IB/iser: Use helper for container_of
[deliverable/linux.git] / drivers / infiniband / ulp / iser / iser_verbs.c
1 /*
2 * Copyright (c) 2004, 2005, 2006 Voltaire, Inc. All rights reserved.
3 * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved.
4 * Copyright (c) 2013-2014 Mellanox Technologies. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/slab.h>
37 #include <linux/delay.h>
38
39 #include "iscsi_iser.h"
40
41 #define ISCSI_ISER_MAX_CONN 8
42 #define ISER_MAX_RX_LEN (ISER_QP_MAX_RECV_DTOS * ISCSI_ISER_MAX_CONN)
43 #define ISER_MAX_TX_LEN (ISER_QP_MAX_REQ_DTOS * ISCSI_ISER_MAX_CONN)
44 #define ISER_MAX_CQ_LEN (ISER_MAX_RX_LEN + ISER_MAX_TX_LEN + \
45 ISCSI_ISER_MAX_CONN)
46
47 static int iser_cq_poll_limit = 512;
48
49 static void iser_cq_tasklet_fn(unsigned long data);
50 static void iser_cq_callback(struct ib_cq *cq, void *cq_context);
51
52 static void iser_cq_event_callback(struct ib_event *cause, void *context)
53 {
54 iser_err("cq event %s (%d)\n",
55 ib_event_msg(cause->event), cause->event);
56 }
57
58 static void iser_qp_event_callback(struct ib_event *cause, void *context)
59 {
60 iser_err("qp event %s (%d)\n",
61 ib_event_msg(cause->event), cause->event);
62 }
63
64 static void iser_event_handler(struct ib_event_handler *handler,
65 struct ib_event *event)
66 {
67 iser_err("async event %s (%d) on device %s port %d\n",
68 ib_event_msg(event->event), event->event,
69 event->device->name, event->element.port_num);
70 }
71
72 /**
73 * iser_create_device_ib_res - creates Protection Domain (PD), Completion
74 * Queue (CQ), DMA Memory Region (DMA MR) with the device associated with
75 * the adapator.
76 *
77 * returns 0 on success, -1 on failure
78 */
79 static int iser_create_device_ib_res(struct iser_device *device)
80 {
81 struct ib_device_attr *dev_attr = &device->dev_attr;
82 int ret, i, max_cqe;
83
84 ret = ib_query_device(device->ib_device, dev_attr);
85 if (ret) {
86 pr_warn("Query device failed for %s\n", device->ib_device->name);
87 return ret;
88 }
89
90 ret = iser_assign_reg_ops(device);
91 if (ret)
92 return ret;
93
94 device->comps_used = min_t(int, num_online_cpus(),
95 device->ib_device->num_comp_vectors);
96
97 device->comps = kcalloc(device->comps_used, sizeof(*device->comps),
98 GFP_KERNEL);
99 if (!device->comps)
100 goto comps_err;
101
102 max_cqe = min(ISER_MAX_CQ_LEN, dev_attr->max_cqe);
103
104 iser_info("using %d CQs, device %s supports %d vectors max_cqe %d\n",
105 device->comps_used, device->ib_device->name,
106 device->ib_device->num_comp_vectors, max_cqe);
107
108 device->pd = ib_alloc_pd(device->ib_device);
109 if (IS_ERR(device->pd))
110 goto pd_err;
111
112 for (i = 0; i < device->comps_used; i++) {
113 struct ib_cq_init_attr cq_attr = {};
114 struct iser_comp *comp = &device->comps[i];
115
116 comp->device = device;
117 cq_attr.cqe = max_cqe;
118 cq_attr.comp_vector = i;
119 comp->cq = ib_create_cq(device->ib_device,
120 iser_cq_callback,
121 iser_cq_event_callback,
122 (void *)comp,
123 &cq_attr);
124 if (IS_ERR(comp->cq)) {
125 comp->cq = NULL;
126 goto cq_err;
127 }
128
129 if (ib_req_notify_cq(comp->cq, IB_CQ_NEXT_COMP))
130 goto cq_err;
131
132 tasklet_init(&comp->tasklet, iser_cq_tasklet_fn,
133 (unsigned long)comp);
134 }
135
136 if (!iser_always_reg) {
137 int access = IB_ACCESS_LOCAL_WRITE |
138 IB_ACCESS_REMOTE_WRITE |
139 IB_ACCESS_REMOTE_READ;
140
141 device->mr = ib_get_dma_mr(device->pd, access);
142 if (IS_ERR(device->mr))
143 goto dma_mr_err;
144 }
145
146 INIT_IB_EVENT_HANDLER(&device->event_handler, device->ib_device,
147 iser_event_handler);
148 if (ib_register_event_handler(&device->event_handler))
149 goto handler_err;
150
151 return 0;
152
153 handler_err:
154 if (device->mr)
155 ib_dereg_mr(device->mr);
156 dma_mr_err:
157 for (i = 0; i < device->comps_used; i++)
158 tasklet_kill(&device->comps[i].tasklet);
159 cq_err:
160 for (i = 0; i < device->comps_used; i++) {
161 struct iser_comp *comp = &device->comps[i];
162
163 if (comp->cq)
164 ib_destroy_cq(comp->cq);
165 }
166 ib_dealloc_pd(device->pd);
167 pd_err:
168 kfree(device->comps);
169 comps_err:
170 iser_err("failed to allocate an IB resource\n");
171 return -1;
172 }
173
174 /**
175 * iser_free_device_ib_res - destroy/dealloc/dereg the DMA MR,
176 * CQ and PD created with the device associated with the adapator.
177 */
178 static void iser_free_device_ib_res(struct iser_device *device)
179 {
180 int i;
181
182 for (i = 0; i < device->comps_used; i++) {
183 struct iser_comp *comp = &device->comps[i];
184
185 tasklet_kill(&comp->tasklet);
186 ib_destroy_cq(comp->cq);
187 comp->cq = NULL;
188 }
189
190 (void)ib_unregister_event_handler(&device->event_handler);
191 if (device->mr)
192 (void)ib_dereg_mr(device->mr);
193 ib_dealloc_pd(device->pd);
194
195 kfree(device->comps);
196 device->comps = NULL;
197
198 device->mr = NULL;
199 device->pd = NULL;
200 }
201
202 /**
203 * iser_alloc_fmr_pool - Creates FMR pool and page_vector
204 *
205 * returns 0 on success, or errno code on failure
206 */
207 int iser_alloc_fmr_pool(struct ib_conn *ib_conn,
208 unsigned cmds_max,
209 unsigned int size)
210 {
211 struct iser_device *device = ib_conn->device;
212 struct iser_fr_pool *fr_pool = &ib_conn->fr_pool;
213 struct iser_page_vec *page_vec;
214 struct iser_fr_desc *desc;
215 struct ib_fmr_pool *fmr_pool;
216 struct ib_fmr_pool_param params;
217 int ret;
218
219 INIT_LIST_HEAD(&fr_pool->list);
220 spin_lock_init(&fr_pool->lock);
221
222 desc = kzalloc(sizeof(*desc), GFP_KERNEL);
223 if (!desc)
224 return -ENOMEM;
225
226 page_vec = kmalloc(sizeof(*page_vec) + (sizeof(u64) * size),
227 GFP_KERNEL);
228 if (!page_vec) {
229 ret = -ENOMEM;
230 goto err_frpl;
231 }
232
233 page_vec->pages = (u64 *)(page_vec + 1);
234
235 params.page_shift = SHIFT_4K;
236 params.max_pages_per_fmr = size;
237 /* make the pool size twice the max number of SCSI commands *
238 * the ML is expected to queue, watermark for unmap at 50% */
239 params.pool_size = cmds_max * 2;
240 params.dirty_watermark = cmds_max;
241 params.cache = 0;
242 params.flush_function = NULL;
243 params.access = (IB_ACCESS_LOCAL_WRITE |
244 IB_ACCESS_REMOTE_WRITE |
245 IB_ACCESS_REMOTE_READ);
246
247 fmr_pool = ib_create_fmr_pool(device->pd, &params);
248 if (IS_ERR(fmr_pool)) {
249 ret = PTR_ERR(fmr_pool);
250 iser_err("FMR allocation failed, err %d\n", ret);
251 goto err_fmr;
252 }
253
254 desc->rsc.page_vec = page_vec;
255 desc->rsc.fmr_pool = fmr_pool;
256 list_add(&desc->list, &fr_pool->list);
257
258 return 0;
259
260 err_fmr:
261 kfree(page_vec);
262 err_frpl:
263 kfree(desc);
264
265 return ret;
266 }
267
268 /**
269 * iser_free_fmr_pool - releases the FMR pool and page vec
270 */
271 void iser_free_fmr_pool(struct ib_conn *ib_conn)
272 {
273 struct iser_fr_pool *fr_pool = &ib_conn->fr_pool;
274 struct iser_fr_desc *desc;
275
276 desc = list_first_entry(&fr_pool->list,
277 struct iser_fr_desc, list);
278 list_del(&desc->list);
279
280 iser_info("freeing conn %p fmr pool %p\n",
281 ib_conn, desc->rsc.fmr_pool);
282
283 ib_destroy_fmr_pool(desc->rsc.fmr_pool);
284 kfree(desc->rsc.page_vec);
285 kfree(desc);
286 }
287
288 static int
289 iser_alloc_reg_res(struct ib_device *ib_device,
290 struct ib_pd *pd,
291 struct iser_reg_resources *res,
292 unsigned int size)
293 {
294 int ret;
295
296 res->mr = ib_alloc_mr(pd, IB_MR_TYPE_MEM_REG, size);
297 if (IS_ERR(res->mr)) {
298 ret = PTR_ERR(res->mr);
299 iser_err("Failed to allocate ib_fast_reg_mr err=%d\n", ret);
300 return ret;
301 }
302 res->mr_valid = 1;
303
304 return 0;
305 }
306
307 static void
308 iser_free_reg_res(struct iser_reg_resources *rsc)
309 {
310 ib_dereg_mr(rsc->mr);
311 }
312
313 static int
314 iser_alloc_pi_ctx(struct ib_device *ib_device,
315 struct ib_pd *pd,
316 struct iser_fr_desc *desc,
317 unsigned int size)
318 {
319 struct iser_pi_context *pi_ctx = NULL;
320 int ret;
321
322 desc->pi_ctx = kzalloc(sizeof(*desc->pi_ctx), GFP_KERNEL);
323 if (!desc->pi_ctx)
324 return -ENOMEM;
325
326 pi_ctx = desc->pi_ctx;
327
328 ret = iser_alloc_reg_res(ib_device, pd, &pi_ctx->rsc, size);
329 if (ret) {
330 iser_err("failed to allocate reg_resources\n");
331 goto alloc_reg_res_err;
332 }
333
334 pi_ctx->sig_mr = ib_alloc_mr(pd, IB_MR_TYPE_SIGNATURE, 2);
335 if (IS_ERR(pi_ctx->sig_mr)) {
336 ret = PTR_ERR(pi_ctx->sig_mr);
337 goto sig_mr_failure;
338 }
339 pi_ctx->sig_mr_valid = 1;
340 desc->pi_ctx->sig_protected = 0;
341
342 return 0;
343
344 sig_mr_failure:
345 iser_free_reg_res(&pi_ctx->rsc);
346 alloc_reg_res_err:
347 kfree(desc->pi_ctx);
348
349 return ret;
350 }
351
352 static void
353 iser_free_pi_ctx(struct iser_pi_context *pi_ctx)
354 {
355 iser_free_reg_res(&pi_ctx->rsc);
356 ib_dereg_mr(pi_ctx->sig_mr);
357 kfree(pi_ctx);
358 }
359
360 static struct iser_fr_desc *
361 iser_create_fastreg_desc(struct ib_device *ib_device,
362 struct ib_pd *pd,
363 bool pi_enable,
364 unsigned int size)
365 {
366 struct iser_fr_desc *desc;
367 int ret;
368
369 desc = kzalloc(sizeof(*desc), GFP_KERNEL);
370 if (!desc)
371 return ERR_PTR(-ENOMEM);
372
373 ret = iser_alloc_reg_res(ib_device, pd, &desc->rsc, size);
374 if (ret)
375 goto reg_res_alloc_failure;
376
377 if (pi_enable) {
378 ret = iser_alloc_pi_ctx(ib_device, pd, desc, size);
379 if (ret)
380 goto pi_ctx_alloc_failure;
381 }
382
383 return desc;
384
385 pi_ctx_alloc_failure:
386 iser_free_reg_res(&desc->rsc);
387 reg_res_alloc_failure:
388 kfree(desc);
389
390 return ERR_PTR(ret);
391 }
392
393 /**
394 * iser_alloc_fastreg_pool - Creates pool of fast_reg descriptors
395 * for fast registration work requests.
396 * returns 0 on success, or errno code on failure
397 */
398 int iser_alloc_fastreg_pool(struct ib_conn *ib_conn,
399 unsigned cmds_max,
400 unsigned int size)
401 {
402 struct iser_device *device = ib_conn->device;
403 struct iser_fr_pool *fr_pool = &ib_conn->fr_pool;
404 struct iser_fr_desc *desc;
405 int i, ret;
406
407 INIT_LIST_HEAD(&fr_pool->list);
408 spin_lock_init(&fr_pool->lock);
409 fr_pool->size = 0;
410 for (i = 0; i < cmds_max; i++) {
411 desc = iser_create_fastreg_desc(device->ib_device, device->pd,
412 ib_conn->pi_support, size);
413 if (IS_ERR(desc)) {
414 ret = PTR_ERR(desc);
415 goto err;
416 }
417
418 list_add_tail(&desc->list, &fr_pool->list);
419 fr_pool->size++;
420 }
421
422 return 0;
423
424 err:
425 iser_free_fastreg_pool(ib_conn);
426 return ret;
427 }
428
429 /**
430 * iser_free_fastreg_pool - releases the pool of fast_reg descriptors
431 */
432 void iser_free_fastreg_pool(struct ib_conn *ib_conn)
433 {
434 struct iser_fr_pool *fr_pool = &ib_conn->fr_pool;
435 struct iser_fr_desc *desc, *tmp;
436 int i = 0;
437
438 if (list_empty(&fr_pool->list))
439 return;
440
441 iser_info("freeing conn %p fr pool\n", ib_conn);
442
443 list_for_each_entry_safe(desc, tmp, &fr_pool->list, list) {
444 list_del(&desc->list);
445 iser_free_reg_res(&desc->rsc);
446 if (desc->pi_ctx)
447 iser_free_pi_ctx(desc->pi_ctx);
448 kfree(desc);
449 ++i;
450 }
451
452 if (i < fr_pool->size)
453 iser_warn("pool still has %d regions registered\n",
454 fr_pool->size - i);
455 }
456
457 /**
458 * iser_create_ib_conn_res - Queue-Pair (QP)
459 *
460 * returns 0 on success, -1 on failure
461 */
462 static int iser_create_ib_conn_res(struct ib_conn *ib_conn)
463 {
464 struct iser_conn *iser_conn = to_iser_conn(ib_conn);
465 struct iser_device *device;
466 struct ib_device_attr *dev_attr;
467 struct ib_qp_init_attr init_attr;
468 int ret = -ENOMEM;
469 int index, min_index = 0;
470
471 BUG_ON(ib_conn->device == NULL);
472
473 device = ib_conn->device;
474 dev_attr = &device->dev_attr;
475
476 memset(&init_attr, 0, sizeof init_attr);
477
478 mutex_lock(&ig.connlist_mutex);
479 /* select the CQ with the minimal number of usages */
480 for (index = 0; index < device->comps_used; index++) {
481 if (device->comps[index].active_qps <
482 device->comps[min_index].active_qps)
483 min_index = index;
484 }
485 ib_conn->comp = &device->comps[min_index];
486 ib_conn->comp->active_qps++;
487 mutex_unlock(&ig.connlist_mutex);
488 iser_info("cq index %d used for ib_conn %p\n", min_index, ib_conn);
489
490 init_attr.event_handler = iser_qp_event_callback;
491 init_attr.qp_context = (void *)ib_conn;
492 init_attr.send_cq = ib_conn->comp->cq;
493 init_attr.recv_cq = ib_conn->comp->cq;
494 init_attr.cap.max_recv_wr = ISER_QP_MAX_RECV_DTOS;
495 init_attr.cap.max_send_sge = 2;
496 init_attr.cap.max_recv_sge = 1;
497 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
498 init_attr.qp_type = IB_QPT_RC;
499 if (ib_conn->pi_support) {
500 init_attr.cap.max_send_wr = ISER_QP_SIG_MAX_REQ_DTOS + 1;
501 init_attr.create_flags |= IB_QP_CREATE_SIGNATURE_EN;
502 iser_conn->max_cmds =
503 ISER_GET_MAX_XMIT_CMDS(ISER_QP_SIG_MAX_REQ_DTOS);
504 } else {
505 if (dev_attr->max_qp_wr > ISER_QP_MAX_REQ_DTOS) {
506 init_attr.cap.max_send_wr = ISER_QP_MAX_REQ_DTOS + 1;
507 iser_conn->max_cmds =
508 ISER_GET_MAX_XMIT_CMDS(ISER_QP_MAX_REQ_DTOS);
509 } else {
510 init_attr.cap.max_send_wr = dev_attr->max_qp_wr;
511 iser_conn->max_cmds =
512 ISER_GET_MAX_XMIT_CMDS(dev_attr->max_qp_wr);
513 iser_dbg("device %s supports max_send_wr %d\n",
514 device->ib_device->name, dev_attr->max_qp_wr);
515 }
516 }
517
518 ret = rdma_create_qp(ib_conn->cma_id, device->pd, &init_attr);
519 if (ret)
520 goto out_err;
521
522 ib_conn->qp = ib_conn->cma_id->qp;
523 iser_info("setting conn %p cma_id %p qp %p\n",
524 ib_conn, ib_conn->cma_id,
525 ib_conn->cma_id->qp);
526 return ret;
527
528 out_err:
529 mutex_lock(&ig.connlist_mutex);
530 ib_conn->comp->active_qps--;
531 mutex_unlock(&ig.connlist_mutex);
532 iser_err("unable to alloc mem or create resource, err %d\n", ret);
533
534 return ret;
535 }
536
537 /**
538 * based on the resolved device node GUID see if there already allocated
539 * device for this device. If there's no such, create one.
540 */
541 static
542 struct iser_device *iser_device_find_by_ib_device(struct rdma_cm_id *cma_id)
543 {
544 struct iser_device *device;
545
546 mutex_lock(&ig.device_list_mutex);
547
548 list_for_each_entry(device, &ig.device_list, ig_list)
549 /* find if there's a match using the node GUID */
550 if (device->ib_device->node_guid == cma_id->device->node_guid)
551 goto inc_refcnt;
552
553 device = kzalloc(sizeof *device, GFP_KERNEL);
554 if (device == NULL)
555 goto out;
556
557 /* assign this device to the device */
558 device->ib_device = cma_id->device;
559 /* init the device and link it into ig device list */
560 if (iser_create_device_ib_res(device)) {
561 kfree(device);
562 device = NULL;
563 goto out;
564 }
565 list_add(&device->ig_list, &ig.device_list);
566
567 inc_refcnt:
568 device->refcount++;
569 out:
570 mutex_unlock(&ig.device_list_mutex);
571 return device;
572 }
573
574 /* if there's no demand for this device, release it */
575 static void iser_device_try_release(struct iser_device *device)
576 {
577 mutex_lock(&ig.device_list_mutex);
578 device->refcount--;
579 iser_info("device %p refcount %d\n", device, device->refcount);
580 if (!device->refcount) {
581 iser_free_device_ib_res(device);
582 list_del(&device->ig_list);
583 kfree(device);
584 }
585 mutex_unlock(&ig.device_list_mutex);
586 }
587
588 /**
589 * Called with state mutex held
590 **/
591 static int iser_conn_state_comp_exch(struct iser_conn *iser_conn,
592 enum iser_conn_state comp,
593 enum iser_conn_state exch)
594 {
595 int ret;
596
597 ret = (iser_conn->state == comp);
598 if (ret)
599 iser_conn->state = exch;
600
601 return ret;
602 }
603
604 void iser_release_work(struct work_struct *work)
605 {
606 struct iser_conn *iser_conn;
607
608 iser_conn = container_of(work, struct iser_conn, release_work);
609
610 /* Wait for conn_stop to complete */
611 wait_for_completion(&iser_conn->stop_completion);
612 /* Wait for IB resouces cleanup to complete */
613 wait_for_completion(&iser_conn->ib_completion);
614
615 mutex_lock(&iser_conn->state_mutex);
616 iser_conn->state = ISER_CONN_DOWN;
617 mutex_unlock(&iser_conn->state_mutex);
618
619 iser_conn_release(iser_conn);
620 }
621
622 /**
623 * iser_free_ib_conn_res - release IB related resources
624 * @iser_conn: iser connection struct
625 * @destroy: indicator if we need to try to release the
626 * iser device and memory regoins pool (only iscsi
627 * shutdown and DEVICE_REMOVAL will use this).
628 *
629 * This routine is called with the iser state mutex held
630 * so the cm_id removal is out of here. It is Safe to
631 * be invoked multiple times.
632 */
633 static void iser_free_ib_conn_res(struct iser_conn *iser_conn,
634 bool destroy)
635 {
636 struct ib_conn *ib_conn = &iser_conn->ib_conn;
637 struct iser_device *device = ib_conn->device;
638
639 iser_info("freeing conn %p cma_id %p qp %p\n",
640 iser_conn, ib_conn->cma_id, ib_conn->qp);
641
642 if (ib_conn->qp != NULL) {
643 ib_conn->comp->active_qps--;
644 rdma_destroy_qp(ib_conn->cma_id);
645 ib_conn->qp = NULL;
646 }
647
648 if (destroy) {
649 if (iser_conn->rx_descs)
650 iser_free_rx_descriptors(iser_conn);
651
652 if (device != NULL) {
653 iser_device_try_release(device);
654 ib_conn->device = NULL;
655 }
656 }
657 }
658
659 /**
660 * Frees all conn objects and deallocs conn descriptor
661 */
662 void iser_conn_release(struct iser_conn *iser_conn)
663 {
664 struct ib_conn *ib_conn = &iser_conn->ib_conn;
665
666 mutex_lock(&ig.connlist_mutex);
667 list_del(&iser_conn->conn_list);
668 mutex_unlock(&ig.connlist_mutex);
669
670 mutex_lock(&iser_conn->state_mutex);
671 /* In case we endup here without ep_disconnect being invoked. */
672 if (iser_conn->state != ISER_CONN_DOWN) {
673 iser_warn("iser conn %p state %d, expected state down.\n",
674 iser_conn, iser_conn->state);
675 iscsi_destroy_endpoint(iser_conn->ep);
676 iser_conn->state = ISER_CONN_DOWN;
677 }
678 /*
679 * In case we never got to bind stage, we still need to
680 * release IB resources (which is safe to call more than once).
681 */
682 iser_free_ib_conn_res(iser_conn, true);
683 mutex_unlock(&iser_conn->state_mutex);
684
685 if (ib_conn->cma_id != NULL) {
686 rdma_destroy_id(ib_conn->cma_id);
687 ib_conn->cma_id = NULL;
688 }
689
690 kfree(iser_conn);
691 }
692
693 /**
694 * triggers start of the disconnect procedures and wait for them to be done
695 * Called with state mutex held
696 */
697 int iser_conn_terminate(struct iser_conn *iser_conn)
698 {
699 struct ib_conn *ib_conn = &iser_conn->ib_conn;
700 struct ib_send_wr *bad_wr;
701 int err = 0;
702
703 /* terminate the iser conn only if the conn state is UP */
704 if (!iser_conn_state_comp_exch(iser_conn, ISER_CONN_UP,
705 ISER_CONN_TERMINATING))
706 return 0;
707
708 iser_info("iser_conn %p state %d\n", iser_conn, iser_conn->state);
709
710 /* suspend queuing of new iscsi commands */
711 if (iser_conn->iscsi_conn)
712 iscsi_suspend_queue(iser_conn->iscsi_conn);
713
714 /*
715 * In case we didn't already clean up the cma_id (peer initiated
716 * a disconnection), we need to Cause the CMA to change the QP
717 * state to ERROR.
718 */
719 if (ib_conn->cma_id) {
720 err = rdma_disconnect(ib_conn->cma_id);
721 if (err)
722 iser_err("Failed to disconnect, conn: 0x%p err %d\n",
723 iser_conn, err);
724
725 /* post an indication that all flush errors were consumed */
726 err = ib_post_send(ib_conn->qp, &ib_conn->beacon, &bad_wr);
727 if (err) {
728 iser_err("conn %p failed to post beacon", ib_conn);
729 return 1;
730 }
731
732 wait_for_completion(&ib_conn->flush_comp);
733 }
734
735 return 1;
736 }
737
738 /**
739 * Called with state mutex held
740 **/
741 static void iser_connect_error(struct rdma_cm_id *cma_id)
742 {
743 struct iser_conn *iser_conn;
744
745 iser_conn = (struct iser_conn *)cma_id->context;
746 iser_conn->state = ISER_CONN_TERMINATING;
747 }
748
749 static void
750 iser_calc_scsi_params(struct iser_conn *iser_conn,
751 unsigned int max_sectors)
752 {
753 struct iser_device *device = iser_conn->ib_conn.device;
754 unsigned short sg_tablesize, sup_sg_tablesize;
755
756 sg_tablesize = DIV_ROUND_UP(max_sectors * 512, SIZE_4K);
757 sup_sg_tablesize = min_t(unsigned, ISCSI_ISER_MAX_SG_TABLESIZE,
758 device->dev_attr.max_fast_reg_page_list_len);
759
760 if (sg_tablesize > sup_sg_tablesize) {
761 sg_tablesize = sup_sg_tablesize;
762 iser_conn->scsi_max_sectors = sg_tablesize * SIZE_4K / 512;
763 } else {
764 iser_conn->scsi_max_sectors = max_sectors;
765 }
766
767 iser_conn->scsi_sg_tablesize = sg_tablesize;
768
769 iser_dbg("iser_conn %p, sg_tablesize %u, max_sectors %u\n",
770 iser_conn, iser_conn->scsi_sg_tablesize,
771 iser_conn->scsi_max_sectors);
772 }
773
774 /**
775 * Called with state mutex held
776 **/
777 static void iser_addr_handler(struct rdma_cm_id *cma_id)
778 {
779 struct iser_device *device;
780 struct iser_conn *iser_conn;
781 struct ib_conn *ib_conn;
782 int ret;
783
784 iser_conn = (struct iser_conn *)cma_id->context;
785 if (iser_conn->state != ISER_CONN_PENDING)
786 /* bailout */
787 return;
788
789 ib_conn = &iser_conn->ib_conn;
790 device = iser_device_find_by_ib_device(cma_id);
791 if (!device) {
792 iser_err("device lookup/creation failed\n");
793 iser_connect_error(cma_id);
794 return;
795 }
796
797 ib_conn->device = device;
798
799 /* connection T10-PI support */
800 if (iser_pi_enable) {
801 if (!(device->dev_attr.device_cap_flags &
802 IB_DEVICE_SIGNATURE_HANDOVER)) {
803 iser_warn("T10-PI requested but not supported on %s, "
804 "continue without T10-PI\n",
805 ib_conn->device->ib_device->name);
806 ib_conn->pi_support = false;
807 } else {
808 ib_conn->pi_support = true;
809 }
810 }
811
812 iser_calc_scsi_params(iser_conn, iser_max_sectors);
813
814 ret = rdma_resolve_route(cma_id, 1000);
815 if (ret) {
816 iser_err("resolve route failed: %d\n", ret);
817 iser_connect_error(cma_id);
818 return;
819 }
820 }
821
822 /**
823 * Called with state mutex held
824 **/
825 static void iser_route_handler(struct rdma_cm_id *cma_id)
826 {
827 struct rdma_conn_param conn_param;
828 int ret;
829 struct iser_cm_hdr req_hdr;
830 struct iser_conn *iser_conn = (struct iser_conn *)cma_id->context;
831 struct ib_conn *ib_conn = &iser_conn->ib_conn;
832 struct iser_device *device = ib_conn->device;
833
834 if (iser_conn->state != ISER_CONN_PENDING)
835 /* bailout */
836 return;
837
838 ret = iser_create_ib_conn_res(ib_conn);
839 if (ret)
840 goto failure;
841
842 memset(&conn_param, 0, sizeof conn_param);
843 conn_param.responder_resources = device->dev_attr.max_qp_rd_atom;
844 conn_param.initiator_depth = 1;
845 conn_param.retry_count = 7;
846 conn_param.rnr_retry_count = 6;
847
848 memset(&req_hdr, 0, sizeof(req_hdr));
849 req_hdr.flags = (ISER_ZBVA_NOT_SUPPORTED |
850 ISER_SEND_W_INV_NOT_SUPPORTED);
851 conn_param.private_data = (void *)&req_hdr;
852 conn_param.private_data_len = sizeof(struct iser_cm_hdr);
853
854 ret = rdma_connect(cma_id, &conn_param);
855 if (ret) {
856 iser_err("failure connecting: %d\n", ret);
857 goto failure;
858 }
859
860 return;
861 failure:
862 iser_connect_error(cma_id);
863 }
864
865 static void iser_connected_handler(struct rdma_cm_id *cma_id)
866 {
867 struct iser_conn *iser_conn;
868 struct ib_qp_attr attr;
869 struct ib_qp_init_attr init_attr;
870
871 iser_conn = (struct iser_conn *)cma_id->context;
872 if (iser_conn->state != ISER_CONN_PENDING)
873 /* bailout */
874 return;
875
876 (void)ib_query_qp(cma_id->qp, &attr, ~0, &init_attr);
877 iser_info("remote qpn:%x my qpn:%x\n", attr.dest_qp_num, cma_id->qp->qp_num);
878
879 iser_conn->state = ISER_CONN_UP;
880 complete(&iser_conn->up_completion);
881 }
882
883 static void iser_disconnected_handler(struct rdma_cm_id *cma_id)
884 {
885 struct iser_conn *iser_conn = (struct iser_conn *)cma_id->context;
886
887 if (iser_conn_terminate(iser_conn)) {
888 if (iser_conn->iscsi_conn)
889 iscsi_conn_failure(iser_conn->iscsi_conn,
890 ISCSI_ERR_CONN_FAILED);
891 else
892 iser_err("iscsi_iser connection isn't bound\n");
893 }
894 }
895
896 static void iser_cleanup_handler(struct rdma_cm_id *cma_id,
897 bool destroy)
898 {
899 struct iser_conn *iser_conn = (struct iser_conn *)cma_id->context;
900
901 /*
902 * We are not guaranteed that we visited disconnected_handler
903 * by now, call it here to be safe that we handle CM drep
904 * and flush errors.
905 */
906 iser_disconnected_handler(cma_id);
907 iser_free_ib_conn_res(iser_conn, destroy);
908 complete(&iser_conn->ib_completion);
909 };
910
911 static int iser_cma_handler(struct rdma_cm_id *cma_id, struct rdma_cm_event *event)
912 {
913 struct iser_conn *iser_conn;
914 int ret = 0;
915
916 iser_conn = (struct iser_conn *)cma_id->context;
917 iser_info("%s (%d): status %d conn %p id %p\n",
918 rdma_event_msg(event->event), event->event,
919 event->status, cma_id->context, cma_id);
920
921 mutex_lock(&iser_conn->state_mutex);
922 switch (event->event) {
923 case RDMA_CM_EVENT_ADDR_RESOLVED:
924 iser_addr_handler(cma_id);
925 break;
926 case RDMA_CM_EVENT_ROUTE_RESOLVED:
927 iser_route_handler(cma_id);
928 break;
929 case RDMA_CM_EVENT_ESTABLISHED:
930 iser_connected_handler(cma_id);
931 break;
932 case RDMA_CM_EVENT_ADDR_ERROR:
933 case RDMA_CM_EVENT_ROUTE_ERROR:
934 case RDMA_CM_EVENT_CONNECT_ERROR:
935 case RDMA_CM_EVENT_UNREACHABLE:
936 case RDMA_CM_EVENT_REJECTED:
937 iser_connect_error(cma_id);
938 break;
939 case RDMA_CM_EVENT_DISCONNECTED:
940 case RDMA_CM_EVENT_ADDR_CHANGE:
941 case RDMA_CM_EVENT_TIMEWAIT_EXIT:
942 iser_cleanup_handler(cma_id, false);
943 break;
944 case RDMA_CM_EVENT_DEVICE_REMOVAL:
945 /*
946 * we *must* destroy the device as we cannot rely
947 * on iscsid to be around to initiate error handling.
948 * also if we are not in state DOWN implicitly destroy
949 * the cma_id.
950 */
951 iser_cleanup_handler(cma_id, true);
952 if (iser_conn->state != ISER_CONN_DOWN) {
953 iser_conn->ib_conn.cma_id = NULL;
954 ret = 1;
955 }
956 break;
957 default:
958 iser_err("Unexpected RDMA CM event: %s (%d)\n",
959 rdma_event_msg(event->event), event->event);
960 break;
961 }
962 mutex_unlock(&iser_conn->state_mutex);
963
964 return ret;
965 }
966
967 void iser_conn_init(struct iser_conn *iser_conn)
968 {
969 iser_conn->state = ISER_CONN_INIT;
970 iser_conn->ib_conn.post_recv_buf_count = 0;
971 init_completion(&iser_conn->ib_conn.flush_comp);
972 init_completion(&iser_conn->stop_completion);
973 init_completion(&iser_conn->ib_completion);
974 init_completion(&iser_conn->up_completion);
975 INIT_LIST_HEAD(&iser_conn->conn_list);
976 mutex_init(&iser_conn->state_mutex);
977 }
978
979 /**
980 * starts the process of connecting to the target
981 * sleeps until the connection is established or rejected
982 */
983 int iser_connect(struct iser_conn *iser_conn,
984 struct sockaddr *src_addr,
985 struct sockaddr *dst_addr,
986 int non_blocking)
987 {
988 struct ib_conn *ib_conn = &iser_conn->ib_conn;
989 int err = 0;
990
991 mutex_lock(&iser_conn->state_mutex);
992
993 sprintf(iser_conn->name, "%pISp", dst_addr);
994
995 iser_info("connecting to: %s\n", iser_conn->name);
996
997 /* the device is known only --after-- address resolution */
998 ib_conn->device = NULL;
999
1000 iser_conn->state = ISER_CONN_PENDING;
1001
1002 ib_conn->beacon.wr_id = ISER_BEACON_WRID;
1003 ib_conn->beacon.opcode = IB_WR_SEND;
1004
1005 ib_conn->cma_id = rdma_create_id(&init_net, iser_cma_handler,
1006 (void *)iser_conn,
1007 RDMA_PS_TCP, IB_QPT_RC);
1008 if (IS_ERR(ib_conn->cma_id)) {
1009 err = PTR_ERR(ib_conn->cma_id);
1010 iser_err("rdma_create_id failed: %d\n", err);
1011 goto id_failure;
1012 }
1013
1014 err = rdma_resolve_addr(ib_conn->cma_id, src_addr, dst_addr, 1000);
1015 if (err) {
1016 iser_err("rdma_resolve_addr failed: %d\n", err);
1017 goto addr_failure;
1018 }
1019
1020 if (!non_blocking) {
1021 wait_for_completion_interruptible(&iser_conn->up_completion);
1022
1023 if (iser_conn->state != ISER_CONN_UP) {
1024 err = -EIO;
1025 goto connect_failure;
1026 }
1027 }
1028 mutex_unlock(&iser_conn->state_mutex);
1029
1030 mutex_lock(&ig.connlist_mutex);
1031 list_add(&iser_conn->conn_list, &ig.connlist);
1032 mutex_unlock(&ig.connlist_mutex);
1033 return 0;
1034
1035 id_failure:
1036 ib_conn->cma_id = NULL;
1037 addr_failure:
1038 iser_conn->state = ISER_CONN_DOWN;
1039 connect_failure:
1040 mutex_unlock(&iser_conn->state_mutex);
1041 iser_conn_release(iser_conn);
1042 return err;
1043 }
1044
1045 int iser_post_recvl(struct iser_conn *iser_conn)
1046 {
1047 struct ib_recv_wr rx_wr, *rx_wr_failed;
1048 struct ib_conn *ib_conn = &iser_conn->ib_conn;
1049 struct iser_login_desc *desc = &iser_conn->login_desc;
1050 int ib_ret;
1051
1052 desc->sge.addr = desc->rsp_dma;
1053 desc->sge.length = ISER_RX_LOGIN_SIZE;
1054 desc->sge.lkey = ib_conn->device->pd->local_dma_lkey;
1055
1056 rx_wr.wr_id = (uintptr_t)desc;
1057 rx_wr.sg_list = &desc->sge;
1058 rx_wr.num_sge = 1;
1059 rx_wr.next = NULL;
1060
1061 ib_conn->post_recv_buf_count++;
1062 ib_ret = ib_post_recv(ib_conn->qp, &rx_wr, &rx_wr_failed);
1063 if (ib_ret) {
1064 iser_err("ib_post_recv failed ret=%d\n", ib_ret);
1065 ib_conn->post_recv_buf_count--;
1066 }
1067 return ib_ret;
1068 }
1069
1070 int iser_post_recvm(struct iser_conn *iser_conn, int count)
1071 {
1072 struct ib_recv_wr *rx_wr, *rx_wr_failed;
1073 int i, ib_ret;
1074 struct ib_conn *ib_conn = &iser_conn->ib_conn;
1075 unsigned int my_rx_head = iser_conn->rx_desc_head;
1076 struct iser_rx_desc *rx_desc;
1077
1078 for (rx_wr = ib_conn->rx_wr, i = 0; i < count; i++, rx_wr++) {
1079 rx_desc = &iser_conn->rx_descs[my_rx_head];
1080 rx_wr->wr_id = (uintptr_t)rx_desc;
1081 rx_wr->sg_list = &rx_desc->rx_sg;
1082 rx_wr->num_sge = 1;
1083 rx_wr->next = rx_wr + 1;
1084 my_rx_head = (my_rx_head + 1) & iser_conn->qp_max_recv_dtos_mask;
1085 }
1086
1087 rx_wr--;
1088 rx_wr->next = NULL; /* mark end of work requests list */
1089
1090 ib_conn->post_recv_buf_count += count;
1091 ib_ret = ib_post_recv(ib_conn->qp, ib_conn->rx_wr, &rx_wr_failed);
1092 if (ib_ret) {
1093 iser_err("ib_post_recv failed ret=%d\n", ib_ret);
1094 ib_conn->post_recv_buf_count -= count;
1095 } else
1096 iser_conn->rx_desc_head = my_rx_head;
1097 return ib_ret;
1098 }
1099
1100
1101 /**
1102 * iser_start_send - Initiate a Send DTO operation
1103 *
1104 * returns 0 on success, -1 on failure
1105 */
1106 int iser_post_send(struct ib_conn *ib_conn, struct iser_tx_desc *tx_desc,
1107 bool signal)
1108 {
1109 struct ib_send_wr *bad_wr, *wr = iser_tx_next_wr(tx_desc);
1110 int ib_ret;
1111
1112 ib_dma_sync_single_for_device(ib_conn->device->ib_device,
1113 tx_desc->dma_addr, ISER_HEADERS_LEN,
1114 DMA_TO_DEVICE);
1115
1116 wr->next = NULL;
1117 wr->wr_id = (uintptr_t)tx_desc;
1118 wr->sg_list = tx_desc->tx_sg;
1119 wr->num_sge = tx_desc->num_sge;
1120 wr->opcode = IB_WR_SEND;
1121 wr->send_flags = signal ? IB_SEND_SIGNALED : 0;
1122
1123 ib_ret = ib_post_send(ib_conn->qp, &tx_desc->wrs[0].send, &bad_wr);
1124 if (ib_ret)
1125 iser_err("ib_post_send failed, ret:%d opcode:%d\n",
1126 ib_ret, bad_wr->opcode);
1127
1128 return ib_ret;
1129 }
1130
1131 /**
1132 * is_iser_tx_desc - Indicate if the completion wr_id
1133 * is a TX descriptor or not.
1134 * @iser_conn: iser connection
1135 * @wr_id: completion WR identifier
1136 *
1137 * Since we cannot rely on wc opcode in FLUSH errors
1138 * we must work around it by checking if the wr_id address
1139 * falls in the iser connection rx_descs buffer. If so
1140 * it is an RX descriptor, otherwize it is a TX.
1141 */
1142 static inline bool
1143 is_iser_tx_desc(struct iser_conn *iser_conn, void *wr_id)
1144 {
1145 void *start = iser_conn->rx_descs;
1146 int len = iser_conn->num_rx_descs * sizeof(*iser_conn->rx_descs);
1147
1148 if (wr_id >= start && wr_id < start + len)
1149 return false;
1150
1151 return true;
1152 }
1153
1154 /**
1155 * iser_handle_comp_error() - Handle error completion
1156 * @ib_conn: connection RDMA resources
1157 * @wc: work completion
1158 *
1159 * Notes: We may handle a FLUSH error completion and in this case
1160 * we only cleanup in case TX type was DATAOUT. For non-FLUSH
1161 * error completion we should also notify iscsi layer that
1162 * connection is failed (in case we passed bind stage).
1163 */
1164 static void
1165 iser_handle_comp_error(struct ib_conn *ib_conn,
1166 struct ib_wc *wc)
1167 {
1168 struct iser_conn *iser_conn = to_iser_conn(ib_conn);
1169 void *wr_id = (void *)(uintptr_t)wc->wr_id;
1170
1171 if (wc->status != IB_WC_WR_FLUSH_ERR)
1172 if (iser_conn->iscsi_conn)
1173 iscsi_conn_failure(iser_conn->iscsi_conn,
1174 ISCSI_ERR_CONN_FAILED);
1175
1176 if (wc->wr_id == ISER_FASTREG_LI_WRID)
1177 return;
1178
1179 if (is_iser_tx_desc(iser_conn, wr_id)) {
1180 struct iser_tx_desc *desc = wr_id;
1181
1182 if (desc->type == ISCSI_TX_DATAOUT)
1183 kmem_cache_free(ig.desc_cache, desc);
1184 } else {
1185 ib_conn->post_recv_buf_count--;
1186 }
1187 }
1188
1189 /**
1190 * iser_handle_wc - handle a single work completion
1191 * @wc: work completion
1192 *
1193 * Soft-IRQ context, work completion can be either
1194 * SEND or RECV, and can turn out successful or
1195 * with error (or flush error).
1196 */
1197 static void iser_handle_wc(struct ib_wc *wc)
1198 {
1199 struct ib_conn *ib_conn;
1200 struct iser_tx_desc *tx_desc;
1201 struct iser_rx_desc *rx_desc;
1202
1203 ib_conn = wc->qp->qp_context;
1204 if (likely(wc->status == IB_WC_SUCCESS)) {
1205 if (wc->opcode == IB_WC_RECV) {
1206 rx_desc = (struct iser_rx_desc *)(uintptr_t)wc->wr_id;
1207 iser_rcv_completion(rx_desc, wc->byte_len,
1208 ib_conn);
1209 } else
1210 if (wc->opcode == IB_WC_SEND) {
1211 tx_desc = (struct iser_tx_desc *)(uintptr_t)wc->wr_id;
1212 iser_snd_completion(tx_desc, ib_conn);
1213 } else {
1214 iser_err("Unknown wc opcode %d\n", wc->opcode);
1215 }
1216 } else {
1217 if (wc->status != IB_WC_WR_FLUSH_ERR)
1218 iser_err("%s (%d): wr id %llx vend_err %x\n",
1219 ib_wc_status_msg(wc->status), wc->status,
1220 wc->wr_id, wc->vendor_err);
1221 else
1222 iser_dbg("%s (%d): wr id %llx\n",
1223 ib_wc_status_msg(wc->status), wc->status,
1224 wc->wr_id);
1225
1226 if (wc->wr_id == ISER_BEACON_WRID)
1227 /* all flush errors were consumed */
1228 complete(&ib_conn->flush_comp);
1229 else
1230 iser_handle_comp_error(ib_conn, wc);
1231 }
1232 }
1233
1234 /**
1235 * iser_cq_tasklet_fn - iSER completion polling loop
1236 * @data: iSER completion context
1237 *
1238 * Soft-IRQ context, polling connection CQ until
1239 * either CQ was empty or we exausted polling budget
1240 */
1241 static void iser_cq_tasklet_fn(unsigned long data)
1242 {
1243 struct iser_comp *comp = (struct iser_comp *)data;
1244 struct ib_cq *cq = comp->cq;
1245 struct ib_wc *const wcs = comp->wcs;
1246 int i, n, completed = 0;
1247
1248 while ((n = ib_poll_cq(cq, ARRAY_SIZE(comp->wcs), wcs)) > 0) {
1249 for (i = 0; i < n; i++)
1250 iser_handle_wc(&wcs[i]);
1251
1252 completed += n;
1253 if (completed >= iser_cq_poll_limit)
1254 break;
1255 }
1256
1257 /*
1258 * It is assumed here that arming CQ only once its empty
1259 * would not cause interrupts to be missed.
1260 */
1261 ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
1262
1263 iser_dbg("got %d completions\n", completed);
1264 }
1265
1266 static void iser_cq_callback(struct ib_cq *cq, void *cq_context)
1267 {
1268 struct iser_comp *comp = cq_context;
1269
1270 tasklet_schedule(&comp->tasklet);
1271 }
1272
1273 u8 iser_check_task_pi_status(struct iscsi_iser_task *iser_task,
1274 enum iser_data_dir cmd_dir, sector_t *sector)
1275 {
1276 struct iser_mem_reg *reg = &iser_task->rdma_reg[cmd_dir];
1277 struct iser_fr_desc *desc = reg->mem_h;
1278 unsigned long sector_size = iser_task->sc->device->sector_size;
1279 struct ib_mr_status mr_status;
1280 int ret;
1281
1282 if (desc && desc->pi_ctx->sig_protected) {
1283 desc->pi_ctx->sig_protected = 0;
1284 ret = ib_check_mr_status(desc->pi_ctx->sig_mr,
1285 IB_MR_CHECK_SIG_STATUS, &mr_status);
1286 if (ret) {
1287 pr_err("ib_check_mr_status failed, ret %d\n", ret);
1288 goto err;
1289 }
1290
1291 if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
1292 sector_t sector_off = mr_status.sig_err.sig_err_offset;
1293
1294 do_div(sector_off, sector_size + 8);
1295 *sector = scsi_get_lba(iser_task->sc) + sector_off;
1296
1297 pr_err("PI error found type %d at sector %llx "
1298 "expected %x vs actual %x\n",
1299 mr_status.sig_err.err_type,
1300 (unsigned long long)*sector,
1301 mr_status.sig_err.expected,
1302 mr_status.sig_err.actual);
1303
1304 switch (mr_status.sig_err.err_type) {
1305 case IB_SIG_BAD_GUARD:
1306 return 0x1;
1307 case IB_SIG_BAD_REFTAG:
1308 return 0x3;
1309 case IB_SIG_BAD_APPTAG:
1310 return 0x2;
1311 }
1312 }
1313 }
1314
1315 return 0;
1316 err:
1317 /* Not alot we can do here, return ambiguous guard error */
1318 return 0x1;
1319 }
This page took 0.083166 seconds and 5 git commands to generate.