IB/srp: Convert to ib_alloc_mr
[deliverable/linux.git] / drivers / infiniband / ulp / srp / ib_srp.c
1 /*
2 * Copyright (c) 2005 Cisco Systems. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/err.h>
39 #include <linux/string.h>
40 #include <linux/parser.h>
41 #include <linux/random.h>
42 #include <linux/jiffies.h>
43 #include <rdma/ib_cache.h>
44
45 #include <linux/atomic.h>
46
47 #include <scsi/scsi.h>
48 #include <scsi/scsi_device.h>
49 #include <scsi/scsi_dbg.h>
50 #include <scsi/scsi_tcq.h>
51 #include <scsi/srp.h>
52 #include <scsi/scsi_transport_srp.h>
53
54 #include "ib_srp.h"
55
56 #define DRV_NAME "ib_srp"
57 #define PFX DRV_NAME ": "
58 #define DRV_VERSION "1.0"
59 #define DRV_RELDATE "July 1, 2013"
60
61 MODULE_AUTHOR("Roland Dreier");
62 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol initiator");
63 MODULE_LICENSE("Dual BSD/GPL");
64 MODULE_VERSION(DRV_VERSION);
65 MODULE_INFO(release_date, DRV_RELDATE);
66
67 static unsigned int srp_sg_tablesize;
68 static unsigned int cmd_sg_entries;
69 static unsigned int indirect_sg_entries;
70 static bool allow_ext_sg;
71 static bool prefer_fr;
72 static bool register_always;
73 static int topspin_workarounds = 1;
74
75 module_param(srp_sg_tablesize, uint, 0444);
76 MODULE_PARM_DESC(srp_sg_tablesize, "Deprecated name for cmd_sg_entries");
77
78 module_param(cmd_sg_entries, uint, 0444);
79 MODULE_PARM_DESC(cmd_sg_entries,
80 "Default number of gather/scatter entries in the SRP command (default is 12, max 255)");
81
82 module_param(indirect_sg_entries, uint, 0444);
83 MODULE_PARM_DESC(indirect_sg_entries,
84 "Default max number of gather/scatter entries (default is 12, max is " __stringify(SCSI_MAX_SG_CHAIN_SEGMENTS) ")");
85
86 module_param(allow_ext_sg, bool, 0444);
87 MODULE_PARM_DESC(allow_ext_sg,
88 "Default behavior when there are more than cmd_sg_entries S/G entries after mapping; fails the request when false (default false)");
89
90 module_param(topspin_workarounds, int, 0444);
91 MODULE_PARM_DESC(topspin_workarounds,
92 "Enable workarounds for Topspin/Cisco SRP target bugs if != 0");
93
94 module_param(prefer_fr, bool, 0444);
95 MODULE_PARM_DESC(prefer_fr,
96 "Whether to use fast registration if both FMR and fast registration are supported");
97
98 module_param(register_always, bool, 0444);
99 MODULE_PARM_DESC(register_always,
100 "Use memory registration even for contiguous memory regions");
101
102 static const struct kernel_param_ops srp_tmo_ops;
103
104 static int srp_reconnect_delay = 10;
105 module_param_cb(reconnect_delay, &srp_tmo_ops, &srp_reconnect_delay,
106 S_IRUGO | S_IWUSR);
107 MODULE_PARM_DESC(reconnect_delay, "Time between successive reconnect attempts");
108
109 static int srp_fast_io_fail_tmo = 15;
110 module_param_cb(fast_io_fail_tmo, &srp_tmo_ops, &srp_fast_io_fail_tmo,
111 S_IRUGO | S_IWUSR);
112 MODULE_PARM_DESC(fast_io_fail_tmo,
113 "Number of seconds between the observation of a transport"
114 " layer error and failing all I/O. \"off\" means that this"
115 " functionality is disabled.");
116
117 static int srp_dev_loss_tmo = 600;
118 module_param_cb(dev_loss_tmo, &srp_tmo_ops, &srp_dev_loss_tmo,
119 S_IRUGO | S_IWUSR);
120 MODULE_PARM_DESC(dev_loss_tmo,
121 "Maximum number of seconds that the SRP transport should"
122 " insulate transport layer errors. After this time has been"
123 " exceeded the SCSI host is removed. Should be"
124 " between 1 and " __stringify(SCSI_DEVICE_BLOCK_MAX_TIMEOUT)
125 " if fast_io_fail_tmo has not been set. \"off\" means that"
126 " this functionality is disabled.");
127
128 static unsigned ch_count;
129 module_param(ch_count, uint, 0444);
130 MODULE_PARM_DESC(ch_count,
131 "Number of RDMA channels to use for communication with an SRP target. Using more than one channel improves performance if the HCA supports multiple completion vectors. The default value is the minimum of four times the number of online CPU sockets and the number of completion vectors supported by the HCA.");
132
133 static void srp_add_one(struct ib_device *device);
134 static void srp_remove_one(struct ib_device *device, void *client_data);
135 static void srp_recv_completion(struct ib_cq *cq, void *ch_ptr);
136 static void srp_send_completion(struct ib_cq *cq, void *ch_ptr);
137 static int srp_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event);
138
139 static struct scsi_transport_template *ib_srp_transport_template;
140 static struct workqueue_struct *srp_remove_wq;
141
142 static struct ib_client srp_client = {
143 .name = "srp",
144 .add = srp_add_one,
145 .remove = srp_remove_one
146 };
147
148 static struct ib_sa_client srp_sa_client;
149
150 static int srp_tmo_get(char *buffer, const struct kernel_param *kp)
151 {
152 int tmo = *(int *)kp->arg;
153
154 if (tmo >= 0)
155 return sprintf(buffer, "%d", tmo);
156 else
157 return sprintf(buffer, "off");
158 }
159
160 static int srp_tmo_set(const char *val, const struct kernel_param *kp)
161 {
162 int tmo, res;
163
164 res = srp_parse_tmo(&tmo, val);
165 if (res)
166 goto out;
167
168 if (kp->arg == &srp_reconnect_delay)
169 res = srp_tmo_valid(tmo, srp_fast_io_fail_tmo,
170 srp_dev_loss_tmo);
171 else if (kp->arg == &srp_fast_io_fail_tmo)
172 res = srp_tmo_valid(srp_reconnect_delay, tmo, srp_dev_loss_tmo);
173 else
174 res = srp_tmo_valid(srp_reconnect_delay, srp_fast_io_fail_tmo,
175 tmo);
176 if (res)
177 goto out;
178 *(int *)kp->arg = tmo;
179
180 out:
181 return res;
182 }
183
184 static const struct kernel_param_ops srp_tmo_ops = {
185 .get = srp_tmo_get,
186 .set = srp_tmo_set,
187 };
188
189 static inline struct srp_target_port *host_to_target(struct Scsi_Host *host)
190 {
191 return (struct srp_target_port *) host->hostdata;
192 }
193
194 static const char *srp_target_info(struct Scsi_Host *host)
195 {
196 return host_to_target(host)->target_name;
197 }
198
199 static int srp_target_is_topspin(struct srp_target_port *target)
200 {
201 static const u8 topspin_oui[3] = { 0x00, 0x05, 0xad };
202 static const u8 cisco_oui[3] = { 0x00, 0x1b, 0x0d };
203
204 return topspin_workarounds &&
205 (!memcmp(&target->ioc_guid, topspin_oui, sizeof topspin_oui) ||
206 !memcmp(&target->ioc_guid, cisco_oui, sizeof cisco_oui));
207 }
208
209 static struct srp_iu *srp_alloc_iu(struct srp_host *host, size_t size,
210 gfp_t gfp_mask,
211 enum dma_data_direction direction)
212 {
213 struct srp_iu *iu;
214
215 iu = kmalloc(sizeof *iu, gfp_mask);
216 if (!iu)
217 goto out;
218
219 iu->buf = kzalloc(size, gfp_mask);
220 if (!iu->buf)
221 goto out_free_iu;
222
223 iu->dma = ib_dma_map_single(host->srp_dev->dev, iu->buf, size,
224 direction);
225 if (ib_dma_mapping_error(host->srp_dev->dev, iu->dma))
226 goto out_free_buf;
227
228 iu->size = size;
229 iu->direction = direction;
230
231 return iu;
232
233 out_free_buf:
234 kfree(iu->buf);
235 out_free_iu:
236 kfree(iu);
237 out:
238 return NULL;
239 }
240
241 static void srp_free_iu(struct srp_host *host, struct srp_iu *iu)
242 {
243 if (!iu)
244 return;
245
246 ib_dma_unmap_single(host->srp_dev->dev, iu->dma, iu->size,
247 iu->direction);
248 kfree(iu->buf);
249 kfree(iu);
250 }
251
252 static void srp_qp_event(struct ib_event *event, void *context)
253 {
254 pr_debug("QP event %s (%d)\n",
255 ib_event_msg(event->event), event->event);
256 }
257
258 static int srp_init_qp(struct srp_target_port *target,
259 struct ib_qp *qp)
260 {
261 struct ib_qp_attr *attr;
262 int ret;
263
264 attr = kmalloc(sizeof *attr, GFP_KERNEL);
265 if (!attr)
266 return -ENOMEM;
267
268 ret = ib_find_cached_pkey(target->srp_host->srp_dev->dev,
269 target->srp_host->port,
270 be16_to_cpu(target->pkey),
271 &attr->pkey_index);
272 if (ret)
273 goto out;
274
275 attr->qp_state = IB_QPS_INIT;
276 attr->qp_access_flags = (IB_ACCESS_REMOTE_READ |
277 IB_ACCESS_REMOTE_WRITE);
278 attr->port_num = target->srp_host->port;
279
280 ret = ib_modify_qp(qp, attr,
281 IB_QP_STATE |
282 IB_QP_PKEY_INDEX |
283 IB_QP_ACCESS_FLAGS |
284 IB_QP_PORT);
285
286 out:
287 kfree(attr);
288 return ret;
289 }
290
291 static int srp_new_cm_id(struct srp_rdma_ch *ch)
292 {
293 struct srp_target_port *target = ch->target;
294 struct ib_cm_id *new_cm_id;
295
296 new_cm_id = ib_create_cm_id(target->srp_host->srp_dev->dev,
297 srp_cm_handler, ch);
298 if (IS_ERR(new_cm_id))
299 return PTR_ERR(new_cm_id);
300
301 if (ch->cm_id)
302 ib_destroy_cm_id(ch->cm_id);
303 ch->cm_id = new_cm_id;
304 ch->path.sgid = target->sgid;
305 ch->path.dgid = target->orig_dgid;
306 ch->path.pkey = target->pkey;
307 ch->path.service_id = target->service_id;
308
309 return 0;
310 }
311
312 static struct ib_fmr_pool *srp_alloc_fmr_pool(struct srp_target_port *target)
313 {
314 struct srp_device *dev = target->srp_host->srp_dev;
315 struct ib_fmr_pool_param fmr_param;
316
317 memset(&fmr_param, 0, sizeof(fmr_param));
318 fmr_param.pool_size = target->scsi_host->can_queue;
319 fmr_param.dirty_watermark = fmr_param.pool_size / 4;
320 fmr_param.cache = 1;
321 fmr_param.max_pages_per_fmr = dev->max_pages_per_mr;
322 fmr_param.page_shift = ilog2(dev->mr_page_size);
323 fmr_param.access = (IB_ACCESS_LOCAL_WRITE |
324 IB_ACCESS_REMOTE_WRITE |
325 IB_ACCESS_REMOTE_READ);
326
327 return ib_create_fmr_pool(dev->pd, &fmr_param);
328 }
329
330 /**
331 * srp_destroy_fr_pool() - free the resources owned by a pool
332 * @pool: Fast registration pool to be destroyed.
333 */
334 static void srp_destroy_fr_pool(struct srp_fr_pool *pool)
335 {
336 int i;
337 struct srp_fr_desc *d;
338
339 if (!pool)
340 return;
341
342 for (i = 0, d = &pool->desc[0]; i < pool->size; i++, d++) {
343 if (d->frpl)
344 ib_free_fast_reg_page_list(d->frpl);
345 if (d->mr)
346 ib_dereg_mr(d->mr);
347 }
348 kfree(pool);
349 }
350
351 /**
352 * srp_create_fr_pool() - allocate and initialize a pool for fast registration
353 * @device: IB device to allocate fast registration descriptors for.
354 * @pd: Protection domain associated with the FR descriptors.
355 * @pool_size: Number of descriptors to allocate.
356 * @max_page_list_len: Maximum fast registration work request page list length.
357 */
358 static struct srp_fr_pool *srp_create_fr_pool(struct ib_device *device,
359 struct ib_pd *pd, int pool_size,
360 int max_page_list_len)
361 {
362 struct srp_fr_pool *pool;
363 struct srp_fr_desc *d;
364 struct ib_mr *mr;
365 struct ib_fast_reg_page_list *frpl;
366 int i, ret = -EINVAL;
367
368 if (pool_size <= 0)
369 goto err;
370 ret = -ENOMEM;
371 pool = kzalloc(sizeof(struct srp_fr_pool) +
372 pool_size * sizeof(struct srp_fr_desc), GFP_KERNEL);
373 if (!pool)
374 goto err;
375 pool->size = pool_size;
376 pool->max_page_list_len = max_page_list_len;
377 spin_lock_init(&pool->lock);
378 INIT_LIST_HEAD(&pool->free_list);
379
380 for (i = 0, d = &pool->desc[0]; i < pool->size; i++, d++) {
381 mr = ib_alloc_mr(pd, IB_MR_TYPE_MEM_REG,
382 max_page_list_len);
383 if (IS_ERR(mr)) {
384 ret = PTR_ERR(mr);
385 goto destroy_pool;
386 }
387 d->mr = mr;
388 frpl = ib_alloc_fast_reg_page_list(device, max_page_list_len);
389 if (IS_ERR(frpl)) {
390 ret = PTR_ERR(frpl);
391 goto destroy_pool;
392 }
393 d->frpl = frpl;
394 list_add_tail(&d->entry, &pool->free_list);
395 }
396
397 out:
398 return pool;
399
400 destroy_pool:
401 srp_destroy_fr_pool(pool);
402
403 err:
404 pool = ERR_PTR(ret);
405 goto out;
406 }
407
408 /**
409 * srp_fr_pool_get() - obtain a descriptor suitable for fast registration
410 * @pool: Pool to obtain descriptor from.
411 */
412 static struct srp_fr_desc *srp_fr_pool_get(struct srp_fr_pool *pool)
413 {
414 struct srp_fr_desc *d = NULL;
415 unsigned long flags;
416
417 spin_lock_irqsave(&pool->lock, flags);
418 if (!list_empty(&pool->free_list)) {
419 d = list_first_entry(&pool->free_list, typeof(*d), entry);
420 list_del(&d->entry);
421 }
422 spin_unlock_irqrestore(&pool->lock, flags);
423
424 return d;
425 }
426
427 /**
428 * srp_fr_pool_put() - put an FR descriptor back in the free list
429 * @pool: Pool the descriptor was allocated from.
430 * @desc: Pointer to an array of fast registration descriptor pointers.
431 * @n: Number of descriptors to put back.
432 *
433 * Note: The caller must already have queued an invalidation request for
434 * desc->mr->rkey before calling this function.
435 */
436 static void srp_fr_pool_put(struct srp_fr_pool *pool, struct srp_fr_desc **desc,
437 int n)
438 {
439 unsigned long flags;
440 int i;
441
442 spin_lock_irqsave(&pool->lock, flags);
443 for (i = 0; i < n; i++)
444 list_add(&desc[i]->entry, &pool->free_list);
445 spin_unlock_irqrestore(&pool->lock, flags);
446 }
447
448 static struct srp_fr_pool *srp_alloc_fr_pool(struct srp_target_port *target)
449 {
450 struct srp_device *dev = target->srp_host->srp_dev;
451
452 return srp_create_fr_pool(dev->dev, dev->pd,
453 target->scsi_host->can_queue,
454 dev->max_pages_per_mr);
455 }
456
457 /**
458 * srp_destroy_qp() - destroy an RDMA queue pair
459 * @ch: SRP RDMA channel.
460 *
461 * Change a queue pair into the error state and wait until all receive
462 * completions have been processed before destroying it. This avoids that
463 * the receive completion handler can access the queue pair while it is
464 * being destroyed.
465 */
466 static void srp_destroy_qp(struct srp_rdma_ch *ch)
467 {
468 static struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
469 static struct ib_recv_wr wr = { .wr_id = SRP_LAST_WR_ID };
470 struct ib_recv_wr *bad_wr;
471 int ret;
472
473 /* Destroying a QP and reusing ch->done is only safe if not connected */
474 WARN_ON_ONCE(ch->connected);
475
476 ret = ib_modify_qp(ch->qp, &attr, IB_QP_STATE);
477 WARN_ONCE(ret, "ib_cm_init_qp_attr() returned %d\n", ret);
478 if (ret)
479 goto out;
480
481 init_completion(&ch->done);
482 ret = ib_post_recv(ch->qp, &wr, &bad_wr);
483 WARN_ONCE(ret, "ib_post_recv() returned %d\n", ret);
484 if (ret == 0)
485 wait_for_completion(&ch->done);
486
487 out:
488 ib_destroy_qp(ch->qp);
489 }
490
491 static int srp_create_ch_ib(struct srp_rdma_ch *ch)
492 {
493 struct srp_target_port *target = ch->target;
494 struct srp_device *dev = target->srp_host->srp_dev;
495 struct ib_qp_init_attr *init_attr;
496 struct ib_cq *recv_cq, *send_cq;
497 struct ib_qp *qp;
498 struct ib_fmr_pool *fmr_pool = NULL;
499 struct srp_fr_pool *fr_pool = NULL;
500 const int m = 1 + dev->use_fast_reg;
501 struct ib_cq_init_attr cq_attr = {};
502 int ret;
503
504 init_attr = kzalloc(sizeof *init_attr, GFP_KERNEL);
505 if (!init_attr)
506 return -ENOMEM;
507
508 /* + 1 for SRP_LAST_WR_ID */
509 cq_attr.cqe = target->queue_size + 1;
510 cq_attr.comp_vector = ch->comp_vector;
511 recv_cq = ib_create_cq(dev->dev, srp_recv_completion, NULL, ch,
512 &cq_attr);
513 if (IS_ERR(recv_cq)) {
514 ret = PTR_ERR(recv_cq);
515 goto err;
516 }
517
518 cq_attr.cqe = m * target->queue_size;
519 cq_attr.comp_vector = ch->comp_vector;
520 send_cq = ib_create_cq(dev->dev, srp_send_completion, NULL, ch,
521 &cq_attr);
522 if (IS_ERR(send_cq)) {
523 ret = PTR_ERR(send_cq);
524 goto err_recv_cq;
525 }
526
527 ib_req_notify_cq(recv_cq, IB_CQ_NEXT_COMP);
528
529 init_attr->event_handler = srp_qp_event;
530 init_attr->cap.max_send_wr = m * target->queue_size;
531 init_attr->cap.max_recv_wr = target->queue_size + 1;
532 init_attr->cap.max_recv_sge = 1;
533 init_attr->cap.max_send_sge = 1;
534 init_attr->sq_sig_type = IB_SIGNAL_REQ_WR;
535 init_attr->qp_type = IB_QPT_RC;
536 init_attr->send_cq = send_cq;
537 init_attr->recv_cq = recv_cq;
538
539 qp = ib_create_qp(dev->pd, init_attr);
540 if (IS_ERR(qp)) {
541 ret = PTR_ERR(qp);
542 goto err_send_cq;
543 }
544
545 ret = srp_init_qp(target, qp);
546 if (ret)
547 goto err_qp;
548
549 if (dev->use_fast_reg && dev->has_fr) {
550 fr_pool = srp_alloc_fr_pool(target);
551 if (IS_ERR(fr_pool)) {
552 ret = PTR_ERR(fr_pool);
553 shost_printk(KERN_WARNING, target->scsi_host, PFX
554 "FR pool allocation failed (%d)\n", ret);
555 goto err_qp;
556 }
557 if (ch->fr_pool)
558 srp_destroy_fr_pool(ch->fr_pool);
559 ch->fr_pool = fr_pool;
560 } else if (!dev->use_fast_reg && dev->has_fmr) {
561 fmr_pool = srp_alloc_fmr_pool(target);
562 if (IS_ERR(fmr_pool)) {
563 ret = PTR_ERR(fmr_pool);
564 shost_printk(KERN_WARNING, target->scsi_host, PFX
565 "FMR pool allocation failed (%d)\n", ret);
566 goto err_qp;
567 }
568 if (ch->fmr_pool)
569 ib_destroy_fmr_pool(ch->fmr_pool);
570 ch->fmr_pool = fmr_pool;
571 }
572
573 if (ch->qp)
574 srp_destroy_qp(ch);
575 if (ch->recv_cq)
576 ib_destroy_cq(ch->recv_cq);
577 if (ch->send_cq)
578 ib_destroy_cq(ch->send_cq);
579
580 ch->qp = qp;
581 ch->recv_cq = recv_cq;
582 ch->send_cq = send_cq;
583
584 kfree(init_attr);
585 return 0;
586
587 err_qp:
588 ib_destroy_qp(qp);
589
590 err_send_cq:
591 ib_destroy_cq(send_cq);
592
593 err_recv_cq:
594 ib_destroy_cq(recv_cq);
595
596 err:
597 kfree(init_attr);
598 return ret;
599 }
600
601 /*
602 * Note: this function may be called without srp_alloc_iu_bufs() having been
603 * invoked. Hence the ch->[rt]x_ring checks.
604 */
605 static void srp_free_ch_ib(struct srp_target_port *target,
606 struct srp_rdma_ch *ch)
607 {
608 struct srp_device *dev = target->srp_host->srp_dev;
609 int i;
610
611 if (!ch->target)
612 return;
613
614 if (ch->cm_id) {
615 ib_destroy_cm_id(ch->cm_id);
616 ch->cm_id = NULL;
617 }
618
619 /* If srp_new_cm_id() succeeded but srp_create_ch_ib() not, return. */
620 if (!ch->qp)
621 return;
622
623 if (dev->use_fast_reg) {
624 if (ch->fr_pool)
625 srp_destroy_fr_pool(ch->fr_pool);
626 } else {
627 if (ch->fmr_pool)
628 ib_destroy_fmr_pool(ch->fmr_pool);
629 }
630 srp_destroy_qp(ch);
631 ib_destroy_cq(ch->send_cq);
632 ib_destroy_cq(ch->recv_cq);
633
634 /*
635 * Avoid that the SCSI error handler tries to use this channel after
636 * it has been freed. The SCSI error handler can namely continue
637 * trying to perform recovery actions after scsi_remove_host()
638 * returned.
639 */
640 ch->target = NULL;
641
642 ch->qp = NULL;
643 ch->send_cq = ch->recv_cq = NULL;
644
645 if (ch->rx_ring) {
646 for (i = 0; i < target->queue_size; ++i)
647 srp_free_iu(target->srp_host, ch->rx_ring[i]);
648 kfree(ch->rx_ring);
649 ch->rx_ring = NULL;
650 }
651 if (ch->tx_ring) {
652 for (i = 0; i < target->queue_size; ++i)
653 srp_free_iu(target->srp_host, ch->tx_ring[i]);
654 kfree(ch->tx_ring);
655 ch->tx_ring = NULL;
656 }
657 }
658
659 static void srp_path_rec_completion(int status,
660 struct ib_sa_path_rec *pathrec,
661 void *ch_ptr)
662 {
663 struct srp_rdma_ch *ch = ch_ptr;
664 struct srp_target_port *target = ch->target;
665
666 ch->status = status;
667 if (status)
668 shost_printk(KERN_ERR, target->scsi_host,
669 PFX "Got failed path rec status %d\n", status);
670 else
671 ch->path = *pathrec;
672 complete(&ch->done);
673 }
674
675 static int srp_lookup_path(struct srp_rdma_ch *ch)
676 {
677 struct srp_target_port *target = ch->target;
678 int ret;
679
680 ch->path.numb_path = 1;
681
682 init_completion(&ch->done);
683
684 ch->path_query_id = ib_sa_path_rec_get(&srp_sa_client,
685 target->srp_host->srp_dev->dev,
686 target->srp_host->port,
687 &ch->path,
688 IB_SA_PATH_REC_SERVICE_ID |
689 IB_SA_PATH_REC_DGID |
690 IB_SA_PATH_REC_SGID |
691 IB_SA_PATH_REC_NUMB_PATH |
692 IB_SA_PATH_REC_PKEY,
693 SRP_PATH_REC_TIMEOUT_MS,
694 GFP_KERNEL,
695 srp_path_rec_completion,
696 ch, &ch->path_query);
697 if (ch->path_query_id < 0)
698 return ch->path_query_id;
699
700 ret = wait_for_completion_interruptible(&ch->done);
701 if (ret < 0)
702 return ret;
703
704 if (ch->status < 0)
705 shost_printk(KERN_WARNING, target->scsi_host,
706 PFX "Path record query failed\n");
707
708 return ch->status;
709 }
710
711 static int srp_send_req(struct srp_rdma_ch *ch, bool multich)
712 {
713 struct srp_target_port *target = ch->target;
714 struct {
715 struct ib_cm_req_param param;
716 struct srp_login_req priv;
717 } *req = NULL;
718 int status;
719
720 req = kzalloc(sizeof *req, GFP_KERNEL);
721 if (!req)
722 return -ENOMEM;
723
724 req->param.primary_path = &ch->path;
725 req->param.alternate_path = NULL;
726 req->param.service_id = target->service_id;
727 req->param.qp_num = ch->qp->qp_num;
728 req->param.qp_type = ch->qp->qp_type;
729 req->param.private_data = &req->priv;
730 req->param.private_data_len = sizeof req->priv;
731 req->param.flow_control = 1;
732
733 get_random_bytes(&req->param.starting_psn, 4);
734 req->param.starting_psn &= 0xffffff;
735
736 /*
737 * Pick some arbitrary defaults here; we could make these
738 * module parameters if anyone cared about setting them.
739 */
740 req->param.responder_resources = 4;
741 req->param.remote_cm_response_timeout = 20;
742 req->param.local_cm_response_timeout = 20;
743 req->param.retry_count = target->tl_retry_count;
744 req->param.rnr_retry_count = 7;
745 req->param.max_cm_retries = 15;
746
747 req->priv.opcode = SRP_LOGIN_REQ;
748 req->priv.tag = 0;
749 req->priv.req_it_iu_len = cpu_to_be32(target->max_iu_len);
750 req->priv.req_buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT |
751 SRP_BUF_FORMAT_INDIRECT);
752 req->priv.req_flags = (multich ? SRP_MULTICHAN_MULTI :
753 SRP_MULTICHAN_SINGLE);
754 /*
755 * In the published SRP specification (draft rev. 16a), the
756 * port identifier format is 8 bytes of ID extension followed
757 * by 8 bytes of GUID. Older drafts put the two halves in the
758 * opposite order, so that the GUID comes first.
759 *
760 * Targets conforming to these obsolete drafts can be
761 * recognized by the I/O Class they report.
762 */
763 if (target->io_class == SRP_REV10_IB_IO_CLASS) {
764 memcpy(req->priv.initiator_port_id,
765 &target->sgid.global.interface_id, 8);
766 memcpy(req->priv.initiator_port_id + 8,
767 &target->initiator_ext, 8);
768 memcpy(req->priv.target_port_id, &target->ioc_guid, 8);
769 memcpy(req->priv.target_port_id + 8, &target->id_ext, 8);
770 } else {
771 memcpy(req->priv.initiator_port_id,
772 &target->initiator_ext, 8);
773 memcpy(req->priv.initiator_port_id + 8,
774 &target->sgid.global.interface_id, 8);
775 memcpy(req->priv.target_port_id, &target->id_ext, 8);
776 memcpy(req->priv.target_port_id + 8, &target->ioc_guid, 8);
777 }
778
779 /*
780 * Topspin/Cisco SRP targets will reject our login unless we
781 * zero out the first 8 bytes of our initiator port ID and set
782 * the second 8 bytes to the local node GUID.
783 */
784 if (srp_target_is_topspin(target)) {
785 shost_printk(KERN_DEBUG, target->scsi_host,
786 PFX "Topspin/Cisco initiator port ID workaround "
787 "activated for target GUID %016llx\n",
788 be64_to_cpu(target->ioc_guid));
789 memset(req->priv.initiator_port_id, 0, 8);
790 memcpy(req->priv.initiator_port_id + 8,
791 &target->srp_host->srp_dev->dev->node_guid, 8);
792 }
793
794 status = ib_send_cm_req(ch->cm_id, &req->param);
795
796 kfree(req);
797
798 return status;
799 }
800
801 static bool srp_queue_remove_work(struct srp_target_port *target)
802 {
803 bool changed = false;
804
805 spin_lock_irq(&target->lock);
806 if (target->state != SRP_TARGET_REMOVED) {
807 target->state = SRP_TARGET_REMOVED;
808 changed = true;
809 }
810 spin_unlock_irq(&target->lock);
811
812 if (changed)
813 queue_work(srp_remove_wq, &target->remove_work);
814
815 return changed;
816 }
817
818 static void srp_disconnect_target(struct srp_target_port *target)
819 {
820 struct srp_rdma_ch *ch;
821 int i;
822
823 /* XXX should send SRP_I_LOGOUT request */
824
825 for (i = 0; i < target->ch_count; i++) {
826 ch = &target->ch[i];
827 ch->connected = false;
828 if (ch->cm_id && ib_send_cm_dreq(ch->cm_id, NULL, 0)) {
829 shost_printk(KERN_DEBUG, target->scsi_host,
830 PFX "Sending CM DREQ failed\n");
831 }
832 }
833 }
834
835 static void srp_free_req_data(struct srp_target_port *target,
836 struct srp_rdma_ch *ch)
837 {
838 struct srp_device *dev = target->srp_host->srp_dev;
839 struct ib_device *ibdev = dev->dev;
840 struct srp_request *req;
841 int i;
842
843 if (!ch->req_ring)
844 return;
845
846 for (i = 0; i < target->req_ring_size; ++i) {
847 req = &ch->req_ring[i];
848 if (dev->use_fast_reg)
849 kfree(req->fr_list);
850 else
851 kfree(req->fmr_list);
852 kfree(req->map_page);
853 if (req->indirect_dma_addr) {
854 ib_dma_unmap_single(ibdev, req->indirect_dma_addr,
855 target->indirect_size,
856 DMA_TO_DEVICE);
857 }
858 kfree(req->indirect_desc);
859 }
860
861 kfree(ch->req_ring);
862 ch->req_ring = NULL;
863 }
864
865 static int srp_alloc_req_data(struct srp_rdma_ch *ch)
866 {
867 struct srp_target_port *target = ch->target;
868 struct srp_device *srp_dev = target->srp_host->srp_dev;
869 struct ib_device *ibdev = srp_dev->dev;
870 struct srp_request *req;
871 void *mr_list;
872 dma_addr_t dma_addr;
873 int i, ret = -ENOMEM;
874
875 ch->req_ring = kcalloc(target->req_ring_size, sizeof(*ch->req_ring),
876 GFP_KERNEL);
877 if (!ch->req_ring)
878 goto out;
879
880 for (i = 0; i < target->req_ring_size; ++i) {
881 req = &ch->req_ring[i];
882 mr_list = kmalloc(target->cmd_sg_cnt * sizeof(void *),
883 GFP_KERNEL);
884 if (!mr_list)
885 goto out;
886 if (srp_dev->use_fast_reg)
887 req->fr_list = mr_list;
888 else
889 req->fmr_list = mr_list;
890 req->map_page = kmalloc(srp_dev->max_pages_per_mr *
891 sizeof(void *), GFP_KERNEL);
892 if (!req->map_page)
893 goto out;
894 req->indirect_desc = kmalloc(target->indirect_size, GFP_KERNEL);
895 if (!req->indirect_desc)
896 goto out;
897
898 dma_addr = ib_dma_map_single(ibdev, req->indirect_desc,
899 target->indirect_size,
900 DMA_TO_DEVICE);
901 if (ib_dma_mapping_error(ibdev, dma_addr))
902 goto out;
903
904 req->indirect_dma_addr = dma_addr;
905 }
906 ret = 0;
907
908 out:
909 return ret;
910 }
911
912 /**
913 * srp_del_scsi_host_attr() - Remove attributes defined in the host template.
914 * @shost: SCSI host whose attributes to remove from sysfs.
915 *
916 * Note: Any attributes defined in the host template and that did not exist
917 * before invocation of this function will be ignored.
918 */
919 static void srp_del_scsi_host_attr(struct Scsi_Host *shost)
920 {
921 struct device_attribute **attr;
922
923 for (attr = shost->hostt->shost_attrs; attr && *attr; ++attr)
924 device_remove_file(&shost->shost_dev, *attr);
925 }
926
927 static void srp_remove_target(struct srp_target_port *target)
928 {
929 struct srp_rdma_ch *ch;
930 int i;
931
932 WARN_ON_ONCE(target->state != SRP_TARGET_REMOVED);
933
934 srp_del_scsi_host_attr(target->scsi_host);
935 srp_rport_get(target->rport);
936 srp_remove_host(target->scsi_host);
937 scsi_remove_host(target->scsi_host);
938 srp_stop_rport_timers(target->rport);
939 srp_disconnect_target(target);
940 for (i = 0; i < target->ch_count; i++) {
941 ch = &target->ch[i];
942 srp_free_ch_ib(target, ch);
943 }
944 cancel_work_sync(&target->tl_err_work);
945 srp_rport_put(target->rport);
946 for (i = 0; i < target->ch_count; i++) {
947 ch = &target->ch[i];
948 srp_free_req_data(target, ch);
949 }
950 kfree(target->ch);
951 target->ch = NULL;
952
953 spin_lock(&target->srp_host->target_lock);
954 list_del(&target->list);
955 spin_unlock(&target->srp_host->target_lock);
956
957 scsi_host_put(target->scsi_host);
958 }
959
960 static void srp_remove_work(struct work_struct *work)
961 {
962 struct srp_target_port *target =
963 container_of(work, struct srp_target_port, remove_work);
964
965 WARN_ON_ONCE(target->state != SRP_TARGET_REMOVED);
966
967 srp_remove_target(target);
968 }
969
970 static void srp_rport_delete(struct srp_rport *rport)
971 {
972 struct srp_target_port *target = rport->lld_data;
973
974 srp_queue_remove_work(target);
975 }
976
977 /**
978 * srp_connected_ch() - number of connected channels
979 * @target: SRP target port.
980 */
981 static int srp_connected_ch(struct srp_target_port *target)
982 {
983 int i, c = 0;
984
985 for (i = 0; i < target->ch_count; i++)
986 c += target->ch[i].connected;
987
988 return c;
989 }
990
991 static int srp_connect_ch(struct srp_rdma_ch *ch, bool multich)
992 {
993 struct srp_target_port *target = ch->target;
994 int ret;
995
996 WARN_ON_ONCE(!multich && srp_connected_ch(target) > 0);
997
998 ret = srp_lookup_path(ch);
999 if (ret)
1000 return ret;
1001
1002 while (1) {
1003 init_completion(&ch->done);
1004 ret = srp_send_req(ch, multich);
1005 if (ret)
1006 return ret;
1007 ret = wait_for_completion_interruptible(&ch->done);
1008 if (ret < 0)
1009 return ret;
1010
1011 /*
1012 * The CM event handling code will set status to
1013 * SRP_PORT_REDIRECT if we get a port redirect REJ
1014 * back, or SRP_DLID_REDIRECT if we get a lid/qp
1015 * redirect REJ back.
1016 */
1017 switch (ch->status) {
1018 case 0:
1019 ch->connected = true;
1020 return 0;
1021
1022 case SRP_PORT_REDIRECT:
1023 ret = srp_lookup_path(ch);
1024 if (ret)
1025 return ret;
1026 break;
1027
1028 case SRP_DLID_REDIRECT:
1029 break;
1030
1031 case SRP_STALE_CONN:
1032 shost_printk(KERN_ERR, target->scsi_host, PFX
1033 "giving up on stale connection\n");
1034 ch->status = -ECONNRESET;
1035 return ch->status;
1036
1037 default:
1038 return ch->status;
1039 }
1040 }
1041 }
1042
1043 static int srp_inv_rkey(struct srp_rdma_ch *ch, u32 rkey)
1044 {
1045 struct ib_send_wr *bad_wr;
1046 struct ib_send_wr wr = {
1047 .opcode = IB_WR_LOCAL_INV,
1048 .wr_id = LOCAL_INV_WR_ID_MASK,
1049 .next = NULL,
1050 .num_sge = 0,
1051 .send_flags = 0,
1052 .ex.invalidate_rkey = rkey,
1053 };
1054
1055 return ib_post_send(ch->qp, &wr, &bad_wr);
1056 }
1057
1058 static void srp_unmap_data(struct scsi_cmnd *scmnd,
1059 struct srp_rdma_ch *ch,
1060 struct srp_request *req)
1061 {
1062 struct srp_target_port *target = ch->target;
1063 struct srp_device *dev = target->srp_host->srp_dev;
1064 struct ib_device *ibdev = dev->dev;
1065 int i, res;
1066
1067 if (!scsi_sglist(scmnd) ||
1068 (scmnd->sc_data_direction != DMA_TO_DEVICE &&
1069 scmnd->sc_data_direction != DMA_FROM_DEVICE))
1070 return;
1071
1072 if (dev->use_fast_reg) {
1073 struct srp_fr_desc **pfr;
1074
1075 for (i = req->nmdesc, pfr = req->fr_list; i > 0; i--, pfr++) {
1076 res = srp_inv_rkey(ch, (*pfr)->mr->rkey);
1077 if (res < 0) {
1078 shost_printk(KERN_ERR, target->scsi_host, PFX
1079 "Queueing INV WR for rkey %#x failed (%d)\n",
1080 (*pfr)->mr->rkey, res);
1081 queue_work(system_long_wq,
1082 &target->tl_err_work);
1083 }
1084 }
1085 if (req->nmdesc)
1086 srp_fr_pool_put(ch->fr_pool, req->fr_list,
1087 req->nmdesc);
1088 } else {
1089 struct ib_pool_fmr **pfmr;
1090
1091 for (i = req->nmdesc, pfmr = req->fmr_list; i > 0; i--, pfmr++)
1092 ib_fmr_pool_unmap(*pfmr);
1093 }
1094
1095 ib_dma_unmap_sg(ibdev, scsi_sglist(scmnd), scsi_sg_count(scmnd),
1096 scmnd->sc_data_direction);
1097 }
1098
1099 /**
1100 * srp_claim_req - Take ownership of the scmnd associated with a request.
1101 * @ch: SRP RDMA channel.
1102 * @req: SRP request.
1103 * @sdev: If not NULL, only take ownership for this SCSI device.
1104 * @scmnd: If NULL, take ownership of @req->scmnd. If not NULL, only take
1105 * ownership of @req->scmnd if it equals @scmnd.
1106 *
1107 * Return value:
1108 * Either NULL or a pointer to the SCSI command the caller became owner of.
1109 */
1110 static struct scsi_cmnd *srp_claim_req(struct srp_rdma_ch *ch,
1111 struct srp_request *req,
1112 struct scsi_device *sdev,
1113 struct scsi_cmnd *scmnd)
1114 {
1115 unsigned long flags;
1116
1117 spin_lock_irqsave(&ch->lock, flags);
1118 if (req->scmnd &&
1119 (!sdev || req->scmnd->device == sdev) &&
1120 (!scmnd || req->scmnd == scmnd)) {
1121 scmnd = req->scmnd;
1122 req->scmnd = NULL;
1123 } else {
1124 scmnd = NULL;
1125 }
1126 spin_unlock_irqrestore(&ch->lock, flags);
1127
1128 return scmnd;
1129 }
1130
1131 /**
1132 * srp_free_req() - Unmap data and add request to the free request list.
1133 * @ch: SRP RDMA channel.
1134 * @req: Request to be freed.
1135 * @scmnd: SCSI command associated with @req.
1136 * @req_lim_delta: Amount to be added to @target->req_lim.
1137 */
1138 static void srp_free_req(struct srp_rdma_ch *ch, struct srp_request *req,
1139 struct scsi_cmnd *scmnd, s32 req_lim_delta)
1140 {
1141 unsigned long flags;
1142
1143 srp_unmap_data(scmnd, ch, req);
1144
1145 spin_lock_irqsave(&ch->lock, flags);
1146 ch->req_lim += req_lim_delta;
1147 spin_unlock_irqrestore(&ch->lock, flags);
1148 }
1149
1150 static void srp_finish_req(struct srp_rdma_ch *ch, struct srp_request *req,
1151 struct scsi_device *sdev, int result)
1152 {
1153 struct scsi_cmnd *scmnd = srp_claim_req(ch, req, sdev, NULL);
1154
1155 if (scmnd) {
1156 srp_free_req(ch, req, scmnd, 0);
1157 scmnd->result = result;
1158 scmnd->scsi_done(scmnd);
1159 }
1160 }
1161
1162 static void srp_terminate_io(struct srp_rport *rport)
1163 {
1164 struct srp_target_port *target = rport->lld_data;
1165 struct srp_rdma_ch *ch;
1166 struct Scsi_Host *shost = target->scsi_host;
1167 struct scsi_device *sdev;
1168 int i, j;
1169
1170 /*
1171 * Invoking srp_terminate_io() while srp_queuecommand() is running
1172 * is not safe. Hence the warning statement below.
1173 */
1174 shost_for_each_device(sdev, shost)
1175 WARN_ON_ONCE(sdev->request_queue->request_fn_active);
1176
1177 for (i = 0; i < target->ch_count; i++) {
1178 ch = &target->ch[i];
1179
1180 for (j = 0; j < target->req_ring_size; ++j) {
1181 struct srp_request *req = &ch->req_ring[j];
1182
1183 srp_finish_req(ch, req, NULL,
1184 DID_TRANSPORT_FAILFAST << 16);
1185 }
1186 }
1187 }
1188
1189 /*
1190 * It is up to the caller to ensure that srp_rport_reconnect() calls are
1191 * serialized and that no concurrent srp_queuecommand(), srp_abort(),
1192 * srp_reset_device() or srp_reset_host() calls will occur while this function
1193 * is in progress. One way to realize that is not to call this function
1194 * directly but to call srp_reconnect_rport() instead since that last function
1195 * serializes calls of this function via rport->mutex and also blocks
1196 * srp_queuecommand() calls before invoking this function.
1197 */
1198 static int srp_rport_reconnect(struct srp_rport *rport)
1199 {
1200 struct srp_target_port *target = rport->lld_data;
1201 struct srp_rdma_ch *ch;
1202 int i, j, ret = 0;
1203 bool multich = false;
1204
1205 srp_disconnect_target(target);
1206
1207 if (target->state == SRP_TARGET_SCANNING)
1208 return -ENODEV;
1209
1210 /*
1211 * Now get a new local CM ID so that we avoid confusing the target in
1212 * case things are really fouled up. Doing so also ensures that all CM
1213 * callbacks will have finished before a new QP is allocated.
1214 */
1215 for (i = 0; i < target->ch_count; i++) {
1216 ch = &target->ch[i];
1217 ret += srp_new_cm_id(ch);
1218 }
1219 for (i = 0; i < target->ch_count; i++) {
1220 ch = &target->ch[i];
1221 for (j = 0; j < target->req_ring_size; ++j) {
1222 struct srp_request *req = &ch->req_ring[j];
1223
1224 srp_finish_req(ch, req, NULL, DID_RESET << 16);
1225 }
1226 }
1227 for (i = 0; i < target->ch_count; i++) {
1228 ch = &target->ch[i];
1229 /*
1230 * Whether or not creating a new CM ID succeeded, create a new
1231 * QP. This guarantees that all completion callback function
1232 * invocations have finished before request resetting starts.
1233 */
1234 ret += srp_create_ch_ib(ch);
1235
1236 INIT_LIST_HEAD(&ch->free_tx);
1237 for (j = 0; j < target->queue_size; ++j)
1238 list_add(&ch->tx_ring[j]->list, &ch->free_tx);
1239 }
1240
1241 target->qp_in_error = false;
1242
1243 for (i = 0; i < target->ch_count; i++) {
1244 ch = &target->ch[i];
1245 if (ret)
1246 break;
1247 ret = srp_connect_ch(ch, multich);
1248 multich = true;
1249 }
1250
1251 if (ret == 0)
1252 shost_printk(KERN_INFO, target->scsi_host,
1253 PFX "reconnect succeeded\n");
1254
1255 return ret;
1256 }
1257
1258 static void srp_map_desc(struct srp_map_state *state, dma_addr_t dma_addr,
1259 unsigned int dma_len, u32 rkey)
1260 {
1261 struct srp_direct_buf *desc = state->desc;
1262
1263 desc->va = cpu_to_be64(dma_addr);
1264 desc->key = cpu_to_be32(rkey);
1265 desc->len = cpu_to_be32(dma_len);
1266
1267 state->total_len += dma_len;
1268 state->desc++;
1269 state->ndesc++;
1270 }
1271
1272 static int srp_map_finish_fmr(struct srp_map_state *state,
1273 struct srp_rdma_ch *ch)
1274 {
1275 struct ib_pool_fmr *fmr;
1276 u64 io_addr = 0;
1277
1278 fmr = ib_fmr_pool_map_phys(ch->fmr_pool, state->pages,
1279 state->npages, io_addr);
1280 if (IS_ERR(fmr))
1281 return PTR_ERR(fmr);
1282
1283 *state->next_fmr++ = fmr;
1284 state->nmdesc++;
1285
1286 srp_map_desc(state, 0, state->dma_len, fmr->fmr->rkey);
1287
1288 return 0;
1289 }
1290
1291 static int srp_map_finish_fr(struct srp_map_state *state,
1292 struct srp_rdma_ch *ch)
1293 {
1294 struct srp_target_port *target = ch->target;
1295 struct srp_device *dev = target->srp_host->srp_dev;
1296 struct ib_send_wr *bad_wr;
1297 struct ib_send_wr wr;
1298 struct srp_fr_desc *desc;
1299 u32 rkey;
1300
1301 desc = srp_fr_pool_get(ch->fr_pool);
1302 if (!desc)
1303 return -ENOMEM;
1304
1305 rkey = ib_inc_rkey(desc->mr->rkey);
1306 ib_update_fast_reg_key(desc->mr, rkey);
1307
1308 memcpy(desc->frpl->page_list, state->pages,
1309 sizeof(state->pages[0]) * state->npages);
1310
1311 memset(&wr, 0, sizeof(wr));
1312 wr.opcode = IB_WR_FAST_REG_MR;
1313 wr.wr_id = FAST_REG_WR_ID_MASK;
1314 wr.wr.fast_reg.iova_start = state->base_dma_addr;
1315 wr.wr.fast_reg.page_list = desc->frpl;
1316 wr.wr.fast_reg.page_list_len = state->npages;
1317 wr.wr.fast_reg.page_shift = ilog2(dev->mr_page_size);
1318 wr.wr.fast_reg.length = state->dma_len;
1319 wr.wr.fast_reg.access_flags = (IB_ACCESS_LOCAL_WRITE |
1320 IB_ACCESS_REMOTE_READ |
1321 IB_ACCESS_REMOTE_WRITE);
1322 wr.wr.fast_reg.rkey = desc->mr->lkey;
1323
1324 *state->next_fr++ = desc;
1325 state->nmdesc++;
1326
1327 srp_map_desc(state, state->base_dma_addr, state->dma_len,
1328 desc->mr->rkey);
1329
1330 return ib_post_send(ch->qp, &wr, &bad_wr);
1331 }
1332
1333 static int srp_finish_mapping(struct srp_map_state *state,
1334 struct srp_rdma_ch *ch)
1335 {
1336 struct srp_target_port *target = ch->target;
1337 int ret = 0;
1338
1339 if (state->npages == 0)
1340 return 0;
1341
1342 if (state->npages == 1 && !register_always)
1343 srp_map_desc(state, state->base_dma_addr, state->dma_len,
1344 target->rkey);
1345 else
1346 ret = target->srp_host->srp_dev->use_fast_reg ?
1347 srp_map_finish_fr(state, ch) :
1348 srp_map_finish_fmr(state, ch);
1349
1350 if (ret == 0) {
1351 state->npages = 0;
1352 state->dma_len = 0;
1353 }
1354
1355 return ret;
1356 }
1357
1358 static void srp_map_update_start(struct srp_map_state *state,
1359 struct scatterlist *sg, int sg_index,
1360 dma_addr_t dma_addr)
1361 {
1362 state->unmapped_sg = sg;
1363 state->unmapped_index = sg_index;
1364 state->unmapped_addr = dma_addr;
1365 }
1366
1367 static int srp_map_sg_entry(struct srp_map_state *state,
1368 struct srp_rdma_ch *ch,
1369 struct scatterlist *sg, int sg_index,
1370 bool use_mr)
1371 {
1372 struct srp_target_port *target = ch->target;
1373 struct srp_device *dev = target->srp_host->srp_dev;
1374 struct ib_device *ibdev = dev->dev;
1375 dma_addr_t dma_addr = ib_sg_dma_address(ibdev, sg);
1376 unsigned int dma_len = ib_sg_dma_len(ibdev, sg);
1377 unsigned int len;
1378 int ret;
1379
1380 if (!dma_len)
1381 return 0;
1382
1383 if (!use_mr) {
1384 /*
1385 * Once we're in direct map mode for a request, we don't
1386 * go back to FMR or FR mode, so no need to update anything
1387 * other than the descriptor.
1388 */
1389 srp_map_desc(state, dma_addr, dma_len, target->rkey);
1390 return 0;
1391 }
1392
1393 /*
1394 * Since not all RDMA HW drivers support non-zero page offsets for
1395 * FMR, if we start at an offset into a page, don't merge into the
1396 * current FMR mapping. Finish it out, and use the kernel's MR for
1397 * this sg entry.
1398 */
1399 if ((!dev->use_fast_reg && dma_addr & ~dev->mr_page_mask) ||
1400 dma_len > dev->mr_max_size) {
1401 ret = srp_finish_mapping(state, ch);
1402 if (ret)
1403 return ret;
1404
1405 srp_map_desc(state, dma_addr, dma_len, target->rkey);
1406 srp_map_update_start(state, NULL, 0, 0);
1407 return 0;
1408 }
1409
1410 /*
1411 * If this is the first sg that will be mapped via FMR or via FR, save
1412 * our position. We need to know the first unmapped entry, its index,
1413 * and the first unmapped address within that entry to be able to
1414 * restart mapping after an error.
1415 */
1416 if (!state->unmapped_sg)
1417 srp_map_update_start(state, sg, sg_index, dma_addr);
1418
1419 while (dma_len) {
1420 unsigned offset = dma_addr & ~dev->mr_page_mask;
1421 if (state->npages == dev->max_pages_per_mr || offset != 0) {
1422 ret = srp_finish_mapping(state, ch);
1423 if (ret)
1424 return ret;
1425
1426 srp_map_update_start(state, sg, sg_index, dma_addr);
1427 }
1428
1429 len = min_t(unsigned int, dma_len, dev->mr_page_size - offset);
1430
1431 if (!state->npages)
1432 state->base_dma_addr = dma_addr;
1433 state->pages[state->npages++] = dma_addr & dev->mr_page_mask;
1434 state->dma_len += len;
1435 dma_addr += len;
1436 dma_len -= len;
1437 }
1438
1439 /*
1440 * If the last entry of the MR wasn't a full page, then we need to
1441 * close it out and start a new one -- we can only merge at page
1442 * boundries.
1443 */
1444 ret = 0;
1445 if (len != dev->mr_page_size) {
1446 ret = srp_finish_mapping(state, ch);
1447 if (!ret)
1448 srp_map_update_start(state, NULL, 0, 0);
1449 }
1450 return ret;
1451 }
1452
1453 static int srp_map_sg(struct srp_map_state *state, struct srp_rdma_ch *ch,
1454 struct srp_request *req, struct scatterlist *scat,
1455 int count)
1456 {
1457 struct srp_target_port *target = ch->target;
1458 struct srp_device *dev = target->srp_host->srp_dev;
1459 struct ib_device *ibdev = dev->dev;
1460 struct scatterlist *sg;
1461 int i;
1462 bool use_mr;
1463
1464 state->desc = req->indirect_desc;
1465 state->pages = req->map_page;
1466 if (dev->use_fast_reg) {
1467 state->next_fr = req->fr_list;
1468 use_mr = !!ch->fr_pool;
1469 } else {
1470 state->next_fmr = req->fmr_list;
1471 use_mr = !!ch->fmr_pool;
1472 }
1473
1474 for_each_sg(scat, sg, count, i) {
1475 if (srp_map_sg_entry(state, ch, sg, i, use_mr)) {
1476 /*
1477 * Memory registration failed, so backtrack to the
1478 * first unmapped entry and continue on without using
1479 * memory registration.
1480 */
1481 dma_addr_t dma_addr;
1482 unsigned int dma_len;
1483
1484 backtrack:
1485 sg = state->unmapped_sg;
1486 i = state->unmapped_index;
1487
1488 dma_addr = ib_sg_dma_address(ibdev, sg);
1489 dma_len = ib_sg_dma_len(ibdev, sg);
1490 dma_len -= (state->unmapped_addr - dma_addr);
1491 dma_addr = state->unmapped_addr;
1492 use_mr = false;
1493 srp_map_desc(state, dma_addr, dma_len, target->rkey);
1494 }
1495 }
1496
1497 if (use_mr && srp_finish_mapping(state, ch))
1498 goto backtrack;
1499
1500 req->nmdesc = state->nmdesc;
1501
1502 return 0;
1503 }
1504
1505 static int srp_map_data(struct scsi_cmnd *scmnd, struct srp_rdma_ch *ch,
1506 struct srp_request *req)
1507 {
1508 struct srp_target_port *target = ch->target;
1509 struct scatterlist *scat;
1510 struct srp_cmd *cmd = req->cmd->buf;
1511 int len, nents, count;
1512 struct srp_device *dev;
1513 struct ib_device *ibdev;
1514 struct srp_map_state state;
1515 struct srp_indirect_buf *indirect_hdr;
1516 u32 table_len;
1517 u8 fmt;
1518
1519 if (!scsi_sglist(scmnd) || scmnd->sc_data_direction == DMA_NONE)
1520 return sizeof (struct srp_cmd);
1521
1522 if (scmnd->sc_data_direction != DMA_FROM_DEVICE &&
1523 scmnd->sc_data_direction != DMA_TO_DEVICE) {
1524 shost_printk(KERN_WARNING, target->scsi_host,
1525 PFX "Unhandled data direction %d\n",
1526 scmnd->sc_data_direction);
1527 return -EINVAL;
1528 }
1529
1530 nents = scsi_sg_count(scmnd);
1531 scat = scsi_sglist(scmnd);
1532
1533 dev = target->srp_host->srp_dev;
1534 ibdev = dev->dev;
1535
1536 count = ib_dma_map_sg(ibdev, scat, nents, scmnd->sc_data_direction);
1537 if (unlikely(count == 0))
1538 return -EIO;
1539
1540 fmt = SRP_DATA_DESC_DIRECT;
1541 len = sizeof (struct srp_cmd) + sizeof (struct srp_direct_buf);
1542
1543 if (count == 1 && !register_always) {
1544 /*
1545 * The midlayer only generated a single gather/scatter
1546 * entry, or DMA mapping coalesced everything to a
1547 * single entry. So a direct descriptor along with
1548 * the DMA MR suffices.
1549 */
1550 struct srp_direct_buf *buf = (void *) cmd->add_data;
1551
1552 buf->va = cpu_to_be64(ib_sg_dma_address(ibdev, scat));
1553 buf->key = cpu_to_be32(target->rkey);
1554 buf->len = cpu_to_be32(ib_sg_dma_len(ibdev, scat));
1555
1556 req->nmdesc = 0;
1557 goto map_complete;
1558 }
1559
1560 /*
1561 * We have more than one scatter/gather entry, so build our indirect
1562 * descriptor table, trying to merge as many entries as we can.
1563 */
1564 indirect_hdr = (void *) cmd->add_data;
1565
1566 ib_dma_sync_single_for_cpu(ibdev, req->indirect_dma_addr,
1567 target->indirect_size, DMA_TO_DEVICE);
1568
1569 memset(&state, 0, sizeof(state));
1570 srp_map_sg(&state, ch, req, scat, count);
1571
1572 /* We've mapped the request, now pull as much of the indirect
1573 * descriptor table as we can into the command buffer. If this
1574 * target is not using an external indirect table, we are
1575 * guaranteed to fit into the command, as the SCSI layer won't
1576 * give us more S/G entries than we allow.
1577 */
1578 if (state.ndesc == 1) {
1579 /*
1580 * Memory registration collapsed the sg-list into one entry,
1581 * so use a direct descriptor.
1582 */
1583 struct srp_direct_buf *buf = (void *) cmd->add_data;
1584
1585 *buf = req->indirect_desc[0];
1586 goto map_complete;
1587 }
1588
1589 if (unlikely(target->cmd_sg_cnt < state.ndesc &&
1590 !target->allow_ext_sg)) {
1591 shost_printk(KERN_ERR, target->scsi_host,
1592 "Could not fit S/G list into SRP_CMD\n");
1593 return -EIO;
1594 }
1595
1596 count = min(state.ndesc, target->cmd_sg_cnt);
1597 table_len = state.ndesc * sizeof (struct srp_direct_buf);
1598
1599 fmt = SRP_DATA_DESC_INDIRECT;
1600 len = sizeof(struct srp_cmd) + sizeof (struct srp_indirect_buf);
1601 len += count * sizeof (struct srp_direct_buf);
1602
1603 memcpy(indirect_hdr->desc_list, req->indirect_desc,
1604 count * sizeof (struct srp_direct_buf));
1605
1606 indirect_hdr->table_desc.va = cpu_to_be64(req->indirect_dma_addr);
1607 indirect_hdr->table_desc.key = cpu_to_be32(target->rkey);
1608 indirect_hdr->table_desc.len = cpu_to_be32(table_len);
1609 indirect_hdr->len = cpu_to_be32(state.total_len);
1610
1611 if (scmnd->sc_data_direction == DMA_TO_DEVICE)
1612 cmd->data_out_desc_cnt = count;
1613 else
1614 cmd->data_in_desc_cnt = count;
1615
1616 ib_dma_sync_single_for_device(ibdev, req->indirect_dma_addr, table_len,
1617 DMA_TO_DEVICE);
1618
1619 map_complete:
1620 if (scmnd->sc_data_direction == DMA_TO_DEVICE)
1621 cmd->buf_fmt = fmt << 4;
1622 else
1623 cmd->buf_fmt = fmt;
1624
1625 return len;
1626 }
1627
1628 /*
1629 * Return an IU and possible credit to the free pool
1630 */
1631 static void srp_put_tx_iu(struct srp_rdma_ch *ch, struct srp_iu *iu,
1632 enum srp_iu_type iu_type)
1633 {
1634 unsigned long flags;
1635
1636 spin_lock_irqsave(&ch->lock, flags);
1637 list_add(&iu->list, &ch->free_tx);
1638 if (iu_type != SRP_IU_RSP)
1639 ++ch->req_lim;
1640 spin_unlock_irqrestore(&ch->lock, flags);
1641 }
1642
1643 /*
1644 * Must be called with ch->lock held to protect req_lim and free_tx.
1645 * If IU is not sent, it must be returned using srp_put_tx_iu().
1646 *
1647 * Note:
1648 * An upper limit for the number of allocated information units for each
1649 * request type is:
1650 * - SRP_IU_CMD: SRP_CMD_SQ_SIZE, since the SCSI mid-layer never queues
1651 * more than Scsi_Host.can_queue requests.
1652 * - SRP_IU_TSK_MGMT: SRP_TSK_MGMT_SQ_SIZE.
1653 * - SRP_IU_RSP: 1, since a conforming SRP target never sends more than
1654 * one unanswered SRP request to an initiator.
1655 */
1656 static struct srp_iu *__srp_get_tx_iu(struct srp_rdma_ch *ch,
1657 enum srp_iu_type iu_type)
1658 {
1659 struct srp_target_port *target = ch->target;
1660 s32 rsv = (iu_type == SRP_IU_TSK_MGMT) ? 0 : SRP_TSK_MGMT_SQ_SIZE;
1661 struct srp_iu *iu;
1662
1663 srp_send_completion(ch->send_cq, ch);
1664
1665 if (list_empty(&ch->free_tx))
1666 return NULL;
1667
1668 /* Initiator responses to target requests do not consume credits */
1669 if (iu_type != SRP_IU_RSP) {
1670 if (ch->req_lim <= rsv) {
1671 ++target->zero_req_lim;
1672 return NULL;
1673 }
1674
1675 --ch->req_lim;
1676 }
1677
1678 iu = list_first_entry(&ch->free_tx, struct srp_iu, list);
1679 list_del(&iu->list);
1680 return iu;
1681 }
1682
1683 static int srp_post_send(struct srp_rdma_ch *ch, struct srp_iu *iu, int len)
1684 {
1685 struct srp_target_port *target = ch->target;
1686 struct ib_sge list;
1687 struct ib_send_wr wr, *bad_wr;
1688
1689 list.addr = iu->dma;
1690 list.length = len;
1691 list.lkey = target->lkey;
1692
1693 wr.next = NULL;
1694 wr.wr_id = (uintptr_t) iu;
1695 wr.sg_list = &list;
1696 wr.num_sge = 1;
1697 wr.opcode = IB_WR_SEND;
1698 wr.send_flags = IB_SEND_SIGNALED;
1699
1700 return ib_post_send(ch->qp, &wr, &bad_wr);
1701 }
1702
1703 static int srp_post_recv(struct srp_rdma_ch *ch, struct srp_iu *iu)
1704 {
1705 struct srp_target_port *target = ch->target;
1706 struct ib_recv_wr wr, *bad_wr;
1707 struct ib_sge list;
1708
1709 list.addr = iu->dma;
1710 list.length = iu->size;
1711 list.lkey = target->lkey;
1712
1713 wr.next = NULL;
1714 wr.wr_id = (uintptr_t) iu;
1715 wr.sg_list = &list;
1716 wr.num_sge = 1;
1717
1718 return ib_post_recv(ch->qp, &wr, &bad_wr);
1719 }
1720
1721 static void srp_process_rsp(struct srp_rdma_ch *ch, struct srp_rsp *rsp)
1722 {
1723 struct srp_target_port *target = ch->target;
1724 struct srp_request *req;
1725 struct scsi_cmnd *scmnd;
1726 unsigned long flags;
1727
1728 if (unlikely(rsp->tag & SRP_TAG_TSK_MGMT)) {
1729 spin_lock_irqsave(&ch->lock, flags);
1730 ch->req_lim += be32_to_cpu(rsp->req_lim_delta);
1731 spin_unlock_irqrestore(&ch->lock, flags);
1732
1733 ch->tsk_mgmt_status = -1;
1734 if (be32_to_cpu(rsp->resp_data_len) >= 4)
1735 ch->tsk_mgmt_status = rsp->data[3];
1736 complete(&ch->tsk_mgmt_done);
1737 } else {
1738 scmnd = scsi_host_find_tag(target->scsi_host, rsp->tag);
1739 if (scmnd) {
1740 req = (void *)scmnd->host_scribble;
1741 scmnd = srp_claim_req(ch, req, NULL, scmnd);
1742 }
1743 if (!scmnd) {
1744 shost_printk(KERN_ERR, target->scsi_host,
1745 "Null scmnd for RSP w/tag %#016llx received on ch %td / QP %#x\n",
1746 rsp->tag, ch - target->ch, ch->qp->qp_num);
1747
1748 spin_lock_irqsave(&ch->lock, flags);
1749 ch->req_lim += be32_to_cpu(rsp->req_lim_delta);
1750 spin_unlock_irqrestore(&ch->lock, flags);
1751
1752 return;
1753 }
1754 scmnd->result = rsp->status;
1755
1756 if (rsp->flags & SRP_RSP_FLAG_SNSVALID) {
1757 memcpy(scmnd->sense_buffer, rsp->data +
1758 be32_to_cpu(rsp->resp_data_len),
1759 min_t(int, be32_to_cpu(rsp->sense_data_len),
1760 SCSI_SENSE_BUFFERSIZE));
1761 }
1762
1763 if (unlikely(rsp->flags & SRP_RSP_FLAG_DIUNDER))
1764 scsi_set_resid(scmnd, be32_to_cpu(rsp->data_in_res_cnt));
1765 else if (unlikely(rsp->flags & SRP_RSP_FLAG_DIOVER))
1766 scsi_set_resid(scmnd, -be32_to_cpu(rsp->data_in_res_cnt));
1767 else if (unlikely(rsp->flags & SRP_RSP_FLAG_DOUNDER))
1768 scsi_set_resid(scmnd, be32_to_cpu(rsp->data_out_res_cnt));
1769 else if (unlikely(rsp->flags & SRP_RSP_FLAG_DOOVER))
1770 scsi_set_resid(scmnd, -be32_to_cpu(rsp->data_out_res_cnt));
1771
1772 srp_free_req(ch, req, scmnd,
1773 be32_to_cpu(rsp->req_lim_delta));
1774
1775 scmnd->host_scribble = NULL;
1776 scmnd->scsi_done(scmnd);
1777 }
1778 }
1779
1780 static int srp_response_common(struct srp_rdma_ch *ch, s32 req_delta,
1781 void *rsp, int len)
1782 {
1783 struct srp_target_port *target = ch->target;
1784 struct ib_device *dev = target->srp_host->srp_dev->dev;
1785 unsigned long flags;
1786 struct srp_iu *iu;
1787 int err;
1788
1789 spin_lock_irqsave(&ch->lock, flags);
1790 ch->req_lim += req_delta;
1791 iu = __srp_get_tx_iu(ch, SRP_IU_RSP);
1792 spin_unlock_irqrestore(&ch->lock, flags);
1793
1794 if (!iu) {
1795 shost_printk(KERN_ERR, target->scsi_host, PFX
1796 "no IU available to send response\n");
1797 return 1;
1798 }
1799
1800 ib_dma_sync_single_for_cpu(dev, iu->dma, len, DMA_TO_DEVICE);
1801 memcpy(iu->buf, rsp, len);
1802 ib_dma_sync_single_for_device(dev, iu->dma, len, DMA_TO_DEVICE);
1803
1804 err = srp_post_send(ch, iu, len);
1805 if (err) {
1806 shost_printk(KERN_ERR, target->scsi_host, PFX
1807 "unable to post response: %d\n", err);
1808 srp_put_tx_iu(ch, iu, SRP_IU_RSP);
1809 }
1810
1811 return err;
1812 }
1813
1814 static void srp_process_cred_req(struct srp_rdma_ch *ch,
1815 struct srp_cred_req *req)
1816 {
1817 struct srp_cred_rsp rsp = {
1818 .opcode = SRP_CRED_RSP,
1819 .tag = req->tag,
1820 };
1821 s32 delta = be32_to_cpu(req->req_lim_delta);
1822
1823 if (srp_response_common(ch, delta, &rsp, sizeof(rsp)))
1824 shost_printk(KERN_ERR, ch->target->scsi_host, PFX
1825 "problems processing SRP_CRED_REQ\n");
1826 }
1827
1828 static void srp_process_aer_req(struct srp_rdma_ch *ch,
1829 struct srp_aer_req *req)
1830 {
1831 struct srp_target_port *target = ch->target;
1832 struct srp_aer_rsp rsp = {
1833 .opcode = SRP_AER_RSP,
1834 .tag = req->tag,
1835 };
1836 s32 delta = be32_to_cpu(req->req_lim_delta);
1837
1838 shost_printk(KERN_ERR, target->scsi_host, PFX
1839 "ignoring AER for LUN %llu\n", scsilun_to_int(&req->lun));
1840
1841 if (srp_response_common(ch, delta, &rsp, sizeof(rsp)))
1842 shost_printk(KERN_ERR, target->scsi_host, PFX
1843 "problems processing SRP_AER_REQ\n");
1844 }
1845
1846 static void srp_handle_recv(struct srp_rdma_ch *ch, struct ib_wc *wc)
1847 {
1848 struct srp_target_port *target = ch->target;
1849 struct ib_device *dev = target->srp_host->srp_dev->dev;
1850 struct srp_iu *iu = (struct srp_iu *) (uintptr_t) wc->wr_id;
1851 int res;
1852 u8 opcode;
1853
1854 ib_dma_sync_single_for_cpu(dev, iu->dma, ch->max_ti_iu_len,
1855 DMA_FROM_DEVICE);
1856
1857 opcode = *(u8 *) iu->buf;
1858
1859 if (0) {
1860 shost_printk(KERN_ERR, target->scsi_host,
1861 PFX "recv completion, opcode 0x%02x\n", opcode);
1862 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 8, 1,
1863 iu->buf, wc->byte_len, true);
1864 }
1865
1866 switch (opcode) {
1867 case SRP_RSP:
1868 srp_process_rsp(ch, iu->buf);
1869 break;
1870
1871 case SRP_CRED_REQ:
1872 srp_process_cred_req(ch, iu->buf);
1873 break;
1874
1875 case SRP_AER_REQ:
1876 srp_process_aer_req(ch, iu->buf);
1877 break;
1878
1879 case SRP_T_LOGOUT:
1880 /* XXX Handle target logout */
1881 shost_printk(KERN_WARNING, target->scsi_host,
1882 PFX "Got target logout request\n");
1883 break;
1884
1885 default:
1886 shost_printk(KERN_WARNING, target->scsi_host,
1887 PFX "Unhandled SRP opcode 0x%02x\n", opcode);
1888 break;
1889 }
1890
1891 ib_dma_sync_single_for_device(dev, iu->dma, ch->max_ti_iu_len,
1892 DMA_FROM_DEVICE);
1893
1894 res = srp_post_recv(ch, iu);
1895 if (res != 0)
1896 shost_printk(KERN_ERR, target->scsi_host,
1897 PFX "Recv failed with error code %d\n", res);
1898 }
1899
1900 /**
1901 * srp_tl_err_work() - handle a transport layer error
1902 * @work: Work structure embedded in an SRP target port.
1903 *
1904 * Note: This function may get invoked before the rport has been created,
1905 * hence the target->rport test.
1906 */
1907 static void srp_tl_err_work(struct work_struct *work)
1908 {
1909 struct srp_target_port *target;
1910
1911 target = container_of(work, struct srp_target_port, tl_err_work);
1912 if (target->rport)
1913 srp_start_tl_fail_timers(target->rport);
1914 }
1915
1916 static void srp_handle_qp_err(u64 wr_id, enum ib_wc_status wc_status,
1917 bool send_err, struct srp_rdma_ch *ch)
1918 {
1919 struct srp_target_port *target = ch->target;
1920
1921 if (wr_id == SRP_LAST_WR_ID) {
1922 complete(&ch->done);
1923 return;
1924 }
1925
1926 if (ch->connected && !target->qp_in_error) {
1927 if (wr_id & LOCAL_INV_WR_ID_MASK) {
1928 shost_printk(KERN_ERR, target->scsi_host, PFX
1929 "LOCAL_INV failed with status %s (%d)\n",
1930 ib_wc_status_msg(wc_status), wc_status);
1931 } else if (wr_id & FAST_REG_WR_ID_MASK) {
1932 shost_printk(KERN_ERR, target->scsi_host, PFX
1933 "FAST_REG_MR failed status %s (%d)\n",
1934 ib_wc_status_msg(wc_status), wc_status);
1935 } else {
1936 shost_printk(KERN_ERR, target->scsi_host,
1937 PFX "failed %s status %s (%d) for iu %p\n",
1938 send_err ? "send" : "receive",
1939 ib_wc_status_msg(wc_status), wc_status,
1940 (void *)(uintptr_t)wr_id);
1941 }
1942 queue_work(system_long_wq, &target->tl_err_work);
1943 }
1944 target->qp_in_error = true;
1945 }
1946
1947 static void srp_recv_completion(struct ib_cq *cq, void *ch_ptr)
1948 {
1949 struct srp_rdma_ch *ch = ch_ptr;
1950 struct ib_wc wc;
1951
1952 ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
1953 while (ib_poll_cq(cq, 1, &wc) > 0) {
1954 if (likely(wc.status == IB_WC_SUCCESS)) {
1955 srp_handle_recv(ch, &wc);
1956 } else {
1957 srp_handle_qp_err(wc.wr_id, wc.status, false, ch);
1958 }
1959 }
1960 }
1961
1962 static void srp_send_completion(struct ib_cq *cq, void *ch_ptr)
1963 {
1964 struct srp_rdma_ch *ch = ch_ptr;
1965 struct ib_wc wc;
1966 struct srp_iu *iu;
1967
1968 while (ib_poll_cq(cq, 1, &wc) > 0) {
1969 if (likely(wc.status == IB_WC_SUCCESS)) {
1970 iu = (struct srp_iu *) (uintptr_t) wc.wr_id;
1971 list_add(&iu->list, &ch->free_tx);
1972 } else {
1973 srp_handle_qp_err(wc.wr_id, wc.status, true, ch);
1974 }
1975 }
1976 }
1977
1978 static int srp_queuecommand(struct Scsi_Host *shost, struct scsi_cmnd *scmnd)
1979 {
1980 struct srp_target_port *target = host_to_target(shost);
1981 struct srp_rport *rport = target->rport;
1982 struct srp_rdma_ch *ch;
1983 struct srp_request *req;
1984 struct srp_iu *iu;
1985 struct srp_cmd *cmd;
1986 struct ib_device *dev;
1987 unsigned long flags;
1988 u32 tag;
1989 u16 idx;
1990 int len, ret;
1991 const bool in_scsi_eh = !in_interrupt() && current == shost->ehandler;
1992
1993 /*
1994 * The SCSI EH thread is the only context from which srp_queuecommand()
1995 * can get invoked for blocked devices (SDEV_BLOCK /
1996 * SDEV_CREATED_BLOCK). Avoid racing with srp_reconnect_rport() by
1997 * locking the rport mutex if invoked from inside the SCSI EH.
1998 */
1999 if (in_scsi_eh)
2000 mutex_lock(&rport->mutex);
2001
2002 scmnd->result = srp_chkready(target->rport);
2003 if (unlikely(scmnd->result))
2004 goto err;
2005
2006 WARN_ON_ONCE(scmnd->request->tag < 0);
2007 tag = blk_mq_unique_tag(scmnd->request);
2008 ch = &target->ch[blk_mq_unique_tag_to_hwq(tag)];
2009 idx = blk_mq_unique_tag_to_tag(tag);
2010 WARN_ONCE(idx >= target->req_ring_size, "%s: tag %#x: idx %d >= %d\n",
2011 dev_name(&shost->shost_gendev), tag, idx,
2012 target->req_ring_size);
2013
2014 spin_lock_irqsave(&ch->lock, flags);
2015 iu = __srp_get_tx_iu(ch, SRP_IU_CMD);
2016 spin_unlock_irqrestore(&ch->lock, flags);
2017
2018 if (!iu)
2019 goto err;
2020
2021 req = &ch->req_ring[idx];
2022 dev = target->srp_host->srp_dev->dev;
2023 ib_dma_sync_single_for_cpu(dev, iu->dma, target->max_iu_len,
2024 DMA_TO_DEVICE);
2025
2026 scmnd->host_scribble = (void *) req;
2027
2028 cmd = iu->buf;
2029 memset(cmd, 0, sizeof *cmd);
2030
2031 cmd->opcode = SRP_CMD;
2032 int_to_scsilun(scmnd->device->lun, &cmd->lun);
2033 cmd->tag = tag;
2034 memcpy(cmd->cdb, scmnd->cmnd, scmnd->cmd_len);
2035
2036 req->scmnd = scmnd;
2037 req->cmd = iu;
2038
2039 len = srp_map_data(scmnd, ch, req);
2040 if (len < 0) {
2041 shost_printk(KERN_ERR, target->scsi_host,
2042 PFX "Failed to map data (%d)\n", len);
2043 /*
2044 * If we ran out of memory descriptors (-ENOMEM) because an
2045 * application is queuing many requests with more than
2046 * max_pages_per_mr sg-list elements, tell the SCSI mid-layer
2047 * to reduce queue depth temporarily.
2048 */
2049 scmnd->result = len == -ENOMEM ?
2050 DID_OK << 16 | QUEUE_FULL << 1 : DID_ERROR << 16;
2051 goto err_iu;
2052 }
2053
2054 ib_dma_sync_single_for_device(dev, iu->dma, target->max_iu_len,
2055 DMA_TO_DEVICE);
2056
2057 if (srp_post_send(ch, iu, len)) {
2058 shost_printk(KERN_ERR, target->scsi_host, PFX "Send failed\n");
2059 goto err_unmap;
2060 }
2061
2062 ret = 0;
2063
2064 unlock_rport:
2065 if (in_scsi_eh)
2066 mutex_unlock(&rport->mutex);
2067
2068 return ret;
2069
2070 err_unmap:
2071 srp_unmap_data(scmnd, ch, req);
2072
2073 err_iu:
2074 srp_put_tx_iu(ch, iu, SRP_IU_CMD);
2075
2076 /*
2077 * Avoid that the loops that iterate over the request ring can
2078 * encounter a dangling SCSI command pointer.
2079 */
2080 req->scmnd = NULL;
2081
2082 err:
2083 if (scmnd->result) {
2084 scmnd->scsi_done(scmnd);
2085 ret = 0;
2086 } else {
2087 ret = SCSI_MLQUEUE_HOST_BUSY;
2088 }
2089
2090 goto unlock_rport;
2091 }
2092
2093 /*
2094 * Note: the resources allocated in this function are freed in
2095 * srp_free_ch_ib().
2096 */
2097 static int srp_alloc_iu_bufs(struct srp_rdma_ch *ch)
2098 {
2099 struct srp_target_port *target = ch->target;
2100 int i;
2101
2102 ch->rx_ring = kcalloc(target->queue_size, sizeof(*ch->rx_ring),
2103 GFP_KERNEL);
2104 if (!ch->rx_ring)
2105 goto err_no_ring;
2106 ch->tx_ring = kcalloc(target->queue_size, sizeof(*ch->tx_ring),
2107 GFP_KERNEL);
2108 if (!ch->tx_ring)
2109 goto err_no_ring;
2110
2111 for (i = 0; i < target->queue_size; ++i) {
2112 ch->rx_ring[i] = srp_alloc_iu(target->srp_host,
2113 ch->max_ti_iu_len,
2114 GFP_KERNEL, DMA_FROM_DEVICE);
2115 if (!ch->rx_ring[i])
2116 goto err;
2117 }
2118
2119 for (i = 0; i < target->queue_size; ++i) {
2120 ch->tx_ring[i] = srp_alloc_iu(target->srp_host,
2121 target->max_iu_len,
2122 GFP_KERNEL, DMA_TO_DEVICE);
2123 if (!ch->tx_ring[i])
2124 goto err;
2125
2126 list_add(&ch->tx_ring[i]->list, &ch->free_tx);
2127 }
2128
2129 return 0;
2130
2131 err:
2132 for (i = 0; i < target->queue_size; ++i) {
2133 srp_free_iu(target->srp_host, ch->rx_ring[i]);
2134 srp_free_iu(target->srp_host, ch->tx_ring[i]);
2135 }
2136
2137
2138 err_no_ring:
2139 kfree(ch->tx_ring);
2140 ch->tx_ring = NULL;
2141 kfree(ch->rx_ring);
2142 ch->rx_ring = NULL;
2143
2144 return -ENOMEM;
2145 }
2146
2147 static uint32_t srp_compute_rq_tmo(struct ib_qp_attr *qp_attr, int attr_mask)
2148 {
2149 uint64_t T_tr_ns, max_compl_time_ms;
2150 uint32_t rq_tmo_jiffies;
2151
2152 /*
2153 * According to section 11.2.4.2 in the IBTA spec (Modify Queue Pair,
2154 * table 91), both the QP timeout and the retry count have to be set
2155 * for RC QP's during the RTR to RTS transition.
2156 */
2157 WARN_ON_ONCE((attr_mask & (IB_QP_TIMEOUT | IB_QP_RETRY_CNT)) !=
2158 (IB_QP_TIMEOUT | IB_QP_RETRY_CNT));
2159
2160 /*
2161 * Set target->rq_tmo_jiffies to one second more than the largest time
2162 * it can take before an error completion is generated. See also
2163 * C9-140..142 in the IBTA spec for more information about how to
2164 * convert the QP Local ACK Timeout value to nanoseconds.
2165 */
2166 T_tr_ns = 4096 * (1ULL << qp_attr->timeout);
2167 max_compl_time_ms = qp_attr->retry_cnt * 4 * T_tr_ns;
2168 do_div(max_compl_time_ms, NSEC_PER_MSEC);
2169 rq_tmo_jiffies = msecs_to_jiffies(max_compl_time_ms + 1000);
2170
2171 return rq_tmo_jiffies;
2172 }
2173
2174 static void srp_cm_rep_handler(struct ib_cm_id *cm_id,
2175 struct srp_login_rsp *lrsp,
2176 struct srp_rdma_ch *ch)
2177 {
2178 struct srp_target_port *target = ch->target;
2179 struct ib_qp_attr *qp_attr = NULL;
2180 int attr_mask = 0;
2181 int ret;
2182 int i;
2183
2184 if (lrsp->opcode == SRP_LOGIN_RSP) {
2185 ch->max_ti_iu_len = be32_to_cpu(lrsp->max_ti_iu_len);
2186 ch->req_lim = be32_to_cpu(lrsp->req_lim_delta);
2187
2188 /*
2189 * Reserve credits for task management so we don't
2190 * bounce requests back to the SCSI mid-layer.
2191 */
2192 target->scsi_host->can_queue
2193 = min(ch->req_lim - SRP_TSK_MGMT_SQ_SIZE,
2194 target->scsi_host->can_queue);
2195 target->scsi_host->cmd_per_lun
2196 = min_t(int, target->scsi_host->can_queue,
2197 target->scsi_host->cmd_per_lun);
2198 } else {
2199 shost_printk(KERN_WARNING, target->scsi_host,
2200 PFX "Unhandled RSP opcode %#x\n", lrsp->opcode);
2201 ret = -ECONNRESET;
2202 goto error;
2203 }
2204
2205 if (!ch->rx_ring) {
2206 ret = srp_alloc_iu_bufs(ch);
2207 if (ret)
2208 goto error;
2209 }
2210
2211 ret = -ENOMEM;
2212 qp_attr = kmalloc(sizeof *qp_attr, GFP_KERNEL);
2213 if (!qp_attr)
2214 goto error;
2215
2216 qp_attr->qp_state = IB_QPS_RTR;
2217 ret = ib_cm_init_qp_attr(cm_id, qp_attr, &attr_mask);
2218 if (ret)
2219 goto error_free;
2220
2221 ret = ib_modify_qp(ch->qp, qp_attr, attr_mask);
2222 if (ret)
2223 goto error_free;
2224
2225 for (i = 0; i < target->queue_size; i++) {
2226 struct srp_iu *iu = ch->rx_ring[i];
2227
2228 ret = srp_post_recv(ch, iu);
2229 if (ret)
2230 goto error_free;
2231 }
2232
2233 qp_attr->qp_state = IB_QPS_RTS;
2234 ret = ib_cm_init_qp_attr(cm_id, qp_attr, &attr_mask);
2235 if (ret)
2236 goto error_free;
2237
2238 target->rq_tmo_jiffies = srp_compute_rq_tmo(qp_attr, attr_mask);
2239
2240 ret = ib_modify_qp(ch->qp, qp_attr, attr_mask);
2241 if (ret)
2242 goto error_free;
2243
2244 ret = ib_send_cm_rtu(cm_id, NULL, 0);
2245
2246 error_free:
2247 kfree(qp_attr);
2248
2249 error:
2250 ch->status = ret;
2251 }
2252
2253 static void srp_cm_rej_handler(struct ib_cm_id *cm_id,
2254 struct ib_cm_event *event,
2255 struct srp_rdma_ch *ch)
2256 {
2257 struct srp_target_port *target = ch->target;
2258 struct Scsi_Host *shost = target->scsi_host;
2259 struct ib_class_port_info *cpi;
2260 int opcode;
2261
2262 switch (event->param.rej_rcvd.reason) {
2263 case IB_CM_REJ_PORT_CM_REDIRECT:
2264 cpi = event->param.rej_rcvd.ari;
2265 ch->path.dlid = cpi->redirect_lid;
2266 ch->path.pkey = cpi->redirect_pkey;
2267 cm_id->remote_cm_qpn = be32_to_cpu(cpi->redirect_qp) & 0x00ffffff;
2268 memcpy(ch->path.dgid.raw, cpi->redirect_gid, 16);
2269
2270 ch->status = ch->path.dlid ?
2271 SRP_DLID_REDIRECT : SRP_PORT_REDIRECT;
2272 break;
2273
2274 case IB_CM_REJ_PORT_REDIRECT:
2275 if (srp_target_is_topspin(target)) {
2276 /*
2277 * Topspin/Cisco SRP gateways incorrectly send
2278 * reject reason code 25 when they mean 24
2279 * (port redirect).
2280 */
2281 memcpy(ch->path.dgid.raw,
2282 event->param.rej_rcvd.ari, 16);
2283
2284 shost_printk(KERN_DEBUG, shost,
2285 PFX "Topspin/Cisco redirect to target port GID %016llx%016llx\n",
2286 be64_to_cpu(ch->path.dgid.global.subnet_prefix),
2287 be64_to_cpu(ch->path.dgid.global.interface_id));
2288
2289 ch->status = SRP_PORT_REDIRECT;
2290 } else {
2291 shost_printk(KERN_WARNING, shost,
2292 " REJ reason: IB_CM_REJ_PORT_REDIRECT\n");
2293 ch->status = -ECONNRESET;
2294 }
2295 break;
2296
2297 case IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID:
2298 shost_printk(KERN_WARNING, shost,
2299 " REJ reason: IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID\n");
2300 ch->status = -ECONNRESET;
2301 break;
2302
2303 case IB_CM_REJ_CONSUMER_DEFINED:
2304 opcode = *(u8 *) event->private_data;
2305 if (opcode == SRP_LOGIN_REJ) {
2306 struct srp_login_rej *rej = event->private_data;
2307 u32 reason = be32_to_cpu(rej->reason);
2308
2309 if (reason == SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE)
2310 shost_printk(KERN_WARNING, shost,
2311 PFX "SRP_LOGIN_REJ: requested max_it_iu_len too large\n");
2312 else
2313 shost_printk(KERN_WARNING, shost, PFX
2314 "SRP LOGIN from %pI6 to %pI6 REJECTED, reason 0x%08x\n",
2315 target->sgid.raw,
2316 target->orig_dgid.raw, reason);
2317 } else
2318 shost_printk(KERN_WARNING, shost,
2319 " REJ reason: IB_CM_REJ_CONSUMER_DEFINED,"
2320 " opcode 0x%02x\n", opcode);
2321 ch->status = -ECONNRESET;
2322 break;
2323
2324 case IB_CM_REJ_STALE_CONN:
2325 shost_printk(KERN_WARNING, shost, " REJ reason: stale connection\n");
2326 ch->status = SRP_STALE_CONN;
2327 break;
2328
2329 default:
2330 shost_printk(KERN_WARNING, shost, " REJ reason 0x%x\n",
2331 event->param.rej_rcvd.reason);
2332 ch->status = -ECONNRESET;
2333 }
2334 }
2335
2336 static int srp_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event)
2337 {
2338 struct srp_rdma_ch *ch = cm_id->context;
2339 struct srp_target_port *target = ch->target;
2340 int comp = 0;
2341
2342 switch (event->event) {
2343 case IB_CM_REQ_ERROR:
2344 shost_printk(KERN_DEBUG, target->scsi_host,
2345 PFX "Sending CM REQ failed\n");
2346 comp = 1;
2347 ch->status = -ECONNRESET;
2348 break;
2349
2350 case IB_CM_REP_RECEIVED:
2351 comp = 1;
2352 srp_cm_rep_handler(cm_id, event->private_data, ch);
2353 break;
2354
2355 case IB_CM_REJ_RECEIVED:
2356 shost_printk(KERN_DEBUG, target->scsi_host, PFX "REJ received\n");
2357 comp = 1;
2358
2359 srp_cm_rej_handler(cm_id, event, ch);
2360 break;
2361
2362 case IB_CM_DREQ_RECEIVED:
2363 shost_printk(KERN_WARNING, target->scsi_host,
2364 PFX "DREQ received - connection closed\n");
2365 ch->connected = false;
2366 if (ib_send_cm_drep(cm_id, NULL, 0))
2367 shost_printk(KERN_ERR, target->scsi_host,
2368 PFX "Sending CM DREP failed\n");
2369 queue_work(system_long_wq, &target->tl_err_work);
2370 break;
2371
2372 case IB_CM_TIMEWAIT_EXIT:
2373 shost_printk(KERN_ERR, target->scsi_host,
2374 PFX "connection closed\n");
2375 comp = 1;
2376
2377 ch->status = 0;
2378 break;
2379
2380 case IB_CM_MRA_RECEIVED:
2381 case IB_CM_DREQ_ERROR:
2382 case IB_CM_DREP_RECEIVED:
2383 break;
2384
2385 default:
2386 shost_printk(KERN_WARNING, target->scsi_host,
2387 PFX "Unhandled CM event %d\n", event->event);
2388 break;
2389 }
2390
2391 if (comp)
2392 complete(&ch->done);
2393
2394 return 0;
2395 }
2396
2397 /**
2398 * srp_change_queue_depth - setting device queue depth
2399 * @sdev: scsi device struct
2400 * @qdepth: requested queue depth
2401 *
2402 * Returns queue depth.
2403 */
2404 static int
2405 srp_change_queue_depth(struct scsi_device *sdev, int qdepth)
2406 {
2407 if (!sdev->tagged_supported)
2408 qdepth = 1;
2409 return scsi_change_queue_depth(sdev, qdepth);
2410 }
2411
2412 static int srp_send_tsk_mgmt(struct srp_rdma_ch *ch, u64 req_tag, u64 lun,
2413 u8 func)
2414 {
2415 struct srp_target_port *target = ch->target;
2416 struct srp_rport *rport = target->rport;
2417 struct ib_device *dev = target->srp_host->srp_dev->dev;
2418 struct srp_iu *iu;
2419 struct srp_tsk_mgmt *tsk_mgmt;
2420
2421 if (!ch->connected || target->qp_in_error)
2422 return -1;
2423
2424 init_completion(&ch->tsk_mgmt_done);
2425
2426 /*
2427 * Lock the rport mutex to avoid that srp_create_ch_ib() is
2428 * invoked while a task management function is being sent.
2429 */
2430 mutex_lock(&rport->mutex);
2431 spin_lock_irq(&ch->lock);
2432 iu = __srp_get_tx_iu(ch, SRP_IU_TSK_MGMT);
2433 spin_unlock_irq(&ch->lock);
2434
2435 if (!iu) {
2436 mutex_unlock(&rport->mutex);
2437
2438 return -1;
2439 }
2440
2441 ib_dma_sync_single_for_cpu(dev, iu->dma, sizeof *tsk_mgmt,
2442 DMA_TO_DEVICE);
2443 tsk_mgmt = iu->buf;
2444 memset(tsk_mgmt, 0, sizeof *tsk_mgmt);
2445
2446 tsk_mgmt->opcode = SRP_TSK_MGMT;
2447 int_to_scsilun(lun, &tsk_mgmt->lun);
2448 tsk_mgmt->tag = req_tag | SRP_TAG_TSK_MGMT;
2449 tsk_mgmt->tsk_mgmt_func = func;
2450 tsk_mgmt->task_tag = req_tag;
2451
2452 ib_dma_sync_single_for_device(dev, iu->dma, sizeof *tsk_mgmt,
2453 DMA_TO_DEVICE);
2454 if (srp_post_send(ch, iu, sizeof(*tsk_mgmt))) {
2455 srp_put_tx_iu(ch, iu, SRP_IU_TSK_MGMT);
2456 mutex_unlock(&rport->mutex);
2457
2458 return -1;
2459 }
2460 mutex_unlock(&rport->mutex);
2461
2462 if (!wait_for_completion_timeout(&ch->tsk_mgmt_done,
2463 msecs_to_jiffies(SRP_ABORT_TIMEOUT_MS)))
2464 return -1;
2465
2466 return 0;
2467 }
2468
2469 static int srp_abort(struct scsi_cmnd *scmnd)
2470 {
2471 struct srp_target_port *target = host_to_target(scmnd->device->host);
2472 struct srp_request *req = (struct srp_request *) scmnd->host_scribble;
2473 u32 tag;
2474 u16 ch_idx;
2475 struct srp_rdma_ch *ch;
2476 int ret;
2477
2478 shost_printk(KERN_ERR, target->scsi_host, "SRP abort called\n");
2479
2480 if (!req)
2481 return SUCCESS;
2482 tag = blk_mq_unique_tag(scmnd->request);
2483 ch_idx = blk_mq_unique_tag_to_hwq(tag);
2484 if (WARN_ON_ONCE(ch_idx >= target->ch_count))
2485 return SUCCESS;
2486 ch = &target->ch[ch_idx];
2487 if (!srp_claim_req(ch, req, NULL, scmnd))
2488 return SUCCESS;
2489 shost_printk(KERN_ERR, target->scsi_host,
2490 "Sending SRP abort for tag %#x\n", tag);
2491 if (srp_send_tsk_mgmt(ch, tag, scmnd->device->lun,
2492 SRP_TSK_ABORT_TASK) == 0)
2493 ret = SUCCESS;
2494 else if (target->rport->state == SRP_RPORT_LOST)
2495 ret = FAST_IO_FAIL;
2496 else
2497 ret = FAILED;
2498 srp_free_req(ch, req, scmnd, 0);
2499 scmnd->result = DID_ABORT << 16;
2500 scmnd->scsi_done(scmnd);
2501
2502 return ret;
2503 }
2504
2505 static int srp_reset_device(struct scsi_cmnd *scmnd)
2506 {
2507 struct srp_target_port *target = host_to_target(scmnd->device->host);
2508 struct srp_rdma_ch *ch;
2509 int i;
2510
2511 shost_printk(KERN_ERR, target->scsi_host, "SRP reset_device called\n");
2512
2513 ch = &target->ch[0];
2514 if (srp_send_tsk_mgmt(ch, SRP_TAG_NO_REQ, scmnd->device->lun,
2515 SRP_TSK_LUN_RESET))
2516 return FAILED;
2517 if (ch->tsk_mgmt_status)
2518 return FAILED;
2519
2520 for (i = 0; i < target->ch_count; i++) {
2521 ch = &target->ch[i];
2522 for (i = 0; i < target->req_ring_size; ++i) {
2523 struct srp_request *req = &ch->req_ring[i];
2524
2525 srp_finish_req(ch, req, scmnd->device, DID_RESET << 16);
2526 }
2527 }
2528
2529 return SUCCESS;
2530 }
2531
2532 static int srp_reset_host(struct scsi_cmnd *scmnd)
2533 {
2534 struct srp_target_port *target = host_to_target(scmnd->device->host);
2535
2536 shost_printk(KERN_ERR, target->scsi_host, PFX "SRP reset_host called\n");
2537
2538 return srp_reconnect_rport(target->rport) == 0 ? SUCCESS : FAILED;
2539 }
2540
2541 static int srp_slave_configure(struct scsi_device *sdev)
2542 {
2543 struct Scsi_Host *shost = sdev->host;
2544 struct srp_target_port *target = host_to_target(shost);
2545 struct request_queue *q = sdev->request_queue;
2546 unsigned long timeout;
2547
2548 if (sdev->type == TYPE_DISK) {
2549 timeout = max_t(unsigned, 30 * HZ, target->rq_tmo_jiffies);
2550 blk_queue_rq_timeout(q, timeout);
2551 }
2552
2553 return 0;
2554 }
2555
2556 static ssize_t show_id_ext(struct device *dev, struct device_attribute *attr,
2557 char *buf)
2558 {
2559 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2560
2561 return sprintf(buf, "0x%016llx\n", be64_to_cpu(target->id_ext));
2562 }
2563
2564 static ssize_t show_ioc_guid(struct device *dev, struct device_attribute *attr,
2565 char *buf)
2566 {
2567 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2568
2569 return sprintf(buf, "0x%016llx\n", be64_to_cpu(target->ioc_guid));
2570 }
2571
2572 static ssize_t show_service_id(struct device *dev,
2573 struct device_attribute *attr, char *buf)
2574 {
2575 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2576
2577 return sprintf(buf, "0x%016llx\n", be64_to_cpu(target->service_id));
2578 }
2579
2580 static ssize_t show_pkey(struct device *dev, struct device_attribute *attr,
2581 char *buf)
2582 {
2583 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2584
2585 return sprintf(buf, "0x%04x\n", be16_to_cpu(target->pkey));
2586 }
2587
2588 static ssize_t show_sgid(struct device *dev, struct device_attribute *attr,
2589 char *buf)
2590 {
2591 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2592
2593 return sprintf(buf, "%pI6\n", target->sgid.raw);
2594 }
2595
2596 static ssize_t show_dgid(struct device *dev, struct device_attribute *attr,
2597 char *buf)
2598 {
2599 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2600 struct srp_rdma_ch *ch = &target->ch[0];
2601
2602 return sprintf(buf, "%pI6\n", ch->path.dgid.raw);
2603 }
2604
2605 static ssize_t show_orig_dgid(struct device *dev,
2606 struct device_attribute *attr, char *buf)
2607 {
2608 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2609
2610 return sprintf(buf, "%pI6\n", target->orig_dgid.raw);
2611 }
2612
2613 static ssize_t show_req_lim(struct device *dev,
2614 struct device_attribute *attr, char *buf)
2615 {
2616 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2617 struct srp_rdma_ch *ch;
2618 int i, req_lim = INT_MAX;
2619
2620 for (i = 0; i < target->ch_count; i++) {
2621 ch = &target->ch[i];
2622 req_lim = min(req_lim, ch->req_lim);
2623 }
2624 return sprintf(buf, "%d\n", req_lim);
2625 }
2626
2627 static ssize_t show_zero_req_lim(struct device *dev,
2628 struct device_attribute *attr, char *buf)
2629 {
2630 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2631
2632 return sprintf(buf, "%d\n", target->zero_req_lim);
2633 }
2634
2635 static ssize_t show_local_ib_port(struct device *dev,
2636 struct device_attribute *attr, char *buf)
2637 {
2638 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2639
2640 return sprintf(buf, "%d\n", target->srp_host->port);
2641 }
2642
2643 static ssize_t show_local_ib_device(struct device *dev,
2644 struct device_attribute *attr, char *buf)
2645 {
2646 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2647
2648 return sprintf(buf, "%s\n", target->srp_host->srp_dev->dev->name);
2649 }
2650
2651 static ssize_t show_ch_count(struct device *dev, struct device_attribute *attr,
2652 char *buf)
2653 {
2654 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2655
2656 return sprintf(buf, "%d\n", target->ch_count);
2657 }
2658
2659 static ssize_t show_comp_vector(struct device *dev,
2660 struct device_attribute *attr, char *buf)
2661 {
2662 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2663
2664 return sprintf(buf, "%d\n", target->comp_vector);
2665 }
2666
2667 static ssize_t show_tl_retry_count(struct device *dev,
2668 struct device_attribute *attr, char *buf)
2669 {
2670 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2671
2672 return sprintf(buf, "%d\n", target->tl_retry_count);
2673 }
2674
2675 static ssize_t show_cmd_sg_entries(struct device *dev,
2676 struct device_attribute *attr, char *buf)
2677 {
2678 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2679
2680 return sprintf(buf, "%u\n", target->cmd_sg_cnt);
2681 }
2682
2683 static ssize_t show_allow_ext_sg(struct device *dev,
2684 struct device_attribute *attr, char *buf)
2685 {
2686 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2687
2688 return sprintf(buf, "%s\n", target->allow_ext_sg ? "true" : "false");
2689 }
2690
2691 static DEVICE_ATTR(id_ext, S_IRUGO, show_id_ext, NULL);
2692 static DEVICE_ATTR(ioc_guid, S_IRUGO, show_ioc_guid, NULL);
2693 static DEVICE_ATTR(service_id, S_IRUGO, show_service_id, NULL);
2694 static DEVICE_ATTR(pkey, S_IRUGO, show_pkey, NULL);
2695 static DEVICE_ATTR(sgid, S_IRUGO, show_sgid, NULL);
2696 static DEVICE_ATTR(dgid, S_IRUGO, show_dgid, NULL);
2697 static DEVICE_ATTR(orig_dgid, S_IRUGO, show_orig_dgid, NULL);
2698 static DEVICE_ATTR(req_lim, S_IRUGO, show_req_lim, NULL);
2699 static DEVICE_ATTR(zero_req_lim, S_IRUGO, show_zero_req_lim, NULL);
2700 static DEVICE_ATTR(local_ib_port, S_IRUGO, show_local_ib_port, NULL);
2701 static DEVICE_ATTR(local_ib_device, S_IRUGO, show_local_ib_device, NULL);
2702 static DEVICE_ATTR(ch_count, S_IRUGO, show_ch_count, NULL);
2703 static DEVICE_ATTR(comp_vector, S_IRUGO, show_comp_vector, NULL);
2704 static DEVICE_ATTR(tl_retry_count, S_IRUGO, show_tl_retry_count, NULL);
2705 static DEVICE_ATTR(cmd_sg_entries, S_IRUGO, show_cmd_sg_entries, NULL);
2706 static DEVICE_ATTR(allow_ext_sg, S_IRUGO, show_allow_ext_sg, NULL);
2707
2708 static struct device_attribute *srp_host_attrs[] = {
2709 &dev_attr_id_ext,
2710 &dev_attr_ioc_guid,
2711 &dev_attr_service_id,
2712 &dev_attr_pkey,
2713 &dev_attr_sgid,
2714 &dev_attr_dgid,
2715 &dev_attr_orig_dgid,
2716 &dev_attr_req_lim,
2717 &dev_attr_zero_req_lim,
2718 &dev_attr_local_ib_port,
2719 &dev_attr_local_ib_device,
2720 &dev_attr_ch_count,
2721 &dev_attr_comp_vector,
2722 &dev_attr_tl_retry_count,
2723 &dev_attr_cmd_sg_entries,
2724 &dev_attr_allow_ext_sg,
2725 NULL
2726 };
2727
2728 static struct scsi_host_template srp_template = {
2729 .module = THIS_MODULE,
2730 .name = "InfiniBand SRP initiator",
2731 .proc_name = DRV_NAME,
2732 .slave_configure = srp_slave_configure,
2733 .info = srp_target_info,
2734 .queuecommand = srp_queuecommand,
2735 .change_queue_depth = srp_change_queue_depth,
2736 .eh_abort_handler = srp_abort,
2737 .eh_device_reset_handler = srp_reset_device,
2738 .eh_host_reset_handler = srp_reset_host,
2739 .skip_settle_delay = true,
2740 .sg_tablesize = SRP_DEF_SG_TABLESIZE,
2741 .can_queue = SRP_DEFAULT_CMD_SQ_SIZE,
2742 .this_id = -1,
2743 .cmd_per_lun = SRP_DEFAULT_CMD_SQ_SIZE,
2744 .use_clustering = ENABLE_CLUSTERING,
2745 .shost_attrs = srp_host_attrs,
2746 .use_blk_tags = 1,
2747 .track_queue_depth = 1,
2748 };
2749
2750 static int srp_sdev_count(struct Scsi_Host *host)
2751 {
2752 struct scsi_device *sdev;
2753 int c = 0;
2754
2755 shost_for_each_device(sdev, host)
2756 c++;
2757
2758 return c;
2759 }
2760
2761 static int srp_add_target(struct srp_host *host, struct srp_target_port *target)
2762 {
2763 struct srp_rport_identifiers ids;
2764 struct srp_rport *rport;
2765
2766 target->state = SRP_TARGET_SCANNING;
2767 sprintf(target->target_name, "SRP.T10:%016llX",
2768 be64_to_cpu(target->id_ext));
2769
2770 if (scsi_add_host(target->scsi_host, host->srp_dev->dev->dma_device))
2771 return -ENODEV;
2772
2773 memcpy(ids.port_id, &target->id_ext, 8);
2774 memcpy(ids.port_id + 8, &target->ioc_guid, 8);
2775 ids.roles = SRP_RPORT_ROLE_TARGET;
2776 rport = srp_rport_add(target->scsi_host, &ids);
2777 if (IS_ERR(rport)) {
2778 scsi_remove_host(target->scsi_host);
2779 return PTR_ERR(rport);
2780 }
2781
2782 rport->lld_data = target;
2783 target->rport = rport;
2784
2785 spin_lock(&host->target_lock);
2786 list_add_tail(&target->list, &host->target_list);
2787 spin_unlock(&host->target_lock);
2788
2789 scsi_scan_target(&target->scsi_host->shost_gendev,
2790 0, target->scsi_id, SCAN_WILD_CARD, 0);
2791
2792 if (srp_connected_ch(target) < target->ch_count ||
2793 target->qp_in_error) {
2794 shost_printk(KERN_INFO, target->scsi_host,
2795 PFX "SCSI scan failed - removing SCSI host\n");
2796 srp_queue_remove_work(target);
2797 goto out;
2798 }
2799
2800 pr_debug(PFX "%s: SCSI scan succeeded - detected %d LUNs\n",
2801 dev_name(&target->scsi_host->shost_gendev),
2802 srp_sdev_count(target->scsi_host));
2803
2804 spin_lock_irq(&target->lock);
2805 if (target->state == SRP_TARGET_SCANNING)
2806 target->state = SRP_TARGET_LIVE;
2807 spin_unlock_irq(&target->lock);
2808
2809 out:
2810 return 0;
2811 }
2812
2813 static void srp_release_dev(struct device *dev)
2814 {
2815 struct srp_host *host =
2816 container_of(dev, struct srp_host, dev);
2817
2818 complete(&host->released);
2819 }
2820
2821 static struct class srp_class = {
2822 .name = "infiniband_srp",
2823 .dev_release = srp_release_dev
2824 };
2825
2826 /**
2827 * srp_conn_unique() - check whether the connection to a target is unique
2828 * @host: SRP host.
2829 * @target: SRP target port.
2830 */
2831 static bool srp_conn_unique(struct srp_host *host,
2832 struct srp_target_port *target)
2833 {
2834 struct srp_target_port *t;
2835 bool ret = false;
2836
2837 if (target->state == SRP_TARGET_REMOVED)
2838 goto out;
2839
2840 ret = true;
2841
2842 spin_lock(&host->target_lock);
2843 list_for_each_entry(t, &host->target_list, list) {
2844 if (t != target &&
2845 target->id_ext == t->id_ext &&
2846 target->ioc_guid == t->ioc_guid &&
2847 target->initiator_ext == t->initiator_ext) {
2848 ret = false;
2849 break;
2850 }
2851 }
2852 spin_unlock(&host->target_lock);
2853
2854 out:
2855 return ret;
2856 }
2857
2858 /*
2859 * Target ports are added by writing
2860 *
2861 * id_ext=<SRP ID ext>,ioc_guid=<SRP IOC GUID>,dgid=<dest GID>,
2862 * pkey=<P_Key>,service_id=<service ID>
2863 *
2864 * to the add_target sysfs attribute.
2865 */
2866 enum {
2867 SRP_OPT_ERR = 0,
2868 SRP_OPT_ID_EXT = 1 << 0,
2869 SRP_OPT_IOC_GUID = 1 << 1,
2870 SRP_OPT_DGID = 1 << 2,
2871 SRP_OPT_PKEY = 1 << 3,
2872 SRP_OPT_SERVICE_ID = 1 << 4,
2873 SRP_OPT_MAX_SECT = 1 << 5,
2874 SRP_OPT_MAX_CMD_PER_LUN = 1 << 6,
2875 SRP_OPT_IO_CLASS = 1 << 7,
2876 SRP_OPT_INITIATOR_EXT = 1 << 8,
2877 SRP_OPT_CMD_SG_ENTRIES = 1 << 9,
2878 SRP_OPT_ALLOW_EXT_SG = 1 << 10,
2879 SRP_OPT_SG_TABLESIZE = 1 << 11,
2880 SRP_OPT_COMP_VECTOR = 1 << 12,
2881 SRP_OPT_TL_RETRY_COUNT = 1 << 13,
2882 SRP_OPT_QUEUE_SIZE = 1 << 14,
2883 SRP_OPT_ALL = (SRP_OPT_ID_EXT |
2884 SRP_OPT_IOC_GUID |
2885 SRP_OPT_DGID |
2886 SRP_OPT_PKEY |
2887 SRP_OPT_SERVICE_ID),
2888 };
2889
2890 static const match_table_t srp_opt_tokens = {
2891 { SRP_OPT_ID_EXT, "id_ext=%s" },
2892 { SRP_OPT_IOC_GUID, "ioc_guid=%s" },
2893 { SRP_OPT_DGID, "dgid=%s" },
2894 { SRP_OPT_PKEY, "pkey=%x" },
2895 { SRP_OPT_SERVICE_ID, "service_id=%s" },
2896 { SRP_OPT_MAX_SECT, "max_sect=%d" },
2897 { SRP_OPT_MAX_CMD_PER_LUN, "max_cmd_per_lun=%d" },
2898 { SRP_OPT_IO_CLASS, "io_class=%x" },
2899 { SRP_OPT_INITIATOR_EXT, "initiator_ext=%s" },
2900 { SRP_OPT_CMD_SG_ENTRIES, "cmd_sg_entries=%u" },
2901 { SRP_OPT_ALLOW_EXT_SG, "allow_ext_sg=%u" },
2902 { SRP_OPT_SG_TABLESIZE, "sg_tablesize=%u" },
2903 { SRP_OPT_COMP_VECTOR, "comp_vector=%u" },
2904 { SRP_OPT_TL_RETRY_COUNT, "tl_retry_count=%u" },
2905 { SRP_OPT_QUEUE_SIZE, "queue_size=%d" },
2906 { SRP_OPT_ERR, NULL }
2907 };
2908
2909 static int srp_parse_options(const char *buf, struct srp_target_port *target)
2910 {
2911 char *options, *sep_opt;
2912 char *p;
2913 char dgid[3];
2914 substring_t args[MAX_OPT_ARGS];
2915 int opt_mask = 0;
2916 int token;
2917 int ret = -EINVAL;
2918 int i;
2919
2920 options = kstrdup(buf, GFP_KERNEL);
2921 if (!options)
2922 return -ENOMEM;
2923
2924 sep_opt = options;
2925 while ((p = strsep(&sep_opt, ",\n")) != NULL) {
2926 if (!*p)
2927 continue;
2928
2929 token = match_token(p, srp_opt_tokens, args);
2930 opt_mask |= token;
2931
2932 switch (token) {
2933 case SRP_OPT_ID_EXT:
2934 p = match_strdup(args);
2935 if (!p) {
2936 ret = -ENOMEM;
2937 goto out;
2938 }
2939 target->id_ext = cpu_to_be64(simple_strtoull(p, NULL, 16));
2940 kfree(p);
2941 break;
2942
2943 case SRP_OPT_IOC_GUID:
2944 p = match_strdup(args);
2945 if (!p) {
2946 ret = -ENOMEM;
2947 goto out;
2948 }
2949 target->ioc_guid = cpu_to_be64(simple_strtoull(p, NULL, 16));
2950 kfree(p);
2951 break;
2952
2953 case SRP_OPT_DGID:
2954 p = match_strdup(args);
2955 if (!p) {
2956 ret = -ENOMEM;
2957 goto out;
2958 }
2959 if (strlen(p) != 32) {
2960 pr_warn("bad dest GID parameter '%s'\n", p);
2961 kfree(p);
2962 goto out;
2963 }
2964
2965 for (i = 0; i < 16; ++i) {
2966 strlcpy(dgid, p + i * 2, sizeof(dgid));
2967 if (sscanf(dgid, "%hhx",
2968 &target->orig_dgid.raw[i]) < 1) {
2969 ret = -EINVAL;
2970 kfree(p);
2971 goto out;
2972 }
2973 }
2974 kfree(p);
2975 break;
2976
2977 case SRP_OPT_PKEY:
2978 if (match_hex(args, &token)) {
2979 pr_warn("bad P_Key parameter '%s'\n", p);
2980 goto out;
2981 }
2982 target->pkey = cpu_to_be16(token);
2983 break;
2984
2985 case SRP_OPT_SERVICE_ID:
2986 p = match_strdup(args);
2987 if (!p) {
2988 ret = -ENOMEM;
2989 goto out;
2990 }
2991 target->service_id = cpu_to_be64(simple_strtoull(p, NULL, 16));
2992 kfree(p);
2993 break;
2994
2995 case SRP_OPT_MAX_SECT:
2996 if (match_int(args, &token)) {
2997 pr_warn("bad max sect parameter '%s'\n", p);
2998 goto out;
2999 }
3000 target->scsi_host->max_sectors = token;
3001 break;
3002
3003 case SRP_OPT_QUEUE_SIZE:
3004 if (match_int(args, &token) || token < 1) {
3005 pr_warn("bad queue_size parameter '%s'\n", p);
3006 goto out;
3007 }
3008 target->scsi_host->can_queue = token;
3009 target->queue_size = token + SRP_RSP_SQ_SIZE +
3010 SRP_TSK_MGMT_SQ_SIZE;
3011 if (!(opt_mask & SRP_OPT_MAX_CMD_PER_LUN))
3012 target->scsi_host->cmd_per_lun = token;
3013 break;
3014
3015 case SRP_OPT_MAX_CMD_PER_LUN:
3016 if (match_int(args, &token) || token < 1) {
3017 pr_warn("bad max cmd_per_lun parameter '%s'\n",
3018 p);
3019 goto out;
3020 }
3021 target->scsi_host->cmd_per_lun = token;
3022 break;
3023
3024 case SRP_OPT_IO_CLASS:
3025 if (match_hex(args, &token)) {
3026 pr_warn("bad IO class parameter '%s'\n", p);
3027 goto out;
3028 }
3029 if (token != SRP_REV10_IB_IO_CLASS &&
3030 token != SRP_REV16A_IB_IO_CLASS) {
3031 pr_warn("unknown IO class parameter value %x specified (use %x or %x).\n",
3032 token, SRP_REV10_IB_IO_CLASS,
3033 SRP_REV16A_IB_IO_CLASS);
3034 goto out;
3035 }
3036 target->io_class = token;
3037 break;
3038
3039 case SRP_OPT_INITIATOR_EXT:
3040 p = match_strdup(args);
3041 if (!p) {
3042 ret = -ENOMEM;
3043 goto out;
3044 }
3045 target->initiator_ext = cpu_to_be64(simple_strtoull(p, NULL, 16));
3046 kfree(p);
3047 break;
3048
3049 case SRP_OPT_CMD_SG_ENTRIES:
3050 if (match_int(args, &token) || token < 1 || token > 255) {
3051 pr_warn("bad max cmd_sg_entries parameter '%s'\n",
3052 p);
3053 goto out;
3054 }
3055 target->cmd_sg_cnt = token;
3056 break;
3057
3058 case SRP_OPT_ALLOW_EXT_SG:
3059 if (match_int(args, &token)) {
3060 pr_warn("bad allow_ext_sg parameter '%s'\n", p);
3061 goto out;
3062 }
3063 target->allow_ext_sg = !!token;
3064 break;
3065
3066 case SRP_OPT_SG_TABLESIZE:
3067 if (match_int(args, &token) || token < 1 ||
3068 token > SCSI_MAX_SG_CHAIN_SEGMENTS) {
3069 pr_warn("bad max sg_tablesize parameter '%s'\n",
3070 p);
3071 goto out;
3072 }
3073 target->sg_tablesize = token;
3074 break;
3075
3076 case SRP_OPT_COMP_VECTOR:
3077 if (match_int(args, &token) || token < 0) {
3078 pr_warn("bad comp_vector parameter '%s'\n", p);
3079 goto out;
3080 }
3081 target->comp_vector = token;
3082 break;
3083
3084 case SRP_OPT_TL_RETRY_COUNT:
3085 if (match_int(args, &token) || token < 2 || token > 7) {
3086 pr_warn("bad tl_retry_count parameter '%s' (must be a number between 2 and 7)\n",
3087 p);
3088 goto out;
3089 }
3090 target->tl_retry_count = token;
3091 break;
3092
3093 default:
3094 pr_warn("unknown parameter or missing value '%s' in target creation request\n",
3095 p);
3096 goto out;
3097 }
3098 }
3099
3100 if ((opt_mask & SRP_OPT_ALL) == SRP_OPT_ALL)
3101 ret = 0;
3102 else
3103 for (i = 0; i < ARRAY_SIZE(srp_opt_tokens); ++i)
3104 if ((srp_opt_tokens[i].token & SRP_OPT_ALL) &&
3105 !(srp_opt_tokens[i].token & opt_mask))
3106 pr_warn("target creation request is missing parameter '%s'\n",
3107 srp_opt_tokens[i].pattern);
3108
3109 if (target->scsi_host->cmd_per_lun > target->scsi_host->can_queue
3110 && (opt_mask & SRP_OPT_MAX_CMD_PER_LUN))
3111 pr_warn("cmd_per_lun = %d > queue_size = %d\n",
3112 target->scsi_host->cmd_per_lun,
3113 target->scsi_host->can_queue);
3114
3115 out:
3116 kfree(options);
3117 return ret;
3118 }
3119
3120 static ssize_t srp_create_target(struct device *dev,
3121 struct device_attribute *attr,
3122 const char *buf, size_t count)
3123 {
3124 struct srp_host *host =
3125 container_of(dev, struct srp_host, dev);
3126 struct Scsi_Host *target_host;
3127 struct srp_target_port *target;
3128 struct srp_rdma_ch *ch;
3129 struct srp_device *srp_dev = host->srp_dev;
3130 struct ib_device *ibdev = srp_dev->dev;
3131 int ret, node_idx, node, cpu, i;
3132 bool multich = false;
3133
3134 target_host = scsi_host_alloc(&srp_template,
3135 sizeof (struct srp_target_port));
3136 if (!target_host)
3137 return -ENOMEM;
3138
3139 target_host->transportt = ib_srp_transport_template;
3140 target_host->max_channel = 0;
3141 target_host->max_id = 1;
3142 target_host->max_lun = -1LL;
3143 target_host->max_cmd_len = sizeof ((struct srp_cmd *) (void *) 0L)->cdb;
3144
3145 target = host_to_target(target_host);
3146
3147 target->io_class = SRP_REV16A_IB_IO_CLASS;
3148 target->scsi_host = target_host;
3149 target->srp_host = host;
3150 target->lkey = host->srp_dev->mr->lkey;
3151 target->rkey = host->srp_dev->mr->rkey;
3152 target->cmd_sg_cnt = cmd_sg_entries;
3153 target->sg_tablesize = indirect_sg_entries ? : cmd_sg_entries;
3154 target->allow_ext_sg = allow_ext_sg;
3155 target->tl_retry_count = 7;
3156 target->queue_size = SRP_DEFAULT_QUEUE_SIZE;
3157
3158 /*
3159 * Avoid that the SCSI host can be removed by srp_remove_target()
3160 * before this function returns.
3161 */
3162 scsi_host_get(target->scsi_host);
3163
3164 mutex_lock(&host->add_target_mutex);
3165
3166 ret = srp_parse_options(buf, target);
3167 if (ret)
3168 goto out;
3169
3170 ret = scsi_init_shared_tag_map(target_host, target_host->can_queue);
3171 if (ret)
3172 goto out;
3173
3174 target->req_ring_size = target->queue_size - SRP_TSK_MGMT_SQ_SIZE;
3175
3176 if (!srp_conn_unique(target->srp_host, target)) {
3177 shost_printk(KERN_INFO, target->scsi_host,
3178 PFX "Already connected to target port with id_ext=%016llx;ioc_guid=%016llx;initiator_ext=%016llx\n",
3179 be64_to_cpu(target->id_ext),
3180 be64_to_cpu(target->ioc_guid),
3181 be64_to_cpu(target->initiator_ext));
3182 ret = -EEXIST;
3183 goto out;
3184 }
3185
3186 if (!srp_dev->has_fmr && !srp_dev->has_fr && !target->allow_ext_sg &&
3187 target->cmd_sg_cnt < target->sg_tablesize) {
3188 pr_warn("No MR pool and no external indirect descriptors, limiting sg_tablesize to cmd_sg_cnt\n");
3189 target->sg_tablesize = target->cmd_sg_cnt;
3190 }
3191
3192 target_host->sg_tablesize = target->sg_tablesize;
3193 target->indirect_size = target->sg_tablesize *
3194 sizeof (struct srp_direct_buf);
3195 target->max_iu_len = sizeof (struct srp_cmd) +
3196 sizeof (struct srp_indirect_buf) +
3197 target->cmd_sg_cnt * sizeof (struct srp_direct_buf);
3198
3199 INIT_WORK(&target->tl_err_work, srp_tl_err_work);
3200 INIT_WORK(&target->remove_work, srp_remove_work);
3201 spin_lock_init(&target->lock);
3202 ret = ib_query_gid(ibdev, host->port, 0, &target->sgid);
3203 if (ret)
3204 goto out;
3205
3206 ret = -ENOMEM;
3207 target->ch_count = max_t(unsigned, num_online_nodes(),
3208 min(ch_count ? :
3209 min(4 * num_online_nodes(),
3210 ibdev->num_comp_vectors),
3211 num_online_cpus()));
3212 target->ch = kcalloc(target->ch_count, sizeof(*target->ch),
3213 GFP_KERNEL);
3214 if (!target->ch)
3215 goto out;
3216
3217 node_idx = 0;
3218 for_each_online_node(node) {
3219 const int ch_start = (node_idx * target->ch_count /
3220 num_online_nodes());
3221 const int ch_end = ((node_idx + 1) * target->ch_count /
3222 num_online_nodes());
3223 const int cv_start = (node_idx * ibdev->num_comp_vectors /
3224 num_online_nodes() + target->comp_vector)
3225 % ibdev->num_comp_vectors;
3226 const int cv_end = ((node_idx + 1) * ibdev->num_comp_vectors /
3227 num_online_nodes() + target->comp_vector)
3228 % ibdev->num_comp_vectors;
3229 int cpu_idx = 0;
3230
3231 for_each_online_cpu(cpu) {
3232 if (cpu_to_node(cpu) != node)
3233 continue;
3234 if (ch_start + cpu_idx >= ch_end)
3235 continue;
3236 ch = &target->ch[ch_start + cpu_idx];
3237 ch->target = target;
3238 ch->comp_vector = cv_start == cv_end ? cv_start :
3239 cv_start + cpu_idx % (cv_end - cv_start);
3240 spin_lock_init(&ch->lock);
3241 INIT_LIST_HEAD(&ch->free_tx);
3242 ret = srp_new_cm_id(ch);
3243 if (ret)
3244 goto err_disconnect;
3245
3246 ret = srp_create_ch_ib(ch);
3247 if (ret)
3248 goto err_disconnect;
3249
3250 ret = srp_alloc_req_data(ch);
3251 if (ret)
3252 goto err_disconnect;
3253
3254 ret = srp_connect_ch(ch, multich);
3255 if (ret) {
3256 shost_printk(KERN_ERR, target->scsi_host,
3257 PFX "Connection %d/%d failed\n",
3258 ch_start + cpu_idx,
3259 target->ch_count);
3260 if (node_idx == 0 && cpu_idx == 0) {
3261 goto err_disconnect;
3262 } else {
3263 srp_free_ch_ib(target, ch);
3264 srp_free_req_data(target, ch);
3265 target->ch_count = ch - target->ch;
3266 break;
3267 }
3268 }
3269
3270 multich = true;
3271 cpu_idx++;
3272 }
3273 node_idx++;
3274 }
3275
3276 target->scsi_host->nr_hw_queues = target->ch_count;
3277
3278 ret = srp_add_target(host, target);
3279 if (ret)
3280 goto err_disconnect;
3281
3282 if (target->state != SRP_TARGET_REMOVED) {
3283 shost_printk(KERN_DEBUG, target->scsi_host, PFX
3284 "new target: id_ext %016llx ioc_guid %016llx pkey %04x service_id %016llx sgid %pI6 dgid %pI6\n",
3285 be64_to_cpu(target->id_ext),
3286 be64_to_cpu(target->ioc_guid),
3287 be16_to_cpu(target->pkey),
3288 be64_to_cpu(target->service_id),
3289 target->sgid.raw, target->orig_dgid.raw);
3290 }
3291
3292 ret = count;
3293
3294 out:
3295 mutex_unlock(&host->add_target_mutex);
3296
3297 scsi_host_put(target->scsi_host);
3298
3299 return ret;
3300
3301 err_disconnect:
3302 srp_disconnect_target(target);
3303
3304 for (i = 0; i < target->ch_count; i++) {
3305 ch = &target->ch[i];
3306 srp_free_ch_ib(target, ch);
3307 srp_free_req_data(target, ch);
3308 }
3309
3310 kfree(target->ch);
3311 goto out;
3312 }
3313
3314 static DEVICE_ATTR(add_target, S_IWUSR, NULL, srp_create_target);
3315
3316 static ssize_t show_ibdev(struct device *dev, struct device_attribute *attr,
3317 char *buf)
3318 {
3319 struct srp_host *host = container_of(dev, struct srp_host, dev);
3320
3321 return sprintf(buf, "%s\n", host->srp_dev->dev->name);
3322 }
3323
3324 static DEVICE_ATTR(ibdev, S_IRUGO, show_ibdev, NULL);
3325
3326 static ssize_t show_port(struct device *dev, struct device_attribute *attr,
3327 char *buf)
3328 {
3329 struct srp_host *host = container_of(dev, struct srp_host, dev);
3330
3331 return sprintf(buf, "%d\n", host->port);
3332 }
3333
3334 static DEVICE_ATTR(port, S_IRUGO, show_port, NULL);
3335
3336 static struct srp_host *srp_add_port(struct srp_device *device, u8 port)
3337 {
3338 struct srp_host *host;
3339
3340 host = kzalloc(sizeof *host, GFP_KERNEL);
3341 if (!host)
3342 return NULL;
3343
3344 INIT_LIST_HEAD(&host->target_list);
3345 spin_lock_init(&host->target_lock);
3346 init_completion(&host->released);
3347 mutex_init(&host->add_target_mutex);
3348 host->srp_dev = device;
3349 host->port = port;
3350
3351 host->dev.class = &srp_class;
3352 host->dev.parent = device->dev->dma_device;
3353 dev_set_name(&host->dev, "srp-%s-%d", device->dev->name, port);
3354
3355 if (device_register(&host->dev))
3356 goto free_host;
3357 if (device_create_file(&host->dev, &dev_attr_add_target))
3358 goto err_class;
3359 if (device_create_file(&host->dev, &dev_attr_ibdev))
3360 goto err_class;
3361 if (device_create_file(&host->dev, &dev_attr_port))
3362 goto err_class;
3363
3364 return host;
3365
3366 err_class:
3367 device_unregister(&host->dev);
3368
3369 free_host:
3370 kfree(host);
3371
3372 return NULL;
3373 }
3374
3375 static void srp_add_one(struct ib_device *device)
3376 {
3377 struct srp_device *srp_dev;
3378 struct ib_device_attr *dev_attr;
3379 struct srp_host *host;
3380 int mr_page_shift, p;
3381 u64 max_pages_per_mr;
3382
3383 dev_attr = kmalloc(sizeof *dev_attr, GFP_KERNEL);
3384 if (!dev_attr)
3385 return;
3386
3387 if (ib_query_device(device, dev_attr)) {
3388 pr_warn("Query device failed for %s\n", device->name);
3389 goto free_attr;
3390 }
3391
3392 srp_dev = kmalloc(sizeof *srp_dev, GFP_KERNEL);
3393 if (!srp_dev)
3394 goto free_attr;
3395
3396 srp_dev->has_fmr = (device->alloc_fmr && device->dealloc_fmr &&
3397 device->map_phys_fmr && device->unmap_fmr);
3398 srp_dev->has_fr = (dev_attr->device_cap_flags &
3399 IB_DEVICE_MEM_MGT_EXTENSIONS);
3400 if (!srp_dev->has_fmr && !srp_dev->has_fr)
3401 dev_warn(&device->dev, "neither FMR nor FR is supported\n");
3402
3403 srp_dev->use_fast_reg = (srp_dev->has_fr &&
3404 (!srp_dev->has_fmr || prefer_fr));
3405
3406 /*
3407 * Use the smallest page size supported by the HCA, down to a
3408 * minimum of 4096 bytes. We're unlikely to build large sglists
3409 * out of smaller entries.
3410 */
3411 mr_page_shift = max(12, ffs(dev_attr->page_size_cap) - 1);
3412 srp_dev->mr_page_size = 1 << mr_page_shift;
3413 srp_dev->mr_page_mask = ~((u64) srp_dev->mr_page_size - 1);
3414 max_pages_per_mr = dev_attr->max_mr_size;
3415 do_div(max_pages_per_mr, srp_dev->mr_page_size);
3416 srp_dev->max_pages_per_mr = min_t(u64, SRP_MAX_PAGES_PER_MR,
3417 max_pages_per_mr);
3418 if (srp_dev->use_fast_reg) {
3419 srp_dev->max_pages_per_mr =
3420 min_t(u32, srp_dev->max_pages_per_mr,
3421 dev_attr->max_fast_reg_page_list_len);
3422 }
3423 srp_dev->mr_max_size = srp_dev->mr_page_size *
3424 srp_dev->max_pages_per_mr;
3425 pr_debug("%s: mr_page_shift = %d, dev_attr->max_mr_size = %#llx, dev_attr->max_fast_reg_page_list_len = %u, max_pages_per_mr = %d, mr_max_size = %#x\n",
3426 device->name, mr_page_shift, dev_attr->max_mr_size,
3427 dev_attr->max_fast_reg_page_list_len,
3428 srp_dev->max_pages_per_mr, srp_dev->mr_max_size);
3429
3430 INIT_LIST_HEAD(&srp_dev->dev_list);
3431
3432 srp_dev->dev = device;
3433 srp_dev->pd = ib_alloc_pd(device);
3434 if (IS_ERR(srp_dev->pd))
3435 goto free_dev;
3436
3437 srp_dev->mr = ib_get_dma_mr(srp_dev->pd,
3438 IB_ACCESS_LOCAL_WRITE |
3439 IB_ACCESS_REMOTE_READ |
3440 IB_ACCESS_REMOTE_WRITE);
3441 if (IS_ERR(srp_dev->mr))
3442 goto err_pd;
3443
3444 for (p = rdma_start_port(device); p <= rdma_end_port(device); ++p) {
3445 host = srp_add_port(srp_dev, p);
3446 if (host)
3447 list_add_tail(&host->list, &srp_dev->dev_list);
3448 }
3449
3450 ib_set_client_data(device, &srp_client, srp_dev);
3451
3452 goto free_attr;
3453
3454 err_pd:
3455 ib_dealloc_pd(srp_dev->pd);
3456
3457 free_dev:
3458 kfree(srp_dev);
3459
3460 free_attr:
3461 kfree(dev_attr);
3462 }
3463
3464 static void srp_remove_one(struct ib_device *device, void *client_data)
3465 {
3466 struct srp_device *srp_dev;
3467 struct srp_host *host, *tmp_host;
3468 struct srp_target_port *target;
3469
3470 srp_dev = client_data;
3471 if (!srp_dev)
3472 return;
3473
3474 list_for_each_entry_safe(host, tmp_host, &srp_dev->dev_list, list) {
3475 device_unregister(&host->dev);
3476 /*
3477 * Wait for the sysfs entry to go away, so that no new
3478 * target ports can be created.
3479 */
3480 wait_for_completion(&host->released);
3481
3482 /*
3483 * Remove all target ports.
3484 */
3485 spin_lock(&host->target_lock);
3486 list_for_each_entry(target, &host->target_list, list)
3487 srp_queue_remove_work(target);
3488 spin_unlock(&host->target_lock);
3489
3490 /*
3491 * Wait for tl_err and target port removal tasks.
3492 */
3493 flush_workqueue(system_long_wq);
3494 flush_workqueue(srp_remove_wq);
3495
3496 kfree(host);
3497 }
3498
3499 ib_dereg_mr(srp_dev->mr);
3500 ib_dealloc_pd(srp_dev->pd);
3501
3502 kfree(srp_dev);
3503 }
3504
3505 static struct srp_function_template ib_srp_transport_functions = {
3506 .has_rport_state = true,
3507 .reset_timer_if_blocked = true,
3508 .reconnect_delay = &srp_reconnect_delay,
3509 .fast_io_fail_tmo = &srp_fast_io_fail_tmo,
3510 .dev_loss_tmo = &srp_dev_loss_tmo,
3511 .reconnect = srp_rport_reconnect,
3512 .rport_delete = srp_rport_delete,
3513 .terminate_rport_io = srp_terminate_io,
3514 };
3515
3516 static int __init srp_init_module(void)
3517 {
3518 int ret;
3519
3520 BUILD_BUG_ON(FIELD_SIZEOF(struct ib_wc, wr_id) < sizeof(void *));
3521
3522 if (srp_sg_tablesize) {
3523 pr_warn("srp_sg_tablesize is deprecated, please use cmd_sg_entries\n");
3524 if (!cmd_sg_entries)
3525 cmd_sg_entries = srp_sg_tablesize;
3526 }
3527
3528 if (!cmd_sg_entries)
3529 cmd_sg_entries = SRP_DEF_SG_TABLESIZE;
3530
3531 if (cmd_sg_entries > 255) {
3532 pr_warn("Clamping cmd_sg_entries to 255\n");
3533 cmd_sg_entries = 255;
3534 }
3535
3536 if (!indirect_sg_entries)
3537 indirect_sg_entries = cmd_sg_entries;
3538 else if (indirect_sg_entries < cmd_sg_entries) {
3539 pr_warn("Bumping up indirect_sg_entries to match cmd_sg_entries (%u)\n",
3540 cmd_sg_entries);
3541 indirect_sg_entries = cmd_sg_entries;
3542 }
3543
3544 srp_remove_wq = create_workqueue("srp_remove");
3545 if (!srp_remove_wq) {
3546 ret = -ENOMEM;
3547 goto out;
3548 }
3549
3550 ret = -ENOMEM;
3551 ib_srp_transport_template =
3552 srp_attach_transport(&ib_srp_transport_functions);
3553 if (!ib_srp_transport_template)
3554 goto destroy_wq;
3555
3556 ret = class_register(&srp_class);
3557 if (ret) {
3558 pr_err("couldn't register class infiniband_srp\n");
3559 goto release_tr;
3560 }
3561
3562 ib_sa_register_client(&srp_sa_client);
3563
3564 ret = ib_register_client(&srp_client);
3565 if (ret) {
3566 pr_err("couldn't register IB client\n");
3567 goto unreg_sa;
3568 }
3569
3570 out:
3571 return ret;
3572
3573 unreg_sa:
3574 ib_sa_unregister_client(&srp_sa_client);
3575 class_unregister(&srp_class);
3576
3577 release_tr:
3578 srp_release_transport(ib_srp_transport_template);
3579
3580 destroy_wq:
3581 destroy_workqueue(srp_remove_wq);
3582 goto out;
3583 }
3584
3585 static void __exit srp_cleanup_module(void)
3586 {
3587 ib_unregister_client(&srp_client);
3588 ib_sa_unregister_client(&srp_sa_client);
3589 class_unregister(&srp_class);
3590 srp_release_transport(ib_srp_transport_template);
3591 destroy_workqueue(srp_remove_wq);
3592 }
3593
3594 module_init(srp_init_module);
3595 module_exit(srp_cleanup_module);
This page took 0.158387 seconds and 5 git commands to generate.