b6bf2049602107befe1f49eedee4494336f85e28
[deliverable/linux.git] / drivers / infiniband / ulp / srp / ib_srp.c
1 /*
2 * Copyright (c) 2005 Cisco Systems. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/err.h>
39 #include <linux/string.h>
40 #include <linux/parser.h>
41 #include <linux/random.h>
42 #include <linux/jiffies.h>
43 #include <rdma/ib_cache.h>
44
45 #include <linux/atomic.h>
46
47 #include <scsi/scsi.h>
48 #include <scsi/scsi_device.h>
49 #include <scsi/scsi_dbg.h>
50 #include <scsi/scsi_tcq.h>
51 #include <scsi/srp.h>
52 #include <scsi/scsi_transport_srp.h>
53
54 #include "ib_srp.h"
55
56 #define DRV_NAME "ib_srp"
57 #define PFX DRV_NAME ": "
58 #define DRV_VERSION "2.0"
59 #define DRV_RELDATE "July 26, 2015"
60
61 MODULE_AUTHOR("Roland Dreier");
62 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol initiator");
63 MODULE_LICENSE("Dual BSD/GPL");
64 MODULE_VERSION(DRV_VERSION);
65 MODULE_INFO(release_date, DRV_RELDATE);
66
67 static unsigned int srp_sg_tablesize;
68 static unsigned int cmd_sg_entries;
69 static unsigned int indirect_sg_entries;
70 static bool allow_ext_sg;
71 static bool prefer_fr = true;
72 static bool register_always = true;
73 static int topspin_workarounds = 1;
74
75 module_param(srp_sg_tablesize, uint, 0444);
76 MODULE_PARM_DESC(srp_sg_tablesize, "Deprecated name for cmd_sg_entries");
77
78 module_param(cmd_sg_entries, uint, 0444);
79 MODULE_PARM_DESC(cmd_sg_entries,
80 "Default number of gather/scatter entries in the SRP command (default is 12, max 255)");
81
82 module_param(indirect_sg_entries, uint, 0444);
83 MODULE_PARM_DESC(indirect_sg_entries,
84 "Default max number of gather/scatter entries (default is 12, max is " __stringify(SCSI_MAX_SG_CHAIN_SEGMENTS) ")");
85
86 module_param(allow_ext_sg, bool, 0444);
87 MODULE_PARM_DESC(allow_ext_sg,
88 "Default behavior when there are more than cmd_sg_entries S/G entries after mapping; fails the request when false (default false)");
89
90 module_param(topspin_workarounds, int, 0444);
91 MODULE_PARM_DESC(topspin_workarounds,
92 "Enable workarounds for Topspin/Cisco SRP target bugs if != 0");
93
94 module_param(prefer_fr, bool, 0444);
95 MODULE_PARM_DESC(prefer_fr,
96 "Whether to use fast registration if both FMR and fast registration are supported");
97
98 module_param(register_always, bool, 0444);
99 MODULE_PARM_DESC(register_always,
100 "Use memory registration even for contiguous memory regions");
101
102 static const struct kernel_param_ops srp_tmo_ops;
103
104 static int srp_reconnect_delay = 10;
105 module_param_cb(reconnect_delay, &srp_tmo_ops, &srp_reconnect_delay,
106 S_IRUGO | S_IWUSR);
107 MODULE_PARM_DESC(reconnect_delay, "Time between successive reconnect attempts");
108
109 static int srp_fast_io_fail_tmo = 15;
110 module_param_cb(fast_io_fail_tmo, &srp_tmo_ops, &srp_fast_io_fail_tmo,
111 S_IRUGO | S_IWUSR);
112 MODULE_PARM_DESC(fast_io_fail_tmo,
113 "Number of seconds between the observation of a transport"
114 " layer error and failing all I/O. \"off\" means that this"
115 " functionality is disabled.");
116
117 static int srp_dev_loss_tmo = 600;
118 module_param_cb(dev_loss_tmo, &srp_tmo_ops, &srp_dev_loss_tmo,
119 S_IRUGO | S_IWUSR);
120 MODULE_PARM_DESC(dev_loss_tmo,
121 "Maximum number of seconds that the SRP transport should"
122 " insulate transport layer errors. After this time has been"
123 " exceeded the SCSI host is removed. Should be"
124 " between 1 and " __stringify(SCSI_DEVICE_BLOCK_MAX_TIMEOUT)
125 " if fast_io_fail_tmo has not been set. \"off\" means that"
126 " this functionality is disabled.");
127
128 static unsigned ch_count;
129 module_param(ch_count, uint, 0444);
130 MODULE_PARM_DESC(ch_count,
131 "Number of RDMA channels to use for communication with an SRP target. Using more than one channel improves performance if the HCA supports multiple completion vectors. The default value is the minimum of four times the number of online CPU sockets and the number of completion vectors supported by the HCA.");
132
133 static void srp_add_one(struct ib_device *device);
134 static void srp_remove_one(struct ib_device *device, void *client_data);
135 static void srp_recv_done(struct ib_cq *cq, struct ib_wc *wc);
136 static void srp_handle_qp_err(struct ib_cq *cq, struct ib_wc *wc,
137 const char *opname);
138 static int srp_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event);
139
140 static struct scsi_transport_template *ib_srp_transport_template;
141 static struct workqueue_struct *srp_remove_wq;
142
143 static struct ib_client srp_client = {
144 .name = "srp",
145 .add = srp_add_one,
146 .remove = srp_remove_one
147 };
148
149 static struct ib_sa_client srp_sa_client;
150
151 static int srp_tmo_get(char *buffer, const struct kernel_param *kp)
152 {
153 int tmo = *(int *)kp->arg;
154
155 if (tmo >= 0)
156 return sprintf(buffer, "%d", tmo);
157 else
158 return sprintf(buffer, "off");
159 }
160
161 static int srp_tmo_set(const char *val, const struct kernel_param *kp)
162 {
163 int tmo, res;
164
165 res = srp_parse_tmo(&tmo, val);
166 if (res)
167 goto out;
168
169 if (kp->arg == &srp_reconnect_delay)
170 res = srp_tmo_valid(tmo, srp_fast_io_fail_tmo,
171 srp_dev_loss_tmo);
172 else if (kp->arg == &srp_fast_io_fail_tmo)
173 res = srp_tmo_valid(srp_reconnect_delay, tmo, srp_dev_loss_tmo);
174 else
175 res = srp_tmo_valid(srp_reconnect_delay, srp_fast_io_fail_tmo,
176 tmo);
177 if (res)
178 goto out;
179 *(int *)kp->arg = tmo;
180
181 out:
182 return res;
183 }
184
185 static const struct kernel_param_ops srp_tmo_ops = {
186 .get = srp_tmo_get,
187 .set = srp_tmo_set,
188 };
189
190 static inline struct srp_target_port *host_to_target(struct Scsi_Host *host)
191 {
192 return (struct srp_target_port *) host->hostdata;
193 }
194
195 static const char *srp_target_info(struct Scsi_Host *host)
196 {
197 return host_to_target(host)->target_name;
198 }
199
200 static int srp_target_is_topspin(struct srp_target_port *target)
201 {
202 static const u8 topspin_oui[3] = { 0x00, 0x05, 0xad };
203 static const u8 cisco_oui[3] = { 0x00, 0x1b, 0x0d };
204
205 return topspin_workarounds &&
206 (!memcmp(&target->ioc_guid, topspin_oui, sizeof topspin_oui) ||
207 !memcmp(&target->ioc_guid, cisco_oui, sizeof cisco_oui));
208 }
209
210 static struct srp_iu *srp_alloc_iu(struct srp_host *host, size_t size,
211 gfp_t gfp_mask,
212 enum dma_data_direction direction)
213 {
214 struct srp_iu *iu;
215
216 iu = kmalloc(sizeof *iu, gfp_mask);
217 if (!iu)
218 goto out;
219
220 iu->buf = kzalloc(size, gfp_mask);
221 if (!iu->buf)
222 goto out_free_iu;
223
224 iu->dma = ib_dma_map_single(host->srp_dev->dev, iu->buf, size,
225 direction);
226 if (ib_dma_mapping_error(host->srp_dev->dev, iu->dma))
227 goto out_free_buf;
228
229 iu->size = size;
230 iu->direction = direction;
231
232 return iu;
233
234 out_free_buf:
235 kfree(iu->buf);
236 out_free_iu:
237 kfree(iu);
238 out:
239 return NULL;
240 }
241
242 static void srp_free_iu(struct srp_host *host, struct srp_iu *iu)
243 {
244 if (!iu)
245 return;
246
247 ib_dma_unmap_single(host->srp_dev->dev, iu->dma, iu->size,
248 iu->direction);
249 kfree(iu->buf);
250 kfree(iu);
251 }
252
253 static void srp_qp_event(struct ib_event *event, void *context)
254 {
255 pr_debug("QP event %s (%d)\n",
256 ib_event_msg(event->event), event->event);
257 }
258
259 static int srp_init_qp(struct srp_target_port *target,
260 struct ib_qp *qp)
261 {
262 struct ib_qp_attr *attr;
263 int ret;
264
265 attr = kmalloc(sizeof *attr, GFP_KERNEL);
266 if (!attr)
267 return -ENOMEM;
268
269 ret = ib_find_cached_pkey(target->srp_host->srp_dev->dev,
270 target->srp_host->port,
271 be16_to_cpu(target->pkey),
272 &attr->pkey_index);
273 if (ret)
274 goto out;
275
276 attr->qp_state = IB_QPS_INIT;
277 attr->qp_access_flags = (IB_ACCESS_REMOTE_READ |
278 IB_ACCESS_REMOTE_WRITE);
279 attr->port_num = target->srp_host->port;
280
281 ret = ib_modify_qp(qp, attr,
282 IB_QP_STATE |
283 IB_QP_PKEY_INDEX |
284 IB_QP_ACCESS_FLAGS |
285 IB_QP_PORT);
286
287 out:
288 kfree(attr);
289 return ret;
290 }
291
292 static int srp_new_cm_id(struct srp_rdma_ch *ch)
293 {
294 struct srp_target_port *target = ch->target;
295 struct ib_cm_id *new_cm_id;
296
297 new_cm_id = ib_create_cm_id(target->srp_host->srp_dev->dev,
298 srp_cm_handler, ch);
299 if (IS_ERR(new_cm_id))
300 return PTR_ERR(new_cm_id);
301
302 if (ch->cm_id)
303 ib_destroy_cm_id(ch->cm_id);
304 ch->cm_id = new_cm_id;
305 ch->path.sgid = target->sgid;
306 ch->path.dgid = target->orig_dgid;
307 ch->path.pkey = target->pkey;
308 ch->path.service_id = target->service_id;
309
310 return 0;
311 }
312
313 static struct ib_fmr_pool *srp_alloc_fmr_pool(struct srp_target_port *target)
314 {
315 struct srp_device *dev = target->srp_host->srp_dev;
316 struct ib_fmr_pool_param fmr_param;
317
318 memset(&fmr_param, 0, sizeof(fmr_param));
319 fmr_param.pool_size = target->scsi_host->can_queue;
320 fmr_param.dirty_watermark = fmr_param.pool_size / 4;
321 fmr_param.cache = 1;
322 fmr_param.max_pages_per_fmr = dev->max_pages_per_mr;
323 fmr_param.page_shift = ilog2(dev->mr_page_size);
324 fmr_param.access = (IB_ACCESS_LOCAL_WRITE |
325 IB_ACCESS_REMOTE_WRITE |
326 IB_ACCESS_REMOTE_READ);
327
328 return ib_create_fmr_pool(dev->pd, &fmr_param);
329 }
330
331 /**
332 * srp_destroy_fr_pool() - free the resources owned by a pool
333 * @pool: Fast registration pool to be destroyed.
334 */
335 static void srp_destroy_fr_pool(struct srp_fr_pool *pool)
336 {
337 int i;
338 struct srp_fr_desc *d;
339
340 if (!pool)
341 return;
342
343 for (i = 0, d = &pool->desc[0]; i < pool->size; i++, d++) {
344 if (d->mr)
345 ib_dereg_mr(d->mr);
346 }
347 kfree(pool);
348 }
349
350 /**
351 * srp_create_fr_pool() - allocate and initialize a pool for fast registration
352 * @device: IB device to allocate fast registration descriptors for.
353 * @pd: Protection domain associated with the FR descriptors.
354 * @pool_size: Number of descriptors to allocate.
355 * @max_page_list_len: Maximum fast registration work request page list length.
356 */
357 static struct srp_fr_pool *srp_create_fr_pool(struct ib_device *device,
358 struct ib_pd *pd, int pool_size,
359 int max_page_list_len)
360 {
361 struct srp_fr_pool *pool;
362 struct srp_fr_desc *d;
363 struct ib_mr *mr;
364 int i, ret = -EINVAL;
365
366 if (pool_size <= 0)
367 goto err;
368 ret = -ENOMEM;
369 pool = kzalloc(sizeof(struct srp_fr_pool) +
370 pool_size * sizeof(struct srp_fr_desc), GFP_KERNEL);
371 if (!pool)
372 goto err;
373 pool->size = pool_size;
374 pool->max_page_list_len = max_page_list_len;
375 spin_lock_init(&pool->lock);
376 INIT_LIST_HEAD(&pool->free_list);
377
378 for (i = 0, d = &pool->desc[0]; i < pool->size; i++, d++) {
379 mr = ib_alloc_mr(pd, IB_MR_TYPE_MEM_REG,
380 max_page_list_len);
381 if (IS_ERR(mr)) {
382 ret = PTR_ERR(mr);
383 goto destroy_pool;
384 }
385 d->mr = mr;
386 list_add_tail(&d->entry, &pool->free_list);
387 }
388
389 out:
390 return pool;
391
392 destroy_pool:
393 srp_destroy_fr_pool(pool);
394
395 err:
396 pool = ERR_PTR(ret);
397 goto out;
398 }
399
400 /**
401 * srp_fr_pool_get() - obtain a descriptor suitable for fast registration
402 * @pool: Pool to obtain descriptor from.
403 */
404 static struct srp_fr_desc *srp_fr_pool_get(struct srp_fr_pool *pool)
405 {
406 struct srp_fr_desc *d = NULL;
407 unsigned long flags;
408
409 spin_lock_irqsave(&pool->lock, flags);
410 if (!list_empty(&pool->free_list)) {
411 d = list_first_entry(&pool->free_list, typeof(*d), entry);
412 list_del(&d->entry);
413 }
414 spin_unlock_irqrestore(&pool->lock, flags);
415
416 return d;
417 }
418
419 /**
420 * srp_fr_pool_put() - put an FR descriptor back in the free list
421 * @pool: Pool the descriptor was allocated from.
422 * @desc: Pointer to an array of fast registration descriptor pointers.
423 * @n: Number of descriptors to put back.
424 *
425 * Note: The caller must already have queued an invalidation request for
426 * desc->mr->rkey before calling this function.
427 */
428 static void srp_fr_pool_put(struct srp_fr_pool *pool, struct srp_fr_desc **desc,
429 int n)
430 {
431 unsigned long flags;
432 int i;
433
434 spin_lock_irqsave(&pool->lock, flags);
435 for (i = 0; i < n; i++)
436 list_add(&desc[i]->entry, &pool->free_list);
437 spin_unlock_irqrestore(&pool->lock, flags);
438 }
439
440 static struct srp_fr_pool *srp_alloc_fr_pool(struct srp_target_port *target)
441 {
442 struct srp_device *dev = target->srp_host->srp_dev;
443
444 return srp_create_fr_pool(dev->dev, dev->pd,
445 target->scsi_host->can_queue,
446 dev->max_pages_per_mr);
447 }
448
449 /**
450 * srp_destroy_qp() - destroy an RDMA queue pair
451 * @ch: SRP RDMA channel.
452 *
453 * Drain the qp before destroying it. This avoids that the receive
454 * completion handler can access the queue pair while it is
455 * being destroyed.
456 */
457 static void srp_destroy_qp(struct srp_rdma_ch *ch)
458 {
459 ib_drain_rq(ch->qp);
460 ib_destroy_qp(ch->qp);
461 }
462
463 static int srp_create_ch_ib(struct srp_rdma_ch *ch)
464 {
465 struct srp_target_port *target = ch->target;
466 struct srp_device *dev = target->srp_host->srp_dev;
467 struct ib_qp_init_attr *init_attr;
468 struct ib_cq *recv_cq, *send_cq;
469 struct ib_qp *qp;
470 struct ib_fmr_pool *fmr_pool = NULL;
471 struct srp_fr_pool *fr_pool = NULL;
472 const int m = dev->use_fast_reg ? 3 : 1;
473 int ret;
474
475 init_attr = kzalloc(sizeof *init_attr, GFP_KERNEL);
476 if (!init_attr)
477 return -ENOMEM;
478
479 /* queue_size + 1 for ib_drain_rq() */
480 recv_cq = ib_alloc_cq(dev->dev, ch, target->queue_size + 1,
481 ch->comp_vector, IB_POLL_SOFTIRQ);
482 if (IS_ERR(recv_cq)) {
483 ret = PTR_ERR(recv_cq);
484 goto err;
485 }
486
487 send_cq = ib_alloc_cq(dev->dev, ch, m * target->queue_size,
488 ch->comp_vector, IB_POLL_DIRECT);
489 if (IS_ERR(send_cq)) {
490 ret = PTR_ERR(send_cq);
491 goto err_recv_cq;
492 }
493
494 init_attr->event_handler = srp_qp_event;
495 init_attr->cap.max_send_wr = m * target->queue_size;
496 init_attr->cap.max_recv_wr = target->queue_size + 1;
497 init_attr->cap.max_recv_sge = 1;
498 init_attr->cap.max_send_sge = 1;
499 init_attr->sq_sig_type = IB_SIGNAL_REQ_WR;
500 init_attr->qp_type = IB_QPT_RC;
501 init_attr->send_cq = send_cq;
502 init_attr->recv_cq = recv_cq;
503
504 qp = ib_create_qp(dev->pd, init_attr);
505 if (IS_ERR(qp)) {
506 ret = PTR_ERR(qp);
507 goto err_send_cq;
508 }
509
510 ret = srp_init_qp(target, qp);
511 if (ret)
512 goto err_qp;
513
514 if (dev->use_fast_reg) {
515 fr_pool = srp_alloc_fr_pool(target);
516 if (IS_ERR(fr_pool)) {
517 ret = PTR_ERR(fr_pool);
518 shost_printk(KERN_WARNING, target->scsi_host, PFX
519 "FR pool allocation failed (%d)\n", ret);
520 goto err_qp;
521 }
522 } else if (dev->use_fmr) {
523 fmr_pool = srp_alloc_fmr_pool(target);
524 if (IS_ERR(fmr_pool)) {
525 ret = PTR_ERR(fmr_pool);
526 shost_printk(KERN_WARNING, target->scsi_host, PFX
527 "FMR pool allocation failed (%d)\n", ret);
528 goto err_qp;
529 }
530 }
531
532 if (ch->qp)
533 srp_destroy_qp(ch);
534 if (ch->recv_cq)
535 ib_free_cq(ch->recv_cq);
536 if (ch->send_cq)
537 ib_free_cq(ch->send_cq);
538
539 ch->qp = qp;
540 ch->recv_cq = recv_cq;
541 ch->send_cq = send_cq;
542
543 if (dev->use_fast_reg) {
544 if (ch->fr_pool)
545 srp_destroy_fr_pool(ch->fr_pool);
546 ch->fr_pool = fr_pool;
547 } else if (dev->use_fmr) {
548 if (ch->fmr_pool)
549 ib_destroy_fmr_pool(ch->fmr_pool);
550 ch->fmr_pool = fmr_pool;
551 }
552
553 kfree(init_attr);
554 return 0;
555
556 err_qp:
557 srp_destroy_qp(ch);
558
559 err_send_cq:
560 ib_free_cq(send_cq);
561
562 err_recv_cq:
563 ib_free_cq(recv_cq);
564
565 err:
566 kfree(init_attr);
567 return ret;
568 }
569
570 /*
571 * Note: this function may be called without srp_alloc_iu_bufs() having been
572 * invoked. Hence the ch->[rt]x_ring checks.
573 */
574 static void srp_free_ch_ib(struct srp_target_port *target,
575 struct srp_rdma_ch *ch)
576 {
577 struct srp_device *dev = target->srp_host->srp_dev;
578 int i;
579
580 if (!ch->target)
581 return;
582
583 if (ch->cm_id) {
584 ib_destroy_cm_id(ch->cm_id);
585 ch->cm_id = NULL;
586 }
587
588 /* If srp_new_cm_id() succeeded but srp_create_ch_ib() not, return. */
589 if (!ch->qp)
590 return;
591
592 if (dev->use_fast_reg) {
593 if (ch->fr_pool)
594 srp_destroy_fr_pool(ch->fr_pool);
595 } else if (dev->use_fmr) {
596 if (ch->fmr_pool)
597 ib_destroy_fmr_pool(ch->fmr_pool);
598 }
599
600 srp_destroy_qp(ch);
601 ib_free_cq(ch->send_cq);
602 ib_free_cq(ch->recv_cq);
603
604 /*
605 * Avoid that the SCSI error handler tries to use this channel after
606 * it has been freed. The SCSI error handler can namely continue
607 * trying to perform recovery actions after scsi_remove_host()
608 * returned.
609 */
610 ch->target = NULL;
611
612 ch->qp = NULL;
613 ch->send_cq = ch->recv_cq = NULL;
614
615 if (ch->rx_ring) {
616 for (i = 0; i < target->queue_size; ++i)
617 srp_free_iu(target->srp_host, ch->rx_ring[i]);
618 kfree(ch->rx_ring);
619 ch->rx_ring = NULL;
620 }
621 if (ch->tx_ring) {
622 for (i = 0; i < target->queue_size; ++i)
623 srp_free_iu(target->srp_host, ch->tx_ring[i]);
624 kfree(ch->tx_ring);
625 ch->tx_ring = NULL;
626 }
627 }
628
629 static void srp_path_rec_completion(int status,
630 struct ib_sa_path_rec *pathrec,
631 void *ch_ptr)
632 {
633 struct srp_rdma_ch *ch = ch_ptr;
634 struct srp_target_port *target = ch->target;
635
636 ch->status = status;
637 if (status)
638 shost_printk(KERN_ERR, target->scsi_host,
639 PFX "Got failed path rec status %d\n", status);
640 else
641 ch->path = *pathrec;
642 complete(&ch->done);
643 }
644
645 static int srp_lookup_path(struct srp_rdma_ch *ch)
646 {
647 struct srp_target_port *target = ch->target;
648 int ret;
649
650 ch->path.numb_path = 1;
651
652 init_completion(&ch->done);
653
654 ch->path_query_id = ib_sa_path_rec_get(&srp_sa_client,
655 target->srp_host->srp_dev->dev,
656 target->srp_host->port,
657 &ch->path,
658 IB_SA_PATH_REC_SERVICE_ID |
659 IB_SA_PATH_REC_DGID |
660 IB_SA_PATH_REC_SGID |
661 IB_SA_PATH_REC_NUMB_PATH |
662 IB_SA_PATH_REC_PKEY,
663 SRP_PATH_REC_TIMEOUT_MS,
664 GFP_KERNEL,
665 srp_path_rec_completion,
666 ch, &ch->path_query);
667 if (ch->path_query_id < 0)
668 return ch->path_query_id;
669
670 ret = wait_for_completion_interruptible(&ch->done);
671 if (ret < 0)
672 return ret;
673
674 if (ch->status < 0)
675 shost_printk(KERN_WARNING, target->scsi_host,
676 PFX "Path record query failed\n");
677
678 return ch->status;
679 }
680
681 static int srp_send_req(struct srp_rdma_ch *ch, bool multich)
682 {
683 struct srp_target_port *target = ch->target;
684 struct {
685 struct ib_cm_req_param param;
686 struct srp_login_req priv;
687 } *req = NULL;
688 int status;
689
690 req = kzalloc(sizeof *req, GFP_KERNEL);
691 if (!req)
692 return -ENOMEM;
693
694 req->param.primary_path = &ch->path;
695 req->param.alternate_path = NULL;
696 req->param.service_id = target->service_id;
697 req->param.qp_num = ch->qp->qp_num;
698 req->param.qp_type = ch->qp->qp_type;
699 req->param.private_data = &req->priv;
700 req->param.private_data_len = sizeof req->priv;
701 req->param.flow_control = 1;
702
703 get_random_bytes(&req->param.starting_psn, 4);
704 req->param.starting_psn &= 0xffffff;
705
706 /*
707 * Pick some arbitrary defaults here; we could make these
708 * module parameters if anyone cared about setting them.
709 */
710 req->param.responder_resources = 4;
711 req->param.remote_cm_response_timeout = 20;
712 req->param.local_cm_response_timeout = 20;
713 req->param.retry_count = target->tl_retry_count;
714 req->param.rnr_retry_count = 7;
715 req->param.max_cm_retries = 15;
716
717 req->priv.opcode = SRP_LOGIN_REQ;
718 req->priv.tag = 0;
719 req->priv.req_it_iu_len = cpu_to_be32(target->max_iu_len);
720 req->priv.req_buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT |
721 SRP_BUF_FORMAT_INDIRECT);
722 req->priv.req_flags = (multich ? SRP_MULTICHAN_MULTI :
723 SRP_MULTICHAN_SINGLE);
724 /*
725 * In the published SRP specification (draft rev. 16a), the
726 * port identifier format is 8 bytes of ID extension followed
727 * by 8 bytes of GUID. Older drafts put the two halves in the
728 * opposite order, so that the GUID comes first.
729 *
730 * Targets conforming to these obsolete drafts can be
731 * recognized by the I/O Class they report.
732 */
733 if (target->io_class == SRP_REV10_IB_IO_CLASS) {
734 memcpy(req->priv.initiator_port_id,
735 &target->sgid.global.interface_id, 8);
736 memcpy(req->priv.initiator_port_id + 8,
737 &target->initiator_ext, 8);
738 memcpy(req->priv.target_port_id, &target->ioc_guid, 8);
739 memcpy(req->priv.target_port_id + 8, &target->id_ext, 8);
740 } else {
741 memcpy(req->priv.initiator_port_id,
742 &target->initiator_ext, 8);
743 memcpy(req->priv.initiator_port_id + 8,
744 &target->sgid.global.interface_id, 8);
745 memcpy(req->priv.target_port_id, &target->id_ext, 8);
746 memcpy(req->priv.target_port_id + 8, &target->ioc_guid, 8);
747 }
748
749 /*
750 * Topspin/Cisco SRP targets will reject our login unless we
751 * zero out the first 8 bytes of our initiator port ID and set
752 * the second 8 bytes to the local node GUID.
753 */
754 if (srp_target_is_topspin(target)) {
755 shost_printk(KERN_DEBUG, target->scsi_host,
756 PFX "Topspin/Cisco initiator port ID workaround "
757 "activated for target GUID %016llx\n",
758 be64_to_cpu(target->ioc_guid));
759 memset(req->priv.initiator_port_id, 0, 8);
760 memcpy(req->priv.initiator_port_id + 8,
761 &target->srp_host->srp_dev->dev->node_guid, 8);
762 }
763
764 status = ib_send_cm_req(ch->cm_id, &req->param);
765
766 kfree(req);
767
768 return status;
769 }
770
771 static bool srp_queue_remove_work(struct srp_target_port *target)
772 {
773 bool changed = false;
774
775 spin_lock_irq(&target->lock);
776 if (target->state != SRP_TARGET_REMOVED) {
777 target->state = SRP_TARGET_REMOVED;
778 changed = true;
779 }
780 spin_unlock_irq(&target->lock);
781
782 if (changed)
783 queue_work(srp_remove_wq, &target->remove_work);
784
785 return changed;
786 }
787
788 static void srp_disconnect_target(struct srp_target_port *target)
789 {
790 struct srp_rdma_ch *ch;
791 int i;
792
793 /* XXX should send SRP_I_LOGOUT request */
794
795 for (i = 0; i < target->ch_count; i++) {
796 ch = &target->ch[i];
797 ch->connected = false;
798 if (ch->cm_id && ib_send_cm_dreq(ch->cm_id, NULL, 0)) {
799 shost_printk(KERN_DEBUG, target->scsi_host,
800 PFX "Sending CM DREQ failed\n");
801 }
802 }
803 }
804
805 static void srp_free_req_data(struct srp_target_port *target,
806 struct srp_rdma_ch *ch)
807 {
808 struct srp_device *dev = target->srp_host->srp_dev;
809 struct ib_device *ibdev = dev->dev;
810 struct srp_request *req;
811 int i;
812
813 if (!ch->req_ring)
814 return;
815
816 for (i = 0; i < target->req_ring_size; ++i) {
817 req = &ch->req_ring[i];
818 if (dev->use_fast_reg) {
819 kfree(req->fr_list);
820 } else {
821 kfree(req->fmr_list);
822 kfree(req->map_page);
823 }
824 if (req->indirect_dma_addr) {
825 ib_dma_unmap_single(ibdev, req->indirect_dma_addr,
826 target->indirect_size,
827 DMA_TO_DEVICE);
828 }
829 kfree(req->indirect_desc);
830 }
831
832 kfree(ch->req_ring);
833 ch->req_ring = NULL;
834 }
835
836 static int srp_alloc_req_data(struct srp_rdma_ch *ch)
837 {
838 struct srp_target_port *target = ch->target;
839 struct srp_device *srp_dev = target->srp_host->srp_dev;
840 struct ib_device *ibdev = srp_dev->dev;
841 struct srp_request *req;
842 void *mr_list;
843 dma_addr_t dma_addr;
844 int i, ret = -ENOMEM;
845
846 ch->req_ring = kcalloc(target->req_ring_size, sizeof(*ch->req_ring),
847 GFP_KERNEL);
848 if (!ch->req_ring)
849 goto out;
850
851 for (i = 0; i < target->req_ring_size; ++i) {
852 req = &ch->req_ring[i];
853 mr_list = kmalloc(target->cmd_sg_cnt * sizeof(void *),
854 GFP_KERNEL);
855 if (!mr_list)
856 goto out;
857 if (srp_dev->use_fast_reg) {
858 req->fr_list = mr_list;
859 } else {
860 req->fmr_list = mr_list;
861 req->map_page = kmalloc(srp_dev->max_pages_per_mr *
862 sizeof(void *), GFP_KERNEL);
863 if (!req->map_page)
864 goto out;
865 }
866 req->indirect_desc = kmalloc(target->indirect_size, GFP_KERNEL);
867 if (!req->indirect_desc)
868 goto out;
869
870 dma_addr = ib_dma_map_single(ibdev, req->indirect_desc,
871 target->indirect_size,
872 DMA_TO_DEVICE);
873 if (ib_dma_mapping_error(ibdev, dma_addr))
874 goto out;
875
876 req->indirect_dma_addr = dma_addr;
877 }
878 ret = 0;
879
880 out:
881 return ret;
882 }
883
884 /**
885 * srp_del_scsi_host_attr() - Remove attributes defined in the host template.
886 * @shost: SCSI host whose attributes to remove from sysfs.
887 *
888 * Note: Any attributes defined in the host template and that did not exist
889 * before invocation of this function will be ignored.
890 */
891 static void srp_del_scsi_host_attr(struct Scsi_Host *shost)
892 {
893 struct device_attribute **attr;
894
895 for (attr = shost->hostt->shost_attrs; attr && *attr; ++attr)
896 device_remove_file(&shost->shost_dev, *attr);
897 }
898
899 static void srp_remove_target(struct srp_target_port *target)
900 {
901 struct srp_rdma_ch *ch;
902 int i;
903
904 WARN_ON_ONCE(target->state != SRP_TARGET_REMOVED);
905
906 srp_del_scsi_host_attr(target->scsi_host);
907 srp_rport_get(target->rport);
908 srp_remove_host(target->scsi_host);
909 scsi_remove_host(target->scsi_host);
910 srp_stop_rport_timers(target->rport);
911 srp_disconnect_target(target);
912 for (i = 0; i < target->ch_count; i++) {
913 ch = &target->ch[i];
914 srp_free_ch_ib(target, ch);
915 }
916 cancel_work_sync(&target->tl_err_work);
917 srp_rport_put(target->rport);
918 for (i = 0; i < target->ch_count; i++) {
919 ch = &target->ch[i];
920 srp_free_req_data(target, ch);
921 }
922 kfree(target->ch);
923 target->ch = NULL;
924
925 spin_lock(&target->srp_host->target_lock);
926 list_del(&target->list);
927 spin_unlock(&target->srp_host->target_lock);
928
929 scsi_host_put(target->scsi_host);
930 }
931
932 static void srp_remove_work(struct work_struct *work)
933 {
934 struct srp_target_port *target =
935 container_of(work, struct srp_target_port, remove_work);
936
937 WARN_ON_ONCE(target->state != SRP_TARGET_REMOVED);
938
939 srp_remove_target(target);
940 }
941
942 static void srp_rport_delete(struct srp_rport *rport)
943 {
944 struct srp_target_port *target = rport->lld_data;
945
946 srp_queue_remove_work(target);
947 }
948
949 /**
950 * srp_connected_ch() - number of connected channels
951 * @target: SRP target port.
952 */
953 static int srp_connected_ch(struct srp_target_port *target)
954 {
955 int i, c = 0;
956
957 for (i = 0; i < target->ch_count; i++)
958 c += target->ch[i].connected;
959
960 return c;
961 }
962
963 static int srp_connect_ch(struct srp_rdma_ch *ch, bool multich)
964 {
965 struct srp_target_port *target = ch->target;
966 int ret;
967
968 WARN_ON_ONCE(!multich && srp_connected_ch(target) > 0);
969
970 ret = srp_lookup_path(ch);
971 if (ret)
972 goto out;
973
974 while (1) {
975 init_completion(&ch->done);
976 ret = srp_send_req(ch, multich);
977 if (ret)
978 goto out;
979 ret = wait_for_completion_interruptible(&ch->done);
980 if (ret < 0)
981 goto out;
982
983 /*
984 * The CM event handling code will set status to
985 * SRP_PORT_REDIRECT if we get a port redirect REJ
986 * back, or SRP_DLID_REDIRECT if we get a lid/qp
987 * redirect REJ back.
988 */
989 ret = ch->status;
990 switch (ret) {
991 case 0:
992 ch->connected = true;
993 goto out;
994
995 case SRP_PORT_REDIRECT:
996 ret = srp_lookup_path(ch);
997 if (ret)
998 goto out;
999 break;
1000
1001 case SRP_DLID_REDIRECT:
1002 break;
1003
1004 case SRP_STALE_CONN:
1005 shost_printk(KERN_ERR, target->scsi_host, PFX
1006 "giving up on stale connection\n");
1007 ret = -ECONNRESET;
1008 goto out;
1009
1010 default:
1011 goto out;
1012 }
1013 }
1014
1015 out:
1016 return ret <= 0 ? ret : -ENODEV;
1017 }
1018
1019 static void srp_inv_rkey_err_done(struct ib_cq *cq, struct ib_wc *wc)
1020 {
1021 srp_handle_qp_err(cq, wc, "INV RKEY");
1022 }
1023
1024 static int srp_inv_rkey(struct srp_request *req, struct srp_rdma_ch *ch,
1025 u32 rkey)
1026 {
1027 struct ib_send_wr *bad_wr;
1028 struct ib_send_wr wr = {
1029 .opcode = IB_WR_LOCAL_INV,
1030 .next = NULL,
1031 .num_sge = 0,
1032 .send_flags = 0,
1033 .ex.invalidate_rkey = rkey,
1034 };
1035
1036 wr.wr_cqe = &req->reg_cqe;
1037 req->reg_cqe.done = srp_inv_rkey_err_done;
1038 return ib_post_send(ch->qp, &wr, &bad_wr);
1039 }
1040
1041 static void srp_unmap_data(struct scsi_cmnd *scmnd,
1042 struct srp_rdma_ch *ch,
1043 struct srp_request *req)
1044 {
1045 struct srp_target_port *target = ch->target;
1046 struct srp_device *dev = target->srp_host->srp_dev;
1047 struct ib_device *ibdev = dev->dev;
1048 int i, res;
1049
1050 if (!scsi_sglist(scmnd) ||
1051 (scmnd->sc_data_direction != DMA_TO_DEVICE &&
1052 scmnd->sc_data_direction != DMA_FROM_DEVICE))
1053 return;
1054
1055 if (dev->use_fast_reg) {
1056 struct srp_fr_desc **pfr;
1057
1058 for (i = req->nmdesc, pfr = req->fr_list; i > 0; i--, pfr++) {
1059 res = srp_inv_rkey(req, ch, (*pfr)->mr->rkey);
1060 if (res < 0) {
1061 shost_printk(KERN_ERR, target->scsi_host, PFX
1062 "Queueing INV WR for rkey %#x failed (%d)\n",
1063 (*pfr)->mr->rkey, res);
1064 queue_work(system_long_wq,
1065 &target->tl_err_work);
1066 }
1067 }
1068 if (req->nmdesc)
1069 srp_fr_pool_put(ch->fr_pool, req->fr_list,
1070 req->nmdesc);
1071 } else if (dev->use_fmr) {
1072 struct ib_pool_fmr **pfmr;
1073
1074 for (i = req->nmdesc, pfmr = req->fmr_list; i > 0; i--, pfmr++)
1075 ib_fmr_pool_unmap(*pfmr);
1076 }
1077
1078 ib_dma_unmap_sg(ibdev, scsi_sglist(scmnd), scsi_sg_count(scmnd),
1079 scmnd->sc_data_direction);
1080 }
1081
1082 /**
1083 * srp_claim_req - Take ownership of the scmnd associated with a request.
1084 * @ch: SRP RDMA channel.
1085 * @req: SRP request.
1086 * @sdev: If not NULL, only take ownership for this SCSI device.
1087 * @scmnd: If NULL, take ownership of @req->scmnd. If not NULL, only take
1088 * ownership of @req->scmnd if it equals @scmnd.
1089 *
1090 * Return value:
1091 * Either NULL or a pointer to the SCSI command the caller became owner of.
1092 */
1093 static struct scsi_cmnd *srp_claim_req(struct srp_rdma_ch *ch,
1094 struct srp_request *req,
1095 struct scsi_device *sdev,
1096 struct scsi_cmnd *scmnd)
1097 {
1098 unsigned long flags;
1099
1100 spin_lock_irqsave(&ch->lock, flags);
1101 if (req->scmnd &&
1102 (!sdev || req->scmnd->device == sdev) &&
1103 (!scmnd || req->scmnd == scmnd)) {
1104 scmnd = req->scmnd;
1105 req->scmnd = NULL;
1106 } else {
1107 scmnd = NULL;
1108 }
1109 spin_unlock_irqrestore(&ch->lock, flags);
1110
1111 return scmnd;
1112 }
1113
1114 /**
1115 * srp_free_req() - Unmap data and add request to the free request list.
1116 * @ch: SRP RDMA channel.
1117 * @req: Request to be freed.
1118 * @scmnd: SCSI command associated with @req.
1119 * @req_lim_delta: Amount to be added to @target->req_lim.
1120 */
1121 static void srp_free_req(struct srp_rdma_ch *ch, struct srp_request *req,
1122 struct scsi_cmnd *scmnd, s32 req_lim_delta)
1123 {
1124 unsigned long flags;
1125
1126 srp_unmap_data(scmnd, ch, req);
1127
1128 spin_lock_irqsave(&ch->lock, flags);
1129 ch->req_lim += req_lim_delta;
1130 spin_unlock_irqrestore(&ch->lock, flags);
1131 }
1132
1133 static void srp_finish_req(struct srp_rdma_ch *ch, struct srp_request *req,
1134 struct scsi_device *sdev, int result)
1135 {
1136 struct scsi_cmnd *scmnd = srp_claim_req(ch, req, sdev, NULL);
1137
1138 if (scmnd) {
1139 srp_free_req(ch, req, scmnd, 0);
1140 scmnd->result = result;
1141 scmnd->scsi_done(scmnd);
1142 }
1143 }
1144
1145 static void srp_terminate_io(struct srp_rport *rport)
1146 {
1147 struct srp_target_port *target = rport->lld_data;
1148 struct srp_rdma_ch *ch;
1149 struct Scsi_Host *shost = target->scsi_host;
1150 struct scsi_device *sdev;
1151 int i, j;
1152
1153 /*
1154 * Invoking srp_terminate_io() while srp_queuecommand() is running
1155 * is not safe. Hence the warning statement below.
1156 */
1157 shost_for_each_device(sdev, shost)
1158 WARN_ON_ONCE(sdev->request_queue->request_fn_active);
1159
1160 for (i = 0; i < target->ch_count; i++) {
1161 ch = &target->ch[i];
1162
1163 for (j = 0; j < target->req_ring_size; ++j) {
1164 struct srp_request *req = &ch->req_ring[j];
1165
1166 srp_finish_req(ch, req, NULL,
1167 DID_TRANSPORT_FAILFAST << 16);
1168 }
1169 }
1170 }
1171
1172 /*
1173 * It is up to the caller to ensure that srp_rport_reconnect() calls are
1174 * serialized and that no concurrent srp_queuecommand(), srp_abort(),
1175 * srp_reset_device() or srp_reset_host() calls will occur while this function
1176 * is in progress. One way to realize that is not to call this function
1177 * directly but to call srp_reconnect_rport() instead since that last function
1178 * serializes calls of this function via rport->mutex and also blocks
1179 * srp_queuecommand() calls before invoking this function.
1180 */
1181 static int srp_rport_reconnect(struct srp_rport *rport)
1182 {
1183 struct srp_target_port *target = rport->lld_data;
1184 struct srp_rdma_ch *ch;
1185 int i, j, ret = 0;
1186 bool multich = false;
1187
1188 srp_disconnect_target(target);
1189
1190 if (target->state == SRP_TARGET_SCANNING)
1191 return -ENODEV;
1192
1193 /*
1194 * Now get a new local CM ID so that we avoid confusing the target in
1195 * case things are really fouled up. Doing so also ensures that all CM
1196 * callbacks will have finished before a new QP is allocated.
1197 */
1198 for (i = 0; i < target->ch_count; i++) {
1199 ch = &target->ch[i];
1200 ret += srp_new_cm_id(ch);
1201 }
1202 for (i = 0; i < target->ch_count; i++) {
1203 ch = &target->ch[i];
1204 for (j = 0; j < target->req_ring_size; ++j) {
1205 struct srp_request *req = &ch->req_ring[j];
1206
1207 srp_finish_req(ch, req, NULL, DID_RESET << 16);
1208 }
1209 }
1210 for (i = 0; i < target->ch_count; i++) {
1211 ch = &target->ch[i];
1212 /*
1213 * Whether or not creating a new CM ID succeeded, create a new
1214 * QP. This guarantees that all completion callback function
1215 * invocations have finished before request resetting starts.
1216 */
1217 ret += srp_create_ch_ib(ch);
1218
1219 INIT_LIST_HEAD(&ch->free_tx);
1220 for (j = 0; j < target->queue_size; ++j)
1221 list_add(&ch->tx_ring[j]->list, &ch->free_tx);
1222 }
1223
1224 target->qp_in_error = false;
1225
1226 for (i = 0; i < target->ch_count; i++) {
1227 ch = &target->ch[i];
1228 if (ret)
1229 break;
1230 ret = srp_connect_ch(ch, multich);
1231 multich = true;
1232 }
1233
1234 if (ret == 0)
1235 shost_printk(KERN_INFO, target->scsi_host,
1236 PFX "reconnect succeeded\n");
1237
1238 return ret;
1239 }
1240
1241 static void srp_map_desc(struct srp_map_state *state, dma_addr_t dma_addr,
1242 unsigned int dma_len, u32 rkey)
1243 {
1244 struct srp_direct_buf *desc = state->desc;
1245
1246 WARN_ON_ONCE(!dma_len);
1247
1248 desc->va = cpu_to_be64(dma_addr);
1249 desc->key = cpu_to_be32(rkey);
1250 desc->len = cpu_to_be32(dma_len);
1251
1252 state->total_len += dma_len;
1253 state->desc++;
1254 state->ndesc++;
1255 }
1256
1257 static int srp_map_finish_fmr(struct srp_map_state *state,
1258 struct srp_rdma_ch *ch)
1259 {
1260 struct srp_target_port *target = ch->target;
1261 struct srp_device *dev = target->srp_host->srp_dev;
1262 struct ib_pool_fmr *fmr;
1263 u64 io_addr = 0;
1264
1265 if (state->fmr.next >= state->fmr.end)
1266 return -ENOMEM;
1267
1268 WARN_ON_ONCE(!dev->use_fmr);
1269
1270 if (state->npages == 0)
1271 return 0;
1272
1273 if (state->npages == 1 && target->global_mr) {
1274 srp_map_desc(state, state->base_dma_addr, state->dma_len,
1275 target->global_mr->rkey);
1276 goto reset_state;
1277 }
1278
1279 fmr = ib_fmr_pool_map_phys(ch->fmr_pool, state->pages,
1280 state->npages, io_addr);
1281 if (IS_ERR(fmr))
1282 return PTR_ERR(fmr);
1283
1284 *state->fmr.next++ = fmr;
1285 state->nmdesc++;
1286
1287 srp_map_desc(state, state->base_dma_addr & ~dev->mr_page_mask,
1288 state->dma_len, fmr->fmr->rkey);
1289
1290 reset_state:
1291 state->npages = 0;
1292 state->dma_len = 0;
1293
1294 return 0;
1295 }
1296
1297 static void srp_reg_mr_err_done(struct ib_cq *cq, struct ib_wc *wc)
1298 {
1299 srp_handle_qp_err(cq, wc, "FAST REG");
1300 }
1301
1302 static int srp_map_finish_fr(struct srp_map_state *state,
1303 struct srp_request *req,
1304 struct srp_rdma_ch *ch, int sg_nents)
1305 {
1306 struct srp_target_port *target = ch->target;
1307 struct srp_device *dev = target->srp_host->srp_dev;
1308 struct ib_send_wr *bad_wr;
1309 struct ib_reg_wr wr;
1310 struct srp_fr_desc *desc;
1311 u32 rkey;
1312 int n, err;
1313
1314 if (state->fr.next >= state->fr.end)
1315 return -ENOMEM;
1316
1317 WARN_ON_ONCE(!dev->use_fast_reg);
1318
1319 if (sg_nents == 0)
1320 return 0;
1321
1322 if (sg_nents == 1 && target->global_mr) {
1323 srp_map_desc(state, sg_dma_address(state->sg),
1324 sg_dma_len(state->sg),
1325 target->global_mr->rkey);
1326 return 1;
1327 }
1328
1329 desc = srp_fr_pool_get(ch->fr_pool);
1330 if (!desc)
1331 return -ENOMEM;
1332
1333 rkey = ib_inc_rkey(desc->mr->rkey);
1334 ib_update_fast_reg_key(desc->mr, rkey);
1335
1336 n = ib_map_mr_sg(desc->mr, state->sg, sg_nents, dev->mr_page_size);
1337 if (unlikely(n < 0))
1338 return n;
1339
1340 req->reg_cqe.done = srp_reg_mr_err_done;
1341
1342 wr.wr.next = NULL;
1343 wr.wr.opcode = IB_WR_REG_MR;
1344 wr.wr.wr_cqe = &req->reg_cqe;
1345 wr.wr.num_sge = 0;
1346 wr.wr.send_flags = 0;
1347 wr.mr = desc->mr;
1348 wr.key = desc->mr->rkey;
1349 wr.access = (IB_ACCESS_LOCAL_WRITE |
1350 IB_ACCESS_REMOTE_READ |
1351 IB_ACCESS_REMOTE_WRITE);
1352
1353 *state->fr.next++ = desc;
1354 state->nmdesc++;
1355
1356 srp_map_desc(state, desc->mr->iova,
1357 desc->mr->length, desc->mr->rkey);
1358
1359 err = ib_post_send(ch->qp, &wr.wr, &bad_wr);
1360 if (unlikely(err))
1361 return err;
1362
1363 return n;
1364 }
1365
1366 static int srp_map_sg_entry(struct srp_map_state *state,
1367 struct srp_rdma_ch *ch,
1368 struct scatterlist *sg, int sg_index)
1369 {
1370 struct srp_target_port *target = ch->target;
1371 struct srp_device *dev = target->srp_host->srp_dev;
1372 struct ib_device *ibdev = dev->dev;
1373 dma_addr_t dma_addr = ib_sg_dma_address(ibdev, sg);
1374 unsigned int dma_len = ib_sg_dma_len(ibdev, sg);
1375 unsigned int len = 0;
1376 int ret;
1377
1378 WARN_ON_ONCE(!dma_len);
1379
1380 while (dma_len) {
1381 unsigned offset = dma_addr & ~dev->mr_page_mask;
1382 if (state->npages == dev->max_pages_per_mr || offset != 0) {
1383 ret = srp_map_finish_fmr(state, ch);
1384 if (ret)
1385 return ret;
1386 }
1387
1388 len = min_t(unsigned int, dma_len, dev->mr_page_size - offset);
1389
1390 if (!state->npages)
1391 state->base_dma_addr = dma_addr;
1392 state->pages[state->npages++] = dma_addr & dev->mr_page_mask;
1393 state->dma_len += len;
1394 dma_addr += len;
1395 dma_len -= len;
1396 }
1397
1398 /*
1399 * If the last entry of the MR wasn't a full page, then we need to
1400 * close it out and start a new one -- we can only merge at page
1401 * boundries.
1402 */
1403 ret = 0;
1404 if (len != dev->mr_page_size)
1405 ret = srp_map_finish_fmr(state, ch);
1406 return ret;
1407 }
1408
1409 static int srp_map_sg_fmr(struct srp_map_state *state, struct srp_rdma_ch *ch,
1410 struct srp_request *req, struct scatterlist *scat,
1411 int count)
1412 {
1413 struct scatterlist *sg;
1414 int i, ret;
1415
1416 state->desc = req->indirect_desc;
1417 state->pages = req->map_page;
1418 state->fmr.next = req->fmr_list;
1419 state->fmr.end = req->fmr_list + ch->target->cmd_sg_cnt;
1420
1421 for_each_sg(scat, sg, count, i) {
1422 ret = srp_map_sg_entry(state, ch, sg, i);
1423 if (ret)
1424 return ret;
1425 }
1426
1427 ret = srp_map_finish_fmr(state, ch);
1428 if (ret)
1429 return ret;
1430
1431 req->nmdesc = state->nmdesc;
1432
1433 return 0;
1434 }
1435
1436 static int srp_map_sg_fr(struct srp_map_state *state, struct srp_rdma_ch *ch,
1437 struct srp_request *req, struct scatterlist *scat,
1438 int count)
1439 {
1440 state->desc = req->indirect_desc;
1441 state->fr.next = req->fr_list;
1442 state->fr.end = req->fr_list + ch->target->cmd_sg_cnt;
1443 state->sg = scat;
1444
1445 while (count) {
1446 int i, n;
1447
1448 n = srp_map_finish_fr(state, req, ch, count);
1449 if (unlikely(n < 0))
1450 return n;
1451
1452 count -= n;
1453 for (i = 0; i < n; i++)
1454 state->sg = sg_next(state->sg);
1455 }
1456
1457 req->nmdesc = state->nmdesc;
1458
1459 return 0;
1460 }
1461
1462 static int srp_map_sg_dma(struct srp_map_state *state, struct srp_rdma_ch *ch,
1463 struct srp_request *req, struct scatterlist *scat,
1464 int count)
1465 {
1466 struct srp_target_port *target = ch->target;
1467 struct srp_device *dev = target->srp_host->srp_dev;
1468 struct scatterlist *sg;
1469 int i;
1470
1471 state->desc = req->indirect_desc;
1472 for_each_sg(scat, sg, count, i) {
1473 srp_map_desc(state, ib_sg_dma_address(dev->dev, sg),
1474 ib_sg_dma_len(dev->dev, sg),
1475 target->global_mr->rkey);
1476 }
1477
1478 req->nmdesc = state->nmdesc;
1479
1480 return 0;
1481 }
1482
1483 /*
1484 * Register the indirect data buffer descriptor with the HCA.
1485 *
1486 * Note: since the indirect data buffer descriptor has been allocated with
1487 * kmalloc() it is guaranteed that this buffer is a physically contiguous
1488 * memory buffer.
1489 */
1490 static int srp_map_idb(struct srp_rdma_ch *ch, struct srp_request *req,
1491 void **next_mr, void **end_mr, u32 idb_len,
1492 __be32 *idb_rkey)
1493 {
1494 struct srp_target_port *target = ch->target;
1495 struct srp_device *dev = target->srp_host->srp_dev;
1496 struct srp_map_state state;
1497 struct srp_direct_buf idb_desc;
1498 u64 idb_pages[1];
1499 struct scatterlist idb_sg[1];
1500 int ret;
1501
1502 memset(&state, 0, sizeof(state));
1503 memset(&idb_desc, 0, sizeof(idb_desc));
1504 state.gen.next = next_mr;
1505 state.gen.end = end_mr;
1506 state.desc = &idb_desc;
1507 state.base_dma_addr = req->indirect_dma_addr;
1508 state.dma_len = idb_len;
1509
1510 if (dev->use_fast_reg) {
1511 state.sg = idb_sg;
1512 sg_set_buf(idb_sg, req->indirect_desc, idb_len);
1513 idb_sg->dma_address = req->indirect_dma_addr; /* hack! */
1514 #ifdef CONFIG_NEED_SG_DMA_LENGTH
1515 idb_sg->dma_length = idb_sg->length; /* hack^2 */
1516 #endif
1517 ret = srp_map_finish_fr(&state, req, ch, 1);
1518 if (ret < 0)
1519 return ret;
1520 } else if (dev->use_fmr) {
1521 state.pages = idb_pages;
1522 state.pages[0] = (req->indirect_dma_addr &
1523 dev->mr_page_mask);
1524 state.npages = 1;
1525 ret = srp_map_finish_fmr(&state, ch);
1526 if (ret < 0)
1527 return ret;
1528 } else {
1529 return -EINVAL;
1530 }
1531
1532 *idb_rkey = idb_desc.key;
1533
1534 return 0;
1535 }
1536
1537 static int srp_map_data(struct scsi_cmnd *scmnd, struct srp_rdma_ch *ch,
1538 struct srp_request *req)
1539 {
1540 struct srp_target_port *target = ch->target;
1541 struct scatterlist *scat;
1542 struct srp_cmd *cmd = req->cmd->buf;
1543 int len, nents, count, ret;
1544 struct srp_device *dev;
1545 struct ib_device *ibdev;
1546 struct srp_map_state state;
1547 struct srp_indirect_buf *indirect_hdr;
1548 u32 idb_len, table_len;
1549 __be32 idb_rkey;
1550 u8 fmt;
1551
1552 if (!scsi_sglist(scmnd) || scmnd->sc_data_direction == DMA_NONE)
1553 return sizeof (struct srp_cmd);
1554
1555 if (scmnd->sc_data_direction != DMA_FROM_DEVICE &&
1556 scmnd->sc_data_direction != DMA_TO_DEVICE) {
1557 shost_printk(KERN_WARNING, target->scsi_host,
1558 PFX "Unhandled data direction %d\n",
1559 scmnd->sc_data_direction);
1560 return -EINVAL;
1561 }
1562
1563 nents = scsi_sg_count(scmnd);
1564 scat = scsi_sglist(scmnd);
1565
1566 dev = target->srp_host->srp_dev;
1567 ibdev = dev->dev;
1568
1569 count = ib_dma_map_sg(ibdev, scat, nents, scmnd->sc_data_direction);
1570 if (unlikely(count == 0))
1571 return -EIO;
1572
1573 fmt = SRP_DATA_DESC_DIRECT;
1574 len = sizeof (struct srp_cmd) + sizeof (struct srp_direct_buf);
1575
1576 if (count == 1 && target->global_mr) {
1577 /*
1578 * The midlayer only generated a single gather/scatter
1579 * entry, or DMA mapping coalesced everything to a
1580 * single entry. So a direct descriptor along with
1581 * the DMA MR suffices.
1582 */
1583 struct srp_direct_buf *buf = (void *) cmd->add_data;
1584
1585 buf->va = cpu_to_be64(ib_sg_dma_address(ibdev, scat));
1586 buf->key = cpu_to_be32(target->global_mr->rkey);
1587 buf->len = cpu_to_be32(ib_sg_dma_len(ibdev, scat));
1588
1589 req->nmdesc = 0;
1590 goto map_complete;
1591 }
1592
1593 /*
1594 * We have more than one scatter/gather entry, so build our indirect
1595 * descriptor table, trying to merge as many entries as we can.
1596 */
1597 indirect_hdr = (void *) cmd->add_data;
1598
1599 ib_dma_sync_single_for_cpu(ibdev, req->indirect_dma_addr,
1600 target->indirect_size, DMA_TO_DEVICE);
1601
1602 memset(&state, 0, sizeof(state));
1603 if (dev->use_fast_reg)
1604 srp_map_sg_fr(&state, ch, req, scat, count);
1605 else if (dev->use_fmr)
1606 srp_map_sg_fmr(&state, ch, req, scat, count);
1607 else
1608 srp_map_sg_dma(&state, ch, req, scat, count);
1609
1610 /* We've mapped the request, now pull as much of the indirect
1611 * descriptor table as we can into the command buffer. If this
1612 * target is not using an external indirect table, we are
1613 * guaranteed to fit into the command, as the SCSI layer won't
1614 * give us more S/G entries than we allow.
1615 */
1616 if (state.ndesc == 1) {
1617 /*
1618 * Memory registration collapsed the sg-list into one entry,
1619 * so use a direct descriptor.
1620 */
1621 struct srp_direct_buf *buf = (void *) cmd->add_data;
1622
1623 *buf = req->indirect_desc[0];
1624 goto map_complete;
1625 }
1626
1627 if (unlikely(target->cmd_sg_cnt < state.ndesc &&
1628 !target->allow_ext_sg)) {
1629 shost_printk(KERN_ERR, target->scsi_host,
1630 "Could not fit S/G list into SRP_CMD\n");
1631 return -EIO;
1632 }
1633
1634 count = min(state.ndesc, target->cmd_sg_cnt);
1635 table_len = state.ndesc * sizeof (struct srp_direct_buf);
1636 idb_len = sizeof(struct srp_indirect_buf) + table_len;
1637
1638 fmt = SRP_DATA_DESC_INDIRECT;
1639 len = sizeof(struct srp_cmd) + sizeof (struct srp_indirect_buf);
1640 len += count * sizeof (struct srp_direct_buf);
1641
1642 memcpy(indirect_hdr->desc_list, req->indirect_desc,
1643 count * sizeof (struct srp_direct_buf));
1644
1645 if (!target->global_mr) {
1646 ret = srp_map_idb(ch, req, state.gen.next, state.gen.end,
1647 idb_len, &idb_rkey);
1648 if (ret < 0)
1649 return ret;
1650 req->nmdesc++;
1651 } else {
1652 idb_rkey = cpu_to_be32(target->global_mr->rkey);
1653 }
1654
1655 indirect_hdr->table_desc.va = cpu_to_be64(req->indirect_dma_addr);
1656 indirect_hdr->table_desc.key = idb_rkey;
1657 indirect_hdr->table_desc.len = cpu_to_be32(table_len);
1658 indirect_hdr->len = cpu_to_be32(state.total_len);
1659
1660 if (scmnd->sc_data_direction == DMA_TO_DEVICE)
1661 cmd->data_out_desc_cnt = count;
1662 else
1663 cmd->data_in_desc_cnt = count;
1664
1665 ib_dma_sync_single_for_device(ibdev, req->indirect_dma_addr, table_len,
1666 DMA_TO_DEVICE);
1667
1668 map_complete:
1669 if (scmnd->sc_data_direction == DMA_TO_DEVICE)
1670 cmd->buf_fmt = fmt << 4;
1671 else
1672 cmd->buf_fmt = fmt;
1673
1674 return len;
1675 }
1676
1677 /*
1678 * Return an IU and possible credit to the free pool
1679 */
1680 static void srp_put_tx_iu(struct srp_rdma_ch *ch, struct srp_iu *iu,
1681 enum srp_iu_type iu_type)
1682 {
1683 unsigned long flags;
1684
1685 spin_lock_irqsave(&ch->lock, flags);
1686 list_add(&iu->list, &ch->free_tx);
1687 if (iu_type != SRP_IU_RSP)
1688 ++ch->req_lim;
1689 spin_unlock_irqrestore(&ch->lock, flags);
1690 }
1691
1692 /*
1693 * Must be called with ch->lock held to protect req_lim and free_tx.
1694 * If IU is not sent, it must be returned using srp_put_tx_iu().
1695 *
1696 * Note:
1697 * An upper limit for the number of allocated information units for each
1698 * request type is:
1699 * - SRP_IU_CMD: SRP_CMD_SQ_SIZE, since the SCSI mid-layer never queues
1700 * more than Scsi_Host.can_queue requests.
1701 * - SRP_IU_TSK_MGMT: SRP_TSK_MGMT_SQ_SIZE.
1702 * - SRP_IU_RSP: 1, since a conforming SRP target never sends more than
1703 * one unanswered SRP request to an initiator.
1704 */
1705 static struct srp_iu *__srp_get_tx_iu(struct srp_rdma_ch *ch,
1706 enum srp_iu_type iu_type)
1707 {
1708 struct srp_target_port *target = ch->target;
1709 s32 rsv = (iu_type == SRP_IU_TSK_MGMT) ? 0 : SRP_TSK_MGMT_SQ_SIZE;
1710 struct srp_iu *iu;
1711
1712 ib_process_cq_direct(ch->send_cq, -1);
1713
1714 if (list_empty(&ch->free_tx))
1715 return NULL;
1716
1717 /* Initiator responses to target requests do not consume credits */
1718 if (iu_type != SRP_IU_RSP) {
1719 if (ch->req_lim <= rsv) {
1720 ++target->zero_req_lim;
1721 return NULL;
1722 }
1723
1724 --ch->req_lim;
1725 }
1726
1727 iu = list_first_entry(&ch->free_tx, struct srp_iu, list);
1728 list_del(&iu->list);
1729 return iu;
1730 }
1731
1732 static void srp_send_done(struct ib_cq *cq, struct ib_wc *wc)
1733 {
1734 struct srp_iu *iu = container_of(wc->wr_cqe, struct srp_iu, cqe);
1735 struct srp_rdma_ch *ch = cq->cq_context;
1736
1737 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1738 srp_handle_qp_err(cq, wc, "SEND");
1739 return;
1740 }
1741
1742 list_add(&iu->list, &ch->free_tx);
1743 }
1744
1745 static int srp_post_send(struct srp_rdma_ch *ch, struct srp_iu *iu, int len)
1746 {
1747 struct srp_target_port *target = ch->target;
1748 struct ib_sge list;
1749 struct ib_send_wr wr, *bad_wr;
1750
1751 list.addr = iu->dma;
1752 list.length = len;
1753 list.lkey = target->lkey;
1754
1755 iu->cqe.done = srp_send_done;
1756
1757 wr.next = NULL;
1758 wr.wr_cqe = &iu->cqe;
1759 wr.sg_list = &list;
1760 wr.num_sge = 1;
1761 wr.opcode = IB_WR_SEND;
1762 wr.send_flags = IB_SEND_SIGNALED;
1763
1764 return ib_post_send(ch->qp, &wr, &bad_wr);
1765 }
1766
1767 static int srp_post_recv(struct srp_rdma_ch *ch, struct srp_iu *iu)
1768 {
1769 struct srp_target_port *target = ch->target;
1770 struct ib_recv_wr wr, *bad_wr;
1771 struct ib_sge list;
1772
1773 list.addr = iu->dma;
1774 list.length = iu->size;
1775 list.lkey = target->lkey;
1776
1777 iu->cqe.done = srp_recv_done;
1778
1779 wr.next = NULL;
1780 wr.wr_cqe = &iu->cqe;
1781 wr.sg_list = &list;
1782 wr.num_sge = 1;
1783
1784 return ib_post_recv(ch->qp, &wr, &bad_wr);
1785 }
1786
1787 static void srp_process_rsp(struct srp_rdma_ch *ch, struct srp_rsp *rsp)
1788 {
1789 struct srp_target_port *target = ch->target;
1790 struct srp_request *req;
1791 struct scsi_cmnd *scmnd;
1792 unsigned long flags;
1793
1794 if (unlikely(rsp->tag & SRP_TAG_TSK_MGMT)) {
1795 spin_lock_irqsave(&ch->lock, flags);
1796 ch->req_lim += be32_to_cpu(rsp->req_lim_delta);
1797 spin_unlock_irqrestore(&ch->lock, flags);
1798
1799 ch->tsk_mgmt_status = -1;
1800 if (be32_to_cpu(rsp->resp_data_len) >= 4)
1801 ch->tsk_mgmt_status = rsp->data[3];
1802 complete(&ch->tsk_mgmt_done);
1803 } else {
1804 scmnd = scsi_host_find_tag(target->scsi_host, rsp->tag);
1805 if (scmnd) {
1806 req = (void *)scmnd->host_scribble;
1807 scmnd = srp_claim_req(ch, req, NULL, scmnd);
1808 }
1809 if (!scmnd) {
1810 shost_printk(KERN_ERR, target->scsi_host,
1811 "Null scmnd for RSP w/tag %#016llx received on ch %td / QP %#x\n",
1812 rsp->tag, ch - target->ch, ch->qp->qp_num);
1813
1814 spin_lock_irqsave(&ch->lock, flags);
1815 ch->req_lim += be32_to_cpu(rsp->req_lim_delta);
1816 spin_unlock_irqrestore(&ch->lock, flags);
1817
1818 return;
1819 }
1820 scmnd->result = rsp->status;
1821
1822 if (rsp->flags & SRP_RSP_FLAG_SNSVALID) {
1823 memcpy(scmnd->sense_buffer, rsp->data +
1824 be32_to_cpu(rsp->resp_data_len),
1825 min_t(int, be32_to_cpu(rsp->sense_data_len),
1826 SCSI_SENSE_BUFFERSIZE));
1827 }
1828
1829 if (unlikely(rsp->flags & SRP_RSP_FLAG_DIUNDER))
1830 scsi_set_resid(scmnd, be32_to_cpu(rsp->data_in_res_cnt));
1831 else if (unlikely(rsp->flags & SRP_RSP_FLAG_DIOVER))
1832 scsi_set_resid(scmnd, -be32_to_cpu(rsp->data_in_res_cnt));
1833 else if (unlikely(rsp->flags & SRP_RSP_FLAG_DOUNDER))
1834 scsi_set_resid(scmnd, be32_to_cpu(rsp->data_out_res_cnt));
1835 else if (unlikely(rsp->flags & SRP_RSP_FLAG_DOOVER))
1836 scsi_set_resid(scmnd, -be32_to_cpu(rsp->data_out_res_cnt));
1837
1838 srp_free_req(ch, req, scmnd,
1839 be32_to_cpu(rsp->req_lim_delta));
1840
1841 scmnd->host_scribble = NULL;
1842 scmnd->scsi_done(scmnd);
1843 }
1844 }
1845
1846 static int srp_response_common(struct srp_rdma_ch *ch, s32 req_delta,
1847 void *rsp, int len)
1848 {
1849 struct srp_target_port *target = ch->target;
1850 struct ib_device *dev = target->srp_host->srp_dev->dev;
1851 unsigned long flags;
1852 struct srp_iu *iu;
1853 int err;
1854
1855 spin_lock_irqsave(&ch->lock, flags);
1856 ch->req_lim += req_delta;
1857 iu = __srp_get_tx_iu(ch, SRP_IU_RSP);
1858 spin_unlock_irqrestore(&ch->lock, flags);
1859
1860 if (!iu) {
1861 shost_printk(KERN_ERR, target->scsi_host, PFX
1862 "no IU available to send response\n");
1863 return 1;
1864 }
1865
1866 ib_dma_sync_single_for_cpu(dev, iu->dma, len, DMA_TO_DEVICE);
1867 memcpy(iu->buf, rsp, len);
1868 ib_dma_sync_single_for_device(dev, iu->dma, len, DMA_TO_DEVICE);
1869
1870 err = srp_post_send(ch, iu, len);
1871 if (err) {
1872 shost_printk(KERN_ERR, target->scsi_host, PFX
1873 "unable to post response: %d\n", err);
1874 srp_put_tx_iu(ch, iu, SRP_IU_RSP);
1875 }
1876
1877 return err;
1878 }
1879
1880 static void srp_process_cred_req(struct srp_rdma_ch *ch,
1881 struct srp_cred_req *req)
1882 {
1883 struct srp_cred_rsp rsp = {
1884 .opcode = SRP_CRED_RSP,
1885 .tag = req->tag,
1886 };
1887 s32 delta = be32_to_cpu(req->req_lim_delta);
1888
1889 if (srp_response_common(ch, delta, &rsp, sizeof(rsp)))
1890 shost_printk(KERN_ERR, ch->target->scsi_host, PFX
1891 "problems processing SRP_CRED_REQ\n");
1892 }
1893
1894 static void srp_process_aer_req(struct srp_rdma_ch *ch,
1895 struct srp_aer_req *req)
1896 {
1897 struct srp_target_port *target = ch->target;
1898 struct srp_aer_rsp rsp = {
1899 .opcode = SRP_AER_RSP,
1900 .tag = req->tag,
1901 };
1902 s32 delta = be32_to_cpu(req->req_lim_delta);
1903
1904 shost_printk(KERN_ERR, target->scsi_host, PFX
1905 "ignoring AER for LUN %llu\n", scsilun_to_int(&req->lun));
1906
1907 if (srp_response_common(ch, delta, &rsp, sizeof(rsp)))
1908 shost_printk(KERN_ERR, target->scsi_host, PFX
1909 "problems processing SRP_AER_REQ\n");
1910 }
1911
1912 static void srp_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1913 {
1914 struct srp_iu *iu = container_of(wc->wr_cqe, struct srp_iu, cqe);
1915 struct srp_rdma_ch *ch = cq->cq_context;
1916 struct srp_target_port *target = ch->target;
1917 struct ib_device *dev = target->srp_host->srp_dev->dev;
1918 int res;
1919 u8 opcode;
1920
1921 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1922 srp_handle_qp_err(cq, wc, "RECV");
1923 return;
1924 }
1925
1926 ib_dma_sync_single_for_cpu(dev, iu->dma, ch->max_ti_iu_len,
1927 DMA_FROM_DEVICE);
1928
1929 opcode = *(u8 *) iu->buf;
1930
1931 if (0) {
1932 shost_printk(KERN_ERR, target->scsi_host,
1933 PFX "recv completion, opcode 0x%02x\n", opcode);
1934 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 8, 1,
1935 iu->buf, wc->byte_len, true);
1936 }
1937
1938 switch (opcode) {
1939 case SRP_RSP:
1940 srp_process_rsp(ch, iu->buf);
1941 break;
1942
1943 case SRP_CRED_REQ:
1944 srp_process_cred_req(ch, iu->buf);
1945 break;
1946
1947 case SRP_AER_REQ:
1948 srp_process_aer_req(ch, iu->buf);
1949 break;
1950
1951 case SRP_T_LOGOUT:
1952 /* XXX Handle target logout */
1953 shost_printk(KERN_WARNING, target->scsi_host,
1954 PFX "Got target logout request\n");
1955 break;
1956
1957 default:
1958 shost_printk(KERN_WARNING, target->scsi_host,
1959 PFX "Unhandled SRP opcode 0x%02x\n", opcode);
1960 break;
1961 }
1962
1963 ib_dma_sync_single_for_device(dev, iu->dma, ch->max_ti_iu_len,
1964 DMA_FROM_DEVICE);
1965
1966 res = srp_post_recv(ch, iu);
1967 if (res != 0)
1968 shost_printk(KERN_ERR, target->scsi_host,
1969 PFX "Recv failed with error code %d\n", res);
1970 }
1971
1972 /**
1973 * srp_tl_err_work() - handle a transport layer error
1974 * @work: Work structure embedded in an SRP target port.
1975 *
1976 * Note: This function may get invoked before the rport has been created,
1977 * hence the target->rport test.
1978 */
1979 static void srp_tl_err_work(struct work_struct *work)
1980 {
1981 struct srp_target_port *target;
1982
1983 target = container_of(work, struct srp_target_port, tl_err_work);
1984 if (target->rport)
1985 srp_start_tl_fail_timers(target->rport);
1986 }
1987
1988 static void srp_handle_qp_err(struct ib_cq *cq, struct ib_wc *wc,
1989 const char *opname)
1990 {
1991 struct srp_rdma_ch *ch = cq->cq_context;
1992 struct srp_target_port *target = ch->target;
1993
1994 if (ch->connected && !target->qp_in_error) {
1995 shost_printk(KERN_ERR, target->scsi_host,
1996 PFX "failed %s status %s (%d) for CQE %p\n",
1997 opname, ib_wc_status_msg(wc->status), wc->status,
1998 wc->wr_cqe);
1999 queue_work(system_long_wq, &target->tl_err_work);
2000 }
2001 target->qp_in_error = true;
2002 }
2003
2004 static int srp_queuecommand(struct Scsi_Host *shost, struct scsi_cmnd *scmnd)
2005 {
2006 struct srp_target_port *target = host_to_target(shost);
2007 struct srp_rport *rport = target->rport;
2008 struct srp_rdma_ch *ch;
2009 struct srp_request *req;
2010 struct srp_iu *iu;
2011 struct srp_cmd *cmd;
2012 struct ib_device *dev;
2013 unsigned long flags;
2014 u32 tag;
2015 u16 idx;
2016 int len, ret;
2017 const bool in_scsi_eh = !in_interrupt() && current == shost->ehandler;
2018
2019 /*
2020 * The SCSI EH thread is the only context from which srp_queuecommand()
2021 * can get invoked for blocked devices (SDEV_BLOCK /
2022 * SDEV_CREATED_BLOCK). Avoid racing with srp_reconnect_rport() by
2023 * locking the rport mutex if invoked from inside the SCSI EH.
2024 */
2025 if (in_scsi_eh)
2026 mutex_lock(&rport->mutex);
2027
2028 scmnd->result = srp_chkready(target->rport);
2029 if (unlikely(scmnd->result))
2030 goto err;
2031
2032 WARN_ON_ONCE(scmnd->request->tag < 0);
2033 tag = blk_mq_unique_tag(scmnd->request);
2034 ch = &target->ch[blk_mq_unique_tag_to_hwq(tag)];
2035 idx = blk_mq_unique_tag_to_tag(tag);
2036 WARN_ONCE(idx >= target->req_ring_size, "%s: tag %#x: idx %d >= %d\n",
2037 dev_name(&shost->shost_gendev), tag, idx,
2038 target->req_ring_size);
2039
2040 spin_lock_irqsave(&ch->lock, flags);
2041 iu = __srp_get_tx_iu(ch, SRP_IU_CMD);
2042 spin_unlock_irqrestore(&ch->lock, flags);
2043
2044 if (!iu)
2045 goto err;
2046
2047 req = &ch->req_ring[idx];
2048 dev = target->srp_host->srp_dev->dev;
2049 ib_dma_sync_single_for_cpu(dev, iu->dma, target->max_iu_len,
2050 DMA_TO_DEVICE);
2051
2052 scmnd->host_scribble = (void *) req;
2053
2054 cmd = iu->buf;
2055 memset(cmd, 0, sizeof *cmd);
2056
2057 cmd->opcode = SRP_CMD;
2058 int_to_scsilun(scmnd->device->lun, &cmd->lun);
2059 cmd->tag = tag;
2060 memcpy(cmd->cdb, scmnd->cmnd, scmnd->cmd_len);
2061
2062 req->scmnd = scmnd;
2063 req->cmd = iu;
2064
2065 len = srp_map_data(scmnd, ch, req);
2066 if (len < 0) {
2067 shost_printk(KERN_ERR, target->scsi_host,
2068 PFX "Failed to map data (%d)\n", len);
2069 /*
2070 * If we ran out of memory descriptors (-ENOMEM) because an
2071 * application is queuing many requests with more than
2072 * max_pages_per_mr sg-list elements, tell the SCSI mid-layer
2073 * to reduce queue depth temporarily.
2074 */
2075 scmnd->result = len == -ENOMEM ?
2076 DID_OK << 16 | QUEUE_FULL << 1 : DID_ERROR << 16;
2077 goto err_iu;
2078 }
2079
2080 ib_dma_sync_single_for_device(dev, iu->dma, target->max_iu_len,
2081 DMA_TO_DEVICE);
2082
2083 if (srp_post_send(ch, iu, len)) {
2084 shost_printk(KERN_ERR, target->scsi_host, PFX "Send failed\n");
2085 goto err_unmap;
2086 }
2087
2088 ret = 0;
2089
2090 unlock_rport:
2091 if (in_scsi_eh)
2092 mutex_unlock(&rport->mutex);
2093
2094 return ret;
2095
2096 err_unmap:
2097 srp_unmap_data(scmnd, ch, req);
2098
2099 err_iu:
2100 srp_put_tx_iu(ch, iu, SRP_IU_CMD);
2101
2102 /*
2103 * Avoid that the loops that iterate over the request ring can
2104 * encounter a dangling SCSI command pointer.
2105 */
2106 req->scmnd = NULL;
2107
2108 err:
2109 if (scmnd->result) {
2110 scmnd->scsi_done(scmnd);
2111 ret = 0;
2112 } else {
2113 ret = SCSI_MLQUEUE_HOST_BUSY;
2114 }
2115
2116 goto unlock_rport;
2117 }
2118
2119 /*
2120 * Note: the resources allocated in this function are freed in
2121 * srp_free_ch_ib().
2122 */
2123 static int srp_alloc_iu_bufs(struct srp_rdma_ch *ch)
2124 {
2125 struct srp_target_port *target = ch->target;
2126 int i;
2127
2128 ch->rx_ring = kcalloc(target->queue_size, sizeof(*ch->rx_ring),
2129 GFP_KERNEL);
2130 if (!ch->rx_ring)
2131 goto err_no_ring;
2132 ch->tx_ring = kcalloc(target->queue_size, sizeof(*ch->tx_ring),
2133 GFP_KERNEL);
2134 if (!ch->tx_ring)
2135 goto err_no_ring;
2136
2137 for (i = 0; i < target->queue_size; ++i) {
2138 ch->rx_ring[i] = srp_alloc_iu(target->srp_host,
2139 ch->max_ti_iu_len,
2140 GFP_KERNEL, DMA_FROM_DEVICE);
2141 if (!ch->rx_ring[i])
2142 goto err;
2143 }
2144
2145 for (i = 0; i < target->queue_size; ++i) {
2146 ch->tx_ring[i] = srp_alloc_iu(target->srp_host,
2147 target->max_iu_len,
2148 GFP_KERNEL, DMA_TO_DEVICE);
2149 if (!ch->tx_ring[i])
2150 goto err;
2151
2152 list_add(&ch->tx_ring[i]->list, &ch->free_tx);
2153 }
2154
2155 return 0;
2156
2157 err:
2158 for (i = 0; i < target->queue_size; ++i) {
2159 srp_free_iu(target->srp_host, ch->rx_ring[i]);
2160 srp_free_iu(target->srp_host, ch->tx_ring[i]);
2161 }
2162
2163
2164 err_no_ring:
2165 kfree(ch->tx_ring);
2166 ch->tx_ring = NULL;
2167 kfree(ch->rx_ring);
2168 ch->rx_ring = NULL;
2169
2170 return -ENOMEM;
2171 }
2172
2173 static uint32_t srp_compute_rq_tmo(struct ib_qp_attr *qp_attr, int attr_mask)
2174 {
2175 uint64_t T_tr_ns, max_compl_time_ms;
2176 uint32_t rq_tmo_jiffies;
2177
2178 /*
2179 * According to section 11.2.4.2 in the IBTA spec (Modify Queue Pair,
2180 * table 91), both the QP timeout and the retry count have to be set
2181 * for RC QP's during the RTR to RTS transition.
2182 */
2183 WARN_ON_ONCE((attr_mask & (IB_QP_TIMEOUT | IB_QP_RETRY_CNT)) !=
2184 (IB_QP_TIMEOUT | IB_QP_RETRY_CNT));
2185
2186 /*
2187 * Set target->rq_tmo_jiffies to one second more than the largest time
2188 * it can take before an error completion is generated. See also
2189 * C9-140..142 in the IBTA spec for more information about how to
2190 * convert the QP Local ACK Timeout value to nanoseconds.
2191 */
2192 T_tr_ns = 4096 * (1ULL << qp_attr->timeout);
2193 max_compl_time_ms = qp_attr->retry_cnt * 4 * T_tr_ns;
2194 do_div(max_compl_time_ms, NSEC_PER_MSEC);
2195 rq_tmo_jiffies = msecs_to_jiffies(max_compl_time_ms + 1000);
2196
2197 return rq_tmo_jiffies;
2198 }
2199
2200 static void srp_cm_rep_handler(struct ib_cm_id *cm_id,
2201 const struct srp_login_rsp *lrsp,
2202 struct srp_rdma_ch *ch)
2203 {
2204 struct srp_target_port *target = ch->target;
2205 struct ib_qp_attr *qp_attr = NULL;
2206 int attr_mask = 0;
2207 int ret;
2208 int i;
2209
2210 if (lrsp->opcode == SRP_LOGIN_RSP) {
2211 ch->max_ti_iu_len = be32_to_cpu(lrsp->max_ti_iu_len);
2212 ch->req_lim = be32_to_cpu(lrsp->req_lim_delta);
2213
2214 /*
2215 * Reserve credits for task management so we don't
2216 * bounce requests back to the SCSI mid-layer.
2217 */
2218 target->scsi_host->can_queue
2219 = min(ch->req_lim - SRP_TSK_MGMT_SQ_SIZE,
2220 target->scsi_host->can_queue);
2221 target->scsi_host->cmd_per_lun
2222 = min_t(int, target->scsi_host->can_queue,
2223 target->scsi_host->cmd_per_lun);
2224 } else {
2225 shost_printk(KERN_WARNING, target->scsi_host,
2226 PFX "Unhandled RSP opcode %#x\n", lrsp->opcode);
2227 ret = -ECONNRESET;
2228 goto error;
2229 }
2230
2231 if (!ch->rx_ring) {
2232 ret = srp_alloc_iu_bufs(ch);
2233 if (ret)
2234 goto error;
2235 }
2236
2237 ret = -ENOMEM;
2238 qp_attr = kmalloc(sizeof *qp_attr, GFP_KERNEL);
2239 if (!qp_attr)
2240 goto error;
2241
2242 qp_attr->qp_state = IB_QPS_RTR;
2243 ret = ib_cm_init_qp_attr(cm_id, qp_attr, &attr_mask);
2244 if (ret)
2245 goto error_free;
2246
2247 ret = ib_modify_qp(ch->qp, qp_attr, attr_mask);
2248 if (ret)
2249 goto error_free;
2250
2251 for (i = 0; i < target->queue_size; i++) {
2252 struct srp_iu *iu = ch->rx_ring[i];
2253
2254 ret = srp_post_recv(ch, iu);
2255 if (ret)
2256 goto error_free;
2257 }
2258
2259 qp_attr->qp_state = IB_QPS_RTS;
2260 ret = ib_cm_init_qp_attr(cm_id, qp_attr, &attr_mask);
2261 if (ret)
2262 goto error_free;
2263
2264 target->rq_tmo_jiffies = srp_compute_rq_tmo(qp_attr, attr_mask);
2265
2266 ret = ib_modify_qp(ch->qp, qp_attr, attr_mask);
2267 if (ret)
2268 goto error_free;
2269
2270 ret = ib_send_cm_rtu(cm_id, NULL, 0);
2271
2272 error_free:
2273 kfree(qp_attr);
2274
2275 error:
2276 ch->status = ret;
2277 }
2278
2279 static void srp_cm_rej_handler(struct ib_cm_id *cm_id,
2280 struct ib_cm_event *event,
2281 struct srp_rdma_ch *ch)
2282 {
2283 struct srp_target_port *target = ch->target;
2284 struct Scsi_Host *shost = target->scsi_host;
2285 struct ib_class_port_info *cpi;
2286 int opcode;
2287
2288 switch (event->param.rej_rcvd.reason) {
2289 case IB_CM_REJ_PORT_CM_REDIRECT:
2290 cpi = event->param.rej_rcvd.ari;
2291 ch->path.dlid = cpi->redirect_lid;
2292 ch->path.pkey = cpi->redirect_pkey;
2293 cm_id->remote_cm_qpn = be32_to_cpu(cpi->redirect_qp) & 0x00ffffff;
2294 memcpy(ch->path.dgid.raw, cpi->redirect_gid, 16);
2295
2296 ch->status = ch->path.dlid ?
2297 SRP_DLID_REDIRECT : SRP_PORT_REDIRECT;
2298 break;
2299
2300 case IB_CM_REJ_PORT_REDIRECT:
2301 if (srp_target_is_topspin(target)) {
2302 /*
2303 * Topspin/Cisco SRP gateways incorrectly send
2304 * reject reason code 25 when they mean 24
2305 * (port redirect).
2306 */
2307 memcpy(ch->path.dgid.raw,
2308 event->param.rej_rcvd.ari, 16);
2309
2310 shost_printk(KERN_DEBUG, shost,
2311 PFX "Topspin/Cisco redirect to target port GID %016llx%016llx\n",
2312 be64_to_cpu(ch->path.dgid.global.subnet_prefix),
2313 be64_to_cpu(ch->path.dgid.global.interface_id));
2314
2315 ch->status = SRP_PORT_REDIRECT;
2316 } else {
2317 shost_printk(KERN_WARNING, shost,
2318 " REJ reason: IB_CM_REJ_PORT_REDIRECT\n");
2319 ch->status = -ECONNRESET;
2320 }
2321 break;
2322
2323 case IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID:
2324 shost_printk(KERN_WARNING, shost,
2325 " REJ reason: IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID\n");
2326 ch->status = -ECONNRESET;
2327 break;
2328
2329 case IB_CM_REJ_CONSUMER_DEFINED:
2330 opcode = *(u8 *) event->private_data;
2331 if (opcode == SRP_LOGIN_REJ) {
2332 struct srp_login_rej *rej = event->private_data;
2333 u32 reason = be32_to_cpu(rej->reason);
2334
2335 if (reason == SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE)
2336 shost_printk(KERN_WARNING, shost,
2337 PFX "SRP_LOGIN_REJ: requested max_it_iu_len too large\n");
2338 else
2339 shost_printk(KERN_WARNING, shost, PFX
2340 "SRP LOGIN from %pI6 to %pI6 REJECTED, reason 0x%08x\n",
2341 target->sgid.raw,
2342 target->orig_dgid.raw, reason);
2343 } else
2344 shost_printk(KERN_WARNING, shost,
2345 " REJ reason: IB_CM_REJ_CONSUMER_DEFINED,"
2346 " opcode 0x%02x\n", opcode);
2347 ch->status = -ECONNRESET;
2348 break;
2349
2350 case IB_CM_REJ_STALE_CONN:
2351 shost_printk(KERN_WARNING, shost, " REJ reason: stale connection\n");
2352 ch->status = SRP_STALE_CONN;
2353 break;
2354
2355 default:
2356 shost_printk(KERN_WARNING, shost, " REJ reason 0x%x\n",
2357 event->param.rej_rcvd.reason);
2358 ch->status = -ECONNRESET;
2359 }
2360 }
2361
2362 static int srp_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event)
2363 {
2364 struct srp_rdma_ch *ch = cm_id->context;
2365 struct srp_target_port *target = ch->target;
2366 int comp = 0;
2367
2368 switch (event->event) {
2369 case IB_CM_REQ_ERROR:
2370 shost_printk(KERN_DEBUG, target->scsi_host,
2371 PFX "Sending CM REQ failed\n");
2372 comp = 1;
2373 ch->status = -ECONNRESET;
2374 break;
2375
2376 case IB_CM_REP_RECEIVED:
2377 comp = 1;
2378 srp_cm_rep_handler(cm_id, event->private_data, ch);
2379 break;
2380
2381 case IB_CM_REJ_RECEIVED:
2382 shost_printk(KERN_DEBUG, target->scsi_host, PFX "REJ received\n");
2383 comp = 1;
2384
2385 srp_cm_rej_handler(cm_id, event, ch);
2386 break;
2387
2388 case IB_CM_DREQ_RECEIVED:
2389 shost_printk(KERN_WARNING, target->scsi_host,
2390 PFX "DREQ received - connection closed\n");
2391 ch->connected = false;
2392 if (ib_send_cm_drep(cm_id, NULL, 0))
2393 shost_printk(KERN_ERR, target->scsi_host,
2394 PFX "Sending CM DREP failed\n");
2395 queue_work(system_long_wq, &target->tl_err_work);
2396 break;
2397
2398 case IB_CM_TIMEWAIT_EXIT:
2399 shost_printk(KERN_ERR, target->scsi_host,
2400 PFX "connection closed\n");
2401 comp = 1;
2402
2403 ch->status = 0;
2404 break;
2405
2406 case IB_CM_MRA_RECEIVED:
2407 case IB_CM_DREQ_ERROR:
2408 case IB_CM_DREP_RECEIVED:
2409 break;
2410
2411 default:
2412 shost_printk(KERN_WARNING, target->scsi_host,
2413 PFX "Unhandled CM event %d\n", event->event);
2414 break;
2415 }
2416
2417 if (comp)
2418 complete(&ch->done);
2419
2420 return 0;
2421 }
2422
2423 /**
2424 * srp_change_queue_depth - setting device queue depth
2425 * @sdev: scsi device struct
2426 * @qdepth: requested queue depth
2427 *
2428 * Returns queue depth.
2429 */
2430 static int
2431 srp_change_queue_depth(struct scsi_device *sdev, int qdepth)
2432 {
2433 if (!sdev->tagged_supported)
2434 qdepth = 1;
2435 return scsi_change_queue_depth(sdev, qdepth);
2436 }
2437
2438 static int srp_send_tsk_mgmt(struct srp_rdma_ch *ch, u64 req_tag, u64 lun,
2439 u8 func)
2440 {
2441 struct srp_target_port *target = ch->target;
2442 struct srp_rport *rport = target->rport;
2443 struct ib_device *dev = target->srp_host->srp_dev->dev;
2444 struct srp_iu *iu;
2445 struct srp_tsk_mgmt *tsk_mgmt;
2446
2447 if (!ch->connected || target->qp_in_error)
2448 return -1;
2449
2450 init_completion(&ch->tsk_mgmt_done);
2451
2452 /*
2453 * Lock the rport mutex to avoid that srp_create_ch_ib() is
2454 * invoked while a task management function is being sent.
2455 */
2456 mutex_lock(&rport->mutex);
2457 spin_lock_irq(&ch->lock);
2458 iu = __srp_get_tx_iu(ch, SRP_IU_TSK_MGMT);
2459 spin_unlock_irq(&ch->lock);
2460
2461 if (!iu) {
2462 mutex_unlock(&rport->mutex);
2463
2464 return -1;
2465 }
2466
2467 ib_dma_sync_single_for_cpu(dev, iu->dma, sizeof *tsk_mgmt,
2468 DMA_TO_DEVICE);
2469 tsk_mgmt = iu->buf;
2470 memset(tsk_mgmt, 0, sizeof *tsk_mgmt);
2471
2472 tsk_mgmt->opcode = SRP_TSK_MGMT;
2473 int_to_scsilun(lun, &tsk_mgmt->lun);
2474 tsk_mgmt->tag = req_tag | SRP_TAG_TSK_MGMT;
2475 tsk_mgmt->tsk_mgmt_func = func;
2476 tsk_mgmt->task_tag = req_tag;
2477
2478 ib_dma_sync_single_for_device(dev, iu->dma, sizeof *tsk_mgmt,
2479 DMA_TO_DEVICE);
2480 if (srp_post_send(ch, iu, sizeof(*tsk_mgmt))) {
2481 srp_put_tx_iu(ch, iu, SRP_IU_TSK_MGMT);
2482 mutex_unlock(&rport->mutex);
2483
2484 return -1;
2485 }
2486 mutex_unlock(&rport->mutex);
2487
2488 if (!wait_for_completion_timeout(&ch->tsk_mgmt_done,
2489 msecs_to_jiffies(SRP_ABORT_TIMEOUT_MS)))
2490 return -1;
2491
2492 return 0;
2493 }
2494
2495 static int srp_abort(struct scsi_cmnd *scmnd)
2496 {
2497 struct srp_target_port *target = host_to_target(scmnd->device->host);
2498 struct srp_request *req = (struct srp_request *) scmnd->host_scribble;
2499 u32 tag;
2500 u16 ch_idx;
2501 struct srp_rdma_ch *ch;
2502 int ret;
2503
2504 shost_printk(KERN_ERR, target->scsi_host, "SRP abort called\n");
2505
2506 if (!req)
2507 return SUCCESS;
2508 tag = blk_mq_unique_tag(scmnd->request);
2509 ch_idx = blk_mq_unique_tag_to_hwq(tag);
2510 if (WARN_ON_ONCE(ch_idx >= target->ch_count))
2511 return SUCCESS;
2512 ch = &target->ch[ch_idx];
2513 if (!srp_claim_req(ch, req, NULL, scmnd))
2514 return SUCCESS;
2515 shost_printk(KERN_ERR, target->scsi_host,
2516 "Sending SRP abort for tag %#x\n", tag);
2517 if (srp_send_tsk_mgmt(ch, tag, scmnd->device->lun,
2518 SRP_TSK_ABORT_TASK) == 0)
2519 ret = SUCCESS;
2520 else if (target->rport->state == SRP_RPORT_LOST)
2521 ret = FAST_IO_FAIL;
2522 else
2523 ret = FAILED;
2524 srp_free_req(ch, req, scmnd, 0);
2525 scmnd->result = DID_ABORT << 16;
2526 scmnd->scsi_done(scmnd);
2527
2528 return ret;
2529 }
2530
2531 static int srp_reset_device(struct scsi_cmnd *scmnd)
2532 {
2533 struct srp_target_port *target = host_to_target(scmnd->device->host);
2534 struct srp_rdma_ch *ch;
2535 int i;
2536
2537 shost_printk(KERN_ERR, target->scsi_host, "SRP reset_device called\n");
2538
2539 ch = &target->ch[0];
2540 if (srp_send_tsk_mgmt(ch, SRP_TAG_NO_REQ, scmnd->device->lun,
2541 SRP_TSK_LUN_RESET))
2542 return FAILED;
2543 if (ch->tsk_mgmt_status)
2544 return FAILED;
2545
2546 for (i = 0; i < target->ch_count; i++) {
2547 ch = &target->ch[i];
2548 for (i = 0; i < target->req_ring_size; ++i) {
2549 struct srp_request *req = &ch->req_ring[i];
2550
2551 srp_finish_req(ch, req, scmnd->device, DID_RESET << 16);
2552 }
2553 }
2554
2555 return SUCCESS;
2556 }
2557
2558 static int srp_reset_host(struct scsi_cmnd *scmnd)
2559 {
2560 struct srp_target_port *target = host_to_target(scmnd->device->host);
2561
2562 shost_printk(KERN_ERR, target->scsi_host, PFX "SRP reset_host called\n");
2563
2564 return srp_reconnect_rport(target->rport) == 0 ? SUCCESS : FAILED;
2565 }
2566
2567 static int srp_slave_configure(struct scsi_device *sdev)
2568 {
2569 struct Scsi_Host *shost = sdev->host;
2570 struct srp_target_port *target = host_to_target(shost);
2571 struct request_queue *q = sdev->request_queue;
2572 unsigned long timeout;
2573
2574 if (sdev->type == TYPE_DISK) {
2575 timeout = max_t(unsigned, 30 * HZ, target->rq_tmo_jiffies);
2576 blk_queue_rq_timeout(q, timeout);
2577 }
2578
2579 return 0;
2580 }
2581
2582 static ssize_t show_id_ext(struct device *dev, struct device_attribute *attr,
2583 char *buf)
2584 {
2585 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2586
2587 return sprintf(buf, "0x%016llx\n", be64_to_cpu(target->id_ext));
2588 }
2589
2590 static ssize_t show_ioc_guid(struct device *dev, struct device_attribute *attr,
2591 char *buf)
2592 {
2593 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2594
2595 return sprintf(buf, "0x%016llx\n", be64_to_cpu(target->ioc_guid));
2596 }
2597
2598 static ssize_t show_service_id(struct device *dev,
2599 struct device_attribute *attr, char *buf)
2600 {
2601 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2602
2603 return sprintf(buf, "0x%016llx\n", be64_to_cpu(target->service_id));
2604 }
2605
2606 static ssize_t show_pkey(struct device *dev, struct device_attribute *attr,
2607 char *buf)
2608 {
2609 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2610
2611 return sprintf(buf, "0x%04x\n", be16_to_cpu(target->pkey));
2612 }
2613
2614 static ssize_t show_sgid(struct device *dev, struct device_attribute *attr,
2615 char *buf)
2616 {
2617 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2618
2619 return sprintf(buf, "%pI6\n", target->sgid.raw);
2620 }
2621
2622 static ssize_t show_dgid(struct device *dev, struct device_attribute *attr,
2623 char *buf)
2624 {
2625 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2626 struct srp_rdma_ch *ch = &target->ch[0];
2627
2628 return sprintf(buf, "%pI6\n", ch->path.dgid.raw);
2629 }
2630
2631 static ssize_t show_orig_dgid(struct device *dev,
2632 struct device_attribute *attr, char *buf)
2633 {
2634 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2635
2636 return sprintf(buf, "%pI6\n", target->orig_dgid.raw);
2637 }
2638
2639 static ssize_t show_req_lim(struct device *dev,
2640 struct device_attribute *attr, char *buf)
2641 {
2642 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2643 struct srp_rdma_ch *ch;
2644 int i, req_lim = INT_MAX;
2645
2646 for (i = 0; i < target->ch_count; i++) {
2647 ch = &target->ch[i];
2648 req_lim = min(req_lim, ch->req_lim);
2649 }
2650 return sprintf(buf, "%d\n", req_lim);
2651 }
2652
2653 static ssize_t show_zero_req_lim(struct device *dev,
2654 struct device_attribute *attr, char *buf)
2655 {
2656 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2657
2658 return sprintf(buf, "%d\n", target->zero_req_lim);
2659 }
2660
2661 static ssize_t show_local_ib_port(struct device *dev,
2662 struct device_attribute *attr, char *buf)
2663 {
2664 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2665
2666 return sprintf(buf, "%d\n", target->srp_host->port);
2667 }
2668
2669 static ssize_t show_local_ib_device(struct device *dev,
2670 struct device_attribute *attr, char *buf)
2671 {
2672 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2673
2674 return sprintf(buf, "%s\n", target->srp_host->srp_dev->dev->name);
2675 }
2676
2677 static ssize_t show_ch_count(struct device *dev, struct device_attribute *attr,
2678 char *buf)
2679 {
2680 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2681
2682 return sprintf(buf, "%d\n", target->ch_count);
2683 }
2684
2685 static ssize_t show_comp_vector(struct device *dev,
2686 struct device_attribute *attr, char *buf)
2687 {
2688 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2689
2690 return sprintf(buf, "%d\n", target->comp_vector);
2691 }
2692
2693 static ssize_t show_tl_retry_count(struct device *dev,
2694 struct device_attribute *attr, char *buf)
2695 {
2696 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2697
2698 return sprintf(buf, "%d\n", target->tl_retry_count);
2699 }
2700
2701 static ssize_t show_cmd_sg_entries(struct device *dev,
2702 struct device_attribute *attr, char *buf)
2703 {
2704 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2705
2706 return sprintf(buf, "%u\n", target->cmd_sg_cnt);
2707 }
2708
2709 static ssize_t show_allow_ext_sg(struct device *dev,
2710 struct device_attribute *attr, char *buf)
2711 {
2712 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2713
2714 return sprintf(buf, "%s\n", target->allow_ext_sg ? "true" : "false");
2715 }
2716
2717 static DEVICE_ATTR(id_ext, S_IRUGO, show_id_ext, NULL);
2718 static DEVICE_ATTR(ioc_guid, S_IRUGO, show_ioc_guid, NULL);
2719 static DEVICE_ATTR(service_id, S_IRUGO, show_service_id, NULL);
2720 static DEVICE_ATTR(pkey, S_IRUGO, show_pkey, NULL);
2721 static DEVICE_ATTR(sgid, S_IRUGO, show_sgid, NULL);
2722 static DEVICE_ATTR(dgid, S_IRUGO, show_dgid, NULL);
2723 static DEVICE_ATTR(orig_dgid, S_IRUGO, show_orig_dgid, NULL);
2724 static DEVICE_ATTR(req_lim, S_IRUGO, show_req_lim, NULL);
2725 static DEVICE_ATTR(zero_req_lim, S_IRUGO, show_zero_req_lim, NULL);
2726 static DEVICE_ATTR(local_ib_port, S_IRUGO, show_local_ib_port, NULL);
2727 static DEVICE_ATTR(local_ib_device, S_IRUGO, show_local_ib_device, NULL);
2728 static DEVICE_ATTR(ch_count, S_IRUGO, show_ch_count, NULL);
2729 static DEVICE_ATTR(comp_vector, S_IRUGO, show_comp_vector, NULL);
2730 static DEVICE_ATTR(tl_retry_count, S_IRUGO, show_tl_retry_count, NULL);
2731 static DEVICE_ATTR(cmd_sg_entries, S_IRUGO, show_cmd_sg_entries, NULL);
2732 static DEVICE_ATTR(allow_ext_sg, S_IRUGO, show_allow_ext_sg, NULL);
2733
2734 static struct device_attribute *srp_host_attrs[] = {
2735 &dev_attr_id_ext,
2736 &dev_attr_ioc_guid,
2737 &dev_attr_service_id,
2738 &dev_attr_pkey,
2739 &dev_attr_sgid,
2740 &dev_attr_dgid,
2741 &dev_attr_orig_dgid,
2742 &dev_attr_req_lim,
2743 &dev_attr_zero_req_lim,
2744 &dev_attr_local_ib_port,
2745 &dev_attr_local_ib_device,
2746 &dev_attr_ch_count,
2747 &dev_attr_comp_vector,
2748 &dev_attr_tl_retry_count,
2749 &dev_attr_cmd_sg_entries,
2750 &dev_attr_allow_ext_sg,
2751 NULL
2752 };
2753
2754 static struct scsi_host_template srp_template = {
2755 .module = THIS_MODULE,
2756 .name = "InfiniBand SRP initiator",
2757 .proc_name = DRV_NAME,
2758 .slave_configure = srp_slave_configure,
2759 .info = srp_target_info,
2760 .queuecommand = srp_queuecommand,
2761 .change_queue_depth = srp_change_queue_depth,
2762 .eh_abort_handler = srp_abort,
2763 .eh_device_reset_handler = srp_reset_device,
2764 .eh_host_reset_handler = srp_reset_host,
2765 .skip_settle_delay = true,
2766 .sg_tablesize = SRP_DEF_SG_TABLESIZE,
2767 .can_queue = SRP_DEFAULT_CMD_SQ_SIZE,
2768 .this_id = -1,
2769 .cmd_per_lun = SRP_DEFAULT_CMD_SQ_SIZE,
2770 .use_clustering = ENABLE_CLUSTERING,
2771 .shost_attrs = srp_host_attrs,
2772 .track_queue_depth = 1,
2773 };
2774
2775 static int srp_sdev_count(struct Scsi_Host *host)
2776 {
2777 struct scsi_device *sdev;
2778 int c = 0;
2779
2780 shost_for_each_device(sdev, host)
2781 c++;
2782
2783 return c;
2784 }
2785
2786 /*
2787 * Return values:
2788 * < 0 upon failure. Caller is responsible for SRP target port cleanup.
2789 * 0 and target->state == SRP_TARGET_REMOVED if asynchronous target port
2790 * removal has been scheduled.
2791 * 0 and target->state != SRP_TARGET_REMOVED upon success.
2792 */
2793 static int srp_add_target(struct srp_host *host, struct srp_target_port *target)
2794 {
2795 struct srp_rport_identifiers ids;
2796 struct srp_rport *rport;
2797
2798 target->state = SRP_TARGET_SCANNING;
2799 sprintf(target->target_name, "SRP.T10:%016llX",
2800 be64_to_cpu(target->id_ext));
2801
2802 if (scsi_add_host(target->scsi_host, host->srp_dev->dev->dma_device))
2803 return -ENODEV;
2804
2805 memcpy(ids.port_id, &target->id_ext, 8);
2806 memcpy(ids.port_id + 8, &target->ioc_guid, 8);
2807 ids.roles = SRP_RPORT_ROLE_TARGET;
2808 rport = srp_rport_add(target->scsi_host, &ids);
2809 if (IS_ERR(rport)) {
2810 scsi_remove_host(target->scsi_host);
2811 return PTR_ERR(rport);
2812 }
2813
2814 rport->lld_data = target;
2815 target->rport = rport;
2816
2817 spin_lock(&host->target_lock);
2818 list_add_tail(&target->list, &host->target_list);
2819 spin_unlock(&host->target_lock);
2820
2821 scsi_scan_target(&target->scsi_host->shost_gendev,
2822 0, target->scsi_id, SCAN_WILD_CARD, 0);
2823
2824 if (srp_connected_ch(target) < target->ch_count ||
2825 target->qp_in_error) {
2826 shost_printk(KERN_INFO, target->scsi_host,
2827 PFX "SCSI scan failed - removing SCSI host\n");
2828 srp_queue_remove_work(target);
2829 goto out;
2830 }
2831
2832 pr_debug(PFX "%s: SCSI scan succeeded - detected %d LUNs\n",
2833 dev_name(&target->scsi_host->shost_gendev),
2834 srp_sdev_count(target->scsi_host));
2835
2836 spin_lock_irq(&target->lock);
2837 if (target->state == SRP_TARGET_SCANNING)
2838 target->state = SRP_TARGET_LIVE;
2839 spin_unlock_irq(&target->lock);
2840
2841 out:
2842 return 0;
2843 }
2844
2845 static void srp_release_dev(struct device *dev)
2846 {
2847 struct srp_host *host =
2848 container_of(dev, struct srp_host, dev);
2849
2850 complete(&host->released);
2851 }
2852
2853 static struct class srp_class = {
2854 .name = "infiniband_srp",
2855 .dev_release = srp_release_dev
2856 };
2857
2858 /**
2859 * srp_conn_unique() - check whether the connection to a target is unique
2860 * @host: SRP host.
2861 * @target: SRP target port.
2862 */
2863 static bool srp_conn_unique(struct srp_host *host,
2864 struct srp_target_port *target)
2865 {
2866 struct srp_target_port *t;
2867 bool ret = false;
2868
2869 if (target->state == SRP_TARGET_REMOVED)
2870 goto out;
2871
2872 ret = true;
2873
2874 spin_lock(&host->target_lock);
2875 list_for_each_entry(t, &host->target_list, list) {
2876 if (t != target &&
2877 target->id_ext == t->id_ext &&
2878 target->ioc_guid == t->ioc_guid &&
2879 target->initiator_ext == t->initiator_ext) {
2880 ret = false;
2881 break;
2882 }
2883 }
2884 spin_unlock(&host->target_lock);
2885
2886 out:
2887 return ret;
2888 }
2889
2890 /*
2891 * Target ports are added by writing
2892 *
2893 * id_ext=<SRP ID ext>,ioc_guid=<SRP IOC GUID>,dgid=<dest GID>,
2894 * pkey=<P_Key>,service_id=<service ID>
2895 *
2896 * to the add_target sysfs attribute.
2897 */
2898 enum {
2899 SRP_OPT_ERR = 0,
2900 SRP_OPT_ID_EXT = 1 << 0,
2901 SRP_OPT_IOC_GUID = 1 << 1,
2902 SRP_OPT_DGID = 1 << 2,
2903 SRP_OPT_PKEY = 1 << 3,
2904 SRP_OPT_SERVICE_ID = 1 << 4,
2905 SRP_OPT_MAX_SECT = 1 << 5,
2906 SRP_OPT_MAX_CMD_PER_LUN = 1 << 6,
2907 SRP_OPT_IO_CLASS = 1 << 7,
2908 SRP_OPT_INITIATOR_EXT = 1 << 8,
2909 SRP_OPT_CMD_SG_ENTRIES = 1 << 9,
2910 SRP_OPT_ALLOW_EXT_SG = 1 << 10,
2911 SRP_OPT_SG_TABLESIZE = 1 << 11,
2912 SRP_OPT_COMP_VECTOR = 1 << 12,
2913 SRP_OPT_TL_RETRY_COUNT = 1 << 13,
2914 SRP_OPT_QUEUE_SIZE = 1 << 14,
2915 SRP_OPT_ALL = (SRP_OPT_ID_EXT |
2916 SRP_OPT_IOC_GUID |
2917 SRP_OPT_DGID |
2918 SRP_OPT_PKEY |
2919 SRP_OPT_SERVICE_ID),
2920 };
2921
2922 static const match_table_t srp_opt_tokens = {
2923 { SRP_OPT_ID_EXT, "id_ext=%s" },
2924 { SRP_OPT_IOC_GUID, "ioc_guid=%s" },
2925 { SRP_OPT_DGID, "dgid=%s" },
2926 { SRP_OPT_PKEY, "pkey=%x" },
2927 { SRP_OPT_SERVICE_ID, "service_id=%s" },
2928 { SRP_OPT_MAX_SECT, "max_sect=%d" },
2929 { SRP_OPT_MAX_CMD_PER_LUN, "max_cmd_per_lun=%d" },
2930 { SRP_OPT_IO_CLASS, "io_class=%x" },
2931 { SRP_OPT_INITIATOR_EXT, "initiator_ext=%s" },
2932 { SRP_OPT_CMD_SG_ENTRIES, "cmd_sg_entries=%u" },
2933 { SRP_OPT_ALLOW_EXT_SG, "allow_ext_sg=%u" },
2934 { SRP_OPT_SG_TABLESIZE, "sg_tablesize=%u" },
2935 { SRP_OPT_COMP_VECTOR, "comp_vector=%u" },
2936 { SRP_OPT_TL_RETRY_COUNT, "tl_retry_count=%u" },
2937 { SRP_OPT_QUEUE_SIZE, "queue_size=%d" },
2938 { SRP_OPT_ERR, NULL }
2939 };
2940
2941 static int srp_parse_options(const char *buf, struct srp_target_port *target)
2942 {
2943 char *options, *sep_opt;
2944 char *p;
2945 char dgid[3];
2946 substring_t args[MAX_OPT_ARGS];
2947 int opt_mask = 0;
2948 int token;
2949 int ret = -EINVAL;
2950 int i;
2951
2952 options = kstrdup(buf, GFP_KERNEL);
2953 if (!options)
2954 return -ENOMEM;
2955
2956 sep_opt = options;
2957 while ((p = strsep(&sep_opt, ",\n")) != NULL) {
2958 if (!*p)
2959 continue;
2960
2961 token = match_token(p, srp_opt_tokens, args);
2962 opt_mask |= token;
2963
2964 switch (token) {
2965 case SRP_OPT_ID_EXT:
2966 p = match_strdup(args);
2967 if (!p) {
2968 ret = -ENOMEM;
2969 goto out;
2970 }
2971 target->id_ext = cpu_to_be64(simple_strtoull(p, NULL, 16));
2972 kfree(p);
2973 break;
2974
2975 case SRP_OPT_IOC_GUID:
2976 p = match_strdup(args);
2977 if (!p) {
2978 ret = -ENOMEM;
2979 goto out;
2980 }
2981 target->ioc_guid = cpu_to_be64(simple_strtoull(p, NULL, 16));
2982 kfree(p);
2983 break;
2984
2985 case SRP_OPT_DGID:
2986 p = match_strdup(args);
2987 if (!p) {
2988 ret = -ENOMEM;
2989 goto out;
2990 }
2991 if (strlen(p) != 32) {
2992 pr_warn("bad dest GID parameter '%s'\n", p);
2993 kfree(p);
2994 goto out;
2995 }
2996
2997 for (i = 0; i < 16; ++i) {
2998 strlcpy(dgid, p + i * 2, sizeof(dgid));
2999 if (sscanf(dgid, "%hhx",
3000 &target->orig_dgid.raw[i]) < 1) {
3001 ret = -EINVAL;
3002 kfree(p);
3003 goto out;
3004 }
3005 }
3006 kfree(p);
3007 break;
3008
3009 case SRP_OPT_PKEY:
3010 if (match_hex(args, &token)) {
3011 pr_warn("bad P_Key parameter '%s'\n", p);
3012 goto out;
3013 }
3014 target->pkey = cpu_to_be16(token);
3015 break;
3016
3017 case SRP_OPT_SERVICE_ID:
3018 p = match_strdup(args);
3019 if (!p) {
3020 ret = -ENOMEM;
3021 goto out;
3022 }
3023 target->service_id = cpu_to_be64(simple_strtoull(p, NULL, 16));
3024 kfree(p);
3025 break;
3026
3027 case SRP_OPT_MAX_SECT:
3028 if (match_int(args, &token)) {
3029 pr_warn("bad max sect parameter '%s'\n", p);
3030 goto out;
3031 }
3032 target->scsi_host->max_sectors = token;
3033 break;
3034
3035 case SRP_OPT_QUEUE_SIZE:
3036 if (match_int(args, &token) || token < 1) {
3037 pr_warn("bad queue_size parameter '%s'\n", p);
3038 goto out;
3039 }
3040 target->scsi_host->can_queue = token;
3041 target->queue_size = token + SRP_RSP_SQ_SIZE +
3042 SRP_TSK_MGMT_SQ_SIZE;
3043 if (!(opt_mask & SRP_OPT_MAX_CMD_PER_LUN))
3044 target->scsi_host->cmd_per_lun = token;
3045 break;
3046
3047 case SRP_OPT_MAX_CMD_PER_LUN:
3048 if (match_int(args, &token) || token < 1) {
3049 pr_warn("bad max cmd_per_lun parameter '%s'\n",
3050 p);
3051 goto out;
3052 }
3053 target->scsi_host->cmd_per_lun = token;
3054 break;
3055
3056 case SRP_OPT_IO_CLASS:
3057 if (match_hex(args, &token)) {
3058 pr_warn("bad IO class parameter '%s'\n", p);
3059 goto out;
3060 }
3061 if (token != SRP_REV10_IB_IO_CLASS &&
3062 token != SRP_REV16A_IB_IO_CLASS) {
3063 pr_warn("unknown IO class parameter value %x specified (use %x or %x).\n",
3064 token, SRP_REV10_IB_IO_CLASS,
3065 SRP_REV16A_IB_IO_CLASS);
3066 goto out;
3067 }
3068 target->io_class = token;
3069 break;
3070
3071 case SRP_OPT_INITIATOR_EXT:
3072 p = match_strdup(args);
3073 if (!p) {
3074 ret = -ENOMEM;
3075 goto out;
3076 }
3077 target->initiator_ext = cpu_to_be64(simple_strtoull(p, NULL, 16));
3078 kfree(p);
3079 break;
3080
3081 case SRP_OPT_CMD_SG_ENTRIES:
3082 if (match_int(args, &token) || token < 1 || token > 255) {
3083 pr_warn("bad max cmd_sg_entries parameter '%s'\n",
3084 p);
3085 goto out;
3086 }
3087 target->cmd_sg_cnt = token;
3088 break;
3089
3090 case SRP_OPT_ALLOW_EXT_SG:
3091 if (match_int(args, &token)) {
3092 pr_warn("bad allow_ext_sg parameter '%s'\n", p);
3093 goto out;
3094 }
3095 target->allow_ext_sg = !!token;
3096 break;
3097
3098 case SRP_OPT_SG_TABLESIZE:
3099 if (match_int(args, &token) || token < 1 ||
3100 token > SCSI_MAX_SG_CHAIN_SEGMENTS) {
3101 pr_warn("bad max sg_tablesize parameter '%s'\n",
3102 p);
3103 goto out;
3104 }
3105 target->sg_tablesize = token;
3106 break;
3107
3108 case SRP_OPT_COMP_VECTOR:
3109 if (match_int(args, &token) || token < 0) {
3110 pr_warn("bad comp_vector parameter '%s'\n", p);
3111 goto out;
3112 }
3113 target->comp_vector = token;
3114 break;
3115
3116 case SRP_OPT_TL_RETRY_COUNT:
3117 if (match_int(args, &token) || token < 2 || token > 7) {
3118 pr_warn("bad tl_retry_count parameter '%s' (must be a number between 2 and 7)\n",
3119 p);
3120 goto out;
3121 }
3122 target->tl_retry_count = token;
3123 break;
3124
3125 default:
3126 pr_warn("unknown parameter or missing value '%s' in target creation request\n",
3127 p);
3128 goto out;
3129 }
3130 }
3131
3132 if ((opt_mask & SRP_OPT_ALL) == SRP_OPT_ALL)
3133 ret = 0;
3134 else
3135 for (i = 0; i < ARRAY_SIZE(srp_opt_tokens); ++i)
3136 if ((srp_opt_tokens[i].token & SRP_OPT_ALL) &&
3137 !(srp_opt_tokens[i].token & opt_mask))
3138 pr_warn("target creation request is missing parameter '%s'\n",
3139 srp_opt_tokens[i].pattern);
3140
3141 if (target->scsi_host->cmd_per_lun > target->scsi_host->can_queue
3142 && (opt_mask & SRP_OPT_MAX_CMD_PER_LUN))
3143 pr_warn("cmd_per_lun = %d > queue_size = %d\n",
3144 target->scsi_host->cmd_per_lun,
3145 target->scsi_host->can_queue);
3146
3147 out:
3148 kfree(options);
3149 return ret;
3150 }
3151
3152 static ssize_t srp_create_target(struct device *dev,
3153 struct device_attribute *attr,
3154 const char *buf, size_t count)
3155 {
3156 struct srp_host *host =
3157 container_of(dev, struct srp_host, dev);
3158 struct Scsi_Host *target_host;
3159 struct srp_target_port *target;
3160 struct srp_rdma_ch *ch;
3161 struct srp_device *srp_dev = host->srp_dev;
3162 struct ib_device *ibdev = srp_dev->dev;
3163 int ret, node_idx, node, cpu, i;
3164 bool multich = false;
3165
3166 target_host = scsi_host_alloc(&srp_template,
3167 sizeof (struct srp_target_port));
3168 if (!target_host)
3169 return -ENOMEM;
3170
3171 target_host->transportt = ib_srp_transport_template;
3172 target_host->max_channel = 0;
3173 target_host->max_id = 1;
3174 target_host->max_lun = -1LL;
3175 target_host->max_cmd_len = sizeof ((struct srp_cmd *) (void *) 0L)->cdb;
3176
3177 target = host_to_target(target_host);
3178
3179 target->io_class = SRP_REV16A_IB_IO_CLASS;
3180 target->scsi_host = target_host;
3181 target->srp_host = host;
3182 target->lkey = host->srp_dev->pd->local_dma_lkey;
3183 target->global_mr = host->srp_dev->global_mr;
3184 target->cmd_sg_cnt = cmd_sg_entries;
3185 target->sg_tablesize = indirect_sg_entries ? : cmd_sg_entries;
3186 target->allow_ext_sg = allow_ext_sg;
3187 target->tl_retry_count = 7;
3188 target->queue_size = SRP_DEFAULT_QUEUE_SIZE;
3189
3190 /*
3191 * Avoid that the SCSI host can be removed by srp_remove_target()
3192 * before this function returns.
3193 */
3194 scsi_host_get(target->scsi_host);
3195
3196 mutex_lock(&host->add_target_mutex);
3197
3198 ret = srp_parse_options(buf, target);
3199 if (ret)
3200 goto out;
3201
3202 target->req_ring_size = target->queue_size - SRP_TSK_MGMT_SQ_SIZE;
3203
3204 if (!srp_conn_unique(target->srp_host, target)) {
3205 shost_printk(KERN_INFO, target->scsi_host,
3206 PFX "Already connected to target port with id_ext=%016llx;ioc_guid=%016llx;initiator_ext=%016llx\n",
3207 be64_to_cpu(target->id_ext),
3208 be64_to_cpu(target->ioc_guid),
3209 be64_to_cpu(target->initiator_ext));
3210 ret = -EEXIST;
3211 goto out;
3212 }
3213
3214 if (!srp_dev->has_fmr && !srp_dev->has_fr && !target->allow_ext_sg &&
3215 target->cmd_sg_cnt < target->sg_tablesize) {
3216 pr_warn("No MR pool and no external indirect descriptors, limiting sg_tablesize to cmd_sg_cnt\n");
3217 target->sg_tablesize = target->cmd_sg_cnt;
3218 }
3219
3220 target_host->sg_tablesize = target->sg_tablesize;
3221 target->indirect_size = target->sg_tablesize *
3222 sizeof (struct srp_direct_buf);
3223 target->max_iu_len = sizeof (struct srp_cmd) +
3224 sizeof (struct srp_indirect_buf) +
3225 target->cmd_sg_cnt * sizeof (struct srp_direct_buf);
3226
3227 INIT_WORK(&target->tl_err_work, srp_tl_err_work);
3228 INIT_WORK(&target->remove_work, srp_remove_work);
3229 spin_lock_init(&target->lock);
3230 ret = ib_query_gid(ibdev, host->port, 0, &target->sgid, NULL);
3231 if (ret)
3232 goto out;
3233
3234 ret = -ENOMEM;
3235 target->ch_count = max_t(unsigned, num_online_nodes(),
3236 min(ch_count ? :
3237 min(4 * num_online_nodes(),
3238 ibdev->num_comp_vectors),
3239 num_online_cpus()));
3240 target->ch = kcalloc(target->ch_count, sizeof(*target->ch),
3241 GFP_KERNEL);
3242 if (!target->ch)
3243 goto out;
3244
3245 node_idx = 0;
3246 for_each_online_node(node) {
3247 const int ch_start = (node_idx * target->ch_count /
3248 num_online_nodes());
3249 const int ch_end = ((node_idx + 1) * target->ch_count /
3250 num_online_nodes());
3251 const int cv_start = (node_idx * ibdev->num_comp_vectors /
3252 num_online_nodes() + target->comp_vector)
3253 % ibdev->num_comp_vectors;
3254 const int cv_end = ((node_idx + 1) * ibdev->num_comp_vectors /
3255 num_online_nodes() + target->comp_vector)
3256 % ibdev->num_comp_vectors;
3257 int cpu_idx = 0;
3258
3259 for_each_online_cpu(cpu) {
3260 if (cpu_to_node(cpu) != node)
3261 continue;
3262 if (ch_start + cpu_idx >= ch_end)
3263 continue;
3264 ch = &target->ch[ch_start + cpu_idx];
3265 ch->target = target;
3266 ch->comp_vector = cv_start == cv_end ? cv_start :
3267 cv_start + cpu_idx % (cv_end - cv_start);
3268 spin_lock_init(&ch->lock);
3269 INIT_LIST_HEAD(&ch->free_tx);
3270 ret = srp_new_cm_id(ch);
3271 if (ret)
3272 goto err_disconnect;
3273
3274 ret = srp_create_ch_ib(ch);
3275 if (ret)
3276 goto err_disconnect;
3277
3278 ret = srp_alloc_req_data(ch);
3279 if (ret)
3280 goto err_disconnect;
3281
3282 ret = srp_connect_ch(ch, multich);
3283 if (ret) {
3284 shost_printk(KERN_ERR, target->scsi_host,
3285 PFX "Connection %d/%d failed\n",
3286 ch_start + cpu_idx,
3287 target->ch_count);
3288 if (node_idx == 0 && cpu_idx == 0) {
3289 goto err_disconnect;
3290 } else {
3291 srp_free_ch_ib(target, ch);
3292 srp_free_req_data(target, ch);
3293 target->ch_count = ch - target->ch;
3294 goto connected;
3295 }
3296 }
3297
3298 multich = true;
3299 cpu_idx++;
3300 }
3301 node_idx++;
3302 }
3303
3304 connected:
3305 target->scsi_host->nr_hw_queues = target->ch_count;
3306
3307 ret = srp_add_target(host, target);
3308 if (ret)
3309 goto err_disconnect;
3310
3311 if (target->state != SRP_TARGET_REMOVED) {
3312 shost_printk(KERN_DEBUG, target->scsi_host, PFX
3313 "new target: id_ext %016llx ioc_guid %016llx pkey %04x service_id %016llx sgid %pI6 dgid %pI6\n",
3314 be64_to_cpu(target->id_ext),
3315 be64_to_cpu(target->ioc_guid),
3316 be16_to_cpu(target->pkey),
3317 be64_to_cpu(target->service_id),
3318 target->sgid.raw, target->orig_dgid.raw);
3319 }
3320
3321 ret = count;
3322
3323 out:
3324 mutex_unlock(&host->add_target_mutex);
3325
3326 scsi_host_put(target->scsi_host);
3327 if (ret < 0)
3328 scsi_host_put(target->scsi_host);
3329
3330 return ret;
3331
3332 err_disconnect:
3333 srp_disconnect_target(target);
3334
3335 for (i = 0; i < target->ch_count; i++) {
3336 ch = &target->ch[i];
3337 srp_free_ch_ib(target, ch);
3338 srp_free_req_data(target, ch);
3339 }
3340
3341 kfree(target->ch);
3342 goto out;
3343 }
3344
3345 static DEVICE_ATTR(add_target, S_IWUSR, NULL, srp_create_target);
3346
3347 static ssize_t show_ibdev(struct device *dev, struct device_attribute *attr,
3348 char *buf)
3349 {
3350 struct srp_host *host = container_of(dev, struct srp_host, dev);
3351
3352 return sprintf(buf, "%s\n", host->srp_dev->dev->name);
3353 }
3354
3355 static DEVICE_ATTR(ibdev, S_IRUGO, show_ibdev, NULL);
3356
3357 static ssize_t show_port(struct device *dev, struct device_attribute *attr,
3358 char *buf)
3359 {
3360 struct srp_host *host = container_of(dev, struct srp_host, dev);
3361
3362 return sprintf(buf, "%d\n", host->port);
3363 }
3364
3365 static DEVICE_ATTR(port, S_IRUGO, show_port, NULL);
3366
3367 static struct srp_host *srp_add_port(struct srp_device *device, u8 port)
3368 {
3369 struct srp_host *host;
3370
3371 host = kzalloc(sizeof *host, GFP_KERNEL);
3372 if (!host)
3373 return NULL;
3374
3375 INIT_LIST_HEAD(&host->target_list);
3376 spin_lock_init(&host->target_lock);
3377 init_completion(&host->released);
3378 mutex_init(&host->add_target_mutex);
3379 host->srp_dev = device;
3380 host->port = port;
3381
3382 host->dev.class = &srp_class;
3383 host->dev.parent = device->dev->dma_device;
3384 dev_set_name(&host->dev, "srp-%s-%d", device->dev->name, port);
3385
3386 if (device_register(&host->dev))
3387 goto free_host;
3388 if (device_create_file(&host->dev, &dev_attr_add_target))
3389 goto err_class;
3390 if (device_create_file(&host->dev, &dev_attr_ibdev))
3391 goto err_class;
3392 if (device_create_file(&host->dev, &dev_attr_port))
3393 goto err_class;
3394
3395 return host;
3396
3397 err_class:
3398 device_unregister(&host->dev);
3399
3400 free_host:
3401 kfree(host);
3402
3403 return NULL;
3404 }
3405
3406 static void srp_add_one(struct ib_device *device)
3407 {
3408 struct srp_device *srp_dev;
3409 struct srp_host *host;
3410 int mr_page_shift, p;
3411 u64 max_pages_per_mr;
3412
3413 srp_dev = kmalloc(sizeof *srp_dev, GFP_KERNEL);
3414 if (!srp_dev)
3415 return;
3416
3417 srp_dev->has_fmr = (device->alloc_fmr && device->dealloc_fmr &&
3418 device->map_phys_fmr && device->unmap_fmr);
3419 srp_dev->has_fr = (device->attrs.device_cap_flags &
3420 IB_DEVICE_MEM_MGT_EXTENSIONS);
3421 if (!srp_dev->has_fmr && !srp_dev->has_fr)
3422 dev_warn(&device->dev, "neither FMR nor FR is supported\n");
3423
3424 srp_dev->use_fast_reg = (srp_dev->has_fr &&
3425 (!srp_dev->has_fmr || prefer_fr));
3426 srp_dev->use_fmr = !srp_dev->use_fast_reg && srp_dev->has_fmr;
3427
3428 /*
3429 * Use the smallest page size supported by the HCA, down to a
3430 * minimum of 4096 bytes. We're unlikely to build large sglists
3431 * out of smaller entries.
3432 */
3433 mr_page_shift = max(12, ffs(device->attrs.page_size_cap) - 1);
3434 srp_dev->mr_page_size = 1 << mr_page_shift;
3435 srp_dev->mr_page_mask = ~((u64) srp_dev->mr_page_size - 1);
3436 max_pages_per_mr = device->attrs.max_mr_size;
3437 do_div(max_pages_per_mr, srp_dev->mr_page_size);
3438 srp_dev->max_pages_per_mr = min_t(u64, SRP_MAX_PAGES_PER_MR,
3439 max_pages_per_mr);
3440 if (srp_dev->use_fast_reg) {
3441 srp_dev->max_pages_per_mr =
3442 min_t(u32, srp_dev->max_pages_per_mr,
3443 device->attrs.max_fast_reg_page_list_len);
3444 }
3445 srp_dev->mr_max_size = srp_dev->mr_page_size *
3446 srp_dev->max_pages_per_mr;
3447 pr_debug("%s: mr_page_shift = %d, device->max_mr_size = %#llx, device->max_fast_reg_page_list_len = %u, max_pages_per_mr = %d, mr_max_size = %#x\n",
3448 device->name, mr_page_shift, device->attrs.max_mr_size,
3449 device->attrs.max_fast_reg_page_list_len,
3450 srp_dev->max_pages_per_mr, srp_dev->mr_max_size);
3451
3452 INIT_LIST_HEAD(&srp_dev->dev_list);
3453
3454 srp_dev->dev = device;
3455 srp_dev->pd = ib_alloc_pd(device);
3456 if (IS_ERR(srp_dev->pd))
3457 goto free_dev;
3458
3459 if (!register_always || (!srp_dev->has_fmr && !srp_dev->has_fr)) {
3460 srp_dev->global_mr = ib_get_dma_mr(srp_dev->pd,
3461 IB_ACCESS_LOCAL_WRITE |
3462 IB_ACCESS_REMOTE_READ |
3463 IB_ACCESS_REMOTE_WRITE);
3464 if (IS_ERR(srp_dev->global_mr))
3465 goto err_pd;
3466 } else {
3467 srp_dev->global_mr = NULL;
3468 }
3469
3470 for (p = rdma_start_port(device); p <= rdma_end_port(device); ++p) {
3471 host = srp_add_port(srp_dev, p);
3472 if (host)
3473 list_add_tail(&host->list, &srp_dev->dev_list);
3474 }
3475
3476 ib_set_client_data(device, &srp_client, srp_dev);
3477 return;
3478
3479 err_pd:
3480 ib_dealloc_pd(srp_dev->pd);
3481
3482 free_dev:
3483 kfree(srp_dev);
3484 }
3485
3486 static void srp_remove_one(struct ib_device *device, void *client_data)
3487 {
3488 struct srp_device *srp_dev;
3489 struct srp_host *host, *tmp_host;
3490 struct srp_target_port *target;
3491
3492 srp_dev = client_data;
3493 if (!srp_dev)
3494 return;
3495
3496 list_for_each_entry_safe(host, tmp_host, &srp_dev->dev_list, list) {
3497 device_unregister(&host->dev);
3498 /*
3499 * Wait for the sysfs entry to go away, so that no new
3500 * target ports can be created.
3501 */
3502 wait_for_completion(&host->released);
3503
3504 /*
3505 * Remove all target ports.
3506 */
3507 spin_lock(&host->target_lock);
3508 list_for_each_entry(target, &host->target_list, list)
3509 srp_queue_remove_work(target);
3510 spin_unlock(&host->target_lock);
3511
3512 /*
3513 * Wait for tl_err and target port removal tasks.
3514 */
3515 flush_workqueue(system_long_wq);
3516 flush_workqueue(srp_remove_wq);
3517
3518 kfree(host);
3519 }
3520
3521 if (srp_dev->global_mr)
3522 ib_dereg_mr(srp_dev->global_mr);
3523 ib_dealloc_pd(srp_dev->pd);
3524
3525 kfree(srp_dev);
3526 }
3527
3528 static struct srp_function_template ib_srp_transport_functions = {
3529 .has_rport_state = true,
3530 .reset_timer_if_blocked = true,
3531 .reconnect_delay = &srp_reconnect_delay,
3532 .fast_io_fail_tmo = &srp_fast_io_fail_tmo,
3533 .dev_loss_tmo = &srp_dev_loss_tmo,
3534 .reconnect = srp_rport_reconnect,
3535 .rport_delete = srp_rport_delete,
3536 .terminate_rport_io = srp_terminate_io,
3537 };
3538
3539 static int __init srp_init_module(void)
3540 {
3541 int ret;
3542
3543 if (srp_sg_tablesize) {
3544 pr_warn("srp_sg_tablesize is deprecated, please use cmd_sg_entries\n");
3545 if (!cmd_sg_entries)
3546 cmd_sg_entries = srp_sg_tablesize;
3547 }
3548
3549 if (!cmd_sg_entries)
3550 cmd_sg_entries = SRP_DEF_SG_TABLESIZE;
3551
3552 if (cmd_sg_entries > 255) {
3553 pr_warn("Clamping cmd_sg_entries to 255\n");
3554 cmd_sg_entries = 255;
3555 }
3556
3557 if (!indirect_sg_entries)
3558 indirect_sg_entries = cmd_sg_entries;
3559 else if (indirect_sg_entries < cmd_sg_entries) {
3560 pr_warn("Bumping up indirect_sg_entries to match cmd_sg_entries (%u)\n",
3561 cmd_sg_entries);
3562 indirect_sg_entries = cmd_sg_entries;
3563 }
3564
3565 srp_remove_wq = create_workqueue("srp_remove");
3566 if (!srp_remove_wq) {
3567 ret = -ENOMEM;
3568 goto out;
3569 }
3570
3571 ret = -ENOMEM;
3572 ib_srp_transport_template =
3573 srp_attach_transport(&ib_srp_transport_functions);
3574 if (!ib_srp_transport_template)
3575 goto destroy_wq;
3576
3577 ret = class_register(&srp_class);
3578 if (ret) {
3579 pr_err("couldn't register class infiniband_srp\n");
3580 goto release_tr;
3581 }
3582
3583 ib_sa_register_client(&srp_sa_client);
3584
3585 ret = ib_register_client(&srp_client);
3586 if (ret) {
3587 pr_err("couldn't register IB client\n");
3588 goto unreg_sa;
3589 }
3590
3591 out:
3592 return ret;
3593
3594 unreg_sa:
3595 ib_sa_unregister_client(&srp_sa_client);
3596 class_unregister(&srp_class);
3597
3598 release_tr:
3599 srp_release_transport(ib_srp_transport_template);
3600
3601 destroy_wq:
3602 destroy_workqueue(srp_remove_wq);
3603 goto out;
3604 }
3605
3606 static void __exit srp_cleanup_module(void)
3607 {
3608 ib_unregister_client(&srp_client);
3609 ib_sa_unregister_client(&srp_sa_client);
3610 class_unregister(&srp_class);
3611 srp_release_transport(ib_srp_transport_template);
3612 destroy_workqueue(srp_remove_wq);
3613 }
3614
3615 module_init(srp_init_module);
3616 module_exit(srp_cleanup_module);
This page took 0.111419 seconds and 5 git commands to generate.