_ofld_conn_reply(dev, skb, req);
3521 break;
3522 case TCP_SYN_RECV:
3523 passive_ofld_conn_reply(dev, skb, req);
3524 break;
3525 default:
3526 pr_err("%s unexpected ofld conn wr state %d\n",
3527 __func__, req->t_state);
3528 break;
3529 }
3530 break;
3531 }
3532 return 0;
3533 }
3534
3535 static void build_cpl_pass_accept_req(struct sk_buff *skb, int stid , u8 tos)
3536 {
3537 __be32 l2info;
3538 __be16 hdr_len, vlantag, len;
3539 u16 eth_hdr_len;
3540 int tcp_hdr_len, ip_hdr_len;
3541 u8 intf;
3542 struct cpl_rx_pkt *cpl = cplhdr(skb);
3543 struct cpl_pass_accept_req *req;
3544 struct tcp_options_received tmp_opt;
3545 struct c4iw_dev *dev;
3546 enum chip_type type;
3547
3548 dev = *((struct c4iw_dev **) (skb->cb + sizeof(void *)));
3549 /* Store values from cpl_rx_pkt in temporary location. */
3550 vlantag = cpl->vlan;
3551 len = cpl->len;
3552 l2info = cpl->l2info;
3553 hdr_len = cpl->hdr_len;
3554 intf = cpl->iff;
3555
3556 __skb_pull(skb, sizeof(*req) + sizeof(struct rss_header));
3557
3558 /*
3559 * We need to parse the TCP options from SYN packet.
3560 * to generate cpl_pass_accept_req.
3561 */
3562 memset(&tmp_opt, 0, sizeof(tmp_opt));
3563 tcp_clear_options(&tmp_opt);
3564 tcp_parse_options(skb, &tmp_opt, 0, NULL);
3565
3566 req = (struct cpl_pass_accept_req *)__skb_push(skb, sizeof(*req));
3567 memset(req, 0, sizeof(*req));
3568 req->l2info = cpu_to_be16(SYN_INTF_V(intf) |
3569 SYN_MAC_IDX_V(RX_MACIDX_G(
3570 be32_to_cpu(l2info))) |
3571 SYN_XACT_MATCH_F);
3572 type = dev->rdev.lldi.adapter_type;
3573 tcp_hdr_len = RX_TCPHDR_LEN_G(be16_to_cpu(hdr_len));
3574 ip_hdr_len = RX_IPHDR_LEN_G(be16_to_cpu(hdr_len));
3575 req->hdr_len =
3576 cpu_to_be32(SYN_RX_CHAN_V(RX_CHAN_G(be32_to_cpu(l2info))));
3577 if (CHELSIO_CHIP_VERSION(type) <= CHELSIO_T5) {
3578 eth_hdr_len = is_t4(type) ?
3579 RX_ETHHDR_LEN_G(be32_to_cpu(l2info)) :
3580 RX_T5_ETHHDR_LEN_G(be32_to_cpu(l2info));
3581 req->hdr_len |= cpu_to_be32(TCP_HDR_LEN_V(tcp_hdr_len) |
3582 IP_HDR_LEN_V(ip_hdr_len) |
3583 ETH_HDR_LEN_V(eth_hdr_len));
3584 } else { /* T6 and later */
3585 eth_hdr_len = RX_T6_ETHHDR_LEN_G(be32_to_cpu(l2info));
3586 req->hdr_len |= cpu_to_be32(T6_TCP_HDR_LEN_V(tcp_hdr_len) |
3587 T6_IP_HDR_LEN_V(ip_hdr_len) |
3588 T6_ETH_HDR_LEN_V(eth_hdr_len));
3589 }
3590 req->vlan = vlantag;
3591 req->len = len;
3592 req->tos_stid = cpu_to_be32(PASS_OPEN_TID_V(stid) |
3593 PASS_OPEN_TOS_V(tos));
3594 req->tcpopt.mss = htons(tmp_opt.mss_clamp);
3595 if (tmp_opt.wscale_ok)
3596 req->tcpopt.wsf = tmp_opt.snd_wscale;
3597 req->tcpopt.tstamp = tmp_opt.saw_tstamp;
3598 if (tmp_opt.sack_ok)
3599 req->tcpopt.sack = 1;
3600 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_REQ, 0));
3601 return;
3602 }
3603
3604 static void send_fw_pass_open_req(struct c4iw_dev *dev, struct sk_buff *skb,
3605 __be32 laddr, __be16 lport,
3606 __be32 raddr, __be16 rport,
3607 u32 rcv_isn, u32 filter, u16 window,
3608 u32 rss_qid, u8 port_id)
3609 {
3610 struct sk_buff *req_skb;
3611 struct fw_ofld_connection_wr *req;
3612 struct cpl_pass_accept_req *cpl = cplhdr(skb);
3613 int ret;
3614
3615 req_skb = alloc_skb(sizeof(struct fw_ofld_connection_wr), GFP_KERNEL);
3616 req = (struct fw_ofld_connection_wr *)__skb_put(req_skb, sizeof(*req));
3617 memset(req, 0, sizeof(*req));
3618 req->op_compl = htonl(WR_OP_V(FW_OFLD_CONNECTION_WR) | FW_WR_COMPL_F);
3619 req->len16_pkd = htonl(FW_WR_LEN16_V(DIV_ROUND_UP(sizeof(*req), 16)));
3620 req->le.version_cpl = htonl(FW_OFLD_CONNECTION_WR_CPL_F);
3621 req->le.filter = (__force __be32) filter;
3622 req->le.lport = lport;
3623 req->le.pport = rport;
3624 req->le.u.ipv4.lip = laddr;
3625 req->le.u.ipv4.pip = raddr;
3626 req->tcb.rcv_nxt = htonl(rcv_isn + 1);
3627 req->tcb.rcv_adv = htons(window);
3628 req->tcb.t_state_to_astid =
3629 htonl(FW_OFLD_CONNECTION_WR_T_STATE_V(TCP_SYN_RECV) |
3630 FW_OFLD_CONNECTION_WR_RCV_SCALE_V(cpl->tcpopt.wsf) |
3631 FW_OFLD_CONNECTION_WR_ASTID_V(
3632 PASS_OPEN_TID_G(ntohl(cpl->tos_stid))));
3633
3634 /*
3635 * We store the qid in opt2 which will be used by the firmware
3636 * to send us the wr response.
3637 */
3638 req->tcb.opt2 = htonl(RSS_QUEUE_V(rss_qid));
3639
3640 /*
3641 * We initialize the MSS index in TCB to 0xF.
3642 * So that when driver sends cpl_pass_accept_rpl
3643 * TCB picks up the correct value. If this was 0
3644 * TP will ignore any value > 0 for MSS index.
3645 */
3646 req->tcb.opt0 = cpu_to_be64(MSS_IDX_V(0xF));
3647 req->cookie = (uintptr_t)skb;
3648
3649 set_wr_txq(req_skb, CPL_PRIORITY_CONTROL, port_id);
3650 ret = cxgb4_ofld_send(dev->rdev.lldi.ports[0], req_skb);
3651 if (ret < 0) {
3652 pr_err("%s - cxgb4_ofld_send error %d - dropping\n", __func__,
3653 ret);
3654 kfree_skb(skb);
3655 kfree_skb(req_skb);
3656 }
3657 }
3658
3659 /*
3660 * Handler for CPL_RX_PKT message. Need to handle cpl_rx_pkt
3661 * messages when a filter is being used instead of server to
3662 * redirect a syn packet. When packets hit filter they are redirected
3663 * to the offload queue and driver tries to establish the connection
3664 * using firmware work request.
3665 */
3666 static int rx_pkt(struct c4iw_dev *dev, struct sk_buff *skb)
3667 {
3668 int stid;
3669 unsigned int filter;
3670 struct ethhdr *eh = NULL;
3671 struct vlan_ethhdr *vlan_eh = NULL;
3672 struct iphdr *iph;
3673 struct tcphdr *tcph;
3674 struct rss_header *rss = (void *)skb->data;
3675 struct cpl_rx_pkt *cpl = (void *)skb->data;
3676 struct cpl_pass_accept_req *req = (void *)(rss + 1);
3677 struct l2t_entry *e;
3678 struct dst_entry *dst;
3679 struct c4iw_ep *lep;
3680 u16 window;
3681 struct port_info *pi;
3682 struct net_device *pdev;
3683 u16 rss_qid, eth_hdr_len;
3684 int step;
3685 u32 tx_chan;
3686 struct neighbour *neigh;
3687
3688 /* Drop all non-SYN packets */
3689 if (!(cpl->l2info & cpu_to_be32(RXF_SYN_F)))
3690 goto reject;
3691
3692 /*
3693 * Drop all packets which did not hit the filter.
3694 * Unlikely to happen.
3695 */
3696 if (!(rss->filter_hit && rss->filter_tid))
3697 goto reject;
3698
3699 /*
3700 * Calculate the server tid from filter hit index from cpl_rx_pkt.
3701 */
3702 stid = (__force int) cpu_to_be32((__force u32) rss->hash_val);
3703
3704 lep = (struct c4iw_ep *)lookup_stid(dev->rdev.lldi.tids, stid);
3705 if (!lep) {
3706 PDBG("%s connect request on invalid stid %d\n", __func__, stid);
3707 goto reject;
3708 }
3709
3710 switch (CHELSIO_CHIP_VERSION(dev->rdev.lldi.adapter_type)) {
3711 case CHELSIO_T4:
3712 eth_hdr_len = RX_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info));
3713 break;
3714 case CHELSIO_T5:
3715 eth_hdr_len = RX_T5_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info));
3716 break;
3717 case CHELSIO_T6:
3718 eth_hdr_len = RX_T6_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info));
3719 break;
3720 default:
3721 pr_err("T%d Chip is not supported\n",
3722 CHELSIO_CHIP_VERSION(dev->rdev.lldi.adapter_type));
3723 goto reject;
3724 }
3725
3726 if (eth_hdr_len == ETH_HLEN) {
3727 eh = (struct ethhdr *)(req + 1);
3728 iph = (struct iphdr *)(eh + 1);
3729 } else {
3730 vlan_eh = (struct vlan_ethhdr *)(req + 1);
3731 iph = (struct iphdr *)(vlan_eh + 1);
3732 skb->vlan_tci = ntohs(cpl->vlan);
3733 }
3734
3735 if (iph->version != 0x4)
3736 goto reject;
3737
3738 tcph = (struct tcphdr *)(iph + 1);
3739 skb_set_network_header(skb, (void *)iph - (void *)rss);
3740 skb_set_transport_header(skb, (void *)tcph - (void *)rss);
3741 skb_get(skb);
3742
3743 PDBG("%s lip 0x%x lport %u pip 0x%x pport %u tos %d\n", __func__,
3744 ntohl(iph->daddr), ntohs(tcph->dest), ntohl(iph->saddr),
3745 ntohs(tcph->source), iph->tos);
3746
3747 dst = find_route(dev, iph->daddr, iph->saddr, tcph->dest, tcph->source,
3748 iph->tos);
3749 if (!dst) {
3750 pr_err("%s - failed to find dst entry!\n",
3751 __func__);
3752 goto reject;
3753 }
3754 neigh = dst_neigh_lookup_skb(dst, skb);
3755
3756 if (!neigh) {
3757 pr_err("%s - failed to allocate neigh!\n",
3758 __func__);
3759 goto free_dst;
3760 }
3761
3762 if (neigh->dev->flags & IFF_LOOPBACK) {
3763 pdev = ip_dev_find(&init_net, iph->daddr);
3764 e = cxgb4_l2t_get(dev->rdev.lldi.l2t, neigh,
3765 pdev, 0);
3766 pi = (struct port_info *)netdev_priv(pdev);
3767 tx_chan = cxgb4_port_chan(pdev);
3768 dev_put(pdev);
3769 } else {
3770 pdev = get_real_dev(neigh->dev);
3771 e = cxgb4_l2t_get(dev->rdev.lldi.l2t, neigh,
3772 pdev, 0);
3773 pi = (struct port_info *)netdev_priv(pdev);
3774 tx_chan = cxgb4_port_chan(pdev);
3775 }
3776 neigh_release(neigh);
3777 if (!e) {
3778 pr_err("%s - failed to allocate l2t entry!\n",
3779 __func__);
3780 goto free_dst;
3781 }
3782
3783 step = dev->rdev.lldi.nrxq / dev->rdev.lldi.nchan;
3784 rss_qid = dev->rdev.lldi.rxq_ids[pi->port_id * step];
3785 window = (__force u16) htons((__force u16)tcph->window);
3786
3787 /* Calcuate filter portion for LE region. */
3788 filter = (__force unsigned int) cpu_to_be32(cxgb4_select_ntuple(
3789 dev->rdev.lldi.ports[0],
3790 e));
3791
3792 /*
3793 * Synthesize the cpl_pass_accept_req. We have everything except the
3794 * TID. Once firmware sends a reply with TID we update the TID field
3795 * in cpl and pass it through the regular cpl_pass_accept_req path.
3796 */
3797 build_cpl_pass_accept_req(skb, stid, iph->tos);
3798 send_fw_pass_open_req(dev, skb, iph->daddr, tcph->dest, iph->saddr,
3799 tcph->source, ntohl(tcph->seq), filter, window,
3800 rss_qid, pi->port_id);
3801 cxgb4_l2t_release(e);
3802 free_dst:
3803 dst_release(dst);
3804 reject:
3805 return 0;
3806 }
3807
3808 /*
3809 * These are the real handlers that are called from a
3810 * work queue.
3811 */
3812 static c4iw_handler_func work_handlers[NUM_CPL_CMDS] = {
3813 [CPL_ACT_ESTABLISH] = act_establish,
3814 [CPL_ACT_OPEN_RPL] = act_open_rpl,
3815 [CPL_RX_DATA] = rx_data,
3816 [CPL_ABORT_RPL_RSS] = abort_rpl,
3817 [CPL_ABORT_RPL] = abort_rpl,
3818 [CPL_PASS_OPEN_RPL] = pass_open_rpl,
3819 [CPL_CLOSE_LISTSRV_RPL] = close_listsrv_rpl,
3820 [CPL_PASS_ACCEPT_REQ] = pass_accept_req,
3821 [CPL_PASS_ESTABLISH] = pass_establish,
3822 [CPL_PEER_CLOSE] = peer_close,
3823 [CPL_ABORT_REQ_RSS] = peer_abort,
3824 [CPL_CLOSE_CON_RPL] = close_con_rpl,
3825 [CPL_RDMA_TERMINATE] = terminate,
3826 [CPL_FW4_ACK] = fw4_ack,
3827 [CPL_FW6_MSG] = deferred_fw6_msg,
3828 [CPL_RX_PKT] = rx_pkt
3829 };
3830
3831 static void process_timeout(struct c4iw_ep *ep)
3832 {
3833 struct c4iw_qp_attributes attrs;
3834 int abort = 1;
3835
3836 mutex_lock(&ep->com.mutex);
3837 PDBG("%s ep %p tid %u state %d\n", __func__, ep, ep->hwtid,
3838 ep->com.state);
3839 set_bit(TIMEDOUT, &ep->com.history);
3840 switch (ep->com.state) {
3841 case MPA_REQ_SENT:
3842 __state_set(&ep->com, ABORTING);
3843 connect_reply_upcall(ep, -ETIMEDOUT);
3844 break;
3845 case MPA_REQ_WAIT:
3846 __state_set(&ep->com, ABORTING);
3847 break;
3848 case CLOSING:
3849 case MORIBUND:
3850 if (ep->com.cm_id && ep->com.qp) {
3851 attrs.next_state = C4IW_QP_STATE_ERROR;
3852 c4iw_modify_qp(ep->com.qp->rhp,
3853 ep->com.qp, C4IW_QP_ATTR_NEXT_STATE,
3854 &attrs, 1);
3855 }
3856 __state_set(&ep->com, ABORTING);
3857 close_complete_upcall(ep, -ETIMEDOUT);
3858 break;
3859 case ABORTING:
3860 case DEAD:
3861
3862 /*
3863 * These states are expected if the ep timed out at the same
3864 * time as another thread was calling stop_ep_timer().
3865 * So we silently do nothing for these states.
3866 */
3867 abort = 0;
3868 break;
3869 default:
3870 WARN(1, "%s unexpected state ep %p tid %u state %u\n",
3871 __func__, ep, ep->hwtid, ep->com.state);
3872 abort = 0;
3873 }
3874 if (abort)
3875 abort_connection(ep, NULL, GFP_KERNEL);
3876 mutex_unlock(&ep->com.mutex);
3877 c4iw_put_ep(&ep->com);
3878 }
3879
3880 static void process_timedout_eps(void)
3881 {
3882 struct c4iw_ep *ep;
3883
3884 spin_lock_irq(&timeout_lock);
3885 while (!list_empty(&timeout_list)) {
3886 struct list_head *tmp;
3887
3888 tmp = timeout_list.next;
3889 list_del(tmp);
3890 tmp->next = NULL;
3891 tmp->prev = NULL;
3892 spin_unlock_irq(&timeout_lock);
3893 ep = list_entry(tmp, struct c4iw_ep, entry);
3894 process_timeout(ep);
3895 spin_lock_irq(&timeout_lock);
3896 }
3897 spin_unlock_irq(&timeout_lock);
3898 }
3899
3900 static void process_work(struct work_struct *work)
3901 {
3902 struct sk_buff *skb = NULL;
3903 struct c4iw_dev *dev;
3904 struct cpl_act_establish *rpl;
3905 unsigned int opcode;
3906 int ret;
3907
3908 process_timedout_eps();
3909 while ((skb = skb_dequeue(&rxq))) {
3910 rpl = cplhdr(skb);
3911 dev = *((struct c4iw_dev **) (skb->cb + sizeof(void *)));
3912 opcode = rpl->ot.opcode;
3913
3914 BUG_ON(!work_handlers[opcode]);
3915 ret = work_handlers[opcode](dev, skb);
3916 if (!ret)
3917 kfree_skb(skb);
3918 process_timedout_eps();
3919 }
3920 }
3921
3922 static DECLARE_WORK(skb_work, process_work);
3923
3924 static void ep_timeout(unsigned long arg)
3925 {
3926 struct c4iw_ep *ep = (struct c4iw_ep *)arg;
3927 int kickit = 0;
3928
3929 spin_lock(&timeout_lock);
3930 if (!test_and_set_bit(TIMEOUT, &ep->com.flags)) {
3931 /*
3932 * Only insert if it is not already on the list.
3933 */
3934 if (!ep->entry.next) {
3935 list_add_tail(&ep->entry, &timeout_list);
3936 kickit = 1;
3937 }
3938 }
3939 spin_unlock(&timeout_lock);
3940 if (kickit)
3941 queue_work(workq, &skb_work);
3942 }
3943
3944 /*
3945 * All the CM events are handled on a work queue to have a safe context.
3946 */
3947 static int sched(struct c4iw_dev *dev, struct sk_buff *skb)
3948 {
3949
3950 /*
3951 * Save dev in the skb->cb area.
3952 */
3953 *((struct c4iw_dev **) (skb->cb + sizeof(void *))) = dev;
3954
3955 /*
3956 * Queue the skb and schedule the worker thread.
3957 */
3958 skb_queue_tail(&rxq, skb);
3959 queue_work(workq, &skb_work);
3960 return 0;
3961 }
3962
3963 static int set_tcb_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
3964 {
3965 struct cpl_set_tcb_rpl *rpl = cplhdr(skb);
3966
3967 if (rpl->status != CPL_ERR_NONE) {
3968 printk(KERN_ERR MOD "Unexpected SET_TCB_RPL status %u "
3969 "for tid %u\n", rpl->status, GET_TID(rpl));
3970 }
3971 kfree_skb(skb);
3972 return 0;
3973 }
3974
3975 static int fw6_msg(struct c4iw_dev *dev, struct sk_buff *skb)
3976 {
3977 struct cpl_fw6_msg *rpl = cplhdr(skb);
3978 struct c4iw_wr_wait *wr_waitp;
3979 int ret;
3980
3981 PDBG("%s type %u\n", __func__, rpl->type);
3982
3983 switch (rpl->type) {
3984 case FW6_TYPE_WR_RPL:
3985 ret = (int)((be64_to_cpu(rpl->data[0]) >> 8) & 0xff);
3986 wr_waitp = (struct c4iw_wr_wait *)(__force unsigned long) rpl->data[1];
3987 PDBG("%s wr_waitp %p ret %u\n", __func__, wr_waitp, ret);
3988 if (wr_waitp)
3989 c4iw_wake_up(wr_waitp, ret ? -ret : 0);
3990 kfree_skb(skb);
3991 break;
3992 case FW6_TYPE_CQE:
3993 case FW6_TYPE_OFLD_CONNECTION_WR_RPL:
3994 sched(dev, skb);
3995 break;
3996 default:
3997 printk(KERN_ERR MOD "%s unexpected fw6 msg type %u\n", __func__,
3998 rpl->type);
3999 kfree_skb(skb);
4000 break;
4001 }
4002 return 0;
4003 }
4004
4005 static int peer_abort_intr(struct c4iw_dev *dev, struct sk_buff *skb)
4006 {
4007 struct cpl_abort_req_rss *req = cplhdr(skb);
4008 struct c4iw_ep *ep;
4009 struct tid_info *t = dev->rdev.lldi.tids;
4010 unsigned int tid = GET_TID(req);
4011
4012 ep = lookup_tid(t, tid);
4013 if (!ep) {
4014 printk(KERN_WARNING MOD
4015 "Abort on non-existent endpoint, tid %d\n", tid);
4016 kfree_skb(skb);
4017 return 0;
4018 }
4019 if (is_neg_adv(req->status)) {
4020 PDBG("%s Negative advice on abort- tid %u status %d (%s)\n",
4021 __func__, ep->hwtid, req->status,
4022 neg_adv_str(req->status));
4023 ep->stats.abort_neg_adv++;
4024 dev->rdev.stats.neg_adv++;
4025 kfree_skb(skb);
4026 return 0;
4027 }
4028 PDBG("%s ep %p tid %u state %u\n", __func__, ep, ep->hwtid,
4029 ep->com.state);
4030
4031 /*
4032 * Wake up any threads in rdma_init() or rdma_fini().
4033 * However, if we are on MPAv2 and want to retry with MPAv1
4034 * then, don't wake up yet.
4035 */
4036 if (mpa_rev == 2 && !ep->tried_with_mpa_v1) {
4037 if (ep->com.state != MPA_REQ_SENT)
4038 c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET);
4039 } else
4040 c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET);
4041 sched(dev, skb);
4042 return 0;
4043 }
4044
4045 /*
4046 * Most upcalls from the T4 Core go to sched() to
4047 * schedule the processing on a work queue.
4048 */
4049 c4iw_handler_func c4iw_handlers[NUM_CPL_CMDS] = {
4050 [CPL_ACT_ESTABLISH] = sched,
4051 [CPL_ACT_OPEN_RPL] = sched,
4052 [CPL_RX_DATA] = sched,
4053 [CPL_ABORT_RPL_RSS] = sched,
4054 [CPL_ABORT_RPL] = sched,
4055 [CPL_PASS_OPEN_RPL] = sched,
4056 [CPL_CLOSE_LISTSRV_RPL] = sched,
4057 [CPL_PASS_ACCEPT_REQ] = sched,
4058 [CPL_PASS_ESTABLISH] = sched,
4059 [CPL_PEER_CLOSE] = sched,
4060 [CPL_CLOSE_CON_RPL] = sched,
4061 [CPL_ABORT_REQ_RSS] = peer_abort_intr,
4062 [CPL_RDMA_TERMINATE] = sched,
4063 [CPL_FW4_ACK] = sched,
4064 [CPL_SET_TCB_RPL] = set_tcb_rpl,
4065 [CPL_FW6_MSG] = fw6_msg,
4066 [CPL_RX_PKT] = sched
4067 };
4068
4069 int __init c4iw_cm_init(void)
4070 {
4071 spin_lock_init(&timeout_lock);
4072 skb_queue_head_init(&rxq);
4073
4074 workq = create_singlethread_workqueue("iw_cxgb4");
4075 if (!workq)
4076 return -ENOMEM;
4077
4078 return 0;
4079 }
4080
4081 void c4iw_cm_term(void)
4082 {
4083 WARN_ON(!list_empty(&timeout_list));
4084 flush_workqueue(workq);
4085 destroy_workqueue(workq);
4086 }
This page took 0.114027 seconds and 4 git commands to generate.