Merge tag 'for-linus' of git://github.com/prasad-joshi/logfs_upstream
[deliverable/linux.git] / drivers / infiniband / hw / cxgb4 / cm.c
1 /*
2 * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32 #include <linux/module.h>
33 #include <linux/list.h>
34 #include <linux/workqueue.h>
35 #include <linux/skbuff.h>
36 #include <linux/timer.h>
37 #include <linux/notifier.h>
38 #include <linux/inetdevice.h>
39 #include <linux/ip.h>
40 #include <linux/tcp.h>
41
42 #include <net/neighbour.h>
43 #include <net/netevent.h>
44 #include <net/route.h>
45
46 #include "iw_cxgb4.h"
47
48 static char *states[] = {
49 "idle",
50 "listen",
51 "connecting",
52 "mpa_wait_req",
53 "mpa_req_sent",
54 "mpa_req_rcvd",
55 "mpa_rep_sent",
56 "fpdu_mode",
57 "aborting",
58 "closing",
59 "moribund",
60 "dead",
61 NULL,
62 };
63
64 static int dack_mode = 1;
65 module_param(dack_mode, int, 0644);
66 MODULE_PARM_DESC(dack_mode, "Delayed ack mode (default=1)");
67
68 int c4iw_max_read_depth = 8;
69 module_param(c4iw_max_read_depth, int, 0644);
70 MODULE_PARM_DESC(c4iw_max_read_depth, "Per-connection max ORD/IRD (default=8)");
71
72 static int enable_tcp_timestamps;
73 module_param(enable_tcp_timestamps, int, 0644);
74 MODULE_PARM_DESC(enable_tcp_timestamps, "Enable tcp timestamps (default=0)");
75
76 static int enable_tcp_sack;
77 module_param(enable_tcp_sack, int, 0644);
78 MODULE_PARM_DESC(enable_tcp_sack, "Enable tcp SACK (default=0)");
79
80 static int enable_tcp_window_scaling = 1;
81 module_param(enable_tcp_window_scaling, int, 0644);
82 MODULE_PARM_DESC(enable_tcp_window_scaling,
83 "Enable tcp window scaling (default=1)");
84
85 int c4iw_debug;
86 module_param(c4iw_debug, int, 0644);
87 MODULE_PARM_DESC(c4iw_debug, "Enable debug logging (default=0)");
88
89 static int peer2peer;
90 module_param(peer2peer, int, 0644);
91 MODULE_PARM_DESC(peer2peer, "Support peer2peer ULPs (default=0)");
92
93 static int p2p_type = FW_RI_INIT_P2PTYPE_READ_REQ;
94 module_param(p2p_type, int, 0644);
95 MODULE_PARM_DESC(p2p_type, "RDMAP opcode to use for the RTR message: "
96 "1=RDMA_READ 0=RDMA_WRITE (default 1)");
97
98 static int ep_timeout_secs = 60;
99 module_param(ep_timeout_secs, int, 0644);
100 MODULE_PARM_DESC(ep_timeout_secs, "CM Endpoint operation timeout "
101 "in seconds (default=60)");
102
103 static int mpa_rev = 1;
104 module_param(mpa_rev, int, 0644);
105 MODULE_PARM_DESC(mpa_rev, "MPA Revision, 0 supports amso1100, "
106 "1 is RFC0544 spec compliant, 2 is IETF MPA Peer Connect Draft"
107 " compliant (default=1)");
108
109 static int markers_enabled;
110 module_param(markers_enabled, int, 0644);
111 MODULE_PARM_DESC(markers_enabled, "Enable MPA MARKERS (default(0)=disabled)");
112
113 static int crc_enabled = 1;
114 module_param(crc_enabled, int, 0644);
115 MODULE_PARM_DESC(crc_enabled, "Enable MPA CRC (default(1)=enabled)");
116
117 static int rcv_win = 256 * 1024;
118 module_param(rcv_win, int, 0644);
119 MODULE_PARM_DESC(rcv_win, "TCP receive window in bytes (default=256KB)");
120
121 static int snd_win = 128 * 1024;
122 module_param(snd_win, int, 0644);
123 MODULE_PARM_DESC(snd_win, "TCP send window in bytes (default=128KB)");
124
125 static struct workqueue_struct *workq;
126
127 static struct sk_buff_head rxq;
128
129 static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp);
130 static void ep_timeout(unsigned long arg);
131 static void connect_reply_upcall(struct c4iw_ep *ep, int status);
132
133 static LIST_HEAD(timeout_list);
134 static spinlock_t timeout_lock;
135
136 static void start_ep_timer(struct c4iw_ep *ep)
137 {
138 PDBG("%s ep %p\n", __func__, ep);
139 if (timer_pending(&ep->timer)) {
140 PDBG("%s stopped / restarted timer ep %p\n", __func__, ep);
141 del_timer_sync(&ep->timer);
142 } else
143 c4iw_get_ep(&ep->com);
144 ep->timer.expires = jiffies + ep_timeout_secs * HZ;
145 ep->timer.data = (unsigned long)ep;
146 ep->timer.function = ep_timeout;
147 add_timer(&ep->timer);
148 }
149
150 static void stop_ep_timer(struct c4iw_ep *ep)
151 {
152 PDBG("%s ep %p\n", __func__, ep);
153 if (!timer_pending(&ep->timer)) {
154 printk(KERN_ERR "%s timer stopped when its not running! "
155 "ep %p state %u\n", __func__, ep, ep->com.state);
156 WARN_ON(1);
157 return;
158 }
159 del_timer_sync(&ep->timer);
160 c4iw_put_ep(&ep->com);
161 }
162
163 static int c4iw_l2t_send(struct c4iw_rdev *rdev, struct sk_buff *skb,
164 struct l2t_entry *l2e)
165 {
166 int error = 0;
167
168 if (c4iw_fatal_error(rdev)) {
169 kfree_skb(skb);
170 PDBG("%s - device in error state - dropping\n", __func__);
171 return -EIO;
172 }
173 error = cxgb4_l2t_send(rdev->lldi.ports[0], skb, l2e);
174 if (error < 0)
175 kfree_skb(skb);
176 return error < 0 ? error : 0;
177 }
178
179 int c4iw_ofld_send(struct c4iw_rdev *rdev, struct sk_buff *skb)
180 {
181 int error = 0;
182
183 if (c4iw_fatal_error(rdev)) {
184 kfree_skb(skb);
185 PDBG("%s - device in error state - dropping\n", __func__);
186 return -EIO;
187 }
188 error = cxgb4_ofld_send(rdev->lldi.ports[0], skb);
189 if (error < 0)
190 kfree_skb(skb);
191 return error < 0 ? error : 0;
192 }
193
194 static void release_tid(struct c4iw_rdev *rdev, u32 hwtid, struct sk_buff *skb)
195 {
196 struct cpl_tid_release *req;
197
198 skb = get_skb(skb, sizeof *req, GFP_KERNEL);
199 if (!skb)
200 return;
201 req = (struct cpl_tid_release *) skb_put(skb, sizeof(*req));
202 INIT_TP_WR(req, hwtid);
203 OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_TID_RELEASE, hwtid));
204 set_wr_txq(skb, CPL_PRIORITY_SETUP, 0);
205 c4iw_ofld_send(rdev, skb);
206 return;
207 }
208
209 static void set_emss(struct c4iw_ep *ep, u16 opt)
210 {
211 ep->emss = ep->com.dev->rdev.lldi.mtus[GET_TCPOPT_MSS(opt)] - 40;
212 ep->mss = ep->emss;
213 if (GET_TCPOPT_TSTAMP(opt))
214 ep->emss -= 12;
215 if (ep->emss < 128)
216 ep->emss = 128;
217 PDBG("%s mss_idx %u mss %u emss=%u\n", __func__, GET_TCPOPT_MSS(opt),
218 ep->mss, ep->emss);
219 }
220
221 static enum c4iw_ep_state state_read(struct c4iw_ep_common *epc)
222 {
223 enum c4iw_ep_state state;
224
225 mutex_lock(&epc->mutex);
226 state = epc->state;
227 mutex_unlock(&epc->mutex);
228 return state;
229 }
230
231 static void __state_set(struct c4iw_ep_common *epc, enum c4iw_ep_state new)
232 {
233 epc->state = new;
234 }
235
236 static void state_set(struct c4iw_ep_common *epc, enum c4iw_ep_state new)
237 {
238 mutex_lock(&epc->mutex);
239 PDBG("%s - %s -> %s\n", __func__, states[epc->state], states[new]);
240 __state_set(epc, new);
241 mutex_unlock(&epc->mutex);
242 return;
243 }
244
245 static void *alloc_ep(int size, gfp_t gfp)
246 {
247 struct c4iw_ep_common *epc;
248
249 epc = kzalloc(size, gfp);
250 if (epc) {
251 kref_init(&epc->kref);
252 mutex_init(&epc->mutex);
253 c4iw_init_wr_wait(&epc->wr_wait);
254 }
255 PDBG("%s alloc ep %p\n", __func__, epc);
256 return epc;
257 }
258
259 void _c4iw_free_ep(struct kref *kref)
260 {
261 struct c4iw_ep *ep;
262
263 ep = container_of(kref, struct c4iw_ep, com.kref);
264 PDBG("%s ep %p state %s\n", __func__, ep, states[state_read(&ep->com)]);
265 if (test_bit(RELEASE_RESOURCES, &ep->com.flags)) {
266 cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, ep->hwtid);
267 dst_release(ep->dst);
268 cxgb4_l2t_release(ep->l2t);
269 }
270 kfree(ep);
271 }
272
273 static void release_ep_resources(struct c4iw_ep *ep)
274 {
275 set_bit(RELEASE_RESOURCES, &ep->com.flags);
276 c4iw_put_ep(&ep->com);
277 }
278
279 static int status2errno(int status)
280 {
281 switch (status) {
282 case CPL_ERR_NONE:
283 return 0;
284 case CPL_ERR_CONN_RESET:
285 return -ECONNRESET;
286 case CPL_ERR_ARP_MISS:
287 return -EHOSTUNREACH;
288 case CPL_ERR_CONN_TIMEDOUT:
289 return -ETIMEDOUT;
290 case CPL_ERR_TCAM_FULL:
291 return -ENOMEM;
292 case CPL_ERR_CONN_EXIST:
293 return -EADDRINUSE;
294 default:
295 return -EIO;
296 }
297 }
298
299 /*
300 * Try and reuse skbs already allocated...
301 */
302 static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp)
303 {
304 if (skb && !skb_is_nonlinear(skb) && !skb_cloned(skb)) {
305 skb_trim(skb, 0);
306 skb_get(skb);
307 skb_reset_transport_header(skb);
308 } else {
309 skb = alloc_skb(len, gfp);
310 }
311 return skb;
312 }
313
314 static struct rtable *find_route(struct c4iw_dev *dev, __be32 local_ip,
315 __be32 peer_ip, __be16 local_port,
316 __be16 peer_port, u8 tos)
317 {
318 struct rtable *rt;
319 struct flowi4 fl4;
320
321 rt = ip_route_output_ports(&init_net, &fl4, NULL, peer_ip, local_ip,
322 peer_port, local_port, IPPROTO_TCP,
323 tos, 0);
324 if (IS_ERR(rt))
325 return NULL;
326 return rt;
327 }
328
329 static void arp_failure_discard(void *handle, struct sk_buff *skb)
330 {
331 PDBG("%s c4iw_dev %p\n", __func__, handle);
332 kfree_skb(skb);
333 }
334
335 /*
336 * Handle an ARP failure for an active open.
337 */
338 static void act_open_req_arp_failure(void *handle, struct sk_buff *skb)
339 {
340 printk(KERN_ERR MOD "ARP failure duing connect\n");
341 kfree_skb(skb);
342 }
343
344 /*
345 * Handle an ARP failure for a CPL_ABORT_REQ. Change it into a no RST variant
346 * and send it along.
347 */
348 static void abort_arp_failure(void *handle, struct sk_buff *skb)
349 {
350 struct c4iw_rdev *rdev = handle;
351 struct cpl_abort_req *req = cplhdr(skb);
352
353 PDBG("%s rdev %p\n", __func__, rdev);
354 req->cmd = CPL_ABORT_NO_RST;
355 c4iw_ofld_send(rdev, skb);
356 }
357
358 static void send_flowc(struct c4iw_ep *ep, struct sk_buff *skb)
359 {
360 unsigned int flowclen = 80;
361 struct fw_flowc_wr *flowc;
362 int i;
363
364 skb = get_skb(skb, flowclen, GFP_KERNEL);
365 flowc = (struct fw_flowc_wr *)__skb_put(skb, flowclen);
366
367 flowc->op_to_nparams = cpu_to_be32(FW_WR_OP(FW_FLOWC_WR) |
368 FW_FLOWC_WR_NPARAMS(8));
369 flowc->flowid_len16 = cpu_to_be32(FW_WR_LEN16(DIV_ROUND_UP(flowclen,
370 16)) | FW_WR_FLOWID(ep->hwtid));
371
372 flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN;
373 flowc->mnemval[0].val = cpu_to_be32(PCI_FUNC(ep->com.dev->rdev.lldi.pdev->devfn) << 8);
374 flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH;
375 flowc->mnemval[1].val = cpu_to_be32(ep->tx_chan);
376 flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT;
377 flowc->mnemval[2].val = cpu_to_be32(ep->tx_chan);
378 flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID;
379 flowc->mnemval[3].val = cpu_to_be32(ep->rss_qid);
380 flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_SNDNXT;
381 flowc->mnemval[4].val = cpu_to_be32(ep->snd_seq);
382 flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_RCVNXT;
383 flowc->mnemval[5].val = cpu_to_be32(ep->rcv_seq);
384 flowc->mnemval[6].mnemonic = FW_FLOWC_MNEM_SNDBUF;
385 flowc->mnemval[6].val = cpu_to_be32(snd_win);
386 flowc->mnemval[7].mnemonic = FW_FLOWC_MNEM_MSS;
387 flowc->mnemval[7].val = cpu_to_be32(ep->emss);
388 /* Pad WR to 16 byte boundary */
389 flowc->mnemval[8].mnemonic = 0;
390 flowc->mnemval[8].val = 0;
391 for (i = 0; i < 9; i++) {
392 flowc->mnemval[i].r4[0] = 0;
393 flowc->mnemval[i].r4[1] = 0;
394 flowc->mnemval[i].r4[2] = 0;
395 }
396
397 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
398 c4iw_ofld_send(&ep->com.dev->rdev, skb);
399 }
400
401 static int send_halfclose(struct c4iw_ep *ep, gfp_t gfp)
402 {
403 struct cpl_close_con_req *req;
404 struct sk_buff *skb;
405 int wrlen = roundup(sizeof *req, 16);
406
407 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
408 skb = get_skb(NULL, wrlen, gfp);
409 if (!skb) {
410 printk(KERN_ERR MOD "%s - failed to alloc skb\n", __func__);
411 return -ENOMEM;
412 }
413 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
414 t4_set_arp_err_handler(skb, NULL, arp_failure_discard);
415 req = (struct cpl_close_con_req *) skb_put(skb, wrlen);
416 memset(req, 0, wrlen);
417 INIT_TP_WR(req, ep->hwtid);
418 OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_CLOSE_CON_REQ,
419 ep->hwtid));
420 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
421 }
422
423 static int send_abort(struct c4iw_ep *ep, struct sk_buff *skb, gfp_t gfp)
424 {
425 struct cpl_abort_req *req;
426 int wrlen = roundup(sizeof *req, 16);
427
428 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
429 skb = get_skb(skb, wrlen, gfp);
430 if (!skb) {
431 printk(KERN_ERR MOD "%s - failed to alloc skb.\n",
432 __func__);
433 return -ENOMEM;
434 }
435 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
436 t4_set_arp_err_handler(skb, &ep->com.dev->rdev, abort_arp_failure);
437 req = (struct cpl_abort_req *) skb_put(skb, wrlen);
438 memset(req, 0, wrlen);
439 INIT_TP_WR(req, ep->hwtid);
440 OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_ABORT_REQ, ep->hwtid));
441 req->cmd = CPL_ABORT_SEND_RST;
442 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
443 }
444
445 static int send_connect(struct c4iw_ep *ep)
446 {
447 struct cpl_act_open_req *req;
448 struct sk_buff *skb;
449 u64 opt0;
450 u32 opt2;
451 unsigned int mtu_idx;
452 int wscale;
453 int wrlen = roundup(sizeof *req, 16);
454
455 PDBG("%s ep %p atid %u\n", __func__, ep, ep->atid);
456
457 skb = get_skb(NULL, wrlen, GFP_KERNEL);
458 if (!skb) {
459 printk(KERN_ERR MOD "%s - failed to alloc skb.\n",
460 __func__);
461 return -ENOMEM;
462 }
463 set_wr_txq(skb, CPL_PRIORITY_SETUP, ep->ctrlq_idx);
464
465 cxgb4_best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx);
466 wscale = compute_wscale(rcv_win);
467 opt0 = KEEP_ALIVE(1) |
468 DELACK(1) |
469 WND_SCALE(wscale) |
470 MSS_IDX(mtu_idx) |
471 L2T_IDX(ep->l2t->idx) |
472 TX_CHAN(ep->tx_chan) |
473 SMAC_SEL(ep->smac_idx) |
474 DSCP(ep->tos) |
475 ULP_MODE(ULP_MODE_TCPDDP) |
476 RCV_BUFSIZ(rcv_win>>10);
477 opt2 = RX_CHANNEL(0) |
478 RSS_QUEUE_VALID | RSS_QUEUE(ep->rss_qid);
479 if (enable_tcp_timestamps)
480 opt2 |= TSTAMPS_EN(1);
481 if (enable_tcp_sack)
482 opt2 |= SACK_EN(1);
483 if (wscale && enable_tcp_window_scaling)
484 opt2 |= WND_SCALE_EN(1);
485 t4_set_arp_err_handler(skb, NULL, act_open_req_arp_failure);
486
487 req = (struct cpl_act_open_req *) skb_put(skb, wrlen);
488 INIT_TP_WR(req, 0);
489 OPCODE_TID(req) = cpu_to_be32(
490 MK_OPCODE_TID(CPL_ACT_OPEN_REQ, ((ep->rss_qid<<14)|ep->atid)));
491 req->local_port = ep->com.local_addr.sin_port;
492 req->peer_port = ep->com.remote_addr.sin_port;
493 req->local_ip = ep->com.local_addr.sin_addr.s_addr;
494 req->peer_ip = ep->com.remote_addr.sin_addr.s_addr;
495 req->opt0 = cpu_to_be64(opt0);
496 req->params = 0;
497 req->opt2 = cpu_to_be32(opt2);
498 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
499 }
500
501 static void send_mpa_req(struct c4iw_ep *ep, struct sk_buff *skb,
502 u8 mpa_rev_to_use)
503 {
504 int mpalen, wrlen;
505 struct fw_ofld_tx_data_wr *req;
506 struct mpa_message *mpa;
507 struct mpa_v2_conn_params mpa_v2_params;
508
509 PDBG("%s ep %p tid %u pd_len %d\n", __func__, ep, ep->hwtid, ep->plen);
510
511 BUG_ON(skb_cloned(skb));
512
513 mpalen = sizeof(*mpa) + ep->plen;
514 if (mpa_rev_to_use == 2)
515 mpalen += sizeof(struct mpa_v2_conn_params);
516 wrlen = roundup(mpalen + sizeof *req, 16);
517 skb = get_skb(skb, wrlen, GFP_KERNEL);
518 if (!skb) {
519 connect_reply_upcall(ep, -ENOMEM);
520 return;
521 }
522 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
523
524 req = (struct fw_ofld_tx_data_wr *)skb_put(skb, wrlen);
525 memset(req, 0, wrlen);
526 req->op_to_immdlen = cpu_to_be32(
527 FW_WR_OP(FW_OFLD_TX_DATA_WR) |
528 FW_WR_COMPL(1) |
529 FW_WR_IMMDLEN(mpalen));
530 req->flowid_len16 = cpu_to_be32(
531 FW_WR_FLOWID(ep->hwtid) |
532 FW_WR_LEN16(wrlen >> 4));
533 req->plen = cpu_to_be32(mpalen);
534 req->tunnel_to_proxy = cpu_to_be32(
535 FW_OFLD_TX_DATA_WR_FLUSH(1) |
536 FW_OFLD_TX_DATA_WR_SHOVE(1));
537
538 mpa = (struct mpa_message *)(req + 1);
539 memcpy(mpa->key, MPA_KEY_REQ, sizeof(mpa->key));
540 mpa->flags = (crc_enabled ? MPA_CRC : 0) |
541 (markers_enabled ? MPA_MARKERS : 0) |
542 (mpa_rev_to_use == 2 ? MPA_ENHANCED_RDMA_CONN : 0);
543 mpa->private_data_size = htons(ep->plen);
544 mpa->revision = mpa_rev_to_use;
545 if (mpa_rev_to_use == 1) {
546 ep->tried_with_mpa_v1 = 1;
547 ep->retry_with_mpa_v1 = 0;
548 }
549
550 if (mpa_rev_to_use == 2) {
551 mpa->private_data_size = htons(ntohs(mpa->private_data_size) +
552 sizeof (struct mpa_v2_conn_params));
553 mpa_v2_params.ird = htons((u16)ep->ird);
554 mpa_v2_params.ord = htons((u16)ep->ord);
555
556 if (peer2peer) {
557 mpa_v2_params.ird |= htons(MPA_V2_PEER2PEER_MODEL);
558 if (p2p_type == FW_RI_INIT_P2PTYPE_RDMA_WRITE)
559 mpa_v2_params.ord |=
560 htons(MPA_V2_RDMA_WRITE_RTR);
561 else if (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ)
562 mpa_v2_params.ord |=
563 htons(MPA_V2_RDMA_READ_RTR);
564 }
565 memcpy(mpa->private_data, &mpa_v2_params,
566 sizeof(struct mpa_v2_conn_params));
567
568 if (ep->plen)
569 memcpy(mpa->private_data +
570 sizeof(struct mpa_v2_conn_params),
571 ep->mpa_pkt + sizeof(*mpa), ep->plen);
572 } else
573 if (ep->plen)
574 memcpy(mpa->private_data,
575 ep->mpa_pkt + sizeof(*mpa), ep->plen);
576
577 /*
578 * Reference the mpa skb. This ensures the data area
579 * will remain in memory until the hw acks the tx.
580 * Function fw4_ack() will deref it.
581 */
582 skb_get(skb);
583 t4_set_arp_err_handler(skb, NULL, arp_failure_discard);
584 BUG_ON(ep->mpa_skb);
585 ep->mpa_skb = skb;
586 c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
587 start_ep_timer(ep);
588 state_set(&ep->com, MPA_REQ_SENT);
589 ep->mpa_attr.initiator = 1;
590 return;
591 }
592
593 static int send_mpa_reject(struct c4iw_ep *ep, const void *pdata, u8 plen)
594 {
595 int mpalen, wrlen;
596 struct fw_ofld_tx_data_wr *req;
597 struct mpa_message *mpa;
598 struct sk_buff *skb;
599 struct mpa_v2_conn_params mpa_v2_params;
600
601 PDBG("%s ep %p tid %u pd_len %d\n", __func__, ep, ep->hwtid, ep->plen);
602
603 mpalen = sizeof(*mpa) + plen;
604 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn)
605 mpalen += sizeof(struct mpa_v2_conn_params);
606 wrlen = roundup(mpalen + sizeof *req, 16);
607
608 skb = get_skb(NULL, wrlen, GFP_KERNEL);
609 if (!skb) {
610 printk(KERN_ERR MOD "%s - cannot alloc skb!\n", __func__);
611 return -ENOMEM;
612 }
613 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
614
615 req = (struct fw_ofld_tx_data_wr *)skb_put(skb, wrlen);
616 memset(req, 0, wrlen);
617 req->op_to_immdlen = cpu_to_be32(
618 FW_WR_OP(FW_OFLD_TX_DATA_WR) |
619 FW_WR_COMPL(1) |
620 FW_WR_IMMDLEN(mpalen));
621 req->flowid_len16 = cpu_to_be32(
622 FW_WR_FLOWID(ep->hwtid) |
623 FW_WR_LEN16(wrlen >> 4));
624 req->plen = cpu_to_be32(mpalen);
625 req->tunnel_to_proxy = cpu_to_be32(
626 FW_OFLD_TX_DATA_WR_FLUSH(1) |
627 FW_OFLD_TX_DATA_WR_SHOVE(1));
628
629 mpa = (struct mpa_message *)(req + 1);
630 memset(mpa, 0, sizeof(*mpa));
631 memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key));
632 mpa->flags = MPA_REJECT;
633 mpa->revision = mpa_rev;
634 mpa->private_data_size = htons(plen);
635
636 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) {
637 mpa->flags |= MPA_ENHANCED_RDMA_CONN;
638 mpa->private_data_size = htons(ntohs(mpa->private_data_size) +
639 sizeof (struct mpa_v2_conn_params));
640 mpa_v2_params.ird = htons(((u16)ep->ird) |
641 (peer2peer ? MPA_V2_PEER2PEER_MODEL :
642 0));
643 mpa_v2_params.ord = htons(((u16)ep->ord) | (peer2peer ?
644 (p2p_type ==
645 FW_RI_INIT_P2PTYPE_RDMA_WRITE ?
646 MPA_V2_RDMA_WRITE_RTR : p2p_type ==
647 FW_RI_INIT_P2PTYPE_READ_REQ ?
648 MPA_V2_RDMA_READ_RTR : 0) : 0));
649 memcpy(mpa->private_data, &mpa_v2_params,
650 sizeof(struct mpa_v2_conn_params));
651
652 if (ep->plen)
653 memcpy(mpa->private_data +
654 sizeof(struct mpa_v2_conn_params), pdata, plen);
655 } else
656 if (plen)
657 memcpy(mpa->private_data, pdata, plen);
658
659 /*
660 * Reference the mpa skb again. This ensures the data area
661 * will remain in memory until the hw acks the tx.
662 * Function fw4_ack() will deref it.
663 */
664 skb_get(skb);
665 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
666 t4_set_arp_err_handler(skb, NULL, arp_failure_discard);
667 BUG_ON(ep->mpa_skb);
668 ep->mpa_skb = skb;
669 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
670 }
671
672 static int send_mpa_reply(struct c4iw_ep *ep, const void *pdata, u8 plen)
673 {
674 int mpalen, wrlen;
675 struct fw_ofld_tx_data_wr *req;
676 struct mpa_message *mpa;
677 struct sk_buff *skb;
678 struct mpa_v2_conn_params mpa_v2_params;
679
680 PDBG("%s ep %p tid %u pd_len %d\n", __func__, ep, ep->hwtid, ep->plen);
681
682 mpalen = sizeof(*mpa) + plen;
683 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn)
684 mpalen += sizeof(struct mpa_v2_conn_params);
685 wrlen = roundup(mpalen + sizeof *req, 16);
686
687 skb = get_skb(NULL, wrlen, GFP_KERNEL);
688 if (!skb) {
689 printk(KERN_ERR MOD "%s - cannot alloc skb!\n", __func__);
690 return -ENOMEM;
691 }
692 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
693
694 req = (struct fw_ofld_tx_data_wr *) skb_put(skb, wrlen);
695 memset(req, 0, wrlen);
696 req->op_to_immdlen = cpu_to_be32(
697 FW_WR_OP(FW_OFLD_TX_DATA_WR) |
698 FW_WR_COMPL(1) |
699 FW_WR_IMMDLEN(mpalen));
700 req->flowid_len16 = cpu_to_be32(
701 FW_WR_FLOWID(ep->hwtid) |
702 FW_WR_LEN16(wrlen >> 4));
703 req->plen = cpu_to_be32(mpalen);
704 req->tunnel_to_proxy = cpu_to_be32(
705 FW_OFLD_TX_DATA_WR_FLUSH(1) |
706 FW_OFLD_TX_DATA_WR_SHOVE(1));
707
708 mpa = (struct mpa_message *)(req + 1);
709 memset(mpa, 0, sizeof(*mpa));
710 memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key));
711 mpa->flags = (ep->mpa_attr.crc_enabled ? MPA_CRC : 0) |
712 (markers_enabled ? MPA_MARKERS : 0);
713 mpa->revision = ep->mpa_attr.version;
714 mpa->private_data_size = htons(plen);
715
716 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) {
717 mpa->flags |= MPA_ENHANCED_RDMA_CONN;
718 mpa->private_data_size = htons(ntohs(mpa->private_data_size) +
719 sizeof (struct mpa_v2_conn_params));
720 mpa_v2_params.ird = htons((u16)ep->ird);
721 mpa_v2_params.ord = htons((u16)ep->ord);
722 if (peer2peer && (ep->mpa_attr.p2p_type !=
723 FW_RI_INIT_P2PTYPE_DISABLED)) {
724 mpa_v2_params.ird |= htons(MPA_V2_PEER2PEER_MODEL);
725
726 if (p2p_type == FW_RI_INIT_P2PTYPE_RDMA_WRITE)
727 mpa_v2_params.ord |=
728 htons(MPA_V2_RDMA_WRITE_RTR);
729 else if (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ)
730 mpa_v2_params.ord |=
731 htons(MPA_V2_RDMA_READ_RTR);
732 }
733
734 memcpy(mpa->private_data, &mpa_v2_params,
735 sizeof(struct mpa_v2_conn_params));
736
737 if (ep->plen)
738 memcpy(mpa->private_data +
739 sizeof(struct mpa_v2_conn_params), pdata, plen);
740 } else
741 if (plen)
742 memcpy(mpa->private_data, pdata, plen);
743
744 /*
745 * Reference the mpa skb. This ensures the data area
746 * will remain in memory until the hw acks the tx.
747 * Function fw4_ack() will deref it.
748 */
749 skb_get(skb);
750 t4_set_arp_err_handler(skb, NULL, arp_failure_discard);
751 ep->mpa_skb = skb;
752 state_set(&ep->com, MPA_REP_SENT);
753 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
754 }
755
756 static int act_establish(struct c4iw_dev *dev, struct sk_buff *skb)
757 {
758 struct c4iw_ep *ep;
759 struct cpl_act_establish *req = cplhdr(skb);
760 unsigned int tid = GET_TID(req);
761 unsigned int atid = GET_TID_TID(ntohl(req->tos_atid));
762 struct tid_info *t = dev->rdev.lldi.tids;
763
764 ep = lookup_atid(t, atid);
765
766 PDBG("%s ep %p tid %u snd_isn %u rcv_isn %u\n", __func__, ep, tid,
767 be32_to_cpu(req->snd_isn), be32_to_cpu(req->rcv_isn));
768
769 dst_confirm(ep->dst);
770
771 /* setup the hwtid for this connection */
772 ep->hwtid = tid;
773 cxgb4_insert_tid(t, ep, tid);
774
775 ep->snd_seq = be32_to_cpu(req->snd_isn);
776 ep->rcv_seq = be32_to_cpu(req->rcv_isn);
777
778 set_emss(ep, ntohs(req->tcp_opt));
779
780 /* dealloc the atid */
781 cxgb4_free_atid(t, atid);
782
783 /* start MPA negotiation */
784 send_flowc(ep, NULL);
785 if (ep->retry_with_mpa_v1)
786 send_mpa_req(ep, skb, 1);
787 else
788 send_mpa_req(ep, skb, mpa_rev);
789
790 return 0;
791 }
792
793 static void close_complete_upcall(struct c4iw_ep *ep)
794 {
795 struct iw_cm_event event;
796
797 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
798 memset(&event, 0, sizeof(event));
799 event.event = IW_CM_EVENT_CLOSE;
800 if (ep->com.cm_id) {
801 PDBG("close complete delivered ep %p cm_id %p tid %u\n",
802 ep, ep->com.cm_id, ep->hwtid);
803 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
804 ep->com.cm_id->rem_ref(ep->com.cm_id);
805 ep->com.cm_id = NULL;
806 ep->com.qp = NULL;
807 }
808 }
809
810 static int abort_connection(struct c4iw_ep *ep, struct sk_buff *skb, gfp_t gfp)
811 {
812 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
813 close_complete_upcall(ep);
814 state_set(&ep->com, ABORTING);
815 return send_abort(ep, skb, gfp);
816 }
817
818 static void peer_close_upcall(struct c4iw_ep *ep)
819 {
820 struct iw_cm_event event;
821
822 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
823 memset(&event, 0, sizeof(event));
824 event.event = IW_CM_EVENT_DISCONNECT;
825 if (ep->com.cm_id) {
826 PDBG("peer close delivered ep %p cm_id %p tid %u\n",
827 ep, ep->com.cm_id, ep->hwtid);
828 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
829 }
830 }
831
832 static void peer_abort_upcall(struct c4iw_ep *ep)
833 {
834 struct iw_cm_event event;
835
836 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
837 memset(&event, 0, sizeof(event));
838 event.event = IW_CM_EVENT_CLOSE;
839 event.status = -ECONNRESET;
840 if (ep->com.cm_id) {
841 PDBG("abort delivered ep %p cm_id %p tid %u\n", ep,
842 ep->com.cm_id, ep->hwtid);
843 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
844 ep->com.cm_id->rem_ref(ep->com.cm_id);
845 ep->com.cm_id = NULL;
846 ep->com.qp = NULL;
847 }
848 }
849
850 static void connect_reply_upcall(struct c4iw_ep *ep, int status)
851 {
852 struct iw_cm_event event;
853
854 PDBG("%s ep %p tid %u status %d\n", __func__, ep, ep->hwtid, status);
855 memset(&event, 0, sizeof(event));
856 event.event = IW_CM_EVENT_CONNECT_REPLY;
857 event.status = status;
858 event.local_addr = ep->com.local_addr;
859 event.remote_addr = ep->com.remote_addr;
860
861 if ((status == 0) || (status == -ECONNREFUSED)) {
862 if (!ep->tried_with_mpa_v1) {
863 /* this means MPA_v2 is used */
864 event.private_data_len = ep->plen -
865 sizeof(struct mpa_v2_conn_params);
866 event.private_data = ep->mpa_pkt +
867 sizeof(struct mpa_message) +
868 sizeof(struct mpa_v2_conn_params);
869 } else {
870 /* this means MPA_v1 is used */
871 event.private_data_len = ep->plen;
872 event.private_data = ep->mpa_pkt +
873 sizeof(struct mpa_message);
874 }
875 }
876
877 PDBG("%s ep %p tid %u status %d\n", __func__, ep,
878 ep->hwtid, status);
879 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
880
881 if (status < 0) {
882 ep->com.cm_id->rem_ref(ep->com.cm_id);
883 ep->com.cm_id = NULL;
884 ep->com.qp = NULL;
885 }
886 }
887
888 static void connect_request_upcall(struct c4iw_ep *ep)
889 {
890 struct iw_cm_event event;
891
892 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
893 memset(&event, 0, sizeof(event));
894 event.event = IW_CM_EVENT_CONNECT_REQUEST;
895 event.local_addr = ep->com.local_addr;
896 event.remote_addr = ep->com.remote_addr;
897 event.provider_data = ep;
898 if (!ep->tried_with_mpa_v1) {
899 /* this means MPA_v2 is used */
900 event.ord = ep->ord;
901 event.ird = ep->ird;
902 event.private_data_len = ep->plen -
903 sizeof(struct mpa_v2_conn_params);
904 event.private_data = ep->mpa_pkt + sizeof(struct mpa_message) +
905 sizeof(struct mpa_v2_conn_params);
906 } else {
907 /* this means MPA_v1 is used. Send max supported */
908 event.ord = c4iw_max_read_depth;
909 event.ird = c4iw_max_read_depth;
910 event.private_data_len = ep->plen;
911 event.private_data = ep->mpa_pkt + sizeof(struct mpa_message);
912 }
913 if (state_read(&ep->parent_ep->com) != DEAD) {
914 c4iw_get_ep(&ep->com);
915 ep->parent_ep->com.cm_id->event_handler(
916 ep->parent_ep->com.cm_id,
917 &event);
918 }
919 c4iw_put_ep(&ep->parent_ep->com);
920 ep->parent_ep = NULL;
921 }
922
923 static void established_upcall(struct c4iw_ep *ep)
924 {
925 struct iw_cm_event event;
926
927 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
928 memset(&event, 0, sizeof(event));
929 event.event = IW_CM_EVENT_ESTABLISHED;
930 event.ird = ep->ird;
931 event.ord = ep->ord;
932 if (ep->com.cm_id) {
933 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
934 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
935 }
936 }
937
938 static int update_rx_credits(struct c4iw_ep *ep, u32 credits)
939 {
940 struct cpl_rx_data_ack *req;
941 struct sk_buff *skb;
942 int wrlen = roundup(sizeof *req, 16);
943
944 PDBG("%s ep %p tid %u credits %u\n", __func__, ep, ep->hwtid, credits);
945 skb = get_skb(NULL, wrlen, GFP_KERNEL);
946 if (!skb) {
947 printk(KERN_ERR MOD "update_rx_credits - cannot alloc skb!\n");
948 return 0;
949 }
950
951 req = (struct cpl_rx_data_ack *) skb_put(skb, wrlen);
952 memset(req, 0, wrlen);
953 INIT_TP_WR(req, ep->hwtid);
954 OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_RX_DATA_ACK,
955 ep->hwtid));
956 req->credit_dack = cpu_to_be32(credits | RX_FORCE_ACK(1) |
957 F_RX_DACK_CHANGE |
958 V_RX_DACK_MODE(dack_mode));
959 set_wr_txq(skb, CPL_PRIORITY_ACK, ep->ctrlq_idx);
960 c4iw_ofld_send(&ep->com.dev->rdev, skb);
961 return credits;
962 }
963
964 static void process_mpa_reply(struct c4iw_ep *ep, struct sk_buff *skb)
965 {
966 struct mpa_message *mpa;
967 struct mpa_v2_conn_params *mpa_v2_params;
968 u16 plen;
969 u16 resp_ird, resp_ord;
970 u8 rtr_mismatch = 0, insuff_ird = 0;
971 struct c4iw_qp_attributes attrs;
972 enum c4iw_qp_attr_mask mask;
973 int err;
974
975 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
976
977 /*
978 * Stop mpa timer. If it expired, then the state has
979 * changed and we bail since ep_timeout already aborted
980 * the connection.
981 */
982 stop_ep_timer(ep);
983 if (state_read(&ep->com) != MPA_REQ_SENT)
984 return;
985
986 /*
987 * If we get more than the supported amount of private data
988 * then we must fail this connection.
989 */
990 if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt)) {
991 err = -EINVAL;
992 goto err;
993 }
994
995 /*
996 * copy the new data into our accumulation buffer.
997 */
998 skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]),
999 skb->len);
1000 ep->mpa_pkt_len += skb->len;
1001
1002 /*
1003 * if we don't even have the mpa message, then bail.
1004 */
1005 if (ep->mpa_pkt_len < sizeof(*mpa))
1006 return;
1007 mpa = (struct mpa_message *) ep->mpa_pkt;
1008
1009 /* Validate MPA header. */
1010 if (mpa->revision > mpa_rev) {
1011 printk(KERN_ERR MOD "%s MPA version mismatch. Local = %d,"
1012 " Received = %d\n", __func__, mpa_rev, mpa->revision);
1013 err = -EPROTO;
1014 goto err;
1015 }
1016 if (memcmp(mpa->key, MPA_KEY_REP, sizeof(mpa->key))) {
1017 err = -EPROTO;
1018 goto err;
1019 }
1020
1021 plen = ntohs(mpa->private_data_size);
1022
1023 /*
1024 * Fail if there's too much private data.
1025 */
1026 if (plen > MPA_MAX_PRIVATE_DATA) {
1027 err = -EPROTO;
1028 goto err;
1029 }
1030
1031 /*
1032 * If plen does not account for pkt size
1033 */
1034 if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) {
1035 err = -EPROTO;
1036 goto err;
1037 }
1038
1039 ep->plen = (u8) plen;
1040
1041 /*
1042 * If we don't have all the pdata yet, then bail.
1043 * We'll continue process when more data arrives.
1044 */
1045 if (ep->mpa_pkt_len < (sizeof(*mpa) + plen))
1046 return;
1047
1048 if (mpa->flags & MPA_REJECT) {
1049 err = -ECONNREFUSED;
1050 goto err;
1051 }
1052
1053 /*
1054 * If we get here we have accumulated the entire mpa
1055 * start reply message including private data. And
1056 * the MPA header is valid.
1057 */
1058 state_set(&ep->com, FPDU_MODE);
1059 ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0;
1060 ep->mpa_attr.recv_marker_enabled = markers_enabled;
1061 ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0;
1062 ep->mpa_attr.version = mpa->revision;
1063 ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED;
1064
1065 if (mpa->revision == 2) {
1066 ep->mpa_attr.enhanced_rdma_conn =
1067 mpa->flags & MPA_ENHANCED_RDMA_CONN ? 1 : 0;
1068 if (ep->mpa_attr.enhanced_rdma_conn) {
1069 mpa_v2_params = (struct mpa_v2_conn_params *)
1070 (ep->mpa_pkt + sizeof(*mpa));
1071 resp_ird = ntohs(mpa_v2_params->ird) &
1072 MPA_V2_IRD_ORD_MASK;
1073 resp_ord = ntohs(mpa_v2_params->ord) &
1074 MPA_V2_IRD_ORD_MASK;
1075
1076 /*
1077 * This is a double-check. Ideally, below checks are
1078 * not required since ird/ord stuff has been taken
1079 * care of in c4iw_accept_cr
1080 */
1081 if ((ep->ird < resp_ord) || (ep->ord > resp_ird)) {
1082 err = -ENOMEM;
1083 ep->ird = resp_ord;
1084 ep->ord = resp_ird;
1085 insuff_ird = 1;
1086 }
1087
1088 if (ntohs(mpa_v2_params->ird) &
1089 MPA_V2_PEER2PEER_MODEL) {
1090 if (ntohs(mpa_v2_params->ord) &
1091 MPA_V2_RDMA_WRITE_RTR)
1092 ep->mpa_attr.p2p_type =
1093 FW_RI_INIT_P2PTYPE_RDMA_WRITE;
1094 else if (ntohs(mpa_v2_params->ord) &
1095 MPA_V2_RDMA_READ_RTR)
1096 ep->mpa_attr.p2p_type =
1097 FW_RI_INIT_P2PTYPE_READ_REQ;
1098 }
1099 }
1100 } else if (mpa->revision == 1)
1101 if (peer2peer)
1102 ep->mpa_attr.p2p_type = p2p_type;
1103
1104 PDBG("%s - crc_enabled=%d, recv_marker_enabled=%d, "
1105 "xmit_marker_enabled=%d, version=%d p2p_type=%d local-p2p_type = "
1106 "%d\n", __func__, ep->mpa_attr.crc_enabled,
1107 ep->mpa_attr.recv_marker_enabled,
1108 ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version,
1109 ep->mpa_attr.p2p_type, p2p_type);
1110
1111 /*
1112 * If responder's RTR does not match with that of initiator, assign
1113 * FW_RI_INIT_P2PTYPE_DISABLED in mpa attributes so that RTR is not
1114 * generated when moving QP to RTS state.
1115 * A TERM message will be sent after QP has moved to RTS state
1116 */
1117 if ((ep->mpa_attr.version == 2) && peer2peer &&
1118 (ep->mpa_attr.p2p_type != p2p_type)) {
1119 ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED;
1120 rtr_mismatch = 1;
1121 }
1122
1123 attrs.mpa_attr = ep->mpa_attr;
1124 attrs.max_ird = ep->ird;
1125 attrs.max_ord = ep->ord;
1126 attrs.llp_stream_handle = ep;
1127 attrs.next_state = C4IW_QP_STATE_RTS;
1128
1129 mask = C4IW_QP_ATTR_NEXT_STATE |
1130 C4IW_QP_ATTR_LLP_STREAM_HANDLE | C4IW_QP_ATTR_MPA_ATTR |
1131 C4IW_QP_ATTR_MAX_IRD | C4IW_QP_ATTR_MAX_ORD;
1132
1133 /* bind QP and TID with INIT_WR */
1134 err = c4iw_modify_qp(ep->com.qp->rhp,
1135 ep->com.qp, mask, &attrs, 1);
1136 if (err)
1137 goto err;
1138
1139 /*
1140 * If responder's RTR requirement did not match with what initiator
1141 * supports, generate TERM message
1142 */
1143 if (rtr_mismatch) {
1144 printk(KERN_ERR "%s: RTR mismatch, sending TERM\n", __func__);
1145 attrs.layer_etype = LAYER_MPA | DDP_LLP;
1146 attrs.ecode = MPA_NOMATCH_RTR;
1147 attrs.next_state = C4IW_QP_STATE_TERMINATE;
1148 err = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
1149 C4IW_QP_ATTR_NEXT_STATE, &attrs, 0);
1150 err = -ENOMEM;
1151 goto out;
1152 }
1153
1154 /*
1155 * Generate TERM if initiator IRD is not sufficient for responder
1156 * provided ORD. Currently, we do the same behaviour even when
1157 * responder provided IRD is also not sufficient as regards to
1158 * initiator ORD.
1159 */
1160 if (insuff_ird) {
1161 printk(KERN_ERR "%s: Insufficient IRD, sending TERM\n",
1162 __func__);
1163 attrs.layer_etype = LAYER_MPA | DDP_LLP;
1164 attrs.ecode = MPA_INSUFF_IRD;
1165 attrs.next_state = C4IW_QP_STATE_TERMINATE;
1166 err = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
1167 C4IW_QP_ATTR_NEXT_STATE, &attrs, 0);
1168 err = -ENOMEM;
1169 goto out;
1170 }
1171 goto out;
1172 err:
1173 state_set(&ep->com, ABORTING);
1174 send_abort(ep, skb, GFP_KERNEL);
1175 out:
1176 connect_reply_upcall(ep, err);
1177 return;
1178 }
1179
1180 static void process_mpa_request(struct c4iw_ep *ep, struct sk_buff *skb)
1181 {
1182 struct mpa_message *mpa;
1183 struct mpa_v2_conn_params *mpa_v2_params;
1184 u16 plen;
1185
1186 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1187
1188 if (state_read(&ep->com) != MPA_REQ_WAIT)
1189 return;
1190
1191 /*
1192 * If we get more than the supported amount of private data
1193 * then we must fail this connection.
1194 */
1195 if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt)) {
1196 stop_ep_timer(ep);
1197 abort_connection(ep, skb, GFP_KERNEL);
1198 return;
1199 }
1200
1201 PDBG("%s enter (%s line %u)\n", __func__, __FILE__, __LINE__);
1202
1203 /*
1204 * Copy the new data into our accumulation buffer.
1205 */
1206 skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]),
1207 skb->len);
1208 ep->mpa_pkt_len += skb->len;
1209
1210 /*
1211 * If we don't even have the mpa message, then bail.
1212 * We'll continue process when more data arrives.
1213 */
1214 if (ep->mpa_pkt_len < sizeof(*mpa))
1215 return;
1216
1217 PDBG("%s enter (%s line %u)\n", __func__, __FILE__, __LINE__);
1218 stop_ep_timer(ep);
1219 mpa = (struct mpa_message *) ep->mpa_pkt;
1220
1221 /*
1222 * Validate MPA Header.
1223 */
1224 if (mpa->revision > mpa_rev) {
1225 printk(KERN_ERR MOD "%s MPA version mismatch. Local = %d,"
1226 " Received = %d\n", __func__, mpa_rev, mpa->revision);
1227 abort_connection(ep, skb, GFP_KERNEL);
1228 return;
1229 }
1230
1231 if (memcmp(mpa->key, MPA_KEY_REQ, sizeof(mpa->key))) {
1232 abort_connection(ep, skb, GFP_KERNEL);
1233 return;
1234 }
1235
1236 plen = ntohs(mpa->private_data_size);
1237
1238 /*
1239 * Fail if there's too much private data.
1240 */
1241 if (plen > MPA_MAX_PRIVATE_DATA) {
1242 abort_connection(ep, skb, GFP_KERNEL);
1243 return;
1244 }
1245
1246 /*
1247 * If plen does not account for pkt size
1248 */
1249 if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) {
1250 abort_connection(ep, skb, GFP_KERNEL);
1251 return;
1252 }
1253 ep->plen = (u8) plen;
1254
1255 /*
1256 * If we don't have all the pdata yet, then bail.
1257 */
1258 if (ep->mpa_pkt_len < (sizeof(*mpa) + plen))
1259 return;
1260
1261 /*
1262 * If we get here we have accumulated the entire mpa
1263 * start reply message including private data.
1264 */
1265 ep->mpa_attr.initiator = 0;
1266 ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0;
1267 ep->mpa_attr.recv_marker_enabled = markers_enabled;
1268 ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0;
1269 ep->mpa_attr.version = mpa->revision;
1270 if (mpa->revision == 1)
1271 ep->tried_with_mpa_v1 = 1;
1272 ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED;
1273
1274 if (mpa->revision == 2) {
1275 ep->mpa_attr.enhanced_rdma_conn =
1276 mpa->flags & MPA_ENHANCED_RDMA_CONN ? 1 : 0;
1277 if (ep->mpa_attr.enhanced_rdma_conn) {
1278 mpa_v2_params = (struct mpa_v2_conn_params *)
1279 (ep->mpa_pkt + sizeof(*mpa));
1280 ep->ird = ntohs(mpa_v2_params->ird) &
1281 MPA_V2_IRD_ORD_MASK;
1282 ep->ord = ntohs(mpa_v2_params->ord) &
1283 MPA_V2_IRD_ORD_MASK;
1284 if (ntohs(mpa_v2_params->ird) & MPA_V2_PEER2PEER_MODEL)
1285 if (peer2peer) {
1286 if (ntohs(mpa_v2_params->ord) &
1287 MPA_V2_RDMA_WRITE_RTR)
1288 ep->mpa_attr.p2p_type =
1289 FW_RI_INIT_P2PTYPE_RDMA_WRITE;
1290 else if (ntohs(mpa_v2_params->ord) &
1291 MPA_V2_RDMA_READ_RTR)
1292 ep->mpa_attr.p2p_type =
1293 FW_RI_INIT_P2PTYPE_READ_REQ;
1294 }
1295 }
1296 } else if (mpa->revision == 1)
1297 if (peer2peer)
1298 ep->mpa_attr.p2p_type = p2p_type;
1299
1300 PDBG("%s - crc_enabled=%d, recv_marker_enabled=%d, "
1301 "xmit_marker_enabled=%d, version=%d p2p_type=%d\n", __func__,
1302 ep->mpa_attr.crc_enabled, ep->mpa_attr.recv_marker_enabled,
1303 ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version,
1304 ep->mpa_attr.p2p_type);
1305
1306 state_set(&ep->com, MPA_REQ_RCVD);
1307
1308 /* drive upcall */
1309 connect_request_upcall(ep);
1310 return;
1311 }
1312
1313 static int rx_data(struct c4iw_dev *dev, struct sk_buff *skb)
1314 {
1315 struct c4iw_ep *ep;
1316 struct cpl_rx_data *hdr = cplhdr(skb);
1317 unsigned int dlen = ntohs(hdr->len);
1318 unsigned int tid = GET_TID(hdr);
1319 struct tid_info *t = dev->rdev.lldi.tids;
1320
1321 ep = lookup_tid(t, tid);
1322 PDBG("%s ep %p tid %u dlen %u\n", __func__, ep, ep->hwtid, dlen);
1323 skb_pull(skb, sizeof(*hdr));
1324 skb_trim(skb, dlen);
1325
1326 ep->rcv_seq += dlen;
1327 BUG_ON(ep->rcv_seq != (ntohl(hdr->seq) + dlen));
1328
1329 /* update RX credits */
1330 update_rx_credits(ep, dlen);
1331
1332 switch (state_read(&ep->com)) {
1333 case MPA_REQ_SENT:
1334 process_mpa_reply(ep, skb);
1335 break;
1336 case MPA_REQ_WAIT:
1337 process_mpa_request(ep, skb);
1338 break;
1339 case MPA_REP_SENT:
1340 break;
1341 default:
1342 printk(KERN_ERR MOD "%s Unexpected streaming data."
1343 " ep %p state %d tid %u\n",
1344 __func__, ep, state_read(&ep->com), ep->hwtid);
1345
1346 /*
1347 * The ep will timeout and inform the ULP of the failure.
1348 * See ep_timeout().
1349 */
1350 break;
1351 }
1352 return 0;
1353 }
1354
1355 static int abort_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
1356 {
1357 struct c4iw_ep *ep;
1358 struct cpl_abort_rpl_rss *rpl = cplhdr(skb);
1359 int release = 0;
1360 unsigned int tid = GET_TID(rpl);
1361 struct tid_info *t = dev->rdev.lldi.tids;
1362
1363 ep = lookup_tid(t, tid);
1364 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1365 if (!ep) {
1366 printk(KERN_WARNING MOD "Abort rpl to freed endpoint\n");
1367 return 0;
1368 }
1369 mutex_lock(&ep->com.mutex);
1370 switch (ep->com.state) {
1371 case ABORTING:
1372 __state_set(&ep->com, DEAD);
1373 release = 1;
1374 break;
1375 default:
1376 printk(KERN_ERR "%s ep %p state %d\n",
1377 __func__, ep, ep->com.state);
1378 break;
1379 }
1380 mutex_unlock(&ep->com.mutex);
1381
1382 if (release)
1383 release_ep_resources(ep);
1384 return 0;
1385 }
1386
1387 /*
1388 * Return whether a failed active open has allocated a TID
1389 */
1390 static inline int act_open_has_tid(int status)
1391 {
1392 return status != CPL_ERR_TCAM_FULL && status != CPL_ERR_CONN_EXIST &&
1393 status != CPL_ERR_ARP_MISS;
1394 }
1395
1396 static int act_open_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
1397 {
1398 struct c4iw_ep *ep;
1399 struct cpl_act_open_rpl *rpl = cplhdr(skb);
1400 unsigned int atid = GET_TID_TID(GET_AOPEN_ATID(
1401 ntohl(rpl->atid_status)));
1402 struct tid_info *t = dev->rdev.lldi.tids;
1403 int status = GET_AOPEN_STATUS(ntohl(rpl->atid_status));
1404
1405 ep = lookup_atid(t, atid);
1406
1407 PDBG("%s ep %p atid %u status %u errno %d\n", __func__, ep, atid,
1408 status, status2errno(status));
1409
1410 if (status == CPL_ERR_RTX_NEG_ADVICE) {
1411 printk(KERN_WARNING MOD "Connection problems for atid %u\n",
1412 atid);
1413 return 0;
1414 }
1415
1416 /*
1417 * Log interesting failures.
1418 */
1419 switch (status) {
1420 case CPL_ERR_CONN_RESET:
1421 case CPL_ERR_CONN_TIMEDOUT:
1422 break;
1423 default:
1424 printk(KERN_INFO MOD "Active open failure - "
1425 "atid %u status %u errno %d %pI4:%u->%pI4:%u\n",
1426 atid, status, status2errno(status),
1427 &ep->com.local_addr.sin_addr.s_addr,
1428 ntohs(ep->com.local_addr.sin_port),
1429 &ep->com.remote_addr.sin_addr.s_addr,
1430 ntohs(ep->com.remote_addr.sin_port));
1431 break;
1432 }
1433
1434 connect_reply_upcall(ep, status2errno(status));
1435 state_set(&ep->com, DEAD);
1436
1437 if (status && act_open_has_tid(status))
1438 cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, GET_TID(rpl));
1439
1440 cxgb4_free_atid(t, atid);
1441 dst_release(ep->dst);
1442 cxgb4_l2t_release(ep->l2t);
1443 c4iw_put_ep(&ep->com);
1444
1445 return 0;
1446 }
1447
1448 static int pass_open_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
1449 {
1450 struct cpl_pass_open_rpl *rpl = cplhdr(skb);
1451 struct tid_info *t = dev->rdev.lldi.tids;
1452 unsigned int stid = GET_TID(rpl);
1453 struct c4iw_listen_ep *ep = lookup_stid(t, stid);
1454
1455 if (!ep) {
1456 printk(KERN_ERR MOD "stid %d lookup failure!\n", stid);
1457 return 0;
1458 }
1459 PDBG("%s ep %p status %d error %d\n", __func__, ep,
1460 rpl->status, status2errno(rpl->status));
1461 c4iw_wake_up(&ep->com.wr_wait, status2errno(rpl->status));
1462
1463 return 0;
1464 }
1465
1466 static int listen_stop(struct c4iw_listen_ep *ep)
1467 {
1468 struct sk_buff *skb;
1469 struct cpl_close_listsvr_req *req;
1470
1471 PDBG("%s ep %p\n", __func__, ep);
1472 skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
1473 if (!skb) {
1474 printk(KERN_ERR MOD "%s - failed to alloc skb\n", __func__);
1475 return -ENOMEM;
1476 }
1477 req = (struct cpl_close_listsvr_req *) skb_put(skb, sizeof(*req));
1478 INIT_TP_WR(req, 0);
1479 OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ,
1480 ep->stid));
1481 req->reply_ctrl = cpu_to_be16(
1482 QUEUENO(ep->com.dev->rdev.lldi.rxq_ids[0]));
1483 set_wr_txq(skb, CPL_PRIORITY_SETUP, 0);
1484 return c4iw_ofld_send(&ep->com.dev->rdev, skb);
1485 }
1486
1487 static int close_listsrv_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
1488 {
1489 struct cpl_close_listsvr_rpl *rpl = cplhdr(skb);
1490 struct tid_info *t = dev->rdev.lldi.tids;
1491 unsigned int stid = GET_TID(rpl);
1492 struct c4iw_listen_ep *ep = lookup_stid(t, stid);
1493
1494 PDBG("%s ep %p\n", __func__, ep);
1495 c4iw_wake_up(&ep->com.wr_wait, status2errno(rpl->status));
1496 return 0;
1497 }
1498
1499 static void accept_cr(struct c4iw_ep *ep, __be32 peer_ip, struct sk_buff *skb,
1500 struct cpl_pass_accept_req *req)
1501 {
1502 struct cpl_pass_accept_rpl *rpl;
1503 unsigned int mtu_idx;
1504 u64 opt0;
1505 u32 opt2;
1506 int wscale;
1507
1508 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1509 BUG_ON(skb_cloned(skb));
1510 skb_trim(skb, sizeof(*rpl));
1511 skb_get(skb);
1512 cxgb4_best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx);
1513 wscale = compute_wscale(rcv_win);
1514 opt0 = KEEP_ALIVE(1) |
1515 DELACK(1) |
1516 WND_SCALE(wscale) |
1517 MSS_IDX(mtu_idx) |
1518 L2T_IDX(ep->l2t->idx) |
1519 TX_CHAN(ep->tx_chan) |
1520 SMAC_SEL(ep->smac_idx) |
1521 DSCP(ep->tos) |
1522 ULP_MODE(ULP_MODE_TCPDDP) |
1523 RCV_BUFSIZ(rcv_win>>10);
1524 opt2 = RX_CHANNEL(0) |
1525 RSS_QUEUE_VALID | RSS_QUEUE(ep->rss_qid);
1526
1527 if (enable_tcp_timestamps && req->tcpopt.tstamp)
1528 opt2 |= TSTAMPS_EN(1);
1529 if (enable_tcp_sack && req->tcpopt.sack)
1530 opt2 |= SACK_EN(1);
1531 if (wscale && enable_tcp_window_scaling)
1532 opt2 |= WND_SCALE_EN(1);
1533
1534 rpl = cplhdr(skb);
1535 INIT_TP_WR(rpl, ep->hwtid);
1536 OPCODE_TID(rpl) = cpu_to_be32(MK_OPCODE_TID(CPL_PASS_ACCEPT_RPL,
1537 ep->hwtid));
1538 rpl->opt0 = cpu_to_be64(opt0);
1539 rpl->opt2 = cpu_to_be32(opt2);
1540 set_wr_txq(skb, CPL_PRIORITY_SETUP, ep->ctrlq_idx);
1541 c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
1542
1543 return;
1544 }
1545
1546 static void reject_cr(struct c4iw_dev *dev, u32 hwtid, __be32 peer_ip,
1547 struct sk_buff *skb)
1548 {
1549 PDBG("%s c4iw_dev %p tid %u peer_ip %x\n", __func__, dev, hwtid,
1550 peer_ip);
1551 BUG_ON(skb_cloned(skb));
1552 skb_trim(skb, sizeof(struct cpl_tid_release));
1553 skb_get(skb);
1554 release_tid(&dev->rdev, hwtid, skb);
1555 return;
1556 }
1557
1558 static void get_4tuple(struct cpl_pass_accept_req *req,
1559 __be32 *local_ip, __be32 *peer_ip,
1560 __be16 *local_port, __be16 *peer_port)
1561 {
1562 int eth_len = G_ETH_HDR_LEN(be32_to_cpu(req->hdr_len));
1563 int ip_len = G_IP_HDR_LEN(be32_to_cpu(req->hdr_len));
1564 struct iphdr *ip = (struct iphdr *)((u8 *)(req + 1) + eth_len);
1565 struct tcphdr *tcp = (struct tcphdr *)
1566 ((u8 *)(req + 1) + eth_len + ip_len);
1567
1568 PDBG("%s saddr 0x%x daddr 0x%x sport %u dport %u\n", __func__,
1569 ntohl(ip->saddr), ntohl(ip->daddr), ntohs(tcp->source),
1570 ntohs(tcp->dest));
1571
1572 *peer_ip = ip->saddr;
1573 *local_ip = ip->daddr;
1574 *peer_port = tcp->source;
1575 *local_port = tcp->dest;
1576
1577 return;
1578 }
1579
1580 static int import_ep(struct c4iw_ep *ep, __be32 peer_ip, struct dst_entry *dst,
1581 struct c4iw_dev *cdev, bool clear_mpa_v1)
1582 {
1583 struct neighbour *n;
1584 int err, step;
1585
1586 n = dst_neigh_lookup(dst, &peer_ip);
1587 if (!n)
1588 return -ENODEV;
1589
1590 rcu_read_lock();
1591 err = -ENOMEM;
1592 if (n->dev->flags & IFF_LOOPBACK) {
1593 struct net_device *pdev;
1594
1595 pdev = ip_dev_find(&init_net, peer_ip);
1596 if (!pdev) {
1597 err = -ENODEV;
1598 goto out;
1599 }
1600 ep->l2t = cxgb4_l2t_get(cdev->rdev.lldi.l2t,
1601 n, pdev, 0);
1602 if (!ep->l2t)
1603 goto out;
1604 ep->mtu = pdev->mtu;
1605 ep->tx_chan = cxgb4_port_chan(pdev);
1606 ep->smac_idx = (cxgb4_port_viid(pdev) & 0x7F) << 1;
1607 step = cdev->rdev.lldi.ntxq /
1608 cdev->rdev.lldi.nchan;
1609 ep->txq_idx = cxgb4_port_idx(pdev) * step;
1610 step = cdev->rdev.lldi.nrxq /
1611 cdev->rdev.lldi.nchan;
1612 ep->ctrlq_idx = cxgb4_port_idx(pdev);
1613 ep->rss_qid = cdev->rdev.lldi.rxq_ids[
1614 cxgb4_port_idx(pdev) * step];
1615 dev_put(pdev);
1616 } else {
1617 ep->l2t = cxgb4_l2t_get(cdev->rdev.lldi.l2t,
1618 n, n->dev, 0);
1619 if (!ep->l2t)
1620 goto out;
1621 ep->mtu = dst_mtu(dst);
1622 ep->tx_chan = cxgb4_port_chan(n->dev);
1623 ep->smac_idx = (cxgb4_port_viid(n->dev) & 0x7F) << 1;
1624 step = cdev->rdev.lldi.ntxq /
1625 cdev->rdev.lldi.nchan;
1626 ep->txq_idx = cxgb4_port_idx(n->dev) * step;
1627 ep->ctrlq_idx = cxgb4_port_idx(n->dev);
1628 step = cdev->rdev.lldi.nrxq /
1629 cdev->rdev.lldi.nchan;
1630 ep->rss_qid = cdev->rdev.lldi.rxq_ids[
1631 cxgb4_port_idx(n->dev) * step];
1632
1633 if (clear_mpa_v1) {
1634 ep->retry_with_mpa_v1 = 0;
1635 ep->tried_with_mpa_v1 = 0;
1636 }
1637 }
1638 err = 0;
1639 out:
1640 rcu_read_unlock();
1641
1642 neigh_release(n);
1643
1644 return err;
1645 }
1646
1647 static int pass_accept_req(struct c4iw_dev *dev, struct sk_buff *skb)
1648 {
1649 struct c4iw_ep *child_ep, *parent_ep;
1650 struct cpl_pass_accept_req *req = cplhdr(skb);
1651 unsigned int stid = GET_POPEN_TID(ntohl(req->tos_stid));
1652 struct tid_info *t = dev->rdev.lldi.tids;
1653 unsigned int hwtid = GET_TID(req);
1654 struct dst_entry *dst;
1655 struct rtable *rt;
1656 __be32 local_ip, peer_ip;
1657 __be16 local_port, peer_port;
1658 int err;
1659
1660 parent_ep = lookup_stid(t, stid);
1661 PDBG("%s parent ep %p tid %u\n", __func__, parent_ep, hwtid);
1662
1663 get_4tuple(req, &local_ip, &peer_ip, &local_port, &peer_port);
1664
1665 if (state_read(&parent_ep->com) != LISTEN) {
1666 printk(KERN_ERR "%s - listening ep not in LISTEN\n",
1667 __func__);
1668 goto reject;
1669 }
1670
1671 /* Find output route */
1672 rt = find_route(dev, local_ip, peer_ip, local_port, peer_port,
1673 GET_POPEN_TOS(ntohl(req->tos_stid)));
1674 if (!rt) {
1675 printk(KERN_ERR MOD "%s - failed to find dst entry!\n",
1676 __func__);
1677 goto reject;
1678 }
1679 dst = &rt->dst;
1680
1681 child_ep = alloc_ep(sizeof(*child_ep), GFP_KERNEL);
1682 if (!child_ep) {
1683 printk(KERN_ERR MOD "%s - failed to allocate ep entry!\n",
1684 __func__);
1685 dst_release(dst);
1686 goto reject;
1687 }
1688
1689 err = import_ep(child_ep, peer_ip, dst, dev, false);
1690 if (err) {
1691 printk(KERN_ERR MOD "%s - failed to allocate l2t entry!\n",
1692 __func__);
1693 dst_release(dst);
1694 kfree(child_ep);
1695 goto reject;
1696 }
1697
1698 state_set(&child_ep->com, CONNECTING);
1699 child_ep->com.dev = dev;
1700 child_ep->com.cm_id = NULL;
1701 child_ep->com.local_addr.sin_family = PF_INET;
1702 child_ep->com.local_addr.sin_port = local_port;
1703 child_ep->com.local_addr.sin_addr.s_addr = local_ip;
1704 child_ep->com.remote_addr.sin_family = PF_INET;
1705 child_ep->com.remote_addr.sin_port = peer_port;
1706 child_ep->com.remote_addr.sin_addr.s_addr = peer_ip;
1707 c4iw_get_ep(&parent_ep->com);
1708 child_ep->parent_ep = parent_ep;
1709 child_ep->tos = GET_POPEN_TOS(ntohl(req->tos_stid));
1710 child_ep->dst = dst;
1711 child_ep->hwtid = hwtid;
1712
1713 PDBG("%s tx_chan %u smac_idx %u rss_qid %u\n", __func__,
1714 child_ep->tx_chan, child_ep->smac_idx, child_ep->rss_qid);
1715
1716 init_timer(&child_ep->timer);
1717 cxgb4_insert_tid(t, child_ep, hwtid);
1718 accept_cr(child_ep, peer_ip, skb, req);
1719 goto out;
1720 reject:
1721 reject_cr(dev, hwtid, peer_ip, skb);
1722 out:
1723 return 0;
1724 }
1725
1726 static int pass_establish(struct c4iw_dev *dev, struct sk_buff *skb)
1727 {
1728 struct c4iw_ep *ep;
1729 struct cpl_pass_establish *req = cplhdr(skb);
1730 struct tid_info *t = dev->rdev.lldi.tids;
1731 unsigned int tid = GET_TID(req);
1732
1733 ep = lookup_tid(t, tid);
1734 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1735 ep->snd_seq = be32_to_cpu(req->snd_isn);
1736 ep->rcv_seq = be32_to_cpu(req->rcv_isn);
1737
1738 set_emss(ep, ntohs(req->tcp_opt));
1739
1740 dst_confirm(ep->dst);
1741 state_set(&ep->com, MPA_REQ_WAIT);
1742 start_ep_timer(ep);
1743 send_flowc(ep, skb);
1744
1745 return 0;
1746 }
1747
1748 static int peer_close(struct c4iw_dev *dev, struct sk_buff *skb)
1749 {
1750 struct cpl_peer_close *hdr = cplhdr(skb);
1751 struct c4iw_ep *ep;
1752 struct c4iw_qp_attributes attrs;
1753 int disconnect = 1;
1754 int release = 0;
1755 struct tid_info *t = dev->rdev.lldi.tids;
1756 unsigned int tid = GET_TID(hdr);
1757 int ret;
1758
1759 ep = lookup_tid(t, tid);
1760 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1761 dst_confirm(ep->dst);
1762
1763 mutex_lock(&ep->com.mutex);
1764 switch (ep->com.state) {
1765 case MPA_REQ_WAIT:
1766 __state_set(&ep->com, CLOSING);
1767 break;
1768 case MPA_REQ_SENT:
1769 __state_set(&ep->com, CLOSING);
1770 connect_reply_upcall(ep, -ECONNRESET);
1771 break;
1772 case MPA_REQ_RCVD:
1773
1774 /*
1775 * We're gonna mark this puppy DEAD, but keep
1776 * the reference on it until the ULP accepts or
1777 * rejects the CR. Also wake up anyone waiting
1778 * in rdma connection migration (see c4iw_accept_cr()).
1779 */
1780 __state_set(&ep->com, CLOSING);
1781 PDBG("waking up ep %p tid %u\n", ep, ep->hwtid);
1782 c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET);
1783 break;
1784 case MPA_REP_SENT:
1785 __state_set(&ep->com, CLOSING);
1786 PDBG("waking up ep %p tid %u\n", ep, ep->hwtid);
1787 c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET);
1788 break;
1789 case FPDU_MODE:
1790 start_ep_timer(ep);
1791 __state_set(&ep->com, CLOSING);
1792 attrs.next_state = C4IW_QP_STATE_CLOSING;
1793 ret = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
1794 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
1795 if (ret != -ECONNRESET) {
1796 peer_close_upcall(ep);
1797 disconnect = 1;
1798 }
1799 break;
1800 case ABORTING:
1801 disconnect = 0;
1802 break;
1803 case CLOSING:
1804 __state_set(&ep->com, MORIBUND);
1805 disconnect = 0;
1806 break;
1807 case MORIBUND:
1808 stop_ep_timer(ep);
1809 if (ep->com.cm_id && ep->com.qp) {
1810 attrs.next_state = C4IW_QP_STATE_IDLE;
1811 c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
1812 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
1813 }
1814 close_complete_upcall(ep);
1815 __state_set(&ep->com, DEAD);
1816 release = 1;
1817 disconnect = 0;
1818 break;
1819 case DEAD:
1820 disconnect = 0;
1821 break;
1822 default:
1823 BUG_ON(1);
1824 }
1825 mutex_unlock(&ep->com.mutex);
1826 if (disconnect)
1827 c4iw_ep_disconnect(ep, 0, GFP_KERNEL);
1828 if (release)
1829 release_ep_resources(ep);
1830 return 0;
1831 }
1832
1833 /*
1834 * Returns whether an ABORT_REQ_RSS message is a negative advice.
1835 */
1836 static int is_neg_adv_abort(unsigned int status)
1837 {
1838 return status == CPL_ERR_RTX_NEG_ADVICE ||
1839 status == CPL_ERR_PERSIST_NEG_ADVICE;
1840 }
1841
1842 static int c4iw_reconnect(struct c4iw_ep *ep)
1843 {
1844 struct rtable *rt;
1845 int err = 0;
1846
1847 PDBG("%s qp %p cm_id %p\n", __func__, ep->com.qp, ep->com.cm_id);
1848 init_timer(&ep->timer);
1849
1850 /*
1851 * Allocate an active TID to initiate a TCP connection.
1852 */
1853 ep->atid = cxgb4_alloc_atid(ep->com.dev->rdev.lldi.tids, ep);
1854 if (ep->atid == -1) {
1855 printk(KERN_ERR MOD "%s - cannot alloc atid.\n", __func__);
1856 err = -ENOMEM;
1857 goto fail2;
1858 }
1859
1860 /* find a route */
1861 rt = find_route(ep->com.dev,
1862 ep->com.cm_id->local_addr.sin_addr.s_addr,
1863 ep->com.cm_id->remote_addr.sin_addr.s_addr,
1864 ep->com.cm_id->local_addr.sin_port,
1865 ep->com.cm_id->remote_addr.sin_port, 0);
1866 if (!rt) {
1867 printk(KERN_ERR MOD "%s - cannot find route.\n", __func__);
1868 err = -EHOSTUNREACH;
1869 goto fail3;
1870 }
1871 ep->dst = &rt->dst;
1872
1873 err = import_ep(ep, ep->com.cm_id->remote_addr.sin_addr.s_addr,
1874 ep->dst, ep->com.dev, false);
1875 if (err) {
1876 printk(KERN_ERR MOD "%s - cannot alloc l2e.\n", __func__);
1877 goto fail4;
1878 }
1879
1880 PDBG("%s txq_idx %u tx_chan %u smac_idx %u rss_qid %u l2t_idx %u\n",
1881 __func__, ep->txq_idx, ep->tx_chan, ep->smac_idx, ep->rss_qid,
1882 ep->l2t->idx);
1883
1884 state_set(&ep->com, CONNECTING);
1885 ep->tos = 0;
1886
1887 /* send connect request to rnic */
1888 err = send_connect(ep);
1889 if (!err)
1890 goto out;
1891
1892 cxgb4_l2t_release(ep->l2t);
1893 fail4:
1894 dst_release(ep->dst);
1895 fail3:
1896 cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid);
1897 fail2:
1898 /*
1899 * remember to send notification to upper layer.
1900 * We are in here so the upper layer is not aware that this is
1901 * re-connect attempt and so, upper layer is still waiting for
1902 * response of 1st connect request.
1903 */
1904 connect_reply_upcall(ep, -ECONNRESET);
1905 c4iw_put_ep(&ep->com);
1906 out:
1907 return err;
1908 }
1909
1910 static int peer_abort(struct c4iw_dev *dev, struct sk_buff *skb)
1911 {
1912 struct cpl_abort_req_rss *req = cplhdr(skb);
1913 struct c4iw_ep *ep;
1914 struct cpl_abort_rpl *rpl;
1915 struct sk_buff *rpl_skb;
1916 struct c4iw_qp_attributes attrs;
1917 int ret;
1918 int release = 0;
1919 struct tid_info *t = dev->rdev.lldi.tids;
1920 unsigned int tid = GET_TID(req);
1921
1922 ep = lookup_tid(t, tid);
1923 if (is_neg_adv_abort(req->status)) {
1924 PDBG("%s neg_adv_abort ep %p tid %u\n", __func__, ep,
1925 ep->hwtid);
1926 return 0;
1927 }
1928 PDBG("%s ep %p tid %u state %u\n", __func__, ep, ep->hwtid,
1929 ep->com.state);
1930
1931 /*
1932 * Wake up any threads in rdma_init() or rdma_fini().
1933 * However, this is not needed if com state is just
1934 * MPA_REQ_SENT
1935 */
1936 if (ep->com.state != MPA_REQ_SENT)
1937 c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET);
1938
1939 mutex_lock(&ep->com.mutex);
1940 switch (ep->com.state) {
1941 case CONNECTING:
1942 break;
1943 case MPA_REQ_WAIT:
1944 stop_ep_timer(ep);
1945 break;
1946 case MPA_REQ_SENT:
1947 stop_ep_timer(ep);
1948 if (mpa_rev == 2 && ep->tried_with_mpa_v1)
1949 connect_reply_upcall(ep, -ECONNRESET);
1950 else {
1951 /*
1952 * we just don't send notification upwards because we
1953 * want to retry with mpa_v1 without upper layers even
1954 * knowing it.
1955 *
1956 * do some housekeeping so as to re-initiate the
1957 * connection
1958 */
1959 PDBG("%s: mpa_rev=%d. Retrying with mpav1\n", __func__,
1960 mpa_rev);
1961 ep->retry_with_mpa_v1 = 1;
1962 }
1963 break;
1964 case MPA_REP_SENT:
1965 break;
1966 case MPA_REQ_RCVD:
1967 break;
1968 case MORIBUND:
1969 case CLOSING:
1970 stop_ep_timer(ep);
1971 /*FALLTHROUGH*/
1972 case FPDU_MODE:
1973 if (ep->com.cm_id && ep->com.qp) {
1974 attrs.next_state = C4IW_QP_STATE_ERROR;
1975 ret = c4iw_modify_qp(ep->com.qp->rhp,
1976 ep->com.qp, C4IW_QP_ATTR_NEXT_STATE,
1977 &attrs, 1);
1978 if (ret)
1979 printk(KERN_ERR MOD
1980 "%s - qp <- error failed!\n",
1981 __func__);
1982 }
1983 peer_abort_upcall(ep);
1984 break;
1985 case ABORTING:
1986 break;
1987 case DEAD:
1988 PDBG("%s PEER_ABORT IN DEAD STATE!!!!\n", __func__);
1989 mutex_unlock(&ep->com.mutex);
1990 return 0;
1991 default:
1992 BUG_ON(1);
1993 break;
1994 }
1995 dst_confirm(ep->dst);
1996 if (ep->com.state != ABORTING) {
1997 __state_set(&ep->com, DEAD);
1998 /* we don't release if we want to retry with mpa_v1 */
1999 if (!ep->retry_with_mpa_v1)
2000 release = 1;
2001 }
2002 mutex_unlock(&ep->com.mutex);
2003
2004 rpl_skb = get_skb(skb, sizeof(*rpl), GFP_KERNEL);
2005 if (!rpl_skb) {
2006 printk(KERN_ERR MOD "%s - cannot allocate skb!\n",
2007 __func__);
2008 release = 1;
2009 goto out;
2010 }
2011 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
2012 rpl = (struct cpl_abort_rpl *) skb_put(rpl_skb, sizeof(*rpl));
2013 INIT_TP_WR(rpl, ep->hwtid);
2014 OPCODE_TID(rpl) = cpu_to_be32(MK_OPCODE_TID(CPL_ABORT_RPL, ep->hwtid));
2015 rpl->cmd = CPL_ABORT_NO_RST;
2016 c4iw_ofld_send(&ep->com.dev->rdev, rpl_skb);
2017 out:
2018 if (release)
2019 release_ep_resources(ep);
2020
2021 /* retry with mpa-v1 */
2022 if (ep && ep->retry_with_mpa_v1) {
2023 cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, ep->hwtid);
2024 dst_release(ep->dst);
2025 cxgb4_l2t_release(ep->l2t);
2026 c4iw_reconnect(ep);
2027 }
2028
2029 return 0;
2030 }
2031
2032 static int close_con_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
2033 {
2034 struct c4iw_ep *ep;
2035 struct c4iw_qp_attributes attrs;
2036 struct cpl_close_con_rpl *rpl = cplhdr(skb);
2037 int release = 0;
2038 struct tid_info *t = dev->rdev.lldi.tids;
2039 unsigned int tid = GET_TID(rpl);
2040
2041 ep = lookup_tid(t, tid);
2042
2043 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
2044 BUG_ON(!ep);
2045
2046 /* The cm_id may be null if we failed to connect */
2047 mutex_lock(&ep->com.mutex);
2048 switch (ep->com.state) {
2049 case CLOSING:
2050 __state_set(&ep->com, MORIBUND);
2051 break;
2052 case MORIBUND:
2053 stop_ep_timer(ep);
2054 if ((ep->com.cm_id) && (ep->com.qp)) {
2055 attrs.next_state = C4IW_QP_STATE_IDLE;
2056 c4iw_modify_qp(ep->com.qp->rhp,
2057 ep->com.qp,
2058 C4IW_QP_ATTR_NEXT_STATE,
2059 &attrs, 1);
2060 }
2061 close_complete_upcall(ep);
2062 __state_set(&ep->com, DEAD);
2063 release = 1;
2064 break;
2065 case ABORTING:
2066 case DEAD:
2067 break;
2068 default:
2069 BUG_ON(1);
2070 break;
2071 }
2072 mutex_unlock(&ep->com.mutex);
2073 if (release)
2074 release_ep_resources(ep);
2075 return 0;
2076 }
2077
2078 static int terminate(struct c4iw_dev *dev, struct sk_buff *skb)
2079 {
2080 struct cpl_rdma_terminate *rpl = cplhdr(skb);
2081 struct tid_info *t = dev->rdev.lldi.tids;
2082 unsigned int tid = GET_TID(rpl);
2083 struct c4iw_ep *ep;
2084 struct c4iw_qp_attributes attrs;
2085
2086 ep = lookup_tid(t, tid);
2087 BUG_ON(!ep);
2088
2089 if (ep && ep->com.qp) {
2090 printk(KERN_WARNING MOD "TERM received tid %u qpid %u\n", tid,
2091 ep->com.qp->wq.sq.qid);
2092 attrs.next_state = C4IW_QP_STATE_TERMINATE;
2093 c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
2094 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
2095 } else
2096 printk(KERN_WARNING MOD "TERM received tid %u no ep/qp\n", tid);
2097
2098 return 0;
2099 }
2100
2101 /*
2102 * Upcall from the adapter indicating data has been transmitted.
2103 * For us its just the single MPA request or reply. We can now free
2104 * the skb holding the mpa message.
2105 */
2106 static int fw4_ack(struct c4iw_dev *dev, struct sk_buff *skb)
2107 {
2108 struct c4iw_ep *ep;
2109 struct cpl_fw4_ack *hdr = cplhdr(skb);
2110 u8 credits = hdr->credits;
2111 unsigned int tid = GET_TID(hdr);
2112 struct tid_info *t = dev->rdev.lldi.tids;
2113
2114
2115 ep = lookup_tid(t, tid);
2116 PDBG("%s ep %p tid %u credits %u\n", __func__, ep, ep->hwtid, credits);
2117 if (credits == 0) {
2118 PDBG("%s 0 credit ack ep %p tid %u state %u\n",
2119 __func__, ep, ep->hwtid, state_read(&ep->com));
2120 return 0;
2121 }
2122
2123 dst_confirm(ep->dst);
2124 if (ep->mpa_skb) {
2125 PDBG("%s last streaming msg ack ep %p tid %u state %u "
2126 "initiator %u freeing skb\n", __func__, ep, ep->hwtid,
2127 state_read(&ep->com), ep->mpa_attr.initiator ? 1 : 0);
2128 kfree_skb(ep->mpa_skb);
2129 ep->mpa_skb = NULL;
2130 }
2131 return 0;
2132 }
2133
2134 int c4iw_reject_cr(struct iw_cm_id *cm_id, const void *pdata, u8 pdata_len)
2135 {
2136 int err;
2137 struct c4iw_ep *ep = to_ep(cm_id);
2138 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
2139
2140 if (state_read(&ep->com) == DEAD) {
2141 c4iw_put_ep(&ep->com);
2142 return -ECONNRESET;
2143 }
2144 BUG_ON(state_read(&ep->com) != MPA_REQ_RCVD);
2145 if (mpa_rev == 0)
2146 abort_connection(ep, NULL, GFP_KERNEL);
2147 else {
2148 err = send_mpa_reject(ep, pdata, pdata_len);
2149 err = c4iw_ep_disconnect(ep, 0, GFP_KERNEL);
2150 }
2151 c4iw_put_ep(&ep->com);
2152 return 0;
2153 }
2154
2155 int c4iw_accept_cr(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param)
2156 {
2157 int err;
2158 struct c4iw_qp_attributes attrs;
2159 enum c4iw_qp_attr_mask mask;
2160 struct c4iw_ep *ep = to_ep(cm_id);
2161 struct c4iw_dev *h = to_c4iw_dev(cm_id->device);
2162 struct c4iw_qp *qp = get_qhp(h, conn_param->qpn);
2163
2164 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
2165 if (state_read(&ep->com) == DEAD) {
2166 err = -ECONNRESET;
2167 goto err;
2168 }
2169
2170 BUG_ON(state_read(&ep->com) != MPA_REQ_RCVD);
2171 BUG_ON(!qp);
2172
2173 if ((conn_param->ord > c4iw_max_read_depth) ||
2174 (conn_param->ird > c4iw_max_read_depth)) {
2175 abort_connection(ep, NULL, GFP_KERNEL);
2176 err = -EINVAL;
2177 goto err;
2178 }
2179
2180 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) {
2181 if (conn_param->ord > ep->ird) {
2182 ep->ird = conn_param->ird;
2183 ep->ord = conn_param->ord;
2184 send_mpa_reject(ep, conn_param->private_data,
2185 conn_param->private_data_len);
2186 abort_connection(ep, NULL, GFP_KERNEL);
2187 err = -ENOMEM;
2188 goto err;
2189 }
2190 if (conn_param->ird > ep->ord) {
2191 if (!ep->ord)
2192 conn_param->ird = 1;
2193 else {
2194 abort_connection(ep, NULL, GFP_KERNEL);
2195 err = -ENOMEM;
2196 goto err;
2197 }
2198 }
2199
2200 }
2201 ep->ird = conn_param->ird;
2202 ep->ord = conn_param->ord;
2203
2204 if (ep->mpa_attr.version != 2)
2205 if (peer2peer && ep->ird == 0)
2206 ep->ird = 1;
2207
2208 PDBG("%s %d ird %d ord %d\n", __func__, __LINE__, ep->ird, ep->ord);
2209
2210 cm_id->add_ref(cm_id);
2211 ep->com.cm_id = cm_id;
2212 ep->com.qp = qp;
2213
2214 /* bind QP to EP and move to RTS */
2215 attrs.mpa_attr = ep->mpa_attr;
2216 attrs.max_ird = ep->ird;
2217 attrs.max_ord = ep->ord;
2218 attrs.llp_stream_handle = ep;
2219 attrs.next_state = C4IW_QP_STATE_RTS;
2220
2221 /* bind QP and TID with INIT_WR */
2222 mask = C4IW_QP_ATTR_NEXT_STATE |
2223 C4IW_QP_ATTR_LLP_STREAM_HANDLE |
2224 C4IW_QP_ATTR_MPA_ATTR |
2225 C4IW_QP_ATTR_MAX_IRD |
2226 C4IW_QP_ATTR_MAX_ORD;
2227
2228 err = c4iw_modify_qp(ep->com.qp->rhp,
2229 ep->com.qp, mask, &attrs, 1);
2230 if (err)
2231 goto err1;
2232 err = send_mpa_reply(ep, conn_param->private_data,
2233 conn_param->private_data_len);
2234 if (err)
2235 goto err1;
2236
2237 state_set(&ep->com, FPDU_MODE);
2238 established_upcall(ep);
2239 c4iw_put_ep(&ep->com);
2240 return 0;
2241 err1:
2242 ep->com.cm_id = NULL;
2243 ep->com.qp = NULL;
2244 cm_id->rem_ref(cm_id);
2245 err:
2246 c4iw_put_ep(&ep->com);
2247 return err;
2248 }
2249
2250 int c4iw_connect(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param)
2251 {
2252 struct c4iw_dev *dev = to_c4iw_dev(cm_id->device);
2253 struct c4iw_ep *ep;
2254 struct rtable *rt;
2255 int err = 0;
2256
2257 if ((conn_param->ord > c4iw_max_read_depth) ||
2258 (conn_param->ird > c4iw_max_read_depth)) {
2259 err = -EINVAL;
2260 goto out;
2261 }
2262 ep = alloc_ep(sizeof(*ep), GFP_KERNEL);
2263 if (!ep) {
2264 printk(KERN_ERR MOD "%s - cannot alloc ep.\n", __func__);
2265 err = -ENOMEM;
2266 goto out;
2267 }
2268 init_timer(&ep->timer);
2269 ep->plen = conn_param->private_data_len;
2270 if (ep->plen)
2271 memcpy(ep->mpa_pkt + sizeof(struct mpa_message),
2272 conn_param->private_data, ep->plen);
2273 ep->ird = conn_param->ird;
2274 ep->ord = conn_param->ord;
2275
2276 if (peer2peer && ep->ord == 0)
2277 ep->ord = 1;
2278
2279 cm_id->add_ref(cm_id);
2280 ep->com.dev = dev;
2281 ep->com.cm_id = cm_id;
2282 ep->com.qp = get_qhp(dev, conn_param->qpn);
2283 BUG_ON(!ep->com.qp);
2284 PDBG("%s qpn 0x%x qp %p cm_id %p\n", __func__, conn_param->qpn,
2285 ep->com.qp, cm_id);
2286
2287 /*
2288 * Allocate an active TID to initiate a TCP connection.
2289 */
2290 ep->atid = cxgb4_alloc_atid(dev->rdev.lldi.tids, ep);
2291 if (ep->atid == -1) {
2292 printk(KERN_ERR MOD "%s - cannot alloc atid.\n", __func__);
2293 err = -ENOMEM;
2294 goto fail2;
2295 }
2296
2297 PDBG("%s saddr 0x%x sport 0x%x raddr 0x%x rport 0x%x\n", __func__,
2298 ntohl(cm_id->local_addr.sin_addr.s_addr),
2299 ntohs(cm_id->local_addr.sin_port),
2300 ntohl(cm_id->remote_addr.sin_addr.s_addr),
2301 ntohs(cm_id->remote_addr.sin_port));
2302
2303 /* find a route */
2304 rt = find_route(dev,
2305 cm_id->local_addr.sin_addr.s_addr,
2306 cm_id->remote_addr.sin_addr.s_addr,
2307 cm_id->local_addr.sin_port,
2308 cm_id->remote_addr.sin_port, 0);
2309 if (!rt) {
2310 printk(KERN_ERR MOD "%s - cannot find route.\n", __func__);
2311 err = -EHOSTUNREACH;
2312 goto fail3;
2313 }
2314 ep->dst = &rt->dst;
2315
2316 err = import_ep(ep, cm_id->remote_addr.sin_addr.s_addr,
2317 ep->dst, ep->com.dev, true);
2318 if (err) {
2319 printk(KERN_ERR MOD "%s - cannot alloc l2e.\n", __func__);
2320 goto fail4;
2321 }
2322
2323 PDBG("%s txq_idx %u tx_chan %u smac_idx %u rss_qid %u l2t_idx %u\n",
2324 __func__, ep->txq_idx, ep->tx_chan, ep->smac_idx, ep->rss_qid,
2325 ep->l2t->idx);
2326
2327 state_set(&ep->com, CONNECTING);
2328 ep->tos = 0;
2329 ep->com.local_addr = cm_id->local_addr;
2330 ep->com.remote_addr = cm_id->remote_addr;
2331
2332 /* send connect request to rnic */
2333 err = send_connect(ep);
2334 if (!err)
2335 goto out;
2336
2337 cxgb4_l2t_release(ep->l2t);
2338 fail4:
2339 dst_release(ep->dst);
2340 fail3:
2341 cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid);
2342 fail2:
2343 cm_id->rem_ref(cm_id);
2344 c4iw_put_ep(&ep->com);
2345 out:
2346 return err;
2347 }
2348
2349 int c4iw_create_listen(struct iw_cm_id *cm_id, int backlog)
2350 {
2351 int err = 0;
2352 struct c4iw_dev *dev = to_c4iw_dev(cm_id->device);
2353 struct c4iw_listen_ep *ep;
2354
2355
2356 might_sleep();
2357
2358 ep = alloc_ep(sizeof(*ep), GFP_KERNEL);
2359 if (!ep) {
2360 printk(KERN_ERR MOD "%s - cannot alloc ep.\n", __func__);
2361 err = -ENOMEM;
2362 goto fail1;
2363 }
2364 PDBG("%s ep %p\n", __func__, ep);
2365 cm_id->add_ref(cm_id);
2366 ep->com.cm_id = cm_id;
2367 ep->com.dev = dev;
2368 ep->backlog = backlog;
2369 ep->com.local_addr = cm_id->local_addr;
2370
2371 /*
2372 * Allocate a server TID.
2373 */
2374 ep->stid = cxgb4_alloc_stid(dev->rdev.lldi.tids, PF_INET, ep);
2375 if (ep->stid == -1) {
2376 printk(KERN_ERR MOD "%s - cannot alloc stid.\n", __func__);
2377 err = -ENOMEM;
2378 goto fail2;
2379 }
2380
2381 state_set(&ep->com, LISTEN);
2382 c4iw_init_wr_wait(&ep->com.wr_wait);
2383 err = cxgb4_create_server(ep->com.dev->rdev.lldi.ports[0], ep->stid,
2384 ep->com.local_addr.sin_addr.s_addr,
2385 ep->com.local_addr.sin_port,
2386 ep->com.dev->rdev.lldi.rxq_ids[0]);
2387 if (err)
2388 goto fail3;
2389
2390 /* wait for pass_open_rpl */
2391 err = c4iw_wait_for_reply(&ep->com.dev->rdev, &ep->com.wr_wait, 0, 0,
2392 __func__);
2393 if (!err) {
2394 cm_id->provider_data = ep;
2395 goto out;
2396 }
2397 fail3:
2398 cxgb4_free_stid(ep->com.dev->rdev.lldi.tids, ep->stid, PF_INET);
2399 fail2:
2400 cm_id->rem_ref(cm_id);
2401 c4iw_put_ep(&ep->com);
2402 fail1:
2403 out:
2404 return err;
2405 }
2406
2407 int c4iw_destroy_listen(struct iw_cm_id *cm_id)
2408 {
2409 int err;
2410 struct c4iw_listen_ep *ep = to_listen_ep(cm_id);
2411
2412 PDBG("%s ep %p\n", __func__, ep);
2413
2414 might_sleep();
2415 state_set(&ep->com, DEAD);
2416 c4iw_init_wr_wait(&ep->com.wr_wait);
2417 err = listen_stop(ep);
2418 if (err)
2419 goto done;
2420 err = c4iw_wait_for_reply(&ep->com.dev->rdev, &ep->com.wr_wait, 0, 0,
2421 __func__);
2422 cxgb4_free_stid(ep->com.dev->rdev.lldi.tids, ep->stid, PF_INET);
2423 done:
2424 cm_id->rem_ref(cm_id);
2425 c4iw_put_ep(&ep->com);
2426 return err;
2427 }
2428
2429 int c4iw_ep_disconnect(struct c4iw_ep *ep, int abrupt, gfp_t gfp)
2430 {
2431 int ret = 0;
2432 int close = 0;
2433 int fatal = 0;
2434 struct c4iw_rdev *rdev;
2435
2436 mutex_lock(&ep->com.mutex);
2437
2438 PDBG("%s ep %p state %s, abrupt %d\n", __func__, ep,
2439 states[ep->com.state], abrupt);
2440
2441 rdev = &ep->com.dev->rdev;
2442 if (c4iw_fatal_error(rdev)) {
2443 fatal = 1;
2444 close_complete_upcall(ep);
2445 ep->com.state = DEAD;
2446 }
2447 switch (ep->com.state) {
2448 case MPA_REQ_WAIT:
2449 case MPA_REQ_SENT:
2450 case MPA_REQ_RCVD:
2451 case MPA_REP_SENT:
2452 case FPDU_MODE:
2453 close = 1;
2454 if (abrupt)
2455 ep->com.state = ABORTING;
2456 else {
2457 ep->com.state = CLOSING;
2458 start_ep_timer(ep);
2459 }
2460 set_bit(CLOSE_SENT, &ep->com.flags);
2461 break;
2462 case CLOSING:
2463 if (!test_and_set_bit(CLOSE_SENT, &ep->com.flags)) {
2464 close = 1;
2465 if (abrupt) {
2466 stop_ep_timer(ep);
2467 ep->com.state = ABORTING;
2468 } else
2469 ep->com.state = MORIBUND;
2470 }
2471 break;
2472 case MORIBUND:
2473 case ABORTING:
2474 case DEAD:
2475 PDBG("%s ignoring disconnect ep %p state %u\n",
2476 __func__, ep, ep->com.state);
2477 break;
2478 default:
2479 BUG();
2480 break;
2481 }
2482
2483 if (close) {
2484 if (abrupt) {
2485 close_complete_upcall(ep);
2486 ret = send_abort(ep, NULL, gfp);
2487 } else
2488 ret = send_halfclose(ep, gfp);
2489 if (ret)
2490 fatal = 1;
2491 }
2492 mutex_unlock(&ep->com.mutex);
2493 if (fatal)
2494 release_ep_resources(ep);
2495 return ret;
2496 }
2497
2498 static int async_event(struct c4iw_dev *dev, struct sk_buff *skb)
2499 {
2500 struct cpl_fw6_msg *rpl = cplhdr(skb);
2501 c4iw_ev_dispatch(dev, (struct t4_cqe *)&rpl->data[0]);
2502 return 0;
2503 }
2504
2505 /*
2506 * These are the real handlers that are called from a
2507 * work queue.
2508 */
2509 static c4iw_handler_func work_handlers[NUM_CPL_CMDS] = {
2510 [CPL_ACT_ESTABLISH] = act_establish,
2511 [CPL_ACT_OPEN_RPL] = act_open_rpl,
2512 [CPL_RX_DATA] = rx_data,
2513 [CPL_ABORT_RPL_RSS] = abort_rpl,
2514 [CPL_ABORT_RPL] = abort_rpl,
2515 [CPL_PASS_OPEN_RPL] = pass_open_rpl,
2516 [CPL_CLOSE_LISTSRV_RPL] = close_listsrv_rpl,
2517 [CPL_PASS_ACCEPT_REQ] = pass_accept_req,
2518 [CPL_PASS_ESTABLISH] = pass_establish,
2519 [CPL_PEER_CLOSE] = peer_close,
2520 [CPL_ABORT_REQ_RSS] = peer_abort,
2521 [CPL_CLOSE_CON_RPL] = close_con_rpl,
2522 [CPL_RDMA_TERMINATE] = terminate,
2523 [CPL_FW4_ACK] = fw4_ack,
2524 [CPL_FW6_MSG] = async_event
2525 };
2526
2527 static void process_timeout(struct c4iw_ep *ep)
2528 {
2529 struct c4iw_qp_attributes attrs;
2530 int abort = 1;
2531
2532 mutex_lock(&ep->com.mutex);
2533 PDBG("%s ep %p tid %u state %d\n", __func__, ep, ep->hwtid,
2534 ep->com.state);
2535 switch (ep->com.state) {
2536 case MPA_REQ_SENT:
2537 __state_set(&ep->com, ABORTING);
2538 connect_reply_upcall(ep, -ETIMEDOUT);
2539 break;
2540 case MPA_REQ_WAIT:
2541 __state_set(&ep->com, ABORTING);
2542 break;
2543 case CLOSING:
2544 case MORIBUND:
2545 if (ep->com.cm_id && ep->com.qp) {
2546 attrs.next_state = C4IW_QP_STATE_ERROR;
2547 c4iw_modify_qp(ep->com.qp->rhp,
2548 ep->com.qp, C4IW_QP_ATTR_NEXT_STATE,
2549 &attrs, 1);
2550 }
2551 __state_set(&ep->com, ABORTING);
2552 break;
2553 default:
2554 printk(KERN_ERR "%s unexpected state ep %p tid %u state %u\n",
2555 __func__, ep, ep->hwtid, ep->com.state);
2556 WARN_ON(1);
2557 abort = 0;
2558 }
2559 mutex_unlock(&ep->com.mutex);
2560 if (abort)
2561 abort_connection(ep, NULL, GFP_KERNEL);
2562 c4iw_put_ep(&ep->com);
2563 }
2564
2565 static void process_timedout_eps(void)
2566 {
2567 struct c4iw_ep *ep;
2568
2569 spin_lock_irq(&timeout_lock);
2570 while (!list_empty(&timeout_list)) {
2571 struct list_head *tmp;
2572
2573 tmp = timeout_list.next;
2574 list_del(tmp);
2575 spin_unlock_irq(&timeout_lock);
2576 ep = list_entry(tmp, struct c4iw_ep, entry);
2577 process_timeout(ep);
2578 spin_lock_irq(&timeout_lock);
2579 }
2580 spin_unlock_irq(&timeout_lock);
2581 }
2582
2583 static void process_work(struct work_struct *work)
2584 {
2585 struct sk_buff *skb = NULL;
2586 struct c4iw_dev *dev;
2587 struct cpl_act_establish *rpl;
2588 unsigned int opcode;
2589 int ret;
2590
2591 while ((skb = skb_dequeue(&rxq))) {
2592 rpl = cplhdr(skb);
2593 dev = *((struct c4iw_dev **) (skb->cb + sizeof(void *)));
2594 opcode = rpl->ot.opcode;
2595
2596 BUG_ON(!work_handlers[opcode]);
2597 ret = work_handlers[opcode](dev, skb);
2598 if (!ret)
2599 kfree_skb(skb);
2600 }
2601 process_timedout_eps();
2602 }
2603
2604 static DECLARE_WORK(skb_work, process_work);
2605
2606 static void ep_timeout(unsigned long arg)
2607 {
2608 struct c4iw_ep *ep = (struct c4iw_ep *)arg;
2609
2610 spin_lock(&timeout_lock);
2611 list_add_tail(&ep->entry, &timeout_list);
2612 spin_unlock(&timeout_lock);
2613 queue_work(workq, &skb_work);
2614 }
2615
2616 /*
2617 * All the CM events are handled on a work queue to have a safe context.
2618 */
2619 static int sched(struct c4iw_dev *dev, struct sk_buff *skb)
2620 {
2621
2622 /*
2623 * Save dev in the skb->cb area.
2624 */
2625 *((struct c4iw_dev **) (skb->cb + sizeof(void *))) = dev;
2626
2627 /*
2628 * Queue the skb and schedule the worker thread.
2629 */
2630 skb_queue_tail(&rxq, skb);
2631 queue_work(workq, &skb_work);
2632 return 0;
2633 }
2634
2635 static int set_tcb_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
2636 {
2637 struct cpl_set_tcb_rpl *rpl = cplhdr(skb);
2638
2639 if (rpl->status != CPL_ERR_NONE) {
2640 printk(KERN_ERR MOD "Unexpected SET_TCB_RPL status %u "
2641 "for tid %u\n", rpl->status, GET_TID(rpl));
2642 }
2643 kfree_skb(skb);
2644 return 0;
2645 }
2646
2647 static int fw6_msg(struct c4iw_dev *dev, struct sk_buff *skb)
2648 {
2649 struct cpl_fw6_msg *rpl = cplhdr(skb);
2650 struct c4iw_wr_wait *wr_waitp;
2651 int ret;
2652
2653 PDBG("%s type %u\n", __func__, rpl->type);
2654
2655 switch (rpl->type) {
2656 case 1:
2657 ret = (int)((be64_to_cpu(rpl->data[0]) >> 8) & 0xff);
2658 wr_waitp = (struct c4iw_wr_wait *)(__force unsigned long) rpl->data[1];
2659 PDBG("%s wr_waitp %p ret %u\n", __func__, wr_waitp, ret);
2660 if (wr_waitp)
2661 c4iw_wake_up(wr_waitp, ret ? -ret : 0);
2662 kfree_skb(skb);
2663 break;
2664 case 2:
2665 sched(dev, skb);
2666 break;
2667 default:
2668 printk(KERN_ERR MOD "%s unexpected fw6 msg type %u\n", __func__,
2669 rpl->type);
2670 kfree_skb(skb);
2671 break;
2672 }
2673 return 0;
2674 }
2675
2676 static int peer_abort_intr(struct c4iw_dev *dev, struct sk_buff *skb)
2677 {
2678 struct cpl_abort_req_rss *req = cplhdr(skb);
2679 struct c4iw_ep *ep;
2680 struct tid_info *t = dev->rdev.lldi.tids;
2681 unsigned int tid = GET_TID(req);
2682
2683 ep = lookup_tid(t, tid);
2684 if (!ep) {
2685 printk(KERN_WARNING MOD
2686 "Abort on non-existent endpoint, tid %d\n", tid);
2687 kfree_skb(skb);
2688 return 0;
2689 }
2690 if (is_neg_adv_abort(req->status)) {
2691 PDBG("%s neg_adv_abort ep %p tid %u\n", __func__, ep,
2692 ep->hwtid);
2693 kfree_skb(skb);
2694 return 0;
2695 }
2696 PDBG("%s ep %p tid %u state %u\n", __func__, ep, ep->hwtid,
2697 ep->com.state);
2698
2699 /*
2700 * Wake up any threads in rdma_init() or rdma_fini().
2701 */
2702 c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET);
2703 sched(dev, skb);
2704 return 0;
2705 }
2706
2707 /*
2708 * Most upcalls from the T4 Core go to sched() to
2709 * schedule the processing on a work queue.
2710 */
2711 c4iw_handler_func c4iw_handlers[NUM_CPL_CMDS] = {
2712 [CPL_ACT_ESTABLISH] = sched,
2713 [CPL_ACT_OPEN_RPL] = sched,
2714 [CPL_RX_DATA] = sched,
2715 [CPL_ABORT_RPL_RSS] = sched,
2716 [CPL_ABORT_RPL] = sched,
2717 [CPL_PASS_OPEN_RPL] = sched,
2718 [CPL_CLOSE_LISTSRV_RPL] = sched,
2719 [CPL_PASS_ACCEPT_REQ] = sched,
2720 [CPL_PASS_ESTABLISH] = sched,
2721 [CPL_PEER_CLOSE] = sched,
2722 [CPL_CLOSE_CON_RPL] = sched,
2723 [CPL_ABORT_REQ_RSS] = peer_abort_intr,
2724 [CPL_RDMA_TERMINATE] = sched,
2725 [CPL_FW4_ACK] = sched,
2726 [CPL_SET_TCB_RPL] = set_tcb_rpl,
2727 [CPL_FW6_MSG] = fw6_msg
2728 };
2729
2730 int __init c4iw_cm_init(void)
2731 {
2732 spin_lock_init(&timeout_lock);
2733 skb_queue_head_init(&rxq);
2734
2735 workq = create_singlethread_workqueue("iw_cxgb4");
2736 if (!workq)
2737 return -ENOMEM;
2738
2739 return 0;
2740 }
2741
2742 void __exit c4iw_cm_term(void)
2743 {
2744 WARN_ON(!list_empty(&timeout_list));
2745 flush_workqueue(workq);
2746 destroy_workqueue(workq);
2747 }
This page took 0.09002 seconds and 6 git commands to generate.