Merge tag 'samsung-fixes-v3.18' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / drivers / infiniband / ulp / srpt / ib_srpt.c
1 /*
2 * Copyright (c) 2006 - 2009 Mellanox Technology Inc. All rights reserved.
3 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 *
33 */
34
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/err.h>
39 #include <linux/ctype.h>
40 #include <linux/kthread.h>
41 #include <linux/string.h>
42 #include <linux/delay.h>
43 #include <linux/atomic.h>
44 #include <scsi/scsi_tcq.h>
45 #include <target/configfs_macros.h>
46 #include <target/target_core_base.h>
47 #include <target/target_core_fabric_configfs.h>
48 #include <target/target_core_fabric.h>
49 #include <target/target_core_configfs.h>
50 #include "ib_srpt.h"
51
52 /* Name of this kernel module. */
53 #define DRV_NAME "ib_srpt"
54 #define DRV_VERSION "2.0.0"
55 #define DRV_RELDATE "2011-02-14"
56
57 #define SRPT_ID_STRING "Linux SRP target"
58
59 #undef pr_fmt
60 #define pr_fmt(fmt) DRV_NAME " " fmt
61
62 MODULE_AUTHOR("Vu Pham and Bart Van Assche");
63 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target "
64 "v" DRV_VERSION " (" DRV_RELDATE ")");
65 MODULE_LICENSE("Dual BSD/GPL");
66
67 /*
68 * Global Variables
69 */
70
71 static u64 srpt_service_guid;
72 static DEFINE_SPINLOCK(srpt_dev_lock); /* Protects srpt_dev_list. */
73 static LIST_HEAD(srpt_dev_list); /* List of srpt_device structures. */
74
75 static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE;
76 module_param(srp_max_req_size, int, 0444);
77 MODULE_PARM_DESC(srp_max_req_size,
78 "Maximum size of SRP request messages in bytes.");
79
80 static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE;
81 module_param(srpt_srq_size, int, 0444);
82 MODULE_PARM_DESC(srpt_srq_size,
83 "Shared receive queue (SRQ) size.");
84
85 static int srpt_get_u64_x(char *buffer, struct kernel_param *kp)
86 {
87 return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg);
88 }
89 module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid,
90 0444);
91 MODULE_PARM_DESC(srpt_service_guid,
92 "Using this value for ioc_guid, id_ext, and cm_listen_id"
93 " instead of using the node_guid of the first HCA.");
94
95 static struct ib_client srpt_client;
96 static struct target_fabric_configfs *srpt_target;
97 static void srpt_release_channel(struct srpt_rdma_ch *ch);
98 static int srpt_queue_status(struct se_cmd *cmd);
99
100 /**
101 * opposite_dma_dir() - Swap DMA_TO_DEVICE and DMA_FROM_DEVICE.
102 */
103 static inline
104 enum dma_data_direction opposite_dma_dir(enum dma_data_direction dir)
105 {
106 switch (dir) {
107 case DMA_TO_DEVICE: return DMA_FROM_DEVICE;
108 case DMA_FROM_DEVICE: return DMA_TO_DEVICE;
109 default: return dir;
110 }
111 }
112
113 /**
114 * srpt_sdev_name() - Return the name associated with the HCA.
115 *
116 * Examples are ib0, ib1, ...
117 */
118 static inline const char *srpt_sdev_name(struct srpt_device *sdev)
119 {
120 return sdev->device->name;
121 }
122
123 static enum rdma_ch_state srpt_get_ch_state(struct srpt_rdma_ch *ch)
124 {
125 unsigned long flags;
126 enum rdma_ch_state state;
127
128 spin_lock_irqsave(&ch->spinlock, flags);
129 state = ch->state;
130 spin_unlock_irqrestore(&ch->spinlock, flags);
131 return state;
132 }
133
134 static enum rdma_ch_state
135 srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new_state)
136 {
137 unsigned long flags;
138 enum rdma_ch_state prev;
139
140 spin_lock_irqsave(&ch->spinlock, flags);
141 prev = ch->state;
142 ch->state = new_state;
143 spin_unlock_irqrestore(&ch->spinlock, flags);
144 return prev;
145 }
146
147 /**
148 * srpt_test_and_set_ch_state() - Test and set the channel state.
149 *
150 * Returns true if and only if the channel state has been set to the new state.
151 */
152 static bool
153 srpt_test_and_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state old,
154 enum rdma_ch_state new)
155 {
156 unsigned long flags;
157 enum rdma_ch_state prev;
158
159 spin_lock_irqsave(&ch->spinlock, flags);
160 prev = ch->state;
161 if (prev == old)
162 ch->state = new;
163 spin_unlock_irqrestore(&ch->spinlock, flags);
164 return prev == old;
165 }
166
167 /**
168 * srpt_event_handler() - Asynchronous IB event callback function.
169 *
170 * Callback function called by the InfiniBand core when an asynchronous IB
171 * event occurs. This callback may occur in interrupt context. See also
172 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand
173 * Architecture Specification.
174 */
175 static void srpt_event_handler(struct ib_event_handler *handler,
176 struct ib_event *event)
177 {
178 struct srpt_device *sdev;
179 struct srpt_port *sport;
180
181 sdev = ib_get_client_data(event->device, &srpt_client);
182 if (!sdev || sdev->device != event->device)
183 return;
184
185 pr_debug("ASYNC event= %d on device= %s\n", event->event,
186 srpt_sdev_name(sdev));
187
188 switch (event->event) {
189 case IB_EVENT_PORT_ERR:
190 if (event->element.port_num <= sdev->device->phys_port_cnt) {
191 sport = &sdev->port[event->element.port_num - 1];
192 sport->lid = 0;
193 sport->sm_lid = 0;
194 }
195 break;
196 case IB_EVENT_PORT_ACTIVE:
197 case IB_EVENT_LID_CHANGE:
198 case IB_EVENT_PKEY_CHANGE:
199 case IB_EVENT_SM_CHANGE:
200 case IB_EVENT_CLIENT_REREGISTER:
201 case IB_EVENT_GID_CHANGE:
202 /* Refresh port data asynchronously. */
203 if (event->element.port_num <= sdev->device->phys_port_cnt) {
204 sport = &sdev->port[event->element.port_num - 1];
205 if (!sport->lid && !sport->sm_lid)
206 schedule_work(&sport->work);
207 }
208 break;
209 default:
210 printk(KERN_ERR "received unrecognized IB event %d\n",
211 event->event);
212 break;
213 }
214 }
215
216 /**
217 * srpt_srq_event() - SRQ event callback function.
218 */
219 static void srpt_srq_event(struct ib_event *event, void *ctx)
220 {
221 printk(KERN_INFO "SRQ event %d\n", event->event);
222 }
223
224 /**
225 * srpt_qp_event() - QP event callback function.
226 */
227 static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch)
228 {
229 pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n",
230 event->event, ch->cm_id, ch->sess_name, srpt_get_ch_state(ch));
231
232 switch (event->event) {
233 case IB_EVENT_COMM_EST:
234 ib_cm_notify(ch->cm_id, event->event);
235 break;
236 case IB_EVENT_QP_LAST_WQE_REACHED:
237 if (srpt_test_and_set_ch_state(ch, CH_DRAINING,
238 CH_RELEASING))
239 srpt_release_channel(ch);
240 else
241 pr_debug("%s: state %d - ignored LAST_WQE.\n",
242 ch->sess_name, srpt_get_ch_state(ch));
243 break;
244 default:
245 printk(KERN_ERR "received unrecognized IB QP event %d\n",
246 event->event);
247 break;
248 }
249 }
250
251 /**
252 * srpt_set_ioc() - Helper function for initializing an IOUnitInfo structure.
253 *
254 * @slot: one-based slot number.
255 * @value: four-bit value.
256 *
257 * Copies the lowest four bits of value in element slot of the array of four
258 * bit elements called c_list (controller list). The index slot is one-based.
259 */
260 static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value)
261 {
262 u16 id;
263 u8 tmp;
264
265 id = (slot - 1) / 2;
266 if (slot & 0x1) {
267 tmp = c_list[id] & 0xf;
268 c_list[id] = (value << 4) | tmp;
269 } else {
270 tmp = c_list[id] & 0xf0;
271 c_list[id] = (value & 0xf) | tmp;
272 }
273 }
274
275 /**
276 * srpt_get_class_port_info() - Copy ClassPortInfo to a management datagram.
277 *
278 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture
279 * Specification.
280 */
281 static void srpt_get_class_port_info(struct ib_dm_mad *mad)
282 {
283 struct ib_class_port_info *cif;
284
285 cif = (struct ib_class_port_info *)mad->data;
286 memset(cif, 0, sizeof *cif);
287 cif->base_version = 1;
288 cif->class_version = 1;
289 cif->resp_time_value = 20;
290
291 mad->mad_hdr.status = 0;
292 }
293
294 /**
295 * srpt_get_iou() - Write IOUnitInfo to a management datagram.
296 *
297 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture
298 * Specification. See also section B.7, table B.6 in the SRP r16a document.
299 */
300 static void srpt_get_iou(struct ib_dm_mad *mad)
301 {
302 struct ib_dm_iou_info *ioui;
303 u8 slot;
304 int i;
305
306 ioui = (struct ib_dm_iou_info *)mad->data;
307 ioui->change_id = __constant_cpu_to_be16(1);
308 ioui->max_controllers = 16;
309
310 /* set present for slot 1 and empty for the rest */
311 srpt_set_ioc(ioui->controller_list, 1, 1);
312 for (i = 1, slot = 2; i < 16; i++, slot++)
313 srpt_set_ioc(ioui->controller_list, slot, 0);
314
315 mad->mad_hdr.status = 0;
316 }
317
318 /**
319 * srpt_get_ioc() - Write IOControllerprofile to a management datagram.
320 *
321 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand
322 * Architecture Specification. See also section B.7, table B.7 in the SRP
323 * r16a document.
324 */
325 static void srpt_get_ioc(struct srpt_port *sport, u32 slot,
326 struct ib_dm_mad *mad)
327 {
328 struct srpt_device *sdev = sport->sdev;
329 struct ib_dm_ioc_profile *iocp;
330
331 iocp = (struct ib_dm_ioc_profile *)mad->data;
332
333 if (!slot || slot > 16) {
334 mad->mad_hdr.status
335 = __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
336 return;
337 }
338
339 if (slot > 2) {
340 mad->mad_hdr.status
341 = __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC);
342 return;
343 }
344
345 memset(iocp, 0, sizeof *iocp);
346 strcpy(iocp->id_string, SRPT_ID_STRING);
347 iocp->guid = cpu_to_be64(srpt_service_guid);
348 iocp->vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id);
349 iocp->device_id = cpu_to_be32(sdev->dev_attr.vendor_part_id);
350 iocp->device_version = cpu_to_be16(sdev->dev_attr.hw_ver);
351 iocp->subsys_vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id);
352 iocp->subsys_device_id = 0x0;
353 iocp->io_class = __constant_cpu_to_be16(SRP_REV16A_IB_IO_CLASS);
354 iocp->io_subclass = __constant_cpu_to_be16(SRP_IO_SUBCLASS);
355 iocp->protocol = __constant_cpu_to_be16(SRP_PROTOCOL);
356 iocp->protocol_version = __constant_cpu_to_be16(SRP_PROTOCOL_VERSION);
357 iocp->send_queue_depth = cpu_to_be16(sdev->srq_size);
358 iocp->rdma_read_depth = 4;
359 iocp->send_size = cpu_to_be32(srp_max_req_size);
360 iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size,
361 1U << 24));
362 iocp->num_svc_entries = 1;
363 iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC |
364 SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC;
365
366 mad->mad_hdr.status = 0;
367 }
368
369 /**
370 * srpt_get_svc_entries() - Write ServiceEntries to a management datagram.
371 *
372 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture
373 * Specification. See also section B.7, table B.8 in the SRP r16a document.
374 */
375 static void srpt_get_svc_entries(u64 ioc_guid,
376 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad)
377 {
378 struct ib_dm_svc_entries *svc_entries;
379
380 WARN_ON(!ioc_guid);
381
382 if (!slot || slot > 16) {
383 mad->mad_hdr.status
384 = __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
385 return;
386 }
387
388 if (slot > 2 || lo > hi || hi > 1) {
389 mad->mad_hdr.status
390 = __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC);
391 return;
392 }
393
394 svc_entries = (struct ib_dm_svc_entries *)mad->data;
395 memset(svc_entries, 0, sizeof *svc_entries);
396 svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid);
397 snprintf(svc_entries->service_entries[0].name,
398 sizeof(svc_entries->service_entries[0].name),
399 "%s%016llx",
400 SRP_SERVICE_NAME_PREFIX,
401 ioc_guid);
402
403 mad->mad_hdr.status = 0;
404 }
405
406 /**
407 * srpt_mgmt_method_get() - Process a received management datagram.
408 * @sp: source port through which the MAD has been received.
409 * @rq_mad: received MAD.
410 * @rsp_mad: response MAD.
411 */
412 static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad,
413 struct ib_dm_mad *rsp_mad)
414 {
415 u16 attr_id;
416 u32 slot;
417 u8 hi, lo;
418
419 attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id);
420 switch (attr_id) {
421 case DM_ATTR_CLASS_PORT_INFO:
422 srpt_get_class_port_info(rsp_mad);
423 break;
424 case DM_ATTR_IOU_INFO:
425 srpt_get_iou(rsp_mad);
426 break;
427 case DM_ATTR_IOC_PROFILE:
428 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
429 srpt_get_ioc(sp, slot, rsp_mad);
430 break;
431 case DM_ATTR_SVC_ENTRIES:
432 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
433 hi = (u8) ((slot >> 8) & 0xff);
434 lo = (u8) (slot & 0xff);
435 slot = (u16) ((slot >> 16) & 0xffff);
436 srpt_get_svc_entries(srpt_service_guid,
437 slot, hi, lo, rsp_mad);
438 break;
439 default:
440 rsp_mad->mad_hdr.status =
441 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
442 break;
443 }
444 }
445
446 /**
447 * srpt_mad_send_handler() - Post MAD-send callback function.
448 */
449 static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent,
450 struct ib_mad_send_wc *mad_wc)
451 {
452 ib_destroy_ah(mad_wc->send_buf->ah);
453 ib_free_send_mad(mad_wc->send_buf);
454 }
455
456 /**
457 * srpt_mad_recv_handler() - MAD reception callback function.
458 */
459 static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent,
460 struct ib_mad_recv_wc *mad_wc)
461 {
462 struct srpt_port *sport = (struct srpt_port *)mad_agent->context;
463 struct ib_ah *ah;
464 struct ib_mad_send_buf *rsp;
465 struct ib_dm_mad *dm_mad;
466
467 if (!mad_wc || !mad_wc->recv_buf.mad)
468 return;
469
470 ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc,
471 mad_wc->recv_buf.grh, mad_agent->port_num);
472 if (IS_ERR(ah))
473 goto err;
474
475 BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR);
476
477 rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp,
478 mad_wc->wc->pkey_index, 0,
479 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA,
480 GFP_KERNEL);
481 if (IS_ERR(rsp))
482 goto err_rsp;
483
484 rsp->ah = ah;
485
486 dm_mad = rsp->mad;
487 memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof *dm_mad);
488 dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP;
489 dm_mad->mad_hdr.status = 0;
490
491 switch (mad_wc->recv_buf.mad->mad_hdr.method) {
492 case IB_MGMT_METHOD_GET:
493 srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad);
494 break;
495 case IB_MGMT_METHOD_SET:
496 dm_mad->mad_hdr.status =
497 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
498 break;
499 default:
500 dm_mad->mad_hdr.status =
501 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD);
502 break;
503 }
504
505 if (!ib_post_send_mad(rsp, NULL)) {
506 ib_free_recv_mad(mad_wc);
507 /* will destroy_ah & free_send_mad in send completion */
508 return;
509 }
510
511 ib_free_send_mad(rsp);
512
513 err_rsp:
514 ib_destroy_ah(ah);
515 err:
516 ib_free_recv_mad(mad_wc);
517 }
518
519 /**
520 * srpt_refresh_port() - Configure a HCA port.
521 *
522 * Enable InfiniBand management datagram processing, update the cached sm_lid,
523 * lid and gid values, and register a callback function for processing MADs
524 * on the specified port.
525 *
526 * Note: It is safe to call this function more than once for the same port.
527 */
528 static int srpt_refresh_port(struct srpt_port *sport)
529 {
530 struct ib_mad_reg_req reg_req;
531 struct ib_port_modify port_modify;
532 struct ib_port_attr port_attr;
533 int ret;
534
535 memset(&port_modify, 0, sizeof port_modify);
536 port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
537 port_modify.clr_port_cap_mask = 0;
538
539 ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
540 if (ret)
541 goto err_mod_port;
542
543 ret = ib_query_port(sport->sdev->device, sport->port, &port_attr);
544 if (ret)
545 goto err_query_port;
546
547 sport->sm_lid = port_attr.sm_lid;
548 sport->lid = port_attr.lid;
549
550 ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid);
551 if (ret)
552 goto err_query_port;
553
554 if (!sport->mad_agent) {
555 memset(&reg_req, 0, sizeof reg_req);
556 reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT;
557 reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION;
558 set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask);
559 set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask);
560
561 sport->mad_agent = ib_register_mad_agent(sport->sdev->device,
562 sport->port,
563 IB_QPT_GSI,
564 &reg_req, 0,
565 srpt_mad_send_handler,
566 srpt_mad_recv_handler,
567 sport, 0);
568 if (IS_ERR(sport->mad_agent)) {
569 ret = PTR_ERR(sport->mad_agent);
570 sport->mad_agent = NULL;
571 goto err_query_port;
572 }
573 }
574
575 return 0;
576
577 err_query_port:
578
579 port_modify.set_port_cap_mask = 0;
580 port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
581 ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
582
583 err_mod_port:
584
585 return ret;
586 }
587
588 /**
589 * srpt_unregister_mad_agent() - Unregister MAD callback functions.
590 *
591 * Note: It is safe to call this function more than once for the same device.
592 */
593 static void srpt_unregister_mad_agent(struct srpt_device *sdev)
594 {
595 struct ib_port_modify port_modify = {
596 .clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP,
597 };
598 struct srpt_port *sport;
599 int i;
600
601 for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
602 sport = &sdev->port[i - 1];
603 WARN_ON(sport->port != i);
604 if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0)
605 printk(KERN_ERR "disabling MAD processing failed.\n");
606 if (sport->mad_agent) {
607 ib_unregister_mad_agent(sport->mad_agent);
608 sport->mad_agent = NULL;
609 }
610 }
611 }
612
613 /**
614 * srpt_alloc_ioctx() - Allocate an SRPT I/O context structure.
615 */
616 static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev,
617 int ioctx_size, int dma_size,
618 enum dma_data_direction dir)
619 {
620 struct srpt_ioctx *ioctx;
621
622 ioctx = kmalloc(ioctx_size, GFP_KERNEL);
623 if (!ioctx)
624 goto err;
625
626 ioctx->buf = kmalloc(dma_size, GFP_KERNEL);
627 if (!ioctx->buf)
628 goto err_free_ioctx;
629
630 ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir);
631 if (ib_dma_mapping_error(sdev->device, ioctx->dma))
632 goto err_free_buf;
633
634 return ioctx;
635
636 err_free_buf:
637 kfree(ioctx->buf);
638 err_free_ioctx:
639 kfree(ioctx);
640 err:
641 return NULL;
642 }
643
644 /**
645 * srpt_free_ioctx() - Free an SRPT I/O context structure.
646 */
647 static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx,
648 int dma_size, enum dma_data_direction dir)
649 {
650 if (!ioctx)
651 return;
652
653 ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir);
654 kfree(ioctx->buf);
655 kfree(ioctx);
656 }
657
658 /**
659 * srpt_alloc_ioctx_ring() - Allocate a ring of SRPT I/O context structures.
660 * @sdev: Device to allocate the I/O context ring for.
661 * @ring_size: Number of elements in the I/O context ring.
662 * @ioctx_size: I/O context size.
663 * @dma_size: DMA buffer size.
664 * @dir: DMA data direction.
665 */
666 static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev,
667 int ring_size, int ioctx_size,
668 int dma_size, enum dma_data_direction dir)
669 {
670 struct srpt_ioctx **ring;
671 int i;
672
673 WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx)
674 && ioctx_size != sizeof(struct srpt_send_ioctx));
675
676 ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL);
677 if (!ring)
678 goto out;
679 for (i = 0; i < ring_size; ++i) {
680 ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir);
681 if (!ring[i])
682 goto err;
683 ring[i]->index = i;
684 }
685 goto out;
686
687 err:
688 while (--i >= 0)
689 srpt_free_ioctx(sdev, ring[i], dma_size, dir);
690 kfree(ring);
691 ring = NULL;
692 out:
693 return ring;
694 }
695
696 /**
697 * srpt_free_ioctx_ring() - Free the ring of SRPT I/O context structures.
698 */
699 static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring,
700 struct srpt_device *sdev, int ring_size,
701 int dma_size, enum dma_data_direction dir)
702 {
703 int i;
704
705 for (i = 0; i < ring_size; ++i)
706 srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir);
707 kfree(ioctx_ring);
708 }
709
710 /**
711 * srpt_get_cmd_state() - Get the state of a SCSI command.
712 */
713 static enum srpt_command_state srpt_get_cmd_state(struct srpt_send_ioctx *ioctx)
714 {
715 enum srpt_command_state state;
716 unsigned long flags;
717
718 BUG_ON(!ioctx);
719
720 spin_lock_irqsave(&ioctx->spinlock, flags);
721 state = ioctx->state;
722 spin_unlock_irqrestore(&ioctx->spinlock, flags);
723 return state;
724 }
725
726 /**
727 * srpt_set_cmd_state() - Set the state of a SCSI command.
728 *
729 * Does not modify the state of aborted commands. Returns the previous command
730 * state.
731 */
732 static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx,
733 enum srpt_command_state new)
734 {
735 enum srpt_command_state previous;
736 unsigned long flags;
737
738 BUG_ON(!ioctx);
739
740 spin_lock_irqsave(&ioctx->spinlock, flags);
741 previous = ioctx->state;
742 if (previous != SRPT_STATE_DONE)
743 ioctx->state = new;
744 spin_unlock_irqrestore(&ioctx->spinlock, flags);
745
746 return previous;
747 }
748
749 /**
750 * srpt_test_and_set_cmd_state() - Test and set the state of a command.
751 *
752 * Returns true if and only if the previous command state was equal to 'old'.
753 */
754 static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx,
755 enum srpt_command_state old,
756 enum srpt_command_state new)
757 {
758 enum srpt_command_state previous;
759 unsigned long flags;
760
761 WARN_ON(!ioctx);
762 WARN_ON(old == SRPT_STATE_DONE);
763 WARN_ON(new == SRPT_STATE_NEW);
764
765 spin_lock_irqsave(&ioctx->spinlock, flags);
766 previous = ioctx->state;
767 if (previous == old)
768 ioctx->state = new;
769 spin_unlock_irqrestore(&ioctx->spinlock, flags);
770 return previous == old;
771 }
772
773 /**
774 * srpt_post_recv() - Post an IB receive request.
775 */
776 static int srpt_post_recv(struct srpt_device *sdev,
777 struct srpt_recv_ioctx *ioctx)
778 {
779 struct ib_sge list;
780 struct ib_recv_wr wr, *bad_wr;
781
782 BUG_ON(!sdev);
783 wr.wr_id = encode_wr_id(SRPT_RECV, ioctx->ioctx.index);
784
785 list.addr = ioctx->ioctx.dma;
786 list.length = srp_max_req_size;
787 list.lkey = sdev->mr->lkey;
788
789 wr.next = NULL;
790 wr.sg_list = &list;
791 wr.num_sge = 1;
792
793 return ib_post_srq_recv(sdev->srq, &wr, &bad_wr);
794 }
795
796 /**
797 * srpt_post_send() - Post an IB send request.
798 *
799 * Returns zero upon success and a non-zero value upon failure.
800 */
801 static int srpt_post_send(struct srpt_rdma_ch *ch,
802 struct srpt_send_ioctx *ioctx, int len)
803 {
804 struct ib_sge list;
805 struct ib_send_wr wr, *bad_wr;
806 struct srpt_device *sdev = ch->sport->sdev;
807 int ret;
808
809 atomic_inc(&ch->req_lim);
810
811 ret = -ENOMEM;
812 if (unlikely(atomic_dec_return(&ch->sq_wr_avail) < 0)) {
813 printk(KERN_WARNING "IB send queue full (needed 1)\n");
814 goto out;
815 }
816
817 ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, len,
818 DMA_TO_DEVICE);
819
820 list.addr = ioctx->ioctx.dma;
821 list.length = len;
822 list.lkey = sdev->mr->lkey;
823
824 wr.next = NULL;
825 wr.wr_id = encode_wr_id(SRPT_SEND, ioctx->ioctx.index);
826 wr.sg_list = &list;
827 wr.num_sge = 1;
828 wr.opcode = IB_WR_SEND;
829 wr.send_flags = IB_SEND_SIGNALED;
830
831 ret = ib_post_send(ch->qp, &wr, &bad_wr);
832
833 out:
834 if (ret < 0) {
835 atomic_inc(&ch->sq_wr_avail);
836 atomic_dec(&ch->req_lim);
837 }
838 return ret;
839 }
840
841 /**
842 * srpt_get_desc_tbl() - Parse the data descriptors of an SRP_CMD request.
843 * @ioctx: Pointer to the I/O context associated with the request.
844 * @srp_cmd: Pointer to the SRP_CMD request data.
845 * @dir: Pointer to the variable to which the transfer direction will be
846 * written.
847 * @data_len: Pointer to the variable to which the total data length of all
848 * descriptors in the SRP_CMD request will be written.
849 *
850 * This function initializes ioctx->nrbuf and ioctx->r_bufs.
851 *
852 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors;
853 * -ENOMEM when memory allocation fails and zero upon success.
854 */
855 static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx,
856 struct srp_cmd *srp_cmd,
857 enum dma_data_direction *dir, u64 *data_len)
858 {
859 struct srp_indirect_buf *idb;
860 struct srp_direct_buf *db;
861 unsigned add_cdb_offset;
862 int ret;
863
864 /*
865 * The pointer computations below will only be compiled correctly
866 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check
867 * whether srp_cmd::add_data has been declared as a byte pointer.
868 */
869 BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0)
870 && !__same_type(srp_cmd->add_data[0], (u8)0));
871
872 BUG_ON(!dir);
873 BUG_ON(!data_len);
874
875 ret = 0;
876 *data_len = 0;
877
878 /*
879 * The lower four bits of the buffer format field contain the DATA-IN
880 * buffer descriptor format, and the highest four bits contain the
881 * DATA-OUT buffer descriptor format.
882 */
883 *dir = DMA_NONE;
884 if (srp_cmd->buf_fmt & 0xf)
885 /* DATA-IN: transfer data from target to initiator (read). */
886 *dir = DMA_FROM_DEVICE;
887 else if (srp_cmd->buf_fmt >> 4)
888 /* DATA-OUT: transfer data from initiator to target (write). */
889 *dir = DMA_TO_DEVICE;
890
891 /*
892 * According to the SRP spec, the lower two bits of the 'ADDITIONAL
893 * CDB LENGTH' field are reserved and the size in bytes of this field
894 * is four times the value specified in bits 3..7. Hence the "& ~3".
895 */
896 add_cdb_offset = srp_cmd->add_cdb_len & ~3;
897 if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) ||
898 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) {
899 ioctx->n_rbuf = 1;
900 ioctx->rbufs = &ioctx->single_rbuf;
901
902 db = (struct srp_direct_buf *)(srp_cmd->add_data
903 + add_cdb_offset);
904 memcpy(ioctx->rbufs, db, sizeof *db);
905 *data_len = be32_to_cpu(db->len);
906 } else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) ||
907 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) {
908 idb = (struct srp_indirect_buf *)(srp_cmd->add_data
909 + add_cdb_offset);
910
911 ioctx->n_rbuf = be32_to_cpu(idb->table_desc.len) / sizeof *db;
912
913 if (ioctx->n_rbuf >
914 (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) {
915 printk(KERN_ERR "received unsupported SRP_CMD request"
916 " type (%u out + %u in != %u / %zu)\n",
917 srp_cmd->data_out_desc_cnt,
918 srp_cmd->data_in_desc_cnt,
919 be32_to_cpu(idb->table_desc.len),
920 sizeof(*db));
921 ioctx->n_rbuf = 0;
922 ret = -EINVAL;
923 goto out;
924 }
925
926 if (ioctx->n_rbuf == 1)
927 ioctx->rbufs = &ioctx->single_rbuf;
928 else {
929 ioctx->rbufs =
930 kmalloc(ioctx->n_rbuf * sizeof *db, GFP_ATOMIC);
931 if (!ioctx->rbufs) {
932 ioctx->n_rbuf = 0;
933 ret = -ENOMEM;
934 goto out;
935 }
936 }
937
938 db = idb->desc_list;
939 memcpy(ioctx->rbufs, db, ioctx->n_rbuf * sizeof *db);
940 *data_len = be32_to_cpu(idb->len);
941 }
942 out:
943 return ret;
944 }
945
946 /**
947 * srpt_init_ch_qp() - Initialize queue pair attributes.
948 *
949 * Initialized the attributes of queue pair 'qp' by allowing local write,
950 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT.
951 */
952 static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp)
953 {
954 struct ib_qp_attr *attr;
955 int ret;
956
957 attr = kzalloc(sizeof *attr, GFP_KERNEL);
958 if (!attr)
959 return -ENOMEM;
960
961 attr->qp_state = IB_QPS_INIT;
962 attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_READ |
963 IB_ACCESS_REMOTE_WRITE;
964 attr->port_num = ch->sport->port;
965 attr->pkey_index = 0;
966
967 ret = ib_modify_qp(qp, attr,
968 IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT |
969 IB_QP_PKEY_INDEX);
970
971 kfree(attr);
972 return ret;
973 }
974
975 /**
976 * srpt_ch_qp_rtr() - Change the state of a channel to 'ready to receive' (RTR).
977 * @ch: channel of the queue pair.
978 * @qp: queue pair to change the state of.
979 *
980 * Returns zero upon success and a negative value upon failure.
981 *
982 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
983 * If this structure ever becomes larger, it might be necessary to allocate
984 * it dynamically instead of on the stack.
985 */
986 static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp)
987 {
988 struct ib_qp_attr qp_attr;
989 int attr_mask;
990 int ret;
991
992 qp_attr.qp_state = IB_QPS_RTR;
993 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
994 if (ret)
995 goto out;
996
997 qp_attr.max_dest_rd_atomic = 4;
998
999 ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1000
1001 out:
1002 return ret;
1003 }
1004
1005 /**
1006 * srpt_ch_qp_rts() - Change the state of a channel to 'ready to send' (RTS).
1007 * @ch: channel of the queue pair.
1008 * @qp: queue pair to change the state of.
1009 *
1010 * Returns zero upon success and a negative value upon failure.
1011 *
1012 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1013 * If this structure ever becomes larger, it might be necessary to allocate
1014 * it dynamically instead of on the stack.
1015 */
1016 static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1017 {
1018 struct ib_qp_attr qp_attr;
1019 int attr_mask;
1020 int ret;
1021
1022 qp_attr.qp_state = IB_QPS_RTS;
1023 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
1024 if (ret)
1025 goto out;
1026
1027 qp_attr.max_rd_atomic = 4;
1028
1029 ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1030
1031 out:
1032 return ret;
1033 }
1034
1035 /**
1036 * srpt_ch_qp_err() - Set the channel queue pair state to 'error'.
1037 */
1038 static int srpt_ch_qp_err(struct srpt_rdma_ch *ch)
1039 {
1040 struct ib_qp_attr qp_attr;
1041
1042 qp_attr.qp_state = IB_QPS_ERR;
1043 return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE);
1044 }
1045
1046 /**
1047 * srpt_unmap_sg_to_ib_sge() - Unmap an IB SGE list.
1048 */
1049 static void srpt_unmap_sg_to_ib_sge(struct srpt_rdma_ch *ch,
1050 struct srpt_send_ioctx *ioctx)
1051 {
1052 struct scatterlist *sg;
1053 enum dma_data_direction dir;
1054
1055 BUG_ON(!ch);
1056 BUG_ON(!ioctx);
1057 BUG_ON(ioctx->n_rdma && !ioctx->rdma_ius);
1058
1059 while (ioctx->n_rdma)
1060 kfree(ioctx->rdma_ius[--ioctx->n_rdma].sge);
1061
1062 kfree(ioctx->rdma_ius);
1063 ioctx->rdma_ius = NULL;
1064
1065 if (ioctx->mapped_sg_count) {
1066 sg = ioctx->sg;
1067 WARN_ON(!sg);
1068 dir = ioctx->cmd.data_direction;
1069 BUG_ON(dir == DMA_NONE);
1070 ib_dma_unmap_sg(ch->sport->sdev->device, sg, ioctx->sg_cnt,
1071 opposite_dma_dir(dir));
1072 ioctx->mapped_sg_count = 0;
1073 }
1074 }
1075
1076 /**
1077 * srpt_map_sg_to_ib_sge() - Map an SG list to an IB SGE list.
1078 */
1079 static int srpt_map_sg_to_ib_sge(struct srpt_rdma_ch *ch,
1080 struct srpt_send_ioctx *ioctx)
1081 {
1082 struct ib_device *dev = ch->sport->sdev->device;
1083 struct se_cmd *cmd;
1084 struct scatterlist *sg, *sg_orig;
1085 int sg_cnt;
1086 enum dma_data_direction dir;
1087 struct rdma_iu *riu;
1088 struct srp_direct_buf *db;
1089 dma_addr_t dma_addr;
1090 struct ib_sge *sge;
1091 u64 raddr;
1092 u32 rsize;
1093 u32 tsize;
1094 u32 dma_len;
1095 int count, nrdma;
1096 int i, j, k;
1097
1098 BUG_ON(!ch);
1099 BUG_ON(!ioctx);
1100 cmd = &ioctx->cmd;
1101 dir = cmd->data_direction;
1102 BUG_ON(dir == DMA_NONE);
1103
1104 ioctx->sg = sg = sg_orig = cmd->t_data_sg;
1105 ioctx->sg_cnt = sg_cnt = cmd->t_data_nents;
1106
1107 count = ib_dma_map_sg(ch->sport->sdev->device, sg, sg_cnt,
1108 opposite_dma_dir(dir));
1109 if (unlikely(!count))
1110 return -EAGAIN;
1111
1112 ioctx->mapped_sg_count = count;
1113
1114 if (ioctx->rdma_ius && ioctx->n_rdma_ius)
1115 nrdma = ioctx->n_rdma_ius;
1116 else {
1117 nrdma = (count + SRPT_DEF_SG_PER_WQE - 1) / SRPT_DEF_SG_PER_WQE
1118 + ioctx->n_rbuf;
1119
1120 ioctx->rdma_ius = kzalloc(nrdma * sizeof *riu, GFP_KERNEL);
1121 if (!ioctx->rdma_ius)
1122 goto free_mem;
1123
1124 ioctx->n_rdma_ius = nrdma;
1125 }
1126
1127 db = ioctx->rbufs;
1128 tsize = cmd->data_length;
1129 dma_len = ib_sg_dma_len(dev, &sg[0]);
1130 riu = ioctx->rdma_ius;
1131
1132 /*
1133 * For each remote desc - calculate the #ib_sge.
1134 * If #ib_sge < SRPT_DEF_SG_PER_WQE per rdma operation then
1135 * each remote desc rdma_iu is required a rdma wr;
1136 * else
1137 * we need to allocate extra rdma_iu to carry extra #ib_sge in
1138 * another rdma wr
1139 */
1140 for (i = 0, j = 0;
1141 j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
1142 rsize = be32_to_cpu(db->len);
1143 raddr = be64_to_cpu(db->va);
1144 riu->raddr = raddr;
1145 riu->rkey = be32_to_cpu(db->key);
1146 riu->sge_cnt = 0;
1147
1148 /* calculate how many sge required for this remote_buf */
1149 while (rsize > 0 && tsize > 0) {
1150
1151 if (rsize >= dma_len) {
1152 tsize -= dma_len;
1153 rsize -= dma_len;
1154 raddr += dma_len;
1155
1156 if (tsize > 0) {
1157 ++j;
1158 if (j < count) {
1159 sg = sg_next(sg);
1160 dma_len = ib_sg_dma_len(
1161 dev, sg);
1162 }
1163 }
1164 } else {
1165 tsize -= rsize;
1166 dma_len -= rsize;
1167 rsize = 0;
1168 }
1169
1170 ++riu->sge_cnt;
1171
1172 if (rsize > 0 && riu->sge_cnt == SRPT_DEF_SG_PER_WQE) {
1173 ++ioctx->n_rdma;
1174 riu->sge =
1175 kmalloc(riu->sge_cnt * sizeof *riu->sge,
1176 GFP_KERNEL);
1177 if (!riu->sge)
1178 goto free_mem;
1179
1180 ++riu;
1181 riu->sge_cnt = 0;
1182 riu->raddr = raddr;
1183 riu->rkey = be32_to_cpu(db->key);
1184 }
1185 }
1186
1187 ++ioctx->n_rdma;
1188 riu->sge = kmalloc(riu->sge_cnt * sizeof *riu->sge,
1189 GFP_KERNEL);
1190 if (!riu->sge)
1191 goto free_mem;
1192 }
1193
1194 db = ioctx->rbufs;
1195 tsize = cmd->data_length;
1196 riu = ioctx->rdma_ius;
1197 sg = sg_orig;
1198 dma_len = ib_sg_dma_len(dev, &sg[0]);
1199 dma_addr = ib_sg_dma_address(dev, &sg[0]);
1200
1201 /* this second loop is really mapped sg_addres to rdma_iu->ib_sge */
1202 for (i = 0, j = 0;
1203 j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
1204 rsize = be32_to_cpu(db->len);
1205 sge = riu->sge;
1206 k = 0;
1207
1208 while (rsize > 0 && tsize > 0) {
1209 sge->addr = dma_addr;
1210 sge->lkey = ch->sport->sdev->mr->lkey;
1211
1212 if (rsize >= dma_len) {
1213 sge->length =
1214 (tsize < dma_len) ? tsize : dma_len;
1215 tsize -= dma_len;
1216 rsize -= dma_len;
1217
1218 if (tsize > 0) {
1219 ++j;
1220 if (j < count) {
1221 sg = sg_next(sg);
1222 dma_len = ib_sg_dma_len(
1223 dev, sg);
1224 dma_addr = ib_sg_dma_address(
1225 dev, sg);
1226 }
1227 }
1228 } else {
1229 sge->length = (tsize < rsize) ? tsize : rsize;
1230 tsize -= rsize;
1231 dma_len -= rsize;
1232 dma_addr += rsize;
1233 rsize = 0;
1234 }
1235
1236 ++k;
1237 if (k == riu->sge_cnt && rsize > 0 && tsize > 0) {
1238 ++riu;
1239 sge = riu->sge;
1240 k = 0;
1241 } else if (rsize > 0 && tsize > 0)
1242 ++sge;
1243 }
1244 }
1245
1246 return 0;
1247
1248 free_mem:
1249 srpt_unmap_sg_to_ib_sge(ch, ioctx);
1250
1251 return -ENOMEM;
1252 }
1253
1254 /**
1255 * srpt_get_send_ioctx() - Obtain an I/O context for sending to the initiator.
1256 */
1257 static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch)
1258 {
1259 struct srpt_send_ioctx *ioctx;
1260 unsigned long flags;
1261
1262 BUG_ON(!ch);
1263
1264 ioctx = NULL;
1265 spin_lock_irqsave(&ch->spinlock, flags);
1266 if (!list_empty(&ch->free_list)) {
1267 ioctx = list_first_entry(&ch->free_list,
1268 struct srpt_send_ioctx, free_list);
1269 list_del(&ioctx->free_list);
1270 }
1271 spin_unlock_irqrestore(&ch->spinlock, flags);
1272
1273 if (!ioctx)
1274 return ioctx;
1275
1276 BUG_ON(ioctx->ch != ch);
1277 spin_lock_init(&ioctx->spinlock);
1278 ioctx->state = SRPT_STATE_NEW;
1279 ioctx->n_rbuf = 0;
1280 ioctx->rbufs = NULL;
1281 ioctx->n_rdma = 0;
1282 ioctx->n_rdma_ius = 0;
1283 ioctx->rdma_ius = NULL;
1284 ioctx->mapped_sg_count = 0;
1285 init_completion(&ioctx->tx_done);
1286 ioctx->queue_status_only = false;
1287 /*
1288 * transport_init_se_cmd() does not initialize all fields, so do it
1289 * here.
1290 */
1291 memset(&ioctx->cmd, 0, sizeof(ioctx->cmd));
1292 memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data));
1293
1294 return ioctx;
1295 }
1296
1297 /**
1298 * srpt_abort_cmd() - Abort a SCSI command.
1299 * @ioctx: I/O context associated with the SCSI command.
1300 * @context: Preferred execution context.
1301 */
1302 static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx)
1303 {
1304 enum srpt_command_state state;
1305 unsigned long flags;
1306
1307 BUG_ON(!ioctx);
1308
1309 /*
1310 * If the command is in a state where the target core is waiting for
1311 * the ib_srpt driver, change the state to the next state. Changing
1312 * the state of the command from SRPT_STATE_NEED_DATA to
1313 * SRPT_STATE_DATA_IN ensures that srpt_xmit_response() will call this
1314 * function a second time.
1315 */
1316
1317 spin_lock_irqsave(&ioctx->spinlock, flags);
1318 state = ioctx->state;
1319 switch (state) {
1320 case SRPT_STATE_NEED_DATA:
1321 ioctx->state = SRPT_STATE_DATA_IN;
1322 break;
1323 case SRPT_STATE_DATA_IN:
1324 case SRPT_STATE_CMD_RSP_SENT:
1325 case SRPT_STATE_MGMT_RSP_SENT:
1326 ioctx->state = SRPT_STATE_DONE;
1327 break;
1328 default:
1329 break;
1330 }
1331 spin_unlock_irqrestore(&ioctx->spinlock, flags);
1332
1333 if (state == SRPT_STATE_DONE) {
1334 struct srpt_rdma_ch *ch = ioctx->ch;
1335
1336 BUG_ON(ch->sess == NULL);
1337
1338 target_put_sess_cmd(ch->sess, &ioctx->cmd);
1339 goto out;
1340 }
1341
1342 pr_debug("Aborting cmd with state %d and tag %lld\n", state,
1343 ioctx->tag);
1344
1345 switch (state) {
1346 case SRPT_STATE_NEW:
1347 case SRPT_STATE_DATA_IN:
1348 case SRPT_STATE_MGMT:
1349 /*
1350 * Do nothing - defer abort processing until
1351 * srpt_queue_response() is invoked.
1352 */
1353 WARN_ON(!transport_check_aborted_status(&ioctx->cmd, false));
1354 break;
1355 case SRPT_STATE_NEED_DATA:
1356 /* DMA_TO_DEVICE (write) - RDMA read error. */
1357
1358 /* XXX(hch): this is a horrible layering violation.. */
1359 spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags);
1360 ioctx->cmd.transport_state &= ~CMD_T_ACTIVE;
1361 spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags);
1362 break;
1363 case SRPT_STATE_CMD_RSP_SENT:
1364 /*
1365 * SRP_RSP sending failed or the SRP_RSP send completion has
1366 * not been received in time.
1367 */
1368 srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx);
1369 target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd);
1370 break;
1371 case SRPT_STATE_MGMT_RSP_SENT:
1372 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1373 target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd);
1374 break;
1375 default:
1376 WARN(1, "Unexpected command state (%d)", state);
1377 break;
1378 }
1379
1380 out:
1381 return state;
1382 }
1383
1384 /**
1385 * srpt_handle_send_err_comp() - Process an IB_WC_SEND error completion.
1386 */
1387 static void srpt_handle_send_err_comp(struct srpt_rdma_ch *ch, u64 wr_id)
1388 {
1389 struct srpt_send_ioctx *ioctx;
1390 enum srpt_command_state state;
1391 struct se_cmd *cmd;
1392 u32 index;
1393
1394 atomic_inc(&ch->sq_wr_avail);
1395
1396 index = idx_from_wr_id(wr_id);
1397 ioctx = ch->ioctx_ring[index];
1398 state = srpt_get_cmd_state(ioctx);
1399 cmd = &ioctx->cmd;
1400
1401 WARN_ON(state != SRPT_STATE_CMD_RSP_SENT
1402 && state != SRPT_STATE_MGMT_RSP_SENT
1403 && state != SRPT_STATE_NEED_DATA
1404 && state != SRPT_STATE_DONE);
1405
1406 /* If SRP_RSP sending failed, undo the ch->req_lim change. */
1407 if (state == SRPT_STATE_CMD_RSP_SENT
1408 || state == SRPT_STATE_MGMT_RSP_SENT)
1409 atomic_dec(&ch->req_lim);
1410
1411 srpt_abort_cmd(ioctx);
1412 }
1413
1414 /**
1415 * srpt_handle_send_comp() - Process an IB send completion notification.
1416 */
1417 static void srpt_handle_send_comp(struct srpt_rdma_ch *ch,
1418 struct srpt_send_ioctx *ioctx)
1419 {
1420 enum srpt_command_state state;
1421
1422 atomic_inc(&ch->sq_wr_avail);
1423
1424 state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1425
1426 if (WARN_ON(state != SRPT_STATE_CMD_RSP_SENT
1427 && state != SRPT_STATE_MGMT_RSP_SENT
1428 && state != SRPT_STATE_DONE))
1429 pr_debug("state = %d\n", state);
1430
1431 if (state != SRPT_STATE_DONE) {
1432 srpt_unmap_sg_to_ib_sge(ch, ioctx);
1433 transport_generic_free_cmd(&ioctx->cmd, 0);
1434 } else {
1435 printk(KERN_ERR "IB completion has been received too late for"
1436 " wr_id = %u.\n", ioctx->ioctx.index);
1437 }
1438 }
1439
1440 /**
1441 * srpt_handle_rdma_comp() - Process an IB RDMA completion notification.
1442 *
1443 * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping
1444 * the data that has been transferred via IB RDMA had to be postponed until the
1445 * check_stop_free() callback. None of this is necessary anymore and needs to
1446 * be cleaned up.
1447 */
1448 static void srpt_handle_rdma_comp(struct srpt_rdma_ch *ch,
1449 struct srpt_send_ioctx *ioctx,
1450 enum srpt_opcode opcode)
1451 {
1452 WARN_ON(ioctx->n_rdma <= 0);
1453 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1454
1455 if (opcode == SRPT_RDMA_READ_LAST) {
1456 if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA,
1457 SRPT_STATE_DATA_IN))
1458 target_execute_cmd(&ioctx->cmd);
1459 else
1460 printk(KERN_ERR "%s[%d]: wrong state = %d\n", __func__,
1461 __LINE__, srpt_get_cmd_state(ioctx));
1462 } else if (opcode == SRPT_RDMA_ABORT) {
1463 ioctx->rdma_aborted = true;
1464 } else {
1465 WARN(true, "unexpected opcode %d\n", opcode);
1466 }
1467 }
1468
1469 /**
1470 * srpt_handle_rdma_err_comp() - Process an IB RDMA error completion.
1471 */
1472 static void srpt_handle_rdma_err_comp(struct srpt_rdma_ch *ch,
1473 struct srpt_send_ioctx *ioctx,
1474 enum srpt_opcode opcode)
1475 {
1476 struct se_cmd *cmd;
1477 enum srpt_command_state state;
1478
1479 cmd = &ioctx->cmd;
1480 state = srpt_get_cmd_state(ioctx);
1481 switch (opcode) {
1482 case SRPT_RDMA_READ_LAST:
1483 if (ioctx->n_rdma <= 0) {
1484 printk(KERN_ERR "Received invalid RDMA read"
1485 " error completion with idx %d\n",
1486 ioctx->ioctx.index);
1487 break;
1488 }
1489 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1490 if (state == SRPT_STATE_NEED_DATA)
1491 srpt_abort_cmd(ioctx);
1492 else
1493 printk(KERN_ERR "%s[%d]: wrong state = %d\n",
1494 __func__, __LINE__, state);
1495 break;
1496 case SRPT_RDMA_WRITE_LAST:
1497 break;
1498 default:
1499 printk(KERN_ERR "%s[%d]: opcode = %u\n", __func__,
1500 __LINE__, opcode);
1501 break;
1502 }
1503 }
1504
1505 /**
1506 * srpt_build_cmd_rsp() - Build an SRP_RSP response.
1507 * @ch: RDMA channel through which the request has been received.
1508 * @ioctx: I/O context associated with the SRP_CMD request. The response will
1509 * be built in the buffer ioctx->buf points at and hence this function will
1510 * overwrite the request data.
1511 * @tag: tag of the request for which this response is being generated.
1512 * @status: value for the STATUS field of the SRP_RSP information unit.
1513 *
1514 * Returns the size in bytes of the SRP_RSP response.
1515 *
1516 * An SRP_RSP response contains a SCSI status or service response. See also
1517 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1518 * response. See also SPC-2 for more information about sense data.
1519 */
1520 static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch,
1521 struct srpt_send_ioctx *ioctx, u64 tag,
1522 int status)
1523 {
1524 struct srp_rsp *srp_rsp;
1525 const u8 *sense_data;
1526 int sense_data_len, max_sense_len;
1527
1528 /*
1529 * The lowest bit of all SAM-3 status codes is zero (see also
1530 * paragraph 5.3 in SAM-3).
1531 */
1532 WARN_ON(status & 1);
1533
1534 srp_rsp = ioctx->ioctx.buf;
1535 BUG_ON(!srp_rsp);
1536
1537 sense_data = ioctx->sense_data;
1538 sense_data_len = ioctx->cmd.scsi_sense_length;
1539 WARN_ON(sense_data_len > sizeof(ioctx->sense_data));
1540
1541 memset(srp_rsp, 0, sizeof *srp_rsp);
1542 srp_rsp->opcode = SRP_RSP;
1543 srp_rsp->req_lim_delta =
1544 __constant_cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1545 srp_rsp->tag = tag;
1546 srp_rsp->status = status;
1547
1548 if (sense_data_len) {
1549 BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp));
1550 max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp);
1551 if (sense_data_len > max_sense_len) {
1552 printk(KERN_WARNING "truncated sense data from %d to %d"
1553 " bytes\n", sense_data_len, max_sense_len);
1554 sense_data_len = max_sense_len;
1555 }
1556
1557 srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID;
1558 srp_rsp->sense_data_len = cpu_to_be32(sense_data_len);
1559 memcpy(srp_rsp + 1, sense_data, sense_data_len);
1560 }
1561
1562 return sizeof(*srp_rsp) + sense_data_len;
1563 }
1564
1565 /**
1566 * srpt_build_tskmgmt_rsp() - Build a task management response.
1567 * @ch: RDMA channel through which the request has been received.
1568 * @ioctx: I/O context in which the SRP_RSP response will be built.
1569 * @rsp_code: RSP_CODE that will be stored in the response.
1570 * @tag: Tag of the request for which this response is being generated.
1571 *
1572 * Returns the size in bytes of the SRP_RSP response.
1573 *
1574 * An SRP_RSP response contains a SCSI status or service response. See also
1575 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1576 * response.
1577 */
1578 static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch,
1579 struct srpt_send_ioctx *ioctx,
1580 u8 rsp_code, u64 tag)
1581 {
1582 struct srp_rsp *srp_rsp;
1583 int resp_data_len;
1584 int resp_len;
1585
1586 resp_data_len = 4;
1587 resp_len = sizeof(*srp_rsp) + resp_data_len;
1588
1589 srp_rsp = ioctx->ioctx.buf;
1590 BUG_ON(!srp_rsp);
1591 memset(srp_rsp, 0, sizeof *srp_rsp);
1592
1593 srp_rsp->opcode = SRP_RSP;
1594 srp_rsp->req_lim_delta = __constant_cpu_to_be32(1
1595 + atomic_xchg(&ch->req_lim_delta, 0));
1596 srp_rsp->tag = tag;
1597
1598 srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID;
1599 srp_rsp->resp_data_len = cpu_to_be32(resp_data_len);
1600 srp_rsp->data[3] = rsp_code;
1601
1602 return resp_len;
1603 }
1604
1605 #define NO_SUCH_LUN ((uint64_t)-1LL)
1606
1607 /*
1608 * SCSI LUN addressing method. See also SAM-2 and the section about
1609 * eight byte LUNs.
1610 */
1611 enum scsi_lun_addr_method {
1612 SCSI_LUN_ADDR_METHOD_PERIPHERAL = 0,
1613 SCSI_LUN_ADDR_METHOD_FLAT = 1,
1614 SCSI_LUN_ADDR_METHOD_LUN = 2,
1615 SCSI_LUN_ADDR_METHOD_EXTENDED_LUN = 3,
1616 };
1617
1618 /*
1619 * srpt_unpack_lun() - Convert from network LUN to linear LUN.
1620 *
1621 * Convert an 2-byte, 4-byte, 6-byte or 8-byte LUN structure in network byte
1622 * order (big endian) to a linear LUN. Supports three LUN addressing methods:
1623 * peripheral, flat and logical unit. See also SAM-2, section 4.9.4 (page 40).
1624 */
1625 static uint64_t srpt_unpack_lun(const uint8_t *lun, int len)
1626 {
1627 uint64_t res = NO_SUCH_LUN;
1628 int addressing_method;
1629
1630 if (unlikely(len < 2)) {
1631 printk(KERN_ERR "Illegal LUN length %d, expected 2 bytes or "
1632 "more", len);
1633 goto out;
1634 }
1635
1636 switch (len) {
1637 case 8:
1638 if ((*((__be64 *)lun) &
1639 __constant_cpu_to_be64(0x0000FFFFFFFFFFFFLL)) != 0)
1640 goto out_err;
1641 break;
1642 case 4:
1643 if (*((__be16 *)&lun[2]) != 0)
1644 goto out_err;
1645 break;
1646 case 6:
1647 if (*((__be32 *)&lun[2]) != 0)
1648 goto out_err;
1649 break;
1650 case 2:
1651 break;
1652 default:
1653 goto out_err;
1654 }
1655
1656 addressing_method = (*lun) >> 6; /* highest two bits of byte 0 */
1657 switch (addressing_method) {
1658 case SCSI_LUN_ADDR_METHOD_PERIPHERAL:
1659 case SCSI_LUN_ADDR_METHOD_FLAT:
1660 case SCSI_LUN_ADDR_METHOD_LUN:
1661 res = *(lun + 1) | (((*lun) & 0x3f) << 8);
1662 break;
1663
1664 case SCSI_LUN_ADDR_METHOD_EXTENDED_LUN:
1665 default:
1666 printk(KERN_ERR "Unimplemented LUN addressing method %u",
1667 addressing_method);
1668 break;
1669 }
1670
1671 out:
1672 return res;
1673
1674 out_err:
1675 printk(KERN_ERR "Support for multi-level LUNs has not yet been"
1676 " implemented");
1677 goto out;
1678 }
1679
1680 static int srpt_check_stop_free(struct se_cmd *cmd)
1681 {
1682 struct srpt_send_ioctx *ioctx = container_of(cmd,
1683 struct srpt_send_ioctx, cmd);
1684
1685 return target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd);
1686 }
1687
1688 /**
1689 * srpt_handle_cmd() - Process SRP_CMD.
1690 */
1691 static int srpt_handle_cmd(struct srpt_rdma_ch *ch,
1692 struct srpt_recv_ioctx *recv_ioctx,
1693 struct srpt_send_ioctx *send_ioctx)
1694 {
1695 struct se_cmd *cmd;
1696 struct srp_cmd *srp_cmd;
1697 uint64_t unpacked_lun;
1698 u64 data_len;
1699 enum dma_data_direction dir;
1700 sense_reason_t ret;
1701 int rc;
1702
1703 BUG_ON(!send_ioctx);
1704
1705 srp_cmd = recv_ioctx->ioctx.buf;
1706 cmd = &send_ioctx->cmd;
1707 send_ioctx->tag = srp_cmd->tag;
1708
1709 switch (srp_cmd->task_attr) {
1710 case SRP_CMD_SIMPLE_Q:
1711 cmd->sam_task_attr = MSG_SIMPLE_TAG;
1712 break;
1713 case SRP_CMD_ORDERED_Q:
1714 default:
1715 cmd->sam_task_attr = MSG_ORDERED_TAG;
1716 break;
1717 case SRP_CMD_HEAD_OF_Q:
1718 cmd->sam_task_attr = MSG_HEAD_TAG;
1719 break;
1720 case SRP_CMD_ACA:
1721 cmd->sam_task_attr = MSG_ACA_TAG;
1722 break;
1723 }
1724
1725 if (srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &data_len)) {
1726 printk(KERN_ERR "0x%llx: parsing SRP descriptor table failed.\n",
1727 srp_cmd->tag);
1728 ret = TCM_INVALID_CDB_FIELD;
1729 goto send_sense;
1730 }
1731
1732 unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_cmd->lun,
1733 sizeof(srp_cmd->lun));
1734 rc = target_submit_cmd(cmd, ch->sess, srp_cmd->cdb,
1735 &send_ioctx->sense_data[0], unpacked_lun, data_len,
1736 MSG_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF);
1737 if (rc != 0) {
1738 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1739 goto send_sense;
1740 }
1741 return 0;
1742
1743 send_sense:
1744 transport_send_check_condition_and_sense(cmd, ret, 0);
1745 return -1;
1746 }
1747
1748 /**
1749 * srpt_rx_mgmt_fn_tag() - Process a task management function by tag.
1750 * @ch: RDMA channel of the task management request.
1751 * @fn: Task management function to perform.
1752 * @req_tag: Tag of the SRP task management request.
1753 * @mgmt_ioctx: I/O context of the task management request.
1754 *
1755 * Returns zero if the target core will process the task management
1756 * request asynchronously.
1757 *
1758 * Note: It is assumed that the initiator serializes tag-based task management
1759 * requests.
1760 */
1761 static int srpt_rx_mgmt_fn_tag(struct srpt_send_ioctx *ioctx, u64 tag)
1762 {
1763 struct srpt_device *sdev;
1764 struct srpt_rdma_ch *ch;
1765 struct srpt_send_ioctx *target;
1766 int ret, i;
1767
1768 ret = -EINVAL;
1769 ch = ioctx->ch;
1770 BUG_ON(!ch);
1771 BUG_ON(!ch->sport);
1772 sdev = ch->sport->sdev;
1773 BUG_ON(!sdev);
1774 spin_lock_irq(&sdev->spinlock);
1775 for (i = 0; i < ch->rq_size; ++i) {
1776 target = ch->ioctx_ring[i];
1777 if (target->cmd.se_lun == ioctx->cmd.se_lun &&
1778 target->tag == tag &&
1779 srpt_get_cmd_state(target) != SRPT_STATE_DONE) {
1780 ret = 0;
1781 /* now let the target core abort &target->cmd; */
1782 break;
1783 }
1784 }
1785 spin_unlock_irq(&sdev->spinlock);
1786 return ret;
1787 }
1788
1789 static int srp_tmr_to_tcm(int fn)
1790 {
1791 switch (fn) {
1792 case SRP_TSK_ABORT_TASK:
1793 return TMR_ABORT_TASK;
1794 case SRP_TSK_ABORT_TASK_SET:
1795 return TMR_ABORT_TASK_SET;
1796 case SRP_TSK_CLEAR_TASK_SET:
1797 return TMR_CLEAR_TASK_SET;
1798 case SRP_TSK_LUN_RESET:
1799 return TMR_LUN_RESET;
1800 case SRP_TSK_CLEAR_ACA:
1801 return TMR_CLEAR_ACA;
1802 default:
1803 return -1;
1804 }
1805 }
1806
1807 /**
1808 * srpt_handle_tsk_mgmt() - Process an SRP_TSK_MGMT information unit.
1809 *
1810 * Returns 0 if and only if the request will be processed by the target core.
1811 *
1812 * For more information about SRP_TSK_MGMT information units, see also section
1813 * 6.7 in the SRP r16a document.
1814 */
1815 static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch,
1816 struct srpt_recv_ioctx *recv_ioctx,
1817 struct srpt_send_ioctx *send_ioctx)
1818 {
1819 struct srp_tsk_mgmt *srp_tsk;
1820 struct se_cmd *cmd;
1821 struct se_session *sess = ch->sess;
1822 uint64_t unpacked_lun;
1823 uint32_t tag = 0;
1824 int tcm_tmr;
1825 int rc;
1826
1827 BUG_ON(!send_ioctx);
1828
1829 srp_tsk = recv_ioctx->ioctx.buf;
1830 cmd = &send_ioctx->cmd;
1831
1832 pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld"
1833 " cm_id %p sess %p\n", srp_tsk->tsk_mgmt_func,
1834 srp_tsk->task_tag, srp_tsk->tag, ch->cm_id, ch->sess);
1835
1836 srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT);
1837 send_ioctx->tag = srp_tsk->tag;
1838 tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func);
1839 if (tcm_tmr < 0) {
1840 send_ioctx->cmd.se_tmr_req->response =
1841 TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
1842 goto fail;
1843 }
1844 unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_tsk->lun,
1845 sizeof(srp_tsk->lun));
1846
1847 if (srp_tsk->tsk_mgmt_func == SRP_TSK_ABORT_TASK) {
1848 rc = srpt_rx_mgmt_fn_tag(send_ioctx, srp_tsk->task_tag);
1849 if (rc < 0) {
1850 send_ioctx->cmd.se_tmr_req->response =
1851 TMR_TASK_DOES_NOT_EXIST;
1852 goto fail;
1853 }
1854 tag = srp_tsk->task_tag;
1855 }
1856 rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL, unpacked_lun,
1857 srp_tsk, tcm_tmr, GFP_KERNEL, tag,
1858 TARGET_SCF_ACK_KREF);
1859 if (rc != 0) {
1860 send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED;
1861 goto fail;
1862 }
1863 return;
1864 fail:
1865 transport_send_check_condition_and_sense(cmd, 0, 0); // XXX:
1866 }
1867
1868 /**
1869 * srpt_handle_new_iu() - Process a newly received information unit.
1870 * @ch: RDMA channel through which the information unit has been received.
1871 * @ioctx: SRPT I/O context associated with the information unit.
1872 */
1873 static void srpt_handle_new_iu(struct srpt_rdma_ch *ch,
1874 struct srpt_recv_ioctx *recv_ioctx,
1875 struct srpt_send_ioctx *send_ioctx)
1876 {
1877 struct srp_cmd *srp_cmd;
1878 enum rdma_ch_state ch_state;
1879
1880 BUG_ON(!ch);
1881 BUG_ON(!recv_ioctx);
1882
1883 ib_dma_sync_single_for_cpu(ch->sport->sdev->device,
1884 recv_ioctx->ioctx.dma, srp_max_req_size,
1885 DMA_FROM_DEVICE);
1886
1887 ch_state = srpt_get_ch_state(ch);
1888 if (unlikely(ch_state == CH_CONNECTING)) {
1889 list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list);
1890 goto out;
1891 }
1892
1893 if (unlikely(ch_state != CH_LIVE))
1894 goto out;
1895
1896 srp_cmd = recv_ioctx->ioctx.buf;
1897 if (srp_cmd->opcode == SRP_CMD || srp_cmd->opcode == SRP_TSK_MGMT) {
1898 if (!send_ioctx)
1899 send_ioctx = srpt_get_send_ioctx(ch);
1900 if (unlikely(!send_ioctx)) {
1901 list_add_tail(&recv_ioctx->wait_list,
1902 &ch->cmd_wait_list);
1903 goto out;
1904 }
1905 }
1906
1907 switch (srp_cmd->opcode) {
1908 case SRP_CMD:
1909 srpt_handle_cmd(ch, recv_ioctx, send_ioctx);
1910 break;
1911 case SRP_TSK_MGMT:
1912 srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx);
1913 break;
1914 case SRP_I_LOGOUT:
1915 printk(KERN_ERR "Not yet implemented: SRP_I_LOGOUT\n");
1916 break;
1917 case SRP_CRED_RSP:
1918 pr_debug("received SRP_CRED_RSP\n");
1919 break;
1920 case SRP_AER_RSP:
1921 pr_debug("received SRP_AER_RSP\n");
1922 break;
1923 case SRP_RSP:
1924 printk(KERN_ERR "Received SRP_RSP\n");
1925 break;
1926 default:
1927 printk(KERN_ERR "received IU with unknown opcode 0x%x\n",
1928 srp_cmd->opcode);
1929 break;
1930 }
1931
1932 srpt_post_recv(ch->sport->sdev, recv_ioctx);
1933 out:
1934 return;
1935 }
1936
1937 static void srpt_process_rcv_completion(struct ib_cq *cq,
1938 struct srpt_rdma_ch *ch,
1939 struct ib_wc *wc)
1940 {
1941 struct srpt_device *sdev = ch->sport->sdev;
1942 struct srpt_recv_ioctx *ioctx;
1943 u32 index;
1944
1945 index = idx_from_wr_id(wc->wr_id);
1946 if (wc->status == IB_WC_SUCCESS) {
1947 int req_lim;
1948
1949 req_lim = atomic_dec_return(&ch->req_lim);
1950 if (unlikely(req_lim < 0))
1951 printk(KERN_ERR "req_lim = %d < 0\n", req_lim);
1952 ioctx = sdev->ioctx_ring[index];
1953 srpt_handle_new_iu(ch, ioctx, NULL);
1954 } else {
1955 printk(KERN_INFO "receiving failed for idx %u with status %d\n",
1956 index, wc->status);
1957 }
1958 }
1959
1960 /**
1961 * srpt_process_send_completion() - Process an IB send completion.
1962 *
1963 * Note: Although this has not yet been observed during tests, at least in
1964 * theory it is possible that the srpt_get_send_ioctx() call invoked by
1965 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta
1966 * value in each response is set to one, and it is possible that this response
1967 * makes the initiator send a new request before the send completion for that
1968 * response has been processed. This could e.g. happen if the call to
1969 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or
1970 * if IB retransmission causes generation of the send completion to be
1971 * delayed. Incoming information units for which srpt_get_send_ioctx() fails
1972 * are queued on cmd_wait_list. The code below processes these delayed
1973 * requests one at a time.
1974 */
1975 static void srpt_process_send_completion(struct ib_cq *cq,
1976 struct srpt_rdma_ch *ch,
1977 struct ib_wc *wc)
1978 {
1979 struct srpt_send_ioctx *send_ioctx;
1980 uint32_t index;
1981 enum srpt_opcode opcode;
1982
1983 index = idx_from_wr_id(wc->wr_id);
1984 opcode = opcode_from_wr_id(wc->wr_id);
1985 send_ioctx = ch->ioctx_ring[index];
1986 if (wc->status == IB_WC_SUCCESS) {
1987 if (opcode == SRPT_SEND)
1988 srpt_handle_send_comp(ch, send_ioctx);
1989 else {
1990 WARN_ON(opcode != SRPT_RDMA_ABORT &&
1991 wc->opcode != IB_WC_RDMA_READ);
1992 srpt_handle_rdma_comp(ch, send_ioctx, opcode);
1993 }
1994 } else {
1995 if (opcode == SRPT_SEND) {
1996 printk(KERN_INFO "sending response for idx %u failed"
1997 " with status %d\n", index, wc->status);
1998 srpt_handle_send_err_comp(ch, wc->wr_id);
1999 } else if (opcode != SRPT_RDMA_MID) {
2000 printk(KERN_INFO "RDMA t %d for idx %u failed with"
2001 " status %d", opcode, index, wc->status);
2002 srpt_handle_rdma_err_comp(ch, send_ioctx, opcode);
2003 }
2004 }
2005
2006 while (unlikely(opcode == SRPT_SEND
2007 && !list_empty(&ch->cmd_wait_list)
2008 && srpt_get_ch_state(ch) == CH_LIVE
2009 && (send_ioctx = srpt_get_send_ioctx(ch)) != NULL)) {
2010 struct srpt_recv_ioctx *recv_ioctx;
2011
2012 recv_ioctx = list_first_entry(&ch->cmd_wait_list,
2013 struct srpt_recv_ioctx,
2014 wait_list);
2015 list_del(&recv_ioctx->wait_list);
2016 srpt_handle_new_iu(ch, recv_ioctx, send_ioctx);
2017 }
2018 }
2019
2020 static void srpt_process_completion(struct ib_cq *cq, struct srpt_rdma_ch *ch)
2021 {
2022 struct ib_wc *const wc = ch->wc;
2023 int i, n;
2024
2025 WARN_ON(cq != ch->cq);
2026
2027 ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
2028 while ((n = ib_poll_cq(cq, ARRAY_SIZE(ch->wc), wc)) > 0) {
2029 for (i = 0; i < n; i++) {
2030 if (opcode_from_wr_id(wc[i].wr_id) == SRPT_RECV)
2031 srpt_process_rcv_completion(cq, ch, &wc[i]);
2032 else
2033 srpt_process_send_completion(cq, ch, &wc[i]);
2034 }
2035 }
2036 }
2037
2038 /**
2039 * srpt_completion() - IB completion queue callback function.
2040 *
2041 * Notes:
2042 * - It is guaranteed that a completion handler will never be invoked
2043 * concurrently on two different CPUs for the same completion queue. See also
2044 * Documentation/infiniband/core_locking.txt and the implementation of
2045 * handle_edge_irq() in kernel/irq/chip.c.
2046 * - When threaded IRQs are enabled, completion handlers are invoked in thread
2047 * context instead of interrupt context.
2048 */
2049 static void srpt_completion(struct ib_cq *cq, void *ctx)
2050 {
2051 struct srpt_rdma_ch *ch = ctx;
2052
2053 wake_up_interruptible(&ch->wait_queue);
2054 }
2055
2056 static int srpt_compl_thread(void *arg)
2057 {
2058 struct srpt_rdma_ch *ch;
2059
2060 /* Hibernation / freezing of the SRPT kernel thread is not supported. */
2061 current->flags |= PF_NOFREEZE;
2062
2063 ch = arg;
2064 BUG_ON(!ch);
2065 printk(KERN_INFO "Session %s: kernel thread %s (PID %d) started\n",
2066 ch->sess_name, ch->thread->comm, current->pid);
2067 while (!kthread_should_stop()) {
2068 wait_event_interruptible(ch->wait_queue,
2069 (srpt_process_completion(ch->cq, ch),
2070 kthread_should_stop()));
2071 }
2072 printk(KERN_INFO "Session %s: kernel thread %s (PID %d) stopped\n",
2073 ch->sess_name, ch->thread->comm, current->pid);
2074 return 0;
2075 }
2076
2077 /**
2078 * srpt_create_ch_ib() - Create receive and send completion queues.
2079 */
2080 static int srpt_create_ch_ib(struct srpt_rdma_ch *ch)
2081 {
2082 struct ib_qp_init_attr *qp_init;
2083 struct srpt_port *sport = ch->sport;
2084 struct srpt_device *sdev = sport->sdev;
2085 u32 srp_sq_size = sport->port_attrib.srp_sq_size;
2086 int ret;
2087
2088 WARN_ON(ch->rq_size < 1);
2089
2090 ret = -ENOMEM;
2091 qp_init = kzalloc(sizeof *qp_init, GFP_KERNEL);
2092 if (!qp_init)
2093 goto out;
2094
2095 retry:
2096 ch->cq = ib_create_cq(sdev->device, srpt_completion, NULL, ch,
2097 ch->rq_size + srp_sq_size, 0);
2098 if (IS_ERR(ch->cq)) {
2099 ret = PTR_ERR(ch->cq);
2100 printk(KERN_ERR "failed to create CQ cqe= %d ret= %d\n",
2101 ch->rq_size + srp_sq_size, ret);
2102 goto out;
2103 }
2104
2105 qp_init->qp_context = (void *)ch;
2106 qp_init->event_handler
2107 = (void(*)(struct ib_event *, void*))srpt_qp_event;
2108 qp_init->send_cq = ch->cq;
2109 qp_init->recv_cq = ch->cq;
2110 qp_init->srq = sdev->srq;
2111 qp_init->sq_sig_type = IB_SIGNAL_REQ_WR;
2112 qp_init->qp_type = IB_QPT_RC;
2113 qp_init->cap.max_send_wr = srp_sq_size;
2114 qp_init->cap.max_send_sge = SRPT_DEF_SG_PER_WQE;
2115
2116 ch->qp = ib_create_qp(sdev->pd, qp_init);
2117 if (IS_ERR(ch->qp)) {
2118 ret = PTR_ERR(ch->qp);
2119 if (ret == -ENOMEM) {
2120 srp_sq_size /= 2;
2121 if (srp_sq_size >= MIN_SRPT_SQ_SIZE) {
2122 ib_destroy_cq(ch->cq);
2123 goto retry;
2124 }
2125 }
2126 printk(KERN_ERR "failed to create_qp ret= %d\n", ret);
2127 goto err_destroy_cq;
2128 }
2129
2130 atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr);
2131
2132 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
2133 __func__, ch->cq->cqe, qp_init->cap.max_send_sge,
2134 qp_init->cap.max_send_wr, ch->cm_id);
2135
2136 ret = srpt_init_ch_qp(ch, ch->qp);
2137 if (ret)
2138 goto err_destroy_qp;
2139
2140 init_waitqueue_head(&ch->wait_queue);
2141
2142 pr_debug("creating thread for session %s\n", ch->sess_name);
2143
2144 ch->thread = kthread_run(srpt_compl_thread, ch, "ib_srpt_compl");
2145 if (IS_ERR(ch->thread)) {
2146 printk(KERN_ERR "failed to create kernel thread %ld\n",
2147 PTR_ERR(ch->thread));
2148 ch->thread = NULL;
2149 goto err_destroy_qp;
2150 }
2151
2152 out:
2153 kfree(qp_init);
2154 return ret;
2155
2156 err_destroy_qp:
2157 ib_destroy_qp(ch->qp);
2158 err_destroy_cq:
2159 ib_destroy_cq(ch->cq);
2160 goto out;
2161 }
2162
2163 static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch)
2164 {
2165 if (ch->thread)
2166 kthread_stop(ch->thread);
2167
2168 ib_destroy_qp(ch->qp);
2169 ib_destroy_cq(ch->cq);
2170 }
2171
2172 /**
2173 * __srpt_close_ch() - Close an RDMA channel by setting the QP error state.
2174 *
2175 * Reset the QP and make sure all resources associated with the channel will
2176 * be deallocated at an appropriate time.
2177 *
2178 * Note: The caller must hold ch->sport->sdev->spinlock.
2179 */
2180 static void __srpt_close_ch(struct srpt_rdma_ch *ch)
2181 {
2182 struct srpt_device *sdev;
2183 enum rdma_ch_state prev_state;
2184 unsigned long flags;
2185
2186 sdev = ch->sport->sdev;
2187
2188 spin_lock_irqsave(&ch->spinlock, flags);
2189 prev_state = ch->state;
2190 switch (prev_state) {
2191 case CH_CONNECTING:
2192 case CH_LIVE:
2193 ch->state = CH_DISCONNECTING;
2194 break;
2195 default:
2196 break;
2197 }
2198 spin_unlock_irqrestore(&ch->spinlock, flags);
2199
2200 switch (prev_state) {
2201 case CH_CONNECTING:
2202 ib_send_cm_rej(ch->cm_id, IB_CM_REJ_NO_RESOURCES, NULL, 0,
2203 NULL, 0);
2204 /* fall through */
2205 case CH_LIVE:
2206 if (ib_send_cm_dreq(ch->cm_id, NULL, 0) < 0)
2207 printk(KERN_ERR "sending CM DREQ failed.\n");
2208 break;
2209 case CH_DISCONNECTING:
2210 break;
2211 case CH_DRAINING:
2212 case CH_RELEASING:
2213 break;
2214 }
2215 }
2216
2217 /**
2218 * srpt_close_ch() - Close an RDMA channel.
2219 */
2220 static void srpt_close_ch(struct srpt_rdma_ch *ch)
2221 {
2222 struct srpt_device *sdev;
2223
2224 sdev = ch->sport->sdev;
2225 spin_lock_irq(&sdev->spinlock);
2226 __srpt_close_ch(ch);
2227 spin_unlock_irq(&sdev->spinlock);
2228 }
2229
2230 /**
2231 * srpt_shutdown_session() - Whether or not a session may be shut down.
2232 */
2233 static int srpt_shutdown_session(struct se_session *se_sess)
2234 {
2235 struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr;
2236 unsigned long flags;
2237
2238 spin_lock_irqsave(&ch->spinlock, flags);
2239 if (ch->in_shutdown) {
2240 spin_unlock_irqrestore(&ch->spinlock, flags);
2241 return true;
2242 }
2243
2244 ch->in_shutdown = true;
2245 target_sess_cmd_list_set_waiting(se_sess);
2246 spin_unlock_irqrestore(&ch->spinlock, flags);
2247
2248 return true;
2249 }
2250
2251 /**
2252 * srpt_drain_channel() - Drain a channel by resetting the IB queue pair.
2253 * @cm_id: Pointer to the CM ID of the channel to be drained.
2254 *
2255 * Note: Must be called from inside srpt_cm_handler to avoid a race between
2256 * accessing sdev->spinlock and the call to kfree(sdev) in srpt_remove_one()
2257 * (the caller of srpt_cm_handler holds the cm_id spinlock; srpt_remove_one()
2258 * waits until all target sessions for the associated IB device have been
2259 * unregistered and target session registration involves a call to
2260 * ib_destroy_cm_id(), which locks the cm_id spinlock and hence waits until
2261 * this function has finished).
2262 */
2263 static void srpt_drain_channel(struct ib_cm_id *cm_id)
2264 {
2265 struct srpt_device *sdev;
2266 struct srpt_rdma_ch *ch;
2267 int ret;
2268 bool do_reset = false;
2269
2270 WARN_ON_ONCE(irqs_disabled());
2271
2272 sdev = cm_id->context;
2273 BUG_ON(!sdev);
2274 spin_lock_irq(&sdev->spinlock);
2275 list_for_each_entry(ch, &sdev->rch_list, list) {
2276 if (ch->cm_id == cm_id) {
2277 do_reset = srpt_test_and_set_ch_state(ch,
2278 CH_CONNECTING, CH_DRAINING) ||
2279 srpt_test_and_set_ch_state(ch,
2280 CH_LIVE, CH_DRAINING) ||
2281 srpt_test_and_set_ch_state(ch,
2282 CH_DISCONNECTING, CH_DRAINING);
2283 break;
2284 }
2285 }
2286 spin_unlock_irq(&sdev->spinlock);
2287
2288 if (do_reset) {
2289 if (ch->sess)
2290 srpt_shutdown_session(ch->sess);
2291
2292 ret = srpt_ch_qp_err(ch);
2293 if (ret < 0)
2294 printk(KERN_ERR "Setting queue pair in error state"
2295 " failed: %d\n", ret);
2296 }
2297 }
2298
2299 /**
2300 * srpt_find_channel() - Look up an RDMA channel.
2301 * @cm_id: Pointer to the CM ID of the channel to be looked up.
2302 *
2303 * Return NULL if no matching RDMA channel has been found.
2304 */
2305 static struct srpt_rdma_ch *srpt_find_channel(struct srpt_device *sdev,
2306 struct ib_cm_id *cm_id)
2307 {
2308 struct srpt_rdma_ch *ch;
2309 bool found;
2310
2311 WARN_ON_ONCE(irqs_disabled());
2312 BUG_ON(!sdev);
2313
2314 found = false;
2315 spin_lock_irq(&sdev->spinlock);
2316 list_for_each_entry(ch, &sdev->rch_list, list) {
2317 if (ch->cm_id == cm_id) {
2318 found = true;
2319 break;
2320 }
2321 }
2322 spin_unlock_irq(&sdev->spinlock);
2323
2324 return found ? ch : NULL;
2325 }
2326
2327 /**
2328 * srpt_release_channel() - Release channel resources.
2329 *
2330 * Schedules the actual release because:
2331 * - Calling the ib_destroy_cm_id() call from inside an IB CM callback would
2332 * trigger a deadlock.
2333 * - It is not safe to call TCM transport_* functions from interrupt context.
2334 */
2335 static void srpt_release_channel(struct srpt_rdma_ch *ch)
2336 {
2337 schedule_work(&ch->release_work);
2338 }
2339
2340 static void srpt_release_channel_work(struct work_struct *w)
2341 {
2342 struct srpt_rdma_ch *ch;
2343 struct srpt_device *sdev;
2344 struct se_session *se_sess;
2345
2346 ch = container_of(w, struct srpt_rdma_ch, release_work);
2347 pr_debug("ch = %p; ch->sess = %p; release_done = %p\n", ch, ch->sess,
2348 ch->release_done);
2349
2350 sdev = ch->sport->sdev;
2351 BUG_ON(!sdev);
2352
2353 se_sess = ch->sess;
2354 BUG_ON(!se_sess);
2355
2356 target_wait_for_sess_cmds(se_sess);
2357
2358 transport_deregister_session_configfs(se_sess);
2359 transport_deregister_session(se_sess);
2360 ch->sess = NULL;
2361
2362 ib_destroy_cm_id(ch->cm_id);
2363
2364 srpt_destroy_ch_ib(ch);
2365
2366 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2367 ch->sport->sdev, ch->rq_size,
2368 ch->rsp_size, DMA_TO_DEVICE);
2369
2370 spin_lock_irq(&sdev->spinlock);
2371 list_del(&ch->list);
2372 spin_unlock_irq(&sdev->spinlock);
2373
2374 if (ch->release_done)
2375 complete(ch->release_done);
2376
2377 wake_up(&sdev->ch_releaseQ);
2378
2379 kfree(ch);
2380 }
2381
2382 static struct srpt_node_acl *__srpt_lookup_acl(struct srpt_port *sport,
2383 u8 i_port_id[16])
2384 {
2385 struct srpt_node_acl *nacl;
2386
2387 list_for_each_entry(nacl, &sport->port_acl_list, list)
2388 if (memcmp(nacl->i_port_id, i_port_id,
2389 sizeof(nacl->i_port_id)) == 0)
2390 return nacl;
2391
2392 return NULL;
2393 }
2394
2395 static struct srpt_node_acl *srpt_lookup_acl(struct srpt_port *sport,
2396 u8 i_port_id[16])
2397 {
2398 struct srpt_node_acl *nacl;
2399
2400 spin_lock_irq(&sport->port_acl_lock);
2401 nacl = __srpt_lookup_acl(sport, i_port_id);
2402 spin_unlock_irq(&sport->port_acl_lock);
2403
2404 return nacl;
2405 }
2406
2407 /**
2408 * srpt_cm_req_recv() - Process the event IB_CM_REQ_RECEIVED.
2409 *
2410 * Ownership of the cm_id is transferred to the target session if this
2411 * functions returns zero. Otherwise the caller remains the owner of cm_id.
2412 */
2413 static int srpt_cm_req_recv(struct ib_cm_id *cm_id,
2414 struct ib_cm_req_event_param *param,
2415 void *private_data)
2416 {
2417 struct srpt_device *sdev = cm_id->context;
2418 struct srpt_port *sport = &sdev->port[param->port - 1];
2419 struct srp_login_req *req;
2420 struct srp_login_rsp *rsp;
2421 struct srp_login_rej *rej;
2422 struct ib_cm_rep_param *rep_param;
2423 struct srpt_rdma_ch *ch, *tmp_ch;
2424 struct srpt_node_acl *nacl;
2425 u32 it_iu_len;
2426 int i;
2427 int ret = 0;
2428
2429 WARN_ON_ONCE(irqs_disabled());
2430
2431 if (WARN_ON(!sdev || !private_data))
2432 return -EINVAL;
2433
2434 req = (struct srp_login_req *)private_data;
2435
2436 it_iu_len = be32_to_cpu(req->req_it_iu_len);
2437
2438 printk(KERN_INFO "Received SRP_LOGIN_REQ with i_port_id 0x%llx:0x%llx,"
2439 " t_port_id 0x%llx:0x%llx and it_iu_len %d on port %d"
2440 " (guid=0x%llx:0x%llx)\n",
2441 be64_to_cpu(*(__be64 *)&req->initiator_port_id[0]),
2442 be64_to_cpu(*(__be64 *)&req->initiator_port_id[8]),
2443 be64_to_cpu(*(__be64 *)&req->target_port_id[0]),
2444 be64_to_cpu(*(__be64 *)&req->target_port_id[8]),
2445 it_iu_len,
2446 param->port,
2447 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[0]),
2448 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[8]));
2449
2450 rsp = kzalloc(sizeof *rsp, GFP_KERNEL);
2451 rej = kzalloc(sizeof *rej, GFP_KERNEL);
2452 rep_param = kzalloc(sizeof *rep_param, GFP_KERNEL);
2453
2454 if (!rsp || !rej || !rep_param) {
2455 ret = -ENOMEM;
2456 goto out;
2457 }
2458
2459 if (it_iu_len > srp_max_req_size || it_iu_len < 64) {
2460 rej->reason = __constant_cpu_to_be32(
2461 SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE);
2462 ret = -EINVAL;
2463 printk(KERN_ERR "rejected SRP_LOGIN_REQ because its"
2464 " length (%d bytes) is out of range (%d .. %d)\n",
2465 it_iu_len, 64, srp_max_req_size);
2466 goto reject;
2467 }
2468
2469 if (!sport->enabled) {
2470 rej->reason = __constant_cpu_to_be32(
2471 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2472 ret = -EINVAL;
2473 printk(KERN_ERR "rejected SRP_LOGIN_REQ because the target port"
2474 " has not yet been enabled\n");
2475 goto reject;
2476 }
2477
2478 if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) {
2479 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN;
2480
2481 spin_lock_irq(&sdev->spinlock);
2482
2483 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) {
2484 if (!memcmp(ch->i_port_id, req->initiator_port_id, 16)
2485 && !memcmp(ch->t_port_id, req->target_port_id, 16)
2486 && param->port == ch->sport->port
2487 && param->listen_id == ch->sport->sdev->cm_id
2488 && ch->cm_id) {
2489 enum rdma_ch_state ch_state;
2490
2491 ch_state = srpt_get_ch_state(ch);
2492 if (ch_state != CH_CONNECTING
2493 && ch_state != CH_LIVE)
2494 continue;
2495
2496 /* found an existing channel */
2497 pr_debug("Found existing channel %s"
2498 " cm_id= %p state= %d\n",
2499 ch->sess_name, ch->cm_id, ch_state);
2500
2501 __srpt_close_ch(ch);
2502
2503 rsp->rsp_flags =
2504 SRP_LOGIN_RSP_MULTICHAN_TERMINATED;
2505 }
2506 }
2507
2508 spin_unlock_irq(&sdev->spinlock);
2509
2510 } else
2511 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED;
2512
2513 if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid)
2514 || *(__be64 *)(req->target_port_id + 8) !=
2515 cpu_to_be64(srpt_service_guid)) {
2516 rej->reason = __constant_cpu_to_be32(
2517 SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL);
2518 ret = -ENOMEM;
2519 printk(KERN_ERR "rejected SRP_LOGIN_REQ because it"
2520 " has an invalid target port identifier.\n");
2521 goto reject;
2522 }
2523
2524 ch = kzalloc(sizeof *ch, GFP_KERNEL);
2525 if (!ch) {
2526 rej->reason = __constant_cpu_to_be32(
2527 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2528 printk(KERN_ERR "rejected SRP_LOGIN_REQ because no memory.\n");
2529 ret = -ENOMEM;
2530 goto reject;
2531 }
2532
2533 INIT_WORK(&ch->release_work, srpt_release_channel_work);
2534 memcpy(ch->i_port_id, req->initiator_port_id, 16);
2535 memcpy(ch->t_port_id, req->target_port_id, 16);
2536 ch->sport = &sdev->port[param->port - 1];
2537 ch->cm_id = cm_id;
2538 /*
2539 * Avoid QUEUE_FULL conditions by limiting the number of buffers used
2540 * for the SRP protocol to the command queue size.
2541 */
2542 ch->rq_size = SRPT_RQ_SIZE;
2543 spin_lock_init(&ch->spinlock);
2544 ch->state = CH_CONNECTING;
2545 INIT_LIST_HEAD(&ch->cmd_wait_list);
2546 ch->rsp_size = ch->sport->port_attrib.srp_max_rsp_size;
2547
2548 ch->ioctx_ring = (struct srpt_send_ioctx **)
2549 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
2550 sizeof(*ch->ioctx_ring[0]),
2551 ch->rsp_size, DMA_TO_DEVICE);
2552 if (!ch->ioctx_ring)
2553 goto free_ch;
2554
2555 INIT_LIST_HEAD(&ch->free_list);
2556 for (i = 0; i < ch->rq_size; i++) {
2557 ch->ioctx_ring[i]->ch = ch;
2558 list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list);
2559 }
2560
2561 ret = srpt_create_ch_ib(ch);
2562 if (ret) {
2563 rej->reason = __constant_cpu_to_be32(
2564 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2565 printk(KERN_ERR "rejected SRP_LOGIN_REQ because creating"
2566 " a new RDMA channel failed.\n");
2567 goto free_ring;
2568 }
2569
2570 ret = srpt_ch_qp_rtr(ch, ch->qp);
2571 if (ret) {
2572 rej->reason = __constant_cpu_to_be32(
2573 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2574 printk(KERN_ERR "rejected SRP_LOGIN_REQ because enabling"
2575 " RTR failed (error code = %d)\n", ret);
2576 goto destroy_ib;
2577 }
2578 /*
2579 * Use the initator port identifier as the session name.
2580 */
2581 snprintf(ch->sess_name, sizeof(ch->sess_name), "0x%016llx%016llx",
2582 be64_to_cpu(*(__be64 *)ch->i_port_id),
2583 be64_to_cpu(*(__be64 *)(ch->i_port_id + 8)));
2584
2585 pr_debug("registering session %s\n", ch->sess_name);
2586
2587 nacl = srpt_lookup_acl(sport, ch->i_port_id);
2588 if (!nacl) {
2589 printk(KERN_INFO "Rejected login because no ACL has been"
2590 " configured yet for initiator %s.\n", ch->sess_name);
2591 rej->reason = __constant_cpu_to_be32(
2592 SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED);
2593 goto destroy_ib;
2594 }
2595
2596 ch->sess = transport_init_session(TARGET_PROT_NORMAL);
2597 if (IS_ERR(ch->sess)) {
2598 rej->reason = __constant_cpu_to_be32(
2599 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2600 pr_debug("Failed to create session\n");
2601 goto deregister_session;
2602 }
2603 ch->sess->se_node_acl = &nacl->nacl;
2604 transport_register_session(&sport->port_tpg_1, &nacl->nacl, ch->sess, ch);
2605
2606 pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch->sess,
2607 ch->sess_name, ch->cm_id);
2608
2609 /* create srp_login_response */
2610 rsp->opcode = SRP_LOGIN_RSP;
2611 rsp->tag = req->tag;
2612 rsp->max_it_iu_len = req->req_it_iu_len;
2613 rsp->max_ti_iu_len = req->req_it_iu_len;
2614 ch->max_ti_iu_len = it_iu_len;
2615 rsp->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2616 | SRP_BUF_FORMAT_INDIRECT);
2617 rsp->req_lim_delta = cpu_to_be32(ch->rq_size);
2618 atomic_set(&ch->req_lim, ch->rq_size);
2619 atomic_set(&ch->req_lim_delta, 0);
2620
2621 /* create cm reply */
2622 rep_param->qp_num = ch->qp->qp_num;
2623 rep_param->private_data = (void *)rsp;
2624 rep_param->private_data_len = sizeof *rsp;
2625 rep_param->rnr_retry_count = 7;
2626 rep_param->flow_control = 1;
2627 rep_param->failover_accepted = 0;
2628 rep_param->srq = 1;
2629 rep_param->responder_resources = 4;
2630 rep_param->initiator_depth = 4;
2631
2632 ret = ib_send_cm_rep(cm_id, rep_param);
2633 if (ret) {
2634 printk(KERN_ERR "sending SRP_LOGIN_REQ response failed"
2635 " (error code = %d)\n", ret);
2636 goto release_channel;
2637 }
2638
2639 spin_lock_irq(&sdev->spinlock);
2640 list_add_tail(&ch->list, &sdev->rch_list);
2641 spin_unlock_irq(&sdev->spinlock);
2642
2643 goto out;
2644
2645 release_channel:
2646 srpt_set_ch_state(ch, CH_RELEASING);
2647 transport_deregister_session_configfs(ch->sess);
2648
2649 deregister_session:
2650 transport_deregister_session(ch->sess);
2651 ch->sess = NULL;
2652
2653 destroy_ib:
2654 srpt_destroy_ch_ib(ch);
2655
2656 free_ring:
2657 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2658 ch->sport->sdev, ch->rq_size,
2659 ch->rsp_size, DMA_TO_DEVICE);
2660 free_ch:
2661 kfree(ch);
2662
2663 reject:
2664 rej->opcode = SRP_LOGIN_REJ;
2665 rej->tag = req->tag;
2666 rej->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2667 | SRP_BUF_FORMAT_INDIRECT);
2668
2669 ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0,
2670 (void *)rej, sizeof *rej);
2671
2672 out:
2673 kfree(rep_param);
2674 kfree(rsp);
2675 kfree(rej);
2676
2677 return ret;
2678 }
2679
2680 static void srpt_cm_rej_recv(struct ib_cm_id *cm_id)
2681 {
2682 printk(KERN_INFO "Received IB REJ for cm_id %p.\n", cm_id);
2683 srpt_drain_channel(cm_id);
2684 }
2685
2686 /**
2687 * srpt_cm_rtu_recv() - Process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event.
2688 *
2689 * An IB_CM_RTU_RECEIVED message indicates that the connection is established
2690 * and that the recipient may begin transmitting (RTU = ready to use).
2691 */
2692 static void srpt_cm_rtu_recv(struct ib_cm_id *cm_id)
2693 {
2694 struct srpt_rdma_ch *ch;
2695 int ret;
2696
2697 ch = srpt_find_channel(cm_id->context, cm_id);
2698 BUG_ON(!ch);
2699
2700 if (srpt_test_and_set_ch_state(ch, CH_CONNECTING, CH_LIVE)) {
2701 struct srpt_recv_ioctx *ioctx, *ioctx_tmp;
2702
2703 ret = srpt_ch_qp_rts(ch, ch->qp);
2704
2705 list_for_each_entry_safe(ioctx, ioctx_tmp, &ch->cmd_wait_list,
2706 wait_list) {
2707 list_del(&ioctx->wait_list);
2708 srpt_handle_new_iu(ch, ioctx, NULL);
2709 }
2710 if (ret)
2711 srpt_close_ch(ch);
2712 }
2713 }
2714
2715 static void srpt_cm_timewait_exit(struct ib_cm_id *cm_id)
2716 {
2717 printk(KERN_INFO "Received IB TimeWait exit for cm_id %p.\n", cm_id);
2718 srpt_drain_channel(cm_id);
2719 }
2720
2721 static void srpt_cm_rep_error(struct ib_cm_id *cm_id)
2722 {
2723 printk(KERN_INFO "Received IB REP error for cm_id %p.\n", cm_id);
2724 srpt_drain_channel(cm_id);
2725 }
2726
2727 /**
2728 * srpt_cm_dreq_recv() - Process reception of a DREQ message.
2729 */
2730 static void srpt_cm_dreq_recv(struct ib_cm_id *cm_id)
2731 {
2732 struct srpt_rdma_ch *ch;
2733 unsigned long flags;
2734 bool send_drep = false;
2735
2736 ch = srpt_find_channel(cm_id->context, cm_id);
2737 BUG_ON(!ch);
2738
2739 pr_debug("cm_id= %p ch->state= %d\n", cm_id, srpt_get_ch_state(ch));
2740
2741 spin_lock_irqsave(&ch->spinlock, flags);
2742 switch (ch->state) {
2743 case CH_CONNECTING:
2744 case CH_LIVE:
2745 send_drep = true;
2746 ch->state = CH_DISCONNECTING;
2747 break;
2748 case CH_DISCONNECTING:
2749 case CH_DRAINING:
2750 case CH_RELEASING:
2751 WARN(true, "unexpected channel state %d\n", ch->state);
2752 break;
2753 }
2754 spin_unlock_irqrestore(&ch->spinlock, flags);
2755
2756 if (send_drep) {
2757 if (ib_send_cm_drep(ch->cm_id, NULL, 0) < 0)
2758 printk(KERN_ERR "Sending IB DREP failed.\n");
2759 printk(KERN_INFO "Received DREQ and sent DREP for session %s.\n",
2760 ch->sess_name);
2761 }
2762 }
2763
2764 /**
2765 * srpt_cm_drep_recv() - Process reception of a DREP message.
2766 */
2767 static void srpt_cm_drep_recv(struct ib_cm_id *cm_id)
2768 {
2769 printk(KERN_INFO "Received InfiniBand DREP message for cm_id %p.\n",
2770 cm_id);
2771 srpt_drain_channel(cm_id);
2772 }
2773
2774 /**
2775 * srpt_cm_handler() - IB connection manager callback function.
2776 *
2777 * A non-zero return value will cause the caller destroy the CM ID.
2778 *
2779 * Note: srpt_cm_handler() must only return a non-zero value when transferring
2780 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning
2781 * a non-zero value in any other case will trigger a race with the
2782 * ib_destroy_cm_id() call in srpt_release_channel().
2783 */
2784 static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event)
2785 {
2786 int ret;
2787
2788 ret = 0;
2789 switch (event->event) {
2790 case IB_CM_REQ_RECEIVED:
2791 ret = srpt_cm_req_recv(cm_id, &event->param.req_rcvd,
2792 event->private_data);
2793 break;
2794 case IB_CM_REJ_RECEIVED:
2795 srpt_cm_rej_recv(cm_id);
2796 break;
2797 case IB_CM_RTU_RECEIVED:
2798 case IB_CM_USER_ESTABLISHED:
2799 srpt_cm_rtu_recv(cm_id);
2800 break;
2801 case IB_CM_DREQ_RECEIVED:
2802 srpt_cm_dreq_recv(cm_id);
2803 break;
2804 case IB_CM_DREP_RECEIVED:
2805 srpt_cm_drep_recv(cm_id);
2806 break;
2807 case IB_CM_TIMEWAIT_EXIT:
2808 srpt_cm_timewait_exit(cm_id);
2809 break;
2810 case IB_CM_REP_ERROR:
2811 srpt_cm_rep_error(cm_id);
2812 break;
2813 case IB_CM_DREQ_ERROR:
2814 printk(KERN_INFO "Received IB DREQ ERROR event.\n");
2815 break;
2816 case IB_CM_MRA_RECEIVED:
2817 printk(KERN_INFO "Received IB MRA event\n");
2818 break;
2819 default:
2820 printk(KERN_ERR "received unrecognized IB CM event %d\n",
2821 event->event);
2822 break;
2823 }
2824
2825 return ret;
2826 }
2827
2828 /**
2829 * srpt_perform_rdmas() - Perform IB RDMA.
2830 *
2831 * Returns zero upon success or a negative number upon failure.
2832 */
2833 static int srpt_perform_rdmas(struct srpt_rdma_ch *ch,
2834 struct srpt_send_ioctx *ioctx)
2835 {
2836 struct ib_send_wr wr;
2837 struct ib_send_wr *bad_wr;
2838 struct rdma_iu *riu;
2839 int i;
2840 int ret;
2841 int sq_wr_avail;
2842 enum dma_data_direction dir;
2843 const int n_rdma = ioctx->n_rdma;
2844
2845 dir = ioctx->cmd.data_direction;
2846 if (dir == DMA_TO_DEVICE) {
2847 /* write */
2848 ret = -ENOMEM;
2849 sq_wr_avail = atomic_sub_return(n_rdma, &ch->sq_wr_avail);
2850 if (sq_wr_avail < 0) {
2851 printk(KERN_WARNING "IB send queue full (needed %d)\n",
2852 n_rdma);
2853 goto out;
2854 }
2855 }
2856
2857 ioctx->rdma_aborted = false;
2858 ret = 0;
2859 riu = ioctx->rdma_ius;
2860 memset(&wr, 0, sizeof wr);
2861
2862 for (i = 0; i < n_rdma; ++i, ++riu) {
2863 if (dir == DMA_FROM_DEVICE) {
2864 wr.opcode = IB_WR_RDMA_WRITE;
2865 wr.wr_id = encode_wr_id(i == n_rdma - 1 ?
2866 SRPT_RDMA_WRITE_LAST :
2867 SRPT_RDMA_MID,
2868 ioctx->ioctx.index);
2869 } else {
2870 wr.opcode = IB_WR_RDMA_READ;
2871 wr.wr_id = encode_wr_id(i == n_rdma - 1 ?
2872 SRPT_RDMA_READ_LAST :
2873 SRPT_RDMA_MID,
2874 ioctx->ioctx.index);
2875 }
2876 wr.next = NULL;
2877 wr.wr.rdma.remote_addr = riu->raddr;
2878 wr.wr.rdma.rkey = riu->rkey;
2879 wr.num_sge = riu->sge_cnt;
2880 wr.sg_list = riu->sge;
2881
2882 /* only get completion event for the last rdma write */
2883 if (i == (n_rdma - 1) && dir == DMA_TO_DEVICE)
2884 wr.send_flags = IB_SEND_SIGNALED;
2885
2886 ret = ib_post_send(ch->qp, &wr, &bad_wr);
2887 if (ret)
2888 break;
2889 }
2890
2891 if (ret)
2892 printk(KERN_ERR "%s[%d]: ib_post_send() returned %d for %d/%d",
2893 __func__, __LINE__, ret, i, n_rdma);
2894 if (ret && i > 0) {
2895 wr.num_sge = 0;
2896 wr.wr_id = encode_wr_id(SRPT_RDMA_ABORT, ioctx->ioctx.index);
2897 wr.send_flags = IB_SEND_SIGNALED;
2898 while (ch->state == CH_LIVE &&
2899 ib_post_send(ch->qp, &wr, &bad_wr) != 0) {
2900 printk(KERN_INFO "Trying to abort failed RDMA transfer [%d]",
2901 ioctx->ioctx.index);
2902 msleep(1000);
2903 }
2904 while (ch->state != CH_RELEASING && !ioctx->rdma_aborted) {
2905 printk(KERN_INFO "Waiting until RDMA abort finished [%d]",
2906 ioctx->ioctx.index);
2907 msleep(1000);
2908 }
2909 }
2910 out:
2911 if (unlikely(dir == DMA_TO_DEVICE && ret < 0))
2912 atomic_add(n_rdma, &ch->sq_wr_avail);
2913 return ret;
2914 }
2915
2916 /**
2917 * srpt_xfer_data() - Start data transfer from initiator to target.
2918 */
2919 static int srpt_xfer_data(struct srpt_rdma_ch *ch,
2920 struct srpt_send_ioctx *ioctx)
2921 {
2922 int ret;
2923
2924 ret = srpt_map_sg_to_ib_sge(ch, ioctx);
2925 if (ret) {
2926 printk(KERN_ERR "%s[%d] ret=%d\n", __func__, __LINE__, ret);
2927 goto out;
2928 }
2929
2930 ret = srpt_perform_rdmas(ch, ioctx);
2931 if (ret) {
2932 if (ret == -EAGAIN || ret == -ENOMEM)
2933 printk(KERN_INFO "%s[%d] queue full -- ret=%d\n",
2934 __func__, __LINE__, ret);
2935 else
2936 printk(KERN_ERR "%s[%d] fatal error -- ret=%d\n",
2937 __func__, __LINE__, ret);
2938 goto out_unmap;
2939 }
2940
2941 out:
2942 return ret;
2943 out_unmap:
2944 srpt_unmap_sg_to_ib_sge(ch, ioctx);
2945 goto out;
2946 }
2947
2948 static int srpt_write_pending_status(struct se_cmd *se_cmd)
2949 {
2950 struct srpt_send_ioctx *ioctx;
2951
2952 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2953 return srpt_get_cmd_state(ioctx) == SRPT_STATE_NEED_DATA;
2954 }
2955
2956 /*
2957 * srpt_write_pending() - Start data transfer from initiator to target (write).
2958 */
2959 static int srpt_write_pending(struct se_cmd *se_cmd)
2960 {
2961 struct srpt_rdma_ch *ch;
2962 struct srpt_send_ioctx *ioctx;
2963 enum srpt_command_state new_state;
2964 enum rdma_ch_state ch_state;
2965 int ret;
2966
2967 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2968
2969 new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA);
2970 WARN_ON(new_state == SRPT_STATE_DONE);
2971
2972 ch = ioctx->ch;
2973 BUG_ON(!ch);
2974
2975 ch_state = srpt_get_ch_state(ch);
2976 switch (ch_state) {
2977 case CH_CONNECTING:
2978 WARN(true, "unexpected channel state %d\n", ch_state);
2979 ret = -EINVAL;
2980 goto out;
2981 case CH_LIVE:
2982 break;
2983 case CH_DISCONNECTING:
2984 case CH_DRAINING:
2985 case CH_RELEASING:
2986 pr_debug("cmd with tag %lld: channel disconnecting\n",
2987 ioctx->tag);
2988 srpt_set_cmd_state(ioctx, SRPT_STATE_DATA_IN);
2989 ret = -EINVAL;
2990 goto out;
2991 }
2992 ret = srpt_xfer_data(ch, ioctx);
2993
2994 out:
2995 return ret;
2996 }
2997
2998 static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)
2999 {
3000 switch (tcm_mgmt_status) {
3001 case TMR_FUNCTION_COMPLETE:
3002 return SRP_TSK_MGMT_SUCCESS;
3003 case TMR_FUNCTION_REJECTED:
3004 return SRP_TSK_MGMT_FUNC_NOT_SUPP;
3005 }
3006 return SRP_TSK_MGMT_FAILED;
3007 }
3008
3009 /**
3010 * srpt_queue_response() - Transmits the response to a SCSI command.
3011 *
3012 * Callback function called by the TCM core. Must not block since it can be
3013 * invoked on the context of the IB completion handler.
3014 */
3015 static void srpt_queue_response(struct se_cmd *cmd)
3016 {
3017 struct srpt_rdma_ch *ch;
3018 struct srpt_send_ioctx *ioctx;
3019 enum srpt_command_state state;
3020 unsigned long flags;
3021 int ret;
3022 enum dma_data_direction dir;
3023 int resp_len;
3024 u8 srp_tm_status;
3025
3026 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
3027 ch = ioctx->ch;
3028 BUG_ON(!ch);
3029
3030 spin_lock_irqsave(&ioctx->spinlock, flags);
3031 state = ioctx->state;
3032 switch (state) {
3033 case SRPT_STATE_NEW:
3034 case SRPT_STATE_DATA_IN:
3035 ioctx->state = SRPT_STATE_CMD_RSP_SENT;
3036 break;
3037 case SRPT_STATE_MGMT:
3038 ioctx->state = SRPT_STATE_MGMT_RSP_SENT;
3039 break;
3040 default:
3041 WARN(true, "ch %p; cmd %d: unexpected command state %d\n",
3042 ch, ioctx->ioctx.index, ioctx->state);
3043 break;
3044 }
3045 spin_unlock_irqrestore(&ioctx->spinlock, flags);
3046
3047 if (unlikely(transport_check_aborted_status(&ioctx->cmd, false)
3048 || WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))) {
3049 atomic_inc(&ch->req_lim_delta);
3050 srpt_abort_cmd(ioctx);
3051 return;
3052 }
3053
3054 dir = ioctx->cmd.data_direction;
3055
3056 /* For read commands, transfer the data to the initiator. */
3057 if (dir == DMA_FROM_DEVICE && ioctx->cmd.data_length &&
3058 !ioctx->queue_status_only) {
3059 ret = srpt_xfer_data(ch, ioctx);
3060 if (ret) {
3061 printk(KERN_ERR "xfer_data failed for tag %llu\n",
3062 ioctx->tag);
3063 return;
3064 }
3065 }
3066
3067 if (state != SRPT_STATE_MGMT)
3068 resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->tag,
3069 cmd->scsi_status);
3070 else {
3071 srp_tm_status
3072 = tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response);
3073 resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status,
3074 ioctx->tag);
3075 }
3076 ret = srpt_post_send(ch, ioctx, resp_len);
3077 if (ret) {
3078 printk(KERN_ERR "sending cmd response failed for tag %llu\n",
3079 ioctx->tag);
3080 srpt_unmap_sg_to_ib_sge(ch, ioctx);
3081 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
3082 target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd);
3083 }
3084 }
3085
3086 static int srpt_queue_data_in(struct se_cmd *cmd)
3087 {
3088 srpt_queue_response(cmd);
3089 return 0;
3090 }
3091
3092 static void srpt_queue_tm_rsp(struct se_cmd *cmd)
3093 {
3094 srpt_queue_response(cmd);
3095 }
3096
3097 static void srpt_aborted_task(struct se_cmd *cmd)
3098 {
3099 struct srpt_send_ioctx *ioctx = container_of(cmd,
3100 struct srpt_send_ioctx, cmd);
3101
3102 srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx);
3103 }
3104
3105 static int srpt_queue_status(struct se_cmd *cmd)
3106 {
3107 struct srpt_send_ioctx *ioctx;
3108
3109 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
3110 BUG_ON(ioctx->sense_data != cmd->sense_buffer);
3111 if (cmd->se_cmd_flags &
3112 (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE))
3113 WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION);
3114 ioctx->queue_status_only = true;
3115 srpt_queue_response(cmd);
3116 return 0;
3117 }
3118
3119 static void srpt_refresh_port_work(struct work_struct *work)
3120 {
3121 struct srpt_port *sport = container_of(work, struct srpt_port, work);
3122
3123 srpt_refresh_port(sport);
3124 }
3125
3126 static int srpt_ch_list_empty(struct srpt_device *sdev)
3127 {
3128 int res;
3129
3130 spin_lock_irq(&sdev->spinlock);
3131 res = list_empty(&sdev->rch_list);
3132 spin_unlock_irq(&sdev->spinlock);
3133
3134 return res;
3135 }
3136
3137 /**
3138 * srpt_release_sdev() - Free the channel resources associated with a target.
3139 */
3140 static int srpt_release_sdev(struct srpt_device *sdev)
3141 {
3142 struct srpt_rdma_ch *ch, *tmp_ch;
3143 int res;
3144
3145 WARN_ON_ONCE(irqs_disabled());
3146
3147 BUG_ON(!sdev);
3148
3149 spin_lock_irq(&sdev->spinlock);
3150 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list)
3151 __srpt_close_ch(ch);
3152 spin_unlock_irq(&sdev->spinlock);
3153
3154 res = wait_event_interruptible(sdev->ch_releaseQ,
3155 srpt_ch_list_empty(sdev));
3156 if (res)
3157 printk(KERN_ERR "%s: interrupted.\n", __func__);
3158
3159 return 0;
3160 }
3161
3162 static struct srpt_port *__srpt_lookup_port(const char *name)
3163 {
3164 struct ib_device *dev;
3165 struct srpt_device *sdev;
3166 struct srpt_port *sport;
3167 int i;
3168
3169 list_for_each_entry(sdev, &srpt_dev_list, list) {
3170 dev = sdev->device;
3171 if (!dev)
3172 continue;
3173
3174 for (i = 0; i < dev->phys_port_cnt; i++) {
3175 sport = &sdev->port[i];
3176
3177 if (!strcmp(sport->port_guid, name))
3178 return sport;
3179 }
3180 }
3181
3182 return NULL;
3183 }
3184
3185 static struct srpt_port *srpt_lookup_port(const char *name)
3186 {
3187 struct srpt_port *sport;
3188
3189 spin_lock(&srpt_dev_lock);
3190 sport = __srpt_lookup_port(name);
3191 spin_unlock(&srpt_dev_lock);
3192
3193 return sport;
3194 }
3195
3196 /**
3197 * srpt_add_one() - Infiniband device addition callback function.
3198 */
3199 static void srpt_add_one(struct ib_device *device)
3200 {
3201 struct srpt_device *sdev;
3202 struct srpt_port *sport;
3203 struct ib_srq_init_attr srq_attr;
3204 int i;
3205
3206 pr_debug("device = %p, device->dma_ops = %p\n", device,
3207 device->dma_ops);
3208
3209 sdev = kzalloc(sizeof *sdev, GFP_KERNEL);
3210 if (!sdev)
3211 goto err;
3212
3213 sdev->device = device;
3214 INIT_LIST_HEAD(&sdev->rch_list);
3215 init_waitqueue_head(&sdev->ch_releaseQ);
3216 spin_lock_init(&sdev->spinlock);
3217
3218 if (ib_query_device(device, &sdev->dev_attr))
3219 goto free_dev;
3220
3221 sdev->pd = ib_alloc_pd(device);
3222 if (IS_ERR(sdev->pd))
3223 goto free_dev;
3224
3225 sdev->mr = ib_get_dma_mr(sdev->pd, IB_ACCESS_LOCAL_WRITE);
3226 if (IS_ERR(sdev->mr))
3227 goto err_pd;
3228
3229 sdev->srq_size = min(srpt_srq_size, sdev->dev_attr.max_srq_wr);
3230
3231 srq_attr.event_handler = srpt_srq_event;
3232 srq_attr.srq_context = (void *)sdev;
3233 srq_attr.attr.max_wr = sdev->srq_size;
3234 srq_attr.attr.max_sge = 1;
3235 srq_attr.attr.srq_limit = 0;
3236 srq_attr.srq_type = IB_SRQT_BASIC;
3237
3238 sdev->srq = ib_create_srq(sdev->pd, &srq_attr);
3239 if (IS_ERR(sdev->srq))
3240 goto err_mr;
3241
3242 pr_debug("%s: create SRQ #wr= %d max_allow=%d dev= %s\n",
3243 __func__, sdev->srq_size, sdev->dev_attr.max_srq_wr,
3244 device->name);
3245
3246 if (!srpt_service_guid)
3247 srpt_service_guid = be64_to_cpu(device->node_guid);
3248
3249 sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev);
3250 if (IS_ERR(sdev->cm_id))
3251 goto err_srq;
3252
3253 /* print out target login information */
3254 pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,"
3255 "pkey=ffff,service_id=%016llx\n", srpt_service_guid,
3256 srpt_service_guid, srpt_service_guid);
3257
3258 /*
3259 * We do not have a consistent service_id (ie. also id_ext of target_id)
3260 * to identify this target. We currently use the guid of the first HCA
3261 * in the system as service_id; therefore, the target_id will change
3262 * if this HCA is gone bad and replaced by different HCA
3263 */
3264 if (ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0, NULL))
3265 goto err_cm;
3266
3267 INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device,
3268 srpt_event_handler);
3269 if (ib_register_event_handler(&sdev->event_handler))
3270 goto err_cm;
3271
3272 sdev->ioctx_ring = (struct srpt_recv_ioctx **)
3273 srpt_alloc_ioctx_ring(sdev, sdev->srq_size,
3274 sizeof(*sdev->ioctx_ring[0]),
3275 srp_max_req_size, DMA_FROM_DEVICE);
3276 if (!sdev->ioctx_ring)
3277 goto err_event;
3278
3279 for (i = 0; i < sdev->srq_size; ++i)
3280 srpt_post_recv(sdev, sdev->ioctx_ring[i]);
3281
3282 WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port));
3283
3284 for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
3285 sport = &sdev->port[i - 1];
3286 sport->sdev = sdev;
3287 sport->port = i;
3288 sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE;
3289 sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE;
3290 sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE;
3291 INIT_WORK(&sport->work, srpt_refresh_port_work);
3292 INIT_LIST_HEAD(&sport->port_acl_list);
3293 spin_lock_init(&sport->port_acl_lock);
3294
3295 if (srpt_refresh_port(sport)) {
3296 printk(KERN_ERR "MAD registration failed for %s-%d.\n",
3297 srpt_sdev_name(sdev), i);
3298 goto err_ring;
3299 }
3300 snprintf(sport->port_guid, sizeof(sport->port_guid),
3301 "0x%016llx%016llx",
3302 be64_to_cpu(sport->gid.global.subnet_prefix),
3303 be64_to_cpu(sport->gid.global.interface_id));
3304 }
3305
3306 spin_lock(&srpt_dev_lock);
3307 list_add_tail(&sdev->list, &srpt_dev_list);
3308 spin_unlock(&srpt_dev_lock);
3309
3310 out:
3311 ib_set_client_data(device, &srpt_client, sdev);
3312 pr_debug("added %s.\n", device->name);
3313 return;
3314
3315 err_ring:
3316 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3317 sdev->srq_size, srp_max_req_size,
3318 DMA_FROM_DEVICE);
3319 err_event:
3320 ib_unregister_event_handler(&sdev->event_handler);
3321 err_cm:
3322 ib_destroy_cm_id(sdev->cm_id);
3323 err_srq:
3324 ib_destroy_srq(sdev->srq);
3325 err_mr:
3326 ib_dereg_mr(sdev->mr);
3327 err_pd:
3328 ib_dealloc_pd(sdev->pd);
3329 free_dev:
3330 kfree(sdev);
3331 err:
3332 sdev = NULL;
3333 printk(KERN_INFO "%s(%s) failed.\n", __func__, device->name);
3334 goto out;
3335 }
3336
3337 /**
3338 * srpt_remove_one() - InfiniBand device removal callback function.
3339 */
3340 static void srpt_remove_one(struct ib_device *device)
3341 {
3342 struct srpt_device *sdev;
3343 int i;
3344
3345 sdev = ib_get_client_data(device, &srpt_client);
3346 if (!sdev) {
3347 printk(KERN_INFO "%s(%s): nothing to do.\n", __func__,
3348 device->name);
3349 return;
3350 }
3351
3352 srpt_unregister_mad_agent(sdev);
3353
3354 ib_unregister_event_handler(&sdev->event_handler);
3355
3356 /* Cancel any work queued by the just unregistered IB event handler. */
3357 for (i = 0; i < sdev->device->phys_port_cnt; i++)
3358 cancel_work_sync(&sdev->port[i].work);
3359
3360 ib_destroy_cm_id(sdev->cm_id);
3361
3362 /*
3363 * Unregistering a target must happen after destroying sdev->cm_id
3364 * such that no new SRP_LOGIN_REQ information units can arrive while
3365 * destroying the target.
3366 */
3367 spin_lock(&srpt_dev_lock);
3368 list_del(&sdev->list);
3369 spin_unlock(&srpt_dev_lock);
3370 srpt_release_sdev(sdev);
3371
3372 ib_destroy_srq(sdev->srq);
3373 ib_dereg_mr(sdev->mr);
3374 ib_dealloc_pd(sdev->pd);
3375
3376 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3377 sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE);
3378 sdev->ioctx_ring = NULL;
3379 kfree(sdev);
3380 }
3381
3382 static struct ib_client srpt_client = {
3383 .name = DRV_NAME,
3384 .add = srpt_add_one,
3385 .remove = srpt_remove_one
3386 };
3387
3388 static int srpt_check_true(struct se_portal_group *se_tpg)
3389 {
3390 return 1;
3391 }
3392
3393 static int srpt_check_false(struct se_portal_group *se_tpg)
3394 {
3395 return 0;
3396 }
3397
3398 static char *srpt_get_fabric_name(void)
3399 {
3400 return "srpt";
3401 }
3402
3403 static u8 srpt_get_fabric_proto_ident(struct se_portal_group *se_tpg)
3404 {
3405 return SCSI_TRANSPORTID_PROTOCOLID_SRP;
3406 }
3407
3408 static char *srpt_get_fabric_wwn(struct se_portal_group *tpg)
3409 {
3410 struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1);
3411
3412 return sport->port_guid;
3413 }
3414
3415 static u16 srpt_get_tag(struct se_portal_group *tpg)
3416 {
3417 return 1;
3418 }
3419
3420 static u32 srpt_get_default_depth(struct se_portal_group *se_tpg)
3421 {
3422 return 1;
3423 }
3424
3425 static u32 srpt_get_pr_transport_id(struct se_portal_group *se_tpg,
3426 struct se_node_acl *se_nacl,
3427 struct t10_pr_registration *pr_reg,
3428 int *format_code, unsigned char *buf)
3429 {
3430 struct srpt_node_acl *nacl;
3431 struct spc_rdma_transport_id *tr_id;
3432
3433 nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3434 tr_id = (void *)buf;
3435 tr_id->protocol_identifier = SCSI_TRANSPORTID_PROTOCOLID_SRP;
3436 memcpy(tr_id->i_port_id, nacl->i_port_id, sizeof(tr_id->i_port_id));
3437 return sizeof(*tr_id);
3438 }
3439
3440 static u32 srpt_get_pr_transport_id_len(struct se_portal_group *se_tpg,
3441 struct se_node_acl *se_nacl,
3442 struct t10_pr_registration *pr_reg,
3443 int *format_code)
3444 {
3445 *format_code = 0;
3446 return sizeof(struct spc_rdma_transport_id);
3447 }
3448
3449 static char *srpt_parse_pr_out_transport_id(struct se_portal_group *se_tpg,
3450 const char *buf, u32 *out_tid_len,
3451 char **port_nexus_ptr)
3452 {
3453 struct spc_rdma_transport_id *tr_id;
3454
3455 *port_nexus_ptr = NULL;
3456 *out_tid_len = sizeof(struct spc_rdma_transport_id);
3457 tr_id = (void *)buf;
3458 return (char *)tr_id->i_port_id;
3459 }
3460
3461 static struct se_node_acl *srpt_alloc_fabric_acl(struct se_portal_group *se_tpg)
3462 {
3463 struct srpt_node_acl *nacl;
3464
3465 nacl = kzalloc(sizeof(struct srpt_node_acl), GFP_KERNEL);
3466 if (!nacl) {
3467 printk(KERN_ERR "Unable to allocate struct srpt_node_acl\n");
3468 return NULL;
3469 }
3470
3471 return &nacl->nacl;
3472 }
3473
3474 static void srpt_release_fabric_acl(struct se_portal_group *se_tpg,
3475 struct se_node_acl *se_nacl)
3476 {
3477 struct srpt_node_acl *nacl;
3478
3479 nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3480 kfree(nacl);
3481 }
3482
3483 static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg)
3484 {
3485 return 1;
3486 }
3487
3488 static void srpt_release_cmd(struct se_cmd *se_cmd)
3489 {
3490 struct srpt_send_ioctx *ioctx = container_of(se_cmd,
3491 struct srpt_send_ioctx, cmd);
3492 struct srpt_rdma_ch *ch = ioctx->ch;
3493 unsigned long flags;
3494
3495 WARN_ON(ioctx->state != SRPT_STATE_DONE);
3496 WARN_ON(ioctx->mapped_sg_count != 0);
3497
3498 if (ioctx->n_rbuf > 1) {
3499 kfree(ioctx->rbufs);
3500 ioctx->rbufs = NULL;
3501 ioctx->n_rbuf = 0;
3502 }
3503
3504 spin_lock_irqsave(&ch->spinlock, flags);
3505 list_add(&ioctx->free_list, &ch->free_list);
3506 spin_unlock_irqrestore(&ch->spinlock, flags);
3507 }
3508
3509 /**
3510 * srpt_close_session() - Forcibly close a session.
3511 *
3512 * Callback function invoked by the TCM core to clean up sessions associated
3513 * with a node ACL when the user invokes
3514 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3515 */
3516 static void srpt_close_session(struct se_session *se_sess)
3517 {
3518 DECLARE_COMPLETION_ONSTACK(release_done);
3519 struct srpt_rdma_ch *ch;
3520 struct srpt_device *sdev;
3521 int res;
3522
3523 ch = se_sess->fabric_sess_ptr;
3524 WARN_ON(ch->sess != se_sess);
3525
3526 pr_debug("ch %p state %d\n", ch, srpt_get_ch_state(ch));
3527
3528 sdev = ch->sport->sdev;
3529 spin_lock_irq(&sdev->spinlock);
3530 BUG_ON(ch->release_done);
3531 ch->release_done = &release_done;
3532 __srpt_close_ch(ch);
3533 spin_unlock_irq(&sdev->spinlock);
3534
3535 res = wait_for_completion_timeout(&release_done, 60 * HZ);
3536 WARN_ON(res <= 0);
3537 }
3538
3539 /**
3540 * srpt_sess_get_index() - Return the value of scsiAttIntrPortIndex (SCSI-MIB).
3541 *
3542 * A quote from RFC 4455 (SCSI-MIB) about this MIB object:
3543 * This object represents an arbitrary integer used to uniquely identify a
3544 * particular attached remote initiator port to a particular SCSI target port
3545 * within a particular SCSI target device within a particular SCSI instance.
3546 */
3547 static u32 srpt_sess_get_index(struct se_session *se_sess)
3548 {
3549 return 0;
3550 }
3551
3552 static void srpt_set_default_node_attrs(struct se_node_acl *nacl)
3553 {
3554 }
3555
3556 static u32 srpt_get_task_tag(struct se_cmd *se_cmd)
3557 {
3558 struct srpt_send_ioctx *ioctx;
3559
3560 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
3561 return ioctx->tag;
3562 }
3563
3564 /* Note: only used from inside debug printk's by the TCM core. */
3565 static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd)
3566 {
3567 struct srpt_send_ioctx *ioctx;
3568
3569 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
3570 return srpt_get_cmd_state(ioctx);
3571 }
3572
3573 /**
3574 * srpt_parse_i_port_id() - Parse an initiator port ID.
3575 * @name: ASCII representation of a 128-bit initiator port ID.
3576 * @i_port_id: Binary 128-bit port ID.
3577 */
3578 static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name)
3579 {
3580 const char *p;
3581 unsigned len, count, leading_zero_bytes;
3582 int ret, rc;
3583
3584 p = name;
3585 if (strncasecmp(p, "0x", 2) == 0)
3586 p += 2;
3587 ret = -EINVAL;
3588 len = strlen(p);
3589 if (len % 2)
3590 goto out;
3591 count = min(len / 2, 16U);
3592 leading_zero_bytes = 16 - count;
3593 memset(i_port_id, 0, leading_zero_bytes);
3594 rc = hex2bin(i_port_id + leading_zero_bytes, p, count);
3595 if (rc < 0)
3596 pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", rc);
3597 ret = 0;
3598 out:
3599 return ret;
3600 }
3601
3602 /*
3603 * configfs callback function invoked for
3604 * mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3605 */
3606 static struct se_node_acl *srpt_make_nodeacl(struct se_portal_group *tpg,
3607 struct config_group *group,
3608 const char *name)
3609 {
3610 struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1);
3611 struct se_node_acl *se_nacl, *se_nacl_new;
3612 struct srpt_node_acl *nacl;
3613 int ret = 0;
3614 u32 nexus_depth = 1;
3615 u8 i_port_id[16];
3616
3617 if (srpt_parse_i_port_id(i_port_id, name) < 0) {
3618 printk(KERN_ERR "invalid initiator port ID %s\n", name);
3619 ret = -EINVAL;
3620 goto err;
3621 }
3622
3623 se_nacl_new = srpt_alloc_fabric_acl(tpg);
3624 if (!se_nacl_new) {
3625 ret = -ENOMEM;
3626 goto err;
3627 }
3628 /*
3629 * nacl_new may be released by core_tpg_add_initiator_node_acl()
3630 * when converting a node ACL from demo mode to explict
3631 */
3632 se_nacl = core_tpg_add_initiator_node_acl(tpg, se_nacl_new, name,
3633 nexus_depth);
3634 if (IS_ERR(se_nacl)) {
3635 ret = PTR_ERR(se_nacl);
3636 goto err;
3637 }
3638 /* Locate our struct srpt_node_acl and set sdev and i_port_id. */
3639 nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3640 memcpy(&nacl->i_port_id[0], &i_port_id[0], 16);
3641 nacl->sport = sport;
3642
3643 spin_lock_irq(&sport->port_acl_lock);
3644 list_add_tail(&nacl->list, &sport->port_acl_list);
3645 spin_unlock_irq(&sport->port_acl_lock);
3646
3647 return se_nacl;
3648 err:
3649 return ERR_PTR(ret);
3650 }
3651
3652 /*
3653 * configfs callback function invoked for
3654 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3655 */
3656 static void srpt_drop_nodeacl(struct se_node_acl *se_nacl)
3657 {
3658 struct srpt_node_acl *nacl;
3659 struct srpt_device *sdev;
3660 struct srpt_port *sport;
3661
3662 nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3663 sport = nacl->sport;
3664 sdev = sport->sdev;
3665 spin_lock_irq(&sport->port_acl_lock);
3666 list_del(&nacl->list);
3667 spin_unlock_irq(&sport->port_acl_lock);
3668 core_tpg_del_initiator_node_acl(&sport->port_tpg_1, se_nacl, 1);
3669 srpt_release_fabric_acl(NULL, se_nacl);
3670 }
3671
3672 static ssize_t srpt_tpg_attrib_show_srp_max_rdma_size(
3673 struct se_portal_group *se_tpg,
3674 char *page)
3675 {
3676 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3677
3678 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size);
3679 }
3680
3681 static ssize_t srpt_tpg_attrib_store_srp_max_rdma_size(
3682 struct se_portal_group *se_tpg,
3683 const char *page,
3684 size_t count)
3685 {
3686 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3687 unsigned long val;
3688 int ret;
3689
3690 ret = kstrtoul(page, 0, &val);
3691 if (ret < 0) {
3692 pr_err("kstrtoul() failed with ret: %d\n", ret);
3693 return -EINVAL;
3694 }
3695 if (val > MAX_SRPT_RDMA_SIZE) {
3696 pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val,
3697 MAX_SRPT_RDMA_SIZE);
3698 return -EINVAL;
3699 }
3700 if (val < DEFAULT_MAX_RDMA_SIZE) {
3701 pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n",
3702 val, DEFAULT_MAX_RDMA_SIZE);
3703 return -EINVAL;
3704 }
3705 sport->port_attrib.srp_max_rdma_size = val;
3706
3707 return count;
3708 }
3709
3710 TF_TPG_ATTRIB_ATTR(srpt, srp_max_rdma_size, S_IRUGO | S_IWUSR);
3711
3712 static ssize_t srpt_tpg_attrib_show_srp_max_rsp_size(
3713 struct se_portal_group *se_tpg,
3714 char *page)
3715 {
3716 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3717
3718 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size);
3719 }
3720
3721 static ssize_t srpt_tpg_attrib_store_srp_max_rsp_size(
3722 struct se_portal_group *se_tpg,
3723 const char *page,
3724 size_t count)
3725 {
3726 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3727 unsigned long val;
3728 int ret;
3729
3730 ret = kstrtoul(page, 0, &val);
3731 if (ret < 0) {
3732 pr_err("kstrtoul() failed with ret: %d\n", ret);
3733 return -EINVAL;
3734 }
3735 if (val > MAX_SRPT_RSP_SIZE) {
3736 pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val,
3737 MAX_SRPT_RSP_SIZE);
3738 return -EINVAL;
3739 }
3740 if (val < MIN_MAX_RSP_SIZE) {
3741 pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val,
3742 MIN_MAX_RSP_SIZE);
3743 return -EINVAL;
3744 }
3745 sport->port_attrib.srp_max_rsp_size = val;
3746
3747 return count;
3748 }
3749
3750 TF_TPG_ATTRIB_ATTR(srpt, srp_max_rsp_size, S_IRUGO | S_IWUSR);
3751
3752 static ssize_t srpt_tpg_attrib_show_srp_sq_size(
3753 struct se_portal_group *se_tpg,
3754 char *page)
3755 {
3756 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3757
3758 return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size);
3759 }
3760
3761 static ssize_t srpt_tpg_attrib_store_srp_sq_size(
3762 struct se_portal_group *se_tpg,
3763 const char *page,
3764 size_t count)
3765 {
3766 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3767 unsigned long val;
3768 int ret;
3769
3770 ret = kstrtoul(page, 0, &val);
3771 if (ret < 0) {
3772 pr_err("kstrtoul() failed with ret: %d\n", ret);
3773 return -EINVAL;
3774 }
3775 if (val > MAX_SRPT_SRQ_SIZE) {
3776 pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val,
3777 MAX_SRPT_SRQ_SIZE);
3778 return -EINVAL;
3779 }
3780 if (val < MIN_SRPT_SRQ_SIZE) {
3781 pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val,
3782 MIN_SRPT_SRQ_SIZE);
3783 return -EINVAL;
3784 }
3785 sport->port_attrib.srp_sq_size = val;
3786
3787 return count;
3788 }
3789
3790 TF_TPG_ATTRIB_ATTR(srpt, srp_sq_size, S_IRUGO | S_IWUSR);
3791
3792 static struct configfs_attribute *srpt_tpg_attrib_attrs[] = {
3793 &srpt_tpg_attrib_srp_max_rdma_size.attr,
3794 &srpt_tpg_attrib_srp_max_rsp_size.attr,
3795 &srpt_tpg_attrib_srp_sq_size.attr,
3796 NULL,
3797 };
3798
3799 static ssize_t srpt_tpg_show_enable(
3800 struct se_portal_group *se_tpg,
3801 char *page)
3802 {
3803 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3804
3805 return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0);
3806 }
3807
3808 static ssize_t srpt_tpg_store_enable(
3809 struct se_portal_group *se_tpg,
3810 const char *page,
3811 size_t count)
3812 {
3813 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3814 unsigned long tmp;
3815 int ret;
3816
3817 ret = kstrtoul(page, 0, &tmp);
3818 if (ret < 0) {
3819 printk(KERN_ERR "Unable to extract srpt_tpg_store_enable\n");
3820 return -EINVAL;
3821 }
3822
3823 if ((tmp != 0) && (tmp != 1)) {
3824 printk(KERN_ERR "Illegal value for srpt_tpg_store_enable: %lu\n", tmp);
3825 return -EINVAL;
3826 }
3827 if (tmp == 1)
3828 sport->enabled = true;
3829 else
3830 sport->enabled = false;
3831
3832 return count;
3833 }
3834
3835 TF_TPG_BASE_ATTR(srpt, enable, S_IRUGO | S_IWUSR);
3836
3837 static struct configfs_attribute *srpt_tpg_attrs[] = {
3838 &srpt_tpg_enable.attr,
3839 NULL,
3840 };
3841
3842 /**
3843 * configfs callback invoked for
3844 * mkdir /sys/kernel/config/target/$driver/$port/$tpg
3845 */
3846 static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn,
3847 struct config_group *group,
3848 const char *name)
3849 {
3850 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
3851 int res;
3852
3853 /* Initialize sport->port_wwn and sport->port_tpg_1 */
3854 res = core_tpg_register(&srpt_target->tf_ops, &sport->port_wwn,
3855 &sport->port_tpg_1, sport, TRANSPORT_TPG_TYPE_NORMAL);
3856 if (res)
3857 return ERR_PTR(res);
3858
3859 return &sport->port_tpg_1;
3860 }
3861
3862 /**
3863 * configfs callback invoked for
3864 * rmdir /sys/kernel/config/target/$driver/$port/$tpg
3865 */
3866 static void srpt_drop_tpg(struct se_portal_group *tpg)
3867 {
3868 struct srpt_port *sport = container_of(tpg,
3869 struct srpt_port, port_tpg_1);
3870
3871 sport->enabled = false;
3872 core_tpg_deregister(&sport->port_tpg_1);
3873 }
3874
3875 /**
3876 * configfs callback invoked for
3877 * mkdir /sys/kernel/config/target/$driver/$port
3878 */
3879 static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf,
3880 struct config_group *group,
3881 const char *name)
3882 {
3883 struct srpt_port *sport;
3884 int ret;
3885
3886 sport = srpt_lookup_port(name);
3887 pr_debug("make_tport(%s)\n", name);
3888 ret = -EINVAL;
3889 if (!sport)
3890 goto err;
3891
3892 return &sport->port_wwn;
3893
3894 err:
3895 return ERR_PTR(ret);
3896 }
3897
3898 /**
3899 * configfs callback invoked for
3900 * rmdir /sys/kernel/config/target/$driver/$port
3901 */
3902 static void srpt_drop_tport(struct se_wwn *wwn)
3903 {
3904 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
3905
3906 pr_debug("drop_tport(%s\n", config_item_name(&sport->port_wwn.wwn_group.cg_item));
3907 }
3908
3909 static ssize_t srpt_wwn_show_attr_version(struct target_fabric_configfs *tf,
3910 char *buf)
3911 {
3912 return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION);
3913 }
3914
3915 TF_WWN_ATTR_RO(srpt, version);
3916
3917 static struct configfs_attribute *srpt_wwn_attrs[] = {
3918 &srpt_wwn_version.attr,
3919 NULL,
3920 };
3921
3922 static struct target_core_fabric_ops srpt_template = {
3923 .get_fabric_name = srpt_get_fabric_name,
3924 .get_fabric_proto_ident = srpt_get_fabric_proto_ident,
3925 .tpg_get_wwn = srpt_get_fabric_wwn,
3926 .tpg_get_tag = srpt_get_tag,
3927 .tpg_get_default_depth = srpt_get_default_depth,
3928 .tpg_get_pr_transport_id = srpt_get_pr_transport_id,
3929 .tpg_get_pr_transport_id_len = srpt_get_pr_transport_id_len,
3930 .tpg_parse_pr_out_transport_id = srpt_parse_pr_out_transport_id,
3931 .tpg_check_demo_mode = srpt_check_false,
3932 .tpg_check_demo_mode_cache = srpt_check_true,
3933 .tpg_check_demo_mode_write_protect = srpt_check_true,
3934 .tpg_check_prod_mode_write_protect = srpt_check_false,
3935 .tpg_alloc_fabric_acl = srpt_alloc_fabric_acl,
3936 .tpg_release_fabric_acl = srpt_release_fabric_acl,
3937 .tpg_get_inst_index = srpt_tpg_get_inst_index,
3938 .release_cmd = srpt_release_cmd,
3939 .check_stop_free = srpt_check_stop_free,
3940 .shutdown_session = srpt_shutdown_session,
3941 .close_session = srpt_close_session,
3942 .sess_get_index = srpt_sess_get_index,
3943 .sess_get_initiator_sid = NULL,
3944 .write_pending = srpt_write_pending,
3945 .write_pending_status = srpt_write_pending_status,
3946 .set_default_node_attributes = srpt_set_default_node_attrs,
3947 .get_task_tag = srpt_get_task_tag,
3948 .get_cmd_state = srpt_get_tcm_cmd_state,
3949 .queue_data_in = srpt_queue_data_in,
3950 .queue_status = srpt_queue_status,
3951 .queue_tm_rsp = srpt_queue_tm_rsp,
3952 .aborted_task = srpt_aborted_task,
3953 /*
3954 * Setup function pointers for generic logic in
3955 * target_core_fabric_configfs.c
3956 */
3957 .fabric_make_wwn = srpt_make_tport,
3958 .fabric_drop_wwn = srpt_drop_tport,
3959 .fabric_make_tpg = srpt_make_tpg,
3960 .fabric_drop_tpg = srpt_drop_tpg,
3961 .fabric_post_link = NULL,
3962 .fabric_pre_unlink = NULL,
3963 .fabric_make_np = NULL,
3964 .fabric_drop_np = NULL,
3965 .fabric_make_nodeacl = srpt_make_nodeacl,
3966 .fabric_drop_nodeacl = srpt_drop_nodeacl,
3967 };
3968
3969 /**
3970 * srpt_init_module() - Kernel module initialization.
3971 *
3972 * Note: Since ib_register_client() registers callback functions, and since at
3973 * least one of these callback functions (srpt_add_one()) calls target core
3974 * functions, this driver must be registered with the target core before
3975 * ib_register_client() is called.
3976 */
3977 static int __init srpt_init_module(void)
3978 {
3979 int ret;
3980
3981 ret = -EINVAL;
3982 if (srp_max_req_size < MIN_MAX_REQ_SIZE) {
3983 printk(KERN_ERR "invalid value %d for kernel module parameter"
3984 " srp_max_req_size -- must be at least %d.\n",
3985 srp_max_req_size, MIN_MAX_REQ_SIZE);
3986 goto out;
3987 }
3988
3989 if (srpt_srq_size < MIN_SRPT_SRQ_SIZE
3990 || srpt_srq_size > MAX_SRPT_SRQ_SIZE) {
3991 printk(KERN_ERR "invalid value %d for kernel module parameter"
3992 " srpt_srq_size -- must be in the range [%d..%d].\n",
3993 srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE);
3994 goto out;
3995 }
3996
3997 srpt_target = target_fabric_configfs_init(THIS_MODULE, "srpt");
3998 if (IS_ERR(srpt_target)) {
3999 printk(KERN_ERR "couldn't register\n");
4000 ret = PTR_ERR(srpt_target);
4001 goto out;
4002 }
4003
4004 srpt_target->tf_ops = srpt_template;
4005
4006 /*
4007 * Set up default attribute lists.
4008 */
4009 srpt_target->tf_cit_tmpl.tfc_wwn_cit.ct_attrs = srpt_wwn_attrs;
4010 srpt_target->tf_cit_tmpl.tfc_tpg_base_cit.ct_attrs = srpt_tpg_attrs;
4011 srpt_target->tf_cit_tmpl.tfc_tpg_attrib_cit.ct_attrs = srpt_tpg_attrib_attrs;
4012 srpt_target->tf_cit_tmpl.tfc_tpg_param_cit.ct_attrs = NULL;
4013 srpt_target->tf_cit_tmpl.tfc_tpg_np_base_cit.ct_attrs = NULL;
4014 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_base_cit.ct_attrs = NULL;
4015 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_attrib_cit.ct_attrs = NULL;
4016 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_auth_cit.ct_attrs = NULL;
4017 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_param_cit.ct_attrs = NULL;
4018
4019 ret = target_fabric_configfs_register(srpt_target);
4020 if (ret < 0) {
4021 printk(KERN_ERR "couldn't register\n");
4022 goto out_free_target;
4023 }
4024
4025 ret = ib_register_client(&srpt_client);
4026 if (ret) {
4027 printk(KERN_ERR "couldn't register IB client\n");
4028 goto out_unregister_target;
4029 }
4030
4031 return 0;
4032
4033 out_unregister_target:
4034 target_fabric_configfs_deregister(srpt_target);
4035 srpt_target = NULL;
4036 out_free_target:
4037 if (srpt_target)
4038 target_fabric_configfs_free(srpt_target);
4039 out:
4040 return ret;
4041 }
4042
4043 static void __exit srpt_cleanup_module(void)
4044 {
4045 ib_unregister_client(&srpt_client);
4046 target_fabric_configfs_deregister(srpt_target);
4047 srpt_target = NULL;
4048 }
4049
4050 module_init(srpt_init_module);
4051 module_exit(srpt_cleanup_module);
This page took 0.127966 seconds and 5 git commands to generate.