Merge commit 'origin/master' into next
[deliverable/linux.git] / drivers / input / input.c
1 /*
2 * The input core
3 *
4 * Copyright (c) 1999-2002 Vojtech Pavlik
5 */
6
7 /*
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License version 2 as published by
10 * the Free Software Foundation.
11 */
12
13 #include <linux/init.h>
14 #include <linux/input.h>
15 #include <linux/module.h>
16 #include <linux/random.h>
17 #include <linux/major.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/poll.h>
21 #include <linux/device.h>
22 #include <linux/mutex.h>
23 #include <linux/rcupdate.h>
24 #include <linux/smp_lock.h>
25
26 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
27 MODULE_DESCRIPTION("Input core");
28 MODULE_LICENSE("GPL");
29
30 #define INPUT_DEVICES 256
31
32 static LIST_HEAD(input_dev_list);
33 static LIST_HEAD(input_handler_list);
34
35 /*
36 * input_mutex protects access to both input_dev_list and input_handler_list.
37 * This also causes input_[un]register_device and input_[un]register_handler
38 * be mutually exclusive which simplifies locking in drivers implementing
39 * input handlers.
40 */
41 static DEFINE_MUTEX(input_mutex);
42
43 static struct input_handler *input_table[8];
44
45 static inline int is_event_supported(unsigned int code,
46 unsigned long *bm, unsigned int max)
47 {
48 return code <= max && test_bit(code, bm);
49 }
50
51 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
52 {
53 if (fuzz) {
54 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
55 return old_val;
56
57 if (value > old_val - fuzz && value < old_val + fuzz)
58 return (old_val * 3 + value) / 4;
59
60 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
61 return (old_val + value) / 2;
62 }
63
64 return value;
65 }
66
67 /*
68 * Pass event through all open handles. This function is called with
69 * dev->event_lock held and interrupts disabled.
70 */
71 static void input_pass_event(struct input_dev *dev,
72 unsigned int type, unsigned int code, int value)
73 {
74 struct input_handle *handle;
75
76 rcu_read_lock();
77
78 handle = rcu_dereference(dev->grab);
79 if (handle)
80 handle->handler->event(handle, type, code, value);
81 else
82 list_for_each_entry_rcu(handle, &dev->h_list, d_node)
83 if (handle->open)
84 handle->handler->event(handle,
85 type, code, value);
86 rcu_read_unlock();
87 }
88
89 /*
90 * Generate software autorepeat event. Note that we take
91 * dev->event_lock here to avoid racing with input_event
92 * which may cause keys get "stuck".
93 */
94 static void input_repeat_key(unsigned long data)
95 {
96 struct input_dev *dev = (void *) data;
97 unsigned long flags;
98
99 spin_lock_irqsave(&dev->event_lock, flags);
100
101 if (test_bit(dev->repeat_key, dev->key) &&
102 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
103
104 input_pass_event(dev, EV_KEY, dev->repeat_key, 2);
105
106 if (dev->sync) {
107 /*
108 * Only send SYN_REPORT if we are not in a middle
109 * of driver parsing a new hardware packet.
110 * Otherwise assume that the driver will send
111 * SYN_REPORT once it's done.
112 */
113 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
114 }
115
116 if (dev->rep[REP_PERIOD])
117 mod_timer(&dev->timer, jiffies +
118 msecs_to_jiffies(dev->rep[REP_PERIOD]));
119 }
120
121 spin_unlock_irqrestore(&dev->event_lock, flags);
122 }
123
124 static void input_start_autorepeat(struct input_dev *dev, int code)
125 {
126 if (test_bit(EV_REP, dev->evbit) &&
127 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
128 dev->timer.data) {
129 dev->repeat_key = code;
130 mod_timer(&dev->timer,
131 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
132 }
133 }
134
135 #define INPUT_IGNORE_EVENT 0
136 #define INPUT_PASS_TO_HANDLERS 1
137 #define INPUT_PASS_TO_DEVICE 2
138 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
139
140 static void input_handle_event(struct input_dev *dev,
141 unsigned int type, unsigned int code, int value)
142 {
143 int disposition = INPUT_IGNORE_EVENT;
144
145 switch (type) {
146
147 case EV_SYN:
148 switch (code) {
149 case SYN_CONFIG:
150 disposition = INPUT_PASS_TO_ALL;
151 break;
152
153 case SYN_REPORT:
154 if (!dev->sync) {
155 dev->sync = 1;
156 disposition = INPUT_PASS_TO_HANDLERS;
157 }
158 break;
159 }
160 break;
161
162 case EV_KEY:
163 if (is_event_supported(code, dev->keybit, KEY_MAX) &&
164 !!test_bit(code, dev->key) != value) {
165
166 if (value != 2) {
167 __change_bit(code, dev->key);
168 if (value)
169 input_start_autorepeat(dev, code);
170 }
171
172 disposition = INPUT_PASS_TO_HANDLERS;
173 }
174 break;
175
176 case EV_SW:
177 if (is_event_supported(code, dev->swbit, SW_MAX) &&
178 !!test_bit(code, dev->sw) != value) {
179
180 __change_bit(code, dev->sw);
181 disposition = INPUT_PASS_TO_HANDLERS;
182 }
183 break;
184
185 case EV_ABS:
186 if (is_event_supported(code, dev->absbit, ABS_MAX)) {
187
188 value = input_defuzz_abs_event(value,
189 dev->abs[code], dev->absfuzz[code]);
190
191 if (dev->abs[code] != value) {
192 dev->abs[code] = value;
193 disposition = INPUT_PASS_TO_HANDLERS;
194 }
195 }
196 break;
197
198 case EV_REL:
199 if (is_event_supported(code, dev->relbit, REL_MAX) && value)
200 disposition = INPUT_PASS_TO_HANDLERS;
201
202 break;
203
204 case EV_MSC:
205 if (is_event_supported(code, dev->mscbit, MSC_MAX))
206 disposition = INPUT_PASS_TO_ALL;
207
208 break;
209
210 case EV_LED:
211 if (is_event_supported(code, dev->ledbit, LED_MAX) &&
212 !!test_bit(code, dev->led) != value) {
213
214 __change_bit(code, dev->led);
215 disposition = INPUT_PASS_TO_ALL;
216 }
217 break;
218
219 case EV_SND:
220 if (is_event_supported(code, dev->sndbit, SND_MAX)) {
221
222 if (!!test_bit(code, dev->snd) != !!value)
223 __change_bit(code, dev->snd);
224 disposition = INPUT_PASS_TO_ALL;
225 }
226 break;
227
228 case EV_REP:
229 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
230 dev->rep[code] = value;
231 disposition = INPUT_PASS_TO_ALL;
232 }
233 break;
234
235 case EV_FF:
236 if (value >= 0)
237 disposition = INPUT_PASS_TO_ALL;
238 break;
239
240 case EV_PWR:
241 disposition = INPUT_PASS_TO_ALL;
242 break;
243 }
244
245 if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
246 dev->sync = 0;
247
248 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
249 dev->event(dev, type, code, value);
250
251 if (disposition & INPUT_PASS_TO_HANDLERS)
252 input_pass_event(dev, type, code, value);
253 }
254
255 /**
256 * input_event() - report new input event
257 * @dev: device that generated the event
258 * @type: type of the event
259 * @code: event code
260 * @value: value of the event
261 *
262 * This function should be used by drivers implementing various input
263 * devices. See also input_inject_event().
264 */
265
266 void input_event(struct input_dev *dev,
267 unsigned int type, unsigned int code, int value)
268 {
269 unsigned long flags;
270
271 if (is_event_supported(type, dev->evbit, EV_MAX)) {
272
273 spin_lock_irqsave(&dev->event_lock, flags);
274 add_input_randomness(type, code, value);
275 input_handle_event(dev, type, code, value);
276 spin_unlock_irqrestore(&dev->event_lock, flags);
277 }
278 }
279 EXPORT_SYMBOL(input_event);
280
281 /**
282 * input_inject_event() - send input event from input handler
283 * @handle: input handle to send event through
284 * @type: type of the event
285 * @code: event code
286 * @value: value of the event
287 *
288 * Similar to input_event() but will ignore event if device is
289 * "grabbed" and handle injecting event is not the one that owns
290 * the device.
291 */
292 void input_inject_event(struct input_handle *handle,
293 unsigned int type, unsigned int code, int value)
294 {
295 struct input_dev *dev = handle->dev;
296 struct input_handle *grab;
297 unsigned long flags;
298
299 if (is_event_supported(type, dev->evbit, EV_MAX)) {
300 spin_lock_irqsave(&dev->event_lock, flags);
301
302 rcu_read_lock();
303 grab = rcu_dereference(dev->grab);
304 if (!grab || grab == handle)
305 input_handle_event(dev, type, code, value);
306 rcu_read_unlock();
307
308 spin_unlock_irqrestore(&dev->event_lock, flags);
309 }
310 }
311 EXPORT_SYMBOL(input_inject_event);
312
313 /**
314 * input_grab_device - grabs device for exclusive use
315 * @handle: input handle that wants to own the device
316 *
317 * When a device is grabbed by an input handle all events generated by
318 * the device are delivered only to this handle. Also events injected
319 * by other input handles are ignored while device is grabbed.
320 */
321 int input_grab_device(struct input_handle *handle)
322 {
323 struct input_dev *dev = handle->dev;
324 int retval;
325
326 retval = mutex_lock_interruptible(&dev->mutex);
327 if (retval)
328 return retval;
329
330 if (dev->grab) {
331 retval = -EBUSY;
332 goto out;
333 }
334
335 rcu_assign_pointer(dev->grab, handle);
336 synchronize_rcu();
337
338 out:
339 mutex_unlock(&dev->mutex);
340 return retval;
341 }
342 EXPORT_SYMBOL(input_grab_device);
343
344 static void __input_release_device(struct input_handle *handle)
345 {
346 struct input_dev *dev = handle->dev;
347
348 if (dev->grab == handle) {
349 rcu_assign_pointer(dev->grab, NULL);
350 /* Make sure input_pass_event() notices that grab is gone */
351 synchronize_rcu();
352
353 list_for_each_entry(handle, &dev->h_list, d_node)
354 if (handle->open && handle->handler->start)
355 handle->handler->start(handle);
356 }
357 }
358
359 /**
360 * input_release_device - release previously grabbed device
361 * @handle: input handle that owns the device
362 *
363 * Releases previously grabbed device so that other input handles can
364 * start receiving input events. Upon release all handlers attached
365 * to the device have their start() method called so they have a change
366 * to synchronize device state with the rest of the system.
367 */
368 void input_release_device(struct input_handle *handle)
369 {
370 struct input_dev *dev = handle->dev;
371
372 mutex_lock(&dev->mutex);
373 __input_release_device(handle);
374 mutex_unlock(&dev->mutex);
375 }
376 EXPORT_SYMBOL(input_release_device);
377
378 /**
379 * input_open_device - open input device
380 * @handle: handle through which device is being accessed
381 *
382 * This function should be called by input handlers when they
383 * want to start receive events from given input device.
384 */
385 int input_open_device(struct input_handle *handle)
386 {
387 struct input_dev *dev = handle->dev;
388 int retval;
389
390 retval = mutex_lock_interruptible(&dev->mutex);
391 if (retval)
392 return retval;
393
394 if (dev->going_away) {
395 retval = -ENODEV;
396 goto out;
397 }
398
399 handle->open++;
400
401 if (!dev->users++ && dev->open)
402 retval = dev->open(dev);
403
404 if (retval) {
405 dev->users--;
406 if (!--handle->open) {
407 /*
408 * Make sure we are not delivering any more events
409 * through this handle
410 */
411 synchronize_rcu();
412 }
413 }
414
415 out:
416 mutex_unlock(&dev->mutex);
417 return retval;
418 }
419 EXPORT_SYMBOL(input_open_device);
420
421 int input_flush_device(struct input_handle *handle, struct file *file)
422 {
423 struct input_dev *dev = handle->dev;
424 int retval;
425
426 retval = mutex_lock_interruptible(&dev->mutex);
427 if (retval)
428 return retval;
429
430 if (dev->flush)
431 retval = dev->flush(dev, file);
432
433 mutex_unlock(&dev->mutex);
434 return retval;
435 }
436 EXPORT_SYMBOL(input_flush_device);
437
438 /**
439 * input_close_device - close input device
440 * @handle: handle through which device is being accessed
441 *
442 * This function should be called by input handlers when they
443 * want to stop receive events from given input device.
444 */
445 void input_close_device(struct input_handle *handle)
446 {
447 struct input_dev *dev = handle->dev;
448
449 mutex_lock(&dev->mutex);
450
451 __input_release_device(handle);
452
453 if (!--dev->users && dev->close)
454 dev->close(dev);
455
456 if (!--handle->open) {
457 /*
458 * synchronize_rcu() makes sure that input_pass_event()
459 * completed and that no more input events are delivered
460 * through this handle
461 */
462 synchronize_rcu();
463 }
464
465 mutex_unlock(&dev->mutex);
466 }
467 EXPORT_SYMBOL(input_close_device);
468
469 /*
470 * Prepare device for unregistering
471 */
472 static void input_disconnect_device(struct input_dev *dev)
473 {
474 struct input_handle *handle;
475 int code;
476
477 /*
478 * Mark device as going away. Note that we take dev->mutex here
479 * not to protect access to dev->going_away but rather to ensure
480 * that there are no threads in the middle of input_open_device()
481 */
482 mutex_lock(&dev->mutex);
483 dev->going_away = 1;
484 mutex_unlock(&dev->mutex);
485
486 spin_lock_irq(&dev->event_lock);
487
488 /*
489 * Simulate keyup events for all pressed keys so that handlers
490 * are not left with "stuck" keys. The driver may continue
491 * generate events even after we done here but they will not
492 * reach any handlers.
493 */
494 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
495 for (code = 0; code <= KEY_MAX; code++) {
496 if (is_event_supported(code, dev->keybit, KEY_MAX) &&
497 __test_and_clear_bit(code, dev->key)) {
498 input_pass_event(dev, EV_KEY, code, 0);
499 }
500 }
501 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
502 }
503
504 list_for_each_entry(handle, &dev->h_list, d_node)
505 handle->open = 0;
506
507 spin_unlock_irq(&dev->event_lock);
508 }
509
510 static int input_fetch_keycode(struct input_dev *dev, int scancode)
511 {
512 switch (dev->keycodesize) {
513 case 1:
514 return ((u8 *)dev->keycode)[scancode];
515
516 case 2:
517 return ((u16 *)dev->keycode)[scancode];
518
519 default:
520 return ((u32 *)dev->keycode)[scancode];
521 }
522 }
523
524 static int input_default_getkeycode(struct input_dev *dev,
525 int scancode, int *keycode)
526 {
527 if (!dev->keycodesize)
528 return -EINVAL;
529
530 if (scancode >= dev->keycodemax)
531 return -EINVAL;
532
533 *keycode = input_fetch_keycode(dev, scancode);
534
535 return 0;
536 }
537
538 static int input_default_setkeycode(struct input_dev *dev,
539 int scancode, int keycode)
540 {
541 int old_keycode;
542 int i;
543
544 if (scancode >= dev->keycodemax)
545 return -EINVAL;
546
547 if (!dev->keycodesize)
548 return -EINVAL;
549
550 if (dev->keycodesize < sizeof(keycode) && (keycode >> (dev->keycodesize * 8)))
551 return -EINVAL;
552
553 switch (dev->keycodesize) {
554 case 1: {
555 u8 *k = (u8 *)dev->keycode;
556 old_keycode = k[scancode];
557 k[scancode] = keycode;
558 break;
559 }
560 case 2: {
561 u16 *k = (u16 *)dev->keycode;
562 old_keycode = k[scancode];
563 k[scancode] = keycode;
564 break;
565 }
566 default: {
567 u32 *k = (u32 *)dev->keycode;
568 old_keycode = k[scancode];
569 k[scancode] = keycode;
570 break;
571 }
572 }
573
574 clear_bit(old_keycode, dev->keybit);
575 set_bit(keycode, dev->keybit);
576
577 for (i = 0; i < dev->keycodemax; i++) {
578 if (input_fetch_keycode(dev, i) == old_keycode) {
579 set_bit(old_keycode, dev->keybit);
580 break; /* Setting the bit twice is useless, so break */
581 }
582 }
583
584 return 0;
585 }
586
587 /**
588 * input_get_keycode - retrieve keycode currently mapped to a given scancode
589 * @dev: input device which keymap is being queried
590 * @scancode: scancode (or its equivalent for device in question) for which
591 * keycode is needed
592 * @keycode: result
593 *
594 * This function should be called by anyone interested in retrieving current
595 * keymap. Presently keyboard and evdev handlers use it.
596 */
597 int input_get_keycode(struct input_dev *dev, int scancode, int *keycode)
598 {
599 if (scancode < 0)
600 return -EINVAL;
601
602 return dev->getkeycode(dev, scancode, keycode);
603 }
604 EXPORT_SYMBOL(input_get_keycode);
605
606 /**
607 * input_get_keycode - assign new keycode to a given scancode
608 * @dev: input device which keymap is being updated
609 * @scancode: scancode (or its equivalent for device in question)
610 * @keycode: new keycode to be assigned to the scancode
611 *
612 * This function should be called by anyone needing to update current
613 * keymap. Presently keyboard and evdev handlers use it.
614 */
615 int input_set_keycode(struct input_dev *dev, int scancode, int keycode)
616 {
617 unsigned long flags;
618 int old_keycode;
619 int retval;
620
621 if (scancode < 0)
622 return -EINVAL;
623
624 if (keycode < 0 || keycode > KEY_MAX)
625 return -EINVAL;
626
627 spin_lock_irqsave(&dev->event_lock, flags);
628
629 retval = dev->getkeycode(dev, scancode, &old_keycode);
630 if (retval)
631 goto out;
632
633 retval = dev->setkeycode(dev, scancode, keycode);
634 if (retval)
635 goto out;
636
637 /*
638 * Simulate keyup event if keycode is not present
639 * in the keymap anymore
640 */
641 if (test_bit(EV_KEY, dev->evbit) &&
642 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
643 __test_and_clear_bit(old_keycode, dev->key)) {
644
645 input_pass_event(dev, EV_KEY, old_keycode, 0);
646 if (dev->sync)
647 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
648 }
649
650 out:
651 spin_unlock_irqrestore(&dev->event_lock, flags);
652
653 return retval;
654 }
655 EXPORT_SYMBOL(input_set_keycode);
656
657 #define MATCH_BIT(bit, max) \
658 for (i = 0; i < BITS_TO_LONGS(max); i++) \
659 if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
660 break; \
661 if (i != BITS_TO_LONGS(max)) \
662 continue;
663
664 static const struct input_device_id *input_match_device(const struct input_device_id *id,
665 struct input_dev *dev)
666 {
667 int i;
668
669 for (; id->flags || id->driver_info; id++) {
670
671 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
672 if (id->bustype != dev->id.bustype)
673 continue;
674
675 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
676 if (id->vendor != dev->id.vendor)
677 continue;
678
679 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
680 if (id->product != dev->id.product)
681 continue;
682
683 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
684 if (id->version != dev->id.version)
685 continue;
686
687 MATCH_BIT(evbit, EV_MAX);
688 MATCH_BIT(keybit, KEY_MAX);
689 MATCH_BIT(relbit, REL_MAX);
690 MATCH_BIT(absbit, ABS_MAX);
691 MATCH_BIT(mscbit, MSC_MAX);
692 MATCH_BIT(ledbit, LED_MAX);
693 MATCH_BIT(sndbit, SND_MAX);
694 MATCH_BIT(ffbit, FF_MAX);
695 MATCH_BIT(swbit, SW_MAX);
696
697 return id;
698 }
699
700 return NULL;
701 }
702
703 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
704 {
705 const struct input_device_id *id;
706 int error;
707
708 if (handler->blacklist && input_match_device(handler->blacklist, dev))
709 return -ENODEV;
710
711 id = input_match_device(handler->id_table, dev);
712 if (!id)
713 return -ENODEV;
714
715 error = handler->connect(handler, dev, id);
716 if (error && error != -ENODEV)
717 printk(KERN_ERR
718 "input: failed to attach handler %s to device %s, "
719 "error: %d\n",
720 handler->name, kobject_name(&dev->dev.kobj), error);
721
722 return error;
723 }
724
725
726 #ifdef CONFIG_PROC_FS
727
728 static struct proc_dir_entry *proc_bus_input_dir;
729 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
730 static int input_devices_state;
731
732 static inline void input_wakeup_procfs_readers(void)
733 {
734 input_devices_state++;
735 wake_up(&input_devices_poll_wait);
736 }
737
738 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
739 {
740 int state = input_devices_state;
741
742 poll_wait(file, &input_devices_poll_wait, wait);
743 if (state != input_devices_state)
744 return POLLIN | POLLRDNORM;
745
746 return 0;
747 }
748
749 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
750 {
751 if (mutex_lock_interruptible(&input_mutex))
752 return NULL;
753
754 return seq_list_start(&input_dev_list, *pos);
755 }
756
757 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
758 {
759 return seq_list_next(v, &input_dev_list, pos);
760 }
761
762 static void input_devices_seq_stop(struct seq_file *seq, void *v)
763 {
764 mutex_unlock(&input_mutex);
765 }
766
767 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
768 unsigned long *bitmap, int max)
769 {
770 int i;
771
772 for (i = BITS_TO_LONGS(max) - 1; i > 0; i--)
773 if (bitmap[i])
774 break;
775
776 seq_printf(seq, "B: %s=", name);
777 for (; i >= 0; i--)
778 seq_printf(seq, "%lx%s", bitmap[i], i > 0 ? " " : "");
779 seq_putc(seq, '\n');
780 }
781
782 static int input_devices_seq_show(struct seq_file *seq, void *v)
783 {
784 struct input_dev *dev = container_of(v, struct input_dev, node);
785 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
786 struct input_handle *handle;
787
788 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
789 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
790
791 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
792 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
793 seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
794 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
795 seq_printf(seq, "H: Handlers=");
796
797 list_for_each_entry(handle, &dev->h_list, d_node)
798 seq_printf(seq, "%s ", handle->name);
799 seq_putc(seq, '\n');
800
801 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
802 if (test_bit(EV_KEY, dev->evbit))
803 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
804 if (test_bit(EV_REL, dev->evbit))
805 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
806 if (test_bit(EV_ABS, dev->evbit))
807 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
808 if (test_bit(EV_MSC, dev->evbit))
809 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
810 if (test_bit(EV_LED, dev->evbit))
811 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
812 if (test_bit(EV_SND, dev->evbit))
813 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
814 if (test_bit(EV_FF, dev->evbit))
815 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
816 if (test_bit(EV_SW, dev->evbit))
817 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
818
819 seq_putc(seq, '\n');
820
821 kfree(path);
822 return 0;
823 }
824
825 static const struct seq_operations input_devices_seq_ops = {
826 .start = input_devices_seq_start,
827 .next = input_devices_seq_next,
828 .stop = input_devices_seq_stop,
829 .show = input_devices_seq_show,
830 };
831
832 static int input_proc_devices_open(struct inode *inode, struct file *file)
833 {
834 return seq_open(file, &input_devices_seq_ops);
835 }
836
837 static const struct file_operations input_devices_fileops = {
838 .owner = THIS_MODULE,
839 .open = input_proc_devices_open,
840 .poll = input_proc_devices_poll,
841 .read = seq_read,
842 .llseek = seq_lseek,
843 .release = seq_release,
844 };
845
846 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
847 {
848 if (mutex_lock_interruptible(&input_mutex))
849 return NULL;
850
851 seq->private = (void *)(unsigned long)*pos;
852 return seq_list_start(&input_handler_list, *pos);
853 }
854
855 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
856 {
857 seq->private = (void *)(unsigned long)(*pos + 1);
858 return seq_list_next(v, &input_handler_list, pos);
859 }
860
861 static void input_handlers_seq_stop(struct seq_file *seq, void *v)
862 {
863 mutex_unlock(&input_mutex);
864 }
865
866 static int input_handlers_seq_show(struct seq_file *seq, void *v)
867 {
868 struct input_handler *handler = container_of(v, struct input_handler, node);
869
870 seq_printf(seq, "N: Number=%ld Name=%s",
871 (unsigned long)seq->private, handler->name);
872 if (handler->fops)
873 seq_printf(seq, " Minor=%d", handler->minor);
874 seq_putc(seq, '\n');
875
876 return 0;
877 }
878 static const struct seq_operations input_handlers_seq_ops = {
879 .start = input_handlers_seq_start,
880 .next = input_handlers_seq_next,
881 .stop = input_handlers_seq_stop,
882 .show = input_handlers_seq_show,
883 };
884
885 static int input_proc_handlers_open(struct inode *inode, struct file *file)
886 {
887 return seq_open(file, &input_handlers_seq_ops);
888 }
889
890 static const struct file_operations input_handlers_fileops = {
891 .owner = THIS_MODULE,
892 .open = input_proc_handlers_open,
893 .read = seq_read,
894 .llseek = seq_lseek,
895 .release = seq_release,
896 };
897
898 static int __init input_proc_init(void)
899 {
900 struct proc_dir_entry *entry;
901
902 proc_bus_input_dir = proc_mkdir("bus/input", NULL);
903 if (!proc_bus_input_dir)
904 return -ENOMEM;
905
906 proc_bus_input_dir->owner = THIS_MODULE;
907
908 entry = proc_create("devices", 0, proc_bus_input_dir,
909 &input_devices_fileops);
910 if (!entry)
911 goto fail1;
912
913 entry = proc_create("handlers", 0, proc_bus_input_dir,
914 &input_handlers_fileops);
915 if (!entry)
916 goto fail2;
917
918 return 0;
919
920 fail2: remove_proc_entry("devices", proc_bus_input_dir);
921 fail1: remove_proc_entry("bus/input", NULL);
922 return -ENOMEM;
923 }
924
925 static void input_proc_exit(void)
926 {
927 remove_proc_entry("devices", proc_bus_input_dir);
928 remove_proc_entry("handlers", proc_bus_input_dir);
929 remove_proc_entry("bus/input", NULL);
930 }
931
932 #else /* !CONFIG_PROC_FS */
933 static inline void input_wakeup_procfs_readers(void) { }
934 static inline int input_proc_init(void) { return 0; }
935 static inline void input_proc_exit(void) { }
936 #endif
937
938 #define INPUT_DEV_STRING_ATTR_SHOW(name) \
939 static ssize_t input_dev_show_##name(struct device *dev, \
940 struct device_attribute *attr, \
941 char *buf) \
942 { \
943 struct input_dev *input_dev = to_input_dev(dev); \
944 \
945 return scnprintf(buf, PAGE_SIZE, "%s\n", \
946 input_dev->name ? input_dev->name : ""); \
947 } \
948 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
949
950 INPUT_DEV_STRING_ATTR_SHOW(name);
951 INPUT_DEV_STRING_ATTR_SHOW(phys);
952 INPUT_DEV_STRING_ATTR_SHOW(uniq);
953
954 static int input_print_modalias_bits(char *buf, int size,
955 char name, unsigned long *bm,
956 unsigned int min_bit, unsigned int max_bit)
957 {
958 int len = 0, i;
959
960 len += snprintf(buf, max(size, 0), "%c", name);
961 for (i = min_bit; i < max_bit; i++)
962 if (bm[BIT_WORD(i)] & BIT_MASK(i))
963 len += snprintf(buf + len, max(size - len, 0), "%X,", i);
964 return len;
965 }
966
967 static int input_print_modalias(char *buf, int size, struct input_dev *id,
968 int add_cr)
969 {
970 int len;
971
972 len = snprintf(buf, max(size, 0),
973 "input:b%04Xv%04Xp%04Xe%04X-",
974 id->id.bustype, id->id.vendor,
975 id->id.product, id->id.version);
976
977 len += input_print_modalias_bits(buf + len, size - len,
978 'e', id->evbit, 0, EV_MAX);
979 len += input_print_modalias_bits(buf + len, size - len,
980 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
981 len += input_print_modalias_bits(buf + len, size - len,
982 'r', id->relbit, 0, REL_MAX);
983 len += input_print_modalias_bits(buf + len, size - len,
984 'a', id->absbit, 0, ABS_MAX);
985 len += input_print_modalias_bits(buf + len, size - len,
986 'm', id->mscbit, 0, MSC_MAX);
987 len += input_print_modalias_bits(buf + len, size - len,
988 'l', id->ledbit, 0, LED_MAX);
989 len += input_print_modalias_bits(buf + len, size - len,
990 's', id->sndbit, 0, SND_MAX);
991 len += input_print_modalias_bits(buf + len, size - len,
992 'f', id->ffbit, 0, FF_MAX);
993 len += input_print_modalias_bits(buf + len, size - len,
994 'w', id->swbit, 0, SW_MAX);
995
996 if (add_cr)
997 len += snprintf(buf + len, max(size - len, 0), "\n");
998
999 return len;
1000 }
1001
1002 static ssize_t input_dev_show_modalias(struct device *dev,
1003 struct device_attribute *attr,
1004 char *buf)
1005 {
1006 struct input_dev *id = to_input_dev(dev);
1007 ssize_t len;
1008
1009 len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1010
1011 return min_t(int, len, PAGE_SIZE);
1012 }
1013 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1014
1015 static struct attribute *input_dev_attrs[] = {
1016 &dev_attr_name.attr,
1017 &dev_attr_phys.attr,
1018 &dev_attr_uniq.attr,
1019 &dev_attr_modalias.attr,
1020 NULL
1021 };
1022
1023 static struct attribute_group input_dev_attr_group = {
1024 .attrs = input_dev_attrs,
1025 };
1026
1027 #define INPUT_DEV_ID_ATTR(name) \
1028 static ssize_t input_dev_show_id_##name(struct device *dev, \
1029 struct device_attribute *attr, \
1030 char *buf) \
1031 { \
1032 struct input_dev *input_dev = to_input_dev(dev); \
1033 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1034 } \
1035 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1036
1037 INPUT_DEV_ID_ATTR(bustype);
1038 INPUT_DEV_ID_ATTR(vendor);
1039 INPUT_DEV_ID_ATTR(product);
1040 INPUT_DEV_ID_ATTR(version);
1041
1042 static struct attribute *input_dev_id_attrs[] = {
1043 &dev_attr_bustype.attr,
1044 &dev_attr_vendor.attr,
1045 &dev_attr_product.attr,
1046 &dev_attr_version.attr,
1047 NULL
1048 };
1049
1050 static struct attribute_group input_dev_id_attr_group = {
1051 .name = "id",
1052 .attrs = input_dev_id_attrs,
1053 };
1054
1055 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1056 int max, int add_cr)
1057 {
1058 int i;
1059 int len = 0;
1060
1061 for (i = BITS_TO_LONGS(max) - 1; i > 0; i--)
1062 if (bitmap[i])
1063 break;
1064
1065 for (; i >= 0; i--)
1066 len += snprintf(buf + len, max(buf_size - len, 0),
1067 "%lx%s", bitmap[i], i > 0 ? " " : "");
1068
1069 if (add_cr)
1070 len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1071
1072 return len;
1073 }
1074
1075 #define INPUT_DEV_CAP_ATTR(ev, bm) \
1076 static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1077 struct device_attribute *attr, \
1078 char *buf) \
1079 { \
1080 struct input_dev *input_dev = to_input_dev(dev); \
1081 int len = input_print_bitmap(buf, PAGE_SIZE, \
1082 input_dev->bm##bit, ev##_MAX, 1); \
1083 return min_t(int, len, PAGE_SIZE); \
1084 } \
1085 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1086
1087 INPUT_DEV_CAP_ATTR(EV, ev);
1088 INPUT_DEV_CAP_ATTR(KEY, key);
1089 INPUT_DEV_CAP_ATTR(REL, rel);
1090 INPUT_DEV_CAP_ATTR(ABS, abs);
1091 INPUT_DEV_CAP_ATTR(MSC, msc);
1092 INPUT_DEV_CAP_ATTR(LED, led);
1093 INPUT_DEV_CAP_ATTR(SND, snd);
1094 INPUT_DEV_CAP_ATTR(FF, ff);
1095 INPUT_DEV_CAP_ATTR(SW, sw);
1096
1097 static struct attribute *input_dev_caps_attrs[] = {
1098 &dev_attr_ev.attr,
1099 &dev_attr_key.attr,
1100 &dev_attr_rel.attr,
1101 &dev_attr_abs.attr,
1102 &dev_attr_msc.attr,
1103 &dev_attr_led.attr,
1104 &dev_attr_snd.attr,
1105 &dev_attr_ff.attr,
1106 &dev_attr_sw.attr,
1107 NULL
1108 };
1109
1110 static struct attribute_group input_dev_caps_attr_group = {
1111 .name = "capabilities",
1112 .attrs = input_dev_caps_attrs,
1113 };
1114
1115 static struct attribute_group *input_dev_attr_groups[] = {
1116 &input_dev_attr_group,
1117 &input_dev_id_attr_group,
1118 &input_dev_caps_attr_group,
1119 NULL
1120 };
1121
1122 static void input_dev_release(struct device *device)
1123 {
1124 struct input_dev *dev = to_input_dev(device);
1125
1126 input_ff_destroy(dev);
1127 kfree(dev);
1128
1129 module_put(THIS_MODULE);
1130 }
1131
1132 /*
1133 * Input uevent interface - loading event handlers based on
1134 * device bitfields.
1135 */
1136 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1137 const char *name, unsigned long *bitmap, int max)
1138 {
1139 int len;
1140
1141 if (add_uevent_var(env, "%s=", name))
1142 return -ENOMEM;
1143
1144 len = input_print_bitmap(&env->buf[env->buflen - 1],
1145 sizeof(env->buf) - env->buflen,
1146 bitmap, max, 0);
1147 if (len >= (sizeof(env->buf) - env->buflen))
1148 return -ENOMEM;
1149
1150 env->buflen += len;
1151 return 0;
1152 }
1153
1154 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1155 struct input_dev *dev)
1156 {
1157 int len;
1158
1159 if (add_uevent_var(env, "MODALIAS="))
1160 return -ENOMEM;
1161
1162 len = input_print_modalias(&env->buf[env->buflen - 1],
1163 sizeof(env->buf) - env->buflen,
1164 dev, 0);
1165 if (len >= (sizeof(env->buf) - env->buflen))
1166 return -ENOMEM;
1167
1168 env->buflen += len;
1169 return 0;
1170 }
1171
1172 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1173 do { \
1174 int err = add_uevent_var(env, fmt, val); \
1175 if (err) \
1176 return err; \
1177 } while (0)
1178
1179 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1180 do { \
1181 int err = input_add_uevent_bm_var(env, name, bm, max); \
1182 if (err) \
1183 return err; \
1184 } while (0)
1185
1186 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1187 do { \
1188 int err = input_add_uevent_modalias_var(env, dev); \
1189 if (err) \
1190 return err; \
1191 } while (0)
1192
1193 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1194 {
1195 struct input_dev *dev = to_input_dev(device);
1196
1197 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1198 dev->id.bustype, dev->id.vendor,
1199 dev->id.product, dev->id.version);
1200 if (dev->name)
1201 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1202 if (dev->phys)
1203 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1204 if (dev->uniq)
1205 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1206
1207 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1208 if (test_bit(EV_KEY, dev->evbit))
1209 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1210 if (test_bit(EV_REL, dev->evbit))
1211 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1212 if (test_bit(EV_ABS, dev->evbit))
1213 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1214 if (test_bit(EV_MSC, dev->evbit))
1215 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1216 if (test_bit(EV_LED, dev->evbit))
1217 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1218 if (test_bit(EV_SND, dev->evbit))
1219 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1220 if (test_bit(EV_FF, dev->evbit))
1221 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1222 if (test_bit(EV_SW, dev->evbit))
1223 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1224
1225 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1226
1227 return 0;
1228 }
1229
1230 static struct device_type input_dev_type = {
1231 .groups = input_dev_attr_groups,
1232 .release = input_dev_release,
1233 .uevent = input_dev_uevent,
1234 };
1235
1236 struct class input_class = {
1237 .name = "input",
1238 };
1239 EXPORT_SYMBOL_GPL(input_class);
1240
1241 /**
1242 * input_allocate_device - allocate memory for new input device
1243 *
1244 * Returns prepared struct input_dev or NULL.
1245 *
1246 * NOTE: Use input_free_device() to free devices that have not been
1247 * registered; input_unregister_device() should be used for already
1248 * registered devices.
1249 */
1250 struct input_dev *input_allocate_device(void)
1251 {
1252 struct input_dev *dev;
1253
1254 dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
1255 if (dev) {
1256 dev->dev.type = &input_dev_type;
1257 dev->dev.class = &input_class;
1258 device_initialize(&dev->dev);
1259 mutex_init(&dev->mutex);
1260 spin_lock_init(&dev->event_lock);
1261 INIT_LIST_HEAD(&dev->h_list);
1262 INIT_LIST_HEAD(&dev->node);
1263
1264 __module_get(THIS_MODULE);
1265 }
1266
1267 return dev;
1268 }
1269 EXPORT_SYMBOL(input_allocate_device);
1270
1271 /**
1272 * input_free_device - free memory occupied by input_dev structure
1273 * @dev: input device to free
1274 *
1275 * This function should only be used if input_register_device()
1276 * was not called yet or if it failed. Once device was registered
1277 * use input_unregister_device() and memory will be freed once last
1278 * reference to the device is dropped.
1279 *
1280 * Device should be allocated by input_allocate_device().
1281 *
1282 * NOTE: If there are references to the input device then memory
1283 * will not be freed until last reference is dropped.
1284 */
1285 void input_free_device(struct input_dev *dev)
1286 {
1287 if (dev)
1288 input_put_device(dev);
1289 }
1290 EXPORT_SYMBOL(input_free_device);
1291
1292 /**
1293 * input_set_capability - mark device as capable of a certain event
1294 * @dev: device that is capable of emitting or accepting event
1295 * @type: type of the event (EV_KEY, EV_REL, etc...)
1296 * @code: event code
1297 *
1298 * In addition to setting up corresponding bit in appropriate capability
1299 * bitmap the function also adjusts dev->evbit.
1300 */
1301 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1302 {
1303 switch (type) {
1304 case EV_KEY:
1305 __set_bit(code, dev->keybit);
1306 break;
1307
1308 case EV_REL:
1309 __set_bit(code, dev->relbit);
1310 break;
1311
1312 case EV_ABS:
1313 __set_bit(code, dev->absbit);
1314 break;
1315
1316 case EV_MSC:
1317 __set_bit(code, dev->mscbit);
1318 break;
1319
1320 case EV_SW:
1321 __set_bit(code, dev->swbit);
1322 break;
1323
1324 case EV_LED:
1325 __set_bit(code, dev->ledbit);
1326 break;
1327
1328 case EV_SND:
1329 __set_bit(code, dev->sndbit);
1330 break;
1331
1332 case EV_FF:
1333 __set_bit(code, dev->ffbit);
1334 break;
1335
1336 case EV_PWR:
1337 /* do nothing */
1338 break;
1339
1340 default:
1341 printk(KERN_ERR
1342 "input_set_capability: unknown type %u (code %u)\n",
1343 type, code);
1344 dump_stack();
1345 return;
1346 }
1347
1348 __set_bit(type, dev->evbit);
1349 }
1350 EXPORT_SYMBOL(input_set_capability);
1351
1352 /**
1353 * input_register_device - register device with input core
1354 * @dev: device to be registered
1355 *
1356 * This function registers device with input core. The device must be
1357 * allocated with input_allocate_device() and all it's capabilities
1358 * set up before registering.
1359 * If function fails the device must be freed with input_free_device().
1360 * Once device has been successfully registered it can be unregistered
1361 * with input_unregister_device(); input_free_device() should not be
1362 * called in this case.
1363 */
1364 int input_register_device(struct input_dev *dev)
1365 {
1366 static atomic_t input_no = ATOMIC_INIT(0);
1367 struct input_handler *handler;
1368 const char *path;
1369 int error;
1370
1371 __set_bit(EV_SYN, dev->evbit);
1372
1373 /*
1374 * If delay and period are pre-set by the driver, then autorepeating
1375 * is handled by the driver itself and we don't do it in input.c.
1376 */
1377
1378 init_timer(&dev->timer);
1379 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
1380 dev->timer.data = (long) dev;
1381 dev->timer.function = input_repeat_key;
1382 dev->rep[REP_DELAY] = 250;
1383 dev->rep[REP_PERIOD] = 33;
1384 }
1385
1386 if (!dev->getkeycode)
1387 dev->getkeycode = input_default_getkeycode;
1388
1389 if (!dev->setkeycode)
1390 dev->setkeycode = input_default_setkeycode;
1391
1392 dev_set_name(&dev->dev, "input%ld",
1393 (unsigned long) atomic_inc_return(&input_no) - 1);
1394
1395 error = device_add(&dev->dev);
1396 if (error)
1397 return error;
1398
1399 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1400 printk(KERN_INFO "input: %s as %s\n",
1401 dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
1402 kfree(path);
1403
1404 error = mutex_lock_interruptible(&input_mutex);
1405 if (error) {
1406 device_del(&dev->dev);
1407 return error;
1408 }
1409
1410 list_add_tail(&dev->node, &input_dev_list);
1411
1412 list_for_each_entry(handler, &input_handler_list, node)
1413 input_attach_handler(dev, handler);
1414
1415 input_wakeup_procfs_readers();
1416
1417 mutex_unlock(&input_mutex);
1418
1419 return 0;
1420 }
1421 EXPORT_SYMBOL(input_register_device);
1422
1423 /**
1424 * input_unregister_device - unregister previously registered device
1425 * @dev: device to be unregistered
1426 *
1427 * This function unregisters an input device. Once device is unregistered
1428 * the caller should not try to access it as it may get freed at any moment.
1429 */
1430 void input_unregister_device(struct input_dev *dev)
1431 {
1432 struct input_handle *handle, *next;
1433
1434 input_disconnect_device(dev);
1435
1436 mutex_lock(&input_mutex);
1437
1438 list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
1439 handle->handler->disconnect(handle);
1440 WARN_ON(!list_empty(&dev->h_list));
1441
1442 del_timer_sync(&dev->timer);
1443 list_del_init(&dev->node);
1444
1445 input_wakeup_procfs_readers();
1446
1447 mutex_unlock(&input_mutex);
1448
1449 device_unregister(&dev->dev);
1450 }
1451 EXPORT_SYMBOL(input_unregister_device);
1452
1453 /**
1454 * input_register_handler - register a new input handler
1455 * @handler: handler to be registered
1456 *
1457 * This function registers a new input handler (interface) for input
1458 * devices in the system and attaches it to all input devices that
1459 * are compatible with the handler.
1460 */
1461 int input_register_handler(struct input_handler *handler)
1462 {
1463 struct input_dev *dev;
1464 int retval;
1465
1466 retval = mutex_lock_interruptible(&input_mutex);
1467 if (retval)
1468 return retval;
1469
1470 INIT_LIST_HEAD(&handler->h_list);
1471
1472 if (handler->fops != NULL) {
1473 if (input_table[handler->minor >> 5]) {
1474 retval = -EBUSY;
1475 goto out;
1476 }
1477 input_table[handler->minor >> 5] = handler;
1478 }
1479
1480 list_add_tail(&handler->node, &input_handler_list);
1481
1482 list_for_each_entry(dev, &input_dev_list, node)
1483 input_attach_handler(dev, handler);
1484
1485 input_wakeup_procfs_readers();
1486
1487 out:
1488 mutex_unlock(&input_mutex);
1489 return retval;
1490 }
1491 EXPORT_SYMBOL(input_register_handler);
1492
1493 /**
1494 * input_unregister_handler - unregisters an input handler
1495 * @handler: handler to be unregistered
1496 *
1497 * This function disconnects a handler from its input devices and
1498 * removes it from lists of known handlers.
1499 */
1500 void input_unregister_handler(struct input_handler *handler)
1501 {
1502 struct input_handle *handle, *next;
1503
1504 mutex_lock(&input_mutex);
1505
1506 list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
1507 handler->disconnect(handle);
1508 WARN_ON(!list_empty(&handler->h_list));
1509
1510 list_del_init(&handler->node);
1511
1512 if (handler->fops != NULL)
1513 input_table[handler->minor >> 5] = NULL;
1514
1515 input_wakeup_procfs_readers();
1516
1517 mutex_unlock(&input_mutex);
1518 }
1519 EXPORT_SYMBOL(input_unregister_handler);
1520
1521 /**
1522 * input_register_handle - register a new input handle
1523 * @handle: handle to register
1524 *
1525 * This function puts a new input handle onto device's
1526 * and handler's lists so that events can flow through
1527 * it once it is opened using input_open_device().
1528 *
1529 * This function is supposed to be called from handler's
1530 * connect() method.
1531 */
1532 int input_register_handle(struct input_handle *handle)
1533 {
1534 struct input_handler *handler = handle->handler;
1535 struct input_dev *dev = handle->dev;
1536 int error;
1537
1538 /*
1539 * We take dev->mutex here to prevent race with
1540 * input_release_device().
1541 */
1542 error = mutex_lock_interruptible(&dev->mutex);
1543 if (error)
1544 return error;
1545 list_add_tail_rcu(&handle->d_node, &dev->h_list);
1546 mutex_unlock(&dev->mutex);
1547 synchronize_rcu();
1548
1549 /*
1550 * Since we are supposed to be called from ->connect()
1551 * which is mutually exclusive with ->disconnect()
1552 * we can't be racing with input_unregister_handle()
1553 * and so separate lock is not needed here.
1554 */
1555 list_add_tail(&handle->h_node, &handler->h_list);
1556
1557 if (handler->start)
1558 handler->start(handle);
1559
1560 return 0;
1561 }
1562 EXPORT_SYMBOL(input_register_handle);
1563
1564 /**
1565 * input_unregister_handle - unregister an input handle
1566 * @handle: handle to unregister
1567 *
1568 * This function removes input handle from device's
1569 * and handler's lists.
1570 *
1571 * This function is supposed to be called from handler's
1572 * disconnect() method.
1573 */
1574 void input_unregister_handle(struct input_handle *handle)
1575 {
1576 struct input_dev *dev = handle->dev;
1577
1578 list_del_init(&handle->h_node);
1579
1580 /*
1581 * Take dev->mutex to prevent race with input_release_device().
1582 */
1583 mutex_lock(&dev->mutex);
1584 list_del_rcu(&handle->d_node);
1585 mutex_unlock(&dev->mutex);
1586 synchronize_rcu();
1587 }
1588 EXPORT_SYMBOL(input_unregister_handle);
1589
1590 static int input_open_file(struct inode *inode, struct file *file)
1591 {
1592 struct input_handler *handler;
1593 const struct file_operations *old_fops, *new_fops = NULL;
1594 int err;
1595
1596 lock_kernel();
1597 /* No load-on-demand here? */
1598 handler = input_table[iminor(inode) >> 5];
1599 if (!handler || !(new_fops = fops_get(handler->fops))) {
1600 err = -ENODEV;
1601 goto out;
1602 }
1603
1604 /*
1605 * That's _really_ odd. Usually NULL ->open means "nothing special",
1606 * not "no device". Oh, well...
1607 */
1608 if (!new_fops->open) {
1609 fops_put(new_fops);
1610 err = -ENODEV;
1611 goto out;
1612 }
1613 old_fops = file->f_op;
1614 file->f_op = new_fops;
1615
1616 err = new_fops->open(inode, file);
1617
1618 if (err) {
1619 fops_put(file->f_op);
1620 file->f_op = fops_get(old_fops);
1621 }
1622 fops_put(old_fops);
1623 out:
1624 unlock_kernel();
1625 return err;
1626 }
1627
1628 static const struct file_operations input_fops = {
1629 .owner = THIS_MODULE,
1630 .open = input_open_file,
1631 };
1632
1633 static int __init input_init(void)
1634 {
1635 int err;
1636
1637 err = class_register(&input_class);
1638 if (err) {
1639 printk(KERN_ERR "input: unable to register input_dev class\n");
1640 return err;
1641 }
1642
1643 err = input_proc_init();
1644 if (err)
1645 goto fail1;
1646
1647 err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
1648 if (err) {
1649 printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR);
1650 goto fail2;
1651 }
1652
1653 return 0;
1654
1655 fail2: input_proc_exit();
1656 fail1: class_unregister(&input_class);
1657 return err;
1658 }
1659
1660 static void __exit input_exit(void)
1661 {
1662 input_proc_exit();
1663 unregister_chrdev(INPUT_MAJOR, "input");
1664 class_unregister(&input_class);
1665 }
1666
1667 subsys_initcall(input_init);
1668 module_exit(input_exit);
This page took 0.067612 seconds and 5 git commands to generate.