Driver-Core: extend devnode callbacks to provide permissions
[deliverable/linux.git] / drivers / input / input.c
1 /*
2 * The input core
3 *
4 * Copyright (c) 1999-2002 Vojtech Pavlik
5 */
6
7 /*
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License version 2 as published by
10 * the Free Software Foundation.
11 */
12
13 #include <linux/init.h>
14 #include <linux/input.h>
15 #include <linux/module.h>
16 #include <linux/random.h>
17 #include <linux/major.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/poll.h>
21 #include <linux/device.h>
22 #include <linux/mutex.h>
23 #include <linux/rcupdate.h>
24 #include <linux/smp_lock.h>
25
26 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
27 MODULE_DESCRIPTION("Input core");
28 MODULE_LICENSE("GPL");
29
30 #define INPUT_DEVICES 256
31
32 /*
33 * EV_ABS events which should not be cached are listed here.
34 */
35 static unsigned int input_abs_bypass_init_data[] __initdata = {
36 ABS_MT_TOUCH_MAJOR,
37 ABS_MT_TOUCH_MINOR,
38 ABS_MT_WIDTH_MAJOR,
39 ABS_MT_WIDTH_MINOR,
40 ABS_MT_ORIENTATION,
41 ABS_MT_POSITION_X,
42 ABS_MT_POSITION_Y,
43 ABS_MT_TOOL_TYPE,
44 ABS_MT_BLOB_ID,
45 ABS_MT_TRACKING_ID,
46 0
47 };
48 static unsigned long input_abs_bypass[BITS_TO_LONGS(ABS_CNT)];
49
50 static LIST_HEAD(input_dev_list);
51 static LIST_HEAD(input_handler_list);
52
53 /*
54 * input_mutex protects access to both input_dev_list and input_handler_list.
55 * This also causes input_[un]register_device and input_[un]register_handler
56 * be mutually exclusive which simplifies locking in drivers implementing
57 * input handlers.
58 */
59 static DEFINE_MUTEX(input_mutex);
60
61 static struct input_handler *input_table[8];
62
63 static inline int is_event_supported(unsigned int code,
64 unsigned long *bm, unsigned int max)
65 {
66 return code <= max && test_bit(code, bm);
67 }
68
69 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
70 {
71 if (fuzz) {
72 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
73 return old_val;
74
75 if (value > old_val - fuzz && value < old_val + fuzz)
76 return (old_val * 3 + value) / 4;
77
78 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
79 return (old_val + value) / 2;
80 }
81
82 return value;
83 }
84
85 /*
86 * Pass event through all open handles. This function is called with
87 * dev->event_lock held and interrupts disabled.
88 */
89 static void input_pass_event(struct input_dev *dev,
90 unsigned int type, unsigned int code, int value)
91 {
92 struct input_handle *handle;
93
94 rcu_read_lock();
95
96 handle = rcu_dereference(dev->grab);
97 if (handle)
98 handle->handler->event(handle, type, code, value);
99 else
100 list_for_each_entry_rcu(handle, &dev->h_list, d_node)
101 if (handle->open)
102 handle->handler->event(handle,
103 type, code, value);
104 rcu_read_unlock();
105 }
106
107 /*
108 * Generate software autorepeat event. Note that we take
109 * dev->event_lock here to avoid racing with input_event
110 * which may cause keys get "stuck".
111 */
112 static void input_repeat_key(unsigned long data)
113 {
114 struct input_dev *dev = (void *) data;
115 unsigned long flags;
116
117 spin_lock_irqsave(&dev->event_lock, flags);
118
119 if (test_bit(dev->repeat_key, dev->key) &&
120 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
121
122 input_pass_event(dev, EV_KEY, dev->repeat_key, 2);
123
124 if (dev->sync) {
125 /*
126 * Only send SYN_REPORT if we are not in a middle
127 * of driver parsing a new hardware packet.
128 * Otherwise assume that the driver will send
129 * SYN_REPORT once it's done.
130 */
131 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
132 }
133
134 if (dev->rep[REP_PERIOD])
135 mod_timer(&dev->timer, jiffies +
136 msecs_to_jiffies(dev->rep[REP_PERIOD]));
137 }
138
139 spin_unlock_irqrestore(&dev->event_lock, flags);
140 }
141
142 static void input_start_autorepeat(struct input_dev *dev, int code)
143 {
144 if (test_bit(EV_REP, dev->evbit) &&
145 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
146 dev->timer.data) {
147 dev->repeat_key = code;
148 mod_timer(&dev->timer,
149 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
150 }
151 }
152
153 static void input_stop_autorepeat(struct input_dev *dev)
154 {
155 del_timer(&dev->timer);
156 }
157
158 #define INPUT_IGNORE_EVENT 0
159 #define INPUT_PASS_TO_HANDLERS 1
160 #define INPUT_PASS_TO_DEVICE 2
161 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
162
163 static void input_handle_event(struct input_dev *dev,
164 unsigned int type, unsigned int code, int value)
165 {
166 int disposition = INPUT_IGNORE_EVENT;
167
168 switch (type) {
169
170 case EV_SYN:
171 switch (code) {
172 case SYN_CONFIG:
173 disposition = INPUT_PASS_TO_ALL;
174 break;
175
176 case SYN_REPORT:
177 if (!dev->sync) {
178 dev->sync = 1;
179 disposition = INPUT_PASS_TO_HANDLERS;
180 }
181 break;
182 case SYN_MT_REPORT:
183 dev->sync = 0;
184 disposition = INPUT_PASS_TO_HANDLERS;
185 break;
186 }
187 break;
188
189 case EV_KEY:
190 if (is_event_supported(code, dev->keybit, KEY_MAX) &&
191 !!test_bit(code, dev->key) != value) {
192
193 if (value != 2) {
194 __change_bit(code, dev->key);
195 if (value)
196 input_start_autorepeat(dev, code);
197 else
198 input_stop_autorepeat(dev);
199 }
200
201 disposition = INPUT_PASS_TO_HANDLERS;
202 }
203 break;
204
205 case EV_SW:
206 if (is_event_supported(code, dev->swbit, SW_MAX) &&
207 !!test_bit(code, dev->sw) != value) {
208
209 __change_bit(code, dev->sw);
210 disposition = INPUT_PASS_TO_HANDLERS;
211 }
212 break;
213
214 case EV_ABS:
215 if (is_event_supported(code, dev->absbit, ABS_MAX)) {
216
217 if (test_bit(code, input_abs_bypass)) {
218 disposition = INPUT_PASS_TO_HANDLERS;
219 break;
220 }
221
222 value = input_defuzz_abs_event(value,
223 dev->abs[code], dev->absfuzz[code]);
224
225 if (dev->abs[code] != value) {
226 dev->abs[code] = value;
227 disposition = INPUT_PASS_TO_HANDLERS;
228 }
229 }
230 break;
231
232 case EV_REL:
233 if (is_event_supported(code, dev->relbit, REL_MAX) && value)
234 disposition = INPUT_PASS_TO_HANDLERS;
235
236 break;
237
238 case EV_MSC:
239 if (is_event_supported(code, dev->mscbit, MSC_MAX))
240 disposition = INPUT_PASS_TO_ALL;
241
242 break;
243
244 case EV_LED:
245 if (is_event_supported(code, dev->ledbit, LED_MAX) &&
246 !!test_bit(code, dev->led) != value) {
247
248 __change_bit(code, dev->led);
249 disposition = INPUT_PASS_TO_ALL;
250 }
251 break;
252
253 case EV_SND:
254 if (is_event_supported(code, dev->sndbit, SND_MAX)) {
255
256 if (!!test_bit(code, dev->snd) != !!value)
257 __change_bit(code, dev->snd);
258 disposition = INPUT_PASS_TO_ALL;
259 }
260 break;
261
262 case EV_REP:
263 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
264 dev->rep[code] = value;
265 disposition = INPUT_PASS_TO_ALL;
266 }
267 break;
268
269 case EV_FF:
270 if (value >= 0)
271 disposition = INPUT_PASS_TO_ALL;
272 break;
273
274 case EV_PWR:
275 disposition = INPUT_PASS_TO_ALL;
276 break;
277 }
278
279 if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
280 dev->sync = 0;
281
282 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
283 dev->event(dev, type, code, value);
284
285 if (disposition & INPUT_PASS_TO_HANDLERS)
286 input_pass_event(dev, type, code, value);
287 }
288
289 /**
290 * input_event() - report new input event
291 * @dev: device that generated the event
292 * @type: type of the event
293 * @code: event code
294 * @value: value of the event
295 *
296 * This function should be used by drivers implementing various input
297 * devices. See also input_inject_event().
298 */
299
300 void input_event(struct input_dev *dev,
301 unsigned int type, unsigned int code, int value)
302 {
303 unsigned long flags;
304
305 if (is_event_supported(type, dev->evbit, EV_MAX)) {
306
307 spin_lock_irqsave(&dev->event_lock, flags);
308 add_input_randomness(type, code, value);
309 input_handle_event(dev, type, code, value);
310 spin_unlock_irqrestore(&dev->event_lock, flags);
311 }
312 }
313 EXPORT_SYMBOL(input_event);
314
315 /**
316 * input_inject_event() - send input event from input handler
317 * @handle: input handle to send event through
318 * @type: type of the event
319 * @code: event code
320 * @value: value of the event
321 *
322 * Similar to input_event() but will ignore event if device is
323 * "grabbed" and handle injecting event is not the one that owns
324 * the device.
325 */
326 void input_inject_event(struct input_handle *handle,
327 unsigned int type, unsigned int code, int value)
328 {
329 struct input_dev *dev = handle->dev;
330 struct input_handle *grab;
331 unsigned long flags;
332
333 if (is_event_supported(type, dev->evbit, EV_MAX)) {
334 spin_lock_irqsave(&dev->event_lock, flags);
335
336 rcu_read_lock();
337 grab = rcu_dereference(dev->grab);
338 if (!grab || grab == handle)
339 input_handle_event(dev, type, code, value);
340 rcu_read_unlock();
341
342 spin_unlock_irqrestore(&dev->event_lock, flags);
343 }
344 }
345 EXPORT_SYMBOL(input_inject_event);
346
347 /**
348 * input_grab_device - grabs device for exclusive use
349 * @handle: input handle that wants to own the device
350 *
351 * When a device is grabbed by an input handle all events generated by
352 * the device are delivered only to this handle. Also events injected
353 * by other input handles are ignored while device is grabbed.
354 */
355 int input_grab_device(struct input_handle *handle)
356 {
357 struct input_dev *dev = handle->dev;
358 int retval;
359
360 retval = mutex_lock_interruptible(&dev->mutex);
361 if (retval)
362 return retval;
363
364 if (dev->grab) {
365 retval = -EBUSY;
366 goto out;
367 }
368
369 rcu_assign_pointer(dev->grab, handle);
370 synchronize_rcu();
371
372 out:
373 mutex_unlock(&dev->mutex);
374 return retval;
375 }
376 EXPORT_SYMBOL(input_grab_device);
377
378 static void __input_release_device(struct input_handle *handle)
379 {
380 struct input_dev *dev = handle->dev;
381
382 if (dev->grab == handle) {
383 rcu_assign_pointer(dev->grab, NULL);
384 /* Make sure input_pass_event() notices that grab is gone */
385 synchronize_rcu();
386
387 list_for_each_entry(handle, &dev->h_list, d_node)
388 if (handle->open && handle->handler->start)
389 handle->handler->start(handle);
390 }
391 }
392
393 /**
394 * input_release_device - release previously grabbed device
395 * @handle: input handle that owns the device
396 *
397 * Releases previously grabbed device so that other input handles can
398 * start receiving input events. Upon release all handlers attached
399 * to the device have their start() method called so they have a change
400 * to synchronize device state with the rest of the system.
401 */
402 void input_release_device(struct input_handle *handle)
403 {
404 struct input_dev *dev = handle->dev;
405
406 mutex_lock(&dev->mutex);
407 __input_release_device(handle);
408 mutex_unlock(&dev->mutex);
409 }
410 EXPORT_SYMBOL(input_release_device);
411
412 /**
413 * input_open_device - open input device
414 * @handle: handle through which device is being accessed
415 *
416 * This function should be called by input handlers when they
417 * want to start receive events from given input device.
418 */
419 int input_open_device(struct input_handle *handle)
420 {
421 struct input_dev *dev = handle->dev;
422 int retval;
423
424 retval = mutex_lock_interruptible(&dev->mutex);
425 if (retval)
426 return retval;
427
428 if (dev->going_away) {
429 retval = -ENODEV;
430 goto out;
431 }
432
433 handle->open++;
434
435 if (!dev->users++ && dev->open)
436 retval = dev->open(dev);
437
438 if (retval) {
439 dev->users--;
440 if (!--handle->open) {
441 /*
442 * Make sure we are not delivering any more events
443 * through this handle
444 */
445 synchronize_rcu();
446 }
447 }
448
449 out:
450 mutex_unlock(&dev->mutex);
451 return retval;
452 }
453 EXPORT_SYMBOL(input_open_device);
454
455 int input_flush_device(struct input_handle *handle, struct file *file)
456 {
457 struct input_dev *dev = handle->dev;
458 int retval;
459
460 retval = mutex_lock_interruptible(&dev->mutex);
461 if (retval)
462 return retval;
463
464 if (dev->flush)
465 retval = dev->flush(dev, file);
466
467 mutex_unlock(&dev->mutex);
468 return retval;
469 }
470 EXPORT_SYMBOL(input_flush_device);
471
472 /**
473 * input_close_device - close input device
474 * @handle: handle through which device is being accessed
475 *
476 * This function should be called by input handlers when they
477 * want to stop receive events from given input device.
478 */
479 void input_close_device(struct input_handle *handle)
480 {
481 struct input_dev *dev = handle->dev;
482
483 mutex_lock(&dev->mutex);
484
485 __input_release_device(handle);
486
487 if (!--dev->users && dev->close)
488 dev->close(dev);
489
490 if (!--handle->open) {
491 /*
492 * synchronize_rcu() makes sure that input_pass_event()
493 * completed and that no more input events are delivered
494 * through this handle
495 */
496 synchronize_rcu();
497 }
498
499 mutex_unlock(&dev->mutex);
500 }
501 EXPORT_SYMBOL(input_close_device);
502
503 /*
504 * Prepare device for unregistering
505 */
506 static void input_disconnect_device(struct input_dev *dev)
507 {
508 struct input_handle *handle;
509 int code;
510
511 /*
512 * Mark device as going away. Note that we take dev->mutex here
513 * not to protect access to dev->going_away but rather to ensure
514 * that there are no threads in the middle of input_open_device()
515 */
516 mutex_lock(&dev->mutex);
517 dev->going_away = 1;
518 mutex_unlock(&dev->mutex);
519
520 spin_lock_irq(&dev->event_lock);
521
522 /*
523 * Simulate keyup events for all pressed keys so that handlers
524 * are not left with "stuck" keys. The driver may continue
525 * generate events even after we done here but they will not
526 * reach any handlers.
527 */
528 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
529 for (code = 0; code <= KEY_MAX; code++) {
530 if (is_event_supported(code, dev->keybit, KEY_MAX) &&
531 __test_and_clear_bit(code, dev->key)) {
532 input_pass_event(dev, EV_KEY, code, 0);
533 }
534 }
535 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
536 }
537
538 list_for_each_entry(handle, &dev->h_list, d_node)
539 handle->open = 0;
540
541 spin_unlock_irq(&dev->event_lock);
542 }
543
544 static int input_fetch_keycode(struct input_dev *dev, int scancode)
545 {
546 switch (dev->keycodesize) {
547 case 1:
548 return ((u8 *)dev->keycode)[scancode];
549
550 case 2:
551 return ((u16 *)dev->keycode)[scancode];
552
553 default:
554 return ((u32 *)dev->keycode)[scancode];
555 }
556 }
557
558 static int input_default_getkeycode(struct input_dev *dev,
559 int scancode, int *keycode)
560 {
561 if (!dev->keycodesize)
562 return -EINVAL;
563
564 if (scancode >= dev->keycodemax)
565 return -EINVAL;
566
567 *keycode = input_fetch_keycode(dev, scancode);
568
569 return 0;
570 }
571
572 static int input_default_setkeycode(struct input_dev *dev,
573 int scancode, int keycode)
574 {
575 int old_keycode;
576 int i;
577
578 if (scancode >= dev->keycodemax)
579 return -EINVAL;
580
581 if (!dev->keycodesize)
582 return -EINVAL;
583
584 if (dev->keycodesize < sizeof(keycode) && (keycode >> (dev->keycodesize * 8)))
585 return -EINVAL;
586
587 switch (dev->keycodesize) {
588 case 1: {
589 u8 *k = (u8 *)dev->keycode;
590 old_keycode = k[scancode];
591 k[scancode] = keycode;
592 break;
593 }
594 case 2: {
595 u16 *k = (u16 *)dev->keycode;
596 old_keycode = k[scancode];
597 k[scancode] = keycode;
598 break;
599 }
600 default: {
601 u32 *k = (u32 *)dev->keycode;
602 old_keycode = k[scancode];
603 k[scancode] = keycode;
604 break;
605 }
606 }
607
608 clear_bit(old_keycode, dev->keybit);
609 set_bit(keycode, dev->keybit);
610
611 for (i = 0; i < dev->keycodemax; i++) {
612 if (input_fetch_keycode(dev, i) == old_keycode) {
613 set_bit(old_keycode, dev->keybit);
614 break; /* Setting the bit twice is useless, so break */
615 }
616 }
617
618 return 0;
619 }
620
621 /**
622 * input_get_keycode - retrieve keycode currently mapped to a given scancode
623 * @dev: input device which keymap is being queried
624 * @scancode: scancode (or its equivalent for device in question) for which
625 * keycode is needed
626 * @keycode: result
627 *
628 * This function should be called by anyone interested in retrieving current
629 * keymap. Presently keyboard and evdev handlers use it.
630 */
631 int input_get_keycode(struct input_dev *dev, int scancode, int *keycode)
632 {
633 if (scancode < 0)
634 return -EINVAL;
635
636 return dev->getkeycode(dev, scancode, keycode);
637 }
638 EXPORT_SYMBOL(input_get_keycode);
639
640 /**
641 * input_get_keycode - assign new keycode to a given scancode
642 * @dev: input device which keymap is being updated
643 * @scancode: scancode (or its equivalent for device in question)
644 * @keycode: new keycode to be assigned to the scancode
645 *
646 * This function should be called by anyone needing to update current
647 * keymap. Presently keyboard and evdev handlers use it.
648 */
649 int input_set_keycode(struct input_dev *dev, int scancode, int keycode)
650 {
651 unsigned long flags;
652 int old_keycode;
653 int retval;
654
655 if (scancode < 0)
656 return -EINVAL;
657
658 if (keycode < 0 || keycode > KEY_MAX)
659 return -EINVAL;
660
661 spin_lock_irqsave(&dev->event_lock, flags);
662
663 retval = dev->getkeycode(dev, scancode, &old_keycode);
664 if (retval)
665 goto out;
666
667 retval = dev->setkeycode(dev, scancode, keycode);
668 if (retval)
669 goto out;
670
671 /*
672 * Simulate keyup event if keycode is not present
673 * in the keymap anymore
674 */
675 if (test_bit(EV_KEY, dev->evbit) &&
676 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
677 __test_and_clear_bit(old_keycode, dev->key)) {
678
679 input_pass_event(dev, EV_KEY, old_keycode, 0);
680 if (dev->sync)
681 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
682 }
683
684 out:
685 spin_unlock_irqrestore(&dev->event_lock, flags);
686
687 return retval;
688 }
689 EXPORT_SYMBOL(input_set_keycode);
690
691 #define MATCH_BIT(bit, max) \
692 for (i = 0; i < BITS_TO_LONGS(max); i++) \
693 if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
694 break; \
695 if (i != BITS_TO_LONGS(max)) \
696 continue;
697
698 static const struct input_device_id *input_match_device(const struct input_device_id *id,
699 struct input_dev *dev)
700 {
701 int i;
702
703 for (; id->flags || id->driver_info; id++) {
704
705 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
706 if (id->bustype != dev->id.bustype)
707 continue;
708
709 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
710 if (id->vendor != dev->id.vendor)
711 continue;
712
713 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
714 if (id->product != dev->id.product)
715 continue;
716
717 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
718 if (id->version != dev->id.version)
719 continue;
720
721 MATCH_BIT(evbit, EV_MAX);
722 MATCH_BIT(keybit, KEY_MAX);
723 MATCH_BIT(relbit, REL_MAX);
724 MATCH_BIT(absbit, ABS_MAX);
725 MATCH_BIT(mscbit, MSC_MAX);
726 MATCH_BIT(ledbit, LED_MAX);
727 MATCH_BIT(sndbit, SND_MAX);
728 MATCH_BIT(ffbit, FF_MAX);
729 MATCH_BIT(swbit, SW_MAX);
730
731 return id;
732 }
733
734 return NULL;
735 }
736
737 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
738 {
739 const struct input_device_id *id;
740 int error;
741
742 if (handler->blacklist && input_match_device(handler->blacklist, dev))
743 return -ENODEV;
744
745 id = input_match_device(handler->id_table, dev);
746 if (!id)
747 return -ENODEV;
748
749 error = handler->connect(handler, dev, id);
750 if (error && error != -ENODEV)
751 printk(KERN_ERR
752 "input: failed to attach handler %s to device %s, "
753 "error: %d\n",
754 handler->name, kobject_name(&dev->dev.kobj), error);
755
756 return error;
757 }
758
759
760 #ifdef CONFIG_PROC_FS
761
762 static struct proc_dir_entry *proc_bus_input_dir;
763 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
764 static int input_devices_state;
765
766 static inline void input_wakeup_procfs_readers(void)
767 {
768 input_devices_state++;
769 wake_up(&input_devices_poll_wait);
770 }
771
772 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
773 {
774 poll_wait(file, &input_devices_poll_wait, wait);
775 if (file->f_version != input_devices_state) {
776 file->f_version = input_devices_state;
777 return POLLIN | POLLRDNORM;
778 }
779
780 return 0;
781 }
782
783 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
784 {
785 if (mutex_lock_interruptible(&input_mutex))
786 return NULL;
787
788 return seq_list_start(&input_dev_list, *pos);
789 }
790
791 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
792 {
793 return seq_list_next(v, &input_dev_list, pos);
794 }
795
796 static void input_devices_seq_stop(struct seq_file *seq, void *v)
797 {
798 mutex_unlock(&input_mutex);
799 }
800
801 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
802 unsigned long *bitmap, int max)
803 {
804 int i;
805
806 for (i = BITS_TO_LONGS(max) - 1; i > 0; i--)
807 if (bitmap[i])
808 break;
809
810 seq_printf(seq, "B: %s=", name);
811 for (; i >= 0; i--)
812 seq_printf(seq, "%lx%s", bitmap[i], i > 0 ? " " : "");
813 seq_putc(seq, '\n');
814 }
815
816 static int input_devices_seq_show(struct seq_file *seq, void *v)
817 {
818 struct input_dev *dev = container_of(v, struct input_dev, node);
819 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
820 struct input_handle *handle;
821
822 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
823 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
824
825 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
826 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
827 seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
828 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
829 seq_printf(seq, "H: Handlers=");
830
831 list_for_each_entry(handle, &dev->h_list, d_node)
832 seq_printf(seq, "%s ", handle->name);
833 seq_putc(seq, '\n');
834
835 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
836 if (test_bit(EV_KEY, dev->evbit))
837 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
838 if (test_bit(EV_REL, dev->evbit))
839 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
840 if (test_bit(EV_ABS, dev->evbit))
841 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
842 if (test_bit(EV_MSC, dev->evbit))
843 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
844 if (test_bit(EV_LED, dev->evbit))
845 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
846 if (test_bit(EV_SND, dev->evbit))
847 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
848 if (test_bit(EV_FF, dev->evbit))
849 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
850 if (test_bit(EV_SW, dev->evbit))
851 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
852
853 seq_putc(seq, '\n');
854
855 kfree(path);
856 return 0;
857 }
858
859 static const struct seq_operations input_devices_seq_ops = {
860 .start = input_devices_seq_start,
861 .next = input_devices_seq_next,
862 .stop = input_devices_seq_stop,
863 .show = input_devices_seq_show,
864 };
865
866 static int input_proc_devices_open(struct inode *inode, struct file *file)
867 {
868 return seq_open(file, &input_devices_seq_ops);
869 }
870
871 static const struct file_operations input_devices_fileops = {
872 .owner = THIS_MODULE,
873 .open = input_proc_devices_open,
874 .poll = input_proc_devices_poll,
875 .read = seq_read,
876 .llseek = seq_lseek,
877 .release = seq_release,
878 };
879
880 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
881 {
882 if (mutex_lock_interruptible(&input_mutex))
883 return NULL;
884
885 seq->private = (void *)(unsigned long)*pos;
886 return seq_list_start(&input_handler_list, *pos);
887 }
888
889 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
890 {
891 seq->private = (void *)(unsigned long)(*pos + 1);
892 return seq_list_next(v, &input_handler_list, pos);
893 }
894
895 static void input_handlers_seq_stop(struct seq_file *seq, void *v)
896 {
897 mutex_unlock(&input_mutex);
898 }
899
900 static int input_handlers_seq_show(struct seq_file *seq, void *v)
901 {
902 struct input_handler *handler = container_of(v, struct input_handler, node);
903
904 seq_printf(seq, "N: Number=%ld Name=%s",
905 (unsigned long)seq->private, handler->name);
906 if (handler->fops)
907 seq_printf(seq, " Minor=%d", handler->minor);
908 seq_putc(seq, '\n');
909
910 return 0;
911 }
912 static const struct seq_operations input_handlers_seq_ops = {
913 .start = input_handlers_seq_start,
914 .next = input_handlers_seq_next,
915 .stop = input_handlers_seq_stop,
916 .show = input_handlers_seq_show,
917 };
918
919 static int input_proc_handlers_open(struct inode *inode, struct file *file)
920 {
921 return seq_open(file, &input_handlers_seq_ops);
922 }
923
924 static const struct file_operations input_handlers_fileops = {
925 .owner = THIS_MODULE,
926 .open = input_proc_handlers_open,
927 .read = seq_read,
928 .llseek = seq_lseek,
929 .release = seq_release,
930 };
931
932 static int __init input_proc_init(void)
933 {
934 struct proc_dir_entry *entry;
935
936 proc_bus_input_dir = proc_mkdir("bus/input", NULL);
937 if (!proc_bus_input_dir)
938 return -ENOMEM;
939
940 entry = proc_create("devices", 0, proc_bus_input_dir,
941 &input_devices_fileops);
942 if (!entry)
943 goto fail1;
944
945 entry = proc_create("handlers", 0, proc_bus_input_dir,
946 &input_handlers_fileops);
947 if (!entry)
948 goto fail2;
949
950 return 0;
951
952 fail2: remove_proc_entry("devices", proc_bus_input_dir);
953 fail1: remove_proc_entry("bus/input", NULL);
954 return -ENOMEM;
955 }
956
957 static void input_proc_exit(void)
958 {
959 remove_proc_entry("devices", proc_bus_input_dir);
960 remove_proc_entry("handlers", proc_bus_input_dir);
961 remove_proc_entry("bus/input", NULL);
962 }
963
964 #else /* !CONFIG_PROC_FS */
965 static inline void input_wakeup_procfs_readers(void) { }
966 static inline int input_proc_init(void) { return 0; }
967 static inline void input_proc_exit(void) { }
968 #endif
969
970 #define INPUT_DEV_STRING_ATTR_SHOW(name) \
971 static ssize_t input_dev_show_##name(struct device *dev, \
972 struct device_attribute *attr, \
973 char *buf) \
974 { \
975 struct input_dev *input_dev = to_input_dev(dev); \
976 \
977 return scnprintf(buf, PAGE_SIZE, "%s\n", \
978 input_dev->name ? input_dev->name : ""); \
979 } \
980 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
981
982 INPUT_DEV_STRING_ATTR_SHOW(name);
983 INPUT_DEV_STRING_ATTR_SHOW(phys);
984 INPUT_DEV_STRING_ATTR_SHOW(uniq);
985
986 static int input_print_modalias_bits(char *buf, int size,
987 char name, unsigned long *bm,
988 unsigned int min_bit, unsigned int max_bit)
989 {
990 int len = 0, i;
991
992 len += snprintf(buf, max(size, 0), "%c", name);
993 for (i = min_bit; i < max_bit; i++)
994 if (bm[BIT_WORD(i)] & BIT_MASK(i))
995 len += snprintf(buf + len, max(size - len, 0), "%X,", i);
996 return len;
997 }
998
999 static int input_print_modalias(char *buf, int size, struct input_dev *id,
1000 int add_cr)
1001 {
1002 int len;
1003
1004 len = snprintf(buf, max(size, 0),
1005 "input:b%04Xv%04Xp%04Xe%04X-",
1006 id->id.bustype, id->id.vendor,
1007 id->id.product, id->id.version);
1008
1009 len += input_print_modalias_bits(buf + len, size - len,
1010 'e', id->evbit, 0, EV_MAX);
1011 len += input_print_modalias_bits(buf + len, size - len,
1012 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1013 len += input_print_modalias_bits(buf + len, size - len,
1014 'r', id->relbit, 0, REL_MAX);
1015 len += input_print_modalias_bits(buf + len, size - len,
1016 'a', id->absbit, 0, ABS_MAX);
1017 len += input_print_modalias_bits(buf + len, size - len,
1018 'm', id->mscbit, 0, MSC_MAX);
1019 len += input_print_modalias_bits(buf + len, size - len,
1020 'l', id->ledbit, 0, LED_MAX);
1021 len += input_print_modalias_bits(buf + len, size - len,
1022 's', id->sndbit, 0, SND_MAX);
1023 len += input_print_modalias_bits(buf + len, size - len,
1024 'f', id->ffbit, 0, FF_MAX);
1025 len += input_print_modalias_bits(buf + len, size - len,
1026 'w', id->swbit, 0, SW_MAX);
1027
1028 if (add_cr)
1029 len += snprintf(buf + len, max(size - len, 0), "\n");
1030
1031 return len;
1032 }
1033
1034 static ssize_t input_dev_show_modalias(struct device *dev,
1035 struct device_attribute *attr,
1036 char *buf)
1037 {
1038 struct input_dev *id = to_input_dev(dev);
1039 ssize_t len;
1040
1041 len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1042
1043 return min_t(int, len, PAGE_SIZE);
1044 }
1045 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1046
1047 static struct attribute *input_dev_attrs[] = {
1048 &dev_attr_name.attr,
1049 &dev_attr_phys.attr,
1050 &dev_attr_uniq.attr,
1051 &dev_attr_modalias.attr,
1052 NULL
1053 };
1054
1055 static struct attribute_group input_dev_attr_group = {
1056 .attrs = input_dev_attrs,
1057 };
1058
1059 #define INPUT_DEV_ID_ATTR(name) \
1060 static ssize_t input_dev_show_id_##name(struct device *dev, \
1061 struct device_attribute *attr, \
1062 char *buf) \
1063 { \
1064 struct input_dev *input_dev = to_input_dev(dev); \
1065 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1066 } \
1067 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1068
1069 INPUT_DEV_ID_ATTR(bustype);
1070 INPUT_DEV_ID_ATTR(vendor);
1071 INPUT_DEV_ID_ATTR(product);
1072 INPUT_DEV_ID_ATTR(version);
1073
1074 static struct attribute *input_dev_id_attrs[] = {
1075 &dev_attr_bustype.attr,
1076 &dev_attr_vendor.attr,
1077 &dev_attr_product.attr,
1078 &dev_attr_version.attr,
1079 NULL
1080 };
1081
1082 static struct attribute_group input_dev_id_attr_group = {
1083 .name = "id",
1084 .attrs = input_dev_id_attrs,
1085 };
1086
1087 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1088 int max, int add_cr)
1089 {
1090 int i;
1091 int len = 0;
1092
1093 for (i = BITS_TO_LONGS(max) - 1; i > 0; i--)
1094 if (bitmap[i])
1095 break;
1096
1097 for (; i >= 0; i--)
1098 len += snprintf(buf + len, max(buf_size - len, 0),
1099 "%lx%s", bitmap[i], i > 0 ? " " : "");
1100
1101 if (add_cr)
1102 len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1103
1104 return len;
1105 }
1106
1107 #define INPUT_DEV_CAP_ATTR(ev, bm) \
1108 static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1109 struct device_attribute *attr, \
1110 char *buf) \
1111 { \
1112 struct input_dev *input_dev = to_input_dev(dev); \
1113 int len = input_print_bitmap(buf, PAGE_SIZE, \
1114 input_dev->bm##bit, ev##_MAX, 1); \
1115 return min_t(int, len, PAGE_SIZE); \
1116 } \
1117 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1118
1119 INPUT_DEV_CAP_ATTR(EV, ev);
1120 INPUT_DEV_CAP_ATTR(KEY, key);
1121 INPUT_DEV_CAP_ATTR(REL, rel);
1122 INPUT_DEV_CAP_ATTR(ABS, abs);
1123 INPUT_DEV_CAP_ATTR(MSC, msc);
1124 INPUT_DEV_CAP_ATTR(LED, led);
1125 INPUT_DEV_CAP_ATTR(SND, snd);
1126 INPUT_DEV_CAP_ATTR(FF, ff);
1127 INPUT_DEV_CAP_ATTR(SW, sw);
1128
1129 static struct attribute *input_dev_caps_attrs[] = {
1130 &dev_attr_ev.attr,
1131 &dev_attr_key.attr,
1132 &dev_attr_rel.attr,
1133 &dev_attr_abs.attr,
1134 &dev_attr_msc.attr,
1135 &dev_attr_led.attr,
1136 &dev_attr_snd.attr,
1137 &dev_attr_ff.attr,
1138 &dev_attr_sw.attr,
1139 NULL
1140 };
1141
1142 static struct attribute_group input_dev_caps_attr_group = {
1143 .name = "capabilities",
1144 .attrs = input_dev_caps_attrs,
1145 };
1146
1147 static const struct attribute_group *input_dev_attr_groups[] = {
1148 &input_dev_attr_group,
1149 &input_dev_id_attr_group,
1150 &input_dev_caps_attr_group,
1151 NULL
1152 };
1153
1154 static void input_dev_release(struct device *device)
1155 {
1156 struct input_dev *dev = to_input_dev(device);
1157
1158 input_ff_destroy(dev);
1159 kfree(dev);
1160
1161 module_put(THIS_MODULE);
1162 }
1163
1164 /*
1165 * Input uevent interface - loading event handlers based on
1166 * device bitfields.
1167 */
1168 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1169 const char *name, unsigned long *bitmap, int max)
1170 {
1171 int len;
1172
1173 if (add_uevent_var(env, "%s=", name))
1174 return -ENOMEM;
1175
1176 len = input_print_bitmap(&env->buf[env->buflen - 1],
1177 sizeof(env->buf) - env->buflen,
1178 bitmap, max, 0);
1179 if (len >= (sizeof(env->buf) - env->buflen))
1180 return -ENOMEM;
1181
1182 env->buflen += len;
1183 return 0;
1184 }
1185
1186 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1187 struct input_dev *dev)
1188 {
1189 int len;
1190
1191 if (add_uevent_var(env, "MODALIAS="))
1192 return -ENOMEM;
1193
1194 len = input_print_modalias(&env->buf[env->buflen - 1],
1195 sizeof(env->buf) - env->buflen,
1196 dev, 0);
1197 if (len >= (sizeof(env->buf) - env->buflen))
1198 return -ENOMEM;
1199
1200 env->buflen += len;
1201 return 0;
1202 }
1203
1204 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1205 do { \
1206 int err = add_uevent_var(env, fmt, val); \
1207 if (err) \
1208 return err; \
1209 } while (0)
1210
1211 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1212 do { \
1213 int err = input_add_uevent_bm_var(env, name, bm, max); \
1214 if (err) \
1215 return err; \
1216 } while (0)
1217
1218 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1219 do { \
1220 int err = input_add_uevent_modalias_var(env, dev); \
1221 if (err) \
1222 return err; \
1223 } while (0)
1224
1225 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1226 {
1227 struct input_dev *dev = to_input_dev(device);
1228
1229 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1230 dev->id.bustype, dev->id.vendor,
1231 dev->id.product, dev->id.version);
1232 if (dev->name)
1233 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1234 if (dev->phys)
1235 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1236 if (dev->uniq)
1237 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1238
1239 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1240 if (test_bit(EV_KEY, dev->evbit))
1241 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1242 if (test_bit(EV_REL, dev->evbit))
1243 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1244 if (test_bit(EV_ABS, dev->evbit))
1245 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1246 if (test_bit(EV_MSC, dev->evbit))
1247 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1248 if (test_bit(EV_LED, dev->evbit))
1249 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1250 if (test_bit(EV_SND, dev->evbit))
1251 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1252 if (test_bit(EV_FF, dev->evbit))
1253 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1254 if (test_bit(EV_SW, dev->evbit))
1255 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1256
1257 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1258
1259 return 0;
1260 }
1261
1262 static struct device_type input_dev_type = {
1263 .groups = input_dev_attr_groups,
1264 .release = input_dev_release,
1265 .uevent = input_dev_uevent,
1266 };
1267
1268 static char *input_devnode(struct device *dev, mode_t *mode)
1269 {
1270 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1271 }
1272
1273 struct class input_class = {
1274 .name = "input",
1275 .devnode = input_devnode,
1276 };
1277 EXPORT_SYMBOL_GPL(input_class);
1278
1279 /**
1280 * input_allocate_device - allocate memory for new input device
1281 *
1282 * Returns prepared struct input_dev or NULL.
1283 *
1284 * NOTE: Use input_free_device() to free devices that have not been
1285 * registered; input_unregister_device() should be used for already
1286 * registered devices.
1287 */
1288 struct input_dev *input_allocate_device(void)
1289 {
1290 struct input_dev *dev;
1291
1292 dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
1293 if (dev) {
1294 dev->dev.type = &input_dev_type;
1295 dev->dev.class = &input_class;
1296 device_initialize(&dev->dev);
1297 mutex_init(&dev->mutex);
1298 spin_lock_init(&dev->event_lock);
1299 INIT_LIST_HEAD(&dev->h_list);
1300 INIT_LIST_HEAD(&dev->node);
1301
1302 __module_get(THIS_MODULE);
1303 }
1304
1305 return dev;
1306 }
1307 EXPORT_SYMBOL(input_allocate_device);
1308
1309 /**
1310 * input_free_device - free memory occupied by input_dev structure
1311 * @dev: input device to free
1312 *
1313 * This function should only be used if input_register_device()
1314 * was not called yet or if it failed. Once device was registered
1315 * use input_unregister_device() and memory will be freed once last
1316 * reference to the device is dropped.
1317 *
1318 * Device should be allocated by input_allocate_device().
1319 *
1320 * NOTE: If there are references to the input device then memory
1321 * will not be freed until last reference is dropped.
1322 */
1323 void input_free_device(struct input_dev *dev)
1324 {
1325 if (dev)
1326 input_put_device(dev);
1327 }
1328 EXPORT_SYMBOL(input_free_device);
1329
1330 /**
1331 * input_set_capability - mark device as capable of a certain event
1332 * @dev: device that is capable of emitting or accepting event
1333 * @type: type of the event (EV_KEY, EV_REL, etc...)
1334 * @code: event code
1335 *
1336 * In addition to setting up corresponding bit in appropriate capability
1337 * bitmap the function also adjusts dev->evbit.
1338 */
1339 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1340 {
1341 switch (type) {
1342 case EV_KEY:
1343 __set_bit(code, dev->keybit);
1344 break;
1345
1346 case EV_REL:
1347 __set_bit(code, dev->relbit);
1348 break;
1349
1350 case EV_ABS:
1351 __set_bit(code, dev->absbit);
1352 break;
1353
1354 case EV_MSC:
1355 __set_bit(code, dev->mscbit);
1356 break;
1357
1358 case EV_SW:
1359 __set_bit(code, dev->swbit);
1360 break;
1361
1362 case EV_LED:
1363 __set_bit(code, dev->ledbit);
1364 break;
1365
1366 case EV_SND:
1367 __set_bit(code, dev->sndbit);
1368 break;
1369
1370 case EV_FF:
1371 __set_bit(code, dev->ffbit);
1372 break;
1373
1374 case EV_PWR:
1375 /* do nothing */
1376 break;
1377
1378 default:
1379 printk(KERN_ERR
1380 "input_set_capability: unknown type %u (code %u)\n",
1381 type, code);
1382 dump_stack();
1383 return;
1384 }
1385
1386 __set_bit(type, dev->evbit);
1387 }
1388 EXPORT_SYMBOL(input_set_capability);
1389
1390 /**
1391 * input_register_device - register device with input core
1392 * @dev: device to be registered
1393 *
1394 * This function registers device with input core. The device must be
1395 * allocated with input_allocate_device() and all it's capabilities
1396 * set up before registering.
1397 * If function fails the device must be freed with input_free_device().
1398 * Once device has been successfully registered it can be unregistered
1399 * with input_unregister_device(); input_free_device() should not be
1400 * called in this case.
1401 */
1402 int input_register_device(struct input_dev *dev)
1403 {
1404 static atomic_t input_no = ATOMIC_INIT(0);
1405 struct input_handler *handler;
1406 const char *path;
1407 int error;
1408
1409 __set_bit(EV_SYN, dev->evbit);
1410
1411 /*
1412 * If delay and period are pre-set by the driver, then autorepeating
1413 * is handled by the driver itself and we don't do it in input.c.
1414 */
1415
1416 init_timer(&dev->timer);
1417 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
1418 dev->timer.data = (long) dev;
1419 dev->timer.function = input_repeat_key;
1420 dev->rep[REP_DELAY] = 250;
1421 dev->rep[REP_PERIOD] = 33;
1422 }
1423
1424 if (!dev->getkeycode)
1425 dev->getkeycode = input_default_getkeycode;
1426
1427 if (!dev->setkeycode)
1428 dev->setkeycode = input_default_setkeycode;
1429
1430 dev_set_name(&dev->dev, "input%ld",
1431 (unsigned long) atomic_inc_return(&input_no) - 1);
1432
1433 error = device_add(&dev->dev);
1434 if (error)
1435 return error;
1436
1437 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1438 printk(KERN_INFO "input: %s as %s\n",
1439 dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
1440 kfree(path);
1441
1442 error = mutex_lock_interruptible(&input_mutex);
1443 if (error) {
1444 device_del(&dev->dev);
1445 return error;
1446 }
1447
1448 list_add_tail(&dev->node, &input_dev_list);
1449
1450 list_for_each_entry(handler, &input_handler_list, node)
1451 input_attach_handler(dev, handler);
1452
1453 input_wakeup_procfs_readers();
1454
1455 mutex_unlock(&input_mutex);
1456
1457 return 0;
1458 }
1459 EXPORT_SYMBOL(input_register_device);
1460
1461 /**
1462 * input_unregister_device - unregister previously registered device
1463 * @dev: device to be unregistered
1464 *
1465 * This function unregisters an input device. Once device is unregistered
1466 * the caller should not try to access it as it may get freed at any moment.
1467 */
1468 void input_unregister_device(struct input_dev *dev)
1469 {
1470 struct input_handle *handle, *next;
1471
1472 input_disconnect_device(dev);
1473
1474 mutex_lock(&input_mutex);
1475
1476 list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
1477 handle->handler->disconnect(handle);
1478 WARN_ON(!list_empty(&dev->h_list));
1479
1480 del_timer_sync(&dev->timer);
1481 list_del_init(&dev->node);
1482
1483 input_wakeup_procfs_readers();
1484
1485 mutex_unlock(&input_mutex);
1486
1487 device_unregister(&dev->dev);
1488 }
1489 EXPORT_SYMBOL(input_unregister_device);
1490
1491 /**
1492 * input_register_handler - register a new input handler
1493 * @handler: handler to be registered
1494 *
1495 * This function registers a new input handler (interface) for input
1496 * devices in the system and attaches it to all input devices that
1497 * are compatible with the handler.
1498 */
1499 int input_register_handler(struct input_handler *handler)
1500 {
1501 struct input_dev *dev;
1502 int retval;
1503
1504 retval = mutex_lock_interruptible(&input_mutex);
1505 if (retval)
1506 return retval;
1507
1508 INIT_LIST_HEAD(&handler->h_list);
1509
1510 if (handler->fops != NULL) {
1511 if (input_table[handler->minor >> 5]) {
1512 retval = -EBUSY;
1513 goto out;
1514 }
1515 input_table[handler->minor >> 5] = handler;
1516 }
1517
1518 list_add_tail(&handler->node, &input_handler_list);
1519
1520 list_for_each_entry(dev, &input_dev_list, node)
1521 input_attach_handler(dev, handler);
1522
1523 input_wakeup_procfs_readers();
1524
1525 out:
1526 mutex_unlock(&input_mutex);
1527 return retval;
1528 }
1529 EXPORT_SYMBOL(input_register_handler);
1530
1531 /**
1532 * input_unregister_handler - unregisters an input handler
1533 * @handler: handler to be unregistered
1534 *
1535 * This function disconnects a handler from its input devices and
1536 * removes it from lists of known handlers.
1537 */
1538 void input_unregister_handler(struct input_handler *handler)
1539 {
1540 struct input_handle *handle, *next;
1541
1542 mutex_lock(&input_mutex);
1543
1544 list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
1545 handler->disconnect(handle);
1546 WARN_ON(!list_empty(&handler->h_list));
1547
1548 list_del_init(&handler->node);
1549
1550 if (handler->fops != NULL)
1551 input_table[handler->minor >> 5] = NULL;
1552
1553 input_wakeup_procfs_readers();
1554
1555 mutex_unlock(&input_mutex);
1556 }
1557 EXPORT_SYMBOL(input_unregister_handler);
1558
1559 /**
1560 * input_register_handle - register a new input handle
1561 * @handle: handle to register
1562 *
1563 * This function puts a new input handle onto device's
1564 * and handler's lists so that events can flow through
1565 * it once it is opened using input_open_device().
1566 *
1567 * This function is supposed to be called from handler's
1568 * connect() method.
1569 */
1570 int input_register_handle(struct input_handle *handle)
1571 {
1572 struct input_handler *handler = handle->handler;
1573 struct input_dev *dev = handle->dev;
1574 int error;
1575
1576 /*
1577 * We take dev->mutex here to prevent race with
1578 * input_release_device().
1579 */
1580 error = mutex_lock_interruptible(&dev->mutex);
1581 if (error)
1582 return error;
1583 list_add_tail_rcu(&handle->d_node, &dev->h_list);
1584 mutex_unlock(&dev->mutex);
1585
1586 /*
1587 * Since we are supposed to be called from ->connect()
1588 * which is mutually exclusive with ->disconnect()
1589 * we can't be racing with input_unregister_handle()
1590 * and so separate lock is not needed here.
1591 */
1592 list_add_tail(&handle->h_node, &handler->h_list);
1593
1594 if (handler->start)
1595 handler->start(handle);
1596
1597 return 0;
1598 }
1599 EXPORT_SYMBOL(input_register_handle);
1600
1601 /**
1602 * input_unregister_handle - unregister an input handle
1603 * @handle: handle to unregister
1604 *
1605 * This function removes input handle from device's
1606 * and handler's lists.
1607 *
1608 * This function is supposed to be called from handler's
1609 * disconnect() method.
1610 */
1611 void input_unregister_handle(struct input_handle *handle)
1612 {
1613 struct input_dev *dev = handle->dev;
1614
1615 list_del_init(&handle->h_node);
1616
1617 /*
1618 * Take dev->mutex to prevent race with input_release_device().
1619 */
1620 mutex_lock(&dev->mutex);
1621 list_del_rcu(&handle->d_node);
1622 mutex_unlock(&dev->mutex);
1623 synchronize_rcu();
1624 }
1625 EXPORT_SYMBOL(input_unregister_handle);
1626
1627 static int input_open_file(struct inode *inode, struct file *file)
1628 {
1629 struct input_handler *handler;
1630 const struct file_operations *old_fops, *new_fops = NULL;
1631 int err;
1632
1633 lock_kernel();
1634 /* No load-on-demand here? */
1635 handler = input_table[iminor(inode) >> 5];
1636 if (!handler || !(new_fops = fops_get(handler->fops))) {
1637 err = -ENODEV;
1638 goto out;
1639 }
1640
1641 /*
1642 * That's _really_ odd. Usually NULL ->open means "nothing special",
1643 * not "no device". Oh, well...
1644 */
1645 if (!new_fops->open) {
1646 fops_put(new_fops);
1647 err = -ENODEV;
1648 goto out;
1649 }
1650 old_fops = file->f_op;
1651 file->f_op = new_fops;
1652
1653 err = new_fops->open(inode, file);
1654
1655 if (err) {
1656 fops_put(file->f_op);
1657 file->f_op = fops_get(old_fops);
1658 }
1659 fops_put(old_fops);
1660 out:
1661 unlock_kernel();
1662 return err;
1663 }
1664
1665 static const struct file_operations input_fops = {
1666 .owner = THIS_MODULE,
1667 .open = input_open_file,
1668 };
1669
1670 static void __init input_init_abs_bypass(void)
1671 {
1672 const unsigned int *p;
1673
1674 for (p = input_abs_bypass_init_data; *p; p++)
1675 input_abs_bypass[BIT_WORD(*p)] |= BIT_MASK(*p);
1676 }
1677
1678 static int __init input_init(void)
1679 {
1680 int err;
1681
1682 input_init_abs_bypass();
1683
1684 err = class_register(&input_class);
1685 if (err) {
1686 printk(KERN_ERR "input: unable to register input_dev class\n");
1687 return err;
1688 }
1689
1690 err = input_proc_init();
1691 if (err)
1692 goto fail1;
1693
1694 err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
1695 if (err) {
1696 printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR);
1697 goto fail2;
1698 }
1699
1700 return 0;
1701
1702 fail2: input_proc_exit();
1703 fail1: class_unregister(&input_class);
1704 return err;
1705 }
1706
1707 static void __exit input_exit(void)
1708 {
1709 input_proc_exit();
1710 unregister_chrdev(INPUT_MAJOR, "input");
1711 class_unregister(&input_class);
1712 }
1713
1714 subsys_initcall(input_init);
1715 module_exit(input_exit);
This page took 0.066924 seconds and 5 git commands to generate.