IB/iser: Remove dead code in fmr_pool alloc/free
[deliverable/linux.git] / drivers / infiniband / ulp / iser / iser_verbs.c
1 /*
2 * Copyright (c) 2004, 2005, 2006 Voltaire, Inc. All rights reserved.
3 * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved.
4 * Copyright (c) 2013-2014 Mellanox Technologies. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/slab.h>
37 #include <linux/delay.h>
38
39 #include "iscsi_iser.h"
40
41 #define ISCSI_ISER_MAX_CONN 8
42 #define ISER_MAX_RX_LEN (ISER_QP_MAX_RECV_DTOS * ISCSI_ISER_MAX_CONN)
43 #define ISER_MAX_TX_LEN (ISER_QP_MAX_REQ_DTOS * ISCSI_ISER_MAX_CONN)
44 #define ISER_MAX_CQ_LEN (ISER_MAX_RX_LEN + ISER_MAX_TX_LEN + \
45 ISCSI_ISER_MAX_CONN)
46
47 static int iser_cq_poll_limit = 512;
48
49 static void iser_cq_tasklet_fn(unsigned long data);
50 static void iser_cq_callback(struct ib_cq *cq, void *cq_context);
51
52 static void iser_cq_event_callback(struct ib_event *cause, void *context)
53 {
54 iser_err("cq event %s (%d)\n",
55 ib_event_msg(cause->event), cause->event);
56 }
57
58 static void iser_qp_event_callback(struct ib_event *cause, void *context)
59 {
60 iser_err("qp event %s (%d)\n",
61 ib_event_msg(cause->event), cause->event);
62 }
63
64 static void iser_event_handler(struct ib_event_handler *handler,
65 struct ib_event *event)
66 {
67 iser_err("async event %s (%d) on device %s port %d\n",
68 ib_event_msg(event->event), event->event,
69 event->device->name, event->element.port_num);
70 }
71
72 /**
73 * iser_create_device_ib_res - creates Protection Domain (PD), Completion
74 * Queue (CQ), DMA Memory Region (DMA MR) with the device associated with
75 * the adapator.
76 *
77 * returns 0 on success, -1 on failure
78 */
79 static int iser_create_device_ib_res(struct iser_device *device)
80 {
81 struct ib_device_attr *dev_attr = &device->dev_attr;
82 int ret, i, max_cqe;
83
84 ret = ib_query_device(device->ib_device, dev_attr);
85 if (ret) {
86 pr_warn("Query device failed for %s\n", device->ib_device->name);
87 return ret;
88 }
89
90 /* Assign function handles - based on FMR support */
91 if (device->ib_device->alloc_fmr && device->ib_device->dealloc_fmr &&
92 device->ib_device->map_phys_fmr && device->ib_device->unmap_fmr) {
93 iser_info("FMR supported, using FMR for registration\n");
94 device->iser_alloc_rdma_reg_res = iser_create_fmr_pool;
95 device->iser_free_rdma_reg_res = iser_free_fmr_pool;
96 device->iser_reg_rdma_mem = iser_reg_rdma_mem_fmr;
97 device->iser_unreg_rdma_mem = iser_unreg_mem_fmr;
98 } else
99 if (dev_attr->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS) {
100 iser_info("FastReg supported, using FastReg for registration\n");
101 device->iser_alloc_rdma_reg_res = iser_create_fastreg_pool;
102 device->iser_free_rdma_reg_res = iser_free_fastreg_pool;
103 device->iser_reg_rdma_mem = iser_reg_rdma_mem_fastreg;
104 device->iser_unreg_rdma_mem = iser_unreg_mem_fastreg;
105 } else {
106 iser_err("IB device does not support FMRs nor FastRegs, can't register memory\n");
107 return -1;
108 }
109
110 device->comps_used = min_t(int, num_online_cpus(),
111 device->ib_device->num_comp_vectors);
112
113 device->comps = kcalloc(device->comps_used, sizeof(*device->comps),
114 GFP_KERNEL);
115 if (!device->comps)
116 goto comps_err;
117
118 max_cqe = min(ISER_MAX_CQ_LEN, dev_attr->max_cqe);
119
120 iser_info("using %d CQs, device %s supports %d vectors max_cqe %d\n",
121 device->comps_used, device->ib_device->name,
122 device->ib_device->num_comp_vectors, max_cqe);
123
124 device->pd = ib_alloc_pd(device->ib_device);
125 if (IS_ERR(device->pd))
126 goto pd_err;
127
128 for (i = 0; i < device->comps_used; i++) {
129 struct ib_cq_init_attr cq_attr = {};
130 struct iser_comp *comp = &device->comps[i];
131
132 comp->device = device;
133 cq_attr.cqe = max_cqe;
134 cq_attr.comp_vector = i;
135 comp->cq = ib_create_cq(device->ib_device,
136 iser_cq_callback,
137 iser_cq_event_callback,
138 (void *)comp,
139 &cq_attr);
140 if (IS_ERR(comp->cq)) {
141 comp->cq = NULL;
142 goto cq_err;
143 }
144
145 if (ib_req_notify_cq(comp->cq, IB_CQ_NEXT_COMP))
146 goto cq_err;
147
148 tasklet_init(&comp->tasklet, iser_cq_tasklet_fn,
149 (unsigned long)comp);
150 }
151
152 device->mr = ib_get_dma_mr(device->pd, IB_ACCESS_LOCAL_WRITE |
153 IB_ACCESS_REMOTE_WRITE |
154 IB_ACCESS_REMOTE_READ);
155 if (IS_ERR(device->mr))
156 goto dma_mr_err;
157
158 INIT_IB_EVENT_HANDLER(&device->event_handler, device->ib_device,
159 iser_event_handler);
160 if (ib_register_event_handler(&device->event_handler))
161 goto handler_err;
162
163 return 0;
164
165 handler_err:
166 ib_dereg_mr(device->mr);
167 dma_mr_err:
168 for (i = 0; i < device->comps_used; i++)
169 tasklet_kill(&device->comps[i].tasklet);
170 cq_err:
171 for (i = 0; i < device->comps_used; i++) {
172 struct iser_comp *comp = &device->comps[i];
173
174 if (comp->cq)
175 ib_destroy_cq(comp->cq);
176 }
177 ib_dealloc_pd(device->pd);
178 pd_err:
179 kfree(device->comps);
180 comps_err:
181 iser_err("failed to allocate an IB resource\n");
182 return -1;
183 }
184
185 /**
186 * iser_free_device_ib_res - destroy/dealloc/dereg the DMA MR,
187 * CQ and PD created with the device associated with the adapator.
188 */
189 static void iser_free_device_ib_res(struct iser_device *device)
190 {
191 int i;
192 BUG_ON(device->mr == NULL);
193
194 for (i = 0; i < device->comps_used; i++) {
195 struct iser_comp *comp = &device->comps[i];
196
197 tasklet_kill(&comp->tasklet);
198 ib_destroy_cq(comp->cq);
199 comp->cq = NULL;
200 }
201
202 (void)ib_unregister_event_handler(&device->event_handler);
203 (void)ib_dereg_mr(device->mr);
204 (void)ib_dealloc_pd(device->pd);
205
206 kfree(device->comps);
207 device->comps = NULL;
208
209 device->mr = NULL;
210 device->pd = NULL;
211 }
212
213 /**
214 * iser_create_fmr_pool - Creates FMR pool and page_vector
215 *
216 * returns 0 on success, or errno code on failure
217 */
218 int iser_create_fmr_pool(struct ib_conn *ib_conn, unsigned cmds_max)
219 {
220 struct iser_device *device = ib_conn->device;
221 struct ib_fmr_pool_param params;
222 int ret = -ENOMEM;
223
224 ib_conn->fmr.page_vec = kmalloc(sizeof(*ib_conn->fmr.page_vec) +
225 (sizeof(u64)*(ISCSI_ISER_SG_TABLESIZE + 1)),
226 GFP_KERNEL);
227 if (!ib_conn->fmr.page_vec)
228 return ret;
229
230 ib_conn->fmr.page_vec->pages = (u64 *)(ib_conn->fmr.page_vec + 1);
231
232 params.page_shift = SHIFT_4K;
233 /* when the first/last SG element are not start/end *
234 * page aligned, the map whould be of N+1 pages */
235 params.max_pages_per_fmr = ISCSI_ISER_SG_TABLESIZE + 1;
236 /* make the pool size twice the max number of SCSI commands *
237 * the ML is expected to queue, watermark for unmap at 50% */
238 params.pool_size = cmds_max * 2;
239 params.dirty_watermark = cmds_max;
240 params.cache = 0;
241 params.flush_function = NULL;
242 params.access = (IB_ACCESS_LOCAL_WRITE |
243 IB_ACCESS_REMOTE_WRITE |
244 IB_ACCESS_REMOTE_READ);
245
246 ib_conn->fmr.pool = ib_create_fmr_pool(device->pd, &params);
247 if (IS_ERR(ib_conn->fmr.pool)) {
248 ret = PTR_ERR(ib_conn->fmr.pool);
249 iser_err("FMR allocation failed, err %d\n", ret);
250 goto err;
251 }
252
253 return 0;
254
255 err:
256 kfree(ib_conn->fmr.page_vec);
257 ib_conn->fmr.page_vec = NULL;
258 return ret;
259 }
260
261 /**
262 * iser_free_fmr_pool - releases the FMR pool and page vec
263 */
264 void iser_free_fmr_pool(struct ib_conn *ib_conn)
265 {
266 iser_info("freeing conn %p fmr pool %p\n",
267 ib_conn, ib_conn->fmr.pool);
268
269 ib_destroy_fmr_pool(ib_conn->fmr.pool);
270 ib_conn->fmr.pool = NULL;
271
272 kfree(ib_conn->fmr.page_vec);
273 ib_conn->fmr.page_vec = NULL;
274 }
275
276 static int
277 iser_alloc_reg_res(struct ib_device *ib_device, struct ib_pd *pd,
278 struct iser_reg_resources *res)
279 {
280 int ret;
281
282 res->frpl = ib_alloc_fast_reg_page_list(ib_device,
283 ISCSI_ISER_SG_TABLESIZE + 1);
284 if (IS_ERR(res->frpl)) {
285 ret = PTR_ERR(res->frpl);
286 iser_err("Failed to allocate ib_fast_reg_page_list err=%d\n",
287 ret);
288 return PTR_ERR(res->frpl);
289 }
290
291 res->mr = ib_alloc_mr(pd, IB_MR_TYPE_MEM_REG,
292 ISCSI_ISER_SG_TABLESIZE + 1);
293 if (IS_ERR(res->mr)) {
294 ret = PTR_ERR(res->mr);
295 iser_err("Failed to allocate ib_fast_reg_mr err=%d\n", ret);
296 goto fast_reg_mr_failure;
297 }
298 res->mr_valid = 1;
299
300 return 0;
301
302 fast_reg_mr_failure:
303 ib_free_fast_reg_page_list(res->frpl);
304
305 return ret;
306 }
307
308 static void
309 iser_free_reg_res(struct iser_reg_resources *rsc)
310 {
311 ib_dereg_mr(rsc->mr);
312 ib_free_fast_reg_page_list(rsc->frpl);
313 }
314
315 static int
316 iser_alloc_pi_ctx(struct ib_device *ib_device, struct ib_pd *pd,
317 struct iser_fr_desc *desc)
318 {
319 struct iser_pi_context *pi_ctx = NULL;
320 int ret;
321
322 desc->pi_ctx = kzalloc(sizeof(*desc->pi_ctx), GFP_KERNEL);
323 if (!desc->pi_ctx)
324 return -ENOMEM;
325
326 pi_ctx = desc->pi_ctx;
327
328 ret = iser_alloc_reg_res(ib_device, pd, &pi_ctx->rsc);
329 if (ret) {
330 iser_err("failed to allocate reg_resources\n");
331 goto alloc_reg_res_err;
332 }
333
334 pi_ctx->sig_mr = ib_alloc_mr(pd, IB_MR_TYPE_SIGNATURE, 2);
335 if (IS_ERR(pi_ctx->sig_mr)) {
336 ret = PTR_ERR(pi_ctx->sig_mr);
337 goto sig_mr_failure;
338 }
339 pi_ctx->sig_mr_valid = 1;
340 desc->pi_ctx->sig_protected = 0;
341
342 return 0;
343
344 sig_mr_failure:
345 iser_free_reg_res(&pi_ctx->rsc);
346 alloc_reg_res_err:
347 kfree(desc->pi_ctx);
348
349 return ret;
350 }
351
352 static void
353 iser_free_pi_ctx(struct iser_pi_context *pi_ctx)
354 {
355 iser_free_reg_res(&pi_ctx->rsc);
356 ib_dereg_mr(pi_ctx->sig_mr);
357 kfree(pi_ctx);
358 }
359
360 static int
361 iser_create_fastreg_desc(struct ib_device *ib_device, struct ib_pd *pd,
362 bool pi_enable, struct iser_fr_desc *desc)
363 {
364 int ret;
365
366 ret = iser_alloc_reg_res(ib_device, pd, &desc->rsc);
367 if (ret) {
368 iser_err("failed to allocate reg_resources\n");
369 return ret;
370 }
371
372 if (pi_enable) {
373 ret = iser_alloc_pi_ctx(ib_device, pd, desc);
374 if (ret)
375 goto pi_ctx_alloc_failure;
376 }
377
378 return 0;
379
380 pi_ctx_alloc_failure:
381 iser_free_reg_res(&desc->rsc);
382
383 return ret;
384 }
385
386 /**
387 * iser_create_fastreg_pool - Creates pool of fast_reg descriptors
388 * for fast registration work requests.
389 * returns 0 on success, or errno code on failure
390 */
391 int iser_create_fastreg_pool(struct ib_conn *ib_conn, unsigned cmds_max)
392 {
393 struct iser_device *device = ib_conn->device;
394 struct iser_fr_desc *desc;
395 int i, ret;
396
397 INIT_LIST_HEAD(&ib_conn->fastreg.pool);
398 ib_conn->fastreg.pool_size = 0;
399 for (i = 0; i < cmds_max; i++) {
400 desc = kzalloc(sizeof(*desc), GFP_KERNEL);
401 if (!desc) {
402 iser_err("Failed to allocate a new fast_reg descriptor\n");
403 ret = -ENOMEM;
404 goto err;
405 }
406
407 ret = iser_create_fastreg_desc(device->ib_device, device->pd,
408 ib_conn->pi_support, desc);
409 if (ret) {
410 iser_err("Failed to create fastreg descriptor err=%d\n",
411 ret);
412 kfree(desc);
413 goto err;
414 }
415
416 list_add_tail(&desc->list, &ib_conn->fastreg.pool);
417 ib_conn->fastreg.pool_size++;
418 }
419
420 return 0;
421
422 err:
423 iser_free_fastreg_pool(ib_conn);
424 return ret;
425 }
426
427 /**
428 * iser_free_fastreg_pool - releases the pool of fast_reg descriptors
429 */
430 void iser_free_fastreg_pool(struct ib_conn *ib_conn)
431 {
432 struct iser_fr_desc *desc, *tmp;
433 int i = 0;
434
435 if (list_empty(&ib_conn->fastreg.pool))
436 return;
437
438 iser_info("freeing conn %p fr pool\n", ib_conn);
439
440 list_for_each_entry_safe(desc, tmp, &ib_conn->fastreg.pool, list) {
441 list_del(&desc->list);
442 iser_free_reg_res(&desc->rsc);
443 if (desc->pi_ctx)
444 iser_free_pi_ctx(desc->pi_ctx);
445 kfree(desc);
446 ++i;
447 }
448
449 if (i < ib_conn->fastreg.pool_size)
450 iser_warn("pool still has %d regions registered\n",
451 ib_conn->fastreg.pool_size - i);
452 }
453
454 /**
455 * iser_create_ib_conn_res - Queue-Pair (QP)
456 *
457 * returns 0 on success, -1 on failure
458 */
459 static int iser_create_ib_conn_res(struct ib_conn *ib_conn)
460 {
461 struct iser_conn *iser_conn = container_of(ib_conn, struct iser_conn,
462 ib_conn);
463 struct iser_device *device;
464 struct ib_device_attr *dev_attr;
465 struct ib_qp_init_attr init_attr;
466 int ret = -ENOMEM;
467 int index, min_index = 0;
468
469 BUG_ON(ib_conn->device == NULL);
470
471 device = ib_conn->device;
472 dev_attr = &device->dev_attr;
473
474 memset(&init_attr, 0, sizeof init_attr);
475
476 mutex_lock(&ig.connlist_mutex);
477 /* select the CQ with the minimal number of usages */
478 for (index = 0; index < device->comps_used; index++) {
479 if (device->comps[index].active_qps <
480 device->comps[min_index].active_qps)
481 min_index = index;
482 }
483 ib_conn->comp = &device->comps[min_index];
484 ib_conn->comp->active_qps++;
485 mutex_unlock(&ig.connlist_mutex);
486 iser_info("cq index %d used for ib_conn %p\n", min_index, ib_conn);
487
488 init_attr.event_handler = iser_qp_event_callback;
489 init_attr.qp_context = (void *)ib_conn;
490 init_attr.send_cq = ib_conn->comp->cq;
491 init_attr.recv_cq = ib_conn->comp->cq;
492 init_attr.cap.max_recv_wr = ISER_QP_MAX_RECV_DTOS;
493 init_attr.cap.max_send_sge = 2;
494 init_attr.cap.max_recv_sge = 1;
495 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
496 init_attr.qp_type = IB_QPT_RC;
497 if (ib_conn->pi_support) {
498 init_attr.cap.max_send_wr = ISER_QP_SIG_MAX_REQ_DTOS + 1;
499 init_attr.create_flags |= IB_QP_CREATE_SIGNATURE_EN;
500 iser_conn->max_cmds =
501 ISER_GET_MAX_XMIT_CMDS(ISER_QP_SIG_MAX_REQ_DTOS);
502 } else {
503 if (dev_attr->max_qp_wr > ISER_QP_MAX_REQ_DTOS) {
504 init_attr.cap.max_send_wr = ISER_QP_MAX_REQ_DTOS + 1;
505 iser_conn->max_cmds =
506 ISER_GET_MAX_XMIT_CMDS(ISER_QP_MAX_REQ_DTOS);
507 } else {
508 init_attr.cap.max_send_wr = dev_attr->max_qp_wr;
509 iser_conn->max_cmds =
510 ISER_GET_MAX_XMIT_CMDS(dev_attr->max_qp_wr);
511 iser_dbg("device %s supports max_send_wr %d\n",
512 device->ib_device->name, dev_attr->max_qp_wr);
513 }
514 }
515
516 ret = rdma_create_qp(ib_conn->cma_id, device->pd, &init_attr);
517 if (ret)
518 goto out_err;
519
520 ib_conn->qp = ib_conn->cma_id->qp;
521 iser_info("setting conn %p cma_id %p qp %p\n",
522 ib_conn, ib_conn->cma_id,
523 ib_conn->cma_id->qp);
524 return ret;
525
526 out_err:
527 mutex_lock(&ig.connlist_mutex);
528 ib_conn->comp->active_qps--;
529 mutex_unlock(&ig.connlist_mutex);
530 iser_err("unable to alloc mem or create resource, err %d\n", ret);
531
532 return ret;
533 }
534
535 /**
536 * based on the resolved device node GUID see if there already allocated
537 * device for this device. If there's no such, create one.
538 */
539 static
540 struct iser_device *iser_device_find_by_ib_device(struct rdma_cm_id *cma_id)
541 {
542 struct iser_device *device;
543
544 mutex_lock(&ig.device_list_mutex);
545
546 list_for_each_entry(device, &ig.device_list, ig_list)
547 /* find if there's a match using the node GUID */
548 if (device->ib_device->node_guid == cma_id->device->node_guid)
549 goto inc_refcnt;
550
551 device = kzalloc(sizeof *device, GFP_KERNEL);
552 if (device == NULL)
553 goto out;
554
555 /* assign this device to the device */
556 device->ib_device = cma_id->device;
557 /* init the device and link it into ig device list */
558 if (iser_create_device_ib_res(device)) {
559 kfree(device);
560 device = NULL;
561 goto out;
562 }
563 list_add(&device->ig_list, &ig.device_list);
564
565 inc_refcnt:
566 device->refcount++;
567 out:
568 mutex_unlock(&ig.device_list_mutex);
569 return device;
570 }
571
572 /* if there's no demand for this device, release it */
573 static void iser_device_try_release(struct iser_device *device)
574 {
575 mutex_lock(&ig.device_list_mutex);
576 device->refcount--;
577 iser_info("device %p refcount %d\n", device, device->refcount);
578 if (!device->refcount) {
579 iser_free_device_ib_res(device);
580 list_del(&device->ig_list);
581 kfree(device);
582 }
583 mutex_unlock(&ig.device_list_mutex);
584 }
585
586 /**
587 * Called with state mutex held
588 **/
589 static int iser_conn_state_comp_exch(struct iser_conn *iser_conn,
590 enum iser_conn_state comp,
591 enum iser_conn_state exch)
592 {
593 int ret;
594
595 ret = (iser_conn->state == comp);
596 if (ret)
597 iser_conn->state = exch;
598
599 return ret;
600 }
601
602 void iser_release_work(struct work_struct *work)
603 {
604 struct iser_conn *iser_conn;
605
606 iser_conn = container_of(work, struct iser_conn, release_work);
607
608 /* Wait for conn_stop to complete */
609 wait_for_completion(&iser_conn->stop_completion);
610 /* Wait for IB resouces cleanup to complete */
611 wait_for_completion(&iser_conn->ib_completion);
612
613 mutex_lock(&iser_conn->state_mutex);
614 iser_conn->state = ISER_CONN_DOWN;
615 mutex_unlock(&iser_conn->state_mutex);
616
617 iser_conn_release(iser_conn);
618 }
619
620 /**
621 * iser_free_ib_conn_res - release IB related resources
622 * @iser_conn: iser connection struct
623 * @destroy: indicator if we need to try to release the
624 * iser device and memory regoins pool (only iscsi
625 * shutdown and DEVICE_REMOVAL will use this).
626 *
627 * This routine is called with the iser state mutex held
628 * so the cm_id removal is out of here. It is Safe to
629 * be invoked multiple times.
630 */
631 static void iser_free_ib_conn_res(struct iser_conn *iser_conn,
632 bool destroy)
633 {
634 struct ib_conn *ib_conn = &iser_conn->ib_conn;
635 struct iser_device *device = ib_conn->device;
636
637 iser_info("freeing conn %p cma_id %p qp %p\n",
638 iser_conn, ib_conn->cma_id, ib_conn->qp);
639
640 if (ib_conn->qp != NULL) {
641 ib_conn->comp->active_qps--;
642 rdma_destroy_qp(ib_conn->cma_id);
643 ib_conn->qp = NULL;
644 }
645
646 if (destroy) {
647 if (iser_conn->rx_descs)
648 iser_free_rx_descriptors(iser_conn);
649
650 if (device != NULL) {
651 iser_device_try_release(device);
652 ib_conn->device = NULL;
653 }
654 }
655 }
656
657 /**
658 * Frees all conn objects and deallocs conn descriptor
659 */
660 void iser_conn_release(struct iser_conn *iser_conn)
661 {
662 struct ib_conn *ib_conn = &iser_conn->ib_conn;
663
664 mutex_lock(&ig.connlist_mutex);
665 list_del(&iser_conn->conn_list);
666 mutex_unlock(&ig.connlist_mutex);
667
668 mutex_lock(&iser_conn->state_mutex);
669 /* In case we endup here without ep_disconnect being invoked. */
670 if (iser_conn->state != ISER_CONN_DOWN) {
671 iser_warn("iser conn %p state %d, expected state down.\n",
672 iser_conn, iser_conn->state);
673 iscsi_destroy_endpoint(iser_conn->ep);
674 iser_conn->state = ISER_CONN_DOWN;
675 }
676 /*
677 * In case we never got to bind stage, we still need to
678 * release IB resources (which is safe to call more than once).
679 */
680 iser_free_ib_conn_res(iser_conn, true);
681 mutex_unlock(&iser_conn->state_mutex);
682
683 if (ib_conn->cma_id != NULL) {
684 rdma_destroy_id(ib_conn->cma_id);
685 ib_conn->cma_id = NULL;
686 }
687
688 kfree(iser_conn);
689 }
690
691 /**
692 * triggers start of the disconnect procedures and wait for them to be done
693 * Called with state mutex held
694 */
695 int iser_conn_terminate(struct iser_conn *iser_conn)
696 {
697 struct ib_conn *ib_conn = &iser_conn->ib_conn;
698 struct ib_send_wr *bad_wr;
699 int err = 0;
700
701 /* terminate the iser conn only if the conn state is UP */
702 if (!iser_conn_state_comp_exch(iser_conn, ISER_CONN_UP,
703 ISER_CONN_TERMINATING))
704 return 0;
705
706 iser_info("iser_conn %p state %d\n", iser_conn, iser_conn->state);
707
708 /* suspend queuing of new iscsi commands */
709 if (iser_conn->iscsi_conn)
710 iscsi_suspend_queue(iser_conn->iscsi_conn);
711
712 /*
713 * In case we didn't already clean up the cma_id (peer initiated
714 * a disconnection), we need to Cause the CMA to change the QP
715 * state to ERROR.
716 */
717 if (ib_conn->cma_id) {
718 err = rdma_disconnect(ib_conn->cma_id);
719 if (err)
720 iser_err("Failed to disconnect, conn: 0x%p err %d\n",
721 iser_conn, err);
722
723 /* post an indication that all flush errors were consumed */
724 err = ib_post_send(ib_conn->qp, &ib_conn->beacon, &bad_wr);
725 if (err) {
726 iser_err("conn %p failed to post beacon", ib_conn);
727 return 1;
728 }
729
730 wait_for_completion(&ib_conn->flush_comp);
731 }
732
733 return 1;
734 }
735
736 /**
737 * Called with state mutex held
738 **/
739 static void iser_connect_error(struct rdma_cm_id *cma_id)
740 {
741 struct iser_conn *iser_conn;
742
743 iser_conn = (struct iser_conn *)cma_id->context;
744 iser_conn->state = ISER_CONN_TERMINATING;
745 }
746
747 /**
748 * Called with state mutex held
749 **/
750 static void iser_addr_handler(struct rdma_cm_id *cma_id)
751 {
752 struct iser_device *device;
753 struct iser_conn *iser_conn;
754 struct ib_conn *ib_conn;
755 int ret;
756
757 iser_conn = (struct iser_conn *)cma_id->context;
758 if (iser_conn->state != ISER_CONN_PENDING)
759 /* bailout */
760 return;
761
762 ib_conn = &iser_conn->ib_conn;
763 device = iser_device_find_by_ib_device(cma_id);
764 if (!device) {
765 iser_err("device lookup/creation failed\n");
766 iser_connect_error(cma_id);
767 return;
768 }
769
770 ib_conn->device = device;
771
772 /* connection T10-PI support */
773 if (iser_pi_enable) {
774 if (!(device->dev_attr.device_cap_flags &
775 IB_DEVICE_SIGNATURE_HANDOVER)) {
776 iser_warn("T10-PI requested but not supported on %s, "
777 "continue without T10-PI\n",
778 ib_conn->device->ib_device->name);
779 ib_conn->pi_support = false;
780 } else {
781 ib_conn->pi_support = true;
782 }
783 }
784
785 ret = rdma_resolve_route(cma_id, 1000);
786 if (ret) {
787 iser_err("resolve route failed: %d\n", ret);
788 iser_connect_error(cma_id);
789 return;
790 }
791 }
792
793 /**
794 * Called with state mutex held
795 **/
796 static void iser_route_handler(struct rdma_cm_id *cma_id)
797 {
798 struct rdma_conn_param conn_param;
799 int ret;
800 struct iser_cm_hdr req_hdr;
801 struct iser_conn *iser_conn = (struct iser_conn *)cma_id->context;
802 struct ib_conn *ib_conn = &iser_conn->ib_conn;
803 struct iser_device *device = ib_conn->device;
804
805 if (iser_conn->state != ISER_CONN_PENDING)
806 /* bailout */
807 return;
808
809 ret = iser_create_ib_conn_res(ib_conn);
810 if (ret)
811 goto failure;
812
813 memset(&conn_param, 0, sizeof conn_param);
814 conn_param.responder_resources = device->dev_attr.max_qp_rd_atom;
815 conn_param.initiator_depth = 1;
816 conn_param.retry_count = 7;
817 conn_param.rnr_retry_count = 6;
818
819 memset(&req_hdr, 0, sizeof(req_hdr));
820 req_hdr.flags = (ISER_ZBVA_NOT_SUPPORTED |
821 ISER_SEND_W_INV_NOT_SUPPORTED);
822 conn_param.private_data = (void *)&req_hdr;
823 conn_param.private_data_len = sizeof(struct iser_cm_hdr);
824
825 ret = rdma_connect(cma_id, &conn_param);
826 if (ret) {
827 iser_err("failure connecting: %d\n", ret);
828 goto failure;
829 }
830
831 return;
832 failure:
833 iser_connect_error(cma_id);
834 }
835
836 static void iser_connected_handler(struct rdma_cm_id *cma_id)
837 {
838 struct iser_conn *iser_conn;
839 struct ib_qp_attr attr;
840 struct ib_qp_init_attr init_attr;
841
842 iser_conn = (struct iser_conn *)cma_id->context;
843 if (iser_conn->state != ISER_CONN_PENDING)
844 /* bailout */
845 return;
846
847 (void)ib_query_qp(cma_id->qp, &attr, ~0, &init_attr);
848 iser_info("remote qpn:%x my qpn:%x\n", attr.dest_qp_num, cma_id->qp->qp_num);
849
850 iser_conn->state = ISER_CONN_UP;
851 complete(&iser_conn->up_completion);
852 }
853
854 static void iser_disconnected_handler(struct rdma_cm_id *cma_id)
855 {
856 struct iser_conn *iser_conn = (struct iser_conn *)cma_id->context;
857
858 if (iser_conn_terminate(iser_conn)) {
859 if (iser_conn->iscsi_conn)
860 iscsi_conn_failure(iser_conn->iscsi_conn,
861 ISCSI_ERR_CONN_FAILED);
862 else
863 iser_err("iscsi_iser connection isn't bound\n");
864 }
865 }
866
867 static void iser_cleanup_handler(struct rdma_cm_id *cma_id,
868 bool destroy)
869 {
870 struct iser_conn *iser_conn = (struct iser_conn *)cma_id->context;
871
872 /*
873 * We are not guaranteed that we visited disconnected_handler
874 * by now, call it here to be safe that we handle CM drep
875 * and flush errors.
876 */
877 iser_disconnected_handler(cma_id);
878 iser_free_ib_conn_res(iser_conn, destroy);
879 complete(&iser_conn->ib_completion);
880 };
881
882 static int iser_cma_handler(struct rdma_cm_id *cma_id, struct rdma_cm_event *event)
883 {
884 struct iser_conn *iser_conn;
885 int ret = 0;
886
887 iser_conn = (struct iser_conn *)cma_id->context;
888 iser_info("%s (%d): status %d conn %p id %p\n",
889 rdma_event_msg(event->event), event->event,
890 event->status, cma_id->context, cma_id);
891
892 mutex_lock(&iser_conn->state_mutex);
893 switch (event->event) {
894 case RDMA_CM_EVENT_ADDR_RESOLVED:
895 iser_addr_handler(cma_id);
896 break;
897 case RDMA_CM_EVENT_ROUTE_RESOLVED:
898 iser_route_handler(cma_id);
899 break;
900 case RDMA_CM_EVENT_ESTABLISHED:
901 iser_connected_handler(cma_id);
902 break;
903 case RDMA_CM_EVENT_ADDR_ERROR:
904 case RDMA_CM_EVENT_ROUTE_ERROR:
905 case RDMA_CM_EVENT_CONNECT_ERROR:
906 case RDMA_CM_EVENT_UNREACHABLE:
907 case RDMA_CM_EVENT_REJECTED:
908 iser_connect_error(cma_id);
909 break;
910 case RDMA_CM_EVENT_DISCONNECTED:
911 case RDMA_CM_EVENT_ADDR_CHANGE:
912 case RDMA_CM_EVENT_TIMEWAIT_EXIT:
913 iser_cleanup_handler(cma_id, false);
914 break;
915 case RDMA_CM_EVENT_DEVICE_REMOVAL:
916 /*
917 * we *must* destroy the device as we cannot rely
918 * on iscsid to be around to initiate error handling.
919 * also if we are not in state DOWN implicitly destroy
920 * the cma_id.
921 */
922 iser_cleanup_handler(cma_id, true);
923 if (iser_conn->state != ISER_CONN_DOWN) {
924 iser_conn->ib_conn.cma_id = NULL;
925 ret = 1;
926 }
927 break;
928 default:
929 iser_err("Unexpected RDMA CM event: %s (%d)\n",
930 rdma_event_msg(event->event), event->event);
931 break;
932 }
933 mutex_unlock(&iser_conn->state_mutex);
934
935 return ret;
936 }
937
938 void iser_conn_init(struct iser_conn *iser_conn)
939 {
940 iser_conn->state = ISER_CONN_INIT;
941 iser_conn->ib_conn.post_recv_buf_count = 0;
942 init_completion(&iser_conn->ib_conn.flush_comp);
943 init_completion(&iser_conn->stop_completion);
944 init_completion(&iser_conn->ib_completion);
945 init_completion(&iser_conn->up_completion);
946 INIT_LIST_HEAD(&iser_conn->conn_list);
947 spin_lock_init(&iser_conn->ib_conn.lock);
948 mutex_init(&iser_conn->state_mutex);
949 }
950
951 /**
952 * starts the process of connecting to the target
953 * sleeps until the connection is established or rejected
954 */
955 int iser_connect(struct iser_conn *iser_conn,
956 struct sockaddr *src_addr,
957 struct sockaddr *dst_addr,
958 int non_blocking)
959 {
960 struct ib_conn *ib_conn = &iser_conn->ib_conn;
961 int err = 0;
962
963 mutex_lock(&iser_conn->state_mutex);
964
965 sprintf(iser_conn->name, "%pISp", dst_addr);
966
967 iser_info("connecting to: %s\n", iser_conn->name);
968
969 /* the device is known only --after-- address resolution */
970 ib_conn->device = NULL;
971
972 iser_conn->state = ISER_CONN_PENDING;
973
974 ib_conn->beacon.wr_id = ISER_BEACON_WRID;
975 ib_conn->beacon.opcode = IB_WR_SEND;
976
977 ib_conn->cma_id = rdma_create_id(iser_cma_handler,
978 (void *)iser_conn,
979 RDMA_PS_TCP, IB_QPT_RC);
980 if (IS_ERR(ib_conn->cma_id)) {
981 err = PTR_ERR(ib_conn->cma_id);
982 iser_err("rdma_create_id failed: %d\n", err);
983 goto id_failure;
984 }
985
986 err = rdma_resolve_addr(ib_conn->cma_id, src_addr, dst_addr, 1000);
987 if (err) {
988 iser_err("rdma_resolve_addr failed: %d\n", err);
989 goto addr_failure;
990 }
991
992 if (!non_blocking) {
993 wait_for_completion_interruptible(&iser_conn->up_completion);
994
995 if (iser_conn->state != ISER_CONN_UP) {
996 err = -EIO;
997 goto connect_failure;
998 }
999 }
1000 mutex_unlock(&iser_conn->state_mutex);
1001
1002 mutex_lock(&ig.connlist_mutex);
1003 list_add(&iser_conn->conn_list, &ig.connlist);
1004 mutex_unlock(&ig.connlist_mutex);
1005 return 0;
1006
1007 id_failure:
1008 ib_conn->cma_id = NULL;
1009 addr_failure:
1010 iser_conn->state = ISER_CONN_DOWN;
1011 connect_failure:
1012 mutex_unlock(&iser_conn->state_mutex);
1013 iser_conn_release(iser_conn);
1014 return err;
1015 }
1016
1017 int iser_post_recvl(struct iser_conn *iser_conn)
1018 {
1019 struct ib_recv_wr rx_wr, *rx_wr_failed;
1020 struct ib_conn *ib_conn = &iser_conn->ib_conn;
1021 struct ib_sge sge;
1022 int ib_ret;
1023
1024 sge.addr = iser_conn->login_resp_dma;
1025 sge.length = ISER_RX_LOGIN_SIZE;
1026 sge.lkey = ib_conn->device->mr->lkey;
1027
1028 rx_wr.wr_id = (uintptr_t)iser_conn->login_resp_buf;
1029 rx_wr.sg_list = &sge;
1030 rx_wr.num_sge = 1;
1031 rx_wr.next = NULL;
1032
1033 ib_conn->post_recv_buf_count++;
1034 ib_ret = ib_post_recv(ib_conn->qp, &rx_wr, &rx_wr_failed);
1035 if (ib_ret) {
1036 iser_err("ib_post_recv failed ret=%d\n", ib_ret);
1037 ib_conn->post_recv_buf_count--;
1038 }
1039 return ib_ret;
1040 }
1041
1042 int iser_post_recvm(struct iser_conn *iser_conn, int count)
1043 {
1044 struct ib_recv_wr *rx_wr, *rx_wr_failed;
1045 int i, ib_ret;
1046 struct ib_conn *ib_conn = &iser_conn->ib_conn;
1047 unsigned int my_rx_head = iser_conn->rx_desc_head;
1048 struct iser_rx_desc *rx_desc;
1049
1050 for (rx_wr = ib_conn->rx_wr, i = 0; i < count; i++, rx_wr++) {
1051 rx_desc = &iser_conn->rx_descs[my_rx_head];
1052 rx_wr->wr_id = (uintptr_t)rx_desc;
1053 rx_wr->sg_list = &rx_desc->rx_sg;
1054 rx_wr->num_sge = 1;
1055 rx_wr->next = rx_wr + 1;
1056 my_rx_head = (my_rx_head + 1) & iser_conn->qp_max_recv_dtos_mask;
1057 }
1058
1059 rx_wr--;
1060 rx_wr->next = NULL; /* mark end of work requests list */
1061
1062 ib_conn->post_recv_buf_count += count;
1063 ib_ret = ib_post_recv(ib_conn->qp, ib_conn->rx_wr, &rx_wr_failed);
1064 if (ib_ret) {
1065 iser_err("ib_post_recv failed ret=%d\n", ib_ret);
1066 ib_conn->post_recv_buf_count -= count;
1067 } else
1068 iser_conn->rx_desc_head = my_rx_head;
1069 return ib_ret;
1070 }
1071
1072
1073 /**
1074 * iser_start_send - Initiate a Send DTO operation
1075 *
1076 * returns 0 on success, -1 on failure
1077 */
1078 int iser_post_send(struct ib_conn *ib_conn, struct iser_tx_desc *tx_desc,
1079 bool signal)
1080 {
1081 int ib_ret;
1082 struct ib_send_wr send_wr, *send_wr_failed;
1083
1084 ib_dma_sync_single_for_device(ib_conn->device->ib_device,
1085 tx_desc->dma_addr, ISER_HEADERS_LEN,
1086 DMA_TO_DEVICE);
1087
1088 send_wr.next = NULL;
1089 send_wr.wr_id = (uintptr_t)tx_desc;
1090 send_wr.sg_list = tx_desc->tx_sg;
1091 send_wr.num_sge = tx_desc->num_sge;
1092 send_wr.opcode = IB_WR_SEND;
1093 send_wr.send_flags = signal ? IB_SEND_SIGNALED : 0;
1094
1095 ib_ret = ib_post_send(ib_conn->qp, &send_wr, &send_wr_failed);
1096 if (ib_ret)
1097 iser_err("ib_post_send failed, ret:%d\n", ib_ret);
1098
1099 return ib_ret;
1100 }
1101
1102 /**
1103 * is_iser_tx_desc - Indicate if the completion wr_id
1104 * is a TX descriptor or not.
1105 * @iser_conn: iser connection
1106 * @wr_id: completion WR identifier
1107 *
1108 * Since we cannot rely on wc opcode in FLUSH errors
1109 * we must work around it by checking if the wr_id address
1110 * falls in the iser connection rx_descs buffer. If so
1111 * it is an RX descriptor, otherwize it is a TX.
1112 */
1113 static inline bool
1114 is_iser_tx_desc(struct iser_conn *iser_conn, void *wr_id)
1115 {
1116 void *start = iser_conn->rx_descs;
1117 int len = iser_conn->num_rx_descs * sizeof(*iser_conn->rx_descs);
1118
1119 if (wr_id >= start && wr_id < start + len)
1120 return false;
1121
1122 return true;
1123 }
1124
1125 /**
1126 * iser_handle_comp_error() - Handle error completion
1127 * @ib_conn: connection RDMA resources
1128 * @wc: work completion
1129 *
1130 * Notes: We may handle a FLUSH error completion and in this case
1131 * we only cleanup in case TX type was DATAOUT. For non-FLUSH
1132 * error completion we should also notify iscsi layer that
1133 * connection is failed (in case we passed bind stage).
1134 */
1135 static void
1136 iser_handle_comp_error(struct ib_conn *ib_conn,
1137 struct ib_wc *wc)
1138 {
1139 void *wr_id = (void *)(uintptr_t)wc->wr_id;
1140 struct iser_conn *iser_conn = container_of(ib_conn, struct iser_conn,
1141 ib_conn);
1142
1143 if (wc->status != IB_WC_WR_FLUSH_ERR)
1144 if (iser_conn->iscsi_conn)
1145 iscsi_conn_failure(iser_conn->iscsi_conn,
1146 ISCSI_ERR_CONN_FAILED);
1147
1148 if (wc->wr_id == ISER_FASTREG_LI_WRID)
1149 return;
1150
1151 if (is_iser_tx_desc(iser_conn, wr_id)) {
1152 struct iser_tx_desc *desc = wr_id;
1153
1154 if (desc->type == ISCSI_TX_DATAOUT)
1155 kmem_cache_free(ig.desc_cache, desc);
1156 } else {
1157 ib_conn->post_recv_buf_count--;
1158 }
1159 }
1160
1161 /**
1162 * iser_handle_wc - handle a single work completion
1163 * @wc: work completion
1164 *
1165 * Soft-IRQ context, work completion can be either
1166 * SEND or RECV, and can turn out successful or
1167 * with error (or flush error).
1168 */
1169 static void iser_handle_wc(struct ib_wc *wc)
1170 {
1171 struct ib_conn *ib_conn;
1172 struct iser_tx_desc *tx_desc;
1173 struct iser_rx_desc *rx_desc;
1174
1175 ib_conn = wc->qp->qp_context;
1176 if (likely(wc->status == IB_WC_SUCCESS)) {
1177 if (wc->opcode == IB_WC_RECV) {
1178 rx_desc = (struct iser_rx_desc *)(uintptr_t)wc->wr_id;
1179 iser_rcv_completion(rx_desc, wc->byte_len,
1180 ib_conn);
1181 } else
1182 if (wc->opcode == IB_WC_SEND) {
1183 tx_desc = (struct iser_tx_desc *)(uintptr_t)wc->wr_id;
1184 iser_snd_completion(tx_desc, ib_conn);
1185 } else {
1186 iser_err("Unknown wc opcode %d\n", wc->opcode);
1187 }
1188 } else {
1189 if (wc->status != IB_WC_WR_FLUSH_ERR)
1190 iser_err("%s (%d): wr id %llx vend_err %x\n",
1191 ib_wc_status_msg(wc->status), wc->status,
1192 wc->wr_id, wc->vendor_err);
1193 else
1194 iser_dbg("%s (%d): wr id %llx\n",
1195 ib_wc_status_msg(wc->status), wc->status,
1196 wc->wr_id);
1197
1198 if (wc->wr_id == ISER_BEACON_WRID)
1199 /* all flush errors were consumed */
1200 complete(&ib_conn->flush_comp);
1201 else
1202 iser_handle_comp_error(ib_conn, wc);
1203 }
1204 }
1205
1206 /**
1207 * iser_cq_tasklet_fn - iSER completion polling loop
1208 * @data: iSER completion context
1209 *
1210 * Soft-IRQ context, polling connection CQ until
1211 * either CQ was empty or we exausted polling budget
1212 */
1213 static void iser_cq_tasklet_fn(unsigned long data)
1214 {
1215 struct iser_comp *comp = (struct iser_comp *)data;
1216 struct ib_cq *cq = comp->cq;
1217 struct ib_wc *const wcs = comp->wcs;
1218 int i, n, completed = 0;
1219
1220 while ((n = ib_poll_cq(cq, ARRAY_SIZE(comp->wcs), wcs)) > 0) {
1221 for (i = 0; i < n; i++)
1222 iser_handle_wc(&wcs[i]);
1223
1224 completed += n;
1225 if (completed >= iser_cq_poll_limit)
1226 break;
1227 }
1228
1229 /*
1230 * It is assumed here that arming CQ only once its empty
1231 * would not cause interrupts to be missed.
1232 */
1233 ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
1234
1235 iser_dbg("got %d completions\n", completed);
1236 }
1237
1238 static void iser_cq_callback(struct ib_cq *cq, void *cq_context)
1239 {
1240 struct iser_comp *comp = cq_context;
1241
1242 tasklet_schedule(&comp->tasklet);
1243 }
1244
1245 u8 iser_check_task_pi_status(struct iscsi_iser_task *iser_task,
1246 enum iser_data_dir cmd_dir, sector_t *sector)
1247 {
1248 struct iser_mem_reg *reg = &iser_task->rdma_reg[cmd_dir];
1249 struct iser_fr_desc *desc = reg->mem_h;
1250 unsigned long sector_size = iser_task->sc->device->sector_size;
1251 struct ib_mr_status mr_status;
1252 int ret;
1253
1254 if (desc && desc->pi_ctx->sig_protected) {
1255 desc->pi_ctx->sig_protected = 0;
1256 ret = ib_check_mr_status(desc->pi_ctx->sig_mr,
1257 IB_MR_CHECK_SIG_STATUS, &mr_status);
1258 if (ret) {
1259 pr_err("ib_check_mr_status failed, ret %d\n", ret);
1260 goto err;
1261 }
1262
1263 if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
1264 sector_t sector_off = mr_status.sig_err.sig_err_offset;
1265
1266 do_div(sector_off, sector_size + 8);
1267 *sector = scsi_get_lba(iser_task->sc) + sector_off;
1268
1269 pr_err("PI error found type %d at sector %llx "
1270 "expected %x vs actual %x\n",
1271 mr_status.sig_err.err_type,
1272 (unsigned long long)*sector,
1273 mr_status.sig_err.expected,
1274 mr_status.sig_err.actual);
1275
1276 switch (mr_status.sig_err.err_type) {
1277 case IB_SIG_BAD_GUARD:
1278 return 0x1;
1279 case IB_SIG_BAD_REFTAG:
1280 return 0x3;
1281 case IB_SIG_BAD_APPTAG:
1282 return 0x2;
1283 }
1284 }
1285 }
1286
1287 return 0;
1288 err:
1289 /* Not alot we can do here, return ambiguous guard error */
1290 return 0x1;
1291 }
This page took 0.073341 seconds and 5 git commands to generate.