070c5af28a7519c073f582a419589f475573ddf0
[deliverable/linux.git] / drivers / infiniband / ulp / iser / iser_verbs.c
1 /*
2 * Copyright (c) 2004, 2005, 2006 Voltaire, Inc. All rights reserved.
3 * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved.
4 * Copyright (c) 2013-2014 Mellanox Technologies. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/slab.h>
37 #include <linux/delay.h>
38
39 #include "iscsi_iser.h"
40
41 #define ISCSI_ISER_MAX_CONN 8
42 #define ISER_MAX_RX_LEN (ISER_QP_MAX_RECV_DTOS * ISCSI_ISER_MAX_CONN)
43 #define ISER_MAX_TX_LEN (ISER_QP_MAX_REQ_DTOS * ISCSI_ISER_MAX_CONN)
44 #define ISER_MAX_CQ_LEN (ISER_MAX_RX_LEN + ISER_MAX_TX_LEN + \
45 ISCSI_ISER_MAX_CONN)
46
47 static int iser_cq_poll_limit = 512;
48
49 static void iser_cq_tasklet_fn(unsigned long data);
50 static void iser_cq_callback(struct ib_cq *cq, void *cq_context);
51
52 static void iser_cq_event_callback(struct ib_event *cause, void *context)
53 {
54 iser_err("got cq event %d \n", cause->event);
55 }
56
57 static void iser_qp_event_callback(struct ib_event *cause, void *context)
58 {
59 iser_err("got qp event %d\n",cause->event);
60 }
61
62 static void iser_event_handler(struct ib_event_handler *handler,
63 struct ib_event *event)
64 {
65 iser_err("async event %d on device %s port %d\n", event->event,
66 event->device->name, event->element.port_num);
67 }
68
69 /**
70 * iser_create_device_ib_res - creates Protection Domain (PD), Completion
71 * Queue (CQ), DMA Memory Region (DMA MR) with the device associated with
72 * the adapator.
73 *
74 * returns 0 on success, -1 on failure
75 */
76 static int iser_create_device_ib_res(struct iser_device *device)
77 {
78 struct ib_device_attr *dev_attr = &device->dev_attr;
79 int ret, i, max_cqe;
80
81 ret = ib_query_device(device->ib_device, dev_attr);
82 if (ret) {
83 pr_warn("Query device failed for %s\n", device->ib_device->name);
84 return ret;
85 }
86
87 /* Assign function handles - based on FMR support */
88 if (device->ib_device->alloc_fmr && device->ib_device->dealloc_fmr &&
89 device->ib_device->map_phys_fmr && device->ib_device->unmap_fmr) {
90 iser_info("FMR supported, using FMR for registration\n");
91 device->iser_alloc_rdma_reg_res = iser_create_fmr_pool;
92 device->iser_free_rdma_reg_res = iser_free_fmr_pool;
93 device->iser_reg_rdma_mem = iser_reg_rdma_mem_fmr;
94 device->iser_unreg_rdma_mem = iser_unreg_mem_fmr;
95 } else
96 if (dev_attr->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS) {
97 iser_info("FastReg supported, using FastReg for registration\n");
98 device->iser_alloc_rdma_reg_res = iser_create_fastreg_pool;
99 device->iser_free_rdma_reg_res = iser_free_fastreg_pool;
100 device->iser_reg_rdma_mem = iser_reg_rdma_mem_fastreg;
101 device->iser_unreg_rdma_mem = iser_unreg_mem_fastreg;
102 } else {
103 iser_err("IB device does not support FMRs nor FastRegs, can't register memory\n");
104 return -1;
105 }
106
107 device->comps_used = min_t(int, num_online_cpus(),
108 device->ib_device->num_comp_vectors);
109
110 device->comps = kcalloc(device->comps_used, sizeof(*device->comps),
111 GFP_KERNEL);
112 if (!device->comps)
113 goto comps_err;
114
115 max_cqe = min(ISER_MAX_CQ_LEN, dev_attr->max_cqe);
116
117 iser_info("using %d CQs, device %s supports %d vectors max_cqe %d\n",
118 device->comps_used, device->ib_device->name,
119 device->ib_device->num_comp_vectors, max_cqe);
120
121 device->pd = ib_alloc_pd(device->ib_device);
122 if (IS_ERR(device->pd))
123 goto pd_err;
124
125 for (i = 0; i < device->comps_used; i++) {
126 struct iser_comp *comp = &device->comps[i];
127
128 comp->device = device;
129 comp->cq = ib_create_cq(device->ib_device,
130 iser_cq_callback,
131 iser_cq_event_callback,
132 (void *)comp,
133 max_cqe, i);
134 if (IS_ERR(comp->cq)) {
135 comp->cq = NULL;
136 goto cq_err;
137 }
138
139 if (ib_req_notify_cq(comp->cq, IB_CQ_NEXT_COMP))
140 goto cq_err;
141
142 tasklet_init(&comp->tasklet, iser_cq_tasklet_fn,
143 (unsigned long)comp);
144 }
145
146 device->mr = ib_get_dma_mr(device->pd, IB_ACCESS_LOCAL_WRITE |
147 IB_ACCESS_REMOTE_WRITE |
148 IB_ACCESS_REMOTE_READ);
149 if (IS_ERR(device->mr))
150 goto dma_mr_err;
151
152 INIT_IB_EVENT_HANDLER(&device->event_handler, device->ib_device,
153 iser_event_handler);
154 if (ib_register_event_handler(&device->event_handler))
155 goto handler_err;
156
157 return 0;
158
159 handler_err:
160 ib_dereg_mr(device->mr);
161 dma_mr_err:
162 for (i = 0; i < device->comps_used; i++)
163 tasklet_kill(&device->comps[i].tasklet);
164 cq_err:
165 for (i = 0; i < device->comps_used; i++) {
166 struct iser_comp *comp = &device->comps[i];
167
168 if (comp->cq)
169 ib_destroy_cq(comp->cq);
170 }
171 ib_dealloc_pd(device->pd);
172 pd_err:
173 kfree(device->comps);
174 comps_err:
175 iser_err("failed to allocate an IB resource\n");
176 return -1;
177 }
178
179 /**
180 * iser_free_device_ib_res - destroy/dealloc/dereg the DMA MR,
181 * CQ and PD created with the device associated with the adapator.
182 */
183 static void iser_free_device_ib_res(struct iser_device *device)
184 {
185 int i;
186 BUG_ON(device->mr == NULL);
187
188 for (i = 0; i < device->comps_used; i++) {
189 struct iser_comp *comp = &device->comps[i];
190
191 tasklet_kill(&comp->tasklet);
192 ib_destroy_cq(comp->cq);
193 comp->cq = NULL;
194 }
195
196 (void)ib_unregister_event_handler(&device->event_handler);
197 (void)ib_dereg_mr(device->mr);
198 (void)ib_dealloc_pd(device->pd);
199
200 kfree(device->comps);
201 device->comps = NULL;
202
203 device->mr = NULL;
204 device->pd = NULL;
205 }
206
207 /**
208 * iser_create_fmr_pool - Creates FMR pool and page_vector
209 *
210 * returns 0 on success, or errno code on failure
211 */
212 int iser_create_fmr_pool(struct ib_conn *ib_conn, unsigned cmds_max)
213 {
214 struct iser_device *device = ib_conn->device;
215 struct ib_fmr_pool_param params;
216 int ret = -ENOMEM;
217
218 ib_conn->fmr.page_vec = kmalloc(sizeof(*ib_conn->fmr.page_vec) +
219 (sizeof(u64)*(ISCSI_ISER_SG_TABLESIZE + 1)),
220 GFP_KERNEL);
221 if (!ib_conn->fmr.page_vec)
222 return ret;
223
224 ib_conn->fmr.page_vec->pages = (u64 *)(ib_conn->fmr.page_vec + 1);
225
226 params.page_shift = SHIFT_4K;
227 /* when the first/last SG element are not start/end *
228 * page aligned, the map whould be of N+1 pages */
229 params.max_pages_per_fmr = ISCSI_ISER_SG_TABLESIZE + 1;
230 /* make the pool size twice the max number of SCSI commands *
231 * the ML is expected to queue, watermark for unmap at 50% */
232 params.pool_size = cmds_max * 2;
233 params.dirty_watermark = cmds_max;
234 params.cache = 0;
235 params.flush_function = NULL;
236 params.access = (IB_ACCESS_LOCAL_WRITE |
237 IB_ACCESS_REMOTE_WRITE |
238 IB_ACCESS_REMOTE_READ);
239
240 ib_conn->fmr.pool = ib_create_fmr_pool(device->pd, &params);
241 if (!IS_ERR(ib_conn->fmr.pool))
242 return 0;
243
244 /* no FMR => no need for page_vec */
245 kfree(ib_conn->fmr.page_vec);
246 ib_conn->fmr.page_vec = NULL;
247
248 ret = PTR_ERR(ib_conn->fmr.pool);
249 ib_conn->fmr.pool = NULL;
250 if (ret != -ENOSYS) {
251 iser_err("FMR allocation failed, err %d\n", ret);
252 return ret;
253 } else {
254 iser_warn("FMRs are not supported, using unaligned mode\n");
255 return 0;
256 }
257 }
258
259 /**
260 * iser_free_fmr_pool - releases the FMR pool and page vec
261 */
262 void iser_free_fmr_pool(struct ib_conn *ib_conn)
263 {
264 iser_info("freeing conn %p fmr pool %p\n",
265 ib_conn, ib_conn->fmr.pool);
266
267 if (ib_conn->fmr.pool != NULL)
268 ib_destroy_fmr_pool(ib_conn->fmr.pool);
269
270 ib_conn->fmr.pool = NULL;
271
272 kfree(ib_conn->fmr.page_vec);
273 ib_conn->fmr.page_vec = NULL;
274 }
275
276 static int
277 iser_create_fastreg_desc(struct ib_device *ib_device, struct ib_pd *pd,
278 bool pi_enable, struct fast_reg_descriptor *desc)
279 {
280 int ret;
281
282 desc->data_frpl = ib_alloc_fast_reg_page_list(ib_device,
283 ISCSI_ISER_SG_TABLESIZE + 1);
284 if (IS_ERR(desc->data_frpl)) {
285 ret = PTR_ERR(desc->data_frpl);
286 iser_err("Failed to allocate ib_fast_reg_page_list err=%d\n",
287 ret);
288 return PTR_ERR(desc->data_frpl);
289 }
290
291 desc->data_mr = ib_alloc_fast_reg_mr(pd, ISCSI_ISER_SG_TABLESIZE + 1);
292 if (IS_ERR(desc->data_mr)) {
293 ret = PTR_ERR(desc->data_mr);
294 iser_err("Failed to allocate ib_fast_reg_mr err=%d\n", ret);
295 goto fast_reg_mr_failure;
296 }
297 desc->reg_indicators |= ISER_DATA_KEY_VALID;
298
299 if (pi_enable) {
300 struct ib_mr_init_attr mr_init_attr = {0};
301 struct iser_pi_context *pi_ctx = NULL;
302
303 desc->pi_ctx = kzalloc(sizeof(*desc->pi_ctx), GFP_KERNEL);
304 if (!desc->pi_ctx) {
305 iser_err("Failed to allocate pi context\n");
306 ret = -ENOMEM;
307 goto pi_ctx_alloc_failure;
308 }
309 pi_ctx = desc->pi_ctx;
310
311 pi_ctx->prot_frpl = ib_alloc_fast_reg_page_list(ib_device,
312 ISCSI_ISER_SG_TABLESIZE);
313 if (IS_ERR(pi_ctx->prot_frpl)) {
314 ret = PTR_ERR(pi_ctx->prot_frpl);
315 iser_err("Failed to allocate prot frpl ret=%d\n",
316 ret);
317 goto prot_frpl_failure;
318 }
319
320 pi_ctx->prot_mr = ib_alloc_fast_reg_mr(pd,
321 ISCSI_ISER_SG_TABLESIZE + 1);
322 if (IS_ERR(pi_ctx->prot_mr)) {
323 ret = PTR_ERR(pi_ctx->prot_mr);
324 iser_err("Failed to allocate prot frmr ret=%d\n",
325 ret);
326 goto prot_mr_failure;
327 }
328 desc->reg_indicators |= ISER_PROT_KEY_VALID;
329
330 mr_init_attr.max_reg_descriptors = 2;
331 mr_init_attr.flags |= IB_MR_SIGNATURE_EN;
332 pi_ctx->sig_mr = ib_create_mr(pd, &mr_init_attr);
333 if (IS_ERR(pi_ctx->sig_mr)) {
334 ret = PTR_ERR(pi_ctx->sig_mr);
335 iser_err("Failed to allocate signature enabled mr err=%d\n",
336 ret);
337 goto sig_mr_failure;
338 }
339 desc->reg_indicators |= ISER_SIG_KEY_VALID;
340 }
341 desc->reg_indicators &= ~ISER_FASTREG_PROTECTED;
342
343 iser_dbg("Create fr_desc %p page_list %p\n",
344 desc, desc->data_frpl->page_list);
345
346 return 0;
347 sig_mr_failure:
348 ib_dereg_mr(desc->pi_ctx->prot_mr);
349 prot_mr_failure:
350 ib_free_fast_reg_page_list(desc->pi_ctx->prot_frpl);
351 prot_frpl_failure:
352 kfree(desc->pi_ctx);
353 pi_ctx_alloc_failure:
354 ib_dereg_mr(desc->data_mr);
355 fast_reg_mr_failure:
356 ib_free_fast_reg_page_list(desc->data_frpl);
357
358 return ret;
359 }
360
361 /**
362 * iser_create_fastreg_pool - Creates pool of fast_reg descriptors
363 * for fast registration work requests.
364 * returns 0 on success, or errno code on failure
365 */
366 int iser_create_fastreg_pool(struct ib_conn *ib_conn, unsigned cmds_max)
367 {
368 struct iser_device *device = ib_conn->device;
369 struct fast_reg_descriptor *desc;
370 int i, ret;
371
372 INIT_LIST_HEAD(&ib_conn->fastreg.pool);
373 ib_conn->fastreg.pool_size = 0;
374 for (i = 0; i < cmds_max; i++) {
375 desc = kzalloc(sizeof(*desc), GFP_KERNEL);
376 if (!desc) {
377 iser_err("Failed to allocate a new fast_reg descriptor\n");
378 ret = -ENOMEM;
379 goto err;
380 }
381
382 ret = iser_create_fastreg_desc(device->ib_device, device->pd,
383 ib_conn->pi_support, desc);
384 if (ret) {
385 iser_err("Failed to create fastreg descriptor err=%d\n",
386 ret);
387 kfree(desc);
388 goto err;
389 }
390
391 list_add_tail(&desc->list, &ib_conn->fastreg.pool);
392 ib_conn->fastreg.pool_size++;
393 }
394
395 return 0;
396
397 err:
398 iser_free_fastreg_pool(ib_conn);
399 return ret;
400 }
401
402 /**
403 * iser_free_fastreg_pool - releases the pool of fast_reg descriptors
404 */
405 void iser_free_fastreg_pool(struct ib_conn *ib_conn)
406 {
407 struct fast_reg_descriptor *desc, *tmp;
408 int i = 0;
409
410 if (list_empty(&ib_conn->fastreg.pool))
411 return;
412
413 iser_info("freeing conn %p fr pool\n", ib_conn);
414
415 list_for_each_entry_safe(desc, tmp, &ib_conn->fastreg.pool, list) {
416 list_del(&desc->list);
417 ib_free_fast_reg_page_list(desc->data_frpl);
418 ib_dereg_mr(desc->data_mr);
419 if (desc->pi_ctx) {
420 ib_free_fast_reg_page_list(desc->pi_ctx->prot_frpl);
421 ib_dereg_mr(desc->pi_ctx->prot_mr);
422 ib_destroy_mr(desc->pi_ctx->sig_mr);
423 kfree(desc->pi_ctx);
424 }
425 kfree(desc);
426 ++i;
427 }
428
429 if (i < ib_conn->fastreg.pool_size)
430 iser_warn("pool still has %d regions registered\n",
431 ib_conn->fastreg.pool_size - i);
432 }
433
434 /**
435 * iser_create_ib_conn_res - Queue-Pair (QP)
436 *
437 * returns 0 on success, -1 on failure
438 */
439 static int iser_create_ib_conn_res(struct ib_conn *ib_conn)
440 {
441 struct iser_conn *iser_conn = container_of(ib_conn, struct iser_conn,
442 ib_conn);
443 struct iser_device *device;
444 struct ib_device_attr *dev_attr;
445 struct ib_qp_init_attr init_attr;
446 int ret = -ENOMEM;
447 int index, min_index = 0;
448
449 BUG_ON(ib_conn->device == NULL);
450
451 device = ib_conn->device;
452 dev_attr = &device->dev_attr;
453
454 memset(&init_attr, 0, sizeof init_attr);
455
456 mutex_lock(&ig.connlist_mutex);
457 /* select the CQ with the minimal number of usages */
458 for (index = 0; index < device->comps_used; index++) {
459 if (device->comps[index].active_qps <
460 device->comps[min_index].active_qps)
461 min_index = index;
462 }
463 ib_conn->comp = &device->comps[min_index];
464 ib_conn->comp->active_qps++;
465 mutex_unlock(&ig.connlist_mutex);
466 iser_info("cq index %d used for ib_conn %p\n", min_index, ib_conn);
467
468 init_attr.event_handler = iser_qp_event_callback;
469 init_attr.qp_context = (void *)ib_conn;
470 init_attr.send_cq = ib_conn->comp->cq;
471 init_attr.recv_cq = ib_conn->comp->cq;
472 init_attr.cap.max_recv_wr = ISER_QP_MAX_RECV_DTOS;
473 init_attr.cap.max_send_sge = 2;
474 init_attr.cap.max_recv_sge = 1;
475 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
476 init_attr.qp_type = IB_QPT_RC;
477 if (ib_conn->pi_support) {
478 init_attr.cap.max_send_wr = ISER_QP_SIG_MAX_REQ_DTOS + 1;
479 init_attr.create_flags |= IB_QP_CREATE_SIGNATURE_EN;
480 iser_conn->max_cmds =
481 ISER_GET_MAX_XMIT_CMDS(ISER_QP_SIG_MAX_REQ_DTOS);
482 } else {
483 if (dev_attr->max_qp_wr > ISER_QP_MAX_REQ_DTOS) {
484 init_attr.cap.max_send_wr = ISER_QP_MAX_REQ_DTOS + 1;
485 iser_conn->max_cmds =
486 ISER_GET_MAX_XMIT_CMDS(ISER_QP_MAX_REQ_DTOS);
487 } else {
488 init_attr.cap.max_send_wr = dev_attr->max_qp_wr;
489 iser_conn->max_cmds =
490 ISER_GET_MAX_XMIT_CMDS(dev_attr->max_qp_wr);
491 iser_dbg("device %s supports max_send_wr %d\n",
492 device->ib_device->name, dev_attr->max_qp_wr);
493 }
494 }
495
496 ret = rdma_create_qp(ib_conn->cma_id, device->pd, &init_attr);
497 if (ret)
498 goto out_err;
499
500 ib_conn->qp = ib_conn->cma_id->qp;
501 iser_info("setting conn %p cma_id %p qp %p\n",
502 ib_conn, ib_conn->cma_id,
503 ib_conn->cma_id->qp);
504 return ret;
505
506 out_err:
507 mutex_lock(&ig.connlist_mutex);
508 ib_conn->comp->active_qps--;
509 mutex_unlock(&ig.connlist_mutex);
510 iser_err("unable to alloc mem or create resource, err %d\n", ret);
511
512 return ret;
513 }
514
515 /**
516 * based on the resolved device node GUID see if there already allocated
517 * device for this device. If there's no such, create one.
518 */
519 static
520 struct iser_device *iser_device_find_by_ib_device(struct rdma_cm_id *cma_id)
521 {
522 struct iser_device *device;
523
524 mutex_lock(&ig.device_list_mutex);
525
526 list_for_each_entry(device, &ig.device_list, ig_list)
527 /* find if there's a match using the node GUID */
528 if (device->ib_device->node_guid == cma_id->device->node_guid)
529 goto inc_refcnt;
530
531 device = kzalloc(sizeof *device, GFP_KERNEL);
532 if (device == NULL)
533 goto out;
534
535 /* assign this device to the device */
536 device->ib_device = cma_id->device;
537 /* init the device and link it into ig device list */
538 if (iser_create_device_ib_res(device)) {
539 kfree(device);
540 device = NULL;
541 goto out;
542 }
543 list_add(&device->ig_list, &ig.device_list);
544
545 inc_refcnt:
546 device->refcount++;
547 out:
548 mutex_unlock(&ig.device_list_mutex);
549 return device;
550 }
551
552 /* if there's no demand for this device, release it */
553 static void iser_device_try_release(struct iser_device *device)
554 {
555 mutex_lock(&ig.device_list_mutex);
556 device->refcount--;
557 iser_info("device %p refcount %d\n", device, device->refcount);
558 if (!device->refcount) {
559 iser_free_device_ib_res(device);
560 list_del(&device->ig_list);
561 kfree(device);
562 }
563 mutex_unlock(&ig.device_list_mutex);
564 }
565
566 /**
567 * Called with state mutex held
568 **/
569 static int iser_conn_state_comp_exch(struct iser_conn *iser_conn,
570 enum iser_conn_state comp,
571 enum iser_conn_state exch)
572 {
573 int ret;
574
575 ret = (iser_conn->state == comp);
576 if (ret)
577 iser_conn->state = exch;
578
579 return ret;
580 }
581
582 void iser_release_work(struct work_struct *work)
583 {
584 struct iser_conn *iser_conn;
585
586 iser_conn = container_of(work, struct iser_conn, release_work);
587
588 /* Wait for conn_stop to complete */
589 wait_for_completion(&iser_conn->stop_completion);
590 /* Wait for IB resouces cleanup to complete */
591 wait_for_completion(&iser_conn->ib_completion);
592
593 mutex_lock(&iser_conn->state_mutex);
594 iser_conn->state = ISER_CONN_DOWN;
595 mutex_unlock(&iser_conn->state_mutex);
596
597 iser_conn_release(iser_conn);
598 }
599
600 /**
601 * iser_free_ib_conn_res - release IB related resources
602 * @iser_conn: iser connection struct
603 * @destroy: indicator if we need to try to release the
604 * iser device and memory regoins pool (only iscsi
605 * shutdown and DEVICE_REMOVAL will use this).
606 *
607 * This routine is called with the iser state mutex held
608 * so the cm_id removal is out of here. It is Safe to
609 * be invoked multiple times.
610 */
611 static void iser_free_ib_conn_res(struct iser_conn *iser_conn,
612 bool destroy)
613 {
614 struct ib_conn *ib_conn = &iser_conn->ib_conn;
615 struct iser_device *device = ib_conn->device;
616
617 iser_info("freeing conn %p cma_id %p qp %p\n",
618 iser_conn, ib_conn->cma_id, ib_conn->qp);
619
620 if (ib_conn->qp != NULL) {
621 ib_conn->comp->active_qps--;
622 rdma_destroy_qp(ib_conn->cma_id);
623 ib_conn->qp = NULL;
624 }
625
626 if (destroy) {
627 if (iser_conn->rx_descs)
628 iser_free_rx_descriptors(iser_conn);
629
630 if (device != NULL) {
631 iser_device_try_release(device);
632 ib_conn->device = NULL;
633 }
634 }
635 }
636
637 /**
638 * Frees all conn objects and deallocs conn descriptor
639 */
640 void iser_conn_release(struct iser_conn *iser_conn)
641 {
642 struct ib_conn *ib_conn = &iser_conn->ib_conn;
643
644 mutex_lock(&ig.connlist_mutex);
645 list_del(&iser_conn->conn_list);
646 mutex_unlock(&ig.connlist_mutex);
647
648 mutex_lock(&iser_conn->state_mutex);
649 /* In case we endup here without ep_disconnect being invoked. */
650 if (iser_conn->state != ISER_CONN_DOWN) {
651 iser_warn("iser conn %p state %d, expected state down.\n",
652 iser_conn, iser_conn->state);
653 iscsi_destroy_endpoint(iser_conn->ep);
654 iser_conn->state = ISER_CONN_DOWN;
655 }
656 /*
657 * In case we never got to bind stage, we still need to
658 * release IB resources (which is safe to call more than once).
659 */
660 iser_free_ib_conn_res(iser_conn, true);
661 mutex_unlock(&iser_conn->state_mutex);
662
663 if (ib_conn->cma_id != NULL) {
664 rdma_destroy_id(ib_conn->cma_id);
665 ib_conn->cma_id = NULL;
666 }
667
668 kfree(iser_conn);
669 }
670
671 /**
672 * triggers start of the disconnect procedures and wait for them to be done
673 * Called with state mutex held
674 */
675 int iser_conn_terminate(struct iser_conn *iser_conn)
676 {
677 struct ib_conn *ib_conn = &iser_conn->ib_conn;
678 struct ib_send_wr *bad_wr;
679 int err = 0;
680
681 /* terminate the iser conn only if the conn state is UP */
682 if (!iser_conn_state_comp_exch(iser_conn, ISER_CONN_UP,
683 ISER_CONN_TERMINATING))
684 return 0;
685
686 iser_info("iser_conn %p state %d\n", iser_conn, iser_conn->state);
687
688 /* suspend queuing of new iscsi commands */
689 if (iser_conn->iscsi_conn)
690 iscsi_suspend_queue(iser_conn->iscsi_conn);
691
692 /*
693 * In case we didn't already clean up the cma_id (peer initiated
694 * a disconnection), we need to Cause the CMA to change the QP
695 * state to ERROR.
696 */
697 if (ib_conn->cma_id) {
698 err = rdma_disconnect(ib_conn->cma_id);
699 if (err)
700 iser_err("Failed to disconnect, conn: 0x%p err %d\n",
701 iser_conn, err);
702
703 /* post an indication that all flush errors were consumed */
704 err = ib_post_send(ib_conn->qp, &ib_conn->beacon, &bad_wr);
705 if (err) {
706 iser_err("conn %p failed to post beacon", ib_conn);
707 return 1;
708 }
709
710 wait_for_completion(&ib_conn->flush_comp);
711 }
712
713 return 1;
714 }
715
716 /**
717 * Called with state mutex held
718 **/
719 static void iser_connect_error(struct rdma_cm_id *cma_id)
720 {
721 struct iser_conn *iser_conn;
722
723 iser_conn = (struct iser_conn *)cma_id->context;
724 iser_conn->state = ISER_CONN_TERMINATING;
725 }
726
727 /**
728 * Called with state mutex held
729 **/
730 static void iser_addr_handler(struct rdma_cm_id *cma_id)
731 {
732 struct iser_device *device;
733 struct iser_conn *iser_conn;
734 struct ib_conn *ib_conn;
735 int ret;
736
737 iser_conn = (struct iser_conn *)cma_id->context;
738 if (iser_conn->state != ISER_CONN_PENDING)
739 /* bailout */
740 return;
741
742 ib_conn = &iser_conn->ib_conn;
743 device = iser_device_find_by_ib_device(cma_id);
744 if (!device) {
745 iser_err("device lookup/creation failed\n");
746 iser_connect_error(cma_id);
747 return;
748 }
749
750 ib_conn->device = device;
751
752 /* connection T10-PI support */
753 if (iser_pi_enable) {
754 if (!(device->dev_attr.device_cap_flags &
755 IB_DEVICE_SIGNATURE_HANDOVER)) {
756 iser_warn("T10-PI requested but not supported on %s, "
757 "continue without T10-PI\n",
758 ib_conn->device->ib_device->name);
759 ib_conn->pi_support = false;
760 } else {
761 ib_conn->pi_support = true;
762 }
763 }
764
765 ret = rdma_resolve_route(cma_id, 1000);
766 if (ret) {
767 iser_err("resolve route failed: %d\n", ret);
768 iser_connect_error(cma_id);
769 return;
770 }
771 }
772
773 /**
774 * Called with state mutex held
775 **/
776 static void iser_route_handler(struct rdma_cm_id *cma_id)
777 {
778 struct rdma_conn_param conn_param;
779 int ret;
780 struct iser_cm_hdr req_hdr;
781 struct iser_conn *iser_conn = (struct iser_conn *)cma_id->context;
782 struct ib_conn *ib_conn = &iser_conn->ib_conn;
783 struct iser_device *device = ib_conn->device;
784
785 if (iser_conn->state != ISER_CONN_PENDING)
786 /* bailout */
787 return;
788
789 ret = iser_create_ib_conn_res(ib_conn);
790 if (ret)
791 goto failure;
792
793 memset(&conn_param, 0, sizeof conn_param);
794 conn_param.responder_resources = device->dev_attr.max_qp_rd_atom;
795 conn_param.initiator_depth = 1;
796 conn_param.retry_count = 7;
797 conn_param.rnr_retry_count = 6;
798
799 memset(&req_hdr, 0, sizeof(req_hdr));
800 req_hdr.flags = (ISER_ZBVA_NOT_SUPPORTED |
801 ISER_SEND_W_INV_NOT_SUPPORTED);
802 conn_param.private_data = (void *)&req_hdr;
803 conn_param.private_data_len = sizeof(struct iser_cm_hdr);
804
805 ret = rdma_connect(cma_id, &conn_param);
806 if (ret) {
807 iser_err("failure connecting: %d\n", ret);
808 goto failure;
809 }
810
811 return;
812 failure:
813 iser_connect_error(cma_id);
814 }
815
816 static void iser_connected_handler(struct rdma_cm_id *cma_id)
817 {
818 struct iser_conn *iser_conn;
819 struct ib_qp_attr attr;
820 struct ib_qp_init_attr init_attr;
821
822 iser_conn = (struct iser_conn *)cma_id->context;
823 if (iser_conn->state != ISER_CONN_PENDING)
824 /* bailout */
825 return;
826
827 (void)ib_query_qp(cma_id->qp, &attr, ~0, &init_attr);
828 iser_info("remote qpn:%x my qpn:%x\n", attr.dest_qp_num, cma_id->qp->qp_num);
829
830 iser_conn->state = ISER_CONN_UP;
831 complete(&iser_conn->up_completion);
832 }
833
834 static void iser_disconnected_handler(struct rdma_cm_id *cma_id)
835 {
836 struct iser_conn *iser_conn = (struct iser_conn *)cma_id->context;
837
838 if (iser_conn_terminate(iser_conn)) {
839 if (iser_conn->iscsi_conn)
840 iscsi_conn_failure(iser_conn->iscsi_conn,
841 ISCSI_ERR_CONN_FAILED);
842 else
843 iser_err("iscsi_iser connection isn't bound\n");
844 }
845 }
846
847 static void iser_cleanup_handler(struct rdma_cm_id *cma_id,
848 bool destroy)
849 {
850 struct iser_conn *iser_conn = (struct iser_conn *)cma_id->context;
851
852 /*
853 * We are not guaranteed that we visited disconnected_handler
854 * by now, call it here to be safe that we handle CM drep
855 * and flush errors.
856 */
857 iser_disconnected_handler(cma_id);
858 iser_free_ib_conn_res(iser_conn, destroy);
859 complete(&iser_conn->ib_completion);
860 };
861
862 static int iser_cma_handler(struct rdma_cm_id *cma_id, struct rdma_cm_event *event)
863 {
864 struct iser_conn *iser_conn;
865 int ret = 0;
866
867 iser_conn = (struct iser_conn *)cma_id->context;
868 iser_info("event %d status %d conn %p id %p\n",
869 event->event, event->status, cma_id->context, cma_id);
870
871 mutex_lock(&iser_conn->state_mutex);
872 switch (event->event) {
873 case RDMA_CM_EVENT_ADDR_RESOLVED:
874 iser_addr_handler(cma_id);
875 break;
876 case RDMA_CM_EVENT_ROUTE_RESOLVED:
877 iser_route_handler(cma_id);
878 break;
879 case RDMA_CM_EVENT_ESTABLISHED:
880 iser_connected_handler(cma_id);
881 break;
882 case RDMA_CM_EVENT_ADDR_ERROR:
883 case RDMA_CM_EVENT_ROUTE_ERROR:
884 case RDMA_CM_EVENT_CONNECT_ERROR:
885 case RDMA_CM_EVENT_UNREACHABLE:
886 case RDMA_CM_EVENT_REJECTED:
887 iser_connect_error(cma_id);
888 break;
889 case RDMA_CM_EVENT_DISCONNECTED:
890 case RDMA_CM_EVENT_ADDR_CHANGE:
891 case RDMA_CM_EVENT_TIMEWAIT_EXIT:
892 iser_cleanup_handler(cma_id, false);
893 break;
894 case RDMA_CM_EVENT_DEVICE_REMOVAL:
895 /*
896 * we *must* destroy the device as we cannot rely
897 * on iscsid to be around to initiate error handling.
898 * also if we are not in state DOWN implicitly destroy
899 * the cma_id.
900 */
901 iser_cleanup_handler(cma_id, true);
902 if (iser_conn->state != ISER_CONN_DOWN) {
903 iser_conn->ib_conn.cma_id = NULL;
904 ret = 1;
905 }
906 break;
907 default:
908 iser_err("Unexpected RDMA CM event (%d)\n", event->event);
909 break;
910 }
911 mutex_unlock(&iser_conn->state_mutex);
912
913 return ret;
914 }
915
916 void iser_conn_init(struct iser_conn *iser_conn)
917 {
918 iser_conn->state = ISER_CONN_INIT;
919 iser_conn->ib_conn.post_recv_buf_count = 0;
920 init_completion(&iser_conn->ib_conn.flush_comp);
921 init_completion(&iser_conn->stop_completion);
922 init_completion(&iser_conn->ib_completion);
923 init_completion(&iser_conn->up_completion);
924 INIT_LIST_HEAD(&iser_conn->conn_list);
925 spin_lock_init(&iser_conn->ib_conn.lock);
926 mutex_init(&iser_conn->state_mutex);
927 }
928
929 /**
930 * starts the process of connecting to the target
931 * sleeps until the connection is established or rejected
932 */
933 int iser_connect(struct iser_conn *iser_conn,
934 struct sockaddr *src_addr,
935 struct sockaddr *dst_addr,
936 int non_blocking)
937 {
938 struct ib_conn *ib_conn = &iser_conn->ib_conn;
939 int err = 0;
940
941 mutex_lock(&iser_conn->state_mutex);
942
943 sprintf(iser_conn->name, "%pISp", dst_addr);
944
945 iser_info("connecting to: %s\n", iser_conn->name);
946
947 /* the device is known only --after-- address resolution */
948 ib_conn->device = NULL;
949
950 iser_conn->state = ISER_CONN_PENDING;
951
952 ib_conn->beacon.wr_id = ISER_BEACON_WRID;
953 ib_conn->beacon.opcode = IB_WR_SEND;
954
955 ib_conn->cma_id = rdma_create_id(iser_cma_handler,
956 (void *)iser_conn,
957 RDMA_PS_TCP, IB_QPT_RC);
958 if (IS_ERR(ib_conn->cma_id)) {
959 err = PTR_ERR(ib_conn->cma_id);
960 iser_err("rdma_create_id failed: %d\n", err);
961 goto id_failure;
962 }
963
964 err = rdma_resolve_addr(ib_conn->cma_id, src_addr, dst_addr, 1000);
965 if (err) {
966 iser_err("rdma_resolve_addr failed: %d\n", err);
967 goto addr_failure;
968 }
969
970 if (!non_blocking) {
971 wait_for_completion_interruptible(&iser_conn->up_completion);
972
973 if (iser_conn->state != ISER_CONN_UP) {
974 err = -EIO;
975 goto connect_failure;
976 }
977 }
978 mutex_unlock(&iser_conn->state_mutex);
979
980 mutex_lock(&ig.connlist_mutex);
981 list_add(&iser_conn->conn_list, &ig.connlist);
982 mutex_unlock(&ig.connlist_mutex);
983 return 0;
984
985 id_failure:
986 ib_conn->cma_id = NULL;
987 addr_failure:
988 iser_conn->state = ISER_CONN_DOWN;
989 connect_failure:
990 mutex_unlock(&iser_conn->state_mutex);
991 iser_conn_release(iser_conn);
992 return err;
993 }
994
995 /**
996 * iser_reg_page_vec - Register physical memory
997 *
998 * returns: 0 on success, errno code on failure
999 */
1000 int iser_reg_page_vec(struct ib_conn *ib_conn,
1001 struct iser_page_vec *page_vec,
1002 struct iser_mem_reg *mem_reg)
1003 {
1004 struct ib_pool_fmr *mem;
1005 u64 io_addr;
1006 u64 *page_list;
1007 int status;
1008
1009 page_list = page_vec->pages;
1010 io_addr = page_list[0];
1011
1012 mem = ib_fmr_pool_map_phys(ib_conn->fmr.pool,
1013 page_list,
1014 page_vec->length,
1015 io_addr);
1016
1017 if (IS_ERR(mem)) {
1018 status = (int)PTR_ERR(mem);
1019 iser_err("ib_fmr_pool_map_phys failed: %d\n", status);
1020 return status;
1021 }
1022
1023 mem_reg->lkey = mem->fmr->lkey;
1024 mem_reg->rkey = mem->fmr->rkey;
1025 mem_reg->len = page_vec->length * SIZE_4K;
1026 mem_reg->va = io_addr;
1027 mem_reg->mem_h = (void *)mem;
1028
1029 mem_reg->va += page_vec->offset;
1030 mem_reg->len = page_vec->data_size;
1031
1032 iser_dbg("PHYSICAL Mem.register, [PHYS p_array: 0x%p, sz: %d, "
1033 "entry[0]: (0x%08lx,%ld)] -> "
1034 "[lkey: 0x%08X mem_h: 0x%p va: 0x%08lX sz: %ld]\n",
1035 page_vec, page_vec->length,
1036 (unsigned long)page_vec->pages[0],
1037 (unsigned long)page_vec->data_size,
1038 (unsigned int)mem_reg->lkey, mem_reg->mem_h,
1039 (unsigned long)mem_reg->va, (unsigned long)mem_reg->len);
1040 return 0;
1041 }
1042
1043 /**
1044 * Unregister (previosuly registered using FMR) memory.
1045 * If memory is non-FMR does nothing.
1046 */
1047 void iser_unreg_mem_fmr(struct iscsi_iser_task *iser_task,
1048 enum iser_data_dir cmd_dir)
1049 {
1050 struct iser_mem_reg *reg = &iser_task->rdma_regd[cmd_dir].reg;
1051 int ret;
1052
1053 if (!reg->mem_h)
1054 return;
1055
1056 iser_dbg("PHYSICAL Mem.Unregister mem_h %p\n",reg->mem_h);
1057
1058 ret = ib_fmr_pool_unmap((struct ib_pool_fmr *)reg->mem_h);
1059 if (ret)
1060 iser_err("ib_fmr_pool_unmap failed %d\n", ret);
1061
1062 reg->mem_h = NULL;
1063 }
1064
1065 void iser_unreg_mem_fastreg(struct iscsi_iser_task *iser_task,
1066 enum iser_data_dir cmd_dir)
1067 {
1068 struct iser_mem_reg *reg = &iser_task->rdma_regd[cmd_dir].reg;
1069 struct iser_conn *iser_conn = iser_task->iser_conn;
1070 struct ib_conn *ib_conn = &iser_conn->ib_conn;
1071 struct fast_reg_descriptor *desc = reg->mem_h;
1072
1073 if (!desc)
1074 return;
1075
1076 reg->mem_h = NULL;
1077 spin_lock_bh(&ib_conn->lock);
1078 list_add_tail(&desc->list, &ib_conn->fastreg.pool);
1079 spin_unlock_bh(&ib_conn->lock);
1080 }
1081
1082 int iser_post_recvl(struct iser_conn *iser_conn)
1083 {
1084 struct ib_recv_wr rx_wr, *rx_wr_failed;
1085 struct ib_conn *ib_conn = &iser_conn->ib_conn;
1086 struct ib_sge sge;
1087 int ib_ret;
1088
1089 sge.addr = iser_conn->login_resp_dma;
1090 sge.length = ISER_RX_LOGIN_SIZE;
1091 sge.lkey = ib_conn->device->mr->lkey;
1092
1093 rx_wr.wr_id = (uintptr_t)iser_conn->login_resp_buf;
1094 rx_wr.sg_list = &sge;
1095 rx_wr.num_sge = 1;
1096 rx_wr.next = NULL;
1097
1098 ib_conn->post_recv_buf_count++;
1099 ib_ret = ib_post_recv(ib_conn->qp, &rx_wr, &rx_wr_failed);
1100 if (ib_ret) {
1101 iser_err("ib_post_recv failed ret=%d\n", ib_ret);
1102 ib_conn->post_recv_buf_count--;
1103 }
1104 return ib_ret;
1105 }
1106
1107 int iser_post_recvm(struct iser_conn *iser_conn, int count)
1108 {
1109 struct ib_recv_wr *rx_wr, *rx_wr_failed;
1110 int i, ib_ret;
1111 struct ib_conn *ib_conn = &iser_conn->ib_conn;
1112 unsigned int my_rx_head = iser_conn->rx_desc_head;
1113 struct iser_rx_desc *rx_desc;
1114
1115 for (rx_wr = ib_conn->rx_wr, i = 0; i < count; i++, rx_wr++) {
1116 rx_desc = &iser_conn->rx_descs[my_rx_head];
1117 rx_wr->wr_id = (uintptr_t)rx_desc;
1118 rx_wr->sg_list = &rx_desc->rx_sg;
1119 rx_wr->num_sge = 1;
1120 rx_wr->next = rx_wr + 1;
1121 my_rx_head = (my_rx_head + 1) & iser_conn->qp_max_recv_dtos_mask;
1122 }
1123
1124 rx_wr--;
1125 rx_wr->next = NULL; /* mark end of work requests list */
1126
1127 ib_conn->post_recv_buf_count += count;
1128 ib_ret = ib_post_recv(ib_conn->qp, ib_conn->rx_wr, &rx_wr_failed);
1129 if (ib_ret) {
1130 iser_err("ib_post_recv failed ret=%d\n", ib_ret);
1131 ib_conn->post_recv_buf_count -= count;
1132 } else
1133 iser_conn->rx_desc_head = my_rx_head;
1134 return ib_ret;
1135 }
1136
1137
1138 /**
1139 * iser_start_send - Initiate a Send DTO operation
1140 *
1141 * returns 0 on success, -1 on failure
1142 */
1143 int iser_post_send(struct ib_conn *ib_conn, struct iser_tx_desc *tx_desc,
1144 bool signal)
1145 {
1146 int ib_ret;
1147 struct ib_send_wr send_wr, *send_wr_failed;
1148
1149 ib_dma_sync_single_for_device(ib_conn->device->ib_device,
1150 tx_desc->dma_addr, ISER_HEADERS_LEN,
1151 DMA_TO_DEVICE);
1152
1153 send_wr.next = NULL;
1154 send_wr.wr_id = (uintptr_t)tx_desc;
1155 send_wr.sg_list = tx_desc->tx_sg;
1156 send_wr.num_sge = tx_desc->num_sge;
1157 send_wr.opcode = IB_WR_SEND;
1158 send_wr.send_flags = signal ? IB_SEND_SIGNALED : 0;
1159
1160 ib_ret = ib_post_send(ib_conn->qp, &send_wr, &send_wr_failed);
1161 if (ib_ret)
1162 iser_err("ib_post_send failed, ret:%d\n", ib_ret);
1163
1164 return ib_ret;
1165 }
1166
1167 /**
1168 * is_iser_tx_desc - Indicate if the completion wr_id
1169 * is a TX descriptor or not.
1170 * @iser_conn: iser connection
1171 * @wr_id: completion WR identifier
1172 *
1173 * Since we cannot rely on wc opcode in FLUSH errors
1174 * we must work around it by checking if the wr_id address
1175 * falls in the iser connection rx_descs buffer. If so
1176 * it is an RX descriptor, otherwize it is a TX.
1177 */
1178 static inline bool
1179 is_iser_tx_desc(struct iser_conn *iser_conn, void *wr_id)
1180 {
1181 void *start = iser_conn->rx_descs;
1182 int len = iser_conn->num_rx_descs * sizeof(*iser_conn->rx_descs);
1183
1184 if (wr_id >= start && wr_id < start + len)
1185 return false;
1186
1187 return true;
1188 }
1189
1190 /**
1191 * iser_handle_comp_error() - Handle error completion
1192 * @ib_conn: connection RDMA resources
1193 * @wc: work completion
1194 *
1195 * Notes: We may handle a FLUSH error completion and in this case
1196 * we only cleanup in case TX type was DATAOUT. For non-FLUSH
1197 * error completion we should also notify iscsi layer that
1198 * connection is failed (in case we passed bind stage).
1199 */
1200 static void
1201 iser_handle_comp_error(struct ib_conn *ib_conn,
1202 struct ib_wc *wc)
1203 {
1204 void *wr_id = (void *)(uintptr_t)wc->wr_id;
1205 struct iser_conn *iser_conn = container_of(ib_conn, struct iser_conn,
1206 ib_conn);
1207
1208 if (wc->status != IB_WC_WR_FLUSH_ERR)
1209 if (iser_conn->iscsi_conn)
1210 iscsi_conn_failure(iser_conn->iscsi_conn,
1211 ISCSI_ERR_CONN_FAILED);
1212
1213 if (is_iser_tx_desc(iser_conn, wr_id)) {
1214 struct iser_tx_desc *desc = wr_id;
1215
1216 if (desc->type == ISCSI_TX_DATAOUT)
1217 kmem_cache_free(ig.desc_cache, desc);
1218 } else {
1219 ib_conn->post_recv_buf_count--;
1220 }
1221 }
1222
1223 /**
1224 * iser_handle_wc - handle a single work completion
1225 * @wc: work completion
1226 *
1227 * Soft-IRQ context, work completion can be either
1228 * SEND or RECV, and can turn out successful or
1229 * with error (or flush error).
1230 */
1231 static void iser_handle_wc(struct ib_wc *wc)
1232 {
1233 struct ib_conn *ib_conn;
1234 struct iser_tx_desc *tx_desc;
1235 struct iser_rx_desc *rx_desc;
1236
1237 ib_conn = wc->qp->qp_context;
1238 if (likely(wc->status == IB_WC_SUCCESS)) {
1239 if (wc->opcode == IB_WC_RECV) {
1240 rx_desc = (struct iser_rx_desc *)(uintptr_t)wc->wr_id;
1241 iser_rcv_completion(rx_desc, wc->byte_len,
1242 ib_conn);
1243 } else
1244 if (wc->opcode == IB_WC_SEND) {
1245 tx_desc = (struct iser_tx_desc *)(uintptr_t)wc->wr_id;
1246 iser_snd_completion(tx_desc, ib_conn);
1247 } else {
1248 iser_err("Unknown wc opcode %d\n", wc->opcode);
1249 }
1250 } else {
1251 if (wc->status != IB_WC_WR_FLUSH_ERR)
1252 iser_err("wr id %llx status %d vend_err %x\n",
1253 wc->wr_id, wc->status, wc->vendor_err);
1254 else
1255 iser_dbg("flush error: wr id %llx\n", wc->wr_id);
1256
1257 if (wc->wr_id != ISER_FASTREG_LI_WRID &&
1258 wc->wr_id != ISER_BEACON_WRID)
1259 iser_handle_comp_error(ib_conn, wc);
1260
1261 /* complete in case all flush errors were consumed */
1262 if (wc->wr_id == ISER_BEACON_WRID)
1263 complete(&ib_conn->flush_comp);
1264 }
1265 }
1266
1267 /**
1268 * iser_cq_tasklet_fn - iSER completion polling loop
1269 * @data: iSER completion context
1270 *
1271 * Soft-IRQ context, polling connection CQ until
1272 * either CQ was empty or we exausted polling budget
1273 */
1274 static void iser_cq_tasklet_fn(unsigned long data)
1275 {
1276 struct iser_comp *comp = (struct iser_comp *)data;
1277 struct ib_cq *cq = comp->cq;
1278 struct ib_wc *const wcs = comp->wcs;
1279 int i, n, completed = 0;
1280
1281 while ((n = ib_poll_cq(cq, ARRAY_SIZE(comp->wcs), wcs)) > 0) {
1282 for (i = 0; i < n; i++)
1283 iser_handle_wc(&wcs[i]);
1284
1285 completed += n;
1286 if (completed >= iser_cq_poll_limit)
1287 break;
1288 }
1289
1290 /*
1291 * It is assumed here that arming CQ only once its empty
1292 * would not cause interrupts to be missed.
1293 */
1294 ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
1295
1296 iser_dbg("got %d completions\n", completed);
1297 }
1298
1299 static void iser_cq_callback(struct ib_cq *cq, void *cq_context)
1300 {
1301 struct iser_comp *comp = cq_context;
1302
1303 tasklet_schedule(&comp->tasklet);
1304 }
1305
1306 u8 iser_check_task_pi_status(struct iscsi_iser_task *iser_task,
1307 enum iser_data_dir cmd_dir, sector_t *sector)
1308 {
1309 struct iser_mem_reg *reg = &iser_task->rdma_regd[cmd_dir].reg;
1310 struct fast_reg_descriptor *desc = reg->mem_h;
1311 unsigned long sector_size = iser_task->sc->device->sector_size;
1312 struct ib_mr_status mr_status;
1313 int ret;
1314
1315 if (desc && desc->reg_indicators & ISER_FASTREG_PROTECTED) {
1316 desc->reg_indicators &= ~ISER_FASTREG_PROTECTED;
1317 ret = ib_check_mr_status(desc->pi_ctx->sig_mr,
1318 IB_MR_CHECK_SIG_STATUS, &mr_status);
1319 if (ret) {
1320 pr_err("ib_check_mr_status failed, ret %d\n", ret);
1321 goto err;
1322 }
1323
1324 if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
1325 sector_t sector_off = mr_status.sig_err.sig_err_offset;
1326
1327 do_div(sector_off, sector_size + 8);
1328 *sector = scsi_get_lba(iser_task->sc) + sector_off;
1329
1330 pr_err("PI error found type %d at sector %llx "
1331 "expected %x vs actual %x\n",
1332 mr_status.sig_err.err_type,
1333 (unsigned long long)*sector,
1334 mr_status.sig_err.expected,
1335 mr_status.sig_err.actual);
1336
1337 switch (mr_status.sig_err.err_type) {
1338 case IB_SIG_BAD_GUARD:
1339 return 0x1;
1340 case IB_SIG_BAD_REFTAG:
1341 return 0x3;
1342 case IB_SIG_BAD_APPTAG:
1343 return 0x2;
1344 }
1345 }
1346 }
1347
1348 return 0;
1349 err:
1350 /* Not alot we can do here, return ambiguous guard error */
1351 return 0x1;
1352 }
This page took 0.057117 seconds and 4 git commands to generate.