5265d160fa63521a7590240d3d78c96095c0ab6a
[deliverable/linux.git] / drivers / infiniband / hw / hfi1 / verbs.c
1 /*
2 * Copyright(c) 2015, 2016 Intel Corporation.
3 *
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47
48 #include <rdma/ib_mad.h>
49 #include <rdma/ib_user_verbs.h>
50 #include <linux/io.h>
51 #include <linux/module.h>
52 #include <linux/utsname.h>
53 #include <linux/rculist.h>
54 #include <linux/mm.h>
55 #include <linux/vmalloc.h>
56
57 #include "hfi.h"
58 #include "common.h"
59 #include "device.h"
60 #include "trace.h"
61 #include "qp.h"
62 #include "verbs_txreq.h"
63
64 static unsigned int hfi1_lkey_table_size = 16;
65 module_param_named(lkey_table_size, hfi1_lkey_table_size, uint,
66 S_IRUGO);
67 MODULE_PARM_DESC(lkey_table_size,
68 "LKEY table size in bits (2^n, 1 <= n <= 23)");
69
70 static unsigned int hfi1_max_pds = 0xFFFF;
71 module_param_named(max_pds, hfi1_max_pds, uint, S_IRUGO);
72 MODULE_PARM_DESC(max_pds,
73 "Maximum number of protection domains to support");
74
75 static unsigned int hfi1_max_ahs = 0xFFFF;
76 module_param_named(max_ahs, hfi1_max_ahs, uint, S_IRUGO);
77 MODULE_PARM_DESC(max_ahs, "Maximum number of address handles to support");
78
79 unsigned int hfi1_max_cqes = 0x2FFFF;
80 module_param_named(max_cqes, hfi1_max_cqes, uint, S_IRUGO);
81 MODULE_PARM_DESC(max_cqes,
82 "Maximum number of completion queue entries to support");
83
84 unsigned int hfi1_max_cqs = 0x1FFFF;
85 module_param_named(max_cqs, hfi1_max_cqs, uint, S_IRUGO);
86 MODULE_PARM_DESC(max_cqs, "Maximum number of completion queues to support");
87
88 unsigned int hfi1_max_qp_wrs = 0x3FFF;
89 module_param_named(max_qp_wrs, hfi1_max_qp_wrs, uint, S_IRUGO);
90 MODULE_PARM_DESC(max_qp_wrs, "Maximum number of QP WRs to support");
91
92 unsigned int hfi1_max_qps = 16384;
93 module_param_named(max_qps, hfi1_max_qps, uint, S_IRUGO);
94 MODULE_PARM_DESC(max_qps, "Maximum number of QPs to support");
95
96 unsigned int hfi1_max_sges = 0x60;
97 module_param_named(max_sges, hfi1_max_sges, uint, S_IRUGO);
98 MODULE_PARM_DESC(max_sges, "Maximum number of SGEs to support");
99
100 unsigned int hfi1_max_mcast_grps = 16384;
101 module_param_named(max_mcast_grps, hfi1_max_mcast_grps, uint, S_IRUGO);
102 MODULE_PARM_DESC(max_mcast_grps,
103 "Maximum number of multicast groups to support");
104
105 unsigned int hfi1_max_mcast_qp_attached = 16;
106 module_param_named(max_mcast_qp_attached, hfi1_max_mcast_qp_attached,
107 uint, S_IRUGO);
108 MODULE_PARM_DESC(max_mcast_qp_attached,
109 "Maximum number of attached QPs to support");
110
111 unsigned int hfi1_max_srqs = 1024;
112 module_param_named(max_srqs, hfi1_max_srqs, uint, S_IRUGO);
113 MODULE_PARM_DESC(max_srqs, "Maximum number of SRQs to support");
114
115 unsigned int hfi1_max_srq_sges = 128;
116 module_param_named(max_srq_sges, hfi1_max_srq_sges, uint, S_IRUGO);
117 MODULE_PARM_DESC(max_srq_sges, "Maximum number of SRQ SGEs to support");
118
119 unsigned int hfi1_max_srq_wrs = 0x1FFFF;
120 module_param_named(max_srq_wrs, hfi1_max_srq_wrs, uint, S_IRUGO);
121 MODULE_PARM_DESC(max_srq_wrs, "Maximum number of SRQ WRs support");
122
123 unsigned short piothreshold = 256;
124 module_param(piothreshold, ushort, S_IRUGO);
125 MODULE_PARM_DESC(piothreshold, "size used to determine sdma vs. pio");
126
127 #define COPY_CACHELESS 1
128 #define COPY_ADAPTIVE 2
129 static unsigned int sge_copy_mode;
130 module_param(sge_copy_mode, uint, S_IRUGO);
131 MODULE_PARM_DESC(sge_copy_mode,
132 "Verbs copy mode: 0 use memcpy, 1 use cacheless copy, 2 adapt based on WSS");
133
134 static void verbs_sdma_complete(
135 struct sdma_txreq *cookie,
136 int status);
137
138 static int pio_wait(struct rvt_qp *qp,
139 struct send_context *sc,
140 struct hfi1_pkt_state *ps,
141 u32 flag);
142
143 /* Length of buffer to create verbs txreq cache name */
144 #define TXREQ_NAME_LEN 24
145
146 static uint wss_threshold;
147 module_param(wss_threshold, uint, S_IRUGO);
148 MODULE_PARM_DESC(wss_threshold, "Percentage (1-100) of LLC to use as a threshold for a cacheless copy");
149 static uint wss_clean_period = 256;
150 module_param(wss_clean_period, uint, S_IRUGO);
151 MODULE_PARM_DESC(wss_clean_period, "Count of verbs copies before an entry in the page copy table is cleaned");
152
153 /* memory working set size */
154 struct hfi1_wss {
155 unsigned long *entries;
156 atomic_t total_count;
157 atomic_t clean_counter;
158 atomic_t clean_entry;
159
160 int threshold;
161 int num_entries;
162 long pages_mask;
163 };
164
165 static struct hfi1_wss wss;
166
167 int hfi1_wss_init(void)
168 {
169 long llc_size;
170 long llc_bits;
171 long table_size;
172 long table_bits;
173
174 /* check for a valid percent range - default to 80 if none or invalid */
175 if (wss_threshold < 1 || wss_threshold > 100)
176 wss_threshold = 80;
177 /* reject a wildly large period */
178 if (wss_clean_period > 1000000)
179 wss_clean_period = 256;
180 /* reject a zero period */
181 if (wss_clean_period == 0)
182 wss_clean_period = 1;
183
184 /*
185 * Calculate the table size - the next power of 2 larger than the
186 * LLC size. LLC size is in KiB.
187 */
188 llc_size = wss_llc_size() * 1024;
189 table_size = roundup_pow_of_two(llc_size);
190
191 /* one bit per page in rounded up table */
192 llc_bits = llc_size / PAGE_SIZE;
193 table_bits = table_size / PAGE_SIZE;
194 wss.pages_mask = table_bits - 1;
195 wss.num_entries = table_bits / BITS_PER_LONG;
196
197 wss.threshold = (llc_bits * wss_threshold) / 100;
198 if (wss.threshold == 0)
199 wss.threshold = 1;
200
201 atomic_set(&wss.clean_counter, wss_clean_period);
202
203 wss.entries = kcalloc(wss.num_entries, sizeof(*wss.entries),
204 GFP_KERNEL);
205 if (!wss.entries) {
206 hfi1_wss_exit();
207 return -ENOMEM;
208 }
209
210 return 0;
211 }
212
213 void hfi1_wss_exit(void)
214 {
215 /* coded to handle partially initialized and repeat callers */
216 kfree(wss.entries);
217 wss.entries = NULL;
218 }
219
220 /*
221 * Advance the clean counter. When the clean period has expired,
222 * clean an entry.
223 *
224 * This is implemented in atomics to avoid locking. Because multiple
225 * variables are involved, it can be racy which can lead to slightly
226 * inaccurate information. Since this is only a heuristic, this is
227 * OK. Any innaccuracies will clean themselves out as the counter
228 * advances. That said, it is unlikely the entry clean operation will
229 * race - the next possible racer will not start until the next clean
230 * period.
231 *
232 * The clean counter is implemented as a decrement to zero. When zero
233 * is reached an entry is cleaned.
234 */
235 static void wss_advance_clean_counter(void)
236 {
237 int entry;
238 int weight;
239 unsigned long bits;
240
241 /* become the cleaner if we decrement the counter to zero */
242 if (atomic_dec_and_test(&wss.clean_counter)) {
243 /*
244 * Set, not add, the clean period. This avoids an issue
245 * where the counter could decrement below the clean period.
246 * Doing a set can result in lost decrements, slowing the
247 * clean advance. Since this a heuristic, this possible
248 * slowdown is OK.
249 *
250 * An alternative is to loop, advancing the counter by a
251 * clean period until the result is > 0. However, this could
252 * lead to several threads keeping another in the clean loop.
253 * This could be mitigated by limiting the number of times
254 * we stay in the loop.
255 */
256 atomic_set(&wss.clean_counter, wss_clean_period);
257
258 /*
259 * Uniquely grab the entry to clean and move to next.
260 * The current entry is always the lower bits of
261 * wss.clean_entry. The table size, wss.num_entries,
262 * is always a power-of-2.
263 */
264 entry = (atomic_inc_return(&wss.clean_entry) - 1)
265 & (wss.num_entries - 1);
266
267 /* clear the entry and count the bits */
268 bits = xchg(&wss.entries[entry], 0);
269 weight = hweight64((u64)bits);
270 /* only adjust the contended total count if needed */
271 if (weight)
272 atomic_sub(weight, &wss.total_count);
273 }
274 }
275
276 /*
277 * Insert the given address into the working set array.
278 */
279 static void wss_insert(void *address)
280 {
281 u32 page = ((unsigned long)address >> PAGE_SHIFT) & wss.pages_mask;
282 u32 entry = page / BITS_PER_LONG; /* assumes this ends up a shift */
283 u32 nr = page & (BITS_PER_LONG - 1);
284
285 if (!test_and_set_bit(nr, &wss.entries[entry]))
286 atomic_inc(&wss.total_count);
287
288 wss_advance_clean_counter();
289 }
290
291 /*
292 * Is the working set larger than the threshold?
293 */
294 static inline int wss_exceeds_threshold(void)
295 {
296 return atomic_read(&wss.total_count) >= wss.threshold;
297 }
298
299 /*
300 * Translate ib_wr_opcode into ib_wc_opcode.
301 */
302 const enum ib_wc_opcode ib_hfi1_wc_opcode[] = {
303 [IB_WR_RDMA_WRITE] = IB_WC_RDMA_WRITE,
304 [IB_WR_RDMA_WRITE_WITH_IMM] = IB_WC_RDMA_WRITE,
305 [IB_WR_SEND] = IB_WC_SEND,
306 [IB_WR_SEND_WITH_IMM] = IB_WC_SEND,
307 [IB_WR_RDMA_READ] = IB_WC_RDMA_READ,
308 [IB_WR_ATOMIC_CMP_AND_SWP] = IB_WC_COMP_SWAP,
309 [IB_WR_ATOMIC_FETCH_AND_ADD] = IB_WC_FETCH_ADD,
310 [IB_WR_SEND_WITH_INV] = IB_WC_SEND,
311 [IB_WR_LOCAL_INV] = IB_WC_LOCAL_INV,
312 [IB_WR_REG_MR] = IB_WC_REG_MR
313 };
314
315 /*
316 * Length of header by opcode, 0 --> not supported
317 */
318 const u8 hdr_len_by_opcode[256] = {
319 /* RC */
320 [IB_OPCODE_RC_SEND_FIRST] = 12 + 8,
321 [IB_OPCODE_RC_SEND_MIDDLE] = 12 + 8,
322 [IB_OPCODE_RC_SEND_LAST] = 12 + 8,
323 [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
324 [IB_OPCODE_RC_SEND_ONLY] = 12 + 8,
325 [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE] = 12 + 8 + 4,
326 [IB_OPCODE_RC_RDMA_WRITE_FIRST] = 12 + 8 + 16,
327 [IB_OPCODE_RC_RDMA_WRITE_MIDDLE] = 12 + 8,
328 [IB_OPCODE_RC_RDMA_WRITE_LAST] = 12 + 8,
329 [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
330 [IB_OPCODE_RC_RDMA_WRITE_ONLY] = 12 + 8 + 16,
331 [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
332 [IB_OPCODE_RC_RDMA_READ_REQUEST] = 12 + 8 + 16,
333 [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST] = 12 + 8 + 4,
334 [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE] = 12 + 8,
335 [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST] = 12 + 8 + 4,
336 [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY] = 12 + 8 + 4,
337 [IB_OPCODE_RC_ACKNOWLEDGE] = 12 + 8 + 4,
338 [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE] = 12 + 8 + 4,
339 [IB_OPCODE_RC_COMPARE_SWAP] = 12 + 8 + 28,
340 [IB_OPCODE_RC_FETCH_ADD] = 12 + 8 + 28,
341 [IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE] = 12 + 8 + 4,
342 [IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE] = 12 + 8 + 4,
343 /* UC */
344 [IB_OPCODE_UC_SEND_FIRST] = 12 + 8,
345 [IB_OPCODE_UC_SEND_MIDDLE] = 12 + 8,
346 [IB_OPCODE_UC_SEND_LAST] = 12 + 8,
347 [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
348 [IB_OPCODE_UC_SEND_ONLY] = 12 + 8,
349 [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE] = 12 + 8 + 4,
350 [IB_OPCODE_UC_RDMA_WRITE_FIRST] = 12 + 8 + 16,
351 [IB_OPCODE_UC_RDMA_WRITE_MIDDLE] = 12 + 8,
352 [IB_OPCODE_UC_RDMA_WRITE_LAST] = 12 + 8,
353 [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
354 [IB_OPCODE_UC_RDMA_WRITE_ONLY] = 12 + 8 + 16,
355 [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
356 /* UD */
357 [IB_OPCODE_UD_SEND_ONLY] = 12 + 8 + 8,
358 [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE] = 12 + 8 + 12
359 };
360
361 static const opcode_handler opcode_handler_tbl[256] = {
362 /* RC */
363 [IB_OPCODE_RC_SEND_FIRST] = &hfi1_rc_rcv,
364 [IB_OPCODE_RC_SEND_MIDDLE] = &hfi1_rc_rcv,
365 [IB_OPCODE_RC_SEND_LAST] = &hfi1_rc_rcv,
366 [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv,
367 [IB_OPCODE_RC_SEND_ONLY] = &hfi1_rc_rcv,
368 [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv,
369 [IB_OPCODE_RC_RDMA_WRITE_FIRST] = &hfi1_rc_rcv,
370 [IB_OPCODE_RC_RDMA_WRITE_MIDDLE] = &hfi1_rc_rcv,
371 [IB_OPCODE_RC_RDMA_WRITE_LAST] = &hfi1_rc_rcv,
372 [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv,
373 [IB_OPCODE_RC_RDMA_WRITE_ONLY] = &hfi1_rc_rcv,
374 [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv,
375 [IB_OPCODE_RC_RDMA_READ_REQUEST] = &hfi1_rc_rcv,
376 [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST] = &hfi1_rc_rcv,
377 [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE] = &hfi1_rc_rcv,
378 [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST] = &hfi1_rc_rcv,
379 [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY] = &hfi1_rc_rcv,
380 [IB_OPCODE_RC_ACKNOWLEDGE] = &hfi1_rc_rcv,
381 [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE] = &hfi1_rc_rcv,
382 [IB_OPCODE_RC_COMPARE_SWAP] = &hfi1_rc_rcv,
383 [IB_OPCODE_RC_FETCH_ADD] = &hfi1_rc_rcv,
384 [IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE] = &hfi1_rc_rcv,
385 [IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE] = &hfi1_rc_rcv,
386 /* UC */
387 [IB_OPCODE_UC_SEND_FIRST] = &hfi1_uc_rcv,
388 [IB_OPCODE_UC_SEND_MIDDLE] = &hfi1_uc_rcv,
389 [IB_OPCODE_UC_SEND_LAST] = &hfi1_uc_rcv,
390 [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv,
391 [IB_OPCODE_UC_SEND_ONLY] = &hfi1_uc_rcv,
392 [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv,
393 [IB_OPCODE_UC_RDMA_WRITE_FIRST] = &hfi1_uc_rcv,
394 [IB_OPCODE_UC_RDMA_WRITE_MIDDLE] = &hfi1_uc_rcv,
395 [IB_OPCODE_UC_RDMA_WRITE_LAST] = &hfi1_uc_rcv,
396 [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv,
397 [IB_OPCODE_UC_RDMA_WRITE_ONLY] = &hfi1_uc_rcv,
398 [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv,
399 /* UD */
400 [IB_OPCODE_UD_SEND_ONLY] = &hfi1_ud_rcv,
401 [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE] = &hfi1_ud_rcv,
402 /* CNP */
403 [IB_OPCODE_CNP] = &hfi1_cnp_rcv
404 };
405
406 /*
407 * System image GUID.
408 */
409 __be64 ib_hfi1_sys_image_guid;
410
411 /**
412 * hfi1_copy_sge - copy data to SGE memory
413 * @ss: the SGE state
414 * @data: the data to copy
415 * @length: the length of the data
416 * @copy_last: do a separate copy of the last 8 bytes
417 */
418 void hfi1_copy_sge(
419 struct rvt_sge_state *ss,
420 void *data, u32 length,
421 int release,
422 int copy_last)
423 {
424 struct rvt_sge *sge = &ss->sge;
425 int in_last = 0;
426 int i;
427 int cacheless_copy = 0;
428
429 if (sge_copy_mode == COPY_CACHELESS) {
430 cacheless_copy = length >= PAGE_SIZE;
431 } else if (sge_copy_mode == COPY_ADAPTIVE) {
432 if (length >= PAGE_SIZE) {
433 /*
434 * NOTE: this *assumes*:
435 * o The first vaddr is the dest.
436 * o If multiple pages, then vaddr is sequential.
437 */
438 wss_insert(sge->vaddr);
439 if (length >= (2 * PAGE_SIZE))
440 wss_insert(sge->vaddr + PAGE_SIZE);
441
442 cacheless_copy = wss_exceeds_threshold();
443 } else {
444 wss_advance_clean_counter();
445 }
446 }
447 if (copy_last) {
448 if (length > 8) {
449 length -= 8;
450 } else {
451 copy_last = 0;
452 in_last = 1;
453 }
454 }
455
456 again:
457 while (length) {
458 u32 len = sge->length;
459
460 if (len > length)
461 len = length;
462 if (len > sge->sge_length)
463 len = sge->sge_length;
464 WARN_ON_ONCE(len == 0);
465 if (unlikely(in_last)) {
466 /* enforce byte transfer ordering */
467 for (i = 0; i < len; i++)
468 ((u8 *)sge->vaddr)[i] = ((u8 *)data)[i];
469 } else if (cacheless_copy) {
470 cacheless_memcpy(sge->vaddr, data, len);
471 } else {
472 memcpy(sge->vaddr, data, len);
473 }
474 sge->vaddr += len;
475 sge->length -= len;
476 sge->sge_length -= len;
477 if (sge->sge_length == 0) {
478 if (release)
479 rvt_put_mr(sge->mr);
480 if (--ss->num_sge)
481 *sge = *ss->sg_list++;
482 } else if (sge->length == 0 && sge->mr->lkey) {
483 if (++sge->n >= RVT_SEGSZ) {
484 if (++sge->m >= sge->mr->mapsz)
485 break;
486 sge->n = 0;
487 }
488 sge->vaddr =
489 sge->mr->map[sge->m]->segs[sge->n].vaddr;
490 sge->length =
491 sge->mr->map[sge->m]->segs[sge->n].length;
492 }
493 data += len;
494 length -= len;
495 }
496
497 if (copy_last) {
498 copy_last = 0;
499 in_last = 1;
500 length = 8;
501 goto again;
502 }
503 }
504
505 /**
506 * hfi1_skip_sge - skip over SGE memory
507 * @ss: the SGE state
508 * @length: the number of bytes to skip
509 */
510 void hfi1_skip_sge(struct rvt_sge_state *ss, u32 length, int release)
511 {
512 struct rvt_sge *sge = &ss->sge;
513
514 while (length) {
515 u32 len = sge->length;
516
517 if (len > length)
518 len = length;
519 if (len > sge->sge_length)
520 len = sge->sge_length;
521 WARN_ON_ONCE(len == 0);
522 sge->vaddr += len;
523 sge->length -= len;
524 sge->sge_length -= len;
525 if (sge->sge_length == 0) {
526 if (release)
527 rvt_put_mr(sge->mr);
528 if (--ss->num_sge)
529 *sge = *ss->sg_list++;
530 } else if (sge->length == 0 && sge->mr->lkey) {
531 if (++sge->n >= RVT_SEGSZ) {
532 if (++sge->m >= sge->mr->mapsz)
533 break;
534 sge->n = 0;
535 }
536 sge->vaddr =
537 sge->mr->map[sge->m]->segs[sge->n].vaddr;
538 sge->length =
539 sge->mr->map[sge->m]->segs[sge->n].length;
540 }
541 length -= len;
542 }
543 }
544
545 /*
546 * Make sure the QP is ready and able to accept the given opcode.
547 */
548 static inline opcode_handler qp_ok(int opcode, struct hfi1_packet *packet)
549 {
550 if (!(ib_rvt_state_ops[packet->qp->state] & RVT_PROCESS_RECV_OK))
551 return NULL;
552 if (((opcode & RVT_OPCODE_QP_MASK) == packet->qp->allowed_ops) ||
553 (opcode == IB_OPCODE_CNP))
554 return opcode_handler_tbl[opcode];
555
556 return NULL;
557 }
558
559 /**
560 * hfi1_ib_rcv - process an incoming packet
561 * @packet: data packet information
562 *
563 * This is called to process an incoming packet at interrupt level.
564 *
565 * Tlen is the length of the header + data + CRC in bytes.
566 */
567 void hfi1_ib_rcv(struct hfi1_packet *packet)
568 {
569 struct hfi1_ctxtdata *rcd = packet->rcd;
570 struct hfi1_ib_header *hdr = packet->hdr;
571 u32 tlen = packet->tlen;
572 struct hfi1_pportdata *ppd = rcd->ppd;
573 struct hfi1_ibport *ibp = &ppd->ibport_data;
574 struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi;
575 opcode_handler packet_handler;
576 unsigned long flags;
577 u32 qp_num;
578 int lnh;
579 u8 opcode;
580 u16 lid;
581
582 /* Check for GRH */
583 lnh = be16_to_cpu(hdr->lrh[0]) & 3;
584 if (lnh == HFI1_LRH_BTH) {
585 packet->ohdr = &hdr->u.oth;
586 } else if (lnh == HFI1_LRH_GRH) {
587 u32 vtf;
588
589 packet->ohdr = &hdr->u.l.oth;
590 if (hdr->u.l.grh.next_hdr != IB_GRH_NEXT_HDR)
591 goto drop;
592 vtf = be32_to_cpu(hdr->u.l.grh.version_tclass_flow);
593 if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
594 goto drop;
595 packet->rcv_flags |= HFI1_HAS_GRH;
596 } else {
597 goto drop;
598 }
599
600 trace_input_ibhdr(rcd->dd, hdr);
601
602 opcode = (be32_to_cpu(packet->ohdr->bth[0]) >> 24);
603 inc_opstats(tlen, &rcd->opstats->stats[opcode]);
604
605 /* Get the destination QP number. */
606 qp_num = be32_to_cpu(packet->ohdr->bth[1]) & RVT_QPN_MASK;
607 lid = be16_to_cpu(hdr->lrh[1]);
608 if (unlikely((lid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
609 (lid != be16_to_cpu(IB_LID_PERMISSIVE)))) {
610 struct rvt_mcast *mcast;
611 struct rvt_mcast_qp *p;
612
613 if (lnh != HFI1_LRH_GRH)
614 goto drop;
615 mcast = rvt_mcast_find(&ibp->rvp, &hdr->u.l.grh.dgid);
616 if (!mcast)
617 goto drop;
618 list_for_each_entry_rcu(p, &mcast->qp_list, list) {
619 packet->qp = p->qp;
620 spin_lock_irqsave(&packet->qp->r_lock, flags);
621 packet_handler = qp_ok(opcode, packet);
622 if (likely(packet_handler))
623 packet_handler(packet);
624 else
625 ibp->rvp.n_pkt_drops++;
626 spin_unlock_irqrestore(&packet->qp->r_lock, flags);
627 }
628 /*
629 * Notify rvt_multicast_detach() if it is waiting for us
630 * to finish.
631 */
632 if (atomic_dec_return(&mcast->refcount) <= 1)
633 wake_up(&mcast->wait);
634 } else {
635 rcu_read_lock();
636 packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
637 if (!packet->qp) {
638 rcu_read_unlock();
639 goto drop;
640 }
641 spin_lock_irqsave(&packet->qp->r_lock, flags);
642 packet_handler = qp_ok(opcode, packet);
643 if (likely(packet_handler))
644 packet_handler(packet);
645 else
646 ibp->rvp.n_pkt_drops++;
647 spin_unlock_irqrestore(&packet->qp->r_lock, flags);
648 rcu_read_unlock();
649 }
650 return;
651
652 drop:
653 ibp->rvp.n_pkt_drops++;
654 }
655
656 /*
657 * This is called from a timer to check for QPs
658 * which need kernel memory in order to send a packet.
659 */
660 static void mem_timer(unsigned long data)
661 {
662 struct hfi1_ibdev *dev = (struct hfi1_ibdev *)data;
663 struct list_head *list = &dev->memwait;
664 struct rvt_qp *qp = NULL;
665 struct iowait *wait;
666 unsigned long flags;
667 struct hfi1_qp_priv *priv;
668
669 write_seqlock_irqsave(&dev->iowait_lock, flags);
670 if (!list_empty(list)) {
671 wait = list_first_entry(list, struct iowait, list);
672 qp = iowait_to_qp(wait);
673 priv = qp->priv;
674 list_del_init(&priv->s_iowait.list);
675 /* refcount held until actual wake up */
676 if (!list_empty(list))
677 mod_timer(&dev->mem_timer, jiffies + 1);
678 }
679 write_sequnlock_irqrestore(&dev->iowait_lock, flags);
680
681 if (qp)
682 hfi1_qp_wakeup(qp, RVT_S_WAIT_KMEM);
683 }
684
685 void update_sge(struct rvt_sge_state *ss, u32 length)
686 {
687 struct rvt_sge *sge = &ss->sge;
688
689 sge->vaddr += length;
690 sge->length -= length;
691 sge->sge_length -= length;
692 if (sge->sge_length == 0) {
693 if (--ss->num_sge)
694 *sge = *ss->sg_list++;
695 } else if (sge->length == 0 && sge->mr->lkey) {
696 if (++sge->n >= RVT_SEGSZ) {
697 if (++sge->m >= sge->mr->mapsz)
698 return;
699 sge->n = 0;
700 }
701 sge->vaddr = sge->mr->map[sge->m]->segs[sge->n].vaddr;
702 sge->length = sge->mr->map[sge->m]->segs[sge->n].length;
703 }
704 }
705
706 /*
707 * This is called with progress side lock held.
708 */
709 /* New API */
710 static void verbs_sdma_complete(
711 struct sdma_txreq *cookie,
712 int status)
713 {
714 struct verbs_txreq *tx =
715 container_of(cookie, struct verbs_txreq, txreq);
716 struct rvt_qp *qp = tx->qp;
717
718 spin_lock(&qp->s_lock);
719 if (tx->wqe) {
720 hfi1_send_complete(qp, tx->wqe, IB_WC_SUCCESS);
721 } else if (qp->ibqp.qp_type == IB_QPT_RC) {
722 struct hfi1_ib_header *hdr;
723
724 hdr = &tx->phdr.hdr;
725 hfi1_rc_send_complete(qp, hdr);
726 }
727 spin_unlock(&qp->s_lock);
728
729 hfi1_put_txreq(tx);
730 }
731
732 static int wait_kmem(struct hfi1_ibdev *dev,
733 struct rvt_qp *qp,
734 struct hfi1_pkt_state *ps)
735 {
736 struct hfi1_qp_priv *priv = qp->priv;
737 unsigned long flags;
738 int ret = 0;
739
740 spin_lock_irqsave(&qp->s_lock, flags);
741 if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
742 write_seqlock(&dev->iowait_lock);
743 list_add_tail(&ps->s_txreq->txreq.list,
744 &priv->s_iowait.tx_head);
745 if (list_empty(&priv->s_iowait.list)) {
746 if (list_empty(&dev->memwait))
747 mod_timer(&dev->mem_timer, jiffies + 1);
748 qp->s_flags |= RVT_S_WAIT_KMEM;
749 list_add_tail(&priv->s_iowait.list, &dev->memwait);
750 trace_hfi1_qpsleep(qp, RVT_S_WAIT_KMEM);
751 atomic_inc(&qp->refcount);
752 }
753 write_sequnlock(&dev->iowait_lock);
754 qp->s_flags &= ~RVT_S_BUSY;
755 ret = -EBUSY;
756 }
757 spin_unlock_irqrestore(&qp->s_lock, flags);
758
759 return ret;
760 }
761
762 /*
763 * This routine calls txadds for each sg entry.
764 *
765 * Add failures will revert the sge cursor
766 */
767 static noinline int build_verbs_ulp_payload(
768 struct sdma_engine *sde,
769 struct rvt_sge_state *ss,
770 u32 length,
771 struct verbs_txreq *tx)
772 {
773 struct rvt_sge *sg_list = ss->sg_list;
774 struct rvt_sge sge = ss->sge;
775 u8 num_sge = ss->num_sge;
776 u32 len;
777 int ret = 0;
778
779 while (length) {
780 len = ss->sge.length;
781 if (len > length)
782 len = length;
783 if (len > ss->sge.sge_length)
784 len = ss->sge.sge_length;
785 WARN_ON_ONCE(len == 0);
786 ret = sdma_txadd_kvaddr(
787 sde->dd,
788 &tx->txreq,
789 ss->sge.vaddr,
790 len);
791 if (ret)
792 goto bail_txadd;
793 update_sge(ss, len);
794 length -= len;
795 }
796 return ret;
797 bail_txadd:
798 /* unwind cursor */
799 ss->sge = sge;
800 ss->num_sge = num_sge;
801 ss->sg_list = sg_list;
802 return ret;
803 }
804
805 /*
806 * Build the number of DMA descriptors needed to send length bytes of data.
807 *
808 * NOTE: DMA mapping is held in the tx until completed in the ring or
809 * the tx desc is freed without having been submitted to the ring
810 *
811 * This routine ensures all the helper routine calls succeed.
812 */
813 /* New API */
814 static int build_verbs_tx_desc(
815 struct sdma_engine *sde,
816 struct rvt_sge_state *ss,
817 u32 length,
818 struct verbs_txreq *tx,
819 struct hfi1_ahg_info *ahg_info,
820 u64 pbc)
821 {
822 int ret = 0;
823 struct hfi1_sdma_header *phdr = &tx->phdr;
824 u16 hdrbytes = tx->hdr_dwords << 2;
825
826 if (!ahg_info->ahgcount) {
827 ret = sdma_txinit_ahg(
828 &tx->txreq,
829 ahg_info->tx_flags,
830 hdrbytes + length,
831 ahg_info->ahgidx,
832 0,
833 NULL,
834 0,
835 verbs_sdma_complete);
836 if (ret)
837 goto bail_txadd;
838 phdr->pbc = cpu_to_le64(pbc);
839 ret = sdma_txadd_kvaddr(
840 sde->dd,
841 &tx->txreq,
842 phdr,
843 hdrbytes);
844 if (ret)
845 goto bail_txadd;
846 } else {
847 ret = sdma_txinit_ahg(
848 &tx->txreq,
849 ahg_info->tx_flags,
850 length,
851 ahg_info->ahgidx,
852 ahg_info->ahgcount,
853 ahg_info->ahgdesc,
854 hdrbytes,
855 verbs_sdma_complete);
856 if (ret)
857 goto bail_txadd;
858 }
859
860 /* add the ulp payload - if any. ss can be NULL for acks */
861 if (ss)
862 ret = build_verbs_ulp_payload(sde, ss, length, tx);
863 bail_txadd:
864 return ret;
865 }
866
867 int hfi1_verbs_send_dma(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
868 u64 pbc)
869 {
870 struct hfi1_qp_priv *priv = qp->priv;
871 struct hfi1_ahg_info *ahg_info = priv->s_ahg;
872 u32 hdrwords = qp->s_hdrwords;
873 struct rvt_sge_state *ss = qp->s_cur_sge;
874 u32 len = qp->s_cur_size;
875 u32 plen = hdrwords + ((len + 3) >> 2) + 2; /* includes pbc */
876 struct hfi1_ibdev *dev = ps->dev;
877 struct hfi1_pportdata *ppd = ps->ppd;
878 struct verbs_txreq *tx;
879 u64 pbc_flags = 0;
880 u8 sc5 = priv->s_sc;
881
882 int ret;
883
884 tx = ps->s_txreq;
885 if (!sdma_txreq_built(&tx->txreq)) {
886 if (likely(pbc == 0)) {
887 u32 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
888 /* No vl15 here */
889 /* set PBC_DC_INFO bit (aka SC[4]) in pbc_flags */
890 pbc_flags |= (!!(sc5 & 0x10)) << PBC_DC_INFO_SHIFT;
891
892 pbc = create_pbc(ppd,
893 pbc_flags,
894 qp->srate_mbps,
895 vl,
896 plen);
897 }
898 tx->wqe = qp->s_wqe;
899 ret = build_verbs_tx_desc(tx->sde, ss, len, tx, ahg_info, pbc);
900 if (unlikely(ret))
901 goto bail_build;
902 }
903 ret = sdma_send_txreq(tx->sde, &priv->s_iowait, &tx->txreq);
904 if (unlikely(ret < 0)) {
905 if (ret == -ECOMM)
906 goto bail_ecomm;
907 return ret;
908 }
909 trace_sdma_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
910 &ps->s_txreq->phdr.hdr);
911 return ret;
912
913 bail_ecomm:
914 /* The current one got "sent" */
915 return 0;
916 bail_build:
917 ret = wait_kmem(dev, qp, ps);
918 if (!ret) {
919 /* free txreq - bad state */
920 hfi1_put_txreq(ps->s_txreq);
921 ps->s_txreq = NULL;
922 }
923 return ret;
924 }
925
926 /*
927 * If we are now in the error state, return zero to flush the
928 * send work request.
929 */
930 static int pio_wait(struct rvt_qp *qp,
931 struct send_context *sc,
932 struct hfi1_pkt_state *ps,
933 u32 flag)
934 {
935 struct hfi1_qp_priv *priv = qp->priv;
936 struct hfi1_devdata *dd = sc->dd;
937 struct hfi1_ibdev *dev = &dd->verbs_dev;
938 unsigned long flags;
939 int ret = 0;
940
941 /*
942 * Note that as soon as want_buffer() is called and
943 * possibly before it returns, sc_piobufavail()
944 * could be called. Therefore, put QP on the I/O wait list before
945 * enabling the PIO avail interrupt.
946 */
947 spin_lock_irqsave(&qp->s_lock, flags);
948 if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
949 write_seqlock(&dev->iowait_lock);
950 list_add_tail(&ps->s_txreq->txreq.list,
951 &priv->s_iowait.tx_head);
952 if (list_empty(&priv->s_iowait.list)) {
953 struct hfi1_ibdev *dev = &dd->verbs_dev;
954 int was_empty;
955
956 dev->n_piowait += !!(flag & RVT_S_WAIT_PIO);
957 dev->n_piodrain += !!(flag & RVT_S_WAIT_PIO_DRAIN);
958 qp->s_flags |= flag;
959 was_empty = list_empty(&sc->piowait);
960 list_add_tail(&priv->s_iowait.list, &sc->piowait);
961 trace_hfi1_qpsleep(qp, RVT_S_WAIT_PIO);
962 atomic_inc(&qp->refcount);
963 /* counting: only call wantpiobuf_intr if first user */
964 if (was_empty)
965 hfi1_sc_wantpiobuf_intr(sc, 1);
966 }
967 write_sequnlock(&dev->iowait_lock);
968 qp->s_flags &= ~RVT_S_BUSY;
969 ret = -EBUSY;
970 }
971 spin_unlock_irqrestore(&qp->s_lock, flags);
972 return ret;
973 }
974
975 static void verbs_pio_complete(void *arg, int code)
976 {
977 struct rvt_qp *qp = (struct rvt_qp *)arg;
978 struct hfi1_qp_priv *priv = qp->priv;
979
980 if (iowait_pio_dec(&priv->s_iowait))
981 iowait_drain_wakeup(&priv->s_iowait);
982 }
983
984 int hfi1_verbs_send_pio(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
985 u64 pbc)
986 {
987 struct hfi1_qp_priv *priv = qp->priv;
988 u32 hdrwords = qp->s_hdrwords;
989 struct rvt_sge_state *ss = qp->s_cur_sge;
990 u32 len = qp->s_cur_size;
991 u32 dwords = (len + 3) >> 2;
992 u32 plen = hdrwords + dwords + 2; /* includes pbc */
993 struct hfi1_pportdata *ppd = ps->ppd;
994 u32 *hdr = (u32 *)&ps->s_txreq->phdr.hdr;
995 u64 pbc_flags = 0;
996 u8 sc5;
997 unsigned long flags = 0;
998 struct send_context *sc;
999 struct pio_buf *pbuf;
1000 int wc_status = IB_WC_SUCCESS;
1001 int ret = 0;
1002 pio_release_cb cb = NULL;
1003
1004 /* only RC/UC use complete */
1005 switch (qp->ibqp.qp_type) {
1006 case IB_QPT_RC:
1007 case IB_QPT_UC:
1008 cb = verbs_pio_complete;
1009 break;
1010 default:
1011 break;
1012 }
1013
1014 /* vl15 special case taken care of in ud.c */
1015 sc5 = priv->s_sc;
1016 sc = ps->s_txreq->psc;
1017
1018 if (likely(pbc == 0)) {
1019 u8 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
1020 /* set PBC_DC_INFO bit (aka SC[4]) in pbc_flags */
1021 pbc_flags |= (!!(sc5 & 0x10)) << PBC_DC_INFO_SHIFT;
1022 pbc = create_pbc(ppd, pbc_flags, qp->srate_mbps, vl, plen);
1023 }
1024 if (cb)
1025 iowait_pio_inc(&priv->s_iowait);
1026 pbuf = sc_buffer_alloc(sc, plen, cb, qp);
1027 if (unlikely(!pbuf)) {
1028 if (cb)
1029 verbs_pio_complete(qp, 0);
1030 if (ppd->host_link_state != HLS_UP_ACTIVE) {
1031 /*
1032 * If we have filled the PIO buffers to capacity and are
1033 * not in an active state this request is not going to
1034 * go out to so just complete it with an error or else a
1035 * ULP or the core may be stuck waiting.
1036 */
1037 hfi1_cdbg(
1038 PIO,
1039 "alloc failed. state not active, completing");
1040 wc_status = IB_WC_GENERAL_ERR;
1041 goto pio_bail;
1042 } else {
1043 /*
1044 * This is a normal occurrence. The PIO buffs are full
1045 * up but we are still happily sending, well we could be
1046 * so lets continue to queue the request.
1047 */
1048 hfi1_cdbg(PIO, "alloc failed. state active, queuing");
1049 ret = pio_wait(qp, sc, ps, RVT_S_WAIT_PIO);
1050 if (!ret)
1051 /* txreq not queued - free */
1052 goto bail;
1053 /* tx consumed in wait */
1054 return ret;
1055 }
1056 }
1057
1058 if (len == 0) {
1059 pio_copy(ppd->dd, pbuf, pbc, hdr, hdrwords);
1060 } else {
1061 if (ss) {
1062 seg_pio_copy_start(pbuf, pbc, hdr, hdrwords * 4);
1063 while (len) {
1064 void *addr = ss->sge.vaddr;
1065 u32 slen = ss->sge.length;
1066
1067 if (slen > len)
1068 slen = len;
1069 update_sge(ss, slen);
1070 seg_pio_copy_mid(pbuf, addr, slen);
1071 len -= slen;
1072 }
1073 seg_pio_copy_end(pbuf);
1074 }
1075 }
1076
1077 trace_pio_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
1078 &ps->s_txreq->phdr.hdr);
1079
1080 pio_bail:
1081 if (qp->s_wqe) {
1082 spin_lock_irqsave(&qp->s_lock, flags);
1083 hfi1_send_complete(qp, qp->s_wqe, wc_status);
1084 spin_unlock_irqrestore(&qp->s_lock, flags);
1085 } else if (qp->ibqp.qp_type == IB_QPT_RC) {
1086 spin_lock_irqsave(&qp->s_lock, flags);
1087 hfi1_rc_send_complete(qp, &ps->s_txreq->phdr.hdr);
1088 spin_unlock_irqrestore(&qp->s_lock, flags);
1089 }
1090
1091 ret = 0;
1092
1093 bail:
1094 hfi1_put_txreq(ps->s_txreq);
1095 return ret;
1096 }
1097
1098 /*
1099 * egress_pkey_matches_entry - return 1 if the pkey matches ent (ent
1100 * being an entry from the partition key table), return 0
1101 * otherwise. Use the matching criteria for egress partition keys
1102 * specified in the OPAv1 spec., section 9.1l.7.
1103 */
1104 static inline int egress_pkey_matches_entry(u16 pkey, u16 ent)
1105 {
1106 u16 mkey = pkey & PKEY_LOW_15_MASK;
1107 u16 mentry = ent & PKEY_LOW_15_MASK;
1108
1109 if (mkey == mentry) {
1110 /*
1111 * If pkey[15] is set (full partition member),
1112 * is bit 15 in the corresponding table element
1113 * clear (limited member)?
1114 */
1115 if (pkey & PKEY_MEMBER_MASK)
1116 return !!(ent & PKEY_MEMBER_MASK);
1117 return 1;
1118 }
1119 return 0;
1120 }
1121
1122 /**
1123 * egress_pkey_check - check P_KEY of a packet
1124 * @ppd: Physical IB port data
1125 * @lrh: Local route header
1126 * @bth: Base transport header
1127 * @sc5: SC for packet
1128 * @s_pkey_index: It will be used for look up optimization for kernel contexts
1129 * only. If it is negative value, then it means user contexts is calling this
1130 * function.
1131 *
1132 * It checks if hdr's pkey is valid.
1133 *
1134 * Return: 0 on success, otherwise, 1
1135 */
1136 int egress_pkey_check(struct hfi1_pportdata *ppd, __be16 *lrh, __be32 *bth,
1137 u8 sc5, int8_t s_pkey_index)
1138 {
1139 struct hfi1_devdata *dd;
1140 int i;
1141 u16 pkey;
1142 int is_user_ctxt_mechanism = (s_pkey_index < 0);
1143
1144 if (!(ppd->part_enforce & HFI1_PART_ENFORCE_OUT))
1145 return 0;
1146
1147 pkey = (u16)be32_to_cpu(bth[0]);
1148
1149 /* If SC15, pkey[0:14] must be 0x7fff */
1150 if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK))
1151 goto bad;
1152
1153 /* Is the pkey = 0x0, or 0x8000? */
1154 if ((pkey & PKEY_LOW_15_MASK) == 0)
1155 goto bad;
1156
1157 /*
1158 * For the kernel contexts only, if a qp is passed into the function,
1159 * the most likely matching pkey has index qp->s_pkey_index
1160 */
1161 if (!is_user_ctxt_mechanism &&
1162 egress_pkey_matches_entry(pkey, ppd->pkeys[s_pkey_index])) {
1163 return 0;
1164 }
1165
1166 for (i = 0; i < MAX_PKEY_VALUES; i++) {
1167 if (egress_pkey_matches_entry(pkey, ppd->pkeys[i]))
1168 return 0;
1169 }
1170 bad:
1171 /*
1172 * For the user-context mechanism, the P_KEY check would only happen
1173 * once per SDMA request, not once per packet. Therefore, there's no
1174 * need to increment the counter for the user-context mechanism.
1175 */
1176 if (!is_user_ctxt_mechanism) {
1177 incr_cntr64(&ppd->port_xmit_constraint_errors);
1178 dd = ppd->dd;
1179 if (!(dd->err_info_xmit_constraint.status &
1180 OPA_EI_STATUS_SMASK)) {
1181 u16 slid = be16_to_cpu(lrh[3]);
1182
1183 dd->err_info_xmit_constraint.status |=
1184 OPA_EI_STATUS_SMASK;
1185 dd->err_info_xmit_constraint.slid = slid;
1186 dd->err_info_xmit_constraint.pkey = pkey;
1187 }
1188 }
1189 return 1;
1190 }
1191
1192 /**
1193 * get_send_routine - choose an egress routine
1194 *
1195 * Choose an egress routine based on QP type
1196 * and size
1197 */
1198 static inline send_routine get_send_routine(struct rvt_qp *qp,
1199 struct verbs_txreq *tx)
1200 {
1201 struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1202 struct hfi1_qp_priv *priv = qp->priv;
1203 struct hfi1_ib_header *h = &tx->phdr.hdr;
1204
1205 if (unlikely(!(dd->flags & HFI1_HAS_SEND_DMA)))
1206 return dd->process_pio_send;
1207 switch (qp->ibqp.qp_type) {
1208 case IB_QPT_SMI:
1209 return dd->process_pio_send;
1210 case IB_QPT_GSI:
1211 case IB_QPT_UD:
1212 break;
1213 case IB_QPT_RC:
1214 if (piothreshold &&
1215 qp->s_cur_size <= min(piothreshold, qp->pmtu) &&
1216 (BIT(get_opcode(h) & 0x1f) & rc_only_opcode) &&
1217 iowait_sdma_pending(&priv->s_iowait) == 0 &&
1218 !sdma_txreq_built(&tx->txreq))
1219 return dd->process_pio_send;
1220 break;
1221 case IB_QPT_UC:
1222 if (piothreshold &&
1223 qp->s_cur_size <= min(piothreshold, qp->pmtu) &&
1224 (BIT(get_opcode(h) & 0x1f) & uc_only_opcode) &&
1225 iowait_sdma_pending(&priv->s_iowait) == 0 &&
1226 !sdma_txreq_built(&tx->txreq))
1227 return dd->process_pio_send;
1228 break;
1229 default:
1230 break;
1231 }
1232 return dd->process_dma_send;
1233 }
1234
1235 /**
1236 * hfi1_verbs_send - send a packet
1237 * @qp: the QP to send on
1238 * @ps: the state of the packet to send
1239 *
1240 * Return zero if packet is sent or queued OK.
1241 * Return non-zero and clear qp->s_flags RVT_S_BUSY otherwise.
1242 */
1243 int hfi1_verbs_send(struct rvt_qp *qp, struct hfi1_pkt_state *ps)
1244 {
1245 struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1246 struct hfi1_qp_priv *priv = qp->priv;
1247 struct hfi1_other_headers *ohdr;
1248 struct hfi1_ib_header *hdr;
1249 send_routine sr;
1250 int ret;
1251 u8 lnh;
1252
1253 hdr = &ps->s_txreq->phdr.hdr;
1254 /* locate the pkey within the headers */
1255 lnh = be16_to_cpu(hdr->lrh[0]) & 3;
1256 if (lnh == HFI1_LRH_GRH)
1257 ohdr = &hdr->u.l.oth;
1258 else
1259 ohdr = &hdr->u.oth;
1260
1261 sr = get_send_routine(qp, ps->s_txreq);
1262 ret = egress_pkey_check(dd->pport,
1263 hdr->lrh,
1264 ohdr->bth,
1265 priv->s_sc,
1266 qp->s_pkey_index);
1267 if (unlikely(ret)) {
1268 /*
1269 * The value we are returning here does not get propagated to
1270 * the verbs caller. Thus we need to complete the request with
1271 * error otherwise the caller could be sitting waiting on the
1272 * completion event. Only do this for PIO. SDMA has its own
1273 * mechanism for handling the errors. So for SDMA we can just
1274 * return.
1275 */
1276 if (sr == dd->process_pio_send) {
1277 unsigned long flags;
1278
1279 hfi1_cdbg(PIO, "%s() Failed. Completing with err",
1280 __func__);
1281 spin_lock_irqsave(&qp->s_lock, flags);
1282 hfi1_send_complete(qp, qp->s_wqe, IB_WC_GENERAL_ERR);
1283 spin_unlock_irqrestore(&qp->s_lock, flags);
1284 }
1285 return -EINVAL;
1286 }
1287 if (sr == dd->process_dma_send && iowait_pio_pending(&priv->s_iowait))
1288 return pio_wait(qp,
1289 ps->s_txreq->psc,
1290 ps,
1291 RVT_S_WAIT_PIO_DRAIN);
1292 return sr(qp, ps, 0);
1293 }
1294
1295 /**
1296 * hfi1_fill_device_attr - Fill in rvt dev info device attributes.
1297 * @dd: the device data structure
1298 */
1299 static void hfi1_fill_device_attr(struct hfi1_devdata *dd)
1300 {
1301 struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
1302
1303 memset(&rdi->dparms.props, 0, sizeof(rdi->dparms.props));
1304
1305 rdi->dparms.props.device_cap_flags = IB_DEVICE_BAD_PKEY_CNTR |
1306 IB_DEVICE_BAD_QKEY_CNTR | IB_DEVICE_SHUTDOWN_PORT |
1307 IB_DEVICE_SYS_IMAGE_GUID | IB_DEVICE_RC_RNR_NAK_GEN |
1308 IB_DEVICE_PORT_ACTIVE_EVENT | IB_DEVICE_SRQ_RESIZE |
1309 IB_DEVICE_MEM_MGT_EXTENSIONS;
1310 rdi->dparms.props.page_size_cap = PAGE_SIZE;
1311 rdi->dparms.props.vendor_id = dd->oui1 << 16 | dd->oui2 << 8 | dd->oui3;
1312 rdi->dparms.props.vendor_part_id = dd->pcidev->device;
1313 rdi->dparms.props.hw_ver = dd->minrev;
1314 rdi->dparms.props.sys_image_guid = ib_hfi1_sys_image_guid;
1315 rdi->dparms.props.max_mr_size = U64_MAX;
1316 rdi->dparms.props.max_fast_reg_page_list_len = UINT_MAX;
1317 rdi->dparms.props.max_qp = hfi1_max_qps;
1318 rdi->dparms.props.max_qp_wr = hfi1_max_qp_wrs;
1319 rdi->dparms.props.max_sge = hfi1_max_sges;
1320 rdi->dparms.props.max_sge_rd = hfi1_max_sges;
1321 rdi->dparms.props.max_cq = hfi1_max_cqs;
1322 rdi->dparms.props.max_ah = hfi1_max_ahs;
1323 rdi->dparms.props.max_cqe = hfi1_max_cqes;
1324 rdi->dparms.props.max_mr = rdi->lkey_table.max;
1325 rdi->dparms.props.max_fmr = rdi->lkey_table.max;
1326 rdi->dparms.props.max_map_per_fmr = 32767;
1327 rdi->dparms.props.max_pd = hfi1_max_pds;
1328 rdi->dparms.props.max_qp_rd_atom = HFI1_MAX_RDMA_ATOMIC;
1329 rdi->dparms.props.max_qp_init_rd_atom = 255;
1330 rdi->dparms.props.max_srq = hfi1_max_srqs;
1331 rdi->dparms.props.max_srq_wr = hfi1_max_srq_wrs;
1332 rdi->dparms.props.max_srq_sge = hfi1_max_srq_sges;
1333 rdi->dparms.props.atomic_cap = IB_ATOMIC_GLOB;
1334 rdi->dparms.props.max_pkeys = hfi1_get_npkeys(dd);
1335 rdi->dparms.props.max_mcast_grp = hfi1_max_mcast_grps;
1336 rdi->dparms.props.max_mcast_qp_attach = hfi1_max_mcast_qp_attached;
1337 rdi->dparms.props.max_total_mcast_qp_attach =
1338 rdi->dparms.props.max_mcast_qp_attach *
1339 rdi->dparms.props.max_mcast_grp;
1340 }
1341
1342 static inline u16 opa_speed_to_ib(u16 in)
1343 {
1344 u16 out = 0;
1345
1346 if (in & OPA_LINK_SPEED_25G)
1347 out |= IB_SPEED_EDR;
1348 if (in & OPA_LINK_SPEED_12_5G)
1349 out |= IB_SPEED_FDR;
1350
1351 return out;
1352 }
1353
1354 /*
1355 * Convert a single OPA link width (no multiple flags) to an IB value.
1356 * A zero OPA link width means link down, which means the IB width value
1357 * is a don't care.
1358 */
1359 static inline u16 opa_width_to_ib(u16 in)
1360 {
1361 switch (in) {
1362 case OPA_LINK_WIDTH_1X:
1363 /* map 2x and 3x to 1x as they don't exist in IB */
1364 case OPA_LINK_WIDTH_2X:
1365 case OPA_LINK_WIDTH_3X:
1366 return IB_WIDTH_1X;
1367 default: /* link down or unknown, return our largest width */
1368 case OPA_LINK_WIDTH_4X:
1369 return IB_WIDTH_4X;
1370 }
1371 }
1372
1373 static int query_port(struct rvt_dev_info *rdi, u8 port_num,
1374 struct ib_port_attr *props)
1375 {
1376 struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1377 struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1378 struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1379 u16 lid = ppd->lid;
1380
1381 props->lid = lid ? lid : 0;
1382 props->lmc = ppd->lmc;
1383 /* OPA logical states match IB logical states */
1384 props->state = driver_lstate(ppd);
1385 props->phys_state = hfi1_ibphys_portstate(ppd);
1386 props->gid_tbl_len = HFI1_GUIDS_PER_PORT;
1387 props->active_width = (u8)opa_width_to_ib(ppd->link_width_active);
1388 /* see rate_show() in ib core/sysfs.c */
1389 props->active_speed = (u8)opa_speed_to_ib(ppd->link_speed_active);
1390 props->max_vl_num = ppd->vls_supported;
1391
1392 /* Once we are a "first class" citizen and have added the OPA MTUs to
1393 * the core we can advertise the larger MTU enum to the ULPs, for now
1394 * advertise only 4K.
1395 *
1396 * Those applications which are either OPA aware or pass the MTU enum
1397 * from the Path Records to us will get the new 8k MTU. Those that
1398 * attempt to process the MTU enum may fail in various ways.
1399 */
1400 props->max_mtu = mtu_to_enum((!valid_ib_mtu(hfi1_max_mtu) ?
1401 4096 : hfi1_max_mtu), IB_MTU_4096);
1402 props->active_mtu = !valid_ib_mtu(ppd->ibmtu) ? props->max_mtu :
1403 mtu_to_enum(ppd->ibmtu, IB_MTU_2048);
1404
1405 return 0;
1406 }
1407
1408 static int modify_device(struct ib_device *device,
1409 int device_modify_mask,
1410 struct ib_device_modify *device_modify)
1411 {
1412 struct hfi1_devdata *dd = dd_from_ibdev(device);
1413 unsigned i;
1414 int ret;
1415
1416 if (device_modify_mask & ~(IB_DEVICE_MODIFY_SYS_IMAGE_GUID |
1417 IB_DEVICE_MODIFY_NODE_DESC)) {
1418 ret = -EOPNOTSUPP;
1419 goto bail;
1420 }
1421
1422 if (device_modify_mask & IB_DEVICE_MODIFY_NODE_DESC) {
1423 memcpy(device->node_desc, device_modify->node_desc, 64);
1424 for (i = 0; i < dd->num_pports; i++) {
1425 struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1426
1427 hfi1_node_desc_chg(ibp);
1428 }
1429 }
1430
1431 if (device_modify_mask & IB_DEVICE_MODIFY_SYS_IMAGE_GUID) {
1432 ib_hfi1_sys_image_guid =
1433 cpu_to_be64(device_modify->sys_image_guid);
1434 for (i = 0; i < dd->num_pports; i++) {
1435 struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1436
1437 hfi1_sys_guid_chg(ibp);
1438 }
1439 }
1440
1441 ret = 0;
1442
1443 bail:
1444 return ret;
1445 }
1446
1447 static int shut_down_port(struct rvt_dev_info *rdi, u8 port_num)
1448 {
1449 struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1450 struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1451 struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1452 int ret;
1453
1454 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_UNKNOWN, 0,
1455 OPA_LINKDOWN_REASON_UNKNOWN);
1456 ret = set_link_state(ppd, HLS_DN_DOWNDEF);
1457 return ret;
1458 }
1459
1460 static int hfi1_get_guid_be(struct rvt_dev_info *rdi, struct rvt_ibport *rvp,
1461 int guid_index, __be64 *guid)
1462 {
1463 struct hfi1_ibport *ibp = container_of(rvp, struct hfi1_ibport, rvp);
1464 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1465
1466 if (guid_index == 0)
1467 *guid = cpu_to_be64(ppd->guid);
1468 else if (guid_index < HFI1_GUIDS_PER_PORT)
1469 *guid = ibp->guids[guid_index - 1];
1470 else
1471 return -EINVAL;
1472
1473 return 0;
1474 }
1475
1476 /*
1477 * convert ah port,sl to sc
1478 */
1479 u8 ah_to_sc(struct ib_device *ibdev, struct ib_ah_attr *ah)
1480 {
1481 struct hfi1_ibport *ibp = to_iport(ibdev, ah->port_num);
1482
1483 return ibp->sl_to_sc[ah->sl];
1484 }
1485
1486 static int hfi1_check_ah(struct ib_device *ibdev, struct ib_ah_attr *ah_attr)
1487 {
1488 struct hfi1_ibport *ibp;
1489 struct hfi1_pportdata *ppd;
1490 struct hfi1_devdata *dd;
1491 u8 sc5;
1492
1493 /* test the mapping for validity */
1494 ibp = to_iport(ibdev, ah_attr->port_num);
1495 ppd = ppd_from_ibp(ibp);
1496 sc5 = ibp->sl_to_sc[ah_attr->sl];
1497 dd = dd_from_ppd(ppd);
1498 if (sc_to_vlt(dd, sc5) > num_vls && sc_to_vlt(dd, sc5) != 0xf)
1499 return -EINVAL;
1500 return 0;
1501 }
1502
1503 static void hfi1_notify_new_ah(struct ib_device *ibdev,
1504 struct ib_ah_attr *ah_attr,
1505 struct rvt_ah *ah)
1506 {
1507 struct hfi1_ibport *ibp;
1508 struct hfi1_pportdata *ppd;
1509 struct hfi1_devdata *dd;
1510 u8 sc5;
1511
1512 /*
1513 * Do not trust reading anything from rvt_ah at this point as it is not
1514 * done being setup. We can however modify things which we need to set.
1515 */
1516
1517 ibp = to_iport(ibdev, ah_attr->port_num);
1518 ppd = ppd_from_ibp(ibp);
1519 sc5 = ibp->sl_to_sc[ah->attr.sl];
1520 dd = dd_from_ppd(ppd);
1521 ah->vl = sc_to_vlt(dd, sc5);
1522 if (ah->vl < num_vls || ah->vl == 15)
1523 ah->log_pmtu = ilog2(dd->vld[ah->vl].mtu);
1524 }
1525
1526 struct ib_ah *hfi1_create_qp0_ah(struct hfi1_ibport *ibp, u16 dlid)
1527 {
1528 struct ib_ah_attr attr;
1529 struct ib_ah *ah = ERR_PTR(-EINVAL);
1530 struct rvt_qp *qp0;
1531
1532 memset(&attr, 0, sizeof(attr));
1533 attr.dlid = dlid;
1534 attr.port_num = ppd_from_ibp(ibp)->port;
1535 rcu_read_lock();
1536 qp0 = rcu_dereference(ibp->rvp.qp[0]);
1537 if (qp0)
1538 ah = ib_create_ah(qp0->ibqp.pd, &attr);
1539 rcu_read_unlock();
1540 return ah;
1541 }
1542
1543 /**
1544 * hfi1_get_npkeys - return the size of the PKEY table for context 0
1545 * @dd: the hfi1_ib device
1546 */
1547 unsigned hfi1_get_npkeys(struct hfi1_devdata *dd)
1548 {
1549 return ARRAY_SIZE(dd->pport[0].pkeys);
1550 }
1551
1552 static void init_ibport(struct hfi1_pportdata *ppd)
1553 {
1554 struct hfi1_ibport *ibp = &ppd->ibport_data;
1555 size_t sz = ARRAY_SIZE(ibp->sl_to_sc);
1556 int i;
1557
1558 for (i = 0; i < sz; i++) {
1559 ibp->sl_to_sc[i] = i;
1560 ibp->sc_to_sl[i] = i;
1561 }
1562
1563 spin_lock_init(&ibp->rvp.lock);
1564 /* Set the prefix to the default value (see ch. 4.1.1) */
1565 ibp->rvp.gid_prefix = IB_DEFAULT_GID_PREFIX;
1566 ibp->rvp.sm_lid = 0;
1567 /* Below should only set bits defined in OPA PortInfo.CapabilityMask */
1568 ibp->rvp.port_cap_flags = IB_PORT_AUTO_MIGR_SUP |
1569 IB_PORT_CAP_MASK_NOTICE_SUP;
1570 ibp->rvp.pma_counter_select[0] = IB_PMA_PORT_XMIT_DATA;
1571 ibp->rvp.pma_counter_select[1] = IB_PMA_PORT_RCV_DATA;
1572 ibp->rvp.pma_counter_select[2] = IB_PMA_PORT_XMIT_PKTS;
1573 ibp->rvp.pma_counter_select[3] = IB_PMA_PORT_RCV_PKTS;
1574 ibp->rvp.pma_counter_select[4] = IB_PMA_PORT_XMIT_WAIT;
1575
1576 RCU_INIT_POINTER(ibp->rvp.qp[0], NULL);
1577 RCU_INIT_POINTER(ibp->rvp.qp[1], NULL);
1578 }
1579
1580 /**
1581 * hfi1_register_ib_device - register our device with the infiniband core
1582 * @dd: the device data structure
1583 * Return 0 if successful, errno if unsuccessful.
1584 */
1585 int hfi1_register_ib_device(struct hfi1_devdata *dd)
1586 {
1587 struct hfi1_ibdev *dev = &dd->verbs_dev;
1588 struct ib_device *ibdev = &dev->rdi.ibdev;
1589 struct hfi1_pportdata *ppd = dd->pport;
1590 unsigned i;
1591 int ret;
1592 size_t lcpysz = IB_DEVICE_NAME_MAX;
1593
1594 for (i = 0; i < dd->num_pports; i++)
1595 init_ibport(ppd + i);
1596
1597 /* Only need to initialize non-zero fields. */
1598
1599 setup_timer(&dev->mem_timer, mem_timer, (unsigned long)dev);
1600
1601 seqlock_init(&dev->iowait_lock);
1602 INIT_LIST_HEAD(&dev->txwait);
1603 INIT_LIST_HEAD(&dev->memwait);
1604
1605 ret = verbs_txreq_init(dev);
1606 if (ret)
1607 goto err_verbs_txreq;
1608
1609 /*
1610 * The system image GUID is supposed to be the same for all
1611 * HFIs in a single system but since there can be other
1612 * device types in the system, we can't be sure this is unique.
1613 */
1614 if (!ib_hfi1_sys_image_guid)
1615 ib_hfi1_sys_image_guid = cpu_to_be64(ppd->guid);
1616 lcpysz = strlcpy(ibdev->name, class_name(), lcpysz);
1617 strlcpy(ibdev->name + lcpysz, "_%d", IB_DEVICE_NAME_MAX - lcpysz);
1618 ibdev->owner = THIS_MODULE;
1619 ibdev->node_guid = cpu_to_be64(ppd->guid);
1620 ibdev->phys_port_cnt = dd->num_pports;
1621 ibdev->dma_device = &dd->pcidev->dev;
1622 ibdev->modify_device = modify_device;
1623
1624 /* keep process mad in the driver */
1625 ibdev->process_mad = hfi1_process_mad;
1626
1627 strncpy(ibdev->node_desc, init_utsname()->nodename,
1628 sizeof(ibdev->node_desc));
1629
1630 /*
1631 * Fill in rvt info object.
1632 */
1633 dd->verbs_dev.rdi.driver_f.port_callback = hfi1_create_port_files;
1634 dd->verbs_dev.rdi.driver_f.get_card_name = get_card_name;
1635 dd->verbs_dev.rdi.driver_f.get_pci_dev = get_pci_dev;
1636 dd->verbs_dev.rdi.driver_f.check_ah = hfi1_check_ah;
1637 dd->verbs_dev.rdi.driver_f.notify_new_ah = hfi1_notify_new_ah;
1638 dd->verbs_dev.rdi.driver_f.get_guid_be = hfi1_get_guid_be;
1639 dd->verbs_dev.rdi.driver_f.query_port_state = query_port;
1640 dd->verbs_dev.rdi.driver_f.shut_down_port = shut_down_port;
1641 dd->verbs_dev.rdi.driver_f.cap_mask_chg = hfi1_cap_mask_chg;
1642 /*
1643 * Fill in rvt info device attributes.
1644 */
1645 hfi1_fill_device_attr(dd);
1646
1647 /* queue pair */
1648 dd->verbs_dev.rdi.dparms.qp_table_size = hfi1_qp_table_size;
1649 dd->verbs_dev.rdi.dparms.qpn_start = 0;
1650 dd->verbs_dev.rdi.dparms.qpn_inc = 1;
1651 dd->verbs_dev.rdi.dparms.qos_shift = dd->qos_shift;
1652 dd->verbs_dev.rdi.dparms.qpn_res_start = kdeth_qp << 16;
1653 dd->verbs_dev.rdi.dparms.qpn_res_end =
1654 dd->verbs_dev.rdi.dparms.qpn_res_start + 65535;
1655 dd->verbs_dev.rdi.dparms.max_rdma_atomic = HFI1_MAX_RDMA_ATOMIC;
1656 dd->verbs_dev.rdi.dparms.psn_mask = PSN_MASK;
1657 dd->verbs_dev.rdi.dparms.psn_shift = PSN_SHIFT;
1658 dd->verbs_dev.rdi.dparms.psn_modify_mask = PSN_MODIFY_MASK;
1659 dd->verbs_dev.rdi.dparms.core_cap_flags = RDMA_CORE_PORT_INTEL_OPA;
1660 dd->verbs_dev.rdi.dparms.max_mad_size = OPA_MGMT_MAD_SIZE;
1661
1662 dd->verbs_dev.rdi.driver_f.qp_priv_alloc = qp_priv_alloc;
1663 dd->verbs_dev.rdi.driver_f.qp_priv_free = qp_priv_free;
1664 dd->verbs_dev.rdi.driver_f.free_all_qps = free_all_qps;
1665 dd->verbs_dev.rdi.driver_f.notify_qp_reset = notify_qp_reset;
1666 dd->verbs_dev.rdi.driver_f.do_send = hfi1_do_send;
1667 dd->verbs_dev.rdi.driver_f.schedule_send = hfi1_schedule_send;
1668 dd->verbs_dev.rdi.driver_f.schedule_send_no_lock = _hfi1_schedule_send;
1669 dd->verbs_dev.rdi.driver_f.get_pmtu_from_attr = get_pmtu_from_attr;
1670 dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1671 dd->verbs_dev.rdi.driver_f.flush_qp_waiters = flush_qp_waiters;
1672 dd->verbs_dev.rdi.driver_f.stop_send_queue = stop_send_queue;
1673 dd->verbs_dev.rdi.driver_f.quiesce_qp = quiesce_qp;
1674 dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1675 dd->verbs_dev.rdi.driver_f.mtu_from_qp = mtu_from_qp;
1676 dd->verbs_dev.rdi.driver_f.mtu_to_path_mtu = mtu_to_path_mtu;
1677 dd->verbs_dev.rdi.driver_f.check_modify_qp = hfi1_check_modify_qp;
1678 dd->verbs_dev.rdi.driver_f.modify_qp = hfi1_modify_qp;
1679 dd->verbs_dev.rdi.driver_f.check_send_wqe = hfi1_check_send_wqe;
1680
1681 /* completeion queue */
1682 snprintf(dd->verbs_dev.rdi.dparms.cq_name,
1683 sizeof(dd->verbs_dev.rdi.dparms.cq_name),
1684 "hfi1_cq%d", dd->unit);
1685 dd->verbs_dev.rdi.dparms.node = dd->node;
1686
1687 /* misc settings */
1688 dd->verbs_dev.rdi.flags = 0; /* Let rdmavt handle it all */
1689 dd->verbs_dev.rdi.dparms.lkey_table_size = hfi1_lkey_table_size;
1690 dd->verbs_dev.rdi.dparms.nports = dd->num_pports;
1691 dd->verbs_dev.rdi.dparms.npkeys = hfi1_get_npkeys(dd);
1692
1693 /* post send table */
1694 dd->verbs_dev.rdi.post_parms = hfi1_post_parms;
1695
1696 ppd = dd->pport;
1697 for (i = 0; i < dd->num_pports; i++, ppd++)
1698 rvt_init_port(&dd->verbs_dev.rdi,
1699 &ppd->ibport_data.rvp,
1700 i,
1701 ppd->pkeys);
1702
1703 ret = rvt_register_device(&dd->verbs_dev.rdi);
1704 if (ret)
1705 goto err_verbs_txreq;
1706
1707 ret = hfi1_verbs_register_sysfs(dd);
1708 if (ret)
1709 goto err_class;
1710
1711 return ret;
1712
1713 err_class:
1714 rvt_unregister_device(&dd->verbs_dev.rdi);
1715 err_verbs_txreq:
1716 verbs_txreq_exit(dev);
1717 dd_dev_err(dd, "cannot register verbs: %d!\n", -ret);
1718 return ret;
1719 }
1720
1721 void hfi1_unregister_ib_device(struct hfi1_devdata *dd)
1722 {
1723 struct hfi1_ibdev *dev = &dd->verbs_dev;
1724
1725 hfi1_verbs_unregister_sysfs(dd);
1726
1727 rvt_unregister_device(&dd->verbs_dev.rdi);
1728
1729 if (!list_empty(&dev->txwait))
1730 dd_dev_err(dd, "txwait list not empty!\n");
1731 if (!list_empty(&dev->memwait))
1732 dd_dev_err(dd, "memwait list not empty!\n");
1733
1734 del_timer_sync(&dev->mem_timer);
1735 verbs_txreq_exit(dev);
1736 }
1737
1738 void hfi1_cnp_rcv(struct hfi1_packet *packet)
1739 {
1740 struct hfi1_ibport *ibp = &packet->rcd->ppd->ibport_data;
1741 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1742 struct hfi1_ib_header *hdr = packet->hdr;
1743 struct rvt_qp *qp = packet->qp;
1744 u32 lqpn, rqpn = 0;
1745 u16 rlid = 0;
1746 u8 sl, sc5, svc_type;
1747
1748 switch (packet->qp->ibqp.qp_type) {
1749 case IB_QPT_UC:
1750 rlid = qp->remote_ah_attr.dlid;
1751 rqpn = qp->remote_qpn;
1752 svc_type = IB_CC_SVCTYPE_UC;
1753 break;
1754 case IB_QPT_RC:
1755 rlid = qp->remote_ah_attr.dlid;
1756 rqpn = qp->remote_qpn;
1757 svc_type = IB_CC_SVCTYPE_RC;
1758 break;
1759 case IB_QPT_SMI:
1760 case IB_QPT_GSI:
1761 case IB_QPT_UD:
1762 svc_type = IB_CC_SVCTYPE_UD;
1763 break;
1764 default:
1765 ibp->rvp.n_pkt_drops++;
1766 return;
1767 }
1768
1769 sc5 = hdr2sc((struct hfi1_message_header *)hdr, packet->rhf);
1770 sl = ibp->sc_to_sl[sc5];
1771 lqpn = qp->ibqp.qp_num;
1772
1773 process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
1774 }
This page took 0.072462 seconds and 5 git commands to generate.