ARM: common: edma: Fix xbar mapping
[deliverable/linux.git] / drivers / infiniband / hw / cxgb4 / device.c
1 /*
2 * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/debugfs.h>
35 #include <linux/vmalloc.h>
36
37 #include <rdma/ib_verbs.h>
38
39 #include "iw_cxgb4.h"
40
41 #define DRV_VERSION "0.1"
42
43 MODULE_AUTHOR("Steve Wise");
44 MODULE_DESCRIPTION("Chelsio T4/T5 RDMA Driver");
45 MODULE_LICENSE("Dual BSD/GPL");
46 MODULE_VERSION(DRV_VERSION);
47
48 static int allow_db_fc_on_t5;
49 module_param(allow_db_fc_on_t5, int, 0644);
50 MODULE_PARM_DESC(allow_db_fc_on_t5,
51 "Allow DB Flow Control on T5 (default = 0)");
52
53 static int allow_db_coalescing_on_t5;
54 module_param(allow_db_coalescing_on_t5, int, 0644);
55 MODULE_PARM_DESC(allow_db_coalescing_on_t5,
56 "Allow DB Coalescing on T5 (default = 0)");
57
58 struct uld_ctx {
59 struct list_head entry;
60 struct cxgb4_lld_info lldi;
61 struct c4iw_dev *dev;
62 };
63
64 static LIST_HEAD(uld_ctx_list);
65 static DEFINE_MUTEX(dev_mutex);
66
67 #define DB_FC_RESUME_SIZE 64
68 #define DB_FC_RESUME_DELAY 1
69 #define DB_FC_DRAIN_THRESH 0
70
71 static struct dentry *c4iw_debugfs_root;
72
73 struct c4iw_debugfs_data {
74 struct c4iw_dev *devp;
75 char *buf;
76 int bufsize;
77 int pos;
78 };
79
80 static int count_idrs(int id, void *p, void *data)
81 {
82 int *countp = data;
83
84 *countp = *countp + 1;
85 return 0;
86 }
87
88 static ssize_t debugfs_read(struct file *file, char __user *buf, size_t count,
89 loff_t *ppos)
90 {
91 struct c4iw_debugfs_data *d = file->private_data;
92
93 return simple_read_from_buffer(buf, count, ppos, d->buf, d->pos);
94 }
95
96 static int dump_qp(int id, void *p, void *data)
97 {
98 struct c4iw_qp *qp = p;
99 struct c4iw_debugfs_data *qpd = data;
100 int space;
101 int cc;
102
103 if (id != qp->wq.sq.qid)
104 return 0;
105
106 space = qpd->bufsize - qpd->pos - 1;
107 if (space == 0)
108 return 1;
109
110 if (qp->ep) {
111 if (qp->ep->com.local_addr.ss_family == AF_INET) {
112 struct sockaddr_in *lsin = (struct sockaddr_in *)
113 &qp->ep->com.local_addr;
114 struct sockaddr_in *rsin = (struct sockaddr_in *)
115 &qp->ep->com.remote_addr;
116
117 cc = snprintf(qpd->buf + qpd->pos, space,
118 "rc qp sq id %u rq id %u state %u "
119 "onchip %u ep tid %u state %u "
120 "%pI4:%u->%pI4:%u\n",
121 qp->wq.sq.qid, qp->wq.rq.qid,
122 (int)qp->attr.state,
123 qp->wq.sq.flags & T4_SQ_ONCHIP,
124 qp->ep->hwtid, (int)qp->ep->com.state,
125 &lsin->sin_addr, ntohs(lsin->sin_port),
126 &rsin->sin_addr, ntohs(rsin->sin_port));
127 } else {
128 struct sockaddr_in6 *lsin6 = (struct sockaddr_in6 *)
129 &qp->ep->com.local_addr;
130 struct sockaddr_in6 *rsin6 = (struct sockaddr_in6 *)
131 &qp->ep->com.remote_addr;
132
133 cc = snprintf(qpd->buf + qpd->pos, space,
134 "rc qp sq id %u rq id %u state %u "
135 "onchip %u ep tid %u state %u "
136 "%pI6:%u->%pI6:%u\n",
137 qp->wq.sq.qid, qp->wq.rq.qid,
138 (int)qp->attr.state,
139 qp->wq.sq.flags & T4_SQ_ONCHIP,
140 qp->ep->hwtid, (int)qp->ep->com.state,
141 &lsin6->sin6_addr,
142 ntohs(lsin6->sin6_port),
143 &rsin6->sin6_addr,
144 ntohs(rsin6->sin6_port));
145 }
146 } else
147 cc = snprintf(qpd->buf + qpd->pos, space,
148 "qp sq id %u rq id %u state %u onchip %u\n",
149 qp->wq.sq.qid, qp->wq.rq.qid,
150 (int)qp->attr.state,
151 qp->wq.sq.flags & T4_SQ_ONCHIP);
152 if (cc < space)
153 qpd->pos += cc;
154 return 0;
155 }
156
157 static int qp_release(struct inode *inode, struct file *file)
158 {
159 struct c4iw_debugfs_data *qpd = file->private_data;
160 if (!qpd) {
161 printk(KERN_INFO "%s null qpd?\n", __func__);
162 return 0;
163 }
164 vfree(qpd->buf);
165 kfree(qpd);
166 return 0;
167 }
168
169 static int qp_open(struct inode *inode, struct file *file)
170 {
171 struct c4iw_debugfs_data *qpd;
172 int ret = 0;
173 int count = 1;
174
175 qpd = kmalloc(sizeof *qpd, GFP_KERNEL);
176 if (!qpd) {
177 ret = -ENOMEM;
178 goto out;
179 }
180 qpd->devp = inode->i_private;
181 qpd->pos = 0;
182
183 spin_lock_irq(&qpd->devp->lock);
184 idr_for_each(&qpd->devp->qpidr, count_idrs, &count);
185 spin_unlock_irq(&qpd->devp->lock);
186
187 qpd->bufsize = count * 128;
188 qpd->buf = vmalloc(qpd->bufsize);
189 if (!qpd->buf) {
190 ret = -ENOMEM;
191 goto err1;
192 }
193
194 spin_lock_irq(&qpd->devp->lock);
195 idr_for_each(&qpd->devp->qpidr, dump_qp, qpd);
196 spin_unlock_irq(&qpd->devp->lock);
197
198 qpd->buf[qpd->pos++] = 0;
199 file->private_data = qpd;
200 goto out;
201 err1:
202 kfree(qpd);
203 out:
204 return ret;
205 }
206
207 static const struct file_operations qp_debugfs_fops = {
208 .owner = THIS_MODULE,
209 .open = qp_open,
210 .release = qp_release,
211 .read = debugfs_read,
212 .llseek = default_llseek,
213 };
214
215 static int dump_stag(int id, void *p, void *data)
216 {
217 struct c4iw_debugfs_data *stagd = data;
218 int space;
219 int cc;
220
221 space = stagd->bufsize - stagd->pos - 1;
222 if (space == 0)
223 return 1;
224
225 cc = snprintf(stagd->buf + stagd->pos, space, "0x%x\n", id<<8);
226 if (cc < space)
227 stagd->pos += cc;
228 return 0;
229 }
230
231 static int stag_release(struct inode *inode, struct file *file)
232 {
233 struct c4iw_debugfs_data *stagd = file->private_data;
234 if (!stagd) {
235 printk(KERN_INFO "%s null stagd?\n", __func__);
236 return 0;
237 }
238 kfree(stagd->buf);
239 kfree(stagd);
240 return 0;
241 }
242
243 static int stag_open(struct inode *inode, struct file *file)
244 {
245 struct c4iw_debugfs_data *stagd;
246 int ret = 0;
247 int count = 1;
248
249 stagd = kmalloc(sizeof *stagd, GFP_KERNEL);
250 if (!stagd) {
251 ret = -ENOMEM;
252 goto out;
253 }
254 stagd->devp = inode->i_private;
255 stagd->pos = 0;
256
257 spin_lock_irq(&stagd->devp->lock);
258 idr_for_each(&stagd->devp->mmidr, count_idrs, &count);
259 spin_unlock_irq(&stagd->devp->lock);
260
261 stagd->bufsize = count * sizeof("0x12345678\n");
262 stagd->buf = kmalloc(stagd->bufsize, GFP_KERNEL);
263 if (!stagd->buf) {
264 ret = -ENOMEM;
265 goto err1;
266 }
267
268 spin_lock_irq(&stagd->devp->lock);
269 idr_for_each(&stagd->devp->mmidr, dump_stag, stagd);
270 spin_unlock_irq(&stagd->devp->lock);
271
272 stagd->buf[stagd->pos++] = 0;
273 file->private_data = stagd;
274 goto out;
275 err1:
276 kfree(stagd);
277 out:
278 return ret;
279 }
280
281 static const struct file_operations stag_debugfs_fops = {
282 .owner = THIS_MODULE,
283 .open = stag_open,
284 .release = stag_release,
285 .read = debugfs_read,
286 .llseek = default_llseek,
287 };
288
289 static char *db_state_str[] = {"NORMAL", "FLOW_CONTROL", "RECOVERY", "STOPPED"};
290
291 static int stats_show(struct seq_file *seq, void *v)
292 {
293 struct c4iw_dev *dev = seq->private;
294
295 seq_printf(seq, " Object: %10s %10s %10s %10s\n", "Total", "Current",
296 "Max", "Fail");
297 seq_printf(seq, " PDID: %10llu %10llu %10llu %10llu\n",
298 dev->rdev.stats.pd.total, dev->rdev.stats.pd.cur,
299 dev->rdev.stats.pd.max, dev->rdev.stats.pd.fail);
300 seq_printf(seq, " QID: %10llu %10llu %10llu %10llu\n",
301 dev->rdev.stats.qid.total, dev->rdev.stats.qid.cur,
302 dev->rdev.stats.qid.max, dev->rdev.stats.qid.fail);
303 seq_printf(seq, " TPTMEM: %10llu %10llu %10llu %10llu\n",
304 dev->rdev.stats.stag.total, dev->rdev.stats.stag.cur,
305 dev->rdev.stats.stag.max, dev->rdev.stats.stag.fail);
306 seq_printf(seq, " PBLMEM: %10llu %10llu %10llu %10llu\n",
307 dev->rdev.stats.pbl.total, dev->rdev.stats.pbl.cur,
308 dev->rdev.stats.pbl.max, dev->rdev.stats.pbl.fail);
309 seq_printf(seq, " RQTMEM: %10llu %10llu %10llu %10llu\n",
310 dev->rdev.stats.rqt.total, dev->rdev.stats.rqt.cur,
311 dev->rdev.stats.rqt.max, dev->rdev.stats.rqt.fail);
312 seq_printf(seq, " OCQPMEM: %10llu %10llu %10llu %10llu\n",
313 dev->rdev.stats.ocqp.total, dev->rdev.stats.ocqp.cur,
314 dev->rdev.stats.ocqp.max, dev->rdev.stats.ocqp.fail);
315 seq_printf(seq, " DB FULL: %10llu\n", dev->rdev.stats.db_full);
316 seq_printf(seq, " DB EMPTY: %10llu\n", dev->rdev.stats.db_empty);
317 seq_printf(seq, " DB DROP: %10llu\n", dev->rdev.stats.db_drop);
318 seq_printf(seq, " DB State: %s Transitions %llu FC Interruptions %llu\n",
319 db_state_str[dev->db_state],
320 dev->rdev.stats.db_state_transitions,
321 dev->rdev.stats.db_fc_interruptions);
322 seq_printf(seq, "TCAM_FULL: %10llu\n", dev->rdev.stats.tcam_full);
323 seq_printf(seq, "ACT_OFLD_CONN_FAILS: %10llu\n",
324 dev->rdev.stats.act_ofld_conn_fails);
325 seq_printf(seq, "PAS_OFLD_CONN_FAILS: %10llu\n",
326 dev->rdev.stats.pas_ofld_conn_fails);
327 return 0;
328 }
329
330 static int stats_open(struct inode *inode, struct file *file)
331 {
332 return single_open(file, stats_show, inode->i_private);
333 }
334
335 static ssize_t stats_clear(struct file *file, const char __user *buf,
336 size_t count, loff_t *pos)
337 {
338 struct c4iw_dev *dev = ((struct seq_file *)file->private_data)->private;
339
340 mutex_lock(&dev->rdev.stats.lock);
341 dev->rdev.stats.pd.max = 0;
342 dev->rdev.stats.pd.fail = 0;
343 dev->rdev.stats.qid.max = 0;
344 dev->rdev.stats.qid.fail = 0;
345 dev->rdev.stats.stag.max = 0;
346 dev->rdev.stats.stag.fail = 0;
347 dev->rdev.stats.pbl.max = 0;
348 dev->rdev.stats.pbl.fail = 0;
349 dev->rdev.stats.rqt.max = 0;
350 dev->rdev.stats.rqt.fail = 0;
351 dev->rdev.stats.ocqp.max = 0;
352 dev->rdev.stats.ocqp.fail = 0;
353 dev->rdev.stats.db_full = 0;
354 dev->rdev.stats.db_empty = 0;
355 dev->rdev.stats.db_drop = 0;
356 dev->rdev.stats.db_state_transitions = 0;
357 dev->rdev.stats.tcam_full = 0;
358 dev->rdev.stats.act_ofld_conn_fails = 0;
359 dev->rdev.stats.pas_ofld_conn_fails = 0;
360 mutex_unlock(&dev->rdev.stats.lock);
361 return count;
362 }
363
364 static const struct file_operations stats_debugfs_fops = {
365 .owner = THIS_MODULE,
366 .open = stats_open,
367 .release = single_release,
368 .read = seq_read,
369 .llseek = seq_lseek,
370 .write = stats_clear,
371 };
372
373 static int dump_ep(int id, void *p, void *data)
374 {
375 struct c4iw_ep *ep = p;
376 struct c4iw_debugfs_data *epd = data;
377 int space;
378 int cc;
379
380 space = epd->bufsize - epd->pos - 1;
381 if (space == 0)
382 return 1;
383
384 if (ep->com.local_addr.ss_family == AF_INET) {
385 struct sockaddr_in *lsin = (struct sockaddr_in *)
386 &ep->com.local_addr;
387 struct sockaddr_in *rsin = (struct sockaddr_in *)
388 &ep->com.remote_addr;
389
390 cc = snprintf(epd->buf + epd->pos, space,
391 "ep %p cm_id %p qp %p state %d flags 0x%lx "
392 "history 0x%lx hwtid %d atid %d "
393 "%pI4:%d <-> %pI4:%d\n",
394 ep, ep->com.cm_id, ep->com.qp,
395 (int)ep->com.state, ep->com.flags,
396 ep->com.history, ep->hwtid, ep->atid,
397 &lsin->sin_addr, ntohs(lsin->sin_port),
398 &rsin->sin_addr, ntohs(rsin->sin_port));
399 } else {
400 struct sockaddr_in6 *lsin6 = (struct sockaddr_in6 *)
401 &ep->com.local_addr;
402 struct sockaddr_in6 *rsin6 = (struct sockaddr_in6 *)
403 &ep->com.remote_addr;
404
405 cc = snprintf(epd->buf + epd->pos, space,
406 "ep %p cm_id %p qp %p state %d flags 0x%lx "
407 "history 0x%lx hwtid %d atid %d "
408 "%pI6:%d <-> %pI6:%d\n",
409 ep, ep->com.cm_id, ep->com.qp,
410 (int)ep->com.state, ep->com.flags,
411 ep->com.history, ep->hwtid, ep->atid,
412 &lsin6->sin6_addr, ntohs(lsin6->sin6_port),
413 &rsin6->sin6_addr, ntohs(rsin6->sin6_port));
414 }
415 if (cc < space)
416 epd->pos += cc;
417 return 0;
418 }
419
420 static int dump_listen_ep(int id, void *p, void *data)
421 {
422 struct c4iw_listen_ep *ep = p;
423 struct c4iw_debugfs_data *epd = data;
424 int space;
425 int cc;
426
427 space = epd->bufsize - epd->pos - 1;
428 if (space == 0)
429 return 1;
430
431 if (ep->com.local_addr.ss_family == AF_INET) {
432 struct sockaddr_in *lsin = (struct sockaddr_in *)
433 &ep->com.local_addr;
434
435 cc = snprintf(epd->buf + epd->pos, space,
436 "ep %p cm_id %p state %d flags 0x%lx stid %d "
437 "backlog %d %pI4:%d\n",
438 ep, ep->com.cm_id, (int)ep->com.state,
439 ep->com.flags, ep->stid, ep->backlog,
440 &lsin->sin_addr, ntohs(lsin->sin_port));
441 } else {
442 struct sockaddr_in6 *lsin6 = (struct sockaddr_in6 *)
443 &ep->com.local_addr;
444
445 cc = snprintf(epd->buf + epd->pos, space,
446 "ep %p cm_id %p state %d flags 0x%lx stid %d "
447 "backlog %d %pI6:%d\n",
448 ep, ep->com.cm_id, (int)ep->com.state,
449 ep->com.flags, ep->stid, ep->backlog,
450 &lsin6->sin6_addr, ntohs(lsin6->sin6_port));
451 }
452 if (cc < space)
453 epd->pos += cc;
454 return 0;
455 }
456
457 static int ep_release(struct inode *inode, struct file *file)
458 {
459 struct c4iw_debugfs_data *epd = file->private_data;
460 if (!epd) {
461 pr_info("%s null qpd?\n", __func__);
462 return 0;
463 }
464 vfree(epd->buf);
465 kfree(epd);
466 return 0;
467 }
468
469 static int ep_open(struct inode *inode, struct file *file)
470 {
471 struct c4iw_debugfs_data *epd;
472 int ret = 0;
473 int count = 1;
474
475 epd = kmalloc(sizeof(*epd), GFP_KERNEL);
476 if (!epd) {
477 ret = -ENOMEM;
478 goto out;
479 }
480 epd->devp = inode->i_private;
481 epd->pos = 0;
482
483 spin_lock_irq(&epd->devp->lock);
484 idr_for_each(&epd->devp->hwtid_idr, count_idrs, &count);
485 idr_for_each(&epd->devp->atid_idr, count_idrs, &count);
486 idr_for_each(&epd->devp->stid_idr, count_idrs, &count);
487 spin_unlock_irq(&epd->devp->lock);
488
489 epd->bufsize = count * 160;
490 epd->buf = vmalloc(epd->bufsize);
491 if (!epd->buf) {
492 ret = -ENOMEM;
493 goto err1;
494 }
495
496 spin_lock_irq(&epd->devp->lock);
497 idr_for_each(&epd->devp->hwtid_idr, dump_ep, epd);
498 idr_for_each(&epd->devp->atid_idr, dump_ep, epd);
499 idr_for_each(&epd->devp->stid_idr, dump_listen_ep, epd);
500 spin_unlock_irq(&epd->devp->lock);
501
502 file->private_data = epd;
503 goto out;
504 err1:
505 kfree(epd);
506 out:
507 return ret;
508 }
509
510 static const struct file_operations ep_debugfs_fops = {
511 .owner = THIS_MODULE,
512 .open = ep_open,
513 .release = ep_release,
514 .read = debugfs_read,
515 };
516
517 static int setup_debugfs(struct c4iw_dev *devp)
518 {
519 struct dentry *de;
520
521 if (!devp->debugfs_root)
522 return -1;
523
524 de = debugfs_create_file("qps", S_IWUSR, devp->debugfs_root,
525 (void *)devp, &qp_debugfs_fops);
526 if (de && de->d_inode)
527 de->d_inode->i_size = 4096;
528
529 de = debugfs_create_file("stags", S_IWUSR, devp->debugfs_root,
530 (void *)devp, &stag_debugfs_fops);
531 if (de && de->d_inode)
532 de->d_inode->i_size = 4096;
533
534 de = debugfs_create_file("stats", S_IWUSR, devp->debugfs_root,
535 (void *)devp, &stats_debugfs_fops);
536 if (de && de->d_inode)
537 de->d_inode->i_size = 4096;
538
539 de = debugfs_create_file("eps", S_IWUSR, devp->debugfs_root,
540 (void *)devp, &ep_debugfs_fops);
541 if (de && de->d_inode)
542 de->d_inode->i_size = 4096;
543
544 return 0;
545 }
546
547 void c4iw_release_dev_ucontext(struct c4iw_rdev *rdev,
548 struct c4iw_dev_ucontext *uctx)
549 {
550 struct list_head *pos, *nxt;
551 struct c4iw_qid_list *entry;
552
553 mutex_lock(&uctx->lock);
554 list_for_each_safe(pos, nxt, &uctx->qpids) {
555 entry = list_entry(pos, struct c4iw_qid_list, entry);
556 list_del_init(&entry->entry);
557 if (!(entry->qid & rdev->qpmask)) {
558 c4iw_put_resource(&rdev->resource.qid_table,
559 entry->qid);
560 mutex_lock(&rdev->stats.lock);
561 rdev->stats.qid.cur -= rdev->qpmask + 1;
562 mutex_unlock(&rdev->stats.lock);
563 }
564 kfree(entry);
565 }
566
567 list_for_each_safe(pos, nxt, &uctx->qpids) {
568 entry = list_entry(pos, struct c4iw_qid_list, entry);
569 list_del_init(&entry->entry);
570 kfree(entry);
571 }
572 mutex_unlock(&uctx->lock);
573 }
574
575 void c4iw_init_dev_ucontext(struct c4iw_rdev *rdev,
576 struct c4iw_dev_ucontext *uctx)
577 {
578 INIT_LIST_HEAD(&uctx->qpids);
579 INIT_LIST_HEAD(&uctx->cqids);
580 mutex_init(&uctx->lock);
581 }
582
583 /* Caller takes care of locking if needed */
584 static int c4iw_rdev_open(struct c4iw_rdev *rdev)
585 {
586 int err;
587
588 c4iw_init_dev_ucontext(rdev, &rdev->uctx);
589
590 /*
591 * qpshift is the number of bits to shift the qpid left in order
592 * to get the correct address of the doorbell for that qp.
593 */
594 rdev->qpshift = PAGE_SHIFT - ilog2(rdev->lldi.udb_density);
595 rdev->qpmask = rdev->lldi.udb_density - 1;
596 rdev->cqshift = PAGE_SHIFT - ilog2(rdev->lldi.ucq_density);
597 rdev->cqmask = rdev->lldi.ucq_density - 1;
598 PDBG("%s dev %s stag start 0x%0x size 0x%0x num stags %d "
599 "pbl start 0x%0x size 0x%0x rq start 0x%0x size 0x%0x "
600 "qp qid start %u size %u cq qid start %u size %u\n",
601 __func__, pci_name(rdev->lldi.pdev), rdev->lldi.vr->stag.start,
602 rdev->lldi.vr->stag.size, c4iw_num_stags(rdev),
603 rdev->lldi.vr->pbl.start,
604 rdev->lldi.vr->pbl.size, rdev->lldi.vr->rq.start,
605 rdev->lldi.vr->rq.size,
606 rdev->lldi.vr->qp.start,
607 rdev->lldi.vr->qp.size,
608 rdev->lldi.vr->cq.start,
609 rdev->lldi.vr->cq.size);
610 PDBG("udb len 0x%x udb base %llx db_reg %p gts_reg %p qpshift %lu "
611 "qpmask 0x%x cqshift %lu cqmask 0x%x\n",
612 (unsigned)pci_resource_len(rdev->lldi.pdev, 2),
613 (u64)pci_resource_start(rdev->lldi.pdev, 2),
614 rdev->lldi.db_reg,
615 rdev->lldi.gts_reg,
616 rdev->qpshift, rdev->qpmask,
617 rdev->cqshift, rdev->cqmask);
618
619 if (c4iw_num_stags(rdev) == 0) {
620 err = -EINVAL;
621 goto err1;
622 }
623
624 rdev->stats.pd.total = T4_MAX_NUM_PD;
625 rdev->stats.stag.total = rdev->lldi.vr->stag.size;
626 rdev->stats.pbl.total = rdev->lldi.vr->pbl.size;
627 rdev->stats.rqt.total = rdev->lldi.vr->rq.size;
628 rdev->stats.ocqp.total = rdev->lldi.vr->ocq.size;
629 rdev->stats.qid.total = rdev->lldi.vr->qp.size;
630
631 err = c4iw_init_resource(rdev, c4iw_num_stags(rdev), T4_MAX_NUM_PD);
632 if (err) {
633 printk(KERN_ERR MOD "error %d initializing resources\n", err);
634 goto err1;
635 }
636 err = c4iw_pblpool_create(rdev);
637 if (err) {
638 printk(KERN_ERR MOD "error %d initializing pbl pool\n", err);
639 goto err2;
640 }
641 err = c4iw_rqtpool_create(rdev);
642 if (err) {
643 printk(KERN_ERR MOD "error %d initializing rqt pool\n", err);
644 goto err3;
645 }
646 err = c4iw_ocqp_pool_create(rdev);
647 if (err) {
648 printk(KERN_ERR MOD "error %d initializing ocqp pool\n", err);
649 goto err4;
650 }
651 rdev->status_page = (struct t4_dev_status_page *)
652 __get_free_page(GFP_KERNEL);
653 if (!rdev->status_page) {
654 pr_err(MOD "error allocating status page\n");
655 goto err4;
656 }
657 return 0;
658 err4:
659 c4iw_rqtpool_destroy(rdev);
660 err3:
661 c4iw_pblpool_destroy(rdev);
662 err2:
663 c4iw_destroy_resource(&rdev->resource);
664 err1:
665 return err;
666 }
667
668 static void c4iw_rdev_close(struct c4iw_rdev *rdev)
669 {
670 free_page((unsigned long)rdev->status_page);
671 c4iw_pblpool_destroy(rdev);
672 c4iw_rqtpool_destroy(rdev);
673 c4iw_destroy_resource(&rdev->resource);
674 }
675
676 static void c4iw_dealloc(struct uld_ctx *ctx)
677 {
678 c4iw_rdev_close(&ctx->dev->rdev);
679 idr_destroy(&ctx->dev->cqidr);
680 idr_destroy(&ctx->dev->qpidr);
681 idr_destroy(&ctx->dev->mmidr);
682 idr_destroy(&ctx->dev->hwtid_idr);
683 idr_destroy(&ctx->dev->stid_idr);
684 idr_destroy(&ctx->dev->atid_idr);
685 iounmap(ctx->dev->rdev.oc_mw_kva);
686 ib_dealloc_device(&ctx->dev->ibdev);
687 ctx->dev = NULL;
688 }
689
690 static void c4iw_remove(struct uld_ctx *ctx)
691 {
692 PDBG("%s c4iw_dev %p\n", __func__, ctx->dev);
693 c4iw_unregister_device(ctx->dev);
694 c4iw_dealloc(ctx);
695 }
696
697 static int rdma_supported(const struct cxgb4_lld_info *infop)
698 {
699 return infop->vr->stag.size > 0 && infop->vr->pbl.size > 0 &&
700 infop->vr->rq.size > 0 && infop->vr->qp.size > 0 &&
701 infop->vr->cq.size > 0;
702 }
703
704 static struct c4iw_dev *c4iw_alloc(const struct cxgb4_lld_info *infop)
705 {
706 struct c4iw_dev *devp;
707 int ret;
708
709 if (!rdma_supported(infop)) {
710 printk(KERN_INFO MOD "%s: RDMA not supported on this device.\n",
711 pci_name(infop->pdev));
712 return ERR_PTR(-ENOSYS);
713 }
714 if (!ocqp_supported(infop))
715 pr_info("%s: On-Chip Queues not supported on this device.\n",
716 pci_name(infop->pdev));
717
718 devp = (struct c4iw_dev *)ib_alloc_device(sizeof(*devp));
719 if (!devp) {
720 printk(KERN_ERR MOD "Cannot allocate ib device\n");
721 return ERR_PTR(-ENOMEM);
722 }
723 devp->rdev.lldi = *infop;
724
725 devp->rdev.oc_mw_pa = pci_resource_start(devp->rdev.lldi.pdev, 2) +
726 (pci_resource_len(devp->rdev.lldi.pdev, 2) -
727 roundup_pow_of_two(devp->rdev.lldi.vr->ocq.size));
728 devp->rdev.oc_mw_kva = ioremap_wc(devp->rdev.oc_mw_pa,
729 devp->rdev.lldi.vr->ocq.size);
730
731 PDBG(KERN_INFO MOD "ocq memory: "
732 "hw_start 0x%x size %u mw_pa 0x%lx mw_kva %p\n",
733 devp->rdev.lldi.vr->ocq.start, devp->rdev.lldi.vr->ocq.size,
734 devp->rdev.oc_mw_pa, devp->rdev.oc_mw_kva);
735
736 ret = c4iw_rdev_open(&devp->rdev);
737 if (ret) {
738 printk(KERN_ERR MOD "Unable to open CXIO rdev err %d\n", ret);
739 ib_dealloc_device(&devp->ibdev);
740 return ERR_PTR(ret);
741 }
742
743 idr_init(&devp->cqidr);
744 idr_init(&devp->qpidr);
745 idr_init(&devp->mmidr);
746 idr_init(&devp->hwtid_idr);
747 idr_init(&devp->stid_idr);
748 idr_init(&devp->atid_idr);
749 spin_lock_init(&devp->lock);
750 mutex_init(&devp->rdev.stats.lock);
751 mutex_init(&devp->db_mutex);
752 INIT_LIST_HEAD(&devp->db_fc_list);
753
754 if (c4iw_debugfs_root) {
755 devp->debugfs_root = debugfs_create_dir(
756 pci_name(devp->rdev.lldi.pdev),
757 c4iw_debugfs_root);
758 setup_debugfs(devp);
759 }
760 return devp;
761 }
762
763 static void *c4iw_uld_add(const struct cxgb4_lld_info *infop)
764 {
765 struct uld_ctx *ctx;
766 static int vers_printed;
767 int i;
768
769 if (!vers_printed++)
770 pr_info("Chelsio T4/T5 RDMA Driver - version %s\n",
771 DRV_VERSION);
772
773 ctx = kzalloc(sizeof *ctx, GFP_KERNEL);
774 if (!ctx) {
775 ctx = ERR_PTR(-ENOMEM);
776 goto out;
777 }
778 ctx->lldi = *infop;
779
780 PDBG("%s found device %s nchan %u nrxq %u ntxq %u nports %u\n",
781 __func__, pci_name(ctx->lldi.pdev),
782 ctx->lldi.nchan, ctx->lldi.nrxq,
783 ctx->lldi.ntxq, ctx->lldi.nports);
784
785 mutex_lock(&dev_mutex);
786 list_add_tail(&ctx->entry, &uld_ctx_list);
787 mutex_unlock(&dev_mutex);
788
789 for (i = 0; i < ctx->lldi.nrxq; i++)
790 PDBG("rxqid[%u] %u\n", i, ctx->lldi.rxq_ids[i]);
791 out:
792 return ctx;
793 }
794
795 static inline struct sk_buff *copy_gl_to_skb_pkt(const struct pkt_gl *gl,
796 const __be64 *rsp,
797 u32 pktshift)
798 {
799 struct sk_buff *skb;
800
801 /*
802 * Allocate space for cpl_pass_accept_req which will be synthesized by
803 * driver. Once the driver synthesizes the request the skb will go
804 * through the regular cpl_pass_accept_req processing.
805 * The math here assumes sizeof cpl_pass_accept_req >= sizeof
806 * cpl_rx_pkt.
807 */
808 skb = alloc_skb(gl->tot_len + sizeof(struct cpl_pass_accept_req) +
809 sizeof(struct rss_header) - pktshift, GFP_ATOMIC);
810 if (unlikely(!skb))
811 return NULL;
812
813 __skb_put(skb, gl->tot_len + sizeof(struct cpl_pass_accept_req) +
814 sizeof(struct rss_header) - pktshift);
815
816 /*
817 * This skb will contain:
818 * rss_header from the rspq descriptor (1 flit)
819 * cpl_rx_pkt struct from the rspq descriptor (2 flits)
820 * space for the difference between the size of an
821 * rx_pkt and pass_accept_req cpl (1 flit)
822 * the packet data from the gl
823 */
824 skb_copy_to_linear_data(skb, rsp, sizeof(struct cpl_pass_accept_req) +
825 sizeof(struct rss_header));
826 skb_copy_to_linear_data_offset(skb, sizeof(struct rss_header) +
827 sizeof(struct cpl_pass_accept_req),
828 gl->va + pktshift,
829 gl->tot_len - pktshift);
830 return skb;
831 }
832
833 static inline int recv_rx_pkt(struct c4iw_dev *dev, const struct pkt_gl *gl,
834 const __be64 *rsp)
835 {
836 unsigned int opcode = *(u8 *)rsp;
837 struct sk_buff *skb;
838
839 if (opcode != CPL_RX_PKT)
840 goto out;
841
842 skb = copy_gl_to_skb_pkt(gl , rsp, dev->rdev.lldi.sge_pktshift);
843 if (skb == NULL)
844 goto out;
845
846 if (c4iw_handlers[opcode] == NULL) {
847 pr_info("%s no handler opcode 0x%x...\n", __func__,
848 opcode);
849 kfree_skb(skb);
850 goto out;
851 }
852 c4iw_handlers[opcode](dev, skb);
853 return 1;
854 out:
855 return 0;
856 }
857
858 static int c4iw_uld_rx_handler(void *handle, const __be64 *rsp,
859 const struct pkt_gl *gl)
860 {
861 struct uld_ctx *ctx = handle;
862 struct c4iw_dev *dev = ctx->dev;
863 struct sk_buff *skb;
864 u8 opcode;
865
866 if (gl == NULL) {
867 /* omit RSS and rsp_ctrl at end of descriptor */
868 unsigned int len = 64 - sizeof(struct rsp_ctrl) - 8;
869
870 skb = alloc_skb(256, GFP_ATOMIC);
871 if (!skb)
872 goto nomem;
873 __skb_put(skb, len);
874 skb_copy_to_linear_data(skb, &rsp[1], len);
875 } else if (gl == CXGB4_MSG_AN) {
876 const struct rsp_ctrl *rc = (void *)rsp;
877
878 u32 qid = be32_to_cpu(rc->pldbuflen_qid);
879 c4iw_ev_handler(dev, qid);
880 return 0;
881 } else if (unlikely(*(u8 *)rsp != *(u8 *)gl->va)) {
882 if (recv_rx_pkt(dev, gl, rsp))
883 return 0;
884
885 pr_info("%s: unexpected FL contents at %p, " \
886 "RSS %#llx, FL %#llx, len %u\n",
887 pci_name(ctx->lldi.pdev), gl->va,
888 (unsigned long long)be64_to_cpu(*rsp),
889 (unsigned long long)be64_to_cpu(
890 *(__force __be64 *)gl->va),
891 gl->tot_len);
892
893 return 0;
894 } else {
895 skb = cxgb4_pktgl_to_skb(gl, 128, 128);
896 if (unlikely(!skb))
897 goto nomem;
898 }
899
900 opcode = *(u8 *)rsp;
901 if (c4iw_handlers[opcode]) {
902 c4iw_handlers[opcode](dev, skb);
903 } else {
904 pr_info("%s no handler opcode 0x%x...\n", __func__,
905 opcode);
906 kfree_skb(skb);
907 }
908
909 return 0;
910 nomem:
911 return -1;
912 }
913
914 static int c4iw_uld_state_change(void *handle, enum cxgb4_state new_state)
915 {
916 struct uld_ctx *ctx = handle;
917
918 PDBG("%s new_state %u\n", __func__, new_state);
919 switch (new_state) {
920 case CXGB4_STATE_UP:
921 printk(KERN_INFO MOD "%s: Up\n", pci_name(ctx->lldi.pdev));
922 if (!ctx->dev) {
923 int ret;
924
925 ctx->dev = c4iw_alloc(&ctx->lldi);
926 if (IS_ERR(ctx->dev)) {
927 printk(KERN_ERR MOD
928 "%s: initialization failed: %ld\n",
929 pci_name(ctx->lldi.pdev),
930 PTR_ERR(ctx->dev));
931 ctx->dev = NULL;
932 break;
933 }
934 ret = c4iw_register_device(ctx->dev);
935 if (ret) {
936 printk(KERN_ERR MOD
937 "%s: RDMA registration failed: %d\n",
938 pci_name(ctx->lldi.pdev), ret);
939 c4iw_dealloc(ctx);
940 }
941 }
942 break;
943 case CXGB4_STATE_DOWN:
944 printk(KERN_INFO MOD "%s: Down\n",
945 pci_name(ctx->lldi.pdev));
946 if (ctx->dev)
947 c4iw_remove(ctx);
948 break;
949 case CXGB4_STATE_START_RECOVERY:
950 printk(KERN_INFO MOD "%s: Fatal Error\n",
951 pci_name(ctx->lldi.pdev));
952 if (ctx->dev) {
953 struct ib_event event;
954
955 ctx->dev->rdev.flags |= T4_FATAL_ERROR;
956 memset(&event, 0, sizeof event);
957 event.event = IB_EVENT_DEVICE_FATAL;
958 event.device = &ctx->dev->ibdev;
959 ib_dispatch_event(&event);
960 c4iw_remove(ctx);
961 }
962 break;
963 case CXGB4_STATE_DETACH:
964 printk(KERN_INFO MOD "%s: Detach\n",
965 pci_name(ctx->lldi.pdev));
966 if (ctx->dev)
967 c4iw_remove(ctx);
968 break;
969 }
970 return 0;
971 }
972
973 static int disable_qp_db(int id, void *p, void *data)
974 {
975 struct c4iw_qp *qp = p;
976
977 t4_disable_wq_db(&qp->wq);
978 return 0;
979 }
980
981 static void stop_queues(struct uld_ctx *ctx)
982 {
983 unsigned long flags;
984
985 spin_lock_irqsave(&ctx->dev->lock, flags);
986 ctx->dev->rdev.stats.db_state_transitions++;
987 ctx->dev->db_state = STOPPED;
988 if (ctx->dev->rdev.flags & T4_STATUS_PAGE_DISABLED)
989 idr_for_each(&ctx->dev->qpidr, disable_qp_db, NULL);
990 else
991 ctx->dev->rdev.status_page->db_off = 1;
992 spin_unlock_irqrestore(&ctx->dev->lock, flags);
993 }
994
995 static int enable_qp_db(int id, void *p, void *data)
996 {
997 struct c4iw_qp *qp = p;
998
999 t4_enable_wq_db(&qp->wq);
1000 return 0;
1001 }
1002
1003 static void resume_rc_qp(struct c4iw_qp *qp)
1004 {
1005 spin_lock(&qp->lock);
1006 t4_ring_sq_db(&qp->wq, qp->wq.sq.wq_pidx_inc);
1007 qp->wq.sq.wq_pidx_inc = 0;
1008 t4_ring_rq_db(&qp->wq, qp->wq.rq.wq_pidx_inc);
1009 qp->wq.rq.wq_pidx_inc = 0;
1010 spin_unlock(&qp->lock);
1011 }
1012
1013 static void resume_a_chunk(struct uld_ctx *ctx)
1014 {
1015 int i;
1016 struct c4iw_qp *qp;
1017
1018 for (i = 0; i < DB_FC_RESUME_SIZE; i++) {
1019 qp = list_first_entry(&ctx->dev->db_fc_list, struct c4iw_qp,
1020 db_fc_entry);
1021 list_del_init(&qp->db_fc_entry);
1022 resume_rc_qp(qp);
1023 if (list_empty(&ctx->dev->db_fc_list))
1024 break;
1025 }
1026 }
1027
1028 static void resume_queues(struct uld_ctx *ctx)
1029 {
1030 spin_lock_irq(&ctx->dev->lock);
1031 if (ctx->dev->db_state != STOPPED)
1032 goto out;
1033 ctx->dev->db_state = FLOW_CONTROL;
1034 while (1) {
1035 if (list_empty(&ctx->dev->db_fc_list)) {
1036 WARN_ON(ctx->dev->db_state != FLOW_CONTROL);
1037 ctx->dev->db_state = NORMAL;
1038 ctx->dev->rdev.stats.db_state_transitions++;
1039 if (ctx->dev->rdev.flags & T4_STATUS_PAGE_DISABLED) {
1040 idr_for_each(&ctx->dev->qpidr, enable_qp_db,
1041 NULL);
1042 } else {
1043 ctx->dev->rdev.status_page->db_off = 0;
1044 }
1045 break;
1046 } else {
1047 if (cxgb4_dbfifo_count(ctx->dev->rdev.lldi.ports[0], 1)
1048 < (ctx->dev->rdev.lldi.dbfifo_int_thresh <<
1049 DB_FC_DRAIN_THRESH)) {
1050 resume_a_chunk(ctx);
1051 }
1052 if (!list_empty(&ctx->dev->db_fc_list)) {
1053 spin_unlock_irq(&ctx->dev->lock);
1054 if (DB_FC_RESUME_DELAY) {
1055 set_current_state(TASK_UNINTERRUPTIBLE);
1056 schedule_timeout(DB_FC_RESUME_DELAY);
1057 }
1058 spin_lock_irq(&ctx->dev->lock);
1059 if (ctx->dev->db_state != FLOW_CONTROL)
1060 break;
1061 }
1062 }
1063 }
1064 out:
1065 if (ctx->dev->db_state != NORMAL)
1066 ctx->dev->rdev.stats.db_fc_interruptions++;
1067 spin_unlock_irq(&ctx->dev->lock);
1068 }
1069
1070 struct qp_list {
1071 unsigned idx;
1072 struct c4iw_qp **qps;
1073 };
1074
1075 static int add_and_ref_qp(int id, void *p, void *data)
1076 {
1077 struct qp_list *qp_listp = data;
1078 struct c4iw_qp *qp = p;
1079
1080 c4iw_qp_add_ref(&qp->ibqp);
1081 qp_listp->qps[qp_listp->idx++] = qp;
1082 return 0;
1083 }
1084
1085 static int count_qps(int id, void *p, void *data)
1086 {
1087 unsigned *countp = data;
1088 (*countp)++;
1089 return 0;
1090 }
1091
1092 static void deref_qps(struct qp_list *qp_list)
1093 {
1094 int idx;
1095
1096 for (idx = 0; idx < qp_list->idx; idx++)
1097 c4iw_qp_rem_ref(&qp_list->qps[idx]->ibqp);
1098 }
1099
1100 static void recover_lost_dbs(struct uld_ctx *ctx, struct qp_list *qp_list)
1101 {
1102 int idx;
1103 int ret;
1104
1105 for (idx = 0; idx < qp_list->idx; idx++) {
1106 struct c4iw_qp *qp = qp_list->qps[idx];
1107
1108 spin_lock_irq(&qp->rhp->lock);
1109 spin_lock(&qp->lock);
1110 ret = cxgb4_sync_txq_pidx(qp->rhp->rdev.lldi.ports[0],
1111 qp->wq.sq.qid,
1112 t4_sq_host_wq_pidx(&qp->wq),
1113 t4_sq_wq_size(&qp->wq));
1114 if (ret) {
1115 pr_err(KERN_ERR MOD "%s: Fatal error - "
1116 "DB overflow recovery failed - "
1117 "error syncing SQ qid %u\n",
1118 pci_name(ctx->lldi.pdev), qp->wq.sq.qid);
1119 spin_unlock(&qp->lock);
1120 spin_unlock_irq(&qp->rhp->lock);
1121 return;
1122 }
1123 qp->wq.sq.wq_pidx_inc = 0;
1124
1125 ret = cxgb4_sync_txq_pidx(qp->rhp->rdev.lldi.ports[0],
1126 qp->wq.rq.qid,
1127 t4_rq_host_wq_pidx(&qp->wq),
1128 t4_rq_wq_size(&qp->wq));
1129
1130 if (ret) {
1131 pr_err(KERN_ERR MOD "%s: Fatal error - "
1132 "DB overflow recovery failed - "
1133 "error syncing RQ qid %u\n",
1134 pci_name(ctx->lldi.pdev), qp->wq.rq.qid);
1135 spin_unlock(&qp->lock);
1136 spin_unlock_irq(&qp->rhp->lock);
1137 return;
1138 }
1139 qp->wq.rq.wq_pidx_inc = 0;
1140 spin_unlock(&qp->lock);
1141 spin_unlock_irq(&qp->rhp->lock);
1142
1143 /* Wait for the dbfifo to drain */
1144 while (cxgb4_dbfifo_count(qp->rhp->rdev.lldi.ports[0], 1) > 0) {
1145 set_current_state(TASK_UNINTERRUPTIBLE);
1146 schedule_timeout(usecs_to_jiffies(10));
1147 }
1148 }
1149 }
1150
1151 static void recover_queues(struct uld_ctx *ctx)
1152 {
1153 int count = 0;
1154 struct qp_list qp_list;
1155 int ret;
1156
1157 /* slow everybody down */
1158 set_current_state(TASK_UNINTERRUPTIBLE);
1159 schedule_timeout(usecs_to_jiffies(1000));
1160
1161 /* flush the SGE contexts */
1162 ret = cxgb4_flush_eq_cache(ctx->dev->rdev.lldi.ports[0]);
1163 if (ret) {
1164 printk(KERN_ERR MOD "%s: Fatal error - DB overflow recovery failed\n",
1165 pci_name(ctx->lldi.pdev));
1166 return;
1167 }
1168
1169 /* Count active queues so we can build a list of queues to recover */
1170 spin_lock_irq(&ctx->dev->lock);
1171 WARN_ON(ctx->dev->db_state != STOPPED);
1172 ctx->dev->db_state = RECOVERY;
1173 idr_for_each(&ctx->dev->qpidr, count_qps, &count);
1174
1175 qp_list.qps = kzalloc(count * sizeof *qp_list.qps, GFP_ATOMIC);
1176 if (!qp_list.qps) {
1177 printk(KERN_ERR MOD "%s: Fatal error - DB overflow recovery failed\n",
1178 pci_name(ctx->lldi.pdev));
1179 spin_unlock_irq(&ctx->dev->lock);
1180 return;
1181 }
1182 qp_list.idx = 0;
1183
1184 /* add and ref each qp so it doesn't get freed */
1185 idr_for_each(&ctx->dev->qpidr, add_and_ref_qp, &qp_list);
1186
1187 spin_unlock_irq(&ctx->dev->lock);
1188
1189 /* now traverse the list in a safe context to recover the db state*/
1190 recover_lost_dbs(ctx, &qp_list);
1191
1192 /* we're almost done! deref the qps and clean up */
1193 deref_qps(&qp_list);
1194 kfree(qp_list.qps);
1195
1196 spin_lock_irq(&ctx->dev->lock);
1197 WARN_ON(ctx->dev->db_state != RECOVERY);
1198 ctx->dev->db_state = STOPPED;
1199 spin_unlock_irq(&ctx->dev->lock);
1200 }
1201
1202 static int c4iw_uld_control(void *handle, enum cxgb4_control control, ...)
1203 {
1204 struct uld_ctx *ctx = handle;
1205
1206 switch (control) {
1207 case CXGB4_CONTROL_DB_FULL:
1208 stop_queues(ctx);
1209 ctx->dev->rdev.stats.db_full++;
1210 break;
1211 case CXGB4_CONTROL_DB_EMPTY:
1212 resume_queues(ctx);
1213 mutex_lock(&ctx->dev->rdev.stats.lock);
1214 ctx->dev->rdev.stats.db_empty++;
1215 mutex_unlock(&ctx->dev->rdev.stats.lock);
1216 break;
1217 case CXGB4_CONTROL_DB_DROP:
1218 recover_queues(ctx);
1219 mutex_lock(&ctx->dev->rdev.stats.lock);
1220 ctx->dev->rdev.stats.db_drop++;
1221 mutex_unlock(&ctx->dev->rdev.stats.lock);
1222 break;
1223 default:
1224 printk(KERN_WARNING MOD "%s: unknown control cmd %u\n",
1225 pci_name(ctx->lldi.pdev), control);
1226 break;
1227 }
1228 return 0;
1229 }
1230
1231 static struct cxgb4_uld_info c4iw_uld_info = {
1232 .name = DRV_NAME,
1233 .add = c4iw_uld_add,
1234 .rx_handler = c4iw_uld_rx_handler,
1235 .state_change = c4iw_uld_state_change,
1236 .control = c4iw_uld_control,
1237 };
1238
1239 static int __init c4iw_init_module(void)
1240 {
1241 int err;
1242
1243 err = c4iw_cm_init();
1244 if (err)
1245 return err;
1246
1247 c4iw_debugfs_root = debugfs_create_dir(DRV_NAME, NULL);
1248 if (!c4iw_debugfs_root)
1249 printk(KERN_WARNING MOD
1250 "could not create debugfs entry, continuing\n");
1251
1252 cxgb4_register_uld(CXGB4_ULD_RDMA, &c4iw_uld_info);
1253
1254 return 0;
1255 }
1256
1257 static void __exit c4iw_exit_module(void)
1258 {
1259 struct uld_ctx *ctx, *tmp;
1260
1261 mutex_lock(&dev_mutex);
1262 list_for_each_entry_safe(ctx, tmp, &uld_ctx_list, entry) {
1263 if (ctx->dev)
1264 c4iw_remove(ctx);
1265 kfree(ctx);
1266 }
1267 mutex_unlock(&dev_mutex);
1268 cxgb4_unregister_uld(CXGB4_ULD_RDMA);
1269 c4iw_cm_term();
1270 debugfs_remove_recursive(c4iw_debugfs_root);
1271 }
1272
1273 module_init(c4iw_init_module);
1274 module_exit(c4iw_exit_module);
This page took 0.104233 seconds and 5 git commands to generate.