target: target_core_configfs.h is not needed in fabric drivers
[deliverable/linux.git] / drivers / infiniband / ulp / srpt / ib_srpt.c
1 /*
2 * Copyright (c) 2006 - 2009 Mellanox Technology Inc. All rights reserved.
3 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 *
33 */
34
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/err.h>
39 #include <linux/ctype.h>
40 #include <linux/kthread.h>
41 #include <linux/string.h>
42 #include <linux/delay.h>
43 #include <linux/atomic.h>
44 #include <scsi/scsi_tcq.h>
45 #include <target/configfs_macros.h>
46 #include <target/target_core_base.h>
47 #include <target/target_core_fabric_configfs.h>
48 #include <target/target_core_fabric.h>
49 #include "ib_srpt.h"
50
51 /* Name of this kernel module. */
52 #define DRV_NAME "ib_srpt"
53 #define DRV_VERSION "2.0.0"
54 #define DRV_RELDATE "2011-02-14"
55
56 #define SRPT_ID_STRING "Linux SRP target"
57
58 #undef pr_fmt
59 #define pr_fmt(fmt) DRV_NAME " " fmt
60
61 MODULE_AUTHOR("Vu Pham and Bart Van Assche");
62 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target "
63 "v" DRV_VERSION " (" DRV_RELDATE ")");
64 MODULE_LICENSE("Dual BSD/GPL");
65
66 /*
67 * Global Variables
68 */
69
70 static u64 srpt_service_guid;
71 static DEFINE_SPINLOCK(srpt_dev_lock); /* Protects srpt_dev_list. */
72 static LIST_HEAD(srpt_dev_list); /* List of srpt_device structures. */
73
74 static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE;
75 module_param(srp_max_req_size, int, 0444);
76 MODULE_PARM_DESC(srp_max_req_size,
77 "Maximum size of SRP request messages in bytes.");
78
79 static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE;
80 module_param(srpt_srq_size, int, 0444);
81 MODULE_PARM_DESC(srpt_srq_size,
82 "Shared receive queue (SRQ) size.");
83
84 static int srpt_get_u64_x(char *buffer, struct kernel_param *kp)
85 {
86 return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg);
87 }
88 module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid,
89 0444);
90 MODULE_PARM_DESC(srpt_service_guid,
91 "Using this value for ioc_guid, id_ext, and cm_listen_id"
92 " instead of using the node_guid of the first HCA.");
93
94 static struct ib_client srpt_client;
95 static const struct target_core_fabric_ops srpt_template;
96 static void srpt_release_channel(struct srpt_rdma_ch *ch);
97 static int srpt_queue_status(struct se_cmd *cmd);
98
99 /**
100 * opposite_dma_dir() - Swap DMA_TO_DEVICE and DMA_FROM_DEVICE.
101 */
102 static inline
103 enum dma_data_direction opposite_dma_dir(enum dma_data_direction dir)
104 {
105 switch (dir) {
106 case DMA_TO_DEVICE: return DMA_FROM_DEVICE;
107 case DMA_FROM_DEVICE: return DMA_TO_DEVICE;
108 default: return dir;
109 }
110 }
111
112 /**
113 * srpt_sdev_name() - Return the name associated with the HCA.
114 *
115 * Examples are ib0, ib1, ...
116 */
117 static inline const char *srpt_sdev_name(struct srpt_device *sdev)
118 {
119 return sdev->device->name;
120 }
121
122 static enum rdma_ch_state srpt_get_ch_state(struct srpt_rdma_ch *ch)
123 {
124 unsigned long flags;
125 enum rdma_ch_state state;
126
127 spin_lock_irqsave(&ch->spinlock, flags);
128 state = ch->state;
129 spin_unlock_irqrestore(&ch->spinlock, flags);
130 return state;
131 }
132
133 static enum rdma_ch_state
134 srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new_state)
135 {
136 unsigned long flags;
137 enum rdma_ch_state prev;
138
139 spin_lock_irqsave(&ch->spinlock, flags);
140 prev = ch->state;
141 ch->state = new_state;
142 spin_unlock_irqrestore(&ch->spinlock, flags);
143 return prev;
144 }
145
146 /**
147 * srpt_test_and_set_ch_state() - Test and set the channel state.
148 *
149 * Returns true if and only if the channel state has been set to the new state.
150 */
151 static bool
152 srpt_test_and_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state old,
153 enum rdma_ch_state new)
154 {
155 unsigned long flags;
156 enum rdma_ch_state prev;
157
158 spin_lock_irqsave(&ch->spinlock, flags);
159 prev = ch->state;
160 if (prev == old)
161 ch->state = new;
162 spin_unlock_irqrestore(&ch->spinlock, flags);
163 return prev == old;
164 }
165
166 /**
167 * srpt_event_handler() - Asynchronous IB event callback function.
168 *
169 * Callback function called by the InfiniBand core when an asynchronous IB
170 * event occurs. This callback may occur in interrupt context. See also
171 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand
172 * Architecture Specification.
173 */
174 static void srpt_event_handler(struct ib_event_handler *handler,
175 struct ib_event *event)
176 {
177 struct srpt_device *sdev;
178 struct srpt_port *sport;
179
180 sdev = ib_get_client_data(event->device, &srpt_client);
181 if (!sdev || sdev->device != event->device)
182 return;
183
184 pr_debug("ASYNC event= %d on device= %s\n", event->event,
185 srpt_sdev_name(sdev));
186
187 switch (event->event) {
188 case IB_EVENT_PORT_ERR:
189 if (event->element.port_num <= sdev->device->phys_port_cnt) {
190 sport = &sdev->port[event->element.port_num - 1];
191 sport->lid = 0;
192 sport->sm_lid = 0;
193 }
194 break;
195 case IB_EVENT_PORT_ACTIVE:
196 case IB_EVENT_LID_CHANGE:
197 case IB_EVENT_PKEY_CHANGE:
198 case IB_EVENT_SM_CHANGE:
199 case IB_EVENT_CLIENT_REREGISTER:
200 case IB_EVENT_GID_CHANGE:
201 /* Refresh port data asynchronously. */
202 if (event->element.port_num <= sdev->device->phys_port_cnt) {
203 sport = &sdev->port[event->element.port_num - 1];
204 if (!sport->lid && !sport->sm_lid)
205 schedule_work(&sport->work);
206 }
207 break;
208 default:
209 pr_err("received unrecognized IB event %d\n",
210 event->event);
211 break;
212 }
213 }
214
215 /**
216 * srpt_srq_event() - SRQ event callback function.
217 */
218 static void srpt_srq_event(struct ib_event *event, void *ctx)
219 {
220 pr_info("SRQ event %d\n", event->event);
221 }
222
223 /**
224 * srpt_qp_event() - QP event callback function.
225 */
226 static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch)
227 {
228 pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n",
229 event->event, ch->cm_id, ch->sess_name, srpt_get_ch_state(ch));
230
231 switch (event->event) {
232 case IB_EVENT_COMM_EST:
233 ib_cm_notify(ch->cm_id, event->event);
234 break;
235 case IB_EVENT_QP_LAST_WQE_REACHED:
236 if (srpt_test_and_set_ch_state(ch, CH_DRAINING,
237 CH_RELEASING))
238 srpt_release_channel(ch);
239 else
240 pr_debug("%s: state %d - ignored LAST_WQE.\n",
241 ch->sess_name, srpt_get_ch_state(ch));
242 break;
243 default:
244 pr_err("received unrecognized IB QP event %d\n", event->event);
245 break;
246 }
247 }
248
249 /**
250 * srpt_set_ioc() - Helper function for initializing an IOUnitInfo structure.
251 *
252 * @slot: one-based slot number.
253 * @value: four-bit value.
254 *
255 * Copies the lowest four bits of value in element slot of the array of four
256 * bit elements called c_list (controller list). The index slot is one-based.
257 */
258 static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value)
259 {
260 u16 id;
261 u8 tmp;
262
263 id = (slot - 1) / 2;
264 if (slot & 0x1) {
265 tmp = c_list[id] & 0xf;
266 c_list[id] = (value << 4) | tmp;
267 } else {
268 tmp = c_list[id] & 0xf0;
269 c_list[id] = (value & 0xf) | tmp;
270 }
271 }
272
273 /**
274 * srpt_get_class_port_info() - Copy ClassPortInfo to a management datagram.
275 *
276 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture
277 * Specification.
278 */
279 static void srpt_get_class_port_info(struct ib_dm_mad *mad)
280 {
281 struct ib_class_port_info *cif;
282
283 cif = (struct ib_class_port_info *)mad->data;
284 memset(cif, 0, sizeof *cif);
285 cif->base_version = 1;
286 cif->class_version = 1;
287 cif->resp_time_value = 20;
288
289 mad->mad_hdr.status = 0;
290 }
291
292 /**
293 * srpt_get_iou() - Write IOUnitInfo to a management datagram.
294 *
295 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture
296 * Specification. See also section B.7, table B.6 in the SRP r16a document.
297 */
298 static void srpt_get_iou(struct ib_dm_mad *mad)
299 {
300 struct ib_dm_iou_info *ioui;
301 u8 slot;
302 int i;
303
304 ioui = (struct ib_dm_iou_info *)mad->data;
305 ioui->change_id = __constant_cpu_to_be16(1);
306 ioui->max_controllers = 16;
307
308 /* set present for slot 1 and empty for the rest */
309 srpt_set_ioc(ioui->controller_list, 1, 1);
310 for (i = 1, slot = 2; i < 16; i++, slot++)
311 srpt_set_ioc(ioui->controller_list, slot, 0);
312
313 mad->mad_hdr.status = 0;
314 }
315
316 /**
317 * srpt_get_ioc() - Write IOControllerprofile to a management datagram.
318 *
319 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand
320 * Architecture Specification. See also section B.7, table B.7 in the SRP
321 * r16a document.
322 */
323 static void srpt_get_ioc(struct srpt_port *sport, u32 slot,
324 struct ib_dm_mad *mad)
325 {
326 struct srpt_device *sdev = sport->sdev;
327 struct ib_dm_ioc_profile *iocp;
328
329 iocp = (struct ib_dm_ioc_profile *)mad->data;
330
331 if (!slot || slot > 16) {
332 mad->mad_hdr.status
333 = __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
334 return;
335 }
336
337 if (slot > 2) {
338 mad->mad_hdr.status
339 = __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC);
340 return;
341 }
342
343 memset(iocp, 0, sizeof *iocp);
344 strcpy(iocp->id_string, SRPT_ID_STRING);
345 iocp->guid = cpu_to_be64(srpt_service_guid);
346 iocp->vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id);
347 iocp->device_id = cpu_to_be32(sdev->dev_attr.vendor_part_id);
348 iocp->device_version = cpu_to_be16(sdev->dev_attr.hw_ver);
349 iocp->subsys_vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id);
350 iocp->subsys_device_id = 0x0;
351 iocp->io_class = __constant_cpu_to_be16(SRP_REV16A_IB_IO_CLASS);
352 iocp->io_subclass = __constant_cpu_to_be16(SRP_IO_SUBCLASS);
353 iocp->protocol = __constant_cpu_to_be16(SRP_PROTOCOL);
354 iocp->protocol_version = __constant_cpu_to_be16(SRP_PROTOCOL_VERSION);
355 iocp->send_queue_depth = cpu_to_be16(sdev->srq_size);
356 iocp->rdma_read_depth = 4;
357 iocp->send_size = cpu_to_be32(srp_max_req_size);
358 iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size,
359 1U << 24));
360 iocp->num_svc_entries = 1;
361 iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC |
362 SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC;
363
364 mad->mad_hdr.status = 0;
365 }
366
367 /**
368 * srpt_get_svc_entries() - Write ServiceEntries to a management datagram.
369 *
370 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture
371 * Specification. See also section B.7, table B.8 in the SRP r16a document.
372 */
373 static void srpt_get_svc_entries(u64 ioc_guid,
374 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad)
375 {
376 struct ib_dm_svc_entries *svc_entries;
377
378 WARN_ON(!ioc_guid);
379
380 if (!slot || slot > 16) {
381 mad->mad_hdr.status
382 = __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
383 return;
384 }
385
386 if (slot > 2 || lo > hi || hi > 1) {
387 mad->mad_hdr.status
388 = __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC);
389 return;
390 }
391
392 svc_entries = (struct ib_dm_svc_entries *)mad->data;
393 memset(svc_entries, 0, sizeof *svc_entries);
394 svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid);
395 snprintf(svc_entries->service_entries[0].name,
396 sizeof(svc_entries->service_entries[0].name),
397 "%s%016llx",
398 SRP_SERVICE_NAME_PREFIX,
399 ioc_guid);
400
401 mad->mad_hdr.status = 0;
402 }
403
404 /**
405 * srpt_mgmt_method_get() - Process a received management datagram.
406 * @sp: source port through which the MAD has been received.
407 * @rq_mad: received MAD.
408 * @rsp_mad: response MAD.
409 */
410 static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad,
411 struct ib_dm_mad *rsp_mad)
412 {
413 u16 attr_id;
414 u32 slot;
415 u8 hi, lo;
416
417 attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id);
418 switch (attr_id) {
419 case DM_ATTR_CLASS_PORT_INFO:
420 srpt_get_class_port_info(rsp_mad);
421 break;
422 case DM_ATTR_IOU_INFO:
423 srpt_get_iou(rsp_mad);
424 break;
425 case DM_ATTR_IOC_PROFILE:
426 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
427 srpt_get_ioc(sp, slot, rsp_mad);
428 break;
429 case DM_ATTR_SVC_ENTRIES:
430 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
431 hi = (u8) ((slot >> 8) & 0xff);
432 lo = (u8) (slot & 0xff);
433 slot = (u16) ((slot >> 16) & 0xffff);
434 srpt_get_svc_entries(srpt_service_guid,
435 slot, hi, lo, rsp_mad);
436 break;
437 default:
438 rsp_mad->mad_hdr.status =
439 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
440 break;
441 }
442 }
443
444 /**
445 * srpt_mad_send_handler() - Post MAD-send callback function.
446 */
447 static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent,
448 struct ib_mad_send_wc *mad_wc)
449 {
450 ib_destroy_ah(mad_wc->send_buf->ah);
451 ib_free_send_mad(mad_wc->send_buf);
452 }
453
454 /**
455 * srpt_mad_recv_handler() - MAD reception callback function.
456 */
457 static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent,
458 struct ib_mad_recv_wc *mad_wc)
459 {
460 struct srpt_port *sport = (struct srpt_port *)mad_agent->context;
461 struct ib_ah *ah;
462 struct ib_mad_send_buf *rsp;
463 struct ib_dm_mad *dm_mad;
464
465 if (!mad_wc || !mad_wc->recv_buf.mad)
466 return;
467
468 ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc,
469 mad_wc->recv_buf.grh, mad_agent->port_num);
470 if (IS_ERR(ah))
471 goto err;
472
473 BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR);
474
475 rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp,
476 mad_wc->wc->pkey_index, 0,
477 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA,
478 GFP_KERNEL);
479 if (IS_ERR(rsp))
480 goto err_rsp;
481
482 rsp->ah = ah;
483
484 dm_mad = rsp->mad;
485 memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof *dm_mad);
486 dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP;
487 dm_mad->mad_hdr.status = 0;
488
489 switch (mad_wc->recv_buf.mad->mad_hdr.method) {
490 case IB_MGMT_METHOD_GET:
491 srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad);
492 break;
493 case IB_MGMT_METHOD_SET:
494 dm_mad->mad_hdr.status =
495 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
496 break;
497 default:
498 dm_mad->mad_hdr.status =
499 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD);
500 break;
501 }
502
503 if (!ib_post_send_mad(rsp, NULL)) {
504 ib_free_recv_mad(mad_wc);
505 /* will destroy_ah & free_send_mad in send completion */
506 return;
507 }
508
509 ib_free_send_mad(rsp);
510
511 err_rsp:
512 ib_destroy_ah(ah);
513 err:
514 ib_free_recv_mad(mad_wc);
515 }
516
517 /**
518 * srpt_refresh_port() - Configure a HCA port.
519 *
520 * Enable InfiniBand management datagram processing, update the cached sm_lid,
521 * lid and gid values, and register a callback function for processing MADs
522 * on the specified port.
523 *
524 * Note: It is safe to call this function more than once for the same port.
525 */
526 static int srpt_refresh_port(struct srpt_port *sport)
527 {
528 struct ib_mad_reg_req reg_req;
529 struct ib_port_modify port_modify;
530 struct ib_port_attr port_attr;
531 int ret;
532
533 memset(&port_modify, 0, sizeof port_modify);
534 port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
535 port_modify.clr_port_cap_mask = 0;
536
537 ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
538 if (ret)
539 goto err_mod_port;
540
541 ret = ib_query_port(sport->sdev->device, sport->port, &port_attr);
542 if (ret)
543 goto err_query_port;
544
545 sport->sm_lid = port_attr.sm_lid;
546 sport->lid = port_attr.lid;
547
548 ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid);
549 if (ret)
550 goto err_query_port;
551
552 if (!sport->mad_agent) {
553 memset(&reg_req, 0, sizeof reg_req);
554 reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT;
555 reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION;
556 set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask);
557 set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask);
558
559 sport->mad_agent = ib_register_mad_agent(sport->sdev->device,
560 sport->port,
561 IB_QPT_GSI,
562 &reg_req, 0,
563 srpt_mad_send_handler,
564 srpt_mad_recv_handler,
565 sport, 0);
566 if (IS_ERR(sport->mad_agent)) {
567 ret = PTR_ERR(sport->mad_agent);
568 sport->mad_agent = NULL;
569 goto err_query_port;
570 }
571 }
572
573 return 0;
574
575 err_query_port:
576
577 port_modify.set_port_cap_mask = 0;
578 port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
579 ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
580
581 err_mod_port:
582
583 return ret;
584 }
585
586 /**
587 * srpt_unregister_mad_agent() - Unregister MAD callback functions.
588 *
589 * Note: It is safe to call this function more than once for the same device.
590 */
591 static void srpt_unregister_mad_agent(struct srpt_device *sdev)
592 {
593 struct ib_port_modify port_modify = {
594 .clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP,
595 };
596 struct srpt_port *sport;
597 int i;
598
599 for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
600 sport = &sdev->port[i - 1];
601 WARN_ON(sport->port != i);
602 if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0)
603 pr_err("disabling MAD processing failed.\n");
604 if (sport->mad_agent) {
605 ib_unregister_mad_agent(sport->mad_agent);
606 sport->mad_agent = NULL;
607 }
608 }
609 }
610
611 /**
612 * srpt_alloc_ioctx() - Allocate an SRPT I/O context structure.
613 */
614 static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev,
615 int ioctx_size, int dma_size,
616 enum dma_data_direction dir)
617 {
618 struct srpt_ioctx *ioctx;
619
620 ioctx = kmalloc(ioctx_size, GFP_KERNEL);
621 if (!ioctx)
622 goto err;
623
624 ioctx->buf = kmalloc(dma_size, GFP_KERNEL);
625 if (!ioctx->buf)
626 goto err_free_ioctx;
627
628 ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir);
629 if (ib_dma_mapping_error(sdev->device, ioctx->dma))
630 goto err_free_buf;
631
632 return ioctx;
633
634 err_free_buf:
635 kfree(ioctx->buf);
636 err_free_ioctx:
637 kfree(ioctx);
638 err:
639 return NULL;
640 }
641
642 /**
643 * srpt_free_ioctx() - Free an SRPT I/O context structure.
644 */
645 static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx,
646 int dma_size, enum dma_data_direction dir)
647 {
648 if (!ioctx)
649 return;
650
651 ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir);
652 kfree(ioctx->buf);
653 kfree(ioctx);
654 }
655
656 /**
657 * srpt_alloc_ioctx_ring() - Allocate a ring of SRPT I/O context structures.
658 * @sdev: Device to allocate the I/O context ring for.
659 * @ring_size: Number of elements in the I/O context ring.
660 * @ioctx_size: I/O context size.
661 * @dma_size: DMA buffer size.
662 * @dir: DMA data direction.
663 */
664 static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev,
665 int ring_size, int ioctx_size,
666 int dma_size, enum dma_data_direction dir)
667 {
668 struct srpt_ioctx **ring;
669 int i;
670
671 WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx)
672 && ioctx_size != sizeof(struct srpt_send_ioctx));
673
674 ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL);
675 if (!ring)
676 goto out;
677 for (i = 0; i < ring_size; ++i) {
678 ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir);
679 if (!ring[i])
680 goto err;
681 ring[i]->index = i;
682 }
683 goto out;
684
685 err:
686 while (--i >= 0)
687 srpt_free_ioctx(sdev, ring[i], dma_size, dir);
688 kfree(ring);
689 ring = NULL;
690 out:
691 return ring;
692 }
693
694 /**
695 * srpt_free_ioctx_ring() - Free the ring of SRPT I/O context structures.
696 */
697 static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring,
698 struct srpt_device *sdev, int ring_size,
699 int dma_size, enum dma_data_direction dir)
700 {
701 int i;
702
703 for (i = 0; i < ring_size; ++i)
704 srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir);
705 kfree(ioctx_ring);
706 }
707
708 /**
709 * srpt_get_cmd_state() - Get the state of a SCSI command.
710 */
711 static enum srpt_command_state srpt_get_cmd_state(struct srpt_send_ioctx *ioctx)
712 {
713 enum srpt_command_state state;
714 unsigned long flags;
715
716 BUG_ON(!ioctx);
717
718 spin_lock_irqsave(&ioctx->spinlock, flags);
719 state = ioctx->state;
720 spin_unlock_irqrestore(&ioctx->spinlock, flags);
721 return state;
722 }
723
724 /**
725 * srpt_set_cmd_state() - Set the state of a SCSI command.
726 *
727 * Does not modify the state of aborted commands. Returns the previous command
728 * state.
729 */
730 static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx,
731 enum srpt_command_state new)
732 {
733 enum srpt_command_state previous;
734 unsigned long flags;
735
736 BUG_ON(!ioctx);
737
738 spin_lock_irqsave(&ioctx->spinlock, flags);
739 previous = ioctx->state;
740 if (previous != SRPT_STATE_DONE)
741 ioctx->state = new;
742 spin_unlock_irqrestore(&ioctx->spinlock, flags);
743
744 return previous;
745 }
746
747 /**
748 * srpt_test_and_set_cmd_state() - Test and set the state of a command.
749 *
750 * Returns true if and only if the previous command state was equal to 'old'.
751 */
752 static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx,
753 enum srpt_command_state old,
754 enum srpt_command_state new)
755 {
756 enum srpt_command_state previous;
757 unsigned long flags;
758
759 WARN_ON(!ioctx);
760 WARN_ON(old == SRPT_STATE_DONE);
761 WARN_ON(new == SRPT_STATE_NEW);
762
763 spin_lock_irqsave(&ioctx->spinlock, flags);
764 previous = ioctx->state;
765 if (previous == old)
766 ioctx->state = new;
767 spin_unlock_irqrestore(&ioctx->spinlock, flags);
768 return previous == old;
769 }
770
771 /**
772 * srpt_post_recv() - Post an IB receive request.
773 */
774 static int srpt_post_recv(struct srpt_device *sdev,
775 struct srpt_recv_ioctx *ioctx)
776 {
777 struct ib_sge list;
778 struct ib_recv_wr wr, *bad_wr;
779
780 BUG_ON(!sdev);
781 wr.wr_id = encode_wr_id(SRPT_RECV, ioctx->ioctx.index);
782
783 list.addr = ioctx->ioctx.dma;
784 list.length = srp_max_req_size;
785 list.lkey = sdev->mr->lkey;
786
787 wr.next = NULL;
788 wr.sg_list = &list;
789 wr.num_sge = 1;
790
791 return ib_post_srq_recv(sdev->srq, &wr, &bad_wr);
792 }
793
794 /**
795 * srpt_post_send() - Post an IB send request.
796 *
797 * Returns zero upon success and a non-zero value upon failure.
798 */
799 static int srpt_post_send(struct srpt_rdma_ch *ch,
800 struct srpt_send_ioctx *ioctx, int len)
801 {
802 struct ib_sge list;
803 struct ib_send_wr wr, *bad_wr;
804 struct srpt_device *sdev = ch->sport->sdev;
805 int ret;
806
807 atomic_inc(&ch->req_lim);
808
809 ret = -ENOMEM;
810 if (unlikely(atomic_dec_return(&ch->sq_wr_avail) < 0)) {
811 pr_warn("IB send queue full (needed 1)\n");
812 goto out;
813 }
814
815 ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, len,
816 DMA_TO_DEVICE);
817
818 list.addr = ioctx->ioctx.dma;
819 list.length = len;
820 list.lkey = sdev->mr->lkey;
821
822 wr.next = NULL;
823 wr.wr_id = encode_wr_id(SRPT_SEND, ioctx->ioctx.index);
824 wr.sg_list = &list;
825 wr.num_sge = 1;
826 wr.opcode = IB_WR_SEND;
827 wr.send_flags = IB_SEND_SIGNALED;
828
829 ret = ib_post_send(ch->qp, &wr, &bad_wr);
830
831 out:
832 if (ret < 0) {
833 atomic_inc(&ch->sq_wr_avail);
834 atomic_dec(&ch->req_lim);
835 }
836 return ret;
837 }
838
839 /**
840 * srpt_get_desc_tbl() - Parse the data descriptors of an SRP_CMD request.
841 * @ioctx: Pointer to the I/O context associated with the request.
842 * @srp_cmd: Pointer to the SRP_CMD request data.
843 * @dir: Pointer to the variable to which the transfer direction will be
844 * written.
845 * @data_len: Pointer to the variable to which the total data length of all
846 * descriptors in the SRP_CMD request will be written.
847 *
848 * This function initializes ioctx->nrbuf and ioctx->r_bufs.
849 *
850 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors;
851 * -ENOMEM when memory allocation fails and zero upon success.
852 */
853 static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx,
854 struct srp_cmd *srp_cmd,
855 enum dma_data_direction *dir, u64 *data_len)
856 {
857 struct srp_indirect_buf *idb;
858 struct srp_direct_buf *db;
859 unsigned add_cdb_offset;
860 int ret;
861
862 /*
863 * The pointer computations below will only be compiled correctly
864 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check
865 * whether srp_cmd::add_data has been declared as a byte pointer.
866 */
867 BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0)
868 && !__same_type(srp_cmd->add_data[0], (u8)0));
869
870 BUG_ON(!dir);
871 BUG_ON(!data_len);
872
873 ret = 0;
874 *data_len = 0;
875
876 /*
877 * The lower four bits of the buffer format field contain the DATA-IN
878 * buffer descriptor format, and the highest four bits contain the
879 * DATA-OUT buffer descriptor format.
880 */
881 *dir = DMA_NONE;
882 if (srp_cmd->buf_fmt & 0xf)
883 /* DATA-IN: transfer data from target to initiator (read). */
884 *dir = DMA_FROM_DEVICE;
885 else if (srp_cmd->buf_fmt >> 4)
886 /* DATA-OUT: transfer data from initiator to target (write). */
887 *dir = DMA_TO_DEVICE;
888
889 /*
890 * According to the SRP spec, the lower two bits of the 'ADDITIONAL
891 * CDB LENGTH' field are reserved and the size in bytes of this field
892 * is four times the value specified in bits 3..7. Hence the "& ~3".
893 */
894 add_cdb_offset = srp_cmd->add_cdb_len & ~3;
895 if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) ||
896 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) {
897 ioctx->n_rbuf = 1;
898 ioctx->rbufs = &ioctx->single_rbuf;
899
900 db = (struct srp_direct_buf *)(srp_cmd->add_data
901 + add_cdb_offset);
902 memcpy(ioctx->rbufs, db, sizeof *db);
903 *data_len = be32_to_cpu(db->len);
904 } else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) ||
905 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) {
906 idb = (struct srp_indirect_buf *)(srp_cmd->add_data
907 + add_cdb_offset);
908
909 ioctx->n_rbuf = be32_to_cpu(idb->table_desc.len) / sizeof *db;
910
911 if (ioctx->n_rbuf >
912 (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) {
913 pr_err("received unsupported SRP_CMD request"
914 " type (%u out + %u in != %u / %zu)\n",
915 srp_cmd->data_out_desc_cnt,
916 srp_cmd->data_in_desc_cnt,
917 be32_to_cpu(idb->table_desc.len),
918 sizeof(*db));
919 ioctx->n_rbuf = 0;
920 ret = -EINVAL;
921 goto out;
922 }
923
924 if (ioctx->n_rbuf == 1)
925 ioctx->rbufs = &ioctx->single_rbuf;
926 else {
927 ioctx->rbufs =
928 kmalloc(ioctx->n_rbuf * sizeof *db, GFP_ATOMIC);
929 if (!ioctx->rbufs) {
930 ioctx->n_rbuf = 0;
931 ret = -ENOMEM;
932 goto out;
933 }
934 }
935
936 db = idb->desc_list;
937 memcpy(ioctx->rbufs, db, ioctx->n_rbuf * sizeof *db);
938 *data_len = be32_to_cpu(idb->len);
939 }
940 out:
941 return ret;
942 }
943
944 /**
945 * srpt_init_ch_qp() - Initialize queue pair attributes.
946 *
947 * Initialized the attributes of queue pair 'qp' by allowing local write,
948 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT.
949 */
950 static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp)
951 {
952 struct ib_qp_attr *attr;
953 int ret;
954
955 attr = kzalloc(sizeof *attr, GFP_KERNEL);
956 if (!attr)
957 return -ENOMEM;
958
959 attr->qp_state = IB_QPS_INIT;
960 attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_READ |
961 IB_ACCESS_REMOTE_WRITE;
962 attr->port_num = ch->sport->port;
963 attr->pkey_index = 0;
964
965 ret = ib_modify_qp(qp, attr,
966 IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT |
967 IB_QP_PKEY_INDEX);
968
969 kfree(attr);
970 return ret;
971 }
972
973 /**
974 * srpt_ch_qp_rtr() - Change the state of a channel to 'ready to receive' (RTR).
975 * @ch: channel of the queue pair.
976 * @qp: queue pair to change the state of.
977 *
978 * Returns zero upon success and a negative value upon failure.
979 *
980 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
981 * If this structure ever becomes larger, it might be necessary to allocate
982 * it dynamically instead of on the stack.
983 */
984 static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp)
985 {
986 struct ib_qp_attr qp_attr;
987 int attr_mask;
988 int ret;
989
990 qp_attr.qp_state = IB_QPS_RTR;
991 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
992 if (ret)
993 goto out;
994
995 qp_attr.max_dest_rd_atomic = 4;
996
997 ret = ib_modify_qp(qp, &qp_attr, attr_mask);
998
999 out:
1000 return ret;
1001 }
1002
1003 /**
1004 * srpt_ch_qp_rts() - Change the state of a channel to 'ready to send' (RTS).
1005 * @ch: channel of the queue pair.
1006 * @qp: queue pair to change the state of.
1007 *
1008 * Returns zero upon success and a negative value upon failure.
1009 *
1010 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1011 * If this structure ever becomes larger, it might be necessary to allocate
1012 * it dynamically instead of on the stack.
1013 */
1014 static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1015 {
1016 struct ib_qp_attr qp_attr;
1017 int attr_mask;
1018 int ret;
1019
1020 qp_attr.qp_state = IB_QPS_RTS;
1021 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
1022 if (ret)
1023 goto out;
1024
1025 qp_attr.max_rd_atomic = 4;
1026
1027 ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1028
1029 out:
1030 return ret;
1031 }
1032
1033 /**
1034 * srpt_ch_qp_err() - Set the channel queue pair state to 'error'.
1035 */
1036 static int srpt_ch_qp_err(struct srpt_rdma_ch *ch)
1037 {
1038 struct ib_qp_attr qp_attr;
1039
1040 qp_attr.qp_state = IB_QPS_ERR;
1041 return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE);
1042 }
1043
1044 /**
1045 * srpt_unmap_sg_to_ib_sge() - Unmap an IB SGE list.
1046 */
1047 static void srpt_unmap_sg_to_ib_sge(struct srpt_rdma_ch *ch,
1048 struct srpt_send_ioctx *ioctx)
1049 {
1050 struct scatterlist *sg;
1051 enum dma_data_direction dir;
1052
1053 BUG_ON(!ch);
1054 BUG_ON(!ioctx);
1055 BUG_ON(ioctx->n_rdma && !ioctx->rdma_ius);
1056
1057 while (ioctx->n_rdma)
1058 kfree(ioctx->rdma_ius[--ioctx->n_rdma].sge);
1059
1060 kfree(ioctx->rdma_ius);
1061 ioctx->rdma_ius = NULL;
1062
1063 if (ioctx->mapped_sg_count) {
1064 sg = ioctx->sg;
1065 WARN_ON(!sg);
1066 dir = ioctx->cmd.data_direction;
1067 BUG_ON(dir == DMA_NONE);
1068 ib_dma_unmap_sg(ch->sport->sdev->device, sg, ioctx->sg_cnt,
1069 opposite_dma_dir(dir));
1070 ioctx->mapped_sg_count = 0;
1071 }
1072 }
1073
1074 /**
1075 * srpt_map_sg_to_ib_sge() - Map an SG list to an IB SGE list.
1076 */
1077 static int srpt_map_sg_to_ib_sge(struct srpt_rdma_ch *ch,
1078 struct srpt_send_ioctx *ioctx)
1079 {
1080 struct ib_device *dev = ch->sport->sdev->device;
1081 struct se_cmd *cmd;
1082 struct scatterlist *sg, *sg_orig;
1083 int sg_cnt;
1084 enum dma_data_direction dir;
1085 struct rdma_iu *riu;
1086 struct srp_direct_buf *db;
1087 dma_addr_t dma_addr;
1088 struct ib_sge *sge;
1089 u64 raddr;
1090 u32 rsize;
1091 u32 tsize;
1092 u32 dma_len;
1093 int count, nrdma;
1094 int i, j, k;
1095
1096 BUG_ON(!ch);
1097 BUG_ON(!ioctx);
1098 cmd = &ioctx->cmd;
1099 dir = cmd->data_direction;
1100 BUG_ON(dir == DMA_NONE);
1101
1102 ioctx->sg = sg = sg_orig = cmd->t_data_sg;
1103 ioctx->sg_cnt = sg_cnt = cmd->t_data_nents;
1104
1105 count = ib_dma_map_sg(ch->sport->sdev->device, sg, sg_cnt,
1106 opposite_dma_dir(dir));
1107 if (unlikely(!count))
1108 return -EAGAIN;
1109
1110 ioctx->mapped_sg_count = count;
1111
1112 if (ioctx->rdma_ius && ioctx->n_rdma_ius)
1113 nrdma = ioctx->n_rdma_ius;
1114 else {
1115 nrdma = (count + SRPT_DEF_SG_PER_WQE - 1) / SRPT_DEF_SG_PER_WQE
1116 + ioctx->n_rbuf;
1117
1118 ioctx->rdma_ius = kzalloc(nrdma * sizeof *riu, GFP_KERNEL);
1119 if (!ioctx->rdma_ius)
1120 goto free_mem;
1121
1122 ioctx->n_rdma_ius = nrdma;
1123 }
1124
1125 db = ioctx->rbufs;
1126 tsize = cmd->data_length;
1127 dma_len = ib_sg_dma_len(dev, &sg[0]);
1128 riu = ioctx->rdma_ius;
1129
1130 /*
1131 * For each remote desc - calculate the #ib_sge.
1132 * If #ib_sge < SRPT_DEF_SG_PER_WQE per rdma operation then
1133 * each remote desc rdma_iu is required a rdma wr;
1134 * else
1135 * we need to allocate extra rdma_iu to carry extra #ib_sge in
1136 * another rdma wr
1137 */
1138 for (i = 0, j = 0;
1139 j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
1140 rsize = be32_to_cpu(db->len);
1141 raddr = be64_to_cpu(db->va);
1142 riu->raddr = raddr;
1143 riu->rkey = be32_to_cpu(db->key);
1144 riu->sge_cnt = 0;
1145
1146 /* calculate how many sge required for this remote_buf */
1147 while (rsize > 0 && tsize > 0) {
1148
1149 if (rsize >= dma_len) {
1150 tsize -= dma_len;
1151 rsize -= dma_len;
1152 raddr += dma_len;
1153
1154 if (tsize > 0) {
1155 ++j;
1156 if (j < count) {
1157 sg = sg_next(sg);
1158 dma_len = ib_sg_dma_len(
1159 dev, sg);
1160 }
1161 }
1162 } else {
1163 tsize -= rsize;
1164 dma_len -= rsize;
1165 rsize = 0;
1166 }
1167
1168 ++riu->sge_cnt;
1169
1170 if (rsize > 0 && riu->sge_cnt == SRPT_DEF_SG_PER_WQE) {
1171 ++ioctx->n_rdma;
1172 riu->sge =
1173 kmalloc(riu->sge_cnt * sizeof *riu->sge,
1174 GFP_KERNEL);
1175 if (!riu->sge)
1176 goto free_mem;
1177
1178 ++riu;
1179 riu->sge_cnt = 0;
1180 riu->raddr = raddr;
1181 riu->rkey = be32_to_cpu(db->key);
1182 }
1183 }
1184
1185 ++ioctx->n_rdma;
1186 riu->sge = kmalloc(riu->sge_cnt * sizeof *riu->sge,
1187 GFP_KERNEL);
1188 if (!riu->sge)
1189 goto free_mem;
1190 }
1191
1192 db = ioctx->rbufs;
1193 tsize = cmd->data_length;
1194 riu = ioctx->rdma_ius;
1195 sg = sg_orig;
1196 dma_len = ib_sg_dma_len(dev, &sg[0]);
1197 dma_addr = ib_sg_dma_address(dev, &sg[0]);
1198
1199 /* this second loop is really mapped sg_addres to rdma_iu->ib_sge */
1200 for (i = 0, j = 0;
1201 j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
1202 rsize = be32_to_cpu(db->len);
1203 sge = riu->sge;
1204 k = 0;
1205
1206 while (rsize > 0 && tsize > 0) {
1207 sge->addr = dma_addr;
1208 sge->lkey = ch->sport->sdev->mr->lkey;
1209
1210 if (rsize >= dma_len) {
1211 sge->length =
1212 (tsize < dma_len) ? tsize : dma_len;
1213 tsize -= dma_len;
1214 rsize -= dma_len;
1215
1216 if (tsize > 0) {
1217 ++j;
1218 if (j < count) {
1219 sg = sg_next(sg);
1220 dma_len = ib_sg_dma_len(
1221 dev, sg);
1222 dma_addr = ib_sg_dma_address(
1223 dev, sg);
1224 }
1225 }
1226 } else {
1227 sge->length = (tsize < rsize) ? tsize : rsize;
1228 tsize -= rsize;
1229 dma_len -= rsize;
1230 dma_addr += rsize;
1231 rsize = 0;
1232 }
1233
1234 ++k;
1235 if (k == riu->sge_cnt && rsize > 0 && tsize > 0) {
1236 ++riu;
1237 sge = riu->sge;
1238 k = 0;
1239 } else if (rsize > 0 && tsize > 0)
1240 ++sge;
1241 }
1242 }
1243
1244 return 0;
1245
1246 free_mem:
1247 srpt_unmap_sg_to_ib_sge(ch, ioctx);
1248
1249 return -ENOMEM;
1250 }
1251
1252 /**
1253 * srpt_get_send_ioctx() - Obtain an I/O context for sending to the initiator.
1254 */
1255 static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch)
1256 {
1257 struct srpt_send_ioctx *ioctx;
1258 unsigned long flags;
1259
1260 BUG_ON(!ch);
1261
1262 ioctx = NULL;
1263 spin_lock_irqsave(&ch->spinlock, flags);
1264 if (!list_empty(&ch->free_list)) {
1265 ioctx = list_first_entry(&ch->free_list,
1266 struct srpt_send_ioctx, free_list);
1267 list_del(&ioctx->free_list);
1268 }
1269 spin_unlock_irqrestore(&ch->spinlock, flags);
1270
1271 if (!ioctx)
1272 return ioctx;
1273
1274 BUG_ON(ioctx->ch != ch);
1275 spin_lock_init(&ioctx->spinlock);
1276 ioctx->state = SRPT_STATE_NEW;
1277 ioctx->n_rbuf = 0;
1278 ioctx->rbufs = NULL;
1279 ioctx->n_rdma = 0;
1280 ioctx->n_rdma_ius = 0;
1281 ioctx->rdma_ius = NULL;
1282 ioctx->mapped_sg_count = 0;
1283 init_completion(&ioctx->tx_done);
1284 ioctx->queue_status_only = false;
1285 /*
1286 * transport_init_se_cmd() does not initialize all fields, so do it
1287 * here.
1288 */
1289 memset(&ioctx->cmd, 0, sizeof(ioctx->cmd));
1290 memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data));
1291
1292 return ioctx;
1293 }
1294
1295 /**
1296 * srpt_abort_cmd() - Abort a SCSI command.
1297 * @ioctx: I/O context associated with the SCSI command.
1298 * @context: Preferred execution context.
1299 */
1300 static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx)
1301 {
1302 enum srpt_command_state state;
1303 unsigned long flags;
1304
1305 BUG_ON(!ioctx);
1306
1307 /*
1308 * If the command is in a state where the target core is waiting for
1309 * the ib_srpt driver, change the state to the next state. Changing
1310 * the state of the command from SRPT_STATE_NEED_DATA to
1311 * SRPT_STATE_DATA_IN ensures that srpt_xmit_response() will call this
1312 * function a second time.
1313 */
1314
1315 spin_lock_irqsave(&ioctx->spinlock, flags);
1316 state = ioctx->state;
1317 switch (state) {
1318 case SRPT_STATE_NEED_DATA:
1319 ioctx->state = SRPT_STATE_DATA_IN;
1320 break;
1321 case SRPT_STATE_DATA_IN:
1322 case SRPT_STATE_CMD_RSP_SENT:
1323 case SRPT_STATE_MGMT_RSP_SENT:
1324 ioctx->state = SRPT_STATE_DONE;
1325 break;
1326 default:
1327 break;
1328 }
1329 spin_unlock_irqrestore(&ioctx->spinlock, flags);
1330
1331 if (state == SRPT_STATE_DONE) {
1332 struct srpt_rdma_ch *ch = ioctx->ch;
1333
1334 BUG_ON(ch->sess == NULL);
1335
1336 target_put_sess_cmd(&ioctx->cmd);
1337 goto out;
1338 }
1339
1340 pr_debug("Aborting cmd with state %d and tag %lld\n", state,
1341 ioctx->cmd.tag);
1342
1343 switch (state) {
1344 case SRPT_STATE_NEW:
1345 case SRPT_STATE_DATA_IN:
1346 case SRPT_STATE_MGMT:
1347 /*
1348 * Do nothing - defer abort processing until
1349 * srpt_queue_response() is invoked.
1350 */
1351 WARN_ON(!transport_check_aborted_status(&ioctx->cmd, false));
1352 break;
1353 case SRPT_STATE_NEED_DATA:
1354 /* DMA_TO_DEVICE (write) - RDMA read error. */
1355
1356 /* XXX(hch): this is a horrible layering violation.. */
1357 spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags);
1358 ioctx->cmd.transport_state &= ~CMD_T_ACTIVE;
1359 spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags);
1360 break;
1361 case SRPT_STATE_CMD_RSP_SENT:
1362 /*
1363 * SRP_RSP sending failed or the SRP_RSP send completion has
1364 * not been received in time.
1365 */
1366 srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx);
1367 target_put_sess_cmd(&ioctx->cmd);
1368 break;
1369 case SRPT_STATE_MGMT_RSP_SENT:
1370 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1371 target_put_sess_cmd(&ioctx->cmd);
1372 break;
1373 default:
1374 WARN(1, "Unexpected command state (%d)", state);
1375 break;
1376 }
1377
1378 out:
1379 return state;
1380 }
1381
1382 /**
1383 * srpt_handle_send_err_comp() - Process an IB_WC_SEND error completion.
1384 */
1385 static void srpt_handle_send_err_comp(struct srpt_rdma_ch *ch, u64 wr_id)
1386 {
1387 struct srpt_send_ioctx *ioctx;
1388 enum srpt_command_state state;
1389 u32 index;
1390
1391 atomic_inc(&ch->sq_wr_avail);
1392
1393 index = idx_from_wr_id(wr_id);
1394 ioctx = ch->ioctx_ring[index];
1395 state = srpt_get_cmd_state(ioctx);
1396
1397 WARN_ON(state != SRPT_STATE_CMD_RSP_SENT
1398 && state != SRPT_STATE_MGMT_RSP_SENT
1399 && state != SRPT_STATE_NEED_DATA
1400 && state != SRPT_STATE_DONE);
1401
1402 /* If SRP_RSP sending failed, undo the ch->req_lim change. */
1403 if (state == SRPT_STATE_CMD_RSP_SENT
1404 || state == SRPT_STATE_MGMT_RSP_SENT)
1405 atomic_dec(&ch->req_lim);
1406
1407 srpt_abort_cmd(ioctx);
1408 }
1409
1410 /**
1411 * srpt_handle_send_comp() - Process an IB send completion notification.
1412 */
1413 static void srpt_handle_send_comp(struct srpt_rdma_ch *ch,
1414 struct srpt_send_ioctx *ioctx)
1415 {
1416 enum srpt_command_state state;
1417
1418 atomic_inc(&ch->sq_wr_avail);
1419
1420 state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1421
1422 if (WARN_ON(state != SRPT_STATE_CMD_RSP_SENT
1423 && state != SRPT_STATE_MGMT_RSP_SENT
1424 && state != SRPT_STATE_DONE))
1425 pr_debug("state = %d\n", state);
1426
1427 if (state != SRPT_STATE_DONE) {
1428 srpt_unmap_sg_to_ib_sge(ch, ioctx);
1429 transport_generic_free_cmd(&ioctx->cmd, 0);
1430 } else {
1431 pr_err("IB completion has been received too late for"
1432 " wr_id = %u.\n", ioctx->ioctx.index);
1433 }
1434 }
1435
1436 /**
1437 * srpt_handle_rdma_comp() - Process an IB RDMA completion notification.
1438 *
1439 * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping
1440 * the data that has been transferred via IB RDMA had to be postponed until the
1441 * check_stop_free() callback. None of this is necessary anymore and needs to
1442 * be cleaned up.
1443 */
1444 static void srpt_handle_rdma_comp(struct srpt_rdma_ch *ch,
1445 struct srpt_send_ioctx *ioctx,
1446 enum srpt_opcode opcode)
1447 {
1448 WARN_ON(ioctx->n_rdma <= 0);
1449 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1450
1451 if (opcode == SRPT_RDMA_READ_LAST) {
1452 if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA,
1453 SRPT_STATE_DATA_IN))
1454 target_execute_cmd(&ioctx->cmd);
1455 else
1456 pr_err("%s[%d]: wrong state = %d\n", __func__,
1457 __LINE__, srpt_get_cmd_state(ioctx));
1458 } else if (opcode == SRPT_RDMA_ABORT) {
1459 ioctx->rdma_aborted = true;
1460 } else {
1461 WARN(true, "unexpected opcode %d\n", opcode);
1462 }
1463 }
1464
1465 /**
1466 * srpt_handle_rdma_err_comp() - Process an IB RDMA error completion.
1467 */
1468 static void srpt_handle_rdma_err_comp(struct srpt_rdma_ch *ch,
1469 struct srpt_send_ioctx *ioctx,
1470 enum srpt_opcode opcode)
1471 {
1472 enum srpt_command_state state;
1473
1474 state = srpt_get_cmd_state(ioctx);
1475 switch (opcode) {
1476 case SRPT_RDMA_READ_LAST:
1477 if (ioctx->n_rdma <= 0) {
1478 pr_err("Received invalid RDMA read"
1479 " error completion with idx %d\n",
1480 ioctx->ioctx.index);
1481 break;
1482 }
1483 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1484 if (state == SRPT_STATE_NEED_DATA)
1485 srpt_abort_cmd(ioctx);
1486 else
1487 pr_err("%s[%d]: wrong state = %d\n",
1488 __func__, __LINE__, state);
1489 break;
1490 case SRPT_RDMA_WRITE_LAST:
1491 break;
1492 default:
1493 pr_err("%s[%d]: opcode = %u\n", __func__, __LINE__, opcode);
1494 break;
1495 }
1496 }
1497
1498 /**
1499 * srpt_build_cmd_rsp() - Build an SRP_RSP response.
1500 * @ch: RDMA channel through which the request has been received.
1501 * @ioctx: I/O context associated with the SRP_CMD request. The response will
1502 * be built in the buffer ioctx->buf points at and hence this function will
1503 * overwrite the request data.
1504 * @tag: tag of the request for which this response is being generated.
1505 * @status: value for the STATUS field of the SRP_RSP information unit.
1506 *
1507 * Returns the size in bytes of the SRP_RSP response.
1508 *
1509 * An SRP_RSP response contains a SCSI status or service response. See also
1510 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1511 * response. See also SPC-2 for more information about sense data.
1512 */
1513 static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch,
1514 struct srpt_send_ioctx *ioctx, u64 tag,
1515 int status)
1516 {
1517 struct srp_rsp *srp_rsp;
1518 const u8 *sense_data;
1519 int sense_data_len, max_sense_len;
1520
1521 /*
1522 * The lowest bit of all SAM-3 status codes is zero (see also
1523 * paragraph 5.3 in SAM-3).
1524 */
1525 WARN_ON(status & 1);
1526
1527 srp_rsp = ioctx->ioctx.buf;
1528 BUG_ON(!srp_rsp);
1529
1530 sense_data = ioctx->sense_data;
1531 sense_data_len = ioctx->cmd.scsi_sense_length;
1532 WARN_ON(sense_data_len > sizeof(ioctx->sense_data));
1533
1534 memset(srp_rsp, 0, sizeof *srp_rsp);
1535 srp_rsp->opcode = SRP_RSP;
1536 srp_rsp->req_lim_delta =
1537 __constant_cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1538 srp_rsp->tag = tag;
1539 srp_rsp->status = status;
1540
1541 if (sense_data_len) {
1542 BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp));
1543 max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp);
1544 if (sense_data_len > max_sense_len) {
1545 pr_warn("truncated sense data from %d to %d"
1546 " bytes\n", sense_data_len, max_sense_len);
1547 sense_data_len = max_sense_len;
1548 }
1549
1550 srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID;
1551 srp_rsp->sense_data_len = cpu_to_be32(sense_data_len);
1552 memcpy(srp_rsp + 1, sense_data, sense_data_len);
1553 }
1554
1555 return sizeof(*srp_rsp) + sense_data_len;
1556 }
1557
1558 /**
1559 * srpt_build_tskmgmt_rsp() - Build a task management response.
1560 * @ch: RDMA channel through which the request has been received.
1561 * @ioctx: I/O context in which the SRP_RSP response will be built.
1562 * @rsp_code: RSP_CODE that will be stored in the response.
1563 * @tag: Tag of the request for which this response is being generated.
1564 *
1565 * Returns the size in bytes of the SRP_RSP response.
1566 *
1567 * An SRP_RSP response contains a SCSI status or service response. See also
1568 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1569 * response.
1570 */
1571 static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch,
1572 struct srpt_send_ioctx *ioctx,
1573 u8 rsp_code, u64 tag)
1574 {
1575 struct srp_rsp *srp_rsp;
1576 int resp_data_len;
1577 int resp_len;
1578
1579 resp_data_len = 4;
1580 resp_len = sizeof(*srp_rsp) + resp_data_len;
1581
1582 srp_rsp = ioctx->ioctx.buf;
1583 BUG_ON(!srp_rsp);
1584 memset(srp_rsp, 0, sizeof *srp_rsp);
1585
1586 srp_rsp->opcode = SRP_RSP;
1587 srp_rsp->req_lim_delta = __constant_cpu_to_be32(1
1588 + atomic_xchg(&ch->req_lim_delta, 0));
1589 srp_rsp->tag = tag;
1590
1591 srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID;
1592 srp_rsp->resp_data_len = cpu_to_be32(resp_data_len);
1593 srp_rsp->data[3] = rsp_code;
1594
1595 return resp_len;
1596 }
1597
1598 #define NO_SUCH_LUN ((uint64_t)-1LL)
1599
1600 /*
1601 * SCSI LUN addressing method. See also SAM-2 and the section about
1602 * eight byte LUNs.
1603 */
1604 enum scsi_lun_addr_method {
1605 SCSI_LUN_ADDR_METHOD_PERIPHERAL = 0,
1606 SCSI_LUN_ADDR_METHOD_FLAT = 1,
1607 SCSI_LUN_ADDR_METHOD_LUN = 2,
1608 SCSI_LUN_ADDR_METHOD_EXTENDED_LUN = 3,
1609 };
1610
1611 /*
1612 * srpt_unpack_lun() - Convert from network LUN to linear LUN.
1613 *
1614 * Convert an 2-byte, 4-byte, 6-byte or 8-byte LUN structure in network byte
1615 * order (big endian) to a linear LUN. Supports three LUN addressing methods:
1616 * peripheral, flat and logical unit. See also SAM-2, section 4.9.4 (page 40).
1617 */
1618 static uint64_t srpt_unpack_lun(const uint8_t *lun, int len)
1619 {
1620 uint64_t res = NO_SUCH_LUN;
1621 int addressing_method;
1622
1623 if (unlikely(len < 2)) {
1624 pr_err("Illegal LUN length %d, expected 2 bytes or more\n",
1625 len);
1626 goto out;
1627 }
1628
1629 switch (len) {
1630 case 8:
1631 if ((*((__be64 *)lun) &
1632 __constant_cpu_to_be64(0x0000FFFFFFFFFFFFLL)) != 0)
1633 goto out_err;
1634 break;
1635 case 4:
1636 if (*((__be16 *)&lun[2]) != 0)
1637 goto out_err;
1638 break;
1639 case 6:
1640 if (*((__be32 *)&lun[2]) != 0)
1641 goto out_err;
1642 break;
1643 case 2:
1644 break;
1645 default:
1646 goto out_err;
1647 }
1648
1649 addressing_method = (*lun) >> 6; /* highest two bits of byte 0 */
1650 switch (addressing_method) {
1651 case SCSI_LUN_ADDR_METHOD_PERIPHERAL:
1652 case SCSI_LUN_ADDR_METHOD_FLAT:
1653 case SCSI_LUN_ADDR_METHOD_LUN:
1654 res = *(lun + 1) | (((*lun) & 0x3f) << 8);
1655 break;
1656
1657 case SCSI_LUN_ADDR_METHOD_EXTENDED_LUN:
1658 default:
1659 pr_err("Unimplemented LUN addressing method %u\n",
1660 addressing_method);
1661 break;
1662 }
1663
1664 out:
1665 return res;
1666
1667 out_err:
1668 pr_err("Support for multi-level LUNs has not yet been implemented\n");
1669 goto out;
1670 }
1671
1672 static int srpt_check_stop_free(struct se_cmd *cmd)
1673 {
1674 struct srpt_send_ioctx *ioctx = container_of(cmd,
1675 struct srpt_send_ioctx, cmd);
1676
1677 return target_put_sess_cmd(&ioctx->cmd);
1678 }
1679
1680 /**
1681 * srpt_handle_cmd() - Process SRP_CMD.
1682 */
1683 static int srpt_handle_cmd(struct srpt_rdma_ch *ch,
1684 struct srpt_recv_ioctx *recv_ioctx,
1685 struct srpt_send_ioctx *send_ioctx)
1686 {
1687 struct se_cmd *cmd;
1688 struct srp_cmd *srp_cmd;
1689 uint64_t unpacked_lun;
1690 u64 data_len;
1691 enum dma_data_direction dir;
1692 sense_reason_t ret;
1693 int rc;
1694
1695 BUG_ON(!send_ioctx);
1696
1697 srp_cmd = recv_ioctx->ioctx.buf;
1698 cmd = &send_ioctx->cmd;
1699 cmd->tag = srp_cmd->tag;
1700
1701 switch (srp_cmd->task_attr) {
1702 case SRP_CMD_SIMPLE_Q:
1703 cmd->sam_task_attr = TCM_SIMPLE_TAG;
1704 break;
1705 case SRP_CMD_ORDERED_Q:
1706 default:
1707 cmd->sam_task_attr = TCM_ORDERED_TAG;
1708 break;
1709 case SRP_CMD_HEAD_OF_Q:
1710 cmd->sam_task_attr = TCM_HEAD_TAG;
1711 break;
1712 case SRP_CMD_ACA:
1713 cmd->sam_task_attr = TCM_ACA_TAG;
1714 break;
1715 }
1716
1717 if (srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &data_len)) {
1718 pr_err("0x%llx: parsing SRP descriptor table failed.\n",
1719 srp_cmd->tag);
1720 ret = TCM_INVALID_CDB_FIELD;
1721 goto send_sense;
1722 }
1723
1724 unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_cmd->lun,
1725 sizeof(srp_cmd->lun));
1726 rc = target_submit_cmd(cmd, ch->sess, srp_cmd->cdb,
1727 &send_ioctx->sense_data[0], unpacked_lun, data_len,
1728 TCM_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF);
1729 if (rc != 0) {
1730 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1731 goto send_sense;
1732 }
1733 return 0;
1734
1735 send_sense:
1736 transport_send_check_condition_and_sense(cmd, ret, 0);
1737 return -1;
1738 }
1739
1740 /**
1741 * srpt_rx_mgmt_fn_tag() - Process a task management function by tag.
1742 * @ch: RDMA channel of the task management request.
1743 * @fn: Task management function to perform.
1744 * @req_tag: Tag of the SRP task management request.
1745 * @mgmt_ioctx: I/O context of the task management request.
1746 *
1747 * Returns zero if the target core will process the task management
1748 * request asynchronously.
1749 *
1750 * Note: It is assumed that the initiator serializes tag-based task management
1751 * requests.
1752 */
1753 static int srpt_rx_mgmt_fn_tag(struct srpt_send_ioctx *ioctx, u64 tag)
1754 {
1755 struct srpt_device *sdev;
1756 struct srpt_rdma_ch *ch;
1757 struct srpt_send_ioctx *target;
1758 int ret, i;
1759
1760 ret = -EINVAL;
1761 ch = ioctx->ch;
1762 BUG_ON(!ch);
1763 BUG_ON(!ch->sport);
1764 sdev = ch->sport->sdev;
1765 BUG_ON(!sdev);
1766 spin_lock_irq(&sdev->spinlock);
1767 for (i = 0; i < ch->rq_size; ++i) {
1768 target = ch->ioctx_ring[i];
1769 if (target->cmd.se_lun == ioctx->cmd.se_lun &&
1770 target->cmd.tag == tag &&
1771 srpt_get_cmd_state(target) != SRPT_STATE_DONE) {
1772 ret = 0;
1773 /* now let the target core abort &target->cmd; */
1774 break;
1775 }
1776 }
1777 spin_unlock_irq(&sdev->spinlock);
1778 return ret;
1779 }
1780
1781 static int srp_tmr_to_tcm(int fn)
1782 {
1783 switch (fn) {
1784 case SRP_TSK_ABORT_TASK:
1785 return TMR_ABORT_TASK;
1786 case SRP_TSK_ABORT_TASK_SET:
1787 return TMR_ABORT_TASK_SET;
1788 case SRP_TSK_CLEAR_TASK_SET:
1789 return TMR_CLEAR_TASK_SET;
1790 case SRP_TSK_LUN_RESET:
1791 return TMR_LUN_RESET;
1792 case SRP_TSK_CLEAR_ACA:
1793 return TMR_CLEAR_ACA;
1794 default:
1795 return -1;
1796 }
1797 }
1798
1799 /**
1800 * srpt_handle_tsk_mgmt() - Process an SRP_TSK_MGMT information unit.
1801 *
1802 * Returns 0 if and only if the request will be processed by the target core.
1803 *
1804 * For more information about SRP_TSK_MGMT information units, see also section
1805 * 6.7 in the SRP r16a document.
1806 */
1807 static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch,
1808 struct srpt_recv_ioctx *recv_ioctx,
1809 struct srpt_send_ioctx *send_ioctx)
1810 {
1811 struct srp_tsk_mgmt *srp_tsk;
1812 struct se_cmd *cmd;
1813 struct se_session *sess = ch->sess;
1814 uint64_t unpacked_lun;
1815 uint32_t tag = 0;
1816 int tcm_tmr;
1817 int rc;
1818
1819 BUG_ON(!send_ioctx);
1820
1821 srp_tsk = recv_ioctx->ioctx.buf;
1822 cmd = &send_ioctx->cmd;
1823
1824 pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld"
1825 " cm_id %p sess %p\n", srp_tsk->tsk_mgmt_func,
1826 srp_tsk->task_tag, srp_tsk->tag, ch->cm_id, ch->sess);
1827
1828 srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT);
1829 send_ioctx->cmd.tag = srp_tsk->tag;
1830 tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func);
1831 if (tcm_tmr < 0) {
1832 send_ioctx->cmd.se_tmr_req->response =
1833 TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
1834 goto fail;
1835 }
1836 unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_tsk->lun,
1837 sizeof(srp_tsk->lun));
1838
1839 if (srp_tsk->tsk_mgmt_func == SRP_TSK_ABORT_TASK) {
1840 rc = srpt_rx_mgmt_fn_tag(send_ioctx, srp_tsk->task_tag);
1841 if (rc < 0) {
1842 send_ioctx->cmd.se_tmr_req->response =
1843 TMR_TASK_DOES_NOT_EXIST;
1844 goto fail;
1845 }
1846 tag = srp_tsk->task_tag;
1847 }
1848 rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL, unpacked_lun,
1849 srp_tsk, tcm_tmr, GFP_KERNEL, tag,
1850 TARGET_SCF_ACK_KREF);
1851 if (rc != 0) {
1852 send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED;
1853 goto fail;
1854 }
1855 return;
1856 fail:
1857 transport_send_check_condition_and_sense(cmd, 0, 0); // XXX:
1858 }
1859
1860 /**
1861 * srpt_handle_new_iu() - Process a newly received information unit.
1862 * @ch: RDMA channel through which the information unit has been received.
1863 * @ioctx: SRPT I/O context associated with the information unit.
1864 */
1865 static void srpt_handle_new_iu(struct srpt_rdma_ch *ch,
1866 struct srpt_recv_ioctx *recv_ioctx,
1867 struct srpt_send_ioctx *send_ioctx)
1868 {
1869 struct srp_cmd *srp_cmd;
1870 enum rdma_ch_state ch_state;
1871
1872 BUG_ON(!ch);
1873 BUG_ON(!recv_ioctx);
1874
1875 ib_dma_sync_single_for_cpu(ch->sport->sdev->device,
1876 recv_ioctx->ioctx.dma, srp_max_req_size,
1877 DMA_FROM_DEVICE);
1878
1879 ch_state = srpt_get_ch_state(ch);
1880 if (unlikely(ch_state == CH_CONNECTING)) {
1881 list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list);
1882 goto out;
1883 }
1884
1885 if (unlikely(ch_state != CH_LIVE))
1886 goto out;
1887
1888 srp_cmd = recv_ioctx->ioctx.buf;
1889 if (srp_cmd->opcode == SRP_CMD || srp_cmd->opcode == SRP_TSK_MGMT) {
1890 if (!send_ioctx)
1891 send_ioctx = srpt_get_send_ioctx(ch);
1892 if (unlikely(!send_ioctx)) {
1893 list_add_tail(&recv_ioctx->wait_list,
1894 &ch->cmd_wait_list);
1895 goto out;
1896 }
1897 }
1898
1899 switch (srp_cmd->opcode) {
1900 case SRP_CMD:
1901 srpt_handle_cmd(ch, recv_ioctx, send_ioctx);
1902 break;
1903 case SRP_TSK_MGMT:
1904 srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx);
1905 break;
1906 case SRP_I_LOGOUT:
1907 pr_err("Not yet implemented: SRP_I_LOGOUT\n");
1908 break;
1909 case SRP_CRED_RSP:
1910 pr_debug("received SRP_CRED_RSP\n");
1911 break;
1912 case SRP_AER_RSP:
1913 pr_debug("received SRP_AER_RSP\n");
1914 break;
1915 case SRP_RSP:
1916 pr_err("Received SRP_RSP\n");
1917 break;
1918 default:
1919 pr_err("received IU with unknown opcode 0x%x\n",
1920 srp_cmd->opcode);
1921 break;
1922 }
1923
1924 srpt_post_recv(ch->sport->sdev, recv_ioctx);
1925 out:
1926 return;
1927 }
1928
1929 static void srpt_process_rcv_completion(struct ib_cq *cq,
1930 struct srpt_rdma_ch *ch,
1931 struct ib_wc *wc)
1932 {
1933 struct srpt_device *sdev = ch->sport->sdev;
1934 struct srpt_recv_ioctx *ioctx;
1935 u32 index;
1936
1937 index = idx_from_wr_id(wc->wr_id);
1938 if (wc->status == IB_WC_SUCCESS) {
1939 int req_lim;
1940
1941 req_lim = atomic_dec_return(&ch->req_lim);
1942 if (unlikely(req_lim < 0))
1943 pr_err("req_lim = %d < 0\n", req_lim);
1944 ioctx = sdev->ioctx_ring[index];
1945 srpt_handle_new_iu(ch, ioctx, NULL);
1946 } else {
1947 pr_info("receiving failed for idx %u with status %d\n",
1948 index, wc->status);
1949 }
1950 }
1951
1952 /**
1953 * srpt_process_send_completion() - Process an IB send completion.
1954 *
1955 * Note: Although this has not yet been observed during tests, at least in
1956 * theory it is possible that the srpt_get_send_ioctx() call invoked by
1957 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta
1958 * value in each response is set to one, and it is possible that this response
1959 * makes the initiator send a new request before the send completion for that
1960 * response has been processed. This could e.g. happen if the call to
1961 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or
1962 * if IB retransmission causes generation of the send completion to be
1963 * delayed. Incoming information units for which srpt_get_send_ioctx() fails
1964 * are queued on cmd_wait_list. The code below processes these delayed
1965 * requests one at a time.
1966 */
1967 static void srpt_process_send_completion(struct ib_cq *cq,
1968 struct srpt_rdma_ch *ch,
1969 struct ib_wc *wc)
1970 {
1971 struct srpt_send_ioctx *send_ioctx;
1972 uint32_t index;
1973 enum srpt_opcode opcode;
1974
1975 index = idx_from_wr_id(wc->wr_id);
1976 opcode = opcode_from_wr_id(wc->wr_id);
1977 send_ioctx = ch->ioctx_ring[index];
1978 if (wc->status == IB_WC_SUCCESS) {
1979 if (opcode == SRPT_SEND)
1980 srpt_handle_send_comp(ch, send_ioctx);
1981 else {
1982 WARN_ON(opcode != SRPT_RDMA_ABORT &&
1983 wc->opcode != IB_WC_RDMA_READ);
1984 srpt_handle_rdma_comp(ch, send_ioctx, opcode);
1985 }
1986 } else {
1987 if (opcode == SRPT_SEND) {
1988 pr_info("sending response for idx %u failed"
1989 " with status %d\n", index, wc->status);
1990 srpt_handle_send_err_comp(ch, wc->wr_id);
1991 } else if (opcode != SRPT_RDMA_MID) {
1992 pr_info("RDMA t %d for idx %u failed with"
1993 " status %d\n", opcode, index, wc->status);
1994 srpt_handle_rdma_err_comp(ch, send_ioctx, opcode);
1995 }
1996 }
1997
1998 while (unlikely(opcode == SRPT_SEND
1999 && !list_empty(&ch->cmd_wait_list)
2000 && srpt_get_ch_state(ch) == CH_LIVE
2001 && (send_ioctx = srpt_get_send_ioctx(ch)) != NULL)) {
2002 struct srpt_recv_ioctx *recv_ioctx;
2003
2004 recv_ioctx = list_first_entry(&ch->cmd_wait_list,
2005 struct srpt_recv_ioctx,
2006 wait_list);
2007 list_del(&recv_ioctx->wait_list);
2008 srpt_handle_new_iu(ch, recv_ioctx, send_ioctx);
2009 }
2010 }
2011
2012 static void srpt_process_completion(struct ib_cq *cq, struct srpt_rdma_ch *ch)
2013 {
2014 struct ib_wc *const wc = ch->wc;
2015 int i, n;
2016
2017 WARN_ON(cq != ch->cq);
2018
2019 ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
2020 while ((n = ib_poll_cq(cq, ARRAY_SIZE(ch->wc), wc)) > 0) {
2021 for (i = 0; i < n; i++) {
2022 if (opcode_from_wr_id(wc[i].wr_id) == SRPT_RECV)
2023 srpt_process_rcv_completion(cq, ch, &wc[i]);
2024 else
2025 srpt_process_send_completion(cq, ch, &wc[i]);
2026 }
2027 }
2028 }
2029
2030 /**
2031 * srpt_completion() - IB completion queue callback function.
2032 *
2033 * Notes:
2034 * - It is guaranteed that a completion handler will never be invoked
2035 * concurrently on two different CPUs for the same completion queue. See also
2036 * Documentation/infiniband/core_locking.txt and the implementation of
2037 * handle_edge_irq() in kernel/irq/chip.c.
2038 * - When threaded IRQs are enabled, completion handlers are invoked in thread
2039 * context instead of interrupt context.
2040 */
2041 static void srpt_completion(struct ib_cq *cq, void *ctx)
2042 {
2043 struct srpt_rdma_ch *ch = ctx;
2044
2045 wake_up_interruptible(&ch->wait_queue);
2046 }
2047
2048 static int srpt_compl_thread(void *arg)
2049 {
2050 struct srpt_rdma_ch *ch;
2051
2052 /* Hibernation / freezing of the SRPT kernel thread is not supported. */
2053 current->flags |= PF_NOFREEZE;
2054
2055 ch = arg;
2056 BUG_ON(!ch);
2057 pr_info("Session %s: kernel thread %s (PID %d) started\n",
2058 ch->sess_name, ch->thread->comm, current->pid);
2059 while (!kthread_should_stop()) {
2060 wait_event_interruptible(ch->wait_queue,
2061 (srpt_process_completion(ch->cq, ch),
2062 kthread_should_stop()));
2063 }
2064 pr_info("Session %s: kernel thread %s (PID %d) stopped\n",
2065 ch->sess_name, ch->thread->comm, current->pid);
2066 return 0;
2067 }
2068
2069 /**
2070 * srpt_create_ch_ib() - Create receive and send completion queues.
2071 */
2072 static int srpt_create_ch_ib(struct srpt_rdma_ch *ch)
2073 {
2074 struct ib_qp_init_attr *qp_init;
2075 struct srpt_port *sport = ch->sport;
2076 struct srpt_device *sdev = sport->sdev;
2077 u32 srp_sq_size = sport->port_attrib.srp_sq_size;
2078 int ret;
2079
2080 WARN_ON(ch->rq_size < 1);
2081
2082 ret = -ENOMEM;
2083 qp_init = kzalloc(sizeof *qp_init, GFP_KERNEL);
2084 if (!qp_init)
2085 goto out;
2086
2087 retry:
2088 ch->cq = ib_create_cq(sdev->device, srpt_completion, NULL, ch,
2089 ch->rq_size + srp_sq_size, 0);
2090 if (IS_ERR(ch->cq)) {
2091 ret = PTR_ERR(ch->cq);
2092 pr_err("failed to create CQ cqe= %d ret= %d\n",
2093 ch->rq_size + srp_sq_size, ret);
2094 goto out;
2095 }
2096
2097 qp_init->qp_context = (void *)ch;
2098 qp_init->event_handler
2099 = (void(*)(struct ib_event *, void*))srpt_qp_event;
2100 qp_init->send_cq = ch->cq;
2101 qp_init->recv_cq = ch->cq;
2102 qp_init->srq = sdev->srq;
2103 qp_init->sq_sig_type = IB_SIGNAL_REQ_WR;
2104 qp_init->qp_type = IB_QPT_RC;
2105 qp_init->cap.max_send_wr = srp_sq_size;
2106 qp_init->cap.max_send_sge = SRPT_DEF_SG_PER_WQE;
2107
2108 ch->qp = ib_create_qp(sdev->pd, qp_init);
2109 if (IS_ERR(ch->qp)) {
2110 ret = PTR_ERR(ch->qp);
2111 if (ret == -ENOMEM) {
2112 srp_sq_size /= 2;
2113 if (srp_sq_size >= MIN_SRPT_SQ_SIZE) {
2114 ib_destroy_cq(ch->cq);
2115 goto retry;
2116 }
2117 }
2118 pr_err("failed to create_qp ret= %d\n", ret);
2119 goto err_destroy_cq;
2120 }
2121
2122 atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr);
2123
2124 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
2125 __func__, ch->cq->cqe, qp_init->cap.max_send_sge,
2126 qp_init->cap.max_send_wr, ch->cm_id);
2127
2128 ret = srpt_init_ch_qp(ch, ch->qp);
2129 if (ret)
2130 goto err_destroy_qp;
2131
2132 init_waitqueue_head(&ch->wait_queue);
2133
2134 pr_debug("creating thread for session %s\n", ch->sess_name);
2135
2136 ch->thread = kthread_run(srpt_compl_thread, ch, "ib_srpt_compl");
2137 if (IS_ERR(ch->thread)) {
2138 pr_err("failed to create kernel thread %ld\n",
2139 PTR_ERR(ch->thread));
2140 ch->thread = NULL;
2141 goto err_destroy_qp;
2142 }
2143
2144 out:
2145 kfree(qp_init);
2146 return ret;
2147
2148 err_destroy_qp:
2149 ib_destroy_qp(ch->qp);
2150 err_destroy_cq:
2151 ib_destroy_cq(ch->cq);
2152 goto out;
2153 }
2154
2155 static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch)
2156 {
2157 if (ch->thread)
2158 kthread_stop(ch->thread);
2159
2160 ib_destroy_qp(ch->qp);
2161 ib_destroy_cq(ch->cq);
2162 }
2163
2164 /**
2165 * __srpt_close_ch() - Close an RDMA channel by setting the QP error state.
2166 *
2167 * Reset the QP and make sure all resources associated with the channel will
2168 * be deallocated at an appropriate time.
2169 *
2170 * Note: The caller must hold ch->sport->sdev->spinlock.
2171 */
2172 static void __srpt_close_ch(struct srpt_rdma_ch *ch)
2173 {
2174 enum rdma_ch_state prev_state;
2175 unsigned long flags;
2176
2177 spin_lock_irqsave(&ch->spinlock, flags);
2178 prev_state = ch->state;
2179 switch (prev_state) {
2180 case CH_CONNECTING:
2181 case CH_LIVE:
2182 ch->state = CH_DISCONNECTING;
2183 break;
2184 default:
2185 break;
2186 }
2187 spin_unlock_irqrestore(&ch->spinlock, flags);
2188
2189 switch (prev_state) {
2190 case CH_CONNECTING:
2191 ib_send_cm_rej(ch->cm_id, IB_CM_REJ_NO_RESOURCES, NULL, 0,
2192 NULL, 0);
2193 /* fall through */
2194 case CH_LIVE:
2195 if (ib_send_cm_dreq(ch->cm_id, NULL, 0) < 0)
2196 pr_err("sending CM DREQ failed.\n");
2197 break;
2198 case CH_DISCONNECTING:
2199 break;
2200 case CH_DRAINING:
2201 case CH_RELEASING:
2202 break;
2203 }
2204 }
2205
2206 /**
2207 * srpt_close_ch() - Close an RDMA channel.
2208 */
2209 static void srpt_close_ch(struct srpt_rdma_ch *ch)
2210 {
2211 struct srpt_device *sdev;
2212
2213 sdev = ch->sport->sdev;
2214 spin_lock_irq(&sdev->spinlock);
2215 __srpt_close_ch(ch);
2216 spin_unlock_irq(&sdev->spinlock);
2217 }
2218
2219 /**
2220 * srpt_shutdown_session() - Whether or not a session may be shut down.
2221 */
2222 static int srpt_shutdown_session(struct se_session *se_sess)
2223 {
2224 struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr;
2225 unsigned long flags;
2226
2227 spin_lock_irqsave(&ch->spinlock, flags);
2228 if (ch->in_shutdown) {
2229 spin_unlock_irqrestore(&ch->spinlock, flags);
2230 return true;
2231 }
2232
2233 ch->in_shutdown = true;
2234 target_sess_cmd_list_set_waiting(se_sess);
2235 spin_unlock_irqrestore(&ch->spinlock, flags);
2236
2237 return true;
2238 }
2239
2240 /**
2241 * srpt_drain_channel() - Drain a channel by resetting the IB queue pair.
2242 * @cm_id: Pointer to the CM ID of the channel to be drained.
2243 *
2244 * Note: Must be called from inside srpt_cm_handler to avoid a race between
2245 * accessing sdev->spinlock and the call to kfree(sdev) in srpt_remove_one()
2246 * (the caller of srpt_cm_handler holds the cm_id spinlock; srpt_remove_one()
2247 * waits until all target sessions for the associated IB device have been
2248 * unregistered and target session registration involves a call to
2249 * ib_destroy_cm_id(), which locks the cm_id spinlock and hence waits until
2250 * this function has finished).
2251 */
2252 static void srpt_drain_channel(struct ib_cm_id *cm_id)
2253 {
2254 struct srpt_device *sdev;
2255 struct srpt_rdma_ch *ch;
2256 int ret;
2257 bool do_reset = false;
2258
2259 WARN_ON_ONCE(irqs_disabled());
2260
2261 sdev = cm_id->context;
2262 BUG_ON(!sdev);
2263 spin_lock_irq(&sdev->spinlock);
2264 list_for_each_entry(ch, &sdev->rch_list, list) {
2265 if (ch->cm_id == cm_id) {
2266 do_reset = srpt_test_and_set_ch_state(ch,
2267 CH_CONNECTING, CH_DRAINING) ||
2268 srpt_test_and_set_ch_state(ch,
2269 CH_LIVE, CH_DRAINING) ||
2270 srpt_test_and_set_ch_state(ch,
2271 CH_DISCONNECTING, CH_DRAINING);
2272 break;
2273 }
2274 }
2275 spin_unlock_irq(&sdev->spinlock);
2276
2277 if (do_reset) {
2278 if (ch->sess)
2279 srpt_shutdown_session(ch->sess);
2280
2281 ret = srpt_ch_qp_err(ch);
2282 if (ret < 0)
2283 pr_err("Setting queue pair in error state"
2284 " failed: %d\n", ret);
2285 }
2286 }
2287
2288 /**
2289 * srpt_find_channel() - Look up an RDMA channel.
2290 * @cm_id: Pointer to the CM ID of the channel to be looked up.
2291 *
2292 * Return NULL if no matching RDMA channel has been found.
2293 */
2294 static struct srpt_rdma_ch *srpt_find_channel(struct srpt_device *sdev,
2295 struct ib_cm_id *cm_id)
2296 {
2297 struct srpt_rdma_ch *ch;
2298 bool found;
2299
2300 WARN_ON_ONCE(irqs_disabled());
2301 BUG_ON(!sdev);
2302
2303 found = false;
2304 spin_lock_irq(&sdev->spinlock);
2305 list_for_each_entry(ch, &sdev->rch_list, list) {
2306 if (ch->cm_id == cm_id) {
2307 found = true;
2308 break;
2309 }
2310 }
2311 spin_unlock_irq(&sdev->spinlock);
2312
2313 return found ? ch : NULL;
2314 }
2315
2316 /**
2317 * srpt_release_channel() - Release channel resources.
2318 *
2319 * Schedules the actual release because:
2320 * - Calling the ib_destroy_cm_id() call from inside an IB CM callback would
2321 * trigger a deadlock.
2322 * - It is not safe to call TCM transport_* functions from interrupt context.
2323 */
2324 static void srpt_release_channel(struct srpt_rdma_ch *ch)
2325 {
2326 schedule_work(&ch->release_work);
2327 }
2328
2329 static void srpt_release_channel_work(struct work_struct *w)
2330 {
2331 struct srpt_rdma_ch *ch;
2332 struct srpt_device *sdev;
2333 struct se_session *se_sess;
2334
2335 ch = container_of(w, struct srpt_rdma_ch, release_work);
2336 pr_debug("ch = %p; ch->sess = %p; release_done = %p\n", ch, ch->sess,
2337 ch->release_done);
2338
2339 sdev = ch->sport->sdev;
2340 BUG_ON(!sdev);
2341
2342 se_sess = ch->sess;
2343 BUG_ON(!se_sess);
2344
2345 target_wait_for_sess_cmds(se_sess);
2346
2347 transport_deregister_session_configfs(se_sess);
2348 transport_deregister_session(se_sess);
2349 ch->sess = NULL;
2350
2351 ib_destroy_cm_id(ch->cm_id);
2352
2353 srpt_destroy_ch_ib(ch);
2354
2355 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2356 ch->sport->sdev, ch->rq_size,
2357 ch->rsp_size, DMA_TO_DEVICE);
2358
2359 spin_lock_irq(&sdev->spinlock);
2360 list_del(&ch->list);
2361 spin_unlock_irq(&sdev->spinlock);
2362
2363 if (ch->release_done)
2364 complete(ch->release_done);
2365
2366 wake_up(&sdev->ch_releaseQ);
2367
2368 kfree(ch);
2369 }
2370
2371 static struct srpt_node_acl *__srpt_lookup_acl(struct srpt_port *sport,
2372 u8 i_port_id[16])
2373 {
2374 struct srpt_node_acl *nacl;
2375
2376 list_for_each_entry(nacl, &sport->port_acl_list, list)
2377 if (memcmp(nacl->i_port_id, i_port_id,
2378 sizeof(nacl->i_port_id)) == 0)
2379 return nacl;
2380
2381 return NULL;
2382 }
2383
2384 static struct srpt_node_acl *srpt_lookup_acl(struct srpt_port *sport,
2385 u8 i_port_id[16])
2386 {
2387 struct srpt_node_acl *nacl;
2388
2389 spin_lock_irq(&sport->port_acl_lock);
2390 nacl = __srpt_lookup_acl(sport, i_port_id);
2391 spin_unlock_irq(&sport->port_acl_lock);
2392
2393 return nacl;
2394 }
2395
2396 /**
2397 * srpt_cm_req_recv() - Process the event IB_CM_REQ_RECEIVED.
2398 *
2399 * Ownership of the cm_id is transferred to the target session if this
2400 * functions returns zero. Otherwise the caller remains the owner of cm_id.
2401 */
2402 static int srpt_cm_req_recv(struct ib_cm_id *cm_id,
2403 struct ib_cm_req_event_param *param,
2404 void *private_data)
2405 {
2406 struct srpt_device *sdev = cm_id->context;
2407 struct srpt_port *sport = &sdev->port[param->port - 1];
2408 struct srp_login_req *req;
2409 struct srp_login_rsp *rsp;
2410 struct srp_login_rej *rej;
2411 struct ib_cm_rep_param *rep_param;
2412 struct srpt_rdma_ch *ch, *tmp_ch;
2413 struct srpt_node_acl *nacl;
2414 u32 it_iu_len;
2415 int i;
2416 int ret = 0;
2417
2418 WARN_ON_ONCE(irqs_disabled());
2419
2420 if (WARN_ON(!sdev || !private_data))
2421 return -EINVAL;
2422
2423 req = (struct srp_login_req *)private_data;
2424
2425 it_iu_len = be32_to_cpu(req->req_it_iu_len);
2426
2427 pr_info("Received SRP_LOGIN_REQ with i_port_id 0x%llx:0x%llx,"
2428 " t_port_id 0x%llx:0x%llx and it_iu_len %d on port %d"
2429 " (guid=0x%llx:0x%llx)\n",
2430 be64_to_cpu(*(__be64 *)&req->initiator_port_id[0]),
2431 be64_to_cpu(*(__be64 *)&req->initiator_port_id[8]),
2432 be64_to_cpu(*(__be64 *)&req->target_port_id[0]),
2433 be64_to_cpu(*(__be64 *)&req->target_port_id[8]),
2434 it_iu_len,
2435 param->port,
2436 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[0]),
2437 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[8]));
2438
2439 rsp = kzalloc(sizeof *rsp, GFP_KERNEL);
2440 rej = kzalloc(sizeof *rej, GFP_KERNEL);
2441 rep_param = kzalloc(sizeof *rep_param, GFP_KERNEL);
2442
2443 if (!rsp || !rej || !rep_param) {
2444 ret = -ENOMEM;
2445 goto out;
2446 }
2447
2448 if (it_iu_len > srp_max_req_size || it_iu_len < 64) {
2449 rej->reason = __constant_cpu_to_be32(
2450 SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE);
2451 ret = -EINVAL;
2452 pr_err("rejected SRP_LOGIN_REQ because its"
2453 " length (%d bytes) is out of range (%d .. %d)\n",
2454 it_iu_len, 64, srp_max_req_size);
2455 goto reject;
2456 }
2457
2458 if (!sport->enabled) {
2459 rej->reason = __constant_cpu_to_be32(
2460 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2461 ret = -EINVAL;
2462 pr_err("rejected SRP_LOGIN_REQ because the target port"
2463 " has not yet been enabled\n");
2464 goto reject;
2465 }
2466
2467 if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) {
2468 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN;
2469
2470 spin_lock_irq(&sdev->spinlock);
2471
2472 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) {
2473 if (!memcmp(ch->i_port_id, req->initiator_port_id, 16)
2474 && !memcmp(ch->t_port_id, req->target_port_id, 16)
2475 && param->port == ch->sport->port
2476 && param->listen_id == ch->sport->sdev->cm_id
2477 && ch->cm_id) {
2478 enum rdma_ch_state ch_state;
2479
2480 ch_state = srpt_get_ch_state(ch);
2481 if (ch_state != CH_CONNECTING
2482 && ch_state != CH_LIVE)
2483 continue;
2484
2485 /* found an existing channel */
2486 pr_debug("Found existing channel %s"
2487 " cm_id= %p state= %d\n",
2488 ch->sess_name, ch->cm_id, ch_state);
2489
2490 __srpt_close_ch(ch);
2491
2492 rsp->rsp_flags =
2493 SRP_LOGIN_RSP_MULTICHAN_TERMINATED;
2494 }
2495 }
2496
2497 spin_unlock_irq(&sdev->spinlock);
2498
2499 } else
2500 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED;
2501
2502 if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid)
2503 || *(__be64 *)(req->target_port_id + 8) !=
2504 cpu_to_be64(srpt_service_guid)) {
2505 rej->reason = __constant_cpu_to_be32(
2506 SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL);
2507 ret = -ENOMEM;
2508 pr_err("rejected SRP_LOGIN_REQ because it"
2509 " has an invalid target port identifier.\n");
2510 goto reject;
2511 }
2512
2513 ch = kzalloc(sizeof *ch, GFP_KERNEL);
2514 if (!ch) {
2515 rej->reason = __constant_cpu_to_be32(
2516 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2517 pr_err("rejected SRP_LOGIN_REQ because no memory.\n");
2518 ret = -ENOMEM;
2519 goto reject;
2520 }
2521
2522 INIT_WORK(&ch->release_work, srpt_release_channel_work);
2523 memcpy(ch->i_port_id, req->initiator_port_id, 16);
2524 memcpy(ch->t_port_id, req->target_port_id, 16);
2525 ch->sport = &sdev->port[param->port - 1];
2526 ch->cm_id = cm_id;
2527 /*
2528 * Avoid QUEUE_FULL conditions by limiting the number of buffers used
2529 * for the SRP protocol to the command queue size.
2530 */
2531 ch->rq_size = SRPT_RQ_SIZE;
2532 spin_lock_init(&ch->spinlock);
2533 ch->state = CH_CONNECTING;
2534 INIT_LIST_HEAD(&ch->cmd_wait_list);
2535 ch->rsp_size = ch->sport->port_attrib.srp_max_rsp_size;
2536
2537 ch->ioctx_ring = (struct srpt_send_ioctx **)
2538 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
2539 sizeof(*ch->ioctx_ring[0]),
2540 ch->rsp_size, DMA_TO_DEVICE);
2541 if (!ch->ioctx_ring)
2542 goto free_ch;
2543
2544 INIT_LIST_HEAD(&ch->free_list);
2545 for (i = 0; i < ch->rq_size; i++) {
2546 ch->ioctx_ring[i]->ch = ch;
2547 list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list);
2548 }
2549
2550 ret = srpt_create_ch_ib(ch);
2551 if (ret) {
2552 rej->reason = __constant_cpu_to_be32(
2553 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2554 pr_err("rejected SRP_LOGIN_REQ because creating"
2555 " a new RDMA channel failed.\n");
2556 goto free_ring;
2557 }
2558
2559 ret = srpt_ch_qp_rtr(ch, ch->qp);
2560 if (ret) {
2561 rej->reason = __constant_cpu_to_be32(
2562 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2563 pr_err("rejected SRP_LOGIN_REQ because enabling"
2564 " RTR failed (error code = %d)\n", ret);
2565 goto destroy_ib;
2566 }
2567 /*
2568 * Use the initator port identifier as the session name.
2569 */
2570 snprintf(ch->sess_name, sizeof(ch->sess_name), "0x%016llx%016llx",
2571 be64_to_cpu(*(__be64 *)ch->i_port_id),
2572 be64_to_cpu(*(__be64 *)(ch->i_port_id + 8)));
2573
2574 pr_debug("registering session %s\n", ch->sess_name);
2575
2576 nacl = srpt_lookup_acl(sport, ch->i_port_id);
2577 if (!nacl) {
2578 pr_info("Rejected login because no ACL has been"
2579 " configured yet for initiator %s.\n", ch->sess_name);
2580 rej->reason = __constant_cpu_to_be32(
2581 SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED);
2582 goto destroy_ib;
2583 }
2584
2585 ch->sess = transport_init_session(TARGET_PROT_NORMAL);
2586 if (IS_ERR(ch->sess)) {
2587 rej->reason = __constant_cpu_to_be32(
2588 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2589 pr_debug("Failed to create session\n");
2590 goto deregister_session;
2591 }
2592 ch->sess->se_node_acl = &nacl->nacl;
2593 transport_register_session(&sport->port_tpg_1, &nacl->nacl, ch->sess, ch);
2594
2595 pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch->sess,
2596 ch->sess_name, ch->cm_id);
2597
2598 /* create srp_login_response */
2599 rsp->opcode = SRP_LOGIN_RSP;
2600 rsp->tag = req->tag;
2601 rsp->max_it_iu_len = req->req_it_iu_len;
2602 rsp->max_ti_iu_len = req->req_it_iu_len;
2603 ch->max_ti_iu_len = it_iu_len;
2604 rsp->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2605 | SRP_BUF_FORMAT_INDIRECT);
2606 rsp->req_lim_delta = cpu_to_be32(ch->rq_size);
2607 atomic_set(&ch->req_lim, ch->rq_size);
2608 atomic_set(&ch->req_lim_delta, 0);
2609
2610 /* create cm reply */
2611 rep_param->qp_num = ch->qp->qp_num;
2612 rep_param->private_data = (void *)rsp;
2613 rep_param->private_data_len = sizeof *rsp;
2614 rep_param->rnr_retry_count = 7;
2615 rep_param->flow_control = 1;
2616 rep_param->failover_accepted = 0;
2617 rep_param->srq = 1;
2618 rep_param->responder_resources = 4;
2619 rep_param->initiator_depth = 4;
2620
2621 ret = ib_send_cm_rep(cm_id, rep_param);
2622 if (ret) {
2623 pr_err("sending SRP_LOGIN_REQ response failed"
2624 " (error code = %d)\n", ret);
2625 goto release_channel;
2626 }
2627
2628 spin_lock_irq(&sdev->spinlock);
2629 list_add_tail(&ch->list, &sdev->rch_list);
2630 spin_unlock_irq(&sdev->spinlock);
2631
2632 goto out;
2633
2634 release_channel:
2635 srpt_set_ch_state(ch, CH_RELEASING);
2636 transport_deregister_session_configfs(ch->sess);
2637
2638 deregister_session:
2639 transport_deregister_session(ch->sess);
2640 ch->sess = NULL;
2641
2642 destroy_ib:
2643 srpt_destroy_ch_ib(ch);
2644
2645 free_ring:
2646 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2647 ch->sport->sdev, ch->rq_size,
2648 ch->rsp_size, DMA_TO_DEVICE);
2649 free_ch:
2650 kfree(ch);
2651
2652 reject:
2653 rej->opcode = SRP_LOGIN_REJ;
2654 rej->tag = req->tag;
2655 rej->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2656 | SRP_BUF_FORMAT_INDIRECT);
2657
2658 ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0,
2659 (void *)rej, sizeof *rej);
2660
2661 out:
2662 kfree(rep_param);
2663 kfree(rsp);
2664 kfree(rej);
2665
2666 return ret;
2667 }
2668
2669 static void srpt_cm_rej_recv(struct ib_cm_id *cm_id)
2670 {
2671 pr_info("Received IB REJ for cm_id %p.\n", cm_id);
2672 srpt_drain_channel(cm_id);
2673 }
2674
2675 /**
2676 * srpt_cm_rtu_recv() - Process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event.
2677 *
2678 * An IB_CM_RTU_RECEIVED message indicates that the connection is established
2679 * and that the recipient may begin transmitting (RTU = ready to use).
2680 */
2681 static void srpt_cm_rtu_recv(struct ib_cm_id *cm_id)
2682 {
2683 struct srpt_rdma_ch *ch;
2684 int ret;
2685
2686 ch = srpt_find_channel(cm_id->context, cm_id);
2687 BUG_ON(!ch);
2688
2689 if (srpt_test_and_set_ch_state(ch, CH_CONNECTING, CH_LIVE)) {
2690 struct srpt_recv_ioctx *ioctx, *ioctx_tmp;
2691
2692 ret = srpt_ch_qp_rts(ch, ch->qp);
2693
2694 list_for_each_entry_safe(ioctx, ioctx_tmp, &ch->cmd_wait_list,
2695 wait_list) {
2696 list_del(&ioctx->wait_list);
2697 srpt_handle_new_iu(ch, ioctx, NULL);
2698 }
2699 if (ret)
2700 srpt_close_ch(ch);
2701 }
2702 }
2703
2704 static void srpt_cm_timewait_exit(struct ib_cm_id *cm_id)
2705 {
2706 pr_info("Received IB TimeWait exit for cm_id %p.\n", cm_id);
2707 srpt_drain_channel(cm_id);
2708 }
2709
2710 static void srpt_cm_rep_error(struct ib_cm_id *cm_id)
2711 {
2712 pr_info("Received IB REP error for cm_id %p.\n", cm_id);
2713 srpt_drain_channel(cm_id);
2714 }
2715
2716 /**
2717 * srpt_cm_dreq_recv() - Process reception of a DREQ message.
2718 */
2719 static void srpt_cm_dreq_recv(struct ib_cm_id *cm_id)
2720 {
2721 struct srpt_rdma_ch *ch;
2722 unsigned long flags;
2723 bool send_drep = false;
2724
2725 ch = srpt_find_channel(cm_id->context, cm_id);
2726 BUG_ON(!ch);
2727
2728 pr_debug("cm_id= %p ch->state= %d\n", cm_id, srpt_get_ch_state(ch));
2729
2730 spin_lock_irqsave(&ch->spinlock, flags);
2731 switch (ch->state) {
2732 case CH_CONNECTING:
2733 case CH_LIVE:
2734 send_drep = true;
2735 ch->state = CH_DISCONNECTING;
2736 break;
2737 case CH_DISCONNECTING:
2738 case CH_DRAINING:
2739 case CH_RELEASING:
2740 WARN(true, "unexpected channel state %d\n", ch->state);
2741 break;
2742 }
2743 spin_unlock_irqrestore(&ch->spinlock, flags);
2744
2745 if (send_drep) {
2746 if (ib_send_cm_drep(ch->cm_id, NULL, 0) < 0)
2747 pr_err("Sending IB DREP failed.\n");
2748 pr_info("Received DREQ and sent DREP for session %s.\n",
2749 ch->sess_name);
2750 }
2751 }
2752
2753 /**
2754 * srpt_cm_drep_recv() - Process reception of a DREP message.
2755 */
2756 static void srpt_cm_drep_recv(struct ib_cm_id *cm_id)
2757 {
2758 pr_info("Received InfiniBand DREP message for cm_id %p.\n", cm_id);
2759 srpt_drain_channel(cm_id);
2760 }
2761
2762 /**
2763 * srpt_cm_handler() - IB connection manager callback function.
2764 *
2765 * A non-zero return value will cause the caller destroy the CM ID.
2766 *
2767 * Note: srpt_cm_handler() must only return a non-zero value when transferring
2768 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning
2769 * a non-zero value in any other case will trigger a race with the
2770 * ib_destroy_cm_id() call in srpt_release_channel().
2771 */
2772 static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event)
2773 {
2774 int ret;
2775
2776 ret = 0;
2777 switch (event->event) {
2778 case IB_CM_REQ_RECEIVED:
2779 ret = srpt_cm_req_recv(cm_id, &event->param.req_rcvd,
2780 event->private_data);
2781 break;
2782 case IB_CM_REJ_RECEIVED:
2783 srpt_cm_rej_recv(cm_id);
2784 break;
2785 case IB_CM_RTU_RECEIVED:
2786 case IB_CM_USER_ESTABLISHED:
2787 srpt_cm_rtu_recv(cm_id);
2788 break;
2789 case IB_CM_DREQ_RECEIVED:
2790 srpt_cm_dreq_recv(cm_id);
2791 break;
2792 case IB_CM_DREP_RECEIVED:
2793 srpt_cm_drep_recv(cm_id);
2794 break;
2795 case IB_CM_TIMEWAIT_EXIT:
2796 srpt_cm_timewait_exit(cm_id);
2797 break;
2798 case IB_CM_REP_ERROR:
2799 srpt_cm_rep_error(cm_id);
2800 break;
2801 case IB_CM_DREQ_ERROR:
2802 pr_info("Received IB DREQ ERROR event.\n");
2803 break;
2804 case IB_CM_MRA_RECEIVED:
2805 pr_info("Received IB MRA event\n");
2806 break;
2807 default:
2808 pr_err("received unrecognized IB CM event %d\n", event->event);
2809 break;
2810 }
2811
2812 return ret;
2813 }
2814
2815 /**
2816 * srpt_perform_rdmas() - Perform IB RDMA.
2817 *
2818 * Returns zero upon success or a negative number upon failure.
2819 */
2820 static int srpt_perform_rdmas(struct srpt_rdma_ch *ch,
2821 struct srpt_send_ioctx *ioctx)
2822 {
2823 struct ib_send_wr wr;
2824 struct ib_send_wr *bad_wr;
2825 struct rdma_iu *riu;
2826 int i;
2827 int ret;
2828 int sq_wr_avail;
2829 enum dma_data_direction dir;
2830 const int n_rdma = ioctx->n_rdma;
2831
2832 dir = ioctx->cmd.data_direction;
2833 if (dir == DMA_TO_DEVICE) {
2834 /* write */
2835 ret = -ENOMEM;
2836 sq_wr_avail = atomic_sub_return(n_rdma, &ch->sq_wr_avail);
2837 if (sq_wr_avail < 0) {
2838 pr_warn("IB send queue full (needed %d)\n",
2839 n_rdma);
2840 goto out;
2841 }
2842 }
2843
2844 ioctx->rdma_aborted = false;
2845 ret = 0;
2846 riu = ioctx->rdma_ius;
2847 memset(&wr, 0, sizeof wr);
2848
2849 for (i = 0; i < n_rdma; ++i, ++riu) {
2850 if (dir == DMA_FROM_DEVICE) {
2851 wr.opcode = IB_WR_RDMA_WRITE;
2852 wr.wr_id = encode_wr_id(i == n_rdma - 1 ?
2853 SRPT_RDMA_WRITE_LAST :
2854 SRPT_RDMA_MID,
2855 ioctx->ioctx.index);
2856 } else {
2857 wr.opcode = IB_WR_RDMA_READ;
2858 wr.wr_id = encode_wr_id(i == n_rdma - 1 ?
2859 SRPT_RDMA_READ_LAST :
2860 SRPT_RDMA_MID,
2861 ioctx->ioctx.index);
2862 }
2863 wr.next = NULL;
2864 wr.wr.rdma.remote_addr = riu->raddr;
2865 wr.wr.rdma.rkey = riu->rkey;
2866 wr.num_sge = riu->sge_cnt;
2867 wr.sg_list = riu->sge;
2868
2869 /* only get completion event for the last rdma write */
2870 if (i == (n_rdma - 1) && dir == DMA_TO_DEVICE)
2871 wr.send_flags = IB_SEND_SIGNALED;
2872
2873 ret = ib_post_send(ch->qp, &wr, &bad_wr);
2874 if (ret)
2875 break;
2876 }
2877
2878 if (ret)
2879 pr_err("%s[%d]: ib_post_send() returned %d for %d/%d\n",
2880 __func__, __LINE__, ret, i, n_rdma);
2881 if (ret && i > 0) {
2882 wr.num_sge = 0;
2883 wr.wr_id = encode_wr_id(SRPT_RDMA_ABORT, ioctx->ioctx.index);
2884 wr.send_flags = IB_SEND_SIGNALED;
2885 while (ch->state == CH_LIVE &&
2886 ib_post_send(ch->qp, &wr, &bad_wr) != 0) {
2887 pr_info("Trying to abort failed RDMA transfer [%d]\n",
2888 ioctx->ioctx.index);
2889 msleep(1000);
2890 }
2891 while (ch->state != CH_RELEASING && !ioctx->rdma_aborted) {
2892 pr_info("Waiting until RDMA abort finished [%d]\n",
2893 ioctx->ioctx.index);
2894 msleep(1000);
2895 }
2896 }
2897 out:
2898 if (unlikely(dir == DMA_TO_DEVICE && ret < 0))
2899 atomic_add(n_rdma, &ch->sq_wr_avail);
2900 return ret;
2901 }
2902
2903 /**
2904 * srpt_xfer_data() - Start data transfer from initiator to target.
2905 */
2906 static int srpt_xfer_data(struct srpt_rdma_ch *ch,
2907 struct srpt_send_ioctx *ioctx)
2908 {
2909 int ret;
2910
2911 ret = srpt_map_sg_to_ib_sge(ch, ioctx);
2912 if (ret) {
2913 pr_err("%s[%d] ret=%d\n", __func__, __LINE__, ret);
2914 goto out;
2915 }
2916
2917 ret = srpt_perform_rdmas(ch, ioctx);
2918 if (ret) {
2919 if (ret == -EAGAIN || ret == -ENOMEM)
2920 pr_info("%s[%d] queue full -- ret=%d\n",
2921 __func__, __LINE__, ret);
2922 else
2923 pr_err("%s[%d] fatal error -- ret=%d\n",
2924 __func__, __LINE__, ret);
2925 goto out_unmap;
2926 }
2927
2928 out:
2929 return ret;
2930 out_unmap:
2931 srpt_unmap_sg_to_ib_sge(ch, ioctx);
2932 goto out;
2933 }
2934
2935 static int srpt_write_pending_status(struct se_cmd *se_cmd)
2936 {
2937 struct srpt_send_ioctx *ioctx;
2938
2939 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2940 return srpt_get_cmd_state(ioctx) == SRPT_STATE_NEED_DATA;
2941 }
2942
2943 /*
2944 * srpt_write_pending() - Start data transfer from initiator to target (write).
2945 */
2946 static int srpt_write_pending(struct se_cmd *se_cmd)
2947 {
2948 struct srpt_rdma_ch *ch;
2949 struct srpt_send_ioctx *ioctx;
2950 enum srpt_command_state new_state;
2951 enum rdma_ch_state ch_state;
2952 int ret;
2953
2954 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2955
2956 new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA);
2957 WARN_ON(new_state == SRPT_STATE_DONE);
2958
2959 ch = ioctx->ch;
2960 BUG_ON(!ch);
2961
2962 ch_state = srpt_get_ch_state(ch);
2963 switch (ch_state) {
2964 case CH_CONNECTING:
2965 WARN(true, "unexpected channel state %d\n", ch_state);
2966 ret = -EINVAL;
2967 goto out;
2968 case CH_LIVE:
2969 break;
2970 case CH_DISCONNECTING:
2971 case CH_DRAINING:
2972 case CH_RELEASING:
2973 pr_debug("cmd with tag %lld: channel disconnecting\n",
2974 ioctx->cmd.tag);
2975 srpt_set_cmd_state(ioctx, SRPT_STATE_DATA_IN);
2976 ret = -EINVAL;
2977 goto out;
2978 }
2979 ret = srpt_xfer_data(ch, ioctx);
2980
2981 out:
2982 return ret;
2983 }
2984
2985 static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)
2986 {
2987 switch (tcm_mgmt_status) {
2988 case TMR_FUNCTION_COMPLETE:
2989 return SRP_TSK_MGMT_SUCCESS;
2990 case TMR_FUNCTION_REJECTED:
2991 return SRP_TSK_MGMT_FUNC_NOT_SUPP;
2992 }
2993 return SRP_TSK_MGMT_FAILED;
2994 }
2995
2996 /**
2997 * srpt_queue_response() - Transmits the response to a SCSI command.
2998 *
2999 * Callback function called by the TCM core. Must not block since it can be
3000 * invoked on the context of the IB completion handler.
3001 */
3002 static void srpt_queue_response(struct se_cmd *cmd)
3003 {
3004 struct srpt_rdma_ch *ch;
3005 struct srpt_send_ioctx *ioctx;
3006 enum srpt_command_state state;
3007 unsigned long flags;
3008 int ret;
3009 enum dma_data_direction dir;
3010 int resp_len;
3011 u8 srp_tm_status;
3012
3013 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
3014 ch = ioctx->ch;
3015 BUG_ON(!ch);
3016
3017 spin_lock_irqsave(&ioctx->spinlock, flags);
3018 state = ioctx->state;
3019 switch (state) {
3020 case SRPT_STATE_NEW:
3021 case SRPT_STATE_DATA_IN:
3022 ioctx->state = SRPT_STATE_CMD_RSP_SENT;
3023 break;
3024 case SRPT_STATE_MGMT:
3025 ioctx->state = SRPT_STATE_MGMT_RSP_SENT;
3026 break;
3027 default:
3028 WARN(true, "ch %p; cmd %d: unexpected command state %d\n",
3029 ch, ioctx->ioctx.index, ioctx->state);
3030 break;
3031 }
3032 spin_unlock_irqrestore(&ioctx->spinlock, flags);
3033
3034 if (unlikely(transport_check_aborted_status(&ioctx->cmd, false)
3035 || WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))) {
3036 atomic_inc(&ch->req_lim_delta);
3037 srpt_abort_cmd(ioctx);
3038 return;
3039 }
3040
3041 dir = ioctx->cmd.data_direction;
3042
3043 /* For read commands, transfer the data to the initiator. */
3044 if (dir == DMA_FROM_DEVICE && ioctx->cmd.data_length &&
3045 !ioctx->queue_status_only) {
3046 ret = srpt_xfer_data(ch, ioctx);
3047 if (ret) {
3048 pr_err("xfer_data failed for tag %llu\n",
3049 ioctx->cmd.tag);
3050 return;
3051 }
3052 }
3053
3054 if (state != SRPT_STATE_MGMT)
3055 resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->cmd.tag,
3056 cmd->scsi_status);
3057 else {
3058 srp_tm_status
3059 = tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response);
3060 resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status,
3061 ioctx->cmd.tag);
3062 }
3063 ret = srpt_post_send(ch, ioctx, resp_len);
3064 if (ret) {
3065 pr_err("sending cmd response failed for tag %llu\n",
3066 ioctx->cmd.tag);
3067 srpt_unmap_sg_to_ib_sge(ch, ioctx);
3068 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
3069 target_put_sess_cmd(&ioctx->cmd);
3070 }
3071 }
3072
3073 static int srpt_queue_data_in(struct se_cmd *cmd)
3074 {
3075 srpt_queue_response(cmd);
3076 return 0;
3077 }
3078
3079 static void srpt_queue_tm_rsp(struct se_cmd *cmd)
3080 {
3081 srpt_queue_response(cmd);
3082 }
3083
3084 static void srpt_aborted_task(struct se_cmd *cmd)
3085 {
3086 struct srpt_send_ioctx *ioctx = container_of(cmd,
3087 struct srpt_send_ioctx, cmd);
3088
3089 srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx);
3090 }
3091
3092 static int srpt_queue_status(struct se_cmd *cmd)
3093 {
3094 struct srpt_send_ioctx *ioctx;
3095
3096 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
3097 BUG_ON(ioctx->sense_data != cmd->sense_buffer);
3098 if (cmd->se_cmd_flags &
3099 (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE))
3100 WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION);
3101 ioctx->queue_status_only = true;
3102 srpt_queue_response(cmd);
3103 return 0;
3104 }
3105
3106 static void srpt_refresh_port_work(struct work_struct *work)
3107 {
3108 struct srpt_port *sport = container_of(work, struct srpt_port, work);
3109
3110 srpt_refresh_port(sport);
3111 }
3112
3113 static int srpt_ch_list_empty(struct srpt_device *sdev)
3114 {
3115 int res;
3116
3117 spin_lock_irq(&sdev->spinlock);
3118 res = list_empty(&sdev->rch_list);
3119 spin_unlock_irq(&sdev->spinlock);
3120
3121 return res;
3122 }
3123
3124 /**
3125 * srpt_release_sdev() - Free the channel resources associated with a target.
3126 */
3127 static int srpt_release_sdev(struct srpt_device *sdev)
3128 {
3129 struct srpt_rdma_ch *ch, *tmp_ch;
3130 int res;
3131
3132 WARN_ON_ONCE(irqs_disabled());
3133
3134 BUG_ON(!sdev);
3135
3136 spin_lock_irq(&sdev->spinlock);
3137 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list)
3138 __srpt_close_ch(ch);
3139 spin_unlock_irq(&sdev->spinlock);
3140
3141 res = wait_event_interruptible(sdev->ch_releaseQ,
3142 srpt_ch_list_empty(sdev));
3143 if (res)
3144 pr_err("%s: interrupted.\n", __func__);
3145
3146 return 0;
3147 }
3148
3149 static struct srpt_port *__srpt_lookup_port(const char *name)
3150 {
3151 struct ib_device *dev;
3152 struct srpt_device *sdev;
3153 struct srpt_port *sport;
3154 int i;
3155
3156 list_for_each_entry(sdev, &srpt_dev_list, list) {
3157 dev = sdev->device;
3158 if (!dev)
3159 continue;
3160
3161 for (i = 0; i < dev->phys_port_cnt; i++) {
3162 sport = &sdev->port[i];
3163
3164 if (!strcmp(sport->port_guid, name))
3165 return sport;
3166 }
3167 }
3168
3169 return NULL;
3170 }
3171
3172 static struct srpt_port *srpt_lookup_port(const char *name)
3173 {
3174 struct srpt_port *sport;
3175
3176 spin_lock(&srpt_dev_lock);
3177 sport = __srpt_lookup_port(name);
3178 spin_unlock(&srpt_dev_lock);
3179
3180 return sport;
3181 }
3182
3183 /**
3184 * srpt_add_one() - Infiniband device addition callback function.
3185 */
3186 static void srpt_add_one(struct ib_device *device)
3187 {
3188 struct srpt_device *sdev;
3189 struct srpt_port *sport;
3190 struct ib_srq_init_attr srq_attr;
3191 int i;
3192
3193 pr_debug("device = %p, device->dma_ops = %p\n", device,
3194 device->dma_ops);
3195
3196 sdev = kzalloc(sizeof *sdev, GFP_KERNEL);
3197 if (!sdev)
3198 goto err;
3199
3200 sdev->device = device;
3201 INIT_LIST_HEAD(&sdev->rch_list);
3202 init_waitqueue_head(&sdev->ch_releaseQ);
3203 spin_lock_init(&sdev->spinlock);
3204
3205 if (ib_query_device(device, &sdev->dev_attr))
3206 goto free_dev;
3207
3208 sdev->pd = ib_alloc_pd(device);
3209 if (IS_ERR(sdev->pd))
3210 goto free_dev;
3211
3212 sdev->mr = ib_get_dma_mr(sdev->pd, IB_ACCESS_LOCAL_WRITE);
3213 if (IS_ERR(sdev->mr))
3214 goto err_pd;
3215
3216 sdev->srq_size = min(srpt_srq_size, sdev->dev_attr.max_srq_wr);
3217
3218 srq_attr.event_handler = srpt_srq_event;
3219 srq_attr.srq_context = (void *)sdev;
3220 srq_attr.attr.max_wr = sdev->srq_size;
3221 srq_attr.attr.max_sge = 1;
3222 srq_attr.attr.srq_limit = 0;
3223 srq_attr.srq_type = IB_SRQT_BASIC;
3224
3225 sdev->srq = ib_create_srq(sdev->pd, &srq_attr);
3226 if (IS_ERR(sdev->srq))
3227 goto err_mr;
3228
3229 pr_debug("%s: create SRQ #wr= %d max_allow=%d dev= %s\n",
3230 __func__, sdev->srq_size, sdev->dev_attr.max_srq_wr,
3231 device->name);
3232
3233 if (!srpt_service_guid)
3234 srpt_service_guid = be64_to_cpu(device->node_guid);
3235
3236 sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev);
3237 if (IS_ERR(sdev->cm_id))
3238 goto err_srq;
3239
3240 /* print out target login information */
3241 pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,"
3242 "pkey=ffff,service_id=%016llx\n", srpt_service_guid,
3243 srpt_service_guid, srpt_service_guid);
3244
3245 /*
3246 * We do not have a consistent service_id (ie. also id_ext of target_id)
3247 * to identify this target. We currently use the guid of the first HCA
3248 * in the system as service_id; therefore, the target_id will change
3249 * if this HCA is gone bad and replaced by different HCA
3250 */
3251 if (ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0, NULL))
3252 goto err_cm;
3253
3254 INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device,
3255 srpt_event_handler);
3256 if (ib_register_event_handler(&sdev->event_handler))
3257 goto err_cm;
3258
3259 sdev->ioctx_ring = (struct srpt_recv_ioctx **)
3260 srpt_alloc_ioctx_ring(sdev, sdev->srq_size,
3261 sizeof(*sdev->ioctx_ring[0]),
3262 srp_max_req_size, DMA_FROM_DEVICE);
3263 if (!sdev->ioctx_ring)
3264 goto err_event;
3265
3266 for (i = 0; i < sdev->srq_size; ++i)
3267 srpt_post_recv(sdev, sdev->ioctx_ring[i]);
3268
3269 WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port));
3270
3271 for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
3272 sport = &sdev->port[i - 1];
3273 sport->sdev = sdev;
3274 sport->port = i;
3275 sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE;
3276 sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE;
3277 sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE;
3278 INIT_WORK(&sport->work, srpt_refresh_port_work);
3279 INIT_LIST_HEAD(&sport->port_acl_list);
3280 spin_lock_init(&sport->port_acl_lock);
3281
3282 if (srpt_refresh_port(sport)) {
3283 pr_err("MAD registration failed for %s-%d.\n",
3284 srpt_sdev_name(sdev), i);
3285 goto err_ring;
3286 }
3287 snprintf(sport->port_guid, sizeof(sport->port_guid),
3288 "0x%016llx%016llx",
3289 be64_to_cpu(sport->gid.global.subnet_prefix),
3290 be64_to_cpu(sport->gid.global.interface_id));
3291 }
3292
3293 spin_lock(&srpt_dev_lock);
3294 list_add_tail(&sdev->list, &srpt_dev_list);
3295 spin_unlock(&srpt_dev_lock);
3296
3297 out:
3298 ib_set_client_data(device, &srpt_client, sdev);
3299 pr_debug("added %s.\n", device->name);
3300 return;
3301
3302 err_ring:
3303 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3304 sdev->srq_size, srp_max_req_size,
3305 DMA_FROM_DEVICE);
3306 err_event:
3307 ib_unregister_event_handler(&sdev->event_handler);
3308 err_cm:
3309 ib_destroy_cm_id(sdev->cm_id);
3310 err_srq:
3311 ib_destroy_srq(sdev->srq);
3312 err_mr:
3313 ib_dereg_mr(sdev->mr);
3314 err_pd:
3315 ib_dealloc_pd(sdev->pd);
3316 free_dev:
3317 kfree(sdev);
3318 err:
3319 sdev = NULL;
3320 pr_info("%s(%s) failed.\n", __func__, device->name);
3321 goto out;
3322 }
3323
3324 /**
3325 * srpt_remove_one() - InfiniBand device removal callback function.
3326 */
3327 static void srpt_remove_one(struct ib_device *device)
3328 {
3329 struct srpt_device *sdev;
3330 int i;
3331
3332 sdev = ib_get_client_data(device, &srpt_client);
3333 if (!sdev) {
3334 pr_info("%s(%s): nothing to do.\n", __func__, device->name);
3335 return;
3336 }
3337
3338 srpt_unregister_mad_agent(sdev);
3339
3340 ib_unregister_event_handler(&sdev->event_handler);
3341
3342 /* Cancel any work queued by the just unregistered IB event handler. */
3343 for (i = 0; i < sdev->device->phys_port_cnt; i++)
3344 cancel_work_sync(&sdev->port[i].work);
3345
3346 ib_destroy_cm_id(sdev->cm_id);
3347
3348 /*
3349 * Unregistering a target must happen after destroying sdev->cm_id
3350 * such that no new SRP_LOGIN_REQ information units can arrive while
3351 * destroying the target.
3352 */
3353 spin_lock(&srpt_dev_lock);
3354 list_del(&sdev->list);
3355 spin_unlock(&srpt_dev_lock);
3356 srpt_release_sdev(sdev);
3357
3358 ib_destroy_srq(sdev->srq);
3359 ib_dereg_mr(sdev->mr);
3360 ib_dealloc_pd(sdev->pd);
3361
3362 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3363 sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE);
3364 sdev->ioctx_ring = NULL;
3365 kfree(sdev);
3366 }
3367
3368 static struct ib_client srpt_client = {
3369 .name = DRV_NAME,
3370 .add = srpt_add_one,
3371 .remove = srpt_remove_one
3372 };
3373
3374 static int srpt_check_true(struct se_portal_group *se_tpg)
3375 {
3376 return 1;
3377 }
3378
3379 static int srpt_check_false(struct se_portal_group *se_tpg)
3380 {
3381 return 0;
3382 }
3383
3384 static char *srpt_get_fabric_name(void)
3385 {
3386 return "srpt";
3387 }
3388
3389 static char *srpt_get_fabric_wwn(struct se_portal_group *tpg)
3390 {
3391 struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1);
3392
3393 return sport->port_guid;
3394 }
3395
3396 static u16 srpt_get_tag(struct se_portal_group *tpg)
3397 {
3398 return 1;
3399 }
3400
3401 static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg)
3402 {
3403 return 1;
3404 }
3405
3406 static void srpt_release_cmd(struct se_cmd *se_cmd)
3407 {
3408 struct srpt_send_ioctx *ioctx = container_of(se_cmd,
3409 struct srpt_send_ioctx, cmd);
3410 struct srpt_rdma_ch *ch = ioctx->ch;
3411 unsigned long flags;
3412
3413 WARN_ON(ioctx->state != SRPT_STATE_DONE);
3414 WARN_ON(ioctx->mapped_sg_count != 0);
3415
3416 if (ioctx->n_rbuf > 1) {
3417 kfree(ioctx->rbufs);
3418 ioctx->rbufs = NULL;
3419 ioctx->n_rbuf = 0;
3420 }
3421
3422 spin_lock_irqsave(&ch->spinlock, flags);
3423 list_add(&ioctx->free_list, &ch->free_list);
3424 spin_unlock_irqrestore(&ch->spinlock, flags);
3425 }
3426
3427 /**
3428 * srpt_close_session() - Forcibly close a session.
3429 *
3430 * Callback function invoked by the TCM core to clean up sessions associated
3431 * with a node ACL when the user invokes
3432 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3433 */
3434 static void srpt_close_session(struct se_session *se_sess)
3435 {
3436 DECLARE_COMPLETION_ONSTACK(release_done);
3437 struct srpt_rdma_ch *ch;
3438 struct srpt_device *sdev;
3439 unsigned long res;
3440
3441 ch = se_sess->fabric_sess_ptr;
3442 WARN_ON(ch->sess != se_sess);
3443
3444 pr_debug("ch %p state %d\n", ch, srpt_get_ch_state(ch));
3445
3446 sdev = ch->sport->sdev;
3447 spin_lock_irq(&sdev->spinlock);
3448 BUG_ON(ch->release_done);
3449 ch->release_done = &release_done;
3450 __srpt_close_ch(ch);
3451 spin_unlock_irq(&sdev->spinlock);
3452
3453 res = wait_for_completion_timeout(&release_done, 60 * HZ);
3454 WARN_ON(res == 0);
3455 }
3456
3457 /**
3458 * srpt_sess_get_index() - Return the value of scsiAttIntrPortIndex (SCSI-MIB).
3459 *
3460 * A quote from RFC 4455 (SCSI-MIB) about this MIB object:
3461 * This object represents an arbitrary integer used to uniquely identify a
3462 * particular attached remote initiator port to a particular SCSI target port
3463 * within a particular SCSI target device within a particular SCSI instance.
3464 */
3465 static u32 srpt_sess_get_index(struct se_session *se_sess)
3466 {
3467 return 0;
3468 }
3469
3470 static void srpt_set_default_node_attrs(struct se_node_acl *nacl)
3471 {
3472 }
3473
3474 /* Note: only used from inside debug printk's by the TCM core. */
3475 static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd)
3476 {
3477 struct srpt_send_ioctx *ioctx;
3478
3479 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
3480 return srpt_get_cmd_state(ioctx);
3481 }
3482
3483 /**
3484 * srpt_parse_i_port_id() - Parse an initiator port ID.
3485 * @name: ASCII representation of a 128-bit initiator port ID.
3486 * @i_port_id: Binary 128-bit port ID.
3487 */
3488 static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name)
3489 {
3490 const char *p;
3491 unsigned len, count, leading_zero_bytes;
3492 int ret, rc;
3493
3494 p = name;
3495 if (strncasecmp(p, "0x", 2) == 0)
3496 p += 2;
3497 ret = -EINVAL;
3498 len = strlen(p);
3499 if (len % 2)
3500 goto out;
3501 count = min(len / 2, 16U);
3502 leading_zero_bytes = 16 - count;
3503 memset(i_port_id, 0, leading_zero_bytes);
3504 rc = hex2bin(i_port_id + leading_zero_bytes, p, count);
3505 if (rc < 0)
3506 pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", rc);
3507 ret = 0;
3508 out:
3509 return ret;
3510 }
3511
3512 /*
3513 * configfs callback function invoked for
3514 * mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3515 */
3516 static int srpt_init_nodeacl(struct se_node_acl *se_nacl, const char *name)
3517 {
3518 struct srpt_port *sport =
3519 container_of(se_nacl->se_tpg, struct srpt_port, port_tpg_1);
3520 struct srpt_node_acl *nacl =
3521 container_of(se_nacl, struct srpt_node_acl, nacl);
3522 u8 i_port_id[16];
3523
3524 if (srpt_parse_i_port_id(i_port_id, name) < 0) {
3525 pr_err("invalid initiator port ID %s\n", name);
3526 return -EINVAL;
3527 }
3528
3529 memcpy(&nacl->i_port_id[0], &i_port_id[0], 16);
3530 nacl->sport = sport;
3531
3532 spin_lock_irq(&sport->port_acl_lock);
3533 list_add_tail(&nacl->list, &sport->port_acl_list);
3534 spin_unlock_irq(&sport->port_acl_lock);
3535
3536 return 0;
3537 }
3538
3539 /*
3540 * configfs callback function invoked for
3541 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3542 */
3543 static void srpt_cleanup_nodeacl(struct se_node_acl *se_nacl)
3544 {
3545 struct srpt_node_acl *nacl =
3546 container_of(se_nacl, struct srpt_node_acl, nacl);
3547 struct srpt_port *sport = nacl->sport;
3548
3549 spin_lock_irq(&sport->port_acl_lock);
3550 list_del(&nacl->list);
3551 spin_unlock_irq(&sport->port_acl_lock);
3552 }
3553
3554 static ssize_t srpt_tpg_attrib_show_srp_max_rdma_size(
3555 struct se_portal_group *se_tpg,
3556 char *page)
3557 {
3558 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3559
3560 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size);
3561 }
3562
3563 static ssize_t srpt_tpg_attrib_store_srp_max_rdma_size(
3564 struct se_portal_group *se_tpg,
3565 const char *page,
3566 size_t count)
3567 {
3568 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3569 unsigned long val;
3570 int ret;
3571
3572 ret = kstrtoul(page, 0, &val);
3573 if (ret < 0) {
3574 pr_err("kstrtoul() failed with ret: %d\n", ret);
3575 return -EINVAL;
3576 }
3577 if (val > MAX_SRPT_RDMA_SIZE) {
3578 pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val,
3579 MAX_SRPT_RDMA_SIZE);
3580 return -EINVAL;
3581 }
3582 if (val < DEFAULT_MAX_RDMA_SIZE) {
3583 pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n",
3584 val, DEFAULT_MAX_RDMA_SIZE);
3585 return -EINVAL;
3586 }
3587 sport->port_attrib.srp_max_rdma_size = val;
3588
3589 return count;
3590 }
3591
3592 TF_TPG_ATTRIB_ATTR(srpt, srp_max_rdma_size, S_IRUGO | S_IWUSR);
3593
3594 static ssize_t srpt_tpg_attrib_show_srp_max_rsp_size(
3595 struct se_portal_group *se_tpg,
3596 char *page)
3597 {
3598 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3599
3600 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size);
3601 }
3602
3603 static ssize_t srpt_tpg_attrib_store_srp_max_rsp_size(
3604 struct se_portal_group *se_tpg,
3605 const char *page,
3606 size_t count)
3607 {
3608 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3609 unsigned long val;
3610 int ret;
3611
3612 ret = kstrtoul(page, 0, &val);
3613 if (ret < 0) {
3614 pr_err("kstrtoul() failed with ret: %d\n", ret);
3615 return -EINVAL;
3616 }
3617 if (val > MAX_SRPT_RSP_SIZE) {
3618 pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val,
3619 MAX_SRPT_RSP_SIZE);
3620 return -EINVAL;
3621 }
3622 if (val < MIN_MAX_RSP_SIZE) {
3623 pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val,
3624 MIN_MAX_RSP_SIZE);
3625 return -EINVAL;
3626 }
3627 sport->port_attrib.srp_max_rsp_size = val;
3628
3629 return count;
3630 }
3631
3632 TF_TPG_ATTRIB_ATTR(srpt, srp_max_rsp_size, S_IRUGO | S_IWUSR);
3633
3634 static ssize_t srpt_tpg_attrib_show_srp_sq_size(
3635 struct se_portal_group *se_tpg,
3636 char *page)
3637 {
3638 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3639
3640 return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size);
3641 }
3642
3643 static ssize_t srpt_tpg_attrib_store_srp_sq_size(
3644 struct se_portal_group *se_tpg,
3645 const char *page,
3646 size_t count)
3647 {
3648 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3649 unsigned long val;
3650 int ret;
3651
3652 ret = kstrtoul(page, 0, &val);
3653 if (ret < 0) {
3654 pr_err("kstrtoul() failed with ret: %d\n", ret);
3655 return -EINVAL;
3656 }
3657 if (val > MAX_SRPT_SRQ_SIZE) {
3658 pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val,
3659 MAX_SRPT_SRQ_SIZE);
3660 return -EINVAL;
3661 }
3662 if (val < MIN_SRPT_SRQ_SIZE) {
3663 pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val,
3664 MIN_SRPT_SRQ_SIZE);
3665 return -EINVAL;
3666 }
3667 sport->port_attrib.srp_sq_size = val;
3668
3669 return count;
3670 }
3671
3672 TF_TPG_ATTRIB_ATTR(srpt, srp_sq_size, S_IRUGO | S_IWUSR);
3673
3674 static struct configfs_attribute *srpt_tpg_attrib_attrs[] = {
3675 &srpt_tpg_attrib_srp_max_rdma_size.attr,
3676 &srpt_tpg_attrib_srp_max_rsp_size.attr,
3677 &srpt_tpg_attrib_srp_sq_size.attr,
3678 NULL,
3679 };
3680
3681 static ssize_t srpt_tpg_show_enable(
3682 struct se_portal_group *se_tpg,
3683 char *page)
3684 {
3685 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3686
3687 return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0);
3688 }
3689
3690 static ssize_t srpt_tpg_store_enable(
3691 struct se_portal_group *se_tpg,
3692 const char *page,
3693 size_t count)
3694 {
3695 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3696 unsigned long tmp;
3697 int ret;
3698
3699 ret = kstrtoul(page, 0, &tmp);
3700 if (ret < 0) {
3701 pr_err("Unable to extract srpt_tpg_store_enable\n");
3702 return -EINVAL;
3703 }
3704
3705 if ((tmp != 0) && (tmp != 1)) {
3706 pr_err("Illegal value for srpt_tpg_store_enable: %lu\n", tmp);
3707 return -EINVAL;
3708 }
3709 if (tmp == 1)
3710 sport->enabled = true;
3711 else
3712 sport->enabled = false;
3713
3714 return count;
3715 }
3716
3717 TF_TPG_BASE_ATTR(srpt, enable, S_IRUGO | S_IWUSR);
3718
3719 static struct configfs_attribute *srpt_tpg_attrs[] = {
3720 &srpt_tpg_enable.attr,
3721 NULL,
3722 };
3723
3724 /**
3725 * configfs callback invoked for
3726 * mkdir /sys/kernel/config/target/$driver/$port/$tpg
3727 */
3728 static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn,
3729 struct config_group *group,
3730 const char *name)
3731 {
3732 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
3733 int res;
3734
3735 /* Initialize sport->port_wwn and sport->port_tpg_1 */
3736 res = core_tpg_register(&srpt_template, &sport->port_wwn,
3737 &sport->port_tpg_1, SCSI_PROTOCOL_SRP);
3738 if (res)
3739 return ERR_PTR(res);
3740
3741 return &sport->port_tpg_1;
3742 }
3743
3744 /**
3745 * configfs callback invoked for
3746 * rmdir /sys/kernel/config/target/$driver/$port/$tpg
3747 */
3748 static void srpt_drop_tpg(struct se_portal_group *tpg)
3749 {
3750 struct srpt_port *sport = container_of(tpg,
3751 struct srpt_port, port_tpg_1);
3752
3753 sport->enabled = false;
3754 core_tpg_deregister(&sport->port_tpg_1);
3755 }
3756
3757 /**
3758 * configfs callback invoked for
3759 * mkdir /sys/kernel/config/target/$driver/$port
3760 */
3761 static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf,
3762 struct config_group *group,
3763 const char *name)
3764 {
3765 struct srpt_port *sport;
3766 int ret;
3767
3768 sport = srpt_lookup_port(name);
3769 pr_debug("make_tport(%s)\n", name);
3770 ret = -EINVAL;
3771 if (!sport)
3772 goto err;
3773
3774 return &sport->port_wwn;
3775
3776 err:
3777 return ERR_PTR(ret);
3778 }
3779
3780 /**
3781 * configfs callback invoked for
3782 * rmdir /sys/kernel/config/target/$driver/$port
3783 */
3784 static void srpt_drop_tport(struct se_wwn *wwn)
3785 {
3786 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
3787
3788 pr_debug("drop_tport(%s\n", config_item_name(&sport->port_wwn.wwn_group.cg_item));
3789 }
3790
3791 static ssize_t srpt_wwn_show_attr_version(struct target_fabric_configfs *tf,
3792 char *buf)
3793 {
3794 return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION);
3795 }
3796
3797 TF_WWN_ATTR_RO(srpt, version);
3798
3799 static struct configfs_attribute *srpt_wwn_attrs[] = {
3800 &srpt_wwn_version.attr,
3801 NULL,
3802 };
3803
3804 static const struct target_core_fabric_ops srpt_template = {
3805 .module = THIS_MODULE,
3806 .name = "srpt",
3807 .node_acl_size = sizeof(struct srpt_node_acl),
3808 .get_fabric_name = srpt_get_fabric_name,
3809 .tpg_get_wwn = srpt_get_fabric_wwn,
3810 .tpg_get_tag = srpt_get_tag,
3811 .tpg_check_demo_mode = srpt_check_false,
3812 .tpg_check_demo_mode_cache = srpt_check_true,
3813 .tpg_check_demo_mode_write_protect = srpt_check_true,
3814 .tpg_check_prod_mode_write_protect = srpt_check_false,
3815 .tpg_get_inst_index = srpt_tpg_get_inst_index,
3816 .release_cmd = srpt_release_cmd,
3817 .check_stop_free = srpt_check_stop_free,
3818 .shutdown_session = srpt_shutdown_session,
3819 .close_session = srpt_close_session,
3820 .sess_get_index = srpt_sess_get_index,
3821 .sess_get_initiator_sid = NULL,
3822 .write_pending = srpt_write_pending,
3823 .write_pending_status = srpt_write_pending_status,
3824 .set_default_node_attributes = srpt_set_default_node_attrs,
3825 .get_cmd_state = srpt_get_tcm_cmd_state,
3826 .queue_data_in = srpt_queue_data_in,
3827 .queue_status = srpt_queue_status,
3828 .queue_tm_rsp = srpt_queue_tm_rsp,
3829 .aborted_task = srpt_aborted_task,
3830 /*
3831 * Setup function pointers for generic logic in
3832 * target_core_fabric_configfs.c
3833 */
3834 .fabric_make_wwn = srpt_make_tport,
3835 .fabric_drop_wwn = srpt_drop_tport,
3836 .fabric_make_tpg = srpt_make_tpg,
3837 .fabric_drop_tpg = srpt_drop_tpg,
3838 .fabric_init_nodeacl = srpt_init_nodeacl,
3839 .fabric_cleanup_nodeacl = srpt_cleanup_nodeacl,
3840
3841 .tfc_wwn_attrs = srpt_wwn_attrs,
3842 .tfc_tpg_base_attrs = srpt_tpg_attrs,
3843 .tfc_tpg_attrib_attrs = srpt_tpg_attrib_attrs,
3844 };
3845
3846 /**
3847 * srpt_init_module() - Kernel module initialization.
3848 *
3849 * Note: Since ib_register_client() registers callback functions, and since at
3850 * least one of these callback functions (srpt_add_one()) calls target core
3851 * functions, this driver must be registered with the target core before
3852 * ib_register_client() is called.
3853 */
3854 static int __init srpt_init_module(void)
3855 {
3856 int ret;
3857
3858 ret = -EINVAL;
3859 if (srp_max_req_size < MIN_MAX_REQ_SIZE) {
3860 pr_err("invalid value %d for kernel module parameter"
3861 " srp_max_req_size -- must be at least %d.\n",
3862 srp_max_req_size, MIN_MAX_REQ_SIZE);
3863 goto out;
3864 }
3865
3866 if (srpt_srq_size < MIN_SRPT_SRQ_SIZE
3867 || srpt_srq_size > MAX_SRPT_SRQ_SIZE) {
3868 pr_err("invalid value %d for kernel module parameter"
3869 " srpt_srq_size -- must be in the range [%d..%d].\n",
3870 srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE);
3871 goto out;
3872 }
3873
3874 ret = target_register_template(&srpt_template);
3875 if (ret)
3876 goto out;
3877
3878 ret = ib_register_client(&srpt_client);
3879 if (ret) {
3880 pr_err("couldn't register IB client\n");
3881 goto out_unregister_target;
3882 }
3883
3884 return 0;
3885
3886 out_unregister_target:
3887 target_unregister_template(&srpt_template);
3888 out:
3889 return ret;
3890 }
3891
3892 static void __exit srpt_cleanup_module(void)
3893 {
3894 ib_unregister_client(&srpt_client);
3895 target_unregister_template(&srpt_template);
3896 }
3897
3898 module_init(srpt_init_module);
3899 module_exit(srpt_cleanup_module);
This page took 0.173626 seconds and 5 git commands to generate.