IB/core: Enhance ib_map_mr_sg()
[deliverable/linux.git] / drivers / infiniband / ulp / srp / ib_srp.c
1 /*
2 * Copyright (c) 2005 Cisco Systems. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/err.h>
39 #include <linux/string.h>
40 #include <linux/parser.h>
41 #include <linux/random.h>
42 #include <linux/jiffies.h>
43 #include <rdma/ib_cache.h>
44
45 #include <linux/atomic.h>
46
47 #include <scsi/scsi.h>
48 #include <scsi/scsi_device.h>
49 #include <scsi/scsi_dbg.h>
50 #include <scsi/scsi_tcq.h>
51 #include <scsi/srp.h>
52 #include <scsi/scsi_transport_srp.h>
53
54 #include "ib_srp.h"
55
56 #define DRV_NAME "ib_srp"
57 #define PFX DRV_NAME ": "
58 #define DRV_VERSION "2.0"
59 #define DRV_RELDATE "July 26, 2015"
60
61 MODULE_AUTHOR("Roland Dreier");
62 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol initiator");
63 MODULE_LICENSE("Dual BSD/GPL");
64 MODULE_VERSION(DRV_VERSION);
65 MODULE_INFO(release_date, DRV_RELDATE);
66
67 static unsigned int srp_sg_tablesize;
68 static unsigned int cmd_sg_entries;
69 static unsigned int indirect_sg_entries;
70 static bool allow_ext_sg;
71 static bool prefer_fr = true;
72 static bool register_always = true;
73 static int topspin_workarounds = 1;
74
75 module_param(srp_sg_tablesize, uint, 0444);
76 MODULE_PARM_DESC(srp_sg_tablesize, "Deprecated name for cmd_sg_entries");
77
78 module_param(cmd_sg_entries, uint, 0444);
79 MODULE_PARM_DESC(cmd_sg_entries,
80 "Default number of gather/scatter entries in the SRP command (default is 12, max 255)");
81
82 module_param(indirect_sg_entries, uint, 0444);
83 MODULE_PARM_DESC(indirect_sg_entries,
84 "Default max number of gather/scatter entries (default is 12, max is " __stringify(SCSI_MAX_SG_CHAIN_SEGMENTS) ")");
85
86 module_param(allow_ext_sg, bool, 0444);
87 MODULE_PARM_DESC(allow_ext_sg,
88 "Default behavior when there are more than cmd_sg_entries S/G entries after mapping; fails the request when false (default false)");
89
90 module_param(topspin_workarounds, int, 0444);
91 MODULE_PARM_DESC(topspin_workarounds,
92 "Enable workarounds for Topspin/Cisco SRP target bugs if != 0");
93
94 module_param(prefer_fr, bool, 0444);
95 MODULE_PARM_DESC(prefer_fr,
96 "Whether to use fast registration if both FMR and fast registration are supported");
97
98 module_param(register_always, bool, 0444);
99 MODULE_PARM_DESC(register_always,
100 "Use memory registration even for contiguous memory regions");
101
102 static const struct kernel_param_ops srp_tmo_ops;
103
104 static int srp_reconnect_delay = 10;
105 module_param_cb(reconnect_delay, &srp_tmo_ops, &srp_reconnect_delay,
106 S_IRUGO | S_IWUSR);
107 MODULE_PARM_DESC(reconnect_delay, "Time between successive reconnect attempts");
108
109 static int srp_fast_io_fail_tmo = 15;
110 module_param_cb(fast_io_fail_tmo, &srp_tmo_ops, &srp_fast_io_fail_tmo,
111 S_IRUGO | S_IWUSR);
112 MODULE_PARM_DESC(fast_io_fail_tmo,
113 "Number of seconds between the observation of a transport"
114 " layer error and failing all I/O. \"off\" means that this"
115 " functionality is disabled.");
116
117 static int srp_dev_loss_tmo = 600;
118 module_param_cb(dev_loss_tmo, &srp_tmo_ops, &srp_dev_loss_tmo,
119 S_IRUGO | S_IWUSR);
120 MODULE_PARM_DESC(dev_loss_tmo,
121 "Maximum number of seconds that the SRP transport should"
122 " insulate transport layer errors. After this time has been"
123 " exceeded the SCSI host is removed. Should be"
124 " between 1 and " __stringify(SCSI_DEVICE_BLOCK_MAX_TIMEOUT)
125 " if fast_io_fail_tmo has not been set. \"off\" means that"
126 " this functionality is disabled.");
127
128 static unsigned ch_count;
129 module_param(ch_count, uint, 0444);
130 MODULE_PARM_DESC(ch_count,
131 "Number of RDMA channels to use for communication with an SRP target. Using more than one channel improves performance if the HCA supports multiple completion vectors. The default value is the minimum of four times the number of online CPU sockets and the number of completion vectors supported by the HCA.");
132
133 static void srp_add_one(struct ib_device *device);
134 static void srp_remove_one(struct ib_device *device, void *client_data);
135 static void srp_recv_done(struct ib_cq *cq, struct ib_wc *wc);
136 static void srp_handle_qp_err(struct ib_cq *cq, struct ib_wc *wc,
137 const char *opname);
138 static int srp_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event);
139
140 static struct scsi_transport_template *ib_srp_transport_template;
141 static struct workqueue_struct *srp_remove_wq;
142
143 static struct ib_client srp_client = {
144 .name = "srp",
145 .add = srp_add_one,
146 .remove = srp_remove_one
147 };
148
149 static struct ib_sa_client srp_sa_client;
150
151 static int srp_tmo_get(char *buffer, const struct kernel_param *kp)
152 {
153 int tmo = *(int *)kp->arg;
154
155 if (tmo >= 0)
156 return sprintf(buffer, "%d", tmo);
157 else
158 return sprintf(buffer, "off");
159 }
160
161 static int srp_tmo_set(const char *val, const struct kernel_param *kp)
162 {
163 int tmo, res;
164
165 res = srp_parse_tmo(&tmo, val);
166 if (res)
167 goto out;
168
169 if (kp->arg == &srp_reconnect_delay)
170 res = srp_tmo_valid(tmo, srp_fast_io_fail_tmo,
171 srp_dev_loss_tmo);
172 else if (kp->arg == &srp_fast_io_fail_tmo)
173 res = srp_tmo_valid(srp_reconnect_delay, tmo, srp_dev_loss_tmo);
174 else
175 res = srp_tmo_valid(srp_reconnect_delay, srp_fast_io_fail_tmo,
176 tmo);
177 if (res)
178 goto out;
179 *(int *)kp->arg = tmo;
180
181 out:
182 return res;
183 }
184
185 static const struct kernel_param_ops srp_tmo_ops = {
186 .get = srp_tmo_get,
187 .set = srp_tmo_set,
188 };
189
190 static inline struct srp_target_port *host_to_target(struct Scsi_Host *host)
191 {
192 return (struct srp_target_port *) host->hostdata;
193 }
194
195 static const char *srp_target_info(struct Scsi_Host *host)
196 {
197 return host_to_target(host)->target_name;
198 }
199
200 static int srp_target_is_topspin(struct srp_target_port *target)
201 {
202 static const u8 topspin_oui[3] = { 0x00, 0x05, 0xad };
203 static const u8 cisco_oui[3] = { 0x00, 0x1b, 0x0d };
204
205 return topspin_workarounds &&
206 (!memcmp(&target->ioc_guid, topspin_oui, sizeof topspin_oui) ||
207 !memcmp(&target->ioc_guid, cisco_oui, sizeof cisco_oui));
208 }
209
210 static struct srp_iu *srp_alloc_iu(struct srp_host *host, size_t size,
211 gfp_t gfp_mask,
212 enum dma_data_direction direction)
213 {
214 struct srp_iu *iu;
215
216 iu = kmalloc(sizeof *iu, gfp_mask);
217 if (!iu)
218 goto out;
219
220 iu->buf = kzalloc(size, gfp_mask);
221 if (!iu->buf)
222 goto out_free_iu;
223
224 iu->dma = ib_dma_map_single(host->srp_dev->dev, iu->buf, size,
225 direction);
226 if (ib_dma_mapping_error(host->srp_dev->dev, iu->dma))
227 goto out_free_buf;
228
229 iu->size = size;
230 iu->direction = direction;
231
232 return iu;
233
234 out_free_buf:
235 kfree(iu->buf);
236 out_free_iu:
237 kfree(iu);
238 out:
239 return NULL;
240 }
241
242 static void srp_free_iu(struct srp_host *host, struct srp_iu *iu)
243 {
244 if (!iu)
245 return;
246
247 ib_dma_unmap_single(host->srp_dev->dev, iu->dma, iu->size,
248 iu->direction);
249 kfree(iu->buf);
250 kfree(iu);
251 }
252
253 static void srp_qp_event(struct ib_event *event, void *context)
254 {
255 pr_debug("QP event %s (%d)\n",
256 ib_event_msg(event->event), event->event);
257 }
258
259 static int srp_init_qp(struct srp_target_port *target,
260 struct ib_qp *qp)
261 {
262 struct ib_qp_attr *attr;
263 int ret;
264
265 attr = kmalloc(sizeof *attr, GFP_KERNEL);
266 if (!attr)
267 return -ENOMEM;
268
269 ret = ib_find_cached_pkey(target->srp_host->srp_dev->dev,
270 target->srp_host->port,
271 be16_to_cpu(target->pkey),
272 &attr->pkey_index);
273 if (ret)
274 goto out;
275
276 attr->qp_state = IB_QPS_INIT;
277 attr->qp_access_flags = (IB_ACCESS_REMOTE_READ |
278 IB_ACCESS_REMOTE_WRITE);
279 attr->port_num = target->srp_host->port;
280
281 ret = ib_modify_qp(qp, attr,
282 IB_QP_STATE |
283 IB_QP_PKEY_INDEX |
284 IB_QP_ACCESS_FLAGS |
285 IB_QP_PORT);
286
287 out:
288 kfree(attr);
289 return ret;
290 }
291
292 static int srp_new_cm_id(struct srp_rdma_ch *ch)
293 {
294 struct srp_target_port *target = ch->target;
295 struct ib_cm_id *new_cm_id;
296
297 new_cm_id = ib_create_cm_id(target->srp_host->srp_dev->dev,
298 srp_cm_handler, ch);
299 if (IS_ERR(new_cm_id))
300 return PTR_ERR(new_cm_id);
301
302 if (ch->cm_id)
303 ib_destroy_cm_id(ch->cm_id);
304 ch->cm_id = new_cm_id;
305 ch->path.sgid = target->sgid;
306 ch->path.dgid = target->orig_dgid;
307 ch->path.pkey = target->pkey;
308 ch->path.service_id = target->service_id;
309
310 return 0;
311 }
312
313 static struct ib_fmr_pool *srp_alloc_fmr_pool(struct srp_target_port *target)
314 {
315 struct srp_device *dev = target->srp_host->srp_dev;
316 struct ib_fmr_pool_param fmr_param;
317
318 memset(&fmr_param, 0, sizeof(fmr_param));
319 fmr_param.pool_size = target->mr_pool_size;
320 fmr_param.dirty_watermark = fmr_param.pool_size / 4;
321 fmr_param.cache = 1;
322 fmr_param.max_pages_per_fmr = dev->max_pages_per_mr;
323 fmr_param.page_shift = ilog2(dev->mr_page_size);
324 fmr_param.access = (IB_ACCESS_LOCAL_WRITE |
325 IB_ACCESS_REMOTE_WRITE |
326 IB_ACCESS_REMOTE_READ);
327
328 return ib_create_fmr_pool(dev->pd, &fmr_param);
329 }
330
331 /**
332 * srp_destroy_fr_pool() - free the resources owned by a pool
333 * @pool: Fast registration pool to be destroyed.
334 */
335 static void srp_destroy_fr_pool(struct srp_fr_pool *pool)
336 {
337 int i;
338 struct srp_fr_desc *d;
339
340 if (!pool)
341 return;
342
343 for (i = 0, d = &pool->desc[0]; i < pool->size; i++, d++) {
344 if (d->mr)
345 ib_dereg_mr(d->mr);
346 }
347 kfree(pool);
348 }
349
350 /**
351 * srp_create_fr_pool() - allocate and initialize a pool for fast registration
352 * @device: IB device to allocate fast registration descriptors for.
353 * @pd: Protection domain associated with the FR descriptors.
354 * @pool_size: Number of descriptors to allocate.
355 * @max_page_list_len: Maximum fast registration work request page list length.
356 */
357 static struct srp_fr_pool *srp_create_fr_pool(struct ib_device *device,
358 struct ib_pd *pd, int pool_size,
359 int max_page_list_len)
360 {
361 struct srp_fr_pool *pool;
362 struct srp_fr_desc *d;
363 struct ib_mr *mr;
364 int i, ret = -EINVAL;
365
366 if (pool_size <= 0)
367 goto err;
368 ret = -ENOMEM;
369 pool = kzalloc(sizeof(struct srp_fr_pool) +
370 pool_size * sizeof(struct srp_fr_desc), GFP_KERNEL);
371 if (!pool)
372 goto err;
373 pool->size = pool_size;
374 pool->max_page_list_len = max_page_list_len;
375 spin_lock_init(&pool->lock);
376 INIT_LIST_HEAD(&pool->free_list);
377
378 for (i = 0, d = &pool->desc[0]; i < pool->size; i++, d++) {
379 mr = ib_alloc_mr(pd, IB_MR_TYPE_MEM_REG,
380 max_page_list_len);
381 if (IS_ERR(mr)) {
382 ret = PTR_ERR(mr);
383 goto destroy_pool;
384 }
385 d->mr = mr;
386 list_add_tail(&d->entry, &pool->free_list);
387 }
388
389 out:
390 return pool;
391
392 destroy_pool:
393 srp_destroy_fr_pool(pool);
394
395 err:
396 pool = ERR_PTR(ret);
397 goto out;
398 }
399
400 /**
401 * srp_fr_pool_get() - obtain a descriptor suitable for fast registration
402 * @pool: Pool to obtain descriptor from.
403 */
404 static struct srp_fr_desc *srp_fr_pool_get(struct srp_fr_pool *pool)
405 {
406 struct srp_fr_desc *d = NULL;
407 unsigned long flags;
408
409 spin_lock_irqsave(&pool->lock, flags);
410 if (!list_empty(&pool->free_list)) {
411 d = list_first_entry(&pool->free_list, typeof(*d), entry);
412 list_del(&d->entry);
413 }
414 spin_unlock_irqrestore(&pool->lock, flags);
415
416 return d;
417 }
418
419 /**
420 * srp_fr_pool_put() - put an FR descriptor back in the free list
421 * @pool: Pool the descriptor was allocated from.
422 * @desc: Pointer to an array of fast registration descriptor pointers.
423 * @n: Number of descriptors to put back.
424 *
425 * Note: The caller must already have queued an invalidation request for
426 * desc->mr->rkey before calling this function.
427 */
428 static void srp_fr_pool_put(struct srp_fr_pool *pool, struct srp_fr_desc **desc,
429 int n)
430 {
431 unsigned long flags;
432 int i;
433
434 spin_lock_irqsave(&pool->lock, flags);
435 for (i = 0; i < n; i++)
436 list_add(&desc[i]->entry, &pool->free_list);
437 spin_unlock_irqrestore(&pool->lock, flags);
438 }
439
440 static struct srp_fr_pool *srp_alloc_fr_pool(struct srp_target_port *target)
441 {
442 struct srp_device *dev = target->srp_host->srp_dev;
443
444 return srp_create_fr_pool(dev->dev, dev->pd, target->mr_pool_size,
445 dev->max_pages_per_mr);
446 }
447
448 /**
449 * srp_destroy_qp() - destroy an RDMA queue pair
450 * @qp: RDMA queue pair.
451 *
452 * Drain the qp before destroying it. This avoids that the receive
453 * completion handler can access the queue pair while it is
454 * being destroyed.
455 */
456 static void srp_destroy_qp(struct ib_qp *qp)
457 {
458 ib_drain_rq(qp);
459 ib_destroy_qp(qp);
460 }
461
462 static int srp_create_ch_ib(struct srp_rdma_ch *ch)
463 {
464 struct srp_target_port *target = ch->target;
465 struct srp_device *dev = target->srp_host->srp_dev;
466 struct ib_qp_init_attr *init_attr;
467 struct ib_cq *recv_cq, *send_cq;
468 struct ib_qp *qp;
469 struct ib_fmr_pool *fmr_pool = NULL;
470 struct srp_fr_pool *fr_pool = NULL;
471 const int m = dev->use_fast_reg ? 3 : 1;
472 int ret;
473
474 init_attr = kzalloc(sizeof *init_attr, GFP_KERNEL);
475 if (!init_attr)
476 return -ENOMEM;
477
478 /* queue_size + 1 for ib_drain_rq() */
479 recv_cq = ib_alloc_cq(dev->dev, ch, target->queue_size + 1,
480 ch->comp_vector, IB_POLL_SOFTIRQ);
481 if (IS_ERR(recv_cq)) {
482 ret = PTR_ERR(recv_cq);
483 goto err;
484 }
485
486 send_cq = ib_alloc_cq(dev->dev, ch, m * target->queue_size,
487 ch->comp_vector, IB_POLL_DIRECT);
488 if (IS_ERR(send_cq)) {
489 ret = PTR_ERR(send_cq);
490 goto err_recv_cq;
491 }
492
493 init_attr->event_handler = srp_qp_event;
494 init_attr->cap.max_send_wr = m * target->queue_size;
495 init_attr->cap.max_recv_wr = target->queue_size + 1;
496 init_attr->cap.max_recv_sge = 1;
497 init_attr->cap.max_send_sge = 1;
498 init_attr->sq_sig_type = IB_SIGNAL_REQ_WR;
499 init_attr->qp_type = IB_QPT_RC;
500 init_attr->send_cq = send_cq;
501 init_attr->recv_cq = recv_cq;
502
503 qp = ib_create_qp(dev->pd, init_attr);
504 if (IS_ERR(qp)) {
505 ret = PTR_ERR(qp);
506 goto err_send_cq;
507 }
508
509 ret = srp_init_qp(target, qp);
510 if (ret)
511 goto err_qp;
512
513 if (dev->use_fast_reg) {
514 fr_pool = srp_alloc_fr_pool(target);
515 if (IS_ERR(fr_pool)) {
516 ret = PTR_ERR(fr_pool);
517 shost_printk(KERN_WARNING, target->scsi_host, PFX
518 "FR pool allocation failed (%d)\n", ret);
519 goto err_qp;
520 }
521 } else if (dev->use_fmr) {
522 fmr_pool = srp_alloc_fmr_pool(target);
523 if (IS_ERR(fmr_pool)) {
524 ret = PTR_ERR(fmr_pool);
525 shost_printk(KERN_WARNING, target->scsi_host, PFX
526 "FMR pool allocation failed (%d)\n", ret);
527 goto err_qp;
528 }
529 }
530
531 if (ch->qp)
532 srp_destroy_qp(ch->qp);
533 if (ch->recv_cq)
534 ib_free_cq(ch->recv_cq);
535 if (ch->send_cq)
536 ib_free_cq(ch->send_cq);
537
538 ch->qp = qp;
539 ch->recv_cq = recv_cq;
540 ch->send_cq = send_cq;
541
542 if (dev->use_fast_reg) {
543 if (ch->fr_pool)
544 srp_destroy_fr_pool(ch->fr_pool);
545 ch->fr_pool = fr_pool;
546 } else if (dev->use_fmr) {
547 if (ch->fmr_pool)
548 ib_destroy_fmr_pool(ch->fmr_pool);
549 ch->fmr_pool = fmr_pool;
550 }
551
552 kfree(init_attr);
553 return 0;
554
555 err_qp:
556 srp_destroy_qp(qp);
557
558 err_send_cq:
559 ib_free_cq(send_cq);
560
561 err_recv_cq:
562 ib_free_cq(recv_cq);
563
564 err:
565 kfree(init_attr);
566 return ret;
567 }
568
569 /*
570 * Note: this function may be called without srp_alloc_iu_bufs() having been
571 * invoked. Hence the ch->[rt]x_ring checks.
572 */
573 static void srp_free_ch_ib(struct srp_target_port *target,
574 struct srp_rdma_ch *ch)
575 {
576 struct srp_device *dev = target->srp_host->srp_dev;
577 int i;
578
579 if (!ch->target)
580 return;
581
582 if (ch->cm_id) {
583 ib_destroy_cm_id(ch->cm_id);
584 ch->cm_id = NULL;
585 }
586
587 /* If srp_new_cm_id() succeeded but srp_create_ch_ib() not, return. */
588 if (!ch->qp)
589 return;
590
591 if (dev->use_fast_reg) {
592 if (ch->fr_pool)
593 srp_destroy_fr_pool(ch->fr_pool);
594 } else if (dev->use_fmr) {
595 if (ch->fmr_pool)
596 ib_destroy_fmr_pool(ch->fmr_pool);
597 }
598
599 srp_destroy_qp(ch->qp);
600 ib_free_cq(ch->send_cq);
601 ib_free_cq(ch->recv_cq);
602
603 /*
604 * Avoid that the SCSI error handler tries to use this channel after
605 * it has been freed. The SCSI error handler can namely continue
606 * trying to perform recovery actions after scsi_remove_host()
607 * returned.
608 */
609 ch->target = NULL;
610
611 ch->qp = NULL;
612 ch->send_cq = ch->recv_cq = NULL;
613
614 if (ch->rx_ring) {
615 for (i = 0; i < target->queue_size; ++i)
616 srp_free_iu(target->srp_host, ch->rx_ring[i]);
617 kfree(ch->rx_ring);
618 ch->rx_ring = NULL;
619 }
620 if (ch->tx_ring) {
621 for (i = 0; i < target->queue_size; ++i)
622 srp_free_iu(target->srp_host, ch->tx_ring[i]);
623 kfree(ch->tx_ring);
624 ch->tx_ring = NULL;
625 }
626 }
627
628 static void srp_path_rec_completion(int status,
629 struct ib_sa_path_rec *pathrec,
630 void *ch_ptr)
631 {
632 struct srp_rdma_ch *ch = ch_ptr;
633 struct srp_target_port *target = ch->target;
634
635 ch->status = status;
636 if (status)
637 shost_printk(KERN_ERR, target->scsi_host,
638 PFX "Got failed path rec status %d\n", status);
639 else
640 ch->path = *pathrec;
641 complete(&ch->done);
642 }
643
644 static int srp_lookup_path(struct srp_rdma_ch *ch)
645 {
646 struct srp_target_port *target = ch->target;
647 int ret;
648
649 ch->path.numb_path = 1;
650
651 init_completion(&ch->done);
652
653 ch->path_query_id = ib_sa_path_rec_get(&srp_sa_client,
654 target->srp_host->srp_dev->dev,
655 target->srp_host->port,
656 &ch->path,
657 IB_SA_PATH_REC_SERVICE_ID |
658 IB_SA_PATH_REC_DGID |
659 IB_SA_PATH_REC_SGID |
660 IB_SA_PATH_REC_NUMB_PATH |
661 IB_SA_PATH_REC_PKEY,
662 SRP_PATH_REC_TIMEOUT_MS,
663 GFP_KERNEL,
664 srp_path_rec_completion,
665 ch, &ch->path_query);
666 if (ch->path_query_id < 0)
667 return ch->path_query_id;
668
669 ret = wait_for_completion_interruptible(&ch->done);
670 if (ret < 0)
671 return ret;
672
673 if (ch->status < 0)
674 shost_printk(KERN_WARNING, target->scsi_host,
675 PFX "Path record query failed\n");
676
677 return ch->status;
678 }
679
680 static int srp_send_req(struct srp_rdma_ch *ch, bool multich)
681 {
682 struct srp_target_port *target = ch->target;
683 struct {
684 struct ib_cm_req_param param;
685 struct srp_login_req priv;
686 } *req = NULL;
687 int status;
688
689 req = kzalloc(sizeof *req, GFP_KERNEL);
690 if (!req)
691 return -ENOMEM;
692
693 req->param.primary_path = &ch->path;
694 req->param.alternate_path = NULL;
695 req->param.service_id = target->service_id;
696 req->param.qp_num = ch->qp->qp_num;
697 req->param.qp_type = ch->qp->qp_type;
698 req->param.private_data = &req->priv;
699 req->param.private_data_len = sizeof req->priv;
700 req->param.flow_control = 1;
701
702 get_random_bytes(&req->param.starting_psn, 4);
703 req->param.starting_psn &= 0xffffff;
704
705 /*
706 * Pick some arbitrary defaults here; we could make these
707 * module parameters if anyone cared about setting them.
708 */
709 req->param.responder_resources = 4;
710 req->param.remote_cm_response_timeout = 20;
711 req->param.local_cm_response_timeout = 20;
712 req->param.retry_count = target->tl_retry_count;
713 req->param.rnr_retry_count = 7;
714 req->param.max_cm_retries = 15;
715
716 req->priv.opcode = SRP_LOGIN_REQ;
717 req->priv.tag = 0;
718 req->priv.req_it_iu_len = cpu_to_be32(target->max_iu_len);
719 req->priv.req_buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT |
720 SRP_BUF_FORMAT_INDIRECT);
721 req->priv.req_flags = (multich ? SRP_MULTICHAN_MULTI :
722 SRP_MULTICHAN_SINGLE);
723 /*
724 * In the published SRP specification (draft rev. 16a), the
725 * port identifier format is 8 bytes of ID extension followed
726 * by 8 bytes of GUID. Older drafts put the two halves in the
727 * opposite order, so that the GUID comes first.
728 *
729 * Targets conforming to these obsolete drafts can be
730 * recognized by the I/O Class they report.
731 */
732 if (target->io_class == SRP_REV10_IB_IO_CLASS) {
733 memcpy(req->priv.initiator_port_id,
734 &target->sgid.global.interface_id, 8);
735 memcpy(req->priv.initiator_port_id + 8,
736 &target->initiator_ext, 8);
737 memcpy(req->priv.target_port_id, &target->ioc_guid, 8);
738 memcpy(req->priv.target_port_id + 8, &target->id_ext, 8);
739 } else {
740 memcpy(req->priv.initiator_port_id,
741 &target->initiator_ext, 8);
742 memcpy(req->priv.initiator_port_id + 8,
743 &target->sgid.global.interface_id, 8);
744 memcpy(req->priv.target_port_id, &target->id_ext, 8);
745 memcpy(req->priv.target_port_id + 8, &target->ioc_guid, 8);
746 }
747
748 /*
749 * Topspin/Cisco SRP targets will reject our login unless we
750 * zero out the first 8 bytes of our initiator port ID and set
751 * the second 8 bytes to the local node GUID.
752 */
753 if (srp_target_is_topspin(target)) {
754 shost_printk(KERN_DEBUG, target->scsi_host,
755 PFX "Topspin/Cisco initiator port ID workaround "
756 "activated for target GUID %016llx\n",
757 be64_to_cpu(target->ioc_guid));
758 memset(req->priv.initiator_port_id, 0, 8);
759 memcpy(req->priv.initiator_port_id + 8,
760 &target->srp_host->srp_dev->dev->node_guid, 8);
761 }
762
763 status = ib_send_cm_req(ch->cm_id, &req->param);
764
765 kfree(req);
766
767 return status;
768 }
769
770 static bool srp_queue_remove_work(struct srp_target_port *target)
771 {
772 bool changed = false;
773
774 spin_lock_irq(&target->lock);
775 if (target->state != SRP_TARGET_REMOVED) {
776 target->state = SRP_TARGET_REMOVED;
777 changed = true;
778 }
779 spin_unlock_irq(&target->lock);
780
781 if (changed)
782 queue_work(srp_remove_wq, &target->remove_work);
783
784 return changed;
785 }
786
787 static void srp_disconnect_target(struct srp_target_port *target)
788 {
789 struct srp_rdma_ch *ch;
790 int i;
791
792 /* XXX should send SRP_I_LOGOUT request */
793
794 for (i = 0; i < target->ch_count; i++) {
795 ch = &target->ch[i];
796 ch->connected = false;
797 if (ch->cm_id && ib_send_cm_dreq(ch->cm_id, NULL, 0)) {
798 shost_printk(KERN_DEBUG, target->scsi_host,
799 PFX "Sending CM DREQ failed\n");
800 }
801 }
802 }
803
804 static void srp_free_req_data(struct srp_target_port *target,
805 struct srp_rdma_ch *ch)
806 {
807 struct srp_device *dev = target->srp_host->srp_dev;
808 struct ib_device *ibdev = dev->dev;
809 struct srp_request *req;
810 int i;
811
812 if (!ch->req_ring)
813 return;
814
815 for (i = 0; i < target->req_ring_size; ++i) {
816 req = &ch->req_ring[i];
817 if (dev->use_fast_reg) {
818 kfree(req->fr_list);
819 } else {
820 kfree(req->fmr_list);
821 kfree(req->map_page);
822 }
823 if (req->indirect_dma_addr) {
824 ib_dma_unmap_single(ibdev, req->indirect_dma_addr,
825 target->indirect_size,
826 DMA_TO_DEVICE);
827 }
828 kfree(req->indirect_desc);
829 }
830
831 kfree(ch->req_ring);
832 ch->req_ring = NULL;
833 }
834
835 static int srp_alloc_req_data(struct srp_rdma_ch *ch)
836 {
837 struct srp_target_port *target = ch->target;
838 struct srp_device *srp_dev = target->srp_host->srp_dev;
839 struct ib_device *ibdev = srp_dev->dev;
840 struct srp_request *req;
841 void *mr_list;
842 dma_addr_t dma_addr;
843 int i, ret = -ENOMEM;
844
845 ch->req_ring = kcalloc(target->req_ring_size, sizeof(*ch->req_ring),
846 GFP_KERNEL);
847 if (!ch->req_ring)
848 goto out;
849
850 for (i = 0; i < target->req_ring_size; ++i) {
851 req = &ch->req_ring[i];
852 mr_list = kmalloc(target->cmd_sg_cnt * sizeof(void *),
853 GFP_KERNEL);
854 if (!mr_list)
855 goto out;
856 if (srp_dev->use_fast_reg) {
857 req->fr_list = mr_list;
858 } else {
859 req->fmr_list = mr_list;
860 req->map_page = kmalloc(srp_dev->max_pages_per_mr *
861 sizeof(void *), GFP_KERNEL);
862 if (!req->map_page)
863 goto out;
864 }
865 req->indirect_desc = kmalloc(target->indirect_size, GFP_KERNEL);
866 if (!req->indirect_desc)
867 goto out;
868
869 dma_addr = ib_dma_map_single(ibdev, req->indirect_desc,
870 target->indirect_size,
871 DMA_TO_DEVICE);
872 if (ib_dma_mapping_error(ibdev, dma_addr))
873 goto out;
874
875 req->indirect_dma_addr = dma_addr;
876 }
877 ret = 0;
878
879 out:
880 return ret;
881 }
882
883 /**
884 * srp_del_scsi_host_attr() - Remove attributes defined in the host template.
885 * @shost: SCSI host whose attributes to remove from sysfs.
886 *
887 * Note: Any attributes defined in the host template and that did not exist
888 * before invocation of this function will be ignored.
889 */
890 static void srp_del_scsi_host_attr(struct Scsi_Host *shost)
891 {
892 struct device_attribute **attr;
893
894 for (attr = shost->hostt->shost_attrs; attr && *attr; ++attr)
895 device_remove_file(&shost->shost_dev, *attr);
896 }
897
898 static void srp_remove_target(struct srp_target_port *target)
899 {
900 struct srp_rdma_ch *ch;
901 int i;
902
903 WARN_ON_ONCE(target->state != SRP_TARGET_REMOVED);
904
905 srp_del_scsi_host_attr(target->scsi_host);
906 srp_rport_get(target->rport);
907 srp_remove_host(target->scsi_host);
908 scsi_remove_host(target->scsi_host);
909 srp_stop_rport_timers(target->rport);
910 srp_disconnect_target(target);
911 for (i = 0; i < target->ch_count; i++) {
912 ch = &target->ch[i];
913 srp_free_ch_ib(target, ch);
914 }
915 cancel_work_sync(&target->tl_err_work);
916 srp_rport_put(target->rport);
917 for (i = 0; i < target->ch_count; i++) {
918 ch = &target->ch[i];
919 srp_free_req_data(target, ch);
920 }
921 kfree(target->ch);
922 target->ch = NULL;
923
924 spin_lock(&target->srp_host->target_lock);
925 list_del(&target->list);
926 spin_unlock(&target->srp_host->target_lock);
927
928 scsi_host_put(target->scsi_host);
929 }
930
931 static void srp_remove_work(struct work_struct *work)
932 {
933 struct srp_target_port *target =
934 container_of(work, struct srp_target_port, remove_work);
935
936 WARN_ON_ONCE(target->state != SRP_TARGET_REMOVED);
937
938 srp_remove_target(target);
939 }
940
941 static void srp_rport_delete(struct srp_rport *rport)
942 {
943 struct srp_target_port *target = rport->lld_data;
944
945 srp_queue_remove_work(target);
946 }
947
948 /**
949 * srp_connected_ch() - number of connected channels
950 * @target: SRP target port.
951 */
952 static int srp_connected_ch(struct srp_target_port *target)
953 {
954 int i, c = 0;
955
956 for (i = 0; i < target->ch_count; i++)
957 c += target->ch[i].connected;
958
959 return c;
960 }
961
962 static int srp_connect_ch(struct srp_rdma_ch *ch, bool multich)
963 {
964 struct srp_target_port *target = ch->target;
965 int ret;
966
967 WARN_ON_ONCE(!multich && srp_connected_ch(target) > 0);
968
969 ret = srp_lookup_path(ch);
970 if (ret)
971 goto out;
972
973 while (1) {
974 init_completion(&ch->done);
975 ret = srp_send_req(ch, multich);
976 if (ret)
977 goto out;
978 ret = wait_for_completion_interruptible(&ch->done);
979 if (ret < 0)
980 goto out;
981
982 /*
983 * The CM event handling code will set status to
984 * SRP_PORT_REDIRECT if we get a port redirect REJ
985 * back, or SRP_DLID_REDIRECT if we get a lid/qp
986 * redirect REJ back.
987 */
988 ret = ch->status;
989 switch (ret) {
990 case 0:
991 ch->connected = true;
992 goto out;
993
994 case SRP_PORT_REDIRECT:
995 ret = srp_lookup_path(ch);
996 if (ret)
997 goto out;
998 break;
999
1000 case SRP_DLID_REDIRECT:
1001 break;
1002
1003 case SRP_STALE_CONN:
1004 shost_printk(KERN_ERR, target->scsi_host, PFX
1005 "giving up on stale connection\n");
1006 ret = -ECONNRESET;
1007 goto out;
1008
1009 default:
1010 goto out;
1011 }
1012 }
1013
1014 out:
1015 return ret <= 0 ? ret : -ENODEV;
1016 }
1017
1018 static void srp_inv_rkey_err_done(struct ib_cq *cq, struct ib_wc *wc)
1019 {
1020 srp_handle_qp_err(cq, wc, "INV RKEY");
1021 }
1022
1023 static int srp_inv_rkey(struct srp_request *req, struct srp_rdma_ch *ch,
1024 u32 rkey)
1025 {
1026 struct ib_send_wr *bad_wr;
1027 struct ib_send_wr wr = {
1028 .opcode = IB_WR_LOCAL_INV,
1029 .next = NULL,
1030 .num_sge = 0,
1031 .send_flags = 0,
1032 .ex.invalidate_rkey = rkey,
1033 };
1034
1035 wr.wr_cqe = &req->reg_cqe;
1036 req->reg_cqe.done = srp_inv_rkey_err_done;
1037 return ib_post_send(ch->qp, &wr, &bad_wr);
1038 }
1039
1040 static void srp_unmap_data(struct scsi_cmnd *scmnd,
1041 struct srp_rdma_ch *ch,
1042 struct srp_request *req)
1043 {
1044 struct srp_target_port *target = ch->target;
1045 struct srp_device *dev = target->srp_host->srp_dev;
1046 struct ib_device *ibdev = dev->dev;
1047 int i, res;
1048
1049 if (!scsi_sglist(scmnd) ||
1050 (scmnd->sc_data_direction != DMA_TO_DEVICE &&
1051 scmnd->sc_data_direction != DMA_FROM_DEVICE))
1052 return;
1053
1054 if (dev->use_fast_reg) {
1055 struct srp_fr_desc **pfr;
1056
1057 for (i = req->nmdesc, pfr = req->fr_list; i > 0; i--, pfr++) {
1058 res = srp_inv_rkey(req, ch, (*pfr)->mr->rkey);
1059 if (res < 0) {
1060 shost_printk(KERN_ERR, target->scsi_host, PFX
1061 "Queueing INV WR for rkey %#x failed (%d)\n",
1062 (*pfr)->mr->rkey, res);
1063 queue_work(system_long_wq,
1064 &target->tl_err_work);
1065 }
1066 }
1067 if (req->nmdesc)
1068 srp_fr_pool_put(ch->fr_pool, req->fr_list,
1069 req->nmdesc);
1070 } else if (dev->use_fmr) {
1071 struct ib_pool_fmr **pfmr;
1072
1073 for (i = req->nmdesc, pfmr = req->fmr_list; i > 0; i--, pfmr++)
1074 ib_fmr_pool_unmap(*pfmr);
1075 }
1076
1077 ib_dma_unmap_sg(ibdev, scsi_sglist(scmnd), scsi_sg_count(scmnd),
1078 scmnd->sc_data_direction);
1079 }
1080
1081 /**
1082 * srp_claim_req - Take ownership of the scmnd associated with a request.
1083 * @ch: SRP RDMA channel.
1084 * @req: SRP request.
1085 * @sdev: If not NULL, only take ownership for this SCSI device.
1086 * @scmnd: If NULL, take ownership of @req->scmnd. If not NULL, only take
1087 * ownership of @req->scmnd if it equals @scmnd.
1088 *
1089 * Return value:
1090 * Either NULL or a pointer to the SCSI command the caller became owner of.
1091 */
1092 static struct scsi_cmnd *srp_claim_req(struct srp_rdma_ch *ch,
1093 struct srp_request *req,
1094 struct scsi_device *sdev,
1095 struct scsi_cmnd *scmnd)
1096 {
1097 unsigned long flags;
1098
1099 spin_lock_irqsave(&ch->lock, flags);
1100 if (req->scmnd &&
1101 (!sdev || req->scmnd->device == sdev) &&
1102 (!scmnd || req->scmnd == scmnd)) {
1103 scmnd = req->scmnd;
1104 req->scmnd = NULL;
1105 } else {
1106 scmnd = NULL;
1107 }
1108 spin_unlock_irqrestore(&ch->lock, flags);
1109
1110 return scmnd;
1111 }
1112
1113 /**
1114 * srp_free_req() - Unmap data and adjust ch->req_lim.
1115 * @ch: SRP RDMA channel.
1116 * @req: Request to be freed.
1117 * @scmnd: SCSI command associated with @req.
1118 * @req_lim_delta: Amount to be added to @target->req_lim.
1119 */
1120 static void srp_free_req(struct srp_rdma_ch *ch, struct srp_request *req,
1121 struct scsi_cmnd *scmnd, s32 req_lim_delta)
1122 {
1123 unsigned long flags;
1124
1125 srp_unmap_data(scmnd, ch, req);
1126
1127 spin_lock_irqsave(&ch->lock, flags);
1128 ch->req_lim += req_lim_delta;
1129 spin_unlock_irqrestore(&ch->lock, flags);
1130 }
1131
1132 static void srp_finish_req(struct srp_rdma_ch *ch, struct srp_request *req,
1133 struct scsi_device *sdev, int result)
1134 {
1135 struct scsi_cmnd *scmnd = srp_claim_req(ch, req, sdev, NULL);
1136
1137 if (scmnd) {
1138 srp_free_req(ch, req, scmnd, 0);
1139 scmnd->result = result;
1140 scmnd->scsi_done(scmnd);
1141 }
1142 }
1143
1144 static void srp_terminate_io(struct srp_rport *rport)
1145 {
1146 struct srp_target_port *target = rport->lld_data;
1147 struct srp_rdma_ch *ch;
1148 struct Scsi_Host *shost = target->scsi_host;
1149 struct scsi_device *sdev;
1150 int i, j;
1151
1152 /*
1153 * Invoking srp_terminate_io() while srp_queuecommand() is running
1154 * is not safe. Hence the warning statement below.
1155 */
1156 shost_for_each_device(sdev, shost)
1157 WARN_ON_ONCE(sdev->request_queue->request_fn_active);
1158
1159 for (i = 0; i < target->ch_count; i++) {
1160 ch = &target->ch[i];
1161
1162 for (j = 0; j < target->req_ring_size; ++j) {
1163 struct srp_request *req = &ch->req_ring[j];
1164
1165 srp_finish_req(ch, req, NULL,
1166 DID_TRANSPORT_FAILFAST << 16);
1167 }
1168 }
1169 }
1170
1171 /*
1172 * It is up to the caller to ensure that srp_rport_reconnect() calls are
1173 * serialized and that no concurrent srp_queuecommand(), srp_abort(),
1174 * srp_reset_device() or srp_reset_host() calls will occur while this function
1175 * is in progress. One way to realize that is not to call this function
1176 * directly but to call srp_reconnect_rport() instead since that last function
1177 * serializes calls of this function via rport->mutex and also blocks
1178 * srp_queuecommand() calls before invoking this function.
1179 */
1180 static int srp_rport_reconnect(struct srp_rport *rport)
1181 {
1182 struct srp_target_port *target = rport->lld_data;
1183 struct srp_rdma_ch *ch;
1184 int i, j, ret = 0;
1185 bool multich = false;
1186
1187 srp_disconnect_target(target);
1188
1189 if (target->state == SRP_TARGET_SCANNING)
1190 return -ENODEV;
1191
1192 /*
1193 * Now get a new local CM ID so that we avoid confusing the target in
1194 * case things are really fouled up. Doing so also ensures that all CM
1195 * callbacks will have finished before a new QP is allocated.
1196 */
1197 for (i = 0; i < target->ch_count; i++) {
1198 ch = &target->ch[i];
1199 ret += srp_new_cm_id(ch);
1200 }
1201 for (i = 0; i < target->ch_count; i++) {
1202 ch = &target->ch[i];
1203 for (j = 0; j < target->req_ring_size; ++j) {
1204 struct srp_request *req = &ch->req_ring[j];
1205
1206 srp_finish_req(ch, req, NULL, DID_RESET << 16);
1207 }
1208 }
1209 for (i = 0; i < target->ch_count; i++) {
1210 ch = &target->ch[i];
1211 /*
1212 * Whether or not creating a new CM ID succeeded, create a new
1213 * QP. This guarantees that all completion callback function
1214 * invocations have finished before request resetting starts.
1215 */
1216 ret += srp_create_ch_ib(ch);
1217
1218 INIT_LIST_HEAD(&ch->free_tx);
1219 for (j = 0; j < target->queue_size; ++j)
1220 list_add(&ch->tx_ring[j]->list, &ch->free_tx);
1221 }
1222
1223 target->qp_in_error = false;
1224
1225 for (i = 0; i < target->ch_count; i++) {
1226 ch = &target->ch[i];
1227 if (ret)
1228 break;
1229 ret = srp_connect_ch(ch, multich);
1230 multich = true;
1231 }
1232
1233 if (ret == 0)
1234 shost_printk(KERN_INFO, target->scsi_host,
1235 PFX "reconnect succeeded\n");
1236
1237 return ret;
1238 }
1239
1240 static void srp_map_desc(struct srp_map_state *state, dma_addr_t dma_addr,
1241 unsigned int dma_len, u32 rkey)
1242 {
1243 struct srp_direct_buf *desc = state->desc;
1244
1245 WARN_ON_ONCE(!dma_len);
1246
1247 desc->va = cpu_to_be64(dma_addr);
1248 desc->key = cpu_to_be32(rkey);
1249 desc->len = cpu_to_be32(dma_len);
1250
1251 state->total_len += dma_len;
1252 state->desc++;
1253 state->ndesc++;
1254 }
1255
1256 static int srp_map_finish_fmr(struct srp_map_state *state,
1257 struct srp_rdma_ch *ch)
1258 {
1259 struct srp_target_port *target = ch->target;
1260 struct srp_device *dev = target->srp_host->srp_dev;
1261 struct ib_pool_fmr *fmr;
1262 u64 io_addr = 0;
1263
1264 if (state->fmr.next >= state->fmr.end)
1265 return -ENOMEM;
1266
1267 WARN_ON_ONCE(!dev->use_fmr);
1268
1269 if (state->npages == 0)
1270 return 0;
1271
1272 if (state->npages == 1 && target->global_mr) {
1273 srp_map_desc(state, state->base_dma_addr, state->dma_len,
1274 target->global_mr->rkey);
1275 goto reset_state;
1276 }
1277
1278 fmr = ib_fmr_pool_map_phys(ch->fmr_pool, state->pages,
1279 state->npages, io_addr);
1280 if (IS_ERR(fmr))
1281 return PTR_ERR(fmr);
1282
1283 *state->fmr.next++ = fmr;
1284 state->nmdesc++;
1285
1286 srp_map_desc(state, state->base_dma_addr & ~dev->mr_page_mask,
1287 state->dma_len, fmr->fmr->rkey);
1288
1289 reset_state:
1290 state->npages = 0;
1291 state->dma_len = 0;
1292
1293 return 0;
1294 }
1295
1296 static void srp_reg_mr_err_done(struct ib_cq *cq, struct ib_wc *wc)
1297 {
1298 srp_handle_qp_err(cq, wc, "FAST REG");
1299 }
1300
1301 static int srp_map_finish_fr(struct srp_map_state *state,
1302 struct srp_request *req,
1303 struct srp_rdma_ch *ch, int sg_nents)
1304 {
1305 struct srp_target_port *target = ch->target;
1306 struct srp_device *dev = target->srp_host->srp_dev;
1307 struct ib_send_wr *bad_wr;
1308 struct ib_reg_wr wr;
1309 struct srp_fr_desc *desc;
1310 u32 rkey;
1311 int n, err;
1312
1313 if (state->fr.next >= state->fr.end)
1314 return -ENOMEM;
1315
1316 WARN_ON_ONCE(!dev->use_fast_reg);
1317
1318 if (sg_nents == 1 && target->global_mr) {
1319 srp_map_desc(state, sg_dma_address(state->sg),
1320 sg_dma_len(state->sg),
1321 target->global_mr->rkey);
1322 return 1;
1323 }
1324
1325 desc = srp_fr_pool_get(ch->fr_pool);
1326 if (!desc)
1327 return -ENOMEM;
1328
1329 rkey = ib_inc_rkey(desc->mr->rkey);
1330 ib_update_fast_reg_key(desc->mr, rkey);
1331
1332 n = ib_map_mr_sg(desc->mr, state->sg, sg_nents, NULL, dev->mr_page_size);
1333 if (unlikely(n < 0)) {
1334 srp_fr_pool_put(ch->fr_pool, &desc, 1);
1335 pr_debug("%s: ib_map_mr_sg(%d) returned %d.\n",
1336 dev_name(&req->scmnd->device->sdev_gendev), sg_nents,
1337 n);
1338 return n;
1339 }
1340
1341 req->reg_cqe.done = srp_reg_mr_err_done;
1342
1343 wr.wr.next = NULL;
1344 wr.wr.opcode = IB_WR_REG_MR;
1345 wr.wr.wr_cqe = &req->reg_cqe;
1346 wr.wr.num_sge = 0;
1347 wr.wr.send_flags = 0;
1348 wr.mr = desc->mr;
1349 wr.key = desc->mr->rkey;
1350 wr.access = (IB_ACCESS_LOCAL_WRITE |
1351 IB_ACCESS_REMOTE_READ |
1352 IB_ACCESS_REMOTE_WRITE);
1353
1354 *state->fr.next++ = desc;
1355 state->nmdesc++;
1356
1357 srp_map_desc(state, desc->mr->iova,
1358 desc->mr->length, desc->mr->rkey);
1359
1360 err = ib_post_send(ch->qp, &wr.wr, &bad_wr);
1361 if (unlikely(err))
1362 return err;
1363
1364 return n;
1365 }
1366
1367 static int srp_map_sg_entry(struct srp_map_state *state,
1368 struct srp_rdma_ch *ch,
1369 struct scatterlist *sg, int sg_index)
1370 {
1371 struct srp_target_port *target = ch->target;
1372 struct srp_device *dev = target->srp_host->srp_dev;
1373 struct ib_device *ibdev = dev->dev;
1374 dma_addr_t dma_addr = ib_sg_dma_address(ibdev, sg);
1375 unsigned int dma_len = ib_sg_dma_len(ibdev, sg);
1376 unsigned int len = 0;
1377 int ret;
1378
1379 WARN_ON_ONCE(!dma_len);
1380
1381 while (dma_len) {
1382 unsigned offset = dma_addr & ~dev->mr_page_mask;
1383 if (state->npages == dev->max_pages_per_mr || offset != 0) {
1384 ret = srp_map_finish_fmr(state, ch);
1385 if (ret)
1386 return ret;
1387 }
1388
1389 len = min_t(unsigned int, dma_len, dev->mr_page_size - offset);
1390
1391 if (!state->npages)
1392 state->base_dma_addr = dma_addr;
1393 state->pages[state->npages++] = dma_addr & dev->mr_page_mask;
1394 state->dma_len += len;
1395 dma_addr += len;
1396 dma_len -= len;
1397 }
1398
1399 /*
1400 * If the last entry of the MR wasn't a full page, then we need to
1401 * close it out and start a new one -- we can only merge at page
1402 * boundaries.
1403 */
1404 ret = 0;
1405 if (len != dev->mr_page_size)
1406 ret = srp_map_finish_fmr(state, ch);
1407 return ret;
1408 }
1409
1410 static int srp_map_sg_fmr(struct srp_map_state *state, struct srp_rdma_ch *ch,
1411 struct srp_request *req, struct scatterlist *scat,
1412 int count)
1413 {
1414 struct scatterlist *sg;
1415 int i, ret;
1416
1417 state->pages = req->map_page;
1418 state->fmr.next = req->fmr_list;
1419 state->fmr.end = req->fmr_list + ch->target->cmd_sg_cnt;
1420
1421 for_each_sg(scat, sg, count, i) {
1422 ret = srp_map_sg_entry(state, ch, sg, i);
1423 if (ret)
1424 return ret;
1425 }
1426
1427 ret = srp_map_finish_fmr(state, ch);
1428 if (ret)
1429 return ret;
1430
1431 return 0;
1432 }
1433
1434 static int srp_map_sg_fr(struct srp_map_state *state, struct srp_rdma_ch *ch,
1435 struct srp_request *req, struct scatterlist *scat,
1436 int count)
1437 {
1438 state->desc = req->indirect_desc;
1439 state->fr.next = req->fr_list;
1440 state->fr.end = req->fr_list + ch->target->cmd_sg_cnt;
1441 state->sg = scat;
1442
1443 if (count == 0)
1444 return 0;
1445
1446 while (count) {
1447 int i, n;
1448
1449 n = srp_map_finish_fr(state, req, ch, count);
1450 if (unlikely(n < 0))
1451 return n;
1452
1453 count -= n;
1454 for (i = 0; i < n; i++)
1455 state->sg = sg_next(state->sg);
1456 }
1457
1458 return 0;
1459 }
1460
1461 static int srp_map_sg_dma(struct srp_map_state *state, struct srp_rdma_ch *ch,
1462 struct srp_request *req, struct scatterlist *scat,
1463 int count)
1464 {
1465 struct srp_target_port *target = ch->target;
1466 struct srp_device *dev = target->srp_host->srp_dev;
1467 struct scatterlist *sg;
1468 int i;
1469
1470 state->desc = req->indirect_desc;
1471 for_each_sg(scat, sg, count, i) {
1472 srp_map_desc(state, ib_sg_dma_address(dev->dev, sg),
1473 ib_sg_dma_len(dev->dev, sg),
1474 target->global_mr->rkey);
1475 }
1476
1477 return 0;
1478 }
1479
1480 /*
1481 * Register the indirect data buffer descriptor with the HCA.
1482 *
1483 * Note: since the indirect data buffer descriptor has been allocated with
1484 * kmalloc() it is guaranteed that this buffer is a physically contiguous
1485 * memory buffer.
1486 */
1487 static int srp_map_idb(struct srp_rdma_ch *ch, struct srp_request *req,
1488 void **next_mr, void **end_mr, u32 idb_len,
1489 __be32 *idb_rkey)
1490 {
1491 struct srp_target_port *target = ch->target;
1492 struct srp_device *dev = target->srp_host->srp_dev;
1493 struct srp_map_state state;
1494 struct srp_direct_buf idb_desc;
1495 u64 idb_pages[1];
1496 struct scatterlist idb_sg[1];
1497 int ret;
1498
1499 memset(&state, 0, sizeof(state));
1500 memset(&idb_desc, 0, sizeof(idb_desc));
1501 state.gen.next = next_mr;
1502 state.gen.end = end_mr;
1503 state.desc = &idb_desc;
1504 state.base_dma_addr = req->indirect_dma_addr;
1505 state.dma_len = idb_len;
1506
1507 if (dev->use_fast_reg) {
1508 state.sg = idb_sg;
1509 sg_set_buf(idb_sg, req->indirect_desc, idb_len);
1510 idb_sg->dma_address = req->indirect_dma_addr; /* hack! */
1511 #ifdef CONFIG_NEED_SG_DMA_LENGTH
1512 idb_sg->dma_length = idb_sg->length; /* hack^2 */
1513 #endif
1514 ret = srp_map_finish_fr(&state, req, ch, 1);
1515 if (ret < 0)
1516 return ret;
1517 } else if (dev->use_fmr) {
1518 state.pages = idb_pages;
1519 state.pages[0] = (req->indirect_dma_addr &
1520 dev->mr_page_mask);
1521 state.npages = 1;
1522 ret = srp_map_finish_fmr(&state, ch);
1523 if (ret < 0)
1524 return ret;
1525 } else {
1526 return -EINVAL;
1527 }
1528
1529 *idb_rkey = idb_desc.key;
1530
1531 return 0;
1532 }
1533
1534 /**
1535 * srp_map_data() - map SCSI data buffer onto an SRP request
1536 * @scmnd: SCSI command to map
1537 * @ch: SRP RDMA channel
1538 * @req: SRP request
1539 *
1540 * Returns the length in bytes of the SRP_CMD IU or a negative value if
1541 * mapping failed.
1542 */
1543 static int srp_map_data(struct scsi_cmnd *scmnd, struct srp_rdma_ch *ch,
1544 struct srp_request *req)
1545 {
1546 struct srp_target_port *target = ch->target;
1547 struct scatterlist *scat;
1548 struct srp_cmd *cmd = req->cmd->buf;
1549 int len, nents, count, ret;
1550 struct srp_device *dev;
1551 struct ib_device *ibdev;
1552 struct srp_map_state state;
1553 struct srp_indirect_buf *indirect_hdr;
1554 u32 idb_len, table_len;
1555 __be32 idb_rkey;
1556 u8 fmt;
1557
1558 if (!scsi_sglist(scmnd) || scmnd->sc_data_direction == DMA_NONE)
1559 return sizeof (struct srp_cmd);
1560
1561 if (scmnd->sc_data_direction != DMA_FROM_DEVICE &&
1562 scmnd->sc_data_direction != DMA_TO_DEVICE) {
1563 shost_printk(KERN_WARNING, target->scsi_host,
1564 PFX "Unhandled data direction %d\n",
1565 scmnd->sc_data_direction);
1566 return -EINVAL;
1567 }
1568
1569 nents = scsi_sg_count(scmnd);
1570 scat = scsi_sglist(scmnd);
1571
1572 dev = target->srp_host->srp_dev;
1573 ibdev = dev->dev;
1574
1575 count = ib_dma_map_sg(ibdev, scat, nents, scmnd->sc_data_direction);
1576 if (unlikely(count == 0))
1577 return -EIO;
1578
1579 fmt = SRP_DATA_DESC_DIRECT;
1580 len = sizeof (struct srp_cmd) + sizeof (struct srp_direct_buf);
1581
1582 if (count == 1 && target->global_mr) {
1583 /*
1584 * The midlayer only generated a single gather/scatter
1585 * entry, or DMA mapping coalesced everything to a
1586 * single entry. So a direct descriptor along with
1587 * the DMA MR suffices.
1588 */
1589 struct srp_direct_buf *buf = (void *) cmd->add_data;
1590
1591 buf->va = cpu_to_be64(ib_sg_dma_address(ibdev, scat));
1592 buf->key = cpu_to_be32(target->global_mr->rkey);
1593 buf->len = cpu_to_be32(ib_sg_dma_len(ibdev, scat));
1594
1595 req->nmdesc = 0;
1596 goto map_complete;
1597 }
1598
1599 /*
1600 * We have more than one scatter/gather entry, so build our indirect
1601 * descriptor table, trying to merge as many entries as we can.
1602 */
1603 indirect_hdr = (void *) cmd->add_data;
1604
1605 ib_dma_sync_single_for_cpu(ibdev, req->indirect_dma_addr,
1606 target->indirect_size, DMA_TO_DEVICE);
1607
1608 memset(&state, 0, sizeof(state));
1609 if (dev->use_fast_reg)
1610 ret = srp_map_sg_fr(&state, ch, req, scat, count);
1611 else if (dev->use_fmr)
1612 ret = srp_map_sg_fmr(&state, ch, req, scat, count);
1613 else
1614 ret = srp_map_sg_dma(&state, ch, req, scat, count);
1615 req->nmdesc = state.nmdesc;
1616 if (ret < 0)
1617 goto unmap;
1618
1619 /* We've mapped the request, now pull as much of the indirect
1620 * descriptor table as we can into the command buffer. If this
1621 * target is not using an external indirect table, we are
1622 * guaranteed to fit into the command, as the SCSI layer won't
1623 * give us more S/G entries than we allow.
1624 */
1625 if (state.ndesc == 1) {
1626 /*
1627 * Memory registration collapsed the sg-list into one entry,
1628 * so use a direct descriptor.
1629 */
1630 struct srp_direct_buf *buf = (void *) cmd->add_data;
1631
1632 *buf = req->indirect_desc[0];
1633 goto map_complete;
1634 }
1635
1636 if (unlikely(target->cmd_sg_cnt < state.ndesc &&
1637 !target->allow_ext_sg)) {
1638 shost_printk(KERN_ERR, target->scsi_host,
1639 "Could not fit S/G list into SRP_CMD\n");
1640 ret = -EIO;
1641 goto unmap;
1642 }
1643
1644 count = min(state.ndesc, target->cmd_sg_cnt);
1645 table_len = state.ndesc * sizeof (struct srp_direct_buf);
1646 idb_len = sizeof(struct srp_indirect_buf) + table_len;
1647
1648 fmt = SRP_DATA_DESC_INDIRECT;
1649 len = sizeof(struct srp_cmd) + sizeof (struct srp_indirect_buf);
1650 len += count * sizeof (struct srp_direct_buf);
1651
1652 memcpy(indirect_hdr->desc_list, req->indirect_desc,
1653 count * sizeof (struct srp_direct_buf));
1654
1655 if (!target->global_mr) {
1656 ret = srp_map_idb(ch, req, state.gen.next, state.gen.end,
1657 idb_len, &idb_rkey);
1658 if (ret < 0)
1659 goto unmap;
1660 req->nmdesc++;
1661 } else {
1662 idb_rkey = cpu_to_be32(target->global_mr->rkey);
1663 }
1664
1665 indirect_hdr->table_desc.va = cpu_to_be64(req->indirect_dma_addr);
1666 indirect_hdr->table_desc.key = idb_rkey;
1667 indirect_hdr->table_desc.len = cpu_to_be32(table_len);
1668 indirect_hdr->len = cpu_to_be32(state.total_len);
1669
1670 if (scmnd->sc_data_direction == DMA_TO_DEVICE)
1671 cmd->data_out_desc_cnt = count;
1672 else
1673 cmd->data_in_desc_cnt = count;
1674
1675 ib_dma_sync_single_for_device(ibdev, req->indirect_dma_addr, table_len,
1676 DMA_TO_DEVICE);
1677
1678 map_complete:
1679 if (scmnd->sc_data_direction == DMA_TO_DEVICE)
1680 cmd->buf_fmt = fmt << 4;
1681 else
1682 cmd->buf_fmt = fmt;
1683
1684 return len;
1685
1686 unmap:
1687 srp_unmap_data(scmnd, ch, req);
1688 if (ret == -ENOMEM && req->nmdesc >= target->mr_pool_size)
1689 ret = -E2BIG;
1690 return ret;
1691 }
1692
1693 /*
1694 * Return an IU and possible credit to the free pool
1695 */
1696 static void srp_put_tx_iu(struct srp_rdma_ch *ch, struct srp_iu *iu,
1697 enum srp_iu_type iu_type)
1698 {
1699 unsigned long flags;
1700
1701 spin_lock_irqsave(&ch->lock, flags);
1702 list_add(&iu->list, &ch->free_tx);
1703 if (iu_type != SRP_IU_RSP)
1704 ++ch->req_lim;
1705 spin_unlock_irqrestore(&ch->lock, flags);
1706 }
1707
1708 /*
1709 * Must be called with ch->lock held to protect req_lim and free_tx.
1710 * If IU is not sent, it must be returned using srp_put_tx_iu().
1711 *
1712 * Note:
1713 * An upper limit for the number of allocated information units for each
1714 * request type is:
1715 * - SRP_IU_CMD: SRP_CMD_SQ_SIZE, since the SCSI mid-layer never queues
1716 * more than Scsi_Host.can_queue requests.
1717 * - SRP_IU_TSK_MGMT: SRP_TSK_MGMT_SQ_SIZE.
1718 * - SRP_IU_RSP: 1, since a conforming SRP target never sends more than
1719 * one unanswered SRP request to an initiator.
1720 */
1721 static struct srp_iu *__srp_get_tx_iu(struct srp_rdma_ch *ch,
1722 enum srp_iu_type iu_type)
1723 {
1724 struct srp_target_port *target = ch->target;
1725 s32 rsv = (iu_type == SRP_IU_TSK_MGMT) ? 0 : SRP_TSK_MGMT_SQ_SIZE;
1726 struct srp_iu *iu;
1727
1728 ib_process_cq_direct(ch->send_cq, -1);
1729
1730 if (list_empty(&ch->free_tx))
1731 return NULL;
1732
1733 /* Initiator responses to target requests do not consume credits */
1734 if (iu_type != SRP_IU_RSP) {
1735 if (ch->req_lim <= rsv) {
1736 ++target->zero_req_lim;
1737 return NULL;
1738 }
1739
1740 --ch->req_lim;
1741 }
1742
1743 iu = list_first_entry(&ch->free_tx, struct srp_iu, list);
1744 list_del(&iu->list);
1745 return iu;
1746 }
1747
1748 static void srp_send_done(struct ib_cq *cq, struct ib_wc *wc)
1749 {
1750 struct srp_iu *iu = container_of(wc->wr_cqe, struct srp_iu, cqe);
1751 struct srp_rdma_ch *ch = cq->cq_context;
1752
1753 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1754 srp_handle_qp_err(cq, wc, "SEND");
1755 return;
1756 }
1757
1758 list_add(&iu->list, &ch->free_tx);
1759 }
1760
1761 static int srp_post_send(struct srp_rdma_ch *ch, struct srp_iu *iu, int len)
1762 {
1763 struct srp_target_port *target = ch->target;
1764 struct ib_sge list;
1765 struct ib_send_wr wr, *bad_wr;
1766
1767 list.addr = iu->dma;
1768 list.length = len;
1769 list.lkey = target->lkey;
1770
1771 iu->cqe.done = srp_send_done;
1772
1773 wr.next = NULL;
1774 wr.wr_cqe = &iu->cqe;
1775 wr.sg_list = &list;
1776 wr.num_sge = 1;
1777 wr.opcode = IB_WR_SEND;
1778 wr.send_flags = IB_SEND_SIGNALED;
1779
1780 return ib_post_send(ch->qp, &wr, &bad_wr);
1781 }
1782
1783 static int srp_post_recv(struct srp_rdma_ch *ch, struct srp_iu *iu)
1784 {
1785 struct srp_target_port *target = ch->target;
1786 struct ib_recv_wr wr, *bad_wr;
1787 struct ib_sge list;
1788
1789 list.addr = iu->dma;
1790 list.length = iu->size;
1791 list.lkey = target->lkey;
1792
1793 iu->cqe.done = srp_recv_done;
1794
1795 wr.next = NULL;
1796 wr.wr_cqe = &iu->cqe;
1797 wr.sg_list = &list;
1798 wr.num_sge = 1;
1799
1800 return ib_post_recv(ch->qp, &wr, &bad_wr);
1801 }
1802
1803 static void srp_process_rsp(struct srp_rdma_ch *ch, struct srp_rsp *rsp)
1804 {
1805 struct srp_target_port *target = ch->target;
1806 struct srp_request *req;
1807 struct scsi_cmnd *scmnd;
1808 unsigned long flags;
1809
1810 if (unlikely(rsp->tag & SRP_TAG_TSK_MGMT)) {
1811 spin_lock_irqsave(&ch->lock, flags);
1812 ch->req_lim += be32_to_cpu(rsp->req_lim_delta);
1813 spin_unlock_irqrestore(&ch->lock, flags);
1814
1815 ch->tsk_mgmt_status = -1;
1816 if (be32_to_cpu(rsp->resp_data_len) >= 4)
1817 ch->tsk_mgmt_status = rsp->data[3];
1818 complete(&ch->tsk_mgmt_done);
1819 } else {
1820 scmnd = scsi_host_find_tag(target->scsi_host, rsp->tag);
1821 if (scmnd) {
1822 req = (void *)scmnd->host_scribble;
1823 scmnd = srp_claim_req(ch, req, NULL, scmnd);
1824 }
1825 if (!scmnd) {
1826 shost_printk(KERN_ERR, target->scsi_host,
1827 "Null scmnd for RSP w/tag %#016llx received on ch %td / QP %#x\n",
1828 rsp->tag, ch - target->ch, ch->qp->qp_num);
1829
1830 spin_lock_irqsave(&ch->lock, flags);
1831 ch->req_lim += be32_to_cpu(rsp->req_lim_delta);
1832 spin_unlock_irqrestore(&ch->lock, flags);
1833
1834 return;
1835 }
1836 scmnd->result = rsp->status;
1837
1838 if (rsp->flags & SRP_RSP_FLAG_SNSVALID) {
1839 memcpy(scmnd->sense_buffer, rsp->data +
1840 be32_to_cpu(rsp->resp_data_len),
1841 min_t(int, be32_to_cpu(rsp->sense_data_len),
1842 SCSI_SENSE_BUFFERSIZE));
1843 }
1844
1845 if (unlikely(rsp->flags & SRP_RSP_FLAG_DIUNDER))
1846 scsi_set_resid(scmnd, be32_to_cpu(rsp->data_in_res_cnt));
1847 else if (unlikely(rsp->flags & SRP_RSP_FLAG_DIOVER))
1848 scsi_set_resid(scmnd, -be32_to_cpu(rsp->data_in_res_cnt));
1849 else if (unlikely(rsp->flags & SRP_RSP_FLAG_DOUNDER))
1850 scsi_set_resid(scmnd, be32_to_cpu(rsp->data_out_res_cnt));
1851 else if (unlikely(rsp->flags & SRP_RSP_FLAG_DOOVER))
1852 scsi_set_resid(scmnd, -be32_to_cpu(rsp->data_out_res_cnt));
1853
1854 srp_free_req(ch, req, scmnd,
1855 be32_to_cpu(rsp->req_lim_delta));
1856
1857 scmnd->host_scribble = NULL;
1858 scmnd->scsi_done(scmnd);
1859 }
1860 }
1861
1862 static int srp_response_common(struct srp_rdma_ch *ch, s32 req_delta,
1863 void *rsp, int len)
1864 {
1865 struct srp_target_port *target = ch->target;
1866 struct ib_device *dev = target->srp_host->srp_dev->dev;
1867 unsigned long flags;
1868 struct srp_iu *iu;
1869 int err;
1870
1871 spin_lock_irqsave(&ch->lock, flags);
1872 ch->req_lim += req_delta;
1873 iu = __srp_get_tx_iu(ch, SRP_IU_RSP);
1874 spin_unlock_irqrestore(&ch->lock, flags);
1875
1876 if (!iu) {
1877 shost_printk(KERN_ERR, target->scsi_host, PFX
1878 "no IU available to send response\n");
1879 return 1;
1880 }
1881
1882 ib_dma_sync_single_for_cpu(dev, iu->dma, len, DMA_TO_DEVICE);
1883 memcpy(iu->buf, rsp, len);
1884 ib_dma_sync_single_for_device(dev, iu->dma, len, DMA_TO_DEVICE);
1885
1886 err = srp_post_send(ch, iu, len);
1887 if (err) {
1888 shost_printk(KERN_ERR, target->scsi_host, PFX
1889 "unable to post response: %d\n", err);
1890 srp_put_tx_iu(ch, iu, SRP_IU_RSP);
1891 }
1892
1893 return err;
1894 }
1895
1896 static void srp_process_cred_req(struct srp_rdma_ch *ch,
1897 struct srp_cred_req *req)
1898 {
1899 struct srp_cred_rsp rsp = {
1900 .opcode = SRP_CRED_RSP,
1901 .tag = req->tag,
1902 };
1903 s32 delta = be32_to_cpu(req->req_lim_delta);
1904
1905 if (srp_response_common(ch, delta, &rsp, sizeof(rsp)))
1906 shost_printk(KERN_ERR, ch->target->scsi_host, PFX
1907 "problems processing SRP_CRED_REQ\n");
1908 }
1909
1910 static void srp_process_aer_req(struct srp_rdma_ch *ch,
1911 struct srp_aer_req *req)
1912 {
1913 struct srp_target_port *target = ch->target;
1914 struct srp_aer_rsp rsp = {
1915 .opcode = SRP_AER_RSP,
1916 .tag = req->tag,
1917 };
1918 s32 delta = be32_to_cpu(req->req_lim_delta);
1919
1920 shost_printk(KERN_ERR, target->scsi_host, PFX
1921 "ignoring AER for LUN %llu\n", scsilun_to_int(&req->lun));
1922
1923 if (srp_response_common(ch, delta, &rsp, sizeof(rsp)))
1924 shost_printk(KERN_ERR, target->scsi_host, PFX
1925 "problems processing SRP_AER_REQ\n");
1926 }
1927
1928 static void srp_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1929 {
1930 struct srp_iu *iu = container_of(wc->wr_cqe, struct srp_iu, cqe);
1931 struct srp_rdma_ch *ch = cq->cq_context;
1932 struct srp_target_port *target = ch->target;
1933 struct ib_device *dev = target->srp_host->srp_dev->dev;
1934 int res;
1935 u8 opcode;
1936
1937 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1938 srp_handle_qp_err(cq, wc, "RECV");
1939 return;
1940 }
1941
1942 ib_dma_sync_single_for_cpu(dev, iu->dma, ch->max_ti_iu_len,
1943 DMA_FROM_DEVICE);
1944
1945 opcode = *(u8 *) iu->buf;
1946
1947 if (0) {
1948 shost_printk(KERN_ERR, target->scsi_host,
1949 PFX "recv completion, opcode 0x%02x\n", opcode);
1950 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 8, 1,
1951 iu->buf, wc->byte_len, true);
1952 }
1953
1954 switch (opcode) {
1955 case SRP_RSP:
1956 srp_process_rsp(ch, iu->buf);
1957 break;
1958
1959 case SRP_CRED_REQ:
1960 srp_process_cred_req(ch, iu->buf);
1961 break;
1962
1963 case SRP_AER_REQ:
1964 srp_process_aer_req(ch, iu->buf);
1965 break;
1966
1967 case SRP_T_LOGOUT:
1968 /* XXX Handle target logout */
1969 shost_printk(KERN_WARNING, target->scsi_host,
1970 PFX "Got target logout request\n");
1971 break;
1972
1973 default:
1974 shost_printk(KERN_WARNING, target->scsi_host,
1975 PFX "Unhandled SRP opcode 0x%02x\n", opcode);
1976 break;
1977 }
1978
1979 ib_dma_sync_single_for_device(dev, iu->dma, ch->max_ti_iu_len,
1980 DMA_FROM_DEVICE);
1981
1982 res = srp_post_recv(ch, iu);
1983 if (res != 0)
1984 shost_printk(KERN_ERR, target->scsi_host,
1985 PFX "Recv failed with error code %d\n", res);
1986 }
1987
1988 /**
1989 * srp_tl_err_work() - handle a transport layer error
1990 * @work: Work structure embedded in an SRP target port.
1991 *
1992 * Note: This function may get invoked before the rport has been created,
1993 * hence the target->rport test.
1994 */
1995 static void srp_tl_err_work(struct work_struct *work)
1996 {
1997 struct srp_target_port *target;
1998
1999 target = container_of(work, struct srp_target_port, tl_err_work);
2000 if (target->rport)
2001 srp_start_tl_fail_timers(target->rport);
2002 }
2003
2004 static void srp_handle_qp_err(struct ib_cq *cq, struct ib_wc *wc,
2005 const char *opname)
2006 {
2007 struct srp_rdma_ch *ch = cq->cq_context;
2008 struct srp_target_port *target = ch->target;
2009
2010 if (ch->connected && !target->qp_in_error) {
2011 shost_printk(KERN_ERR, target->scsi_host,
2012 PFX "failed %s status %s (%d) for CQE %p\n",
2013 opname, ib_wc_status_msg(wc->status), wc->status,
2014 wc->wr_cqe);
2015 queue_work(system_long_wq, &target->tl_err_work);
2016 }
2017 target->qp_in_error = true;
2018 }
2019
2020 static int srp_queuecommand(struct Scsi_Host *shost, struct scsi_cmnd *scmnd)
2021 {
2022 struct srp_target_port *target = host_to_target(shost);
2023 struct srp_rport *rport = target->rport;
2024 struct srp_rdma_ch *ch;
2025 struct srp_request *req;
2026 struct srp_iu *iu;
2027 struct srp_cmd *cmd;
2028 struct ib_device *dev;
2029 unsigned long flags;
2030 u32 tag;
2031 u16 idx;
2032 int len, ret;
2033 const bool in_scsi_eh = !in_interrupt() && current == shost->ehandler;
2034
2035 /*
2036 * The SCSI EH thread is the only context from which srp_queuecommand()
2037 * can get invoked for blocked devices (SDEV_BLOCK /
2038 * SDEV_CREATED_BLOCK). Avoid racing with srp_reconnect_rport() by
2039 * locking the rport mutex if invoked from inside the SCSI EH.
2040 */
2041 if (in_scsi_eh)
2042 mutex_lock(&rport->mutex);
2043
2044 scmnd->result = srp_chkready(target->rport);
2045 if (unlikely(scmnd->result))
2046 goto err;
2047
2048 WARN_ON_ONCE(scmnd->request->tag < 0);
2049 tag = blk_mq_unique_tag(scmnd->request);
2050 ch = &target->ch[blk_mq_unique_tag_to_hwq(tag)];
2051 idx = blk_mq_unique_tag_to_tag(tag);
2052 WARN_ONCE(idx >= target->req_ring_size, "%s: tag %#x: idx %d >= %d\n",
2053 dev_name(&shost->shost_gendev), tag, idx,
2054 target->req_ring_size);
2055
2056 spin_lock_irqsave(&ch->lock, flags);
2057 iu = __srp_get_tx_iu(ch, SRP_IU_CMD);
2058 spin_unlock_irqrestore(&ch->lock, flags);
2059
2060 if (!iu)
2061 goto err;
2062
2063 req = &ch->req_ring[idx];
2064 dev = target->srp_host->srp_dev->dev;
2065 ib_dma_sync_single_for_cpu(dev, iu->dma, target->max_iu_len,
2066 DMA_TO_DEVICE);
2067
2068 scmnd->host_scribble = (void *) req;
2069
2070 cmd = iu->buf;
2071 memset(cmd, 0, sizeof *cmd);
2072
2073 cmd->opcode = SRP_CMD;
2074 int_to_scsilun(scmnd->device->lun, &cmd->lun);
2075 cmd->tag = tag;
2076 memcpy(cmd->cdb, scmnd->cmnd, scmnd->cmd_len);
2077
2078 req->scmnd = scmnd;
2079 req->cmd = iu;
2080
2081 len = srp_map_data(scmnd, ch, req);
2082 if (len < 0) {
2083 shost_printk(KERN_ERR, target->scsi_host,
2084 PFX "Failed to map data (%d)\n", len);
2085 /*
2086 * If we ran out of memory descriptors (-ENOMEM) because an
2087 * application is queuing many requests with more than
2088 * max_pages_per_mr sg-list elements, tell the SCSI mid-layer
2089 * to reduce queue depth temporarily.
2090 */
2091 scmnd->result = len == -ENOMEM ?
2092 DID_OK << 16 | QUEUE_FULL << 1 : DID_ERROR << 16;
2093 goto err_iu;
2094 }
2095
2096 ib_dma_sync_single_for_device(dev, iu->dma, target->max_iu_len,
2097 DMA_TO_DEVICE);
2098
2099 if (srp_post_send(ch, iu, len)) {
2100 shost_printk(KERN_ERR, target->scsi_host, PFX "Send failed\n");
2101 goto err_unmap;
2102 }
2103
2104 ret = 0;
2105
2106 unlock_rport:
2107 if (in_scsi_eh)
2108 mutex_unlock(&rport->mutex);
2109
2110 return ret;
2111
2112 err_unmap:
2113 srp_unmap_data(scmnd, ch, req);
2114
2115 err_iu:
2116 srp_put_tx_iu(ch, iu, SRP_IU_CMD);
2117
2118 /*
2119 * Avoid that the loops that iterate over the request ring can
2120 * encounter a dangling SCSI command pointer.
2121 */
2122 req->scmnd = NULL;
2123
2124 err:
2125 if (scmnd->result) {
2126 scmnd->scsi_done(scmnd);
2127 ret = 0;
2128 } else {
2129 ret = SCSI_MLQUEUE_HOST_BUSY;
2130 }
2131
2132 goto unlock_rport;
2133 }
2134
2135 /*
2136 * Note: the resources allocated in this function are freed in
2137 * srp_free_ch_ib().
2138 */
2139 static int srp_alloc_iu_bufs(struct srp_rdma_ch *ch)
2140 {
2141 struct srp_target_port *target = ch->target;
2142 int i;
2143
2144 ch->rx_ring = kcalloc(target->queue_size, sizeof(*ch->rx_ring),
2145 GFP_KERNEL);
2146 if (!ch->rx_ring)
2147 goto err_no_ring;
2148 ch->tx_ring = kcalloc(target->queue_size, sizeof(*ch->tx_ring),
2149 GFP_KERNEL);
2150 if (!ch->tx_ring)
2151 goto err_no_ring;
2152
2153 for (i = 0; i < target->queue_size; ++i) {
2154 ch->rx_ring[i] = srp_alloc_iu(target->srp_host,
2155 ch->max_ti_iu_len,
2156 GFP_KERNEL, DMA_FROM_DEVICE);
2157 if (!ch->rx_ring[i])
2158 goto err;
2159 }
2160
2161 for (i = 0; i < target->queue_size; ++i) {
2162 ch->tx_ring[i] = srp_alloc_iu(target->srp_host,
2163 target->max_iu_len,
2164 GFP_KERNEL, DMA_TO_DEVICE);
2165 if (!ch->tx_ring[i])
2166 goto err;
2167
2168 list_add(&ch->tx_ring[i]->list, &ch->free_tx);
2169 }
2170
2171 return 0;
2172
2173 err:
2174 for (i = 0; i < target->queue_size; ++i) {
2175 srp_free_iu(target->srp_host, ch->rx_ring[i]);
2176 srp_free_iu(target->srp_host, ch->tx_ring[i]);
2177 }
2178
2179
2180 err_no_ring:
2181 kfree(ch->tx_ring);
2182 ch->tx_ring = NULL;
2183 kfree(ch->rx_ring);
2184 ch->rx_ring = NULL;
2185
2186 return -ENOMEM;
2187 }
2188
2189 static uint32_t srp_compute_rq_tmo(struct ib_qp_attr *qp_attr, int attr_mask)
2190 {
2191 uint64_t T_tr_ns, max_compl_time_ms;
2192 uint32_t rq_tmo_jiffies;
2193
2194 /*
2195 * According to section 11.2.4.2 in the IBTA spec (Modify Queue Pair,
2196 * table 91), both the QP timeout and the retry count have to be set
2197 * for RC QP's during the RTR to RTS transition.
2198 */
2199 WARN_ON_ONCE((attr_mask & (IB_QP_TIMEOUT | IB_QP_RETRY_CNT)) !=
2200 (IB_QP_TIMEOUT | IB_QP_RETRY_CNT));
2201
2202 /*
2203 * Set target->rq_tmo_jiffies to one second more than the largest time
2204 * it can take before an error completion is generated. See also
2205 * C9-140..142 in the IBTA spec for more information about how to
2206 * convert the QP Local ACK Timeout value to nanoseconds.
2207 */
2208 T_tr_ns = 4096 * (1ULL << qp_attr->timeout);
2209 max_compl_time_ms = qp_attr->retry_cnt * 4 * T_tr_ns;
2210 do_div(max_compl_time_ms, NSEC_PER_MSEC);
2211 rq_tmo_jiffies = msecs_to_jiffies(max_compl_time_ms + 1000);
2212
2213 return rq_tmo_jiffies;
2214 }
2215
2216 static void srp_cm_rep_handler(struct ib_cm_id *cm_id,
2217 const struct srp_login_rsp *lrsp,
2218 struct srp_rdma_ch *ch)
2219 {
2220 struct srp_target_port *target = ch->target;
2221 struct ib_qp_attr *qp_attr = NULL;
2222 int attr_mask = 0;
2223 int ret;
2224 int i;
2225
2226 if (lrsp->opcode == SRP_LOGIN_RSP) {
2227 ch->max_ti_iu_len = be32_to_cpu(lrsp->max_ti_iu_len);
2228 ch->req_lim = be32_to_cpu(lrsp->req_lim_delta);
2229
2230 /*
2231 * Reserve credits for task management so we don't
2232 * bounce requests back to the SCSI mid-layer.
2233 */
2234 target->scsi_host->can_queue
2235 = min(ch->req_lim - SRP_TSK_MGMT_SQ_SIZE,
2236 target->scsi_host->can_queue);
2237 target->scsi_host->cmd_per_lun
2238 = min_t(int, target->scsi_host->can_queue,
2239 target->scsi_host->cmd_per_lun);
2240 } else {
2241 shost_printk(KERN_WARNING, target->scsi_host,
2242 PFX "Unhandled RSP opcode %#x\n", lrsp->opcode);
2243 ret = -ECONNRESET;
2244 goto error;
2245 }
2246
2247 if (!ch->rx_ring) {
2248 ret = srp_alloc_iu_bufs(ch);
2249 if (ret)
2250 goto error;
2251 }
2252
2253 ret = -ENOMEM;
2254 qp_attr = kmalloc(sizeof *qp_attr, GFP_KERNEL);
2255 if (!qp_attr)
2256 goto error;
2257
2258 qp_attr->qp_state = IB_QPS_RTR;
2259 ret = ib_cm_init_qp_attr(cm_id, qp_attr, &attr_mask);
2260 if (ret)
2261 goto error_free;
2262
2263 ret = ib_modify_qp(ch->qp, qp_attr, attr_mask);
2264 if (ret)
2265 goto error_free;
2266
2267 for (i = 0; i < target->queue_size; i++) {
2268 struct srp_iu *iu = ch->rx_ring[i];
2269
2270 ret = srp_post_recv(ch, iu);
2271 if (ret)
2272 goto error_free;
2273 }
2274
2275 qp_attr->qp_state = IB_QPS_RTS;
2276 ret = ib_cm_init_qp_attr(cm_id, qp_attr, &attr_mask);
2277 if (ret)
2278 goto error_free;
2279
2280 target->rq_tmo_jiffies = srp_compute_rq_tmo(qp_attr, attr_mask);
2281
2282 ret = ib_modify_qp(ch->qp, qp_attr, attr_mask);
2283 if (ret)
2284 goto error_free;
2285
2286 ret = ib_send_cm_rtu(cm_id, NULL, 0);
2287
2288 error_free:
2289 kfree(qp_attr);
2290
2291 error:
2292 ch->status = ret;
2293 }
2294
2295 static void srp_cm_rej_handler(struct ib_cm_id *cm_id,
2296 struct ib_cm_event *event,
2297 struct srp_rdma_ch *ch)
2298 {
2299 struct srp_target_port *target = ch->target;
2300 struct Scsi_Host *shost = target->scsi_host;
2301 struct ib_class_port_info *cpi;
2302 int opcode;
2303
2304 switch (event->param.rej_rcvd.reason) {
2305 case IB_CM_REJ_PORT_CM_REDIRECT:
2306 cpi = event->param.rej_rcvd.ari;
2307 ch->path.dlid = cpi->redirect_lid;
2308 ch->path.pkey = cpi->redirect_pkey;
2309 cm_id->remote_cm_qpn = be32_to_cpu(cpi->redirect_qp) & 0x00ffffff;
2310 memcpy(ch->path.dgid.raw, cpi->redirect_gid, 16);
2311
2312 ch->status = ch->path.dlid ?
2313 SRP_DLID_REDIRECT : SRP_PORT_REDIRECT;
2314 break;
2315
2316 case IB_CM_REJ_PORT_REDIRECT:
2317 if (srp_target_is_topspin(target)) {
2318 /*
2319 * Topspin/Cisco SRP gateways incorrectly send
2320 * reject reason code 25 when they mean 24
2321 * (port redirect).
2322 */
2323 memcpy(ch->path.dgid.raw,
2324 event->param.rej_rcvd.ari, 16);
2325
2326 shost_printk(KERN_DEBUG, shost,
2327 PFX "Topspin/Cisco redirect to target port GID %016llx%016llx\n",
2328 be64_to_cpu(ch->path.dgid.global.subnet_prefix),
2329 be64_to_cpu(ch->path.dgid.global.interface_id));
2330
2331 ch->status = SRP_PORT_REDIRECT;
2332 } else {
2333 shost_printk(KERN_WARNING, shost,
2334 " REJ reason: IB_CM_REJ_PORT_REDIRECT\n");
2335 ch->status = -ECONNRESET;
2336 }
2337 break;
2338
2339 case IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID:
2340 shost_printk(KERN_WARNING, shost,
2341 " REJ reason: IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID\n");
2342 ch->status = -ECONNRESET;
2343 break;
2344
2345 case IB_CM_REJ_CONSUMER_DEFINED:
2346 opcode = *(u8 *) event->private_data;
2347 if (opcode == SRP_LOGIN_REJ) {
2348 struct srp_login_rej *rej = event->private_data;
2349 u32 reason = be32_to_cpu(rej->reason);
2350
2351 if (reason == SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE)
2352 shost_printk(KERN_WARNING, shost,
2353 PFX "SRP_LOGIN_REJ: requested max_it_iu_len too large\n");
2354 else
2355 shost_printk(KERN_WARNING, shost, PFX
2356 "SRP LOGIN from %pI6 to %pI6 REJECTED, reason 0x%08x\n",
2357 target->sgid.raw,
2358 target->orig_dgid.raw, reason);
2359 } else
2360 shost_printk(KERN_WARNING, shost,
2361 " REJ reason: IB_CM_REJ_CONSUMER_DEFINED,"
2362 " opcode 0x%02x\n", opcode);
2363 ch->status = -ECONNRESET;
2364 break;
2365
2366 case IB_CM_REJ_STALE_CONN:
2367 shost_printk(KERN_WARNING, shost, " REJ reason: stale connection\n");
2368 ch->status = SRP_STALE_CONN;
2369 break;
2370
2371 default:
2372 shost_printk(KERN_WARNING, shost, " REJ reason 0x%x\n",
2373 event->param.rej_rcvd.reason);
2374 ch->status = -ECONNRESET;
2375 }
2376 }
2377
2378 static int srp_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event)
2379 {
2380 struct srp_rdma_ch *ch = cm_id->context;
2381 struct srp_target_port *target = ch->target;
2382 int comp = 0;
2383
2384 switch (event->event) {
2385 case IB_CM_REQ_ERROR:
2386 shost_printk(KERN_DEBUG, target->scsi_host,
2387 PFX "Sending CM REQ failed\n");
2388 comp = 1;
2389 ch->status = -ECONNRESET;
2390 break;
2391
2392 case IB_CM_REP_RECEIVED:
2393 comp = 1;
2394 srp_cm_rep_handler(cm_id, event->private_data, ch);
2395 break;
2396
2397 case IB_CM_REJ_RECEIVED:
2398 shost_printk(KERN_DEBUG, target->scsi_host, PFX "REJ received\n");
2399 comp = 1;
2400
2401 srp_cm_rej_handler(cm_id, event, ch);
2402 break;
2403
2404 case IB_CM_DREQ_RECEIVED:
2405 shost_printk(KERN_WARNING, target->scsi_host,
2406 PFX "DREQ received - connection closed\n");
2407 ch->connected = false;
2408 if (ib_send_cm_drep(cm_id, NULL, 0))
2409 shost_printk(KERN_ERR, target->scsi_host,
2410 PFX "Sending CM DREP failed\n");
2411 queue_work(system_long_wq, &target->tl_err_work);
2412 break;
2413
2414 case IB_CM_TIMEWAIT_EXIT:
2415 shost_printk(KERN_ERR, target->scsi_host,
2416 PFX "connection closed\n");
2417 comp = 1;
2418
2419 ch->status = 0;
2420 break;
2421
2422 case IB_CM_MRA_RECEIVED:
2423 case IB_CM_DREQ_ERROR:
2424 case IB_CM_DREP_RECEIVED:
2425 break;
2426
2427 default:
2428 shost_printk(KERN_WARNING, target->scsi_host,
2429 PFX "Unhandled CM event %d\n", event->event);
2430 break;
2431 }
2432
2433 if (comp)
2434 complete(&ch->done);
2435
2436 return 0;
2437 }
2438
2439 /**
2440 * srp_change_queue_depth - setting device queue depth
2441 * @sdev: scsi device struct
2442 * @qdepth: requested queue depth
2443 *
2444 * Returns queue depth.
2445 */
2446 static int
2447 srp_change_queue_depth(struct scsi_device *sdev, int qdepth)
2448 {
2449 if (!sdev->tagged_supported)
2450 qdepth = 1;
2451 return scsi_change_queue_depth(sdev, qdepth);
2452 }
2453
2454 static int srp_send_tsk_mgmt(struct srp_rdma_ch *ch, u64 req_tag, u64 lun,
2455 u8 func)
2456 {
2457 struct srp_target_port *target = ch->target;
2458 struct srp_rport *rport = target->rport;
2459 struct ib_device *dev = target->srp_host->srp_dev->dev;
2460 struct srp_iu *iu;
2461 struct srp_tsk_mgmt *tsk_mgmt;
2462
2463 if (!ch->connected || target->qp_in_error)
2464 return -1;
2465
2466 init_completion(&ch->tsk_mgmt_done);
2467
2468 /*
2469 * Lock the rport mutex to avoid that srp_create_ch_ib() is
2470 * invoked while a task management function is being sent.
2471 */
2472 mutex_lock(&rport->mutex);
2473 spin_lock_irq(&ch->lock);
2474 iu = __srp_get_tx_iu(ch, SRP_IU_TSK_MGMT);
2475 spin_unlock_irq(&ch->lock);
2476
2477 if (!iu) {
2478 mutex_unlock(&rport->mutex);
2479
2480 return -1;
2481 }
2482
2483 ib_dma_sync_single_for_cpu(dev, iu->dma, sizeof *tsk_mgmt,
2484 DMA_TO_DEVICE);
2485 tsk_mgmt = iu->buf;
2486 memset(tsk_mgmt, 0, sizeof *tsk_mgmt);
2487
2488 tsk_mgmt->opcode = SRP_TSK_MGMT;
2489 int_to_scsilun(lun, &tsk_mgmt->lun);
2490 tsk_mgmt->tag = req_tag | SRP_TAG_TSK_MGMT;
2491 tsk_mgmt->tsk_mgmt_func = func;
2492 tsk_mgmt->task_tag = req_tag;
2493
2494 ib_dma_sync_single_for_device(dev, iu->dma, sizeof *tsk_mgmt,
2495 DMA_TO_DEVICE);
2496 if (srp_post_send(ch, iu, sizeof(*tsk_mgmt))) {
2497 srp_put_tx_iu(ch, iu, SRP_IU_TSK_MGMT);
2498 mutex_unlock(&rport->mutex);
2499
2500 return -1;
2501 }
2502 mutex_unlock(&rport->mutex);
2503
2504 if (!wait_for_completion_timeout(&ch->tsk_mgmt_done,
2505 msecs_to_jiffies(SRP_ABORT_TIMEOUT_MS)))
2506 return -1;
2507
2508 return 0;
2509 }
2510
2511 static int srp_abort(struct scsi_cmnd *scmnd)
2512 {
2513 struct srp_target_port *target = host_to_target(scmnd->device->host);
2514 struct srp_request *req = (struct srp_request *) scmnd->host_scribble;
2515 u32 tag;
2516 u16 ch_idx;
2517 struct srp_rdma_ch *ch;
2518 int ret;
2519
2520 shost_printk(KERN_ERR, target->scsi_host, "SRP abort called\n");
2521
2522 if (!req)
2523 return SUCCESS;
2524 tag = blk_mq_unique_tag(scmnd->request);
2525 ch_idx = blk_mq_unique_tag_to_hwq(tag);
2526 if (WARN_ON_ONCE(ch_idx >= target->ch_count))
2527 return SUCCESS;
2528 ch = &target->ch[ch_idx];
2529 if (!srp_claim_req(ch, req, NULL, scmnd))
2530 return SUCCESS;
2531 shost_printk(KERN_ERR, target->scsi_host,
2532 "Sending SRP abort for tag %#x\n", tag);
2533 if (srp_send_tsk_mgmt(ch, tag, scmnd->device->lun,
2534 SRP_TSK_ABORT_TASK) == 0)
2535 ret = SUCCESS;
2536 else if (target->rport->state == SRP_RPORT_LOST)
2537 ret = FAST_IO_FAIL;
2538 else
2539 ret = FAILED;
2540 srp_free_req(ch, req, scmnd, 0);
2541 scmnd->result = DID_ABORT << 16;
2542 scmnd->scsi_done(scmnd);
2543
2544 return ret;
2545 }
2546
2547 static int srp_reset_device(struct scsi_cmnd *scmnd)
2548 {
2549 struct srp_target_port *target = host_to_target(scmnd->device->host);
2550 struct srp_rdma_ch *ch;
2551 int i;
2552
2553 shost_printk(KERN_ERR, target->scsi_host, "SRP reset_device called\n");
2554
2555 ch = &target->ch[0];
2556 if (srp_send_tsk_mgmt(ch, SRP_TAG_NO_REQ, scmnd->device->lun,
2557 SRP_TSK_LUN_RESET))
2558 return FAILED;
2559 if (ch->tsk_mgmt_status)
2560 return FAILED;
2561
2562 for (i = 0; i < target->ch_count; i++) {
2563 ch = &target->ch[i];
2564 for (i = 0; i < target->req_ring_size; ++i) {
2565 struct srp_request *req = &ch->req_ring[i];
2566
2567 srp_finish_req(ch, req, scmnd->device, DID_RESET << 16);
2568 }
2569 }
2570
2571 return SUCCESS;
2572 }
2573
2574 static int srp_reset_host(struct scsi_cmnd *scmnd)
2575 {
2576 struct srp_target_port *target = host_to_target(scmnd->device->host);
2577
2578 shost_printk(KERN_ERR, target->scsi_host, PFX "SRP reset_host called\n");
2579
2580 return srp_reconnect_rport(target->rport) == 0 ? SUCCESS : FAILED;
2581 }
2582
2583 static int srp_slave_configure(struct scsi_device *sdev)
2584 {
2585 struct Scsi_Host *shost = sdev->host;
2586 struct srp_target_port *target = host_to_target(shost);
2587 struct request_queue *q = sdev->request_queue;
2588 unsigned long timeout;
2589
2590 if (sdev->type == TYPE_DISK) {
2591 timeout = max_t(unsigned, 30 * HZ, target->rq_tmo_jiffies);
2592 blk_queue_rq_timeout(q, timeout);
2593 }
2594
2595 return 0;
2596 }
2597
2598 static ssize_t show_id_ext(struct device *dev, struct device_attribute *attr,
2599 char *buf)
2600 {
2601 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2602
2603 return sprintf(buf, "0x%016llx\n", be64_to_cpu(target->id_ext));
2604 }
2605
2606 static ssize_t show_ioc_guid(struct device *dev, struct device_attribute *attr,
2607 char *buf)
2608 {
2609 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2610
2611 return sprintf(buf, "0x%016llx\n", be64_to_cpu(target->ioc_guid));
2612 }
2613
2614 static ssize_t show_service_id(struct device *dev,
2615 struct device_attribute *attr, char *buf)
2616 {
2617 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2618
2619 return sprintf(buf, "0x%016llx\n", be64_to_cpu(target->service_id));
2620 }
2621
2622 static ssize_t show_pkey(struct device *dev, struct device_attribute *attr,
2623 char *buf)
2624 {
2625 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2626
2627 return sprintf(buf, "0x%04x\n", be16_to_cpu(target->pkey));
2628 }
2629
2630 static ssize_t show_sgid(struct device *dev, struct device_attribute *attr,
2631 char *buf)
2632 {
2633 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2634
2635 return sprintf(buf, "%pI6\n", target->sgid.raw);
2636 }
2637
2638 static ssize_t show_dgid(struct device *dev, struct device_attribute *attr,
2639 char *buf)
2640 {
2641 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2642 struct srp_rdma_ch *ch = &target->ch[0];
2643
2644 return sprintf(buf, "%pI6\n", ch->path.dgid.raw);
2645 }
2646
2647 static ssize_t show_orig_dgid(struct device *dev,
2648 struct device_attribute *attr, char *buf)
2649 {
2650 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2651
2652 return sprintf(buf, "%pI6\n", target->orig_dgid.raw);
2653 }
2654
2655 static ssize_t show_req_lim(struct device *dev,
2656 struct device_attribute *attr, char *buf)
2657 {
2658 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2659 struct srp_rdma_ch *ch;
2660 int i, req_lim = INT_MAX;
2661
2662 for (i = 0; i < target->ch_count; i++) {
2663 ch = &target->ch[i];
2664 req_lim = min(req_lim, ch->req_lim);
2665 }
2666 return sprintf(buf, "%d\n", req_lim);
2667 }
2668
2669 static ssize_t show_zero_req_lim(struct device *dev,
2670 struct device_attribute *attr, char *buf)
2671 {
2672 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2673
2674 return sprintf(buf, "%d\n", target->zero_req_lim);
2675 }
2676
2677 static ssize_t show_local_ib_port(struct device *dev,
2678 struct device_attribute *attr, char *buf)
2679 {
2680 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2681
2682 return sprintf(buf, "%d\n", target->srp_host->port);
2683 }
2684
2685 static ssize_t show_local_ib_device(struct device *dev,
2686 struct device_attribute *attr, char *buf)
2687 {
2688 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2689
2690 return sprintf(buf, "%s\n", target->srp_host->srp_dev->dev->name);
2691 }
2692
2693 static ssize_t show_ch_count(struct device *dev, struct device_attribute *attr,
2694 char *buf)
2695 {
2696 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2697
2698 return sprintf(buf, "%d\n", target->ch_count);
2699 }
2700
2701 static ssize_t show_comp_vector(struct device *dev,
2702 struct device_attribute *attr, char *buf)
2703 {
2704 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2705
2706 return sprintf(buf, "%d\n", target->comp_vector);
2707 }
2708
2709 static ssize_t show_tl_retry_count(struct device *dev,
2710 struct device_attribute *attr, char *buf)
2711 {
2712 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2713
2714 return sprintf(buf, "%d\n", target->tl_retry_count);
2715 }
2716
2717 static ssize_t show_cmd_sg_entries(struct device *dev,
2718 struct device_attribute *attr, char *buf)
2719 {
2720 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2721
2722 return sprintf(buf, "%u\n", target->cmd_sg_cnt);
2723 }
2724
2725 static ssize_t show_allow_ext_sg(struct device *dev,
2726 struct device_attribute *attr, char *buf)
2727 {
2728 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2729
2730 return sprintf(buf, "%s\n", target->allow_ext_sg ? "true" : "false");
2731 }
2732
2733 static DEVICE_ATTR(id_ext, S_IRUGO, show_id_ext, NULL);
2734 static DEVICE_ATTR(ioc_guid, S_IRUGO, show_ioc_guid, NULL);
2735 static DEVICE_ATTR(service_id, S_IRUGO, show_service_id, NULL);
2736 static DEVICE_ATTR(pkey, S_IRUGO, show_pkey, NULL);
2737 static DEVICE_ATTR(sgid, S_IRUGO, show_sgid, NULL);
2738 static DEVICE_ATTR(dgid, S_IRUGO, show_dgid, NULL);
2739 static DEVICE_ATTR(orig_dgid, S_IRUGO, show_orig_dgid, NULL);
2740 static DEVICE_ATTR(req_lim, S_IRUGO, show_req_lim, NULL);
2741 static DEVICE_ATTR(zero_req_lim, S_IRUGO, show_zero_req_lim, NULL);
2742 static DEVICE_ATTR(local_ib_port, S_IRUGO, show_local_ib_port, NULL);
2743 static DEVICE_ATTR(local_ib_device, S_IRUGO, show_local_ib_device, NULL);
2744 static DEVICE_ATTR(ch_count, S_IRUGO, show_ch_count, NULL);
2745 static DEVICE_ATTR(comp_vector, S_IRUGO, show_comp_vector, NULL);
2746 static DEVICE_ATTR(tl_retry_count, S_IRUGO, show_tl_retry_count, NULL);
2747 static DEVICE_ATTR(cmd_sg_entries, S_IRUGO, show_cmd_sg_entries, NULL);
2748 static DEVICE_ATTR(allow_ext_sg, S_IRUGO, show_allow_ext_sg, NULL);
2749
2750 static struct device_attribute *srp_host_attrs[] = {
2751 &dev_attr_id_ext,
2752 &dev_attr_ioc_guid,
2753 &dev_attr_service_id,
2754 &dev_attr_pkey,
2755 &dev_attr_sgid,
2756 &dev_attr_dgid,
2757 &dev_attr_orig_dgid,
2758 &dev_attr_req_lim,
2759 &dev_attr_zero_req_lim,
2760 &dev_attr_local_ib_port,
2761 &dev_attr_local_ib_device,
2762 &dev_attr_ch_count,
2763 &dev_attr_comp_vector,
2764 &dev_attr_tl_retry_count,
2765 &dev_attr_cmd_sg_entries,
2766 &dev_attr_allow_ext_sg,
2767 NULL
2768 };
2769
2770 static struct scsi_host_template srp_template = {
2771 .module = THIS_MODULE,
2772 .name = "InfiniBand SRP initiator",
2773 .proc_name = DRV_NAME,
2774 .slave_configure = srp_slave_configure,
2775 .info = srp_target_info,
2776 .queuecommand = srp_queuecommand,
2777 .change_queue_depth = srp_change_queue_depth,
2778 .eh_abort_handler = srp_abort,
2779 .eh_device_reset_handler = srp_reset_device,
2780 .eh_host_reset_handler = srp_reset_host,
2781 .skip_settle_delay = true,
2782 .sg_tablesize = SRP_DEF_SG_TABLESIZE,
2783 .can_queue = SRP_DEFAULT_CMD_SQ_SIZE,
2784 .this_id = -1,
2785 .cmd_per_lun = SRP_DEFAULT_CMD_SQ_SIZE,
2786 .use_clustering = ENABLE_CLUSTERING,
2787 .shost_attrs = srp_host_attrs,
2788 .track_queue_depth = 1,
2789 };
2790
2791 static int srp_sdev_count(struct Scsi_Host *host)
2792 {
2793 struct scsi_device *sdev;
2794 int c = 0;
2795
2796 shost_for_each_device(sdev, host)
2797 c++;
2798
2799 return c;
2800 }
2801
2802 /*
2803 * Return values:
2804 * < 0 upon failure. Caller is responsible for SRP target port cleanup.
2805 * 0 and target->state == SRP_TARGET_REMOVED if asynchronous target port
2806 * removal has been scheduled.
2807 * 0 and target->state != SRP_TARGET_REMOVED upon success.
2808 */
2809 static int srp_add_target(struct srp_host *host, struct srp_target_port *target)
2810 {
2811 struct srp_rport_identifiers ids;
2812 struct srp_rport *rport;
2813
2814 target->state = SRP_TARGET_SCANNING;
2815 sprintf(target->target_name, "SRP.T10:%016llX",
2816 be64_to_cpu(target->id_ext));
2817
2818 if (scsi_add_host(target->scsi_host, host->srp_dev->dev->dma_device))
2819 return -ENODEV;
2820
2821 memcpy(ids.port_id, &target->id_ext, 8);
2822 memcpy(ids.port_id + 8, &target->ioc_guid, 8);
2823 ids.roles = SRP_RPORT_ROLE_TARGET;
2824 rport = srp_rport_add(target->scsi_host, &ids);
2825 if (IS_ERR(rport)) {
2826 scsi_remove_host(target->scsi_host);
2827 return PTR_ERR(rport);
2828 }
2829
2830 rport->lld_data = target;
2831 target->rport = rport;
2832
2833 spin_lock(&host->target_lock);
2834 list_add_tail(&target->list, &host->target_list);
2835 spin_unlock(&host->target_lock);
2836
2837 scsi_scan_target(&target->scsi_host->shost_gendev,
2838 0, target->scsi_id, SCAN_WILD_CARD, 0);
2839
2840 if (srp_connected_ch(target) < target->ch_count ||
2841 target->qp_in_error) {
2842 shost_printk(KERN_INFO, target->scsi_host,
2843 PFX "SCSI scan failed - removing SCSI host\n");
2844 srp_queue_remove_work(target);
2845 goto out;
2846 }
2847
2848 pr_debug("%s: SCSI scan succeeded - detected %d LUNs\n",
2849 dev_name(&target->scsi_host->shost_gendev),
2850 srp_sdev_count(target->scsi_host));
2851
2852 spin_lock_irq(&target->lock);
2853 if (target->state == SRP_TARGET_SCANNING)
2854 target->state = SRP_TARGET_LIVE;
2855 spin_unlock_irq(&target->lock);
2856
2857 out:
2858 return 0;
2859 }
2860
2861 static void srp_release_dev(struct device *dev)
2862 {
2863 struct srp_host *host =
2864 container_of(dev, struct srp_host, dev);
2865
2866 complete(&host->released);
2867 }
2868
2869 static struct class srp_class = {
2870 .name = "infiniband_srp",
2871 .dev_release = srp_release_dev
2872 };
2873
2874 /**
2875 * srp_conn_unique() - check whether the connection to a target is unique
2876 * @host: SRP host.
2877 * @target: SRP target port.
2878 */
2879 static bool srp_conn_unique(struct srp_host *host,
2880 struct srp_target_port *target)
2881 {
2882 struct srp_target_port *t;
2883 bool ret = false;
2884
2885 if (target->state == SRP_TARGET_REMOVED)
2886 goto out;
2887
2888 ret = true;
2889
2890 spin_lock(&host->target_lock);
2891 list_for_each_entry(t, &host->target_list, list) {
2892 if (t != target &&
2893 target->id_ext == t->id_ext &&
2894 target->ioc_guid == t->ioc_guid &&
2895 target->initiator_ext == t->initiator_ext) {
2896 ret = false;
2897 break;
2898 }
2899 }
2900 spin_unlock(&host->target_lock);
2901
2902 out:
2903 return ret;
2904 }
2905
2906 /*
2907 * Target ports are added by writing
2908 *
2909 * id_ext=<SRP ID ext>,ioc_guid=<SRP IOC GUID>,dgid=<dest GID>,
2910 * pkey=<P_Key>,service_id=<service ID>
2911 *
2912 * to the add_target sysfs attribute.
2913 */
2914 enum {
2915 SRP_OPT_ERR = 0,
2916 SRP_OPT_ID_EXT = 1 << 0,
2917 SRP_OPT_IOC_GUID = 1 << 1,
2918 SRP_OPT_DGID = 1 << 2,
2919 SRP_OPT_PKEY = 1 << 3,
2920 SRP_OPT_SERVICE_ID = 1 << 4,
2921 SRP_OPT_MAX_SECT = 1 << 5,
2922 SRP_OPT_MAX_CMD_PER_LUN = 1 << 6,
2923 SRP_OPT_IO_CLASS = 1 << 7,
2924 SRP_OPT_INITIATOR_EXT = 1 << 8,
2925 SRP_OPT_CMD_SG_ENTRIES = 1 << 9,
2926 SRP_OPT_ALLOW_EXT_SG = 1 << 10,
2927 SRP_OPT_SG_TABLESIZE = 1 << 11,
2928 SRP_OPT_COMP_VECTOR = 1 << 12,
2929 SRP_OPT_TL_RETRY_COUNT = 1 << 13,
2930 SRP_OPT_QUEUE_SIZE = 1 << 14,
2931 SRP_OPT_ALL = (SRP_OPT_ID_EXT |
2932 SRP_OPT_IOC_GUID |
2933 SRP_OPT_DGID |
2934 SRP_OPT_PKEY |
2935 SRP_OPT_SERVICE_ID),
2936 };
2937
2938 static const match_table_t srp_opt_tokens = {
2939 { SRP_OPT_ID_EXT, "id_ext=%s" },
2940 { SRP_OPT_IOC_GUID, "ioc_guid=%s" },
2941 { SRP_OPT_DGID, "dgid=%s" },
2942 { SRP_OPT_PKEY, "pkey=%x" },
2943 { SRP_OPT_SERVICE_ID, "service_id=%s" },
2944 { SRP_OPT_MAX_SECT, "max_sect=%d" },
2945 { SRP_OPT_MAX_CMD_PER_LUN, "max_cmd_per_lun=%d" },
2946 { SRP_OPT_IO_CLASS, "io_class=%x" },
2947 { SRP_OPT_INITIATOR_EXT, "initiator_ext=%s" },
2948 { SRP_OPT_CMD_SG_ENTRIES, "cmd_sg_entries=%u" },
2949 { SRP_OPT_ALLOW_EXT_SG, "allow_ext_sg=%u" },
2950 { SRP_OPT_SG_TABLESIZE, "sg_tablesize=%u" },
2951 { SRP_OPT_COMP_VECTOR, "comp_vector=%u" },
2952 { SRP_OPT_TL_RETRY_COUNT, "tl_retry_count=%u" },
2953 { SRP_OPT_QUEUE_SIZE, "queue_size=%d" },
2954 { SRP_OPT_ERR, NULL }
2955 };
2956
2957 static int srp_parse_options(const char *buf, struct srp_target_port *target)
2958 {
2959 char *options, *sep_opt;
2960 char *p;
2961 char dgid[3];
2962 substring_t args[MAX_OPT_ARGS];
2963 int opt_mask = 0;
2964 int token;
2965 int ret = -EINVAL;
2966 int i;
2967
2968 options = kstrdup(buf, GFP_KERNEL);
2969 if (!options)
2970 return -ENOMEM;
2971
2972 sep_opt = options;
2973 while ((p = strsep(&sep_opt, ",\n")) != NULL) {
2974 if (!*p)
2975 continue;
2976
2977 token = match_token(p, srp_opt_tokens, args);
2978 opt_mask |= token;
2979
2980 switch (token) {
2981 case SRP_OPT_ID_EXT:
2982 p = match_strdup(args);
2983 if (!p) {
2984 ret = -ENOMEM;
2985 goto out;
2986 }
2987 target->id_ext = cpu_to_be64(simple_strtoull(p, NULL, 16));
2988 kfree(p);
2989 break;
2990
2991 case SRP_OPT_IOC_GUID:
2992 p = match_strdup(args);
2993 if (!p) {
2994 ret = -ENOMEM;
2995 goto out;
2996 }
2997 target->ioc_guid = cpu_to_be64(simple_strtoull(p, NULL, 16));
2998 kfree(p);
2999 break;
3000
3001 case SRP_OPT_DGID:
3002 p = match_strdup(args);
3003 if (!p) {
3004 ret = -ENOMEM;
3005 goto out;
3006 }
3007 if (strlen(p) != 32) {
3008 pr_warn("bad dest GID parameter '%s'\n", p);
3009 kfree(p);
3010 goto out;
3011 }
3012
3013 for (i = 0; i < 16; ++i) {
3014 strlcpy(dgid, p + i * 2, sizeof(dgid));
3015 if (sscanf(dgid, "%hhx",
3016 &target->orig_dgid.raw[i]) < 1) {
3017 ret = -EINVAL;
3018 kfree(p);
3019 goto out;
3020 }
3021 }
3022 kfree(p);
3023 break;
3024
3025 case SRP_OPT_PKEY:
3026 if (match_hex(args, &token)) {
3027 pr_warn("bad P_Key parameter '%s'\n", p);
3028 goto out;
3029 }
3030 target->pkey = cpu_to_be16(token);
3031 break;
3032
3033 case SRP_OPT_SERVICE_ID:
3034 p = match_strdup(args);
3035 if (!p) {
3036 ret = -ENOMEM;
3037 goto out;
3038 }
3039 target->service_id = cpu_to_be64(simple_strtoull(p, NULL, 16));
3040 kfree(p);
3041 break;
3042
3043 case SRP_OPT_MAX_SECT:
3044 if (match_int(args, &token)) {
3045 pr_warn("bad max sect parameter '%s'\n", p);
3046 goto out;
3047 }
3048 target->scsi_host->max_sectors = token;
3049 break;
3050
3051 case SRP_OPT_QUEUE_SIZE:
3052 if (match_int(args, &token) || token < 1) {
3053 pr_warn("bad queue_size parameter '%s'\n", p);
3054 goto out;
3055 }
3056 target->scsi_host->can_queue = token;
3057 target->queue_size = token + SRP_RSP_SQ_SIZE +
3058 SRP_TSK_MGMT_SQ_SIZE;
3059 if (!(opt_mask & SRP_OPT_MAX_CMD_PER_LUN))
3060 target->scsi_host->cmd_per_lun = token;
3061 break;
3062
3063 case SRP_OPT_MAX_CMD_PER_LUN:
3064 if (match_int(args, &token) || token < 1) {
3065 pr_warn("bad max cmd_per_lun parameter '%s'\n",
3066 p);
3067 goto out;
3068 }
3069 target->scsi_host->cmd_per_lun = token;
3070 break;
3071
3072 case SRP_OPT_IO_CLASS:
3073 if (match_hex(args, &token)) {
3074 pr_warn("bad IO class parameter '%s'\n", p);
3075 goto out;
3076 }
3077 if (token != SRP_REV10_IB_IO_CLASS &&
3078 token != SRP_REV16A_IB_IO_CLASS) {
3079 pr_warn("unknown IO class parameter value %x specified (use %x or %x).\n",
3080 token, SRP_REV10_IB_IO_CLASS,
3081 SRP_REV16A_IB_IO_CLASS);
3082 goto out;
3083 }
3084 target->io_class = token;
3085 break;
3086
3087 case SRP_OPT_INITIATOR_EXT:
3088 p = match_strdup(args);
3089 if (!p) {
3090 ret = -ENOMEM;
3091 goto out;
3092 }
3093 target->initiator_ext = cpu_to_be64(simple_strtoull(p, NULL, 16));
3094 kfree(p);
3095 break;
3096
3097 case SRP_OPT_CMD_SG_ENTRIES:
3098 if (match_int(args, &token) || token < 1 || token > 255) {
3099 pr_warn("bad max cmd_sg_entries parameter '%s'\n",
3100 p);
3101 goto out;
3102 }
3103 target->cmd_sg_cnt = token;
3104 break;
3105
3106 case SRP_OPT_ALLOW_EXT_SG:
3107 if (match_int(args, &token)) {
3108 pr_warn("bad allow_ext_sg parameter '%s'\n", p);
3109 goto out;
3110 }
3111 target->allow_ext_sg = !!token;
3112 break;
3113
3114 case SRP_OPT_SG_TABLESIZE:
3115 if (match_int(args, &token) || token < 1 ||
3116 token > SCSI_MAX_SG_CHAIN_SEGMENTS) {
3117 pr_warn("bad max sg_tablesize parameter '%s'\n",
3118 p);
3119 goto out;
3120 }
3121 target->sg_tablesize = token;
3122 break;
3123
3124 case SRP_OPT_COMP_VECTOR:
3125 if (match_int(args, &token) || token < 0) {
3126 pr_warn("bad comp_vector parameter '%s'\n", p);
3127 goto out;
3128 }
3129 target->comp_vector = token;
3130 break;
3131
3132 case SRP_OPT_TL_RETRY_COUNT:
3133 if (match_int(args, &token) || token < 2 || token > 7) {
3134 pr_warn("bad tl_retry_count parameter '%s' (must be a number between 2 and 7)\n",
3135 p);
3136 goto out;
3137 }
3138 target->tl_retry_count = token;
3139 break;
3140
3141 default:
3142 pr_warn("unknown parameter or missing value '%s' in target creation request\n",
3143 p);
3144 goto out;
3145 }
3146 }
3147
3148 if ((opt_mask & SRP_OPT_ALL) == SRP_OPT_ALL)
3149 ret = 0;
3150 else
3151 for (i = 0; i < ARRAY_SIZE(srp_opt_tokens); ++i)
3152 if ((srp_opt_tokens[i].token & SRP_OPT_ALL) &&
3153 !(srp_opt_tokens[i].token & opt_mask))
3154 pr_warn("target creation request is missing parameter '%s'\n",
3155 srp_opt_tokens[i].pattern);
3156
3157 if (target->scsi_host->cmd_per_lun > target->scsi_host->can_queue
3158 && (opt_mask & SRP_OPT_MAX_CMD_PER_LUN))
3159 pr_warn("cmd_per_lun = %d > queue_size = %d\n",
3160 target->scsi_host->cmd_per_lun,
3161 target->scsi_host->can_queue);
3162
3163 out:
3164 kfree(options);
3165 return ret;
3166 }
3167
3168 static ssize_t srp_create_target(struct device *dev,
3169 struct device_attribute *attr,
3170 const char *buf, size_t count)
3171 {
3172 struct srp_host *host =
3173 container_of(dev, struct srp_host, dev);
3174 struct Scsi_Host *target_host;
3175 struct srp_target_port *target;
3176 struct srp_rdma_ch *ch;
3177 struct srp_device *srp_dev = host->srp_dev;
3178 struct ib_device *ibdev = srp_dev->dev;
3179 int ret, node_idx, node, cpu, i;
3180 bool multich = false;
3181
3182 target_host = scsi_host_alloc(&srp_template,
3183 sizeof (struct srp_target_port));
3184 if (!target_host)
3185 return -ENOMEM;
3186
3187 target_host->transportt = ib_srp_transport_template;
3188 target_host->max_channel = 0;
3189 target_host->max_id = 1;
3190 target_host->max_lun = -1LL;
3191 target_host->max_cmd_len = sizeof ((struct srp_cmd *) (void *) 0L)->cdb;
3192
3193 target = host_to_target(target_host);
3194
3195 target->io_class = SRP_REV16A_IB_IO_CLASS;
3196 target->scsi_host = target_host;
3197 target->srp_host = host;
3198 target->lkey = host->srp_dev->pd->local_dma_lkey;
3199 target->global_mr = host->srp_dev->global_mr;
3200 target->cmd_sg_cnt = cmd_sg_entries;
3201 target->sg_tablesize = indirect_sg_entries ? : cmd_sg_entries;
3202 target->allow_ext_sg = allow_ext_sg;
3203 target->tl_retry_count = 7;
3204 target->queue_size = SRP_DEFAULT_QUEUE_SIZE;
3205
3206 /*
3207 * Avoid that the SCSI host can be removed by srp_remove_target()
3208 * before this function returns.
3209 */
3210 scsi_host_get(target->scsi_host);
3211
3212 mutex_lock(&host->add_target_mutex);
3213
3214 ret = srp_parse_options(buf, target);
3215 if (ret)
3216 goto out;
3217
3218 target->req_ring_size = target->queue_size - SRP_TSK_MGMT_SQ_SIZE;
3219
3220 if (!srp_conn_unique(target->srp_host, target)) {
3221 shost_printk(KERN_INFO, target->scsi_host,
3222 PFX "Already connected to target port with id_ext=%016llx;ioc_guid=%016llx;initiator_ext=%016llx\n",
3223 be64_to_cpu(target->id_ext),
3224 be64_to_cpu(target->ioc_guid),
3225 be64_to_cpu(target->initiator_ext));
3226 ret = -EEXIST;
3227 goto out;
3228 }
3229
3230 if (!srp_dev->has_fmr && !srp_dev->has_fr && !target->allow_ext_sg &&
3231 target->cmd_sg_cnt < target->sg_tablesize) {
3232 pr_warn("No MR pool and no external indirect descriptors, limiting sg_tablesize to cmd_sg_cnt\n");
3233 target->sg_tablesize = target->cmd_sg_cnt;
3234 }
3235
3236 target_host->sg_tablesize = target->sg_tablesize;
3237 target->mr_pool_size = target->scsi_host->can_queue;
3238 target->indirect_size = target->sg_tablesize *
3239 sizeof (struct srp_direct_buf);
3240 target->max_iu_len = sizeof (struct srp_cmd) +
3241 sizeof (struct srp_indirect_buf) +
3242 target->cmd_sg_cnt * sizeof (struct srp_direct_buf);
3243
3244 INIT_WORK(&target->tl_err_work, srp_tl_err_work);
3245 INIT_WORK(&target->remove_work, srp_remove_work);
3246 spin_lock_init(&target->lock);
3247 ret = ib_query_gid(ibdev, host->port, 0, &target->sgid, NULL);
3248 if (ret)
3249 goto out;
3250
3251 ret = -ENOMEM;
3252 target->ch_count = max_t(unsigned, num_online_nodes(),
3253 min(ch_count ? :
3254 min(4 * num_online_nodes(),
3255 ibdev->num_comp_vectors),
3256 num_online_cpus()));
3257 target->ch = kcalloc(target->ch_count, sizeof(*target->ch),
3258 GFP_KERNEL);
3259 if (!target->ch)
3260 goto out;
3261
3262 node_idx = 0;
3263 for_each_online_node(node) {
3264 const int ch_start = (node_idx * target->ch_count /
3265 num_online_nodes());
3266 const int ch_end = ((node_idx + 1) * target->ch_count /
3267 num_online_nodes());
3268 const int cv_start = (node_idx * ibdev->num_comp_vectors /
3269 num_online_nodes() + target->comp_vector)
3270 % ibdev->num_comp_vectors;
3271 const int cv_end = ((node_idx + 1) * ibdev->num_comp_vectors /
3272 num_online_nodes() + target->comp_vector)
3273 % ibdev->num_comp_vectors;
3274 int cpu_idx = 0;
3275
3276 for_each_online_cpu(cpu) {
3277 if (cpu_to_node(cpu) != node)
3278 continue;
3279 if (ch_start + cpu_idx >= ch_end)
3280 continue;
3281 ch = &target->ch[ch_start + cpu_idx];
3282 ch->target = target;
3283 ch->comp_vector = cv_start == cv_end ? cv_start :
3284 cv_start + cpu_idx % (cv_end - cv_start);
3285 spin_lock_init(&ch->lock);
3286 INIT_LIST_HEAD(&ch->free_tx);
3287 ret = srp_new_cm_id(ch);
3288 if (ret)
3289 goto err_disconnect;
3290
3291 ret = srp_create_ch_ib(ch);
3292 if (ret)
3293 goto err_disconnect;
3294
3295 ret = srp_alloc_req_data(ch);
3296 if (ret)
3297 goto err_disconnect;
3298
3299 ret = srp_connect_ch(ch, multich);
3300 if (ret) {
3301 shost_printk(KERN_ERR, target->scsi_host,
3302 PFX "Connection %d/%d failed\n",
3303 ch_start + cpu_idx,
3304 target->ch_count);
3305 if (node_idx == 0 && cpu_idx == 0) {
3306 goto err_disconnect;
3307 } else {
3308 srp_free_ch_ib(target, ch);
3309 srp_free_req_data(target, ch);
3310 target->ch_count = ch - target->ch;
3311 goto connected;
3312 }
3313 }
3314
3315 multich = true;
3316 cpu_idx++;
3317 }
3318 node_idx++;
3319 }
3320
3321 connected:
3322 target->scsi_host->nr_hw_queues = target->ch_count;
3323
3324 ret = srp_add_target(host, target);
3325 if (ret)
3326 goto err_disconnect;
3327
3328 if (target->state != SRP_TARGET_REMOVED) {
3329 shost_printk(KERN_DEBUG, target->scsi_host, PFX
3330 "new target: id_ext %016llx ioc_guid %016llx pkey %04x service_id %016llx sgid %pI6 dgid %pI6\n",
3331 be64_to_cpu(target->id_ext),
3332 be64_to_cpu(target->ioc_guid),
3333 be16_to_cpu(target->pkey),
3334 be64_to_cpu(target->service_id),
3335 target->sgid.raw, target->orig_dgid.raw);
3336 }
3337
3338 ret = count;
3339
3340 out:
3341 mutex_unlock(&host->add_target_mutex);
3342
3343 scsi_host_put(target->scsi_host);
3344 if (ret < 0)
3345 scsi_host_put(target->scsi_host);
3346
3347 return ret;
3348
3349 err_disconnect:
3350 srp_disconnect_target(target);
3351
3352 for (i = 0; i < target->ch_count; i++) {
3353 ch = &target->ch[i];
3354 srp_free_ch_ib(target, ch);
3355 srp_free_req_data(target, ch);
3356 }
3357
3358 kfree(target->ch);
3359 goto out;
3360 }
3361
3362 static DEVICE_ATTR(add_target, S_IWUSR, NULL, srp_create_target);
3363
3364 static ssize_t show_ibdev(struct device *dev, struct device_attribute *attr,
3365 char *buf)
3366 {
3367 struct srp_host *host = container_of(dev, struct srp_host, dev);
3368
3369 return sprintf(buf, "%s\n", host->srp_dev->dev->name);
3370 }
3371
3372 static DEVICE_ATTR(ibdev, S_IRUGO, show_ibdev, NULL);
3373
3374 static ssize_t show_port(struct device *dev, struct device_attribute *attr,
3375 char *buf)
3376 {
3377 struct srp_host *host = container_of(dev, struct srp_host, dev);
3378
3379 return sprintf(buf, "%d\n", host->port);
3380 }
3381
3382 static DEVICE_ATTR(port, S_IRUGO, show_port, NULL);
3383
3384 static struct srp_host *srp_add_port(struct srp_device *device, u8 port)
3385 {
3386 struct srp_host *host;
3387
3388 host = kzalloc(sizeof *host, GFP_KERNEL);
3389 if (!host)
3390 return NULL;
3391
3392 INIT_LIST_HEAD(&host->target_list);
3393 spin_lock_init(&host->target_lock);
3394 init_completion(&host->released);
3395 mutex_init(&host->add_target_mutex);
3396 host->srp_dev = device;
3397 host->port = port;
3398
3399 host->dev.class = &srp_class;
3400 host->dev.parent = device->dev->dma_device;
3401 dev_set_name(&host->dev, "srp-%s-%d", device->dev->name, port);
3402
3403 if (device_register(&host->dev))
3404 goto free_host;
3405 if (device_create_file(&host->dev, &dev_attr_add_target))
3406 goto err_class;
3407 if (device_create_file(&host->dev, &dev_attr_ibdev))
3408 goto err_class;
3409 if (device_create_file(&host->dev, &dev_attr_port))
3410 goto err_class;
3411
3412 return host;
3413
3414 err_class:
3415 device_unregister(&host->dev);
3416
3417 free_host:
3418 kfree(host);
3419
3420 return NULL;
3421 }
3422
3423 static void srp_add_one(struct ib_device *device)
3424 {
3425 struct srp_device *srp_dev;
3426 struct srp_host *host;
3427 int mr_page_shift, p;
3428 u64 max_pages_per_mr;
3429
3430 srp_dev = kmalloc(sizeof *srp_dev, GFP_KERNEL);
3431 if (!srp_dev)
3432 return;
3433
3434 srp_dev->has_fmr = (device->alloc_fmr && device->dealloc_fmr &&
3435 device->map_phys_fmr && device->unmap_fmr);
3436 srp_dev->has_fr = (device->attrs.device_cap_flags &
3437 IB_DEVICE_MEM_MGT_EXTENSIONS);
3438 if (!srp_dev->has_fmr && !srp_dev->has_fr)
3439 dev_warn(&device->dev, "neither FMR nor FR is supported\n");
3440
3441 srp_dev->use_fast_reg = (srp_dev->has_fr &&
3442 (!srp_dev->has_fmr || prefer_fr));
3443 srp_dev->use_fmr = !srp_dev->use_fast_reg && srp_dev->has_fmr;
3444
3445 /*
3446 * Use the smallest page size supported by the HCA, down to a
3447 * minimum of 4096 bytes. We're unlikely to build large sglists
3448 * out of smaller entries.
3449 */
3450 mr_page_shift = max(12, ffs(device->attrs.page_size_cap) - 1);
3451 srp_dev->mr_page_size = 1 << mr_page_shift;
3452 srp_dev->mr_page_mask = ~((u64) srp_dev->mr_page_size - 1);
3453 max_pages_per_mr = device->attrs.max_mr_size;
3454 do_div(max_pages_per_mr, srp_dev->mr_page_size);
3455 srp_dev->max_pages_per_mr = min_t(u64, SRP_MAX_PAGES_PER_MR,
3456 max_pages_per_mr);
3457 if (srp_dev->use_fast_reg) {
3458 srp_dev->max_pages_per_mr =
3459 min_t(u32, srp_dev->max_pages_per_mr,
3460 device->attrs.max_fast_reg_page_list_len);
3461 }
3462 srp_dev->mr_max_size = srp_dev->mr_page_size *
3463 srp_dev->max_pages_per_mr;
3464 pr_debug("%s: mr_page_shift = %d, device->max_mr_size = %#llx, device->max_fast_reg_page_list_len = %u, max_pages_per_mr = %d, mr_max_size = %#x\n",
3465 device->name, mr_page_shift, device->attrs.max_mr_size,
3466 device->attrs.max_fast_reg_page_list_len,
3467 srp_dev->max_pages_per_mr, srp_dev->mr_max_size);
3468
3469 INIT_LIST_HEAD(&srp_dev->dev_list);
3470
3471 srp_dev->dev = device;
3472 srp_dev->pd = ib_alloc_pd(device);
3473 if (IS_ERR(srp_dev->pd))
3474 goto free_dev;
3475
3476 if (!register_always || (!srp_dev->has_fmr && !srp_dev->has_fr)) {
3477 srp_dev->global_mr = ib_get_dma_mr(srp_dev->pd,
3478 IB_ACCESS_LOCAL_WRITE |
3479 IB_ACCESS_REMOTE_READ |
3480 IB_ACCESS_REMOTE_WRITE);
3481 if (IS_ERR(srp_dev->global_mr))
3482 goto err_pd;
3483 } else {
3484 srp_dev->global_mr = NULL;
3485 }
3486
3487 for (p = rdma_start_port(device); p <= rdma_end_port(device); ++p) {
3488 host = srp_add_port(srp_dev, p);
3489 if (host)
3490 list_add_tail(&host->list, &srp_dev->dev_list);
3491 }
3492
3493 ib_set_client_data(device, &srp_client, srp_dev);
3494 return;
3495
3496 err_pd:
3497 ib_dealloc_pd(srp_dev->pd);
3498
3499 free_dev:
3500 kfree(srp_dev);
3501 }
3502
3503 static void srp_remove_one(struct ib_device *device, void *client_data)
3504 {
3505 struct srp_device *srp_dev;
3506 struct srp_host *host, *tmp_host;
3507 struct srp_target_port *target;
3508
3509 srp_dev = client_data;
3510 if (!srp_dev)
3511 return;
3512
3513 list_for_each_entry_safe(host, tmp_host, &srp_dev->dev_list, list) {
3514 device_unregister(&host->dev);
3515 /*
3516 * Wait for the sysfs entry to go away, so that no new
3517 * target ports can be created.
3518 */
3519 wait_for_completion(&host->released);
3520
3521 /*
3522 * Remove all target ports.
3523 */
3524 spin_lock(&host->target_lock);
3525 list_for_each_entry(target, &host->target_list, list)
3526 srp_queue_remove_work(target);
3527 spin_unlock(&host->target_lock);
3528
3529 /*
3530 * Wait for tl_err and target port removal tasks.
3531 */
3532 flush_workqueue(system_long_wq);
3533 flush_workqueue(srp_remove_wq);
3534
3535 kfree(host);
3536 }
3537
3538 if (srp_dev->global_mr)
3539 ib_dereg_mr(srp_dev->global_mr);
3540 ib_dealloc_pd(srp_dev->pd);
3541
3542 kfree(srp_dev);
3543 }
3544
3545 static struct srp_function_template ib_srp_transport_functions = {
3546 .has_rport_state = true,
3547 .reset_timer_if_blocked = true,
3548 .reconnect_delay = &srp_reconnect_delay,
3549 .fast_io_fail_tmo = &srp_fast_io_fail_tmo,
3550 .dev_loss_tmo = &srp_dev_loss_tmo,
3551 .reconnect = srp_rport_reconnect,
3552 .rport_delete = srp_rport_delete,
3553 .terminate_rport_io = srp_terminate_io,
3554 };
3555
3556 static int __init srp_init_module(void)
3557 {
3558 int ret;
3559
3560 if (srp_sg_tablesize) {
3561 pr_warn("srp_sg_tablesize is deprecated, please use cmd_sg_entries\n");
3562 if (!cmd_sg_entries)
3563 cmd_sg_entries = srp_sg_tablesize;
3564 }
3565
3566 if (!cmd_sg_entries)
3567 cmd_sg_entries = SRP_DEF_SG_TABLESIZE;
3568
3569 if (cmd_sg_entries > 255) {
3570 pr_warn("Clamping cmd_sg_entries to 255\n");
3571 cmd_sg_entries = 255;
3572 }
3573
3574 if (!indirect_sg_entries)
3575 indirect_sg_entries = cmd_sg_entries;
3576 else if (indirect_sg_entries < cmd_sg_entries) {
3577 pr_warn("Bumping up indirect_sg_entries to match cmd_sg_entries (%u)\n",
3578 cmd_sg_entries);
3579 indirect_sg_entries = cmd_sg_entries;
3580 }
3581
3582 srp_remove_wq = create_workqueue("srp_remove");
3583 if (!srp_remove_wq) {
3584 ret = -ENOMEM;
3585 goto out;
3586 }
3587
3588 ret = -ENOMEM;
3589 ib_srp_transport_template =
3590 srp_attach_transport(&ib_srp_transport_functions);
3591 if (!ib_srp_transport_template)
3592 goto destroy_wq;
3593
3594 ret = class_register(&srp_class);
3595 if (ret) {
3596 pr_err("couldn't register class infiniband_srp\n");
3597 goto release_tr;
3598 }
3599
3600 ib_sa_register_client(&srp_sa_client);
3601
3602 ret = ib_register_client(&srp_client);
3603 if (ret) {
3604 pr_err("couldn't register IB client\n");
3605 goto unreg_sa;
3606 }
3607
3608 out:
3609 return ret;
3610
3611 unreg_sa:
3612 ib_sa_unregister_client(&srp_sa_client);
3613 class_unregister(&srp_class);
3614
3615 release_tr:
3616 srp_release_transport(ib_srp_transport_template);
3617
3618 destroy_wq:
3619 destroy_workqueue(srp_remove_wq);
3620 goto out;
3621 }
3622
3623 static void __exit srp_cleanup_module(void)
3624 {
3625 ib_unregister_client(&srp_client);
3626 ib_sa_unregister_client(&srp_sa_client);
3627 class_unregister(&srp_class);
3628 srp_release_transport(ib_srp_transport_template);
3629 destroy_workqueue(srp_remove_wq);
3630 }
3631
3632 module_init(srp_init_module);
3633 module_exit(srp_cleanup_module);
This page took 0.172872 seconds and 5 git commands to generate.