Merge tag 'davinci-fixes-for-v3.15-rc4' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / drivers / infiniband / hw / cxgb4 / device.c
1 /*
2 * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/debugfs.h>
35 #include <linux/vmalloc.h>
36
37 #include <rdma/ib_verbs.h>
38
39 #include "iw_cxgb4.h"
40
41 #define DRV_VERSION "0.1"
42
43 MODULE_AUTHOR("Steve Wise");
44 MODULE_DESCRIPTION("Chelsio T4/T5 RDMA Driver");
45 MODULE_LICENSE("Dual BSD/GPL");
46 MODULE_VERSION(DRV_VERSION);
47
48 static int allow_db_fc_on_t5;
49 module_param(allow_db_fc_on_t5, int, 0644);
50 MODULE_PARM_DESC(allow_db_fc_on_t5,
51 "Allow DB Flow Control on T5 (default = 0)");
52
53 static int allow_db_coalescing_on_t5;
54 module_param(allow_db_coalescing_on_t5, int, 0644);
55 MODULE_PARM_DESC(allow_db_coalescing_on_t5,
56 "Allow DB Coalescing on T5 (default = 0)");
57
58 struct uld_ctx {
59 struct list_head entry;
60 struct cxgb4_lld_info lldi;
61 struct c4iw_dev *dev;
62 };
63
64 static LIST_HEAD(uld_ctx_list);
65 static DEFINE_MUTEX(dev_mutex);
66
67 #define DB_FC_RESUME_SIZE 64
68 #define DB_FC_RESUME_DELAY 1
69 #define DB_FC_DRAIN_THRESH 0
70
71 static struct dentry *c4iw_debugfs_root;
72
73 struct c4iw_debugfs_data {
74 struct c4iw_dev *devp;
75 char *buf;
76 int bufsize;
77 int pos;
78 };
79
80 static int count_idrs(int id, void *p, void *data)
81 {
82 int *countp = data;
83
84 *countp = *countp + 1;
85 return 0;
86 }
87
88 static ssize_t debugfs_read(struct file *file, char __user *buf, size_t count,
89 loff_t *ppos)
90 {
91 struct c4iw_debugfs_data *d = file->private_data;
92
93 return simple_read_from_buffer(buf, count, ppos, d->buf, d->pos);
94 }
95
96 static int dump_qp(int id, void *p, void *data)
97 {
98 struct c4iw_qp *qp = p;
99 struct c4iw_debugfs_data *qpd = data;
100 int space;
101 int cc;
102
103 if (id != qp->wq.sq.qid)
104 return 0;
105
106 space = qpd->bufsize - qpd->pos - 1;
107 if (space == 0)
108 return 1;
109
110 if (qp->ep) {
111 if (qp->ep->com.local_addr.ss_family == AF_INET) {
112 struct sockaddr_in *lsin = (struct sockaddr_in *)
113 &qp->ep->com.local_addr;
114 struct sockaddr_in *rsin = (struct sockaddr_in *)
115 &qp->ep->com.remote_addr;
116
117 cc = snprintf(qpd->buf + qpd->pos, space,
118 "rc qp sq id %u rq id %u state %u "
119 "onchip %u ep tid %u state %u "
120 "%pI4:%u->%pI4:%u\n",
121 qp->wq.sq.qid, qp->wq.rq.qid,
122 (int)qp->attr.state,
123 qp->wq.sq.flags & T4_SQ_ONCHIP,
124 qp->ep->hwtid, (int)qp->ep->com.state,
125 &lsin->sin_addr, ntohs(lsin->sin_port),
126 &rsin->sin_addr, ntohs(rsin->sin_port));
127 } else {
128 struct sockaddr_in6 *lsin6 = (struct sockaddr_in6 *)
129 &qp->ep->com.local_addr;
130 struct sockaddr_in6 *rsin6 = (struct sockaddr_in6 *)
131 &qp->ep->com.remote_addr;
132
133 cc = snprintf(qpd->buf + qpd->pos, space,
134 "rc qp sq id %u rq id %u state %u "
135 "onchip %u ep tid %u state %u "
136 "%pI6:%u->%pI6:%u\n",
137 qp->wq.sq.qid, qp->wq.rq.qid,
138 (int)qp->attr.state,
139 qp->wq.sq.flags & T4_SQ_ONCHIP,
140 qp->ep->hwtid, (int)qp->ep->com.state,
141 &lsin6->sin6_addr,
142 ntohs(lsin6->sin6_port),
143 &rsin6->sin6_addr,
144 ntohs(rsin6->sin6_port));
145 }
146 } else
147 cc = snprintf(qpd->buf + qpd->pos, space,
148 "qp sq id %u rq id %u state %u onchip %u\n",
149 qp->wq.sq.qid, qp->wq.rq.qid,
150 (int)qp->attr.state,
151 qp->wq.sq.flags & T4_SQ_ONCHIP);
152 if (cc < space)
153 qpd->pos += cc;
154 return 0;
155 }
156
157 static int qp_release(struct inode *inode, struct file *file)
158 {
159 struct c4iw_debugfs_data *qpd = file->private_data;
160 if (!qpd) {
161 printk(KERN_INFO "%s null qpd?\n", __func__);
162 return 0;
163 }
164 vfree(qpd->buf);
165 kfree(qpd);
166 return 0;
167 }
168
169 static int qp_open(struct inode *inode, struct file *file)
170 {
171 struct c4iw_debugfs_data *qpd;
172 int ret = 0;
173 int count = 1;
174
175 qpd = kmalloc(sizeof *qpd, GFP_KERNEL);
176 if (!qpd) {
177 ret = -ENOMEM;
178 goto out;
179 }
180 qpd->devp = inode->i_private;
181 qpd->pos = 0;
182
183 spin_lock_irq(&qpd->devp->lock);
184 idr_for_each(&qpd->devp->qpidr, count_idrs, &count);
185 spin_unlock_irq(&qpd->devp->lock);
186
187 qpd->bufsize = count * 128;
188 qpd->buf = vmalloc(qpd->bufsize);
189 if (!qpd->buf) {
190 ret = -ENOMEM;
191 goto err1;
192 }
193
194 spin_lock_irq(&qpd->devp->lock);
195 idr_for_each(&qpd->devp->qpidr, dump_qp, qpd);
196 spin_unlock_irq(&qpd->devp->lock);
197
198 qpd->buf[qpd->pos++] = 0;
199 file->private_data = qpd;
200 goto out;
201 err1:
202 kfree(qpd);
203 out:
204 return ret;
205 }
206
207 static const struct file_operations qp_debugfs_fops = {
208 .owner = THIS_MODULE,
209 .open = qp_open,
210 .release = qp_release,
211 .read = debugfs_read,
212 .llseek = default_llseek,
213 };
214
215 static int dump_stag(int id, void *p, void *data)
216 {
217 struct c4iw_debugfs_data *stagd = data;
218 int space;
219 int cc;
220
221 space = stagd->bufsize - stagd->pos - 1;
222 if (space == 0)
223 return 1;
224
225 cc = snprintf(stagd->buf + stagd->pos, space, "0x%x\n", id<<8);
226 if (cc < space)
227 stagd->pos += cc;
228 return 0;
229 }
230
231 static int stag_release(struct inode *inode, struct file *file)
232 {
233 struct c4iw_debugfs_data *stagd = file->private_data;
234 if (!stagd) {
235 printk(KERN_INFO "%s null stagd?\n", __func__);
236 return 0;
237 }
238 kfree(stagd->buf);
239 kfree(stagd);
240 return 0;
241 }
242
243 static int stag_open(struct inode *inode, struct file *file)
244 {
245 struct c4iw_debugfs_data *stagd;
246 int ret = 0;
247 int count = 1;
248
249 stagd = kmalloc(sizeof *stagd, GFP_KERNEL);
250 if (!stagd) {
251 ret = -ENOMEM;
252 goto out;
253 }
254 stagd->devp = inode->i_private;
255 stagd->pos = 0;
256
257 spin_lock_irq(&stagd->devp->lock);
258 idr_for_each(&stagd->devp->mmidr, count_idrs, &count);
259 spin_unlock_irq(&stagd->devp->lock);
260
261 stagd->bufsize = count * sizeof("0x12345678\n");
262 stagd->buf = kmalloc(stagd->bufsize, GFP_KERNEL);
263 if (!stagd->buf) {
264 ret = -ENOMEM;
265 goto err1;
266 }
267
268 spin_lock_irq(&stagd->devp->lock);
269 idr_for_each(&stagd->devp->mmidr, dump_stag, stagd);
270 spin_unlock_irq(&stagd->devp->lock);
271
272 stagd->buf[stagd->pos++] = 0;
273 file->private_data = stagd;
274 goto out;
275 err1:
276 kfree(stagd);
277 out:
278 return ret;
279 }
280
281 static const struct file_operations stag_debugfs_fops = {
282 .owner = THIS_MODULE,
283 .open = stag_open,
284 .release = stag_release,
285 .read = debugfs_read,
286 .llseek = default_llseek,
287 };
288
289 static char *db_state_str[] = {"NORMAL", "FLOW_CONTROL", "RECOVERY", "STOPPED"};
290
291 static int stats_show(struct seq_file *seq, void *v)
292 {
293 struct c4iw_dev *dev = seq->private;
294
295 seq_printf(seq, " Object: %10s %10s %10s %10s\n", "Total", "Current",
296 "Max", "Fail");
297 seq_printf(seq, " PDID: %10llu %10llu %10llu %10llu\n",
298 dev->rdev.stats.pd.total, dev->rdev.stats.pd.cur,
299 dev->rdev.stats.pd.max, dev->rdev.stats.pd.fail);
300 seq_printf(seq, " QID: %10llu %10llu %10llu %10llu\n",
301 dev->rdev.stats.qid.total, dev->rdev.stats.qid.cur,
302 dev->rdev.stats.qid.max, dev->rdev.stats.qid.fail);
303 seq_printf(seq, " TPTMEM: %10llu %10llu %10llu %10llu\n",
304 dev->rdev.stats.stag.total, dev->rdev.stats.stag.cur,
305 dev->rdev.stats.stag.max, dev->rdev.stats.stag.fail);
306 seq_printf(seq, " PBLMEM: %10llu %10llu %10llu %10llu\n",
307 dev->rdev.stats.pbl.total, dev->rdev.stats.pbl.cur,
308 dev->rdev.stats.pbl.max, dev->rdev.stats.pbl.fail);
309 seq_printf(seq, " RQTMEM: %10llu %10llu %10llu %10llu\n",
310 dev->rdev.stats.rqt.total, dev->rdev.stats.rqt.cur,
311 dev->rdev.stats.rqt.max, dev->rdev.stats.rqt.fail);
312 seq_printf(seq, " OCQPMEM: %10llu %10llu %10llu %10llu\n",
313 dev->rdev.stats.ocqp.total, dev->rdev.stats.ocqp.cur,
314 dev->rdev.stats.ocqp.max, dev->rdev.stats.ocqp.fail);
315 seq_printf(seq, " DB FULL: %10llu\n", dev->rdev.stats.db_full);
316 seq_printf(seq, " DB EMPTY: %10llu\n", dev->rdev.stats.db_empty);
317 seq_printf(seq, " DB DROP: %10llu\n", dev->rdev.stats.db_drop);
318 seq_printf(seq, " DB State: %s Transitions %llu FC Interruptions %llu\n",
319 db_state_str[dev->db_state],
320 dev->rdev.stats.db_state_transitions,
321 dev->rdev.stats.db_fc_interruptions);
322 seq_printf(seq, "TCAM_FULL: %10llu\n", dev->rdev.stats.tcam_full);
323 seq_printf(seq, "ACT_OFLD_CONN_FAILS: %10llu\n",
324 dev->rdev.stats.act_ofld_conn_fails);
325 seq_printf(seq, "PAS_OFLD_CONN_FAILS: %10llu\n",
326 dev->rdev.stats.pas_ofld_conn_fails);
327 return 0;
328 }
329
330 static int stats_open(struct inode *inode, struct file *file)
331 {
332 return single_open(file, stats_show, inode->i_private);
333 }
334
335 static ssize_t stats_clear(struct file *file, const char __user *buf,
336 size_t count, loff_t *pos)
337 {
338 struct c4iw_dev *dev = ((struct seq_file *)file->private_data)->private;
339
340 mutex_lock(&dev->rdev.stats.lock);
341 dev->rdev.stats.pd.max = 0;
342 dev->rdev.stats.pd.fail = 0;
343 dev->rdev.stats.qid.max = 0;
344 dev->rdev.stats.qid.fail = 0;
345 dev->rdev.stats.stag.max = 0;
346 dev->rdev.stats.stag.fail = 0;
347 dev->rdev.stats.pbl.max = 0;
348 dev->rdev.stats.pbl.fail = 0;
349 dev->rdev.stats.rqt.max = 0;
350 dev->rdev.stats.rqt.fail = 0;
351 dev->rdev.stats.ocqp.max = 0;
352 dev->rdev.stats.ocqp.fail = 0;
353 dev->rdev.stats.db_full = 0;
354 dev->rdev.stats.db_empty = 0;
355 dev->rdev.stats.db_drop = 0;
356 dev->rdev.stats.db_state_transitions = 0;
357 dev->rdev.stats.tcam_full = 0;
358 dev->rdev.stats.act_ofld_conn_fails = 0;
359 dev->rdev.stats.pas_ofld_conn_fails = 0;
360 mutex_unlock(&dev->rdev.stats.lock);
361 return count;
362 }
363
364 static const struct file_operations stats_debugfs_fops = {
365 .owner = THIS_MODULE,
366 .open = stats_open,
367 .release = single_release,
368 .read = seq_read,
369 .llseek = seq_lseek,
370 .write = stats_clear,
371 };
372
373 static int dump_ep(int id, void *p, void *data)
374 {
375 struct c4iw_ep *ep = p;
376 struct c4iw_debugfs_data *epd = data;
377 int space;
378 int cc;
379
380 space = epd->bufsize - epd->pos - 1;
381 if (space == 0)
382 return 1;
383
384 if (ep->com.local_addr.ss_family == AF_INET) {
385 struct sockaddr_in *lsin = (struct sockaddr_in *)
386 &ep->com.local_addr;
387 struct sockaddr_in *rsin = (struct sockaddr_in *)
388 &ep->com.remote_addr;
389
390 cc = snprintf(epd->buf + epd->pos, space,
391 "ep %p cm_id %p qp %p state %d flags 0x%lx "
392 "history 0x%lx hwtid %d atid %d "
393 "%pI4:%d <-> %pI4:%d\n",
394 ep, ep->com.cm_id, ep->com.qp,
395 (int)ep->com.state, ep->com.flags,
396 ep->com.history, ep->hwtid, ep->atid,
397 &lsin->sin_addr, ntohs(lsin->sin_port),
398 &rsin->sin_addr, ntohs(rsin->sin_port));
399 } else {
400 struct sockaddr_in6 *lsin6 = (struct sockaddr_in6 *)
401 &ep->com.local_addr;
402 struct sockaddr_in6 *rsin6 = (struct sockaddr_in6 *)
403 &ep->com.remote_addr;
404
405 cc = snprintf(epd->buf + epd->pos, space,
406 "ep %p cm_id %p qp %p state %d flags 0x%lx "
407 "history 0x%lx hwtid %d atid %d "
408 "%pI6:%d <-> %pI6:%d\n",
409 ep, ep->com.cm_id, ep->com.qp,
410 (int)ep->com.state, ep->com.flags,
411 ep->com.history, ep->hwtid, ep->atid,
412 &lsin6->sin6_addr, ntohs(lsin6->sin6_port),
413 &rsin6->sin6_addr, ntohs(rsin6->sin6_port));
414 }
415 if (cc < space)
416 epd->pos += cc;
417 return 0;
418 }
419
420 static int dump_listen_ep(int id, void *p, void *data)
421 {
422 struct c4iw_listen_ep *ep = p;
423 struct c4iw_debugfs_data *epd = data;
424 int space;
425 int cc;
426
427 space = epd->bufsize - epd->pos - 1;
428 if (space == 0)
429 return 1;
430
431 if (ep->com.local_addr.ss_family == AF_INET) {
432 struct sockaddr_in *lsin = (struct sockaddr_in *)
433 &ep->com.local_addr;
434
435 cc = snprintf(epd->buf + epd->pos, space,
436 "ep %p cm_id %p state %d flags 0x%lx stid %d "
437 "backlog %d %pI4:%d\n",
438 ep, ep->com.cm_id, (int)ep->com.state,
439 ep->com.flags, ep->stid, ep->backlog,
440 &lsin->sin_addr, ntohs(lsin->sin_port));
441 } else {
442 struct sockaddr_in6 *lsin6 = (struct sockaddr_in6 *)
443 &ep->com.local_addr;
444
445 cc = snprintf(epd->buf + epd->pos, space,
446 "ep %p cm_id %p state %d flags 0x%lx stid %d "
447 "backlog %d %pI6:%d\n",
448 ep, ep->com.cm_id, (int)ep->com.state,
449 ep->com.flags, ep->stid, ep->backlog,
450 &lsin6->sin6_addr, ntohs(lsin6->sin6_port));
451 }
452 if (cc < space)
453 epd->pos += cc;
454 return 0;
455 }
456
457 static int ep_release(struct inode *inode, struct file *file)
458 {
459 struct c4iw_debugfs_data *epd = file->private_data;
460 if (!epd) {
461 pr_info("%s null qpd?\n", __func__);
462 return 0;
463 }
464 vfree(epd->buf);
465 kfree(epd);
466 return 0;
467 }
468
469 static int ep_open(struct inode *inode, struct file *file)
470 {
471 struct c4iw_debugfs_data *epd;
472 int ret = 0;
473 int count = 1;
474
475 epd = kmalloc(sizeof(*epd), GFP_KERNEL);
476 if (!epd) {
477 ret = -ENOMEM;
478 goto out;
479 }
480 epd->devp = inode->i_private;
481 epd->pos = 0;
482
483 spin_lock_irq(&epd->devp->lock);
484 idr_for_each(&epd->devp->hwtid_idr, count_idrs, &count);
485 idr_for_each(&epd->devp->atid_idr, count_idrs, &count);
486 idr_for_each(&epd->devp->stid_idr, count_idrs, &count);
487 spin_unlock_irq(&epd->devp->lock);
488
489 epd->bufsize = count * 160;
490 epd->buf = vmalloc(epd->bufsize);
491 if (!epd->buf) {
492 ret = -ENOMEM;
493 goto err1;
494 }
495
496 spin_lock_irq(&epd->devp->lock);
497 idr_for_each(&epd->devp->hwtid_idr, dump_ep, epd);
498 idr_for_each(&epd->devp->atid_idr, dump_ep, epd);
499 idr_for_each(&epd->devp->stid_idr, dump_listen_ep, epd);
500 spin_unlock_irq(&epd->devp->lock);
501
502 file->private_data = epd;
503 goto out;
504 err1:
505 kfree(epd);
506 out:
507 return ret;
508 }
509
510 static const struct file_operations ep_debugfs_fops = {
511 .owner = THIS_MODULE,
512 .open = ep_open,
513 .release = ep_release,
514 .read = debugfs_read,
515 };
516
517 static int setup_debugfs(struct c4iw_dev *devp)
518 {
519 struct dentry *de;
520
521 if (!devp->debugfs_root)
522 return -1;
523
524 de = debugfs_create_file("qps", S_IWUSR, devp->debugfs_root,
525 (void *)devp, &qp_debugfs_fops);
526 if (de && de->d_inode)
527 de->d_inode->i_size = 4096;
528
529 de = debugfs_create_file("stags", S_IWUSR, devp->debugfs_root,
530 (void *)devp, &stag_debugfs_fops);
531 if (de && de->d_inode)
532 de->d_inode->i_size = 4096;
533
534 de = debugfs_create_file("stats", S_IWUSR, devp->debugfs_root,
535 (void *)devp, &stats_debugfs_fops);
536 if (de && de->d_inode)
537 de->d_inode->i_size = 4096;
538
539 de = debugfs_create_file("eps", S_IWUSR, devp->debugfs_root,
540 (void *)devp, &ep_debugfs_fops);
541 if (de && de->d_inode)
542 de->d_inode->i_size = 4096;
543
544 return 0;
545 }
546
547 void c4iw_release_dev_ucontext(struct c4iw_rdev *rdev,
548 struct c4iw_dev_ucontext *uctx)
549 {
550 struct list_head *pos, *nxt;
551 struct c4iw_qid_list *entry;
552
553 mutex_lock(&uctx->lock);
554 list_for_each_safe(pos, nxt, &uctx->qpids) {
555 entry = list_entry(pos, struct c4iw_qid_list, entry);
556 list_del_init(&entry->entry);
557 if (!(entry->qid & rdev->qpmask)) {
558 c4iw_put_resource(&rdev->resource.qid_table,
559 entry->qid);
560 mutex_lock(&rdev->stats.lock);
561 rdev->stats.qid.cur -= rdev->qpmask + 1;
562 mutex_unlock(&rdev->stats.lock);
563 }
564 kfree(entry);
565 }
566
567 list_for_each_safe(pos, nxt, &uctx->qpids) {
568 entry = list_entry(pos, struct c4iw_qid_list, entry);
569 list_del_init(&entry->entry);
570 kfree(entry);
571 }
572 mutex_unlock(&uctx->lock);
573 }
574
575 void c4iw_init_dev_ucontext(struct c4iw_rdev *rdev,
576 struct c4iw_dev_ucontext *uctx)
577 {
578 INIT_LIST_HEAD(&uctx->qpids);
579 INIT_LIST_HEAD(&uctx->cqids);
580 mutex_init(&uctx->lock);
581 }
582
583 /* Caller takes care of locking if needed */
584 static int c4iw_rdev_open(struct c4iw_rdev *rdev)
585 {
586 int err;
587
588 c4iw_init_dev_ucontext(rdev, &rdev->uctx);
589
590 /*
591 * qpshift is the number of bits to shift the qpid left in order
592 * to get the correct address of the doorbell for that qp.
593 */
594 rdev->qpshift = PAGE_SHIFT - ilog2(rdev->lldi.udb_density);
595 rdev->qpmask = rdev->lldi.udb_density - 1;
596 rdev->cqshift = PAGE_SHIFT - ilog2(rdev->lldi.ucq_density);
597 rdev->cqmask = rdev->lldi.ucq_density - 1;
598 PDBG("%s dev %s stag start 0x%0x size 0x%0x num stags %d "
599 "pbl start 0x%0x size 0x%0x rq start 0x%0x size 0x%0x "
600 "qp qid start %u size %u cq qid start %u size %u\n",
601 __func__, pci_name(rdev->lldi.pdev), rdev->lldi.vr->stag.start,
602 rdev->lldi.vr->stag.size, c4iw_num_stags(rdev),
603 rdev->lldi.vr->pbl.start,
604 rdev->lldi.vr->pbl.size, rdev->lldi.vr->rq.start,
605 rdev->lldi.vr->rq.size,
606 rdev->lldi.vr->qp.start,
607 rdev->lldi.vr->qp.size,
608 rdev->lldi.vr->cq.start,
609 rdev->lldi.vr->cq.size);
610 PDBG("udb len 0x%x udb base %llx db_reg %p gts_reg %p qpshift %lu "
611 "qpmask 0x%x cqshift %lu cqmask 0x%x\n",
612 (unsigned)pci_resource_len(rdev->lldi.pdev, 2),
613 (u64)pci_resource_start(rdev->lldi.pdev, 2),
614 rdev->lldi.db_reg,
615 rdev->lldi.gts_reg,
616 rdev->qpshift, rdev->qpmask,
617 rdev->cqshift, rdev->cqmask);
618
619 if (c4iw_num_stags(rdev) == 0) {
620 err = -EINVAL;
621 goto err1;
622 }
623
624 rdev->stats.pd.total = T4_MAX_NUM_PD;
625 rdev->stats.stag.total = rdev->lldi.vr->stag.size;
626 rdev->stats.pbl.total = rdev->lldi.vr->pbl.size;
627 rdev->stats.rqt.total = rdev->lldi.vr->rq.size;
628 rdev->stats.ocqp.total = rdev->lldi.vr->ocq.size;
629 rdev->stats.qid.total = rdev->lldi.vr->qp.size;
630
631 err = c4iw_init_resource(rdev, c4iw_num_stags(rdev), T4_MAX_NUM_PD);
632 if (err) {
633 printk(KERN_ERR MOD "error %d initializing resources\n", err);
634 goto err1;
635 }
636 err = c4iw_pblpool_create(rdev);
637 if (err) {
638 printk(KERN_ERR MOD "error %d initializing pbl pool\n", err);
639 goto err2;
640 }
641 err = c4iw_rqtpool_create(rdev);
642 if (err) {
643 printk(KERN_ERR MOD "error %d initializing rqt pool\n", err);
644 goto err3;
645 }
646 err = c4iw_ocqp_pool_create(rdev);
647 if (err) {
648 printk(KERN_ERR MOD "error %d initializing ocqp pool\n", err);
649 goto err4;
650 }
651 rdev->status_page = (struct t4_dev_status_page *)
652 __get_free_page(GFP_KERNEL);
653 if (!rdev->status_page) {
654 pr_err(MOD "error allocating status page\n");
655 goto err4;
656 }
657 return 0;
658 err4:
659 c4iw_rqtpool_destroy(rdev);
660 err3:
661 c4iw_pblpool_destroy(rdev);
662 err2:
663 c4iw_destroy_resource(&rdev->resource);
664 err1:
665 return err;
666 }
667
668 static void c4iw_rdev_close(struct c4iw_rdev *rdev)
669 {
670 free_page((unsigned long)rdev->status_page);
671 c4iw_pblpool_destroy(rdev);
672 c4iw_rqtpool_destroy(rdev);
673 c4iw_destroy_resource(&rdev->resource);
674 }
675
676 static void c4iw_dealloc(struct uld_ctx *ctx)
677 {
678 c4iw_rdev_close(&ctx->dev->rdev);
679 idr_destroy(&ctx->dev->cqidr);
680 idr_destroy(&ctx->dev->qpidr);
681 idr_destroy(&ctx->dev->mmidr);
682 idr_destroy(&ctx->dev->hwtid_idr);
683 idr_destroy(&ctx->dev->stid_idr);
684 idr_destroy(&ctx->dev->atid_idr);
685 if (ctx->dev->rdev.bar2_kva)
686 iounmap(ctx->dev->rdev.bar2_kva);
687 if (ctx->dev->rdev.oc_mw_kva)
688 iounmap(ctx->dev->rdev.oc_mw_kva);
689 ib_dealloc_device(&ctx->dev->ibdev);
690 ctx->dev = NULL;
691 }
692
693 static void c4iw_remove(struct uld_ctx *ctx)
694 {
695 PDBG("%s c4iw_dev %p\n", __func__, ctx->dev);
696 c4iw_unregister_device(ctx->dev);
697 c4iw_dealloc(ctx);
698 }
699
700 static int rdma_supported(const struct cxgb4_lld_info *infop)
701 {
702 return infop->vr->stag.size > 0 && infop->vr->pbl.size > 0 &&
703 infop->vr->rq.size > 0 && infop->vr->qp.size > 0 &&
704 infop->vr->cq.size > 0;
705 }
706
707 static struct c4iw_dev *c4iw_alloc(const struct cxgb4_lld_info *infop)
708 {
709 struct c4iw_dev *devp;
710 int ret;
711
712 if (!rdma_supported(infop)) {
713 printk(KERN_INFO MOD "%s: RDMA not supported on this device.\n",
714 pci_name(infop->pdev));
715 return ERR_PTR(-ENOSYS);
716 }
717 if (!ocqp_supported(infop))
718 pr_info("%s: On-Chip Queues not supported on this device.\n",
719 pci_name(infop->pdev));
720
721 devp = (struct c4iw_dev *)ib_alloc_device(sizeof(*devp));
722 if (!devp) {
723 printk(KERN_ERR MOD "Cannot allocate ib device\n");
724 return ERR_PTR(-ENOMEM);
725 }
726 devp->rdev.lldi = *infop;
727
728 /*
729 * For T5 devices, we map all of BAR2 with WC.
730 * For T4 devices with onchip qp mem, we map only that part
731 * of BAR2 with WC.
732 */
733 devp->rdev.bar2_pa = pci_resource_start(devp->rdev.lldi.pdev, 2);
734 if (is_t5(devp->rdev.lldi.adapter_type)) {
735 devp->rdev.bar2_kva = ioremap_wc(devp->rdev.bar2_pa,
736 pci_resource_len(devp->rdev.lldi.pdev, 2));
737 if (!devp->rdev.bar2_kva) {
738 pr_err(MOD "Unable to ioremap BAR2\n");
739 return ERR_PTR(-EINVAL);
740 }
741 } else if (ocqp_supported(infop)) {
742 devp->rdev.oc_mw_pa =
743 pci_resource_start(devp->rdev.lldi.pdev, 2) +
744 pci_resource_len(devp->rdev.lldi.pdev, 2) -
745 roundup_pow_of_two(devp->rdev.lldi.vr->ocq.size);
746 devp->rdev.oc_mw_kva = ioremap_wc(devp->rdev.oc_mw_pa,
747 devp->rdev.lldi.vr->ocq.size);
748 if (!devp->rdev.oc_mw_kva) {
749 pr_err(MOD "Unable to ioremap onchip mem\n");
750 return ERR_PTR(-EINVAL);
751 }
752 }
753
754 PDBG(KERN_INFO MOD "ocq memory: "
755 "hw_start 0x%x size %u mw_pa 0x%lx mw_kva %p\n",
756 devp->rdev.lldi.vr->ocq.start, devp->rdev.lldi.vr->ocq.size,
757 devp->rdev.oc_mw_pa, devp->rdev.oc_mw_kva);
758
759 ret = c4iw_rdev_open(&devp->rdev);
760 if (ret) {
761 printk(KERN_ERR MOD "Unable to open CXIO rdev err %d\n", ret);
762 ib_dealloc_device(&devp->ibdev);
763 return ERR_PTR(ret);
764 }
765
766 idr_init(&devp->cqidr);
767 idr_init(&devp->qpidr);
768 idr_init(&devp->mmidr);
769 idr_init(&devp->hwtid_idr);
770 idr_init(&devp->stid_idr);
771 idr_init(&devp->atid_idr);
772 spin_lock_init(&devp->lock);
773 mutex_init(&devp->rdev.stats.lock);
774 mutex_init(&devp->db_mutex);
775 INIT_LIST_HEAD(&devp->db_fc_list);
776
777 if (c4iw_debugfs_root) {
778 devp->debugfs_root = debugfs_create_dir(
779 pci_name(devp->rdev.lldi.pdev),
780 c4iw_debugfs_root);
781 setup_debugfs(devp);
782 }
783 return devp;
784 }
785
786 static void *c4iw_uld_add(const struct cxgb4_lld_info *infop)
787 {
788 struct uld_ctx *ctx;
789 static int vers_printed;
790 int i;
791
792 if (!vers_printed++)
793 pr_info("Chelsio T4/T5 RDMA Driver - version %s\n",
794 DRV_VERSION);
795
796 ctx = kzalloc(sizeof *ctx, GFP_KERNEL);
797 if (!ctx) {
798 ctx = ERR_PTR(-ENOMEM);
799 goto out;
800 }
801 ctx->lldi = *infop;
802
803 PDBG("%s found device %s nchan %u nrxq %u ntxq %u nports %u\n",
804 __func__, pci_name(ctx->lldi.pdev),
805 ctx->lldi.nchan, ctx->lldi.nrxq,
806 ctx->lldi.ntxq, ctx->lldi.nports);
807
808 mutex_lock(&dev_mutex);
809 list_add_tail(&ctx->entry, &uld_ctx_list);
810 mutex_unlock(&dev_mutex);
811
812 for (i = 0; i < ctx->lldi.nrxq; i++)
813 PDBG("rxqid[%u] %u\n", i, ctx->lldi.rxq_ids[i]);
814 out:
815 return ctx;
816 }
817
818 static inline struct sk_buff *copy_gl_to_skb_pkt(const struct pkt_gl *gl,
819 const __be64 *rsp,
820 u32 pktshift)
821 {
822 struct sk_buff *skb;
823
824 /*
825 * Allocate space for cpl_pass_accept_req which will be synthesized by
826 * driver. Once the driver synthesizes the request the skb will go
827 * through the regular cpl_pass_accept_req processing.
828 * The math here assumes sizeof cpl_pass_accept_req >= sizeof
829 * cpl_rx_pkt.
830 */
831 skb = alloc_skb(gl->tot_len + sizeof(struct cpl_pass_accept_req) +
832 sizeof(struct rss_header) - pktshift, GFP_ATOMIC);
833 if (unlikely(!skb))
834 return NULL;
835
836 __skb_put(skb, gl->tot_len + sizeof(struct cpl_pass_accept_req) +
837 sizeof(struct rss_header) - pktshift);
838
839 /*
840 * This skb will contain:
841 * rss_header from the rspq descriptor (1 flit)
842 * cpl_rx_pkt struct from the rspq descriptor (2 flits)
843 * space for the difference between the size of an
844 * rx_pkt and pass_accept_req cpl (1 flit)
845 * the packet data from the gl
846 */
847 skb_copy_to_linear_data(skb, rsp, sizeof(struct cpl_pass_accept_req) +
848 sizeof(struct rss_header));
849 skb_copy_to_linear_data_offset(skb, sizeof(struct rss_header) +
850 sizeof(struct cpl_pass_accept_req),
851 gl->va + pktshift,
852 gl->tot_len - pktshift);
853 return skb;
854 }
855
856 static inline int recv_rx_pkt(struct c4iw_dev *dev, const struct pkt_gl *gl,
857 const __be64 *rsp)
858 {
859 unsigned int opcode = *(u8 *)rsp;
860 struct sk_buff *skb;
861
862 if (opcode != CPL_RX_PKT)
863 goto out;
864
865 skb = copy_gl_to_skb_pkt(gl , rsp, dev->rdev.lldi.sge_pktshift);
866 if (skb == NULL)
867 goto out;
868
869 if (c4iw_handlers[opcode] == NULL) {
870 pr_info("%s no handler opcode 0x%x...\n", __func__,
871 opcode);
872 kfree_skb(skb);
873 goto out;
874 }
875 c4iw_handlers[opcode](dev, skb);
876 return 1;
877 out:
878 return 0;
879 }
880
881 static int c4iw_uld_rx_handler(void *handle, const __be64 *rsp,
882 const struct pkt_gl *gl)
883 {
884 struct uld_ctx *ctx = handle;
885 struct c4iw_dev *dev = ctx->dev;
886 struct sk_buff *skb;
887 u8 opcode;
888
889 if (gl == NULL) {
890 /* omit RSS and rsp_ctrl at end of descriptor */
891 unsigned int len = 64 - sizeof(struct rsp_ctrl) - 8;
892
893 skb = alloc_skb(256, GFP_ATOMIC);
894 if (!skb)
895 goto nomem;
896 __skb_put(skb, len);
897 skb_copy_to_linear_data(skb, &rsp[1], len);
898 } else if (gl == CXGB4_MSG_AN) {
899 const struct rsp_ctrl *rc = (void *)rsp;
900
901 u32 qid = be32_to_cpu(rc->pldbuflen_qid);
902 c4iw_ev_handler(dev, qid);
903 return 0;
904 } else if (unlikely(*(u8 *)rsp != *(u8 *)gl->va)) {
905 if (recv_rx_pkt(dev, gl, rsp))
906 return 0;
907
908 pr_info("%s: unexpected FL contents at %p, " \
909 "RSS %#llx, FL %#llx, len %u\n",
910 pci_name(ctx->lldi.pdev), gl->va,
911 (unsigned long long)be64_to_cpu(*rsp),
912 (unsigned long long)be64_to_cpu(
913 *(__force __be64 *)gl->va),
914 gl->tot_len);
915
916 return 0;
917 } else {
918 skb = cxgb4_pktgl_to_skb(gl, 128, 128);
919 if (unlikely(!skb))
920 goto nomem;
921 }
922
923 opcode = *(u8 *)rsp;
924 if (c4iw_handlers[opcode]) {
925 c4iw_handlers[opcode](dev, skb);
926 } else {
927 pr_info("%s no handler opcode 0x%x...\n", __func__,
928 opcode);
929 kfree_skb(skb);
930 }
931
932 return 0;
933 nomem:
934 return -1;
935 }
936
937 static int c4iw_uld_state_change(void *handle, enum cxgb4_state new_state)
938 {
939 struct uld_ctx *ctx = handle;
940
941 PDBG("%s new_state %u\n", __func__, new_state);
942 switch (new_state) {
943 case CXGB4_STATE_UP:
944 printk(KERN_INFO MOD "%s: Up\n", pci_name(ctx->lldi.pdev));
945 if (!ctx->dev) {
946 int ret;
947
948 ctx->dev = c4iw_alloc(&ctx->lldi);
949 if (IS_ERR(ctx->dev)) {
950 printk(KERN_ERR MOD
951 "%s: initialization failed: %ld\n",
952 pci_name(ctx->lldi.pdev),
953 PTR_ERR(ctx->dev));
954 ctx->dev = NULL;
955 break;
956 }
957 ret = c4iw_register_device(ctx->dev);
958 if (ret) {
959 printk(KERN_ERR MOD
960 "%s: RDMA registration failed: %d\n",
961 pci_name(ctx->lldi.pdev), ret);
962 c4iw_dealloc(ctx);
963 }
964 }
965 break;
966 case CXGB4_STATE_DOWN:
967 printk(KERN_INFO MOD "%s: Down\n",
968 pci_name(ctx->lldi.pdev));
969 if (ctx->dev)
970 c4iw_remove(ctx);
971 break;
972 case CXGB4_STATE_START_RECOVERY:
973 printk(KERN_INFO MOD "%s: Fatal Error\n",
974 pci_name(ctx->lldi.pdev));
975 if (ctx->dev) {
976 struct ib_event event;
977
978 ctx->dev->rdev.flags |= T4_FATAL_ERROR;
979 memset(&event, 0, sizeof event);
980 event.event = IB_EVENT_DEVICE_FATAL;
981 event.device = &ctx->dev->ibdev;
982 ib_dispatch_event(&event);
983 c4iw_remove(ctx);
984 }
985 break;
986 case CXGB4_STATE_DETACH:
987 printk(KERN_INFO MOD "%s: Detach\n",
988 pci_name(ctx->lldi.pdev));
989 if (ctx->dev)
990 c4iw_remove(ctx);
991 break;
992 }
993 return 0;
994 }
995
996 static int disable_qp_db(int id, void *p, void *data)
997 {
998 struct c4iw_qp *qp = p;
999
1000 t4_disable_wq_db(&qp->wq);
1001 return 0;
1002 }
1003
1004 static void stop_queues(struct uld_ctx *ctx)
1005 {
1006 unsigned long flags;
1007
1008 spin_lock_irqsave(&ctx->dev->lock, flags);
1009 ctx->dev->rdev.stats.db_state_transitions++;
1010 ctx->dev->db_state = STOPPED;
1011 if (ctx->dev->rdev.flags & T4_STATUS_PAGE_DISABLED)
1012 idr_for_each(&ctx->dev->qpidr, disable_qp_db, NULL);
1013 else
1014 ctx->dev->rdev.status_page->db_off = 1;
1015 spin_unlock_irqrestore(&ctx->dev->lock, flags);
1016 }
1017
1018 static int enable_qp_db(int id, void *p, void *data)
1019 {
1020 struct c4iw_qp *qp = p;
1021
1022 t4_enable_wq_db(&qp->wq);
1023 return 0;
1024 }
1025
1026 static void resume_rc_qp(struct c4iw_qp *qp)
1027 {
1028 spin_lock(&qp->lock);
1029 t4_ring_sq_db(&qp->wq, qp->wq.sq.wq_pidx_inc,
1030 is_t5(qp->rhp->rdev.lldi.adapter_type), NULL);
1031 qp->wq.sq.wq_pidx_inc = 0;
1032 t4_ring_rq_db(&qp->wq, qp->wq.rq.wq_pidx_inc,
1033 is_t5(qp->rhp->rdev.lldi.adapter_type), NULL);
1034 qp->wq.rq.wq_pidx_inc = 0;
1035 spin_unlock(&qp->lock);
1036 }
1037
1038 static void resume_a_chunk(struct uld_ctx *ctx)
1039 {
1040 int i;
1041 struct c4iw_qp *qp;
1042
1043 for (i = 0; i < DB_FC_RESUME_SIZE; i++) {
1044 qp = list_first_entry(&ctx->dev->db_fc_list, struct c4iw_qp,
1045 db_fc_entry);
1046 list_del_init(&qp->db_fc_entry);
1047 resume_rc_qp(qp);
1048 if (list_empty(&ctx->dev->db_fc_list))
1049 break;
1050 }
1051 }
1052
1053 static void resume_queues(struct uld_ctx *ctx)
1054 {
1055 spin_lock_irq(&ctx->dev->lock);
1056 if (ctx->dev->db_state != STOPPED)
1057 goto out;
1058 ctx->dev->db_state = FLOW_CONTROL;
1059 while (1) {
1060 if (list_empty(&ctx->dev->db_fc_list)) {
1061 WARN_ON(ctx->dev->db_state != FLOW_CONTROL);
1062 ctx->dev->db_state = NORMAL;
1063 ctx->dev->rdev.stats.db_state_transitions++;
1064 if (ctx->dev->rdev.flags & T4_STATUS_PAGE_DISABLED) {
1065 idr_for_each(&ctx->dev->qpidr, enable_qp_db,
1066 NULL);
1067 } else {
1068 ctx->dev->rdev.status_page->db_off = 0;
1069 }
1070 break;
1071 } else {
1072 if (cxgb4_dbfifo_count(ctx->dev->rdev.lldi.ports[0], 1)
1073 < (ctx->dev->rdev.lldi.dbfifo_int_thresh <<
1074 DB_FC_DRAIN_THRESH)) {
1075 resume_a_chunk(ctx);
1076 }
1077 if (!list_empty(&ctx->dev->db_fc_list)) {
1078 spin_unlock_irq(&ctx->dev->lock);
1079 if (DB_FC_RESUME_DELAY) {
1080 set_current_state(TASK_UNINTERRUPTIBLE);
1081 schedule_timeout(DB_FC_RESUME_DELAY);
1082 }
1083 spin_lock_irq(&ctx->dev->lock);
1084 if (ctx->dev->db_state != FLOW_CONTROL)
1085 break;
1086 }
1087 }
1088 }
1089 out:
1090 if (ctx->dev->db_state != NORMAL)
1091 ctx->dev->rdev.stats.db_fc_interruptions++;
1092 spin_unlock_irq(&ctx->dev->lock);
1093 }
1094
1095 struct qp_list {
1096 unsigned idx;
1097 struct c4iw_qp **qps;
1098 };
1099
1100 static int add_and_ref_qp(int id, void *p, void *data)
1101 {
1102 struct qp_list *qp_listp = data;
1103 struct c4iw_qp *qp = p;
1104
1105 c4iw_qp_add_ref(&qp->ibqp);
1106 qp_listp->qps[qp_listp->idx++] = qp;
1107 return 0;
1108 }
1109
1110 static int count_qps(int id, void *p, void *data)
1111 {
1112 unsigned *countp = data;
1113 (*countp)++;
1114 return 0;
1115 }
1116
1117 static void deref_qps(struct qp_list *qp_list)
1118 {
1119 int idx;
1120
1121 for (idx = 0; idx < qp_list->idx; idx++)
1122 c4iw_qp_rem_ref(&qp_list->qps[idx]->ibqp);
1123 }
1124
1125 static void recover_lost_dbs(struct uld_ctx *ctx, struct qp_list *qp_list)
1126 {
1127 int idx;
1128 int ret;
1129
1130 for (idx = 0; idx < qp_list->idx; idx++) {
1131 struct c4iw_qp *qp = qp_list->qps[idx];
1132
1133 spin_lock_irq(&qp->rhp->lock);
1134 spin_lock(&qp->lock);
1135 ret = cxgb4_sync_txq_pidx(qp->rhp->rdev.lldi.ports[0],
1136 qp->wq.sq.qid,
1137 t4_sq_host_wq_pidx(&qp->wq),
1138 t4_sq_wq_size(&qp->wq));
1139 if (ret) {
1140 pr_err(KERN_ERR MOD "%s: Fatal error - "
1141 "DB overflow recovery failed - "
1142 "error syncing SQ qid %u\n",
1143 pci_name(ctx->lldi.pdev), qp->wq.sq.qid);
1144 spin_unlock(&qp->lock);
1145 spin_unlock_irq(&qp->rhp->lock);
1146 return;
1147 }
1148 qp->wq.sq.wq_pidx_inc = 0;
1149
1150 ret = cxgb4_sync_txq_pidx(qp->rhp->rdev.lldi.ports[0],
1151 qp->wq.rq.qid,
1152 t4_rq_host_wq_pidx(&qp->wq),
1153 t4_rq_wq_size(&qp->wq));
1154
1155 if (ret) {
1156 pr_err(KERN_ERR MOD "%s: Fatal error - "
1157 "DB overflow recovery failed - "
1158 "error syncing RQ qid %u\n",
1159 pci_name(ctx->lldi.pdev), qp->wq.rq.qid);
1160 spin_unlock(&qp->lock);
1161 spin_unlock_irq(&qp->rhp->lock);
1162 return;
1163 }
1164 qp->wq.rq.wq_pidx_inc = 0;
1165 spin_unlock(&qp->lock);
1166 spin_unlock_irq(&qp->rhp->lock);
1167
1168 /* Wait for the dbfifo to drain */
1169 while (cxgb4_dbfifo_count(qp->rhp->rdev.lldi.ports[0], 1) > 0) {
1170 set_current_state(TASK_UNINTERRUPTIBLE);
1171 schedule_timeout(usecs_to_jiffies(10));
1172 }
1173 }
1174 }
1175
1176 static void recover_queues(struct uld_ctx *ctx)
1177 {
1178 int count = 0;
1179 struct qp_list qp_list;
1180 int ret;
1181
1182 /* slow everybody down */
1183 set_current_state(TASK_UNINTERRUPTIBLE);
1184 schedule_timeout(usecs_to_jiffies(1000));
1185
1186 /* flush the SGE contexts */
1187 ret = cxgb4_flush_eq_cache(ctx->dev->rdev.lldi.ports[0]);
1188 if (ret) {
1189 printk(KERN_ERR MOD "%s: Fatal error - DB overflow recovery failed\n",
1190 pci_name(ctx->lldi.pdev));
1191 return;
1192 }
1193
1194 /* Count active queues so we can build a list of queues to recover */
1195 spin_lock_irq(&ctx->dev->lock);
1196 WARN_ON(ctx->dev->db_state != STOPPED);
1197 ctx->dev->db_state = RECOVERY;
1198 idr_for_each(&ctx->dev->qpidr, count_qps, &count);
1199
1200 qp_list.qps = kzalloc(count * sizeof *qp_list.qps, GFP_ATOMIC);
1201 if (!qp_list.qps) {
1202 printk(KERN_ERR MOD "%s: Fatal error - DB overflow recovery failed\n",
1203 pci_name(ctx->lldi.pdev));
1204 spin_unlock_irq(&ctx->dev->lock);
1205 return;
1206 }
1207 qp_list.idx = 0;
1208
1209 /* add and ref each qp so it doesn't get freed */
1210 idr_for_each(&ctx->dev->qpidr, add_and_ref_qp, &qp_list);
1211
1212 spin_unlock_irq(&ctx->dev->lock);
1213
1214 /* now traverse the list in a safe context to recover the db state*/
1215 recover_lost_dbs(ctx, &qp_list);
1216
1217 /* we're almost done! deref the qps and clean up */
1218 deref_qps(&qp_list);
1219 kfree(qp_list.qps);
1220
1221 spin_lock_irq(&ctx->dev->lock);
1222 WARN_ON(ctx->dev->db_state != RECOVERY);
1223 ctx->dev->db_state = STOPPED;
1224 spin_unlock_irq(&ctx->dev->lock);
1225 }
1226
1227 static int c4iw_uld_control(void *handle, enum cxgb4_control control, ...)
1228 {
1229 struct uld_ctx *ctx = handle;
1230
1231 switch (control) {
1232 case CXGB4_CONTROL_DB_FULL:
1233 stop_queues(ctx);
1234 ctx->dev->rdev.stats.db_full++;
1235 break;
1236 case CXGB4_CONTROL_DB_EMPTY:
1237 resume_queues(ctx);
1238 mutex_lock(&ctx->dev->rdev.stats.lock);
1239 ctx->dev->rdev.stats.db_empty++;
1240 mutex_unlock(&ctx->dev->rdev.stats.lock);
1241 break;
1242 case CXGB4_CONTROL_DB_DROP:
1243 recover_queues(ctx);
1244 mutex_lock(&ctx->dev->rdev.stats.lock);
1245 ctx->dev->rdev.stats.db_drop++;
1246 mutex_unlock(&ctx->dev->rdev.stats.lock);
1247 break;
1248 default:
1249 printk(KERN_WARNING MOD "%s: unknown control cmd %u\n",
1250 pci_name(ctx->lldi.pdev), control);
1251 break;
1252 }
1253 return 0;
1254 }
1255
1256 static struct cxgb4_uld_info c4iw_uld_info = {
1257 .name = DRV_NAME,
1258 .add = c4iw_uld_add,
1259 .rx_handler = c4iw_uld_rx_handler,
1260 .state_change = c4iw_uld_state_change,
1261 .control = c4iw_uld_control,
1262 };
1263
1264 static int __init c4iw_init_module(void)
1265 {
1266 int err;
1267
1268 err = c4iw_cm_init();
1269 if (err)
1270 return err;
1271
1272 c4iw_debugfs_root = debugfs_create_dir(DRV_NAME, NULL);
1273 if (!c4iw_debugfs_root)
1274 printk(KERN_WARNING MOD
1275 "could not create debugfs entry, continuing\n");
1276
1277 cxgb4_register_uld(CXGB4_ULD_RDMA, &c4iw_uld_info);
1278
1279 return 0;
1280 }
1281
1282 static void __exit c4iw_exit_module(void)
1283 {
1284 struct uld_ctx *ctx, *tmp;
1285
1286 mutex_lock(&dev_mutex);
1287 list_for_each_entry_safe(ctx, tmp, &uld_ctx_list, entry) {
1288 if (ctx->dev)
1289 c4iw_remove(ctx);
1290 kfree(ctx);
1291 }
1292 mutex_unlock(&dev_mutex);
1293 cxgb4_unregister_uld(CXGB4_ULD_RDMA);
1294 c4iw_cm_term();
1295 debugfs_remove_recursive(c4iw_debugfs_root);
1296 }
1297
1298 module_init(c4iw_init_module);
1299 module_exit(c4iw_exit_module);
This page took 0.084618 seconds and 5 git commands to generate.