net/mlx4: Postpone the registration of net_device
[deliverable/linux.git] / drivers / input / input.c
1 /*
2 * The input core
3 *
4 * Copyright (c) 1999-2002 Vojtech Pavlik
5 */
6
7 /*
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License version 2 as published by
10 * the Free Software Foundation.
11 */
12
13 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
14
15 #include <linux/init.h>
16 #include <linux/types.h>
17 #include <linux/idr.h>
18 #include <linux/input/mt.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/random.h>
22 #include <linux/major.h>
23 #include <linux/proc_fs.h>
24 #include <linux/sched.h>
25 #include <linux/seq_file.h>
26 #include <linux/poll.h>
27 #include <linux/device.h>
28 #include <linux/mutex.h>
29 #include <linux/rcupdate.h>
30 #include "input-compat.h"
31
32 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
33 MODULE_DESCRIPTION("Input core");
34 MODULE_LICENSE("GPL");
35
36 #define INPUT_MAX_CHAR_DEVICES 1024
37 #define INPUT_FIRST_DYNAMIC_DEV 256
38 static DEFINE_IDA(input_ida);
39
40 static LIST_HEAD(input_dev_list);
41 static LIST_HEAD(input_handler_list);
42
43 /*
44 * input_mutex protects access to both input_dev_list and input_handler_list.
45 * This also causes input_[un]register_device and input_[un]register_handler
46 * be mutually exclusive which simplifies locking in drivers implementing
47 * input handlers.
48 */
49 static DEFINE_MUTEX(input_mutex);
50
51 static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
52
53 static inline int is_event_supported(unsigned int code,
54 unsigned long *bm, unsigned int max)
55 {
56 return code <= max && test_bit(code, bm);
57 }
58
59 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
60 {
61 if (fuzz) {
62 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
63 return old_val;
64
65 if (value > old_val - fuzz && value < old_val + fuzz)
66 return (old_val * 3 + value) / 4;
67
68 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
69 return (old_val + value) / 2;
70 }
71
72 return value;
73 }
74
75 static void input_start_autorepeat(struct input_dev *dev, int code)
76 {
77 if (test_bit(EV_REP, dev->evbit) &&
78 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
79 dev->timer.data) {
80 dev->repeat_key = code;
81 mod_timer(&dev->timer,
82 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
83 }
84 }
85
86 static void input_stop_autorepeat(struct input_dev *dev)
87 {
88 del_timer(&dev->timer);
89 }
90
91 /*
92 * Pass event first through all filters and then, if event has not been
93 * filtered out, through all open handles. This function is called with
94 * dev->event_lock held and interrupts disabled.
95 */
96 static unsigned int input_to_handler(struct input_handle *handle,
97 struct input_value *vals, unsigned int count)
98 {
99 struct input_handler *handler = handle->handler;
100 struct input_value *end = vals;
101 struct input_value *v;
102
103 if (handler->filter) {
104 for (v = vals; v != vals + count; v++) {
105 if (handler->filter(handle, v->type, v->code, v->value))
106 continue;
107 if (end != v)
108 *end = *v;
109 end++;
110 }
111 count = end - vals;
112 }
113
114 if (!count)
115 return 0;
116
117 if (handler->events)
118 handler->events(handle, vals, count);
119 else if (handler->event)
120 for (v = vals; v != vals + count; v++)
121 handler->event(handle, v->type, v->code, v->value);
122
123 return count;
124 }
125
126 /*
127 * Pass values first through all filters and then, if event has not been
128 * filtered out, through all open handles. This function is called with
129 * dev->event_lock held and interrupts disabled.
130 */
131 static void input_pass_values(struct input_dev *dev,
132 struct input_value *vals, unsigned int count)
133 {
134 struct input_handle *handle;
135 struct input_value *v;
136
137 if (!count)
138 return;
139
140 rcu_read_lock();
141
142 handle = rcu_dereference(dev->grab);
143 if (handle) {
144 count = input_to_handler(handle, vals, count);
145 } else {
146 list_for_each_entry_rcu(handle, &dev->h_list, d_node)
147 if (handle->open) {
148 count = input_to_handler(handle, vals, count);
149 if (!count)
150 break;
151 }
152 }
153
154 rcu_read_unlock();
155
156 add_input_randomness(vals->type, vals->code, vals->value);
157
158 /* trigger auto repeat for key events */
159 if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
160 for (v = vals; v != vals + count; v++) {
161 if (v->type == EV_KEY && v->value != 2) {
162 if (v->value)
163 input_start_autorepeat(dev, v->code);
164 else
165 input_stop_autorepeat(dev);
166 }
167 }
168 }
169 }
170
171 static void input_pass_event(struct input_dev *dev,
172 unsigned int type, unsigned int code, int value)
173 {
174 struct input_value vals[] = { { type, code, value } };
175
176 input_pass_values(dev, vals, ARRAY_SIZE(vals));
177 }
178
179 /*
180 * Generate software autorepeat event. Note that we take
181 * dev->event_lock here to avoid racing with input_event
182 * which may cause keys get "stuck".
183 */
184 static void input_repeat_key(unsigned long data)
185 {
186 struct input_dev *dev = (void *) data;
187 unsigned long flags;
188
189 spin_lock_irqsave(&dev->event_lock, flags);
190
191 if (test_bit(dev->repeat_key, dev->key) &&
192 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
193 struct input_value vals[] = {
194 { EV_KEY, dev->repeat_key, 2 },
195 input_value_sync
196 };
197
198 input_pass_values(dev, vals, ARRAY_SIZE(vals));
199
200 if (dev->rep[REP_PERIOD])
201 mod_timer(&dev->timer, jiffies +
202 msecs_to_jiffies(dev->rep[REP_PERIOD]));
203 }
204
205 spin_unlock_irqrestore(&dev->event_lock, flags);
206 }
207
208 #define INPUT_IGNORE_EVENT 0
209 #define INPUT_PASS_TO_HANDLERS 1
210 #define INPUT_PASS_TO_DEVICE 2
211 #define INPUT_SLOT 4
212 #define INPUT_FLUSH 8
213 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
214
215 static int input_handle_abs_event(struct input_dev *dev,
216 unsigned int code, int *pval)
217 {
218 struct input_mt *mt = dev->mt;
219 bool is_mt_event;
220 int *pold;
221
222 if (code == ABS_MT_SLOT) {
223 /*
224 * "Stage" the event; we'll flush it later, when we
225 * get actual touch data.
226 */
227 if (mt && *pval >= 0 && *pval < mt->num_slots)
228 mt->slot = *pval;
229
230 return INPUT_IGNORE_EVENT;
231 }
232
233 is_mt_event = input_is_mt_value(code);
234
235 if (!is_mt_event) {
236 pold = &dev->absinfo[code].value;
237 } else if (mt) {
238 pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
239 } else {
240 /*
241 * Bypass filtering for multi-touch events when
242 * not employing slots.
243 */
244 pold = NULL;
245 }
246
247 if (pold) {
248 *pval = input_defuzz_abs_event(*pval, *pold,
249 dev->absinfo[code].fuzz);
250 if (*pold == *pval)
251 return INPUT_IGNORE_EVENT;
252
253 *pold = *pval;
254 }
255
256 /* Flush pending "slot" event */
257 if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
258 input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);
259 return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
260 }
261
262 return INPUT_PASS_TO_HANDLERS;
263 }
264
265 static int input_get_disposition(struct input_dev *dev,
266 unsigned int type, unsigned int code, int *pval)
267 {
268 int disposition = INPUT_IGNORE_EVENT;
269 int value = *pval;
270
271 switch (type) {
272
273 case EV_SYN:
274 switch (code) {
275 case SYN_CONFIG:
276 disposition = INPUT_PASS_TO_ALL;
277 break;
278
279 case SYN_REPORT:
280 disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
281 break;
282 case SYN_MT_REPORT:
283 disposition = INPUT_PASS_TO_HANDLERS;
284 break;
285 }
286 break;
287
288 case EV_KEY:
289 if (is_event_supported(code, dev->keybit, KEY_MAX)) {
290
291 /* auto-repeat bypasses state updates */
292 if (value == 2) {
293 disposition = INPUT_PASS_TO_HANDLERS;
294 break;
295 }
296
297 if (!!test_bit(code, dev->key) != !!value) {
298
299 __change_bit(code, dev->key);
300 disposition = INPUT_PASS_TO_HANDLERS;
301 }
302 }
303 break;
304
305 case EV_SW:
306 if (is_event_supported(code, dev->swbit, SW_MAX) &&
307 !!test_bit(code, dev->sw) != !!value) {
308
309 __change_bit(code, dev->sw);
310 disposition = INPUT_PASS_TO_HANDLERS;
311 }
312 break;
313
314 case EV_ABS:
315 if (is_event_supported(code, dev->absbit, ABS_MAX))
316 disposition = input_handle_abs_event(dev, code, &value);
317
318 break;
319
320 case EV_REL:
321 if (is_event_supported(code, dev->relbit, REL_MAX) && value)
322 disposition = INPUT_PASS_TO_HANDLERS;
323
324 break;
325
326 case EV_MSC:
327 if (is_event_supported(code, dev->mscbit, MSC_MAX))
328 disposition = INPUT_PASS_TO_ALL;
329
330 break;
331
332 case EV_LED:
333 if (is_event_supported(code, dev->ledbit, LED_MAX) &&
334 !!test_bit(code, dev->led) != !!value) {
335
336 __change_bit(code, dev->led);
337 disposition = INPUT_PASS_TO_ALL;
338 }
339 break;
340
341 case EV_SND:
342 if (is_event_supported(code, dev->sndbit, SND_MAX)) {
343
344 if (!!test_bit(code, dev->snd) != !!value)
345 __change_bit(code, dev->snd);
346 disposition = INPUT_PASS_TO_ALL;
347 }
348 break;
349
350 case EV_REP:
351 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
352 dev->rep[code] = value;
353 disposition = INPUT_PASS_TO_ALL;
354 }
355 break;
356
357 case EV_FF:
358 if (value >= 0)
359 disposition = INPUT_PASS_TO_ALL;
360 break;
361
362 case EV_PWR:
363 disposition = INPUT_PASS_TO_ALL;
364 break;
365 }
366
367 *pval = value;
368 return disposition;
369 }
370
371 static void input_handle_event(struct input_dev *dev,
372 unsigned int type, unsigned int code, int value)
373 {
374 int disposition;
375
376 disposition = input_get_disposition(dev, type, code, &value);
377
378 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
379 dev->event(dev, type, code, value);
380
381 if (!dev->vals)
382 return;
383
384 if (disposition & INPUT_PASS_TO_HANDLERS) {
385 struct input_value *v;
386
387 if (disposition & INPUT_SLOT) {
388 v = &dev->vals[dev->num_vals++];
389 v->type = EV_ABS;
390 v->code = ABS_MT_SLOT;
391 v->value = dev->mt->slot;
392 }
393
394 v = &dev->vals[dev->num_vals++];
395 v->type = type;
396 v->code = code;
397 v->value = value;
398 }
399
400 if (disposition & INPUT_FLUSH) {
401 if (dev->num_vals >= 2)
402 input_pass_values(dev, dev->vals, dev->num_vals);
403 dev->num_vals = 0;
404 } else if (dev->num_vals >= dev->max_vals - 2) {
405 dev->vals[dev->num_vals++] = input_value_sync;
406 input_pass_values(dev, dev->vals, dev->num_vals);
407 dev->num_vals = 0;
408 }
409
410 }
411
412 /**
413 * input_event() - report new input event
414 * @dev: device that generated the event
415 * @type: type of the event
416 * @code: event code
417 * @value: value of the event
418 *
419 * This function should be used by drivers implementing various input
420 * devices to report input events. See also input_inject_event().
421 *
422 * NOTE: input_event() may be safely used right after input device was
423 * allocated with input_allocate_device(), even before it is registered
424 * with input_register_device(), but the event will not reach any of the
425 * input handlers. Such early invocation of input_event() may be used
426 * to 'seed' initial state of a switch or initial position of absolute
427 * axis, etc.
428 */
429 void input_event(struct input_dev *dev,
430 unsigned int type, unsigned int code, int value)
431 {
432 unsigned long flags;
433
434 if (is_event_supported(type, dev->evbit, EV_MAX)) {
435
436 spin_lock_irqsave(&dev->event_lock, flags);
437 input_handle_event(dev, type, code, value);
438 spin_unlock_irqrestore(&dev->event_lock, flags);
439 }
440 }
441 EXPORT_SYMBOL(input_event);
442
443 /**
444 * input_inject_event() - send input event from input handler
445 * @handle: input handle to send event through
446 * @type: type of the event
447 * @code: event code
448 * @value: value of the event
449 *
450 * Similar to input_event() but will ignore event if device is
451 * "grabbed" and handle injecting event is not the one that owns
452 * the device.
453 */
454 void input_inject_event(struct input_handle *handle,
455 unsigned int type, unsigned int code, int value)
456 {
457 struct input_dev *dev = handle->dev;
458 struct input_handle *grab;
459 unsigned long flags;
460
461 if (is_event_supported(type, dev->evbit, EV_MAX)) {
462 spin_lock_irqsave(&dev->event_lock, flags);
463
464 rcu_read_lock();
465 grab = rcu_dereference(dev->grab);
466 if (!grab || grab == handle)
467 input_handle_event(dev, type, code, value);
468 rcu_read_unlock();
469
470 spin_unlock_irqrestore(&dev->event_lock, flags);
471 }
472 }
473 EXPORT_SYMBOL(input_inject_event);
474
475 /**
476 * input_alloc_absinfo - allocates array of input_absinfo structs
477 * @dev: the input device emitting absolute events
478 *
479 * If the absinfo struct the caller asked for is already allocated, this
480 * functions will not do anything.
481 */
482 void input_alloc_absinfo(struct input_dev *dev)
483 {
484 if (!dev->absinfo)
485 dev->absinfo = kcalloc(ABS_CNT, sizeof(struct input_absinfo),
486 GFP_KERNEL);
487
488 WARN(!dev->absinfo, "%s(): kcalloc() failed?\n", __func__);
489 }
490 EXPORT_SYMBOL(input_alloc_absinfo);
491
492 void input_set_abs_params(struct input_dev *dev, unsigned int axis,
493 int min, int max, int fuzz, int flat)
494 {
495 struct input_absinfo *absinfo;
496
497 input_alloc_absinfo(dev);
498 if (!dev->absinfo)
499 return;
500
501 absinfo = &dev->absinfo[axis];
502 absinfo->minimum = min;
503 absinfo->maximum = max;
504 absinfo->fuzz = fuzz;
505 absinfo->flat = flat;
506
507 __set_bit(EV_ABS, dev->evbit);
508 __set_bit(axis, dev->absbit);
509 }
510 EXPORT_SYMBOL(input_set_abs_params);
511
512
513 /**
514 * input_grab_device - grabs device for exclusive use
515 * @handle: input handle that wants to own the device
516 *
517 * When a device is grabbed by an input handle all events generated by
518 * the device are delivered only to this handle. Also events injected
519 * by other input handles are ignored while device is grabbed.
520 */
521 int input_grab_device(struct input_handle *handle)
522 {
523 struct input_dev *dev = handle->dev;
524 int retval;
525
526 retval = mutex_lock_interruptible(&dev->mutex);
527 if (retval)
528 return retval;
529
530 if (dev->grab) {
531 retval = -EBUSY;
532 goto out;
533 }
534
535 rcu_assign_pointer(dev->grab, handle);
536
537 out:
538 mutex_unlock(&dev->mutex);
539 return retval;
540 }
541 EXPORT_SYMBOL(input_grab_device);
542
543 static void __input_release_device(struct input_handle *handle)
544 {
545 struct input_dev *dev = handle->dev;
546 struct input_handle *grabber;
547
548 grabber = rcu_dereference_protected(dev->grab,
549 lockdep_is_held(&dev->mutex));
550 if (grabber == handle) {
551 rcu_assign_pointer(dev->grab, NULL);
552 /* Make sure input_pass_event() notices that grab is gone */
553 synchronize_rcu();
554
555 list_for_each_entry(handle, &dev->h_list, d_node)
556 if (handle->open && handle->handler->start)
557 handle->handler->start(handle);
558 }
559 }
560
561 /**
562 * input_release_device - release previously grabbed device
563 * @handle: input handle that owns the device
564 *
565 * Releases previously grabbed device so that other input handles can
566 * start receiving input events. Upon release all handlers attached
567 * to the device have their start() method called so they have a change
568 * to synchronize device state with the rest of the system.
569 */
570 void input_release_device(struct input_handle *handle)
571 {
572 struct input_dev *dev = handle->dev;
573
574 mutex_lock(&dev->mutex);
575 __input_release_device(handle);
576 mutex_unlock(&dev->mutex);
577 }
578 EXPORT_SYMBOL(input_release_device);
579
580 /**
581 * input_open_device - open input device
582 * @handle: handle through which device is being accessed
583 *
584 * This function should be called by input handlers when they
585 * want to start receive events from given input device.
586 */
587 int input_open_device(struct input_handle *handle)
588 {
589 struct input_dev *dev = handle->dev;
590 int retval;
591
592 retval = mutex_lock_interruptible(&dev->mutex);
593 if (retval)
594 return retval;
595
596 if (dev->going_away) {
597 retval = -ENODEV;
598 goto out;
599 }
600
601 handle->open++;
602
603 if (!dev->users++ && dev->open)
604 retval = dev->open(dev);
605
606 if (retval) {
607 dev->users--;
608 if (!--handle->open) {
609 /*
610 * Make sure we are not delivering any more events
611 * through this handle
612 */
613 synchronize_rcu();
614 }
615 }
616
617 out:
618 mutex_unlock(&dev->mutex);
619 return retval;
620 }
621 EXPORT_SYMBOL(input_open_device);
622
623 int input_flush_device(struct input_handle *handle, struct file *file)
624 {
625 struct input_dev *dev = handle->dev;
626 int retval;
627
628 retval = mutex_lock_interruptible(&dev->mutex);
629 if (retval)
630 return retval;
631
632 if (dev->flush)
633 retval = dev->flush(dev, file);
634
635 mutex_unlock(&dev->mutex);
636 return retval;
637 }
638 EXPORT_SYMBOL(input_flush_device);
639
640 /**
641 * input_close_device - close input device
642 * @handle: handle through which device is being accessed
643 *
644 * This function should be called by input handlers when they
645 * want to stop receive events from given input device.
646 */
647 void input_close_device(struct input_handle *handle)
648 {
649 struct input_dev *dev = handle->dev;
650
651 mutex_lock(&dev->mutex);
652
653 __input_release_device(handle);
654
655 if (!--dev->users && dev->close)
656 dev->close(dev);
657
658 if (!--handle->open) {
659 /*
660 * synchronize_rcu() makes sure that input_pass_event()
661 * completed and that no more input events are delivered
662 * through this handle
663 */
664 synchronize_rcu();
665 }
666
667 mutex_unlock(&dev->mutex);
668 }
669 EXPORT_SYMBOL(input_close_device);
670
671 /*
672 * Simulate keyup events for all keys that are marked as pressed.
673 * The function must be called with dev->event_lock held.
674 */
675 static void input_dev_release_keys(struct input_dev *dev)
676 {
677 int code;
678
679 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
680 for_each_set_bit(code, dev->key, KEY_CNT)
681 input_pass_event(dev, EV_KEY, code, 0);
682 memset(dev->key, 0, sizeof(dev->key));
683 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
684 }
685 }
686
687 /*
688 * Prepare device for unregistering
689 */
690 static void input_disconnect_device(struct input_dev *dev)
691 {
692 struct input_handle *handle;
693
694 /*
695 * Mark device as going away. Note that we take dev->mutex here
696 * not to protect access to dev->going_away but rather to ensure
697 * that there are no threads in the middle of input_open_device()
698 */
699 mutex_lock(&dev->mutex);
700 dev->going_away = true;
701 mutex_unlock(&dev->mutex);
702
703 spin_lock_irq(&dev->event_lock);
704
705 /*
706 * Simulate keyup events for all pressed keys so that handlers
707 * are not left with "stuck" keys. The driver may continue
708 * generate events even after we done here but they will not
709 * reach any handlers.
710 */
711 input_dev_release_keys(dev);
712
713 list_for_each_entry(handle, &dev->h_list, d_node)
714 handle->open = 0;
715
716 spin_unlock_irq(&dev->event_lock);
717 }
718
719 /**
720 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
721 * @ke: keymap entry containing scancode to be converted.
722 * @scancode: pointer to the location where converted scancode should
723 * be stored.
724 *
725 * This function is used to convert scancode stored in &struct keymap_entry
726 * into scalar form understood by legacy keymap handling methods. These
727 * methods expect scancodes to be represented as 'unsigned int'.
728 */
729 int input_scancode_to_scalar(const struct input_keymap_entry *ke,
730 unsigned int *scancode)
731 {
732 switch (ke->len) {
733 case 1:
734 *scancode = *((u8 *)ke->scancode);
735 break;
736
737 case 2:
738 *scancode = *((u16 *)ke->scancode);
739 break;
740
741 case 4:
742 *scancode = *((u32 *)ke->scancode);
743 break;
744
745 default:
746 return -EINVAL;
747 }
748
749 return 0;
750 }
751 EXPORT_SYMBOL(input_scancode_to_scalar);
752
753 /*
754 * Those routines handle the default case where no [gs]etkeycode() is
755 * defined. In this case, an array indexed by the scancode is used.
756 */
757
758 static unsigned int input_fetch_keycode(struct input_dev *dev,
759 unsigned int index)
760 {
761 switch (dev->keycodesize) {
762 case 1:
763 return ((u8 *)dev->keycode)[index];
764
765 case 2:
766 return ((u16 *)dev->keycode)[index];
767
768 default:
769 return ((u32 *)dev->keycode)[index];
770 }
771 }
772
773 static int input_default_getkeycode(struct input_dev *dev,
774 struct input_keymap_entry *ke)
775 {
776 unsigned int index;
777 int error;
778
779 if (!dev->keycodesize)
780 return -EINVAL;
781
782 if (ke->flags & INPUT_KEYMAP_BY_INDEX)
783 index = ke->index;
784 else {
785 error = input_scancode_to_scalar(ke, &index);
786 if (error)
787 return error;
788 }
789
790 if (index >= dev->keycodemax)
791 return -EINVAL;
792
793 ke->keycode = input_fetch_keycode(dev, index);
794 ke->index = index;
795 ke->len = sizeof(index);
796 memcpy(ke->scancode, &index, sizeof(index));
797
798 return 0;
799 }
800
801 static int input_default_setkeycode(struct input_dev *dev,
802 const struct input_keymap_entry *ke,
803 unsigned int *old_keycode)
804 {
805 unsigned int index;
806 int error;
807 int i;
808
809 if (!dev->keycodesize)
810 return -EINVAL;
811
812 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
813 index = ke->index;
814 } else {
815 error = input_scancode_to_scalar(ke, &index);
816 if (error)
817 return error;
818 }
819
820 if (index >= dev->keycodemax)
821 return -EINVAL;
822
823 if (dev->keycodesize < sizeof(ke->keycode) &&
824 (ke->keycode >> (dev->keycodesize * 8)))
825 return -EINVAL;
826
827 switch (dev->keycodesize) {
828 case 1: {
829 u8 *k = (u8 *)dev->keycode;
830 *old_keycode = k[index];
831 k[index] = ke->keycode;
832 break;
833 }
834 case 2: {
835 u16 *k = (u16 *)dev->keycode;
836 *old_keycode = k[index];
837 k[index] = ke->keycode;
838 break;
839 }
840 default: {
841 u32 *k = (u32 *)dev->keycode;
842 *old_keycode = k[index];
843 k[index] = ke->keycode;
844 break;
845 }
846 }
847
848 __clear_bit(*old_keycode, dev->keybit);
849 __set_bit(ke->keycode, dev->keybit);
850
851 for (i = 0; i < dev->keycodemax; i++) {
852 if (input_fetch_keycode(dev, i) == *old_keycode) {
853 __set_bit(*old_keycode, dev->keybit);
854 break; /* Setting the bit twice is useless, so break */
855 }
856 }
857
858 return 0;
859 }
860
861 /**
862 * input_get_keycode - retrieve keycode currently mapped to a given scancode
863 * @dev: input device which keymap is being queried
864 * @ke: keymap entry
865 *
866 * This function should be called by anyone interested in retrieving current
867 * keymap. Presently evdev handlers use it.
868 */
869 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
870 {
871 unsigned long flags;
872 int retval;
873
874 spin_lock_irqsave(&dev->event_lock, flags);
875 retval = dev->getkeycode(dev, ke);
876 spin_unlock_irqrestore(&dev->event_lock, flags);
877
878 return retval;
879 }
880 EXPORT_SYMBOL(input_get_keycode);
881
882 /**
883 * input_set_keycode - attribute a keycode to a given scancode
884 * @dev: input device which keymap is being updated
885 * @ke: new keymap entry
886 *
887 * This function should be called by anyone needing to update current
888 * keymap. Presently keyboard and evdev handlers use it.
889 */
890 int input_set_keycode(struct input_dev *dev,
891 const struct input_keymap_entry *ke)
892 {
893 unsigned long flags;
894 unsigned int old_keycode;
895 int retval;
896
897 if (ke->keycode > KEY_MAX)
898 return -EINVAL;
899
900 spin_lock_irqsave(&dev->event_lock, flags);
901
902 retval = dev->setkeycode(dev, ke, &old_keycode);
903 if (retval)
904 goto out;
905
906 /* Make sure KEY_RESERVED did not get enabled. */
907 __clear_bit(KEY_RESERVED, dev->keybit);
908
909 /*
910 * Simulate keyup event if keycode is not present
911 * in the keymap anymore
912 */
913 if (test_bit(EV_KEY, dev->evbit) &&
914 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
915 __test_and_clear_bit(old_keycode, dev->key)) {
916 struct input_value vals[] = {
917 { EV_KEY, old_keycode, 0 },
918 input_value_sync
919 };
920
921 input_pass_values(dev, vals, ARRAY_SIZE(vals));
922 }
923
924 out:
925 spin_unlock_irqrestore(&dev->event_lock, flags);
926
927 return retval;
928 }
929 EXPORT_SYMBOL(input_set_keycode);
930
931 static const struct input_device_id *input_match_device(struct input_handler *handler,
932 struct input_dev *dev)
933 {
934 const struct input_device_id *id;
935
936 for (id = handler->id_table; id->flags || id->driver_info; id++) {
937
938 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
939 if (id->bustype != dev->id.bustype)
940 continue;
941
942 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
943 if (id->vendor != dev->id.vendor)
944 continue;
945
946 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
947 if (id->product != dev->id.product)
948 continue;
949
950 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
951 if (id->version != dev->id.version)
952 continue;
953
954 if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX))
955 continue;
956
957 if (!bitmap_subset(id->keybit, dev->keybit, KEY_MAX))
958 continue;
959
960 if (!bitmap_subset(id->relbit, dev->relbit, REL_MAX))
961 continue;
962
963 if (!bitmap_subset(id->absbit, dev->absbit, ABS_MAX))
964 continue;
965
966 if (!bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX))
967 continue;
968
969 if (!bitmap_subset(id->ledbit, dev->ledbit, LED_MAX))
970 continue;
971
972 if (!bitmap_subset(id->sndbit, dev->sndbit, SND_MAX))
973 continue;
974
975 if (!bitmap_subset(id->ffbit, dev->ffbit, FF_MAX))
976 continue;
977
978 if (!bitmap_subset(id->swbit, dev->swbit, SW_MAX))
979 continue;
980
981 if (!handler->match || handler->match(handler, dev))
982 return id;
983 }
984
985 return NULL;
986 }
987
988 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
989 {
990 const struct input_device_id *id;
991 int error;
992
993 id = input_match_device(handler, dev);
994 if (!id)
995 return -ENODEV;
996
997 error = handler->connect(handler, dev, id);
998 if (error && error != -ENODEV)
999 pr_err("failed to attach handler %s to device %s, error: %d\n",
1000 handler->name, kobject_name(&dev->dev.kobj), error);
1001
1002 return error;
1003 }
1004
1005 #ifdef CONFIG_COMPAT
1006
1007 static int input_bits_to_string(char *buf, int buf_size,
1008 unsigned long bits, bool skip_empty)
1009 {
1010 int len = 0;
1011
1012 if (INPUT_COMPAT_TEST) {
1013 u32 dword = bits >> 32;
1014 if (dword || !skip_empty)
1015 len += snprintf(buf, buf_size, "%x ", dword);
1016
1017 dword = bits & 0xffffffffUL;
1018 if (dword || !skip_empty || len)
1019 len += snprintf(buf + len, max(buf_size - len, 0),
1020 "%x", dword);
1021 } else {
1022 if (bits || !skip_empty)
1023 len += snprintf(buf, buf_size, "%lx", bits);
1024 }
1025
1026 return len;
1027 }
1028
1029 #else /* !CONFIG_COMPAT */
1030
1031 static int input_bits_to_string(char *buf, int buf_size,
1032 unsigned long bits, bool skip_empty)
1033 {
1034 return bits || !skip_empty ?
1035 snprintf(buf, buf_size, "%lx", bits) : 0;
1036 }
1037
1038 #endif
1039
1040 #ifdef CONFIG_PROC_FS
1041
1042 static struct proc_dir_entry *proc_bus_input_dir;
1043 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1044 static int input_devices_state;
1045
1046 static inline void input_wakeup_procfs_readers(void)
1047 {
1048 input_devices_state++;
1049 wake_up(&input_devices_poll_wait);
1050 }
1051
1052 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
1053 {
1054 poll_wait(file, &input_devices_poll_wait, wait);
1055 if (file->f_version != input_devices_state) {
1056 file->f_version = input_devices_state;
1057 return POLLIN | POLLRDNORM;
1058 }
1059
1060 return 0;
1061 }
1062
1063 union input_seq_state {
1064 struct {
1065 unsigned short pos;
1066 bool mutex_acquired;
1067 };
1068 void *p;
1069 };
1070
1071 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1072 {
1073 union input_seq_state *state = (union input_seq_state *)&seq->private;
1074 int error;
1075
1076 /* We need to fit into seq->private pointer */
1077 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1078
1079 error = mutex_lock_interruptible(&input_mutex);
1080 if (error) {
1081 state->mutex_acquired = false;
1082 return ERR_PTR(error);
1083 }
1084
1085 state->mutex_acquired = true;
1086
1087 return seq_list_start(&input_dev_list, *pos);
1088 }
1089
1090 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1091 {
1092 return seq_list_next(v, &input_dev_list, pos);
1093 }
1094
1095 static void input_seq_stop(struct seq_file *seq, void *v)
1096 {
1097 union input_seq_state *state = (union input_seq_state *)&seq->private;
1098
1099 if (state->mutex_acquired)
1100 mutex_unlock(&input_mutex);
1101 }
1102
1103 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1104 unsigned long *bitmap, int max)
1105 {
1106 int i;
1107 bool skip_empty = true;
1108 char buf[18];
1109
1110 seq_printf(seq, "B: %s=", name);
1111
1112 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1113 if (input_bits_to_string(buf, sizeof(buf),
1114 bitmap[i], skip_empty)) {
1115 skip_empty = false;
1116 seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1117 }
1118 }
1119
1120 /*
1121 * If no output was produced print a single 0.
1122 */
1123 if (skip_empty)
1124 seq_puts(seq, "0");
1125
1126 seq_putc(seq, '\n');
1127 }
1128
1129 static int input_devices_seq_show(struct seq_file *seq, void *v)
1130 {
1131 struct input_dev *dev = container_of(v, struct input_dev, node);
1132 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1133 struct input_handle *handle;
1134
1135 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1136 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1137
1138 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1139 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1140 seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1141 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1142 seq_printf(seq, "H: Handlers=");
1143
1144 list_for_each_entry(handle, &dev->h_list, d_node)
1145 seq_printf(seq, "%s ", handle->name);
1146 seq_putc(seq, '\n');
1147
1148 input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1149
1150 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1151 if (test_bit(EV_KEY, dev->evbit))
1152 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1153 if (test_bit(EV_REL, dev->evbit))
1154 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1155 if (test_bit(EV_ABS, dev->evbit))
1156 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1157 if (test_bit(EV_MSC, dev->evbit))
1158 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1159 if (test_bit(EV_LED, dev->evbit))
1160 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1161 if (test_bit(EV_SND, dev->evbit))
1162 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1163 if (test_bit(EV_FF, dev->evbit))
1164 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1165 if (test_bit(EV_SW, dev->evbit))
1166 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1167
1168 seq_putc(seq, '\n');
1169
1170 kfree(path);
1171 return 0;
1172 }
1173
1174 static const struct seq_operations input_devices_seq_ops = {
1175 .start = input_devices_seq_start,
1176 .next = input_devices_seq_next,
1177 .stop = input_seq_stop,
1178 .show = input_devices_seq_show,
1179 };
1180
1181 static int input_proc_devices_open(struct inode *inode, struct file *file)
1182 {
1183 return seq_open(file, &input_devices_seq_ops);
1184 }
1185
1186 static const struct file_operations input_devices_fileops = {
1187 .owner = THIS_MODULE,
1188 .open = input_proc_devices_open,
1189 .poll = input_proc_devices_poll,
1190 .read = seq_read,
1191 .llseek = seq_lseek,
1192 .release = seq_release,
1193 };
1194
1195 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1196 {
1197 union input_seq_state *state = (union input_seq_state *)&seq->private;
1198 int error;
1199
1200 /* We need to fit into seq->private pointer */
1201 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1202
1203 error = mutex_lock_interruptible(&input_mutex);
1204 if (error) {
1205 state->mutex_acquired = false;
1206 return ERR_PTR(error);
1207 }
1208
1209 state->mutex_acquired = true;
1210 state->pos = *pos;
1211
1212 return seq_list_start(&input_handler_list, *pos);
1213 }
1214
1215 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1216 {
1217 union input_seq_state *state = (union input_seq_state *)&seq->private;
1218
1219 state->pos = *pos + 1;
1220 return seq_list_next(v, &input_handler_list, pos);
1221 }
1222
1223 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1224 {
1225 struct input_handler *handler = container_of(v, struct input_handler, node);
1226 union input_seq_state *state = (union input_seq_state *)&seq->private;
1227
1228 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1229 if (handler->filter)
1230 seq_puts(seq, " (filter)");
1231 if (handler->legacy_minors)
1232 seq_printf(seq, " Minor=%d", handler->minor);
1233 seq_putc(seq, '\n');
1234
1235 return 0;
1236 }
1237
1238 static const struct seq_operations input_handlers_seq_ops = {
1239 .start = input_handlers_seq_start,
1240 .next = input_handlers_seq_next,
1241 .stop = input_seq_stop,
1242 .show = input_handlers_seq_show,
1243 };
1244
1245 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1246 {
1247 return seq_open(file, &input_handlers_seq_ops);
1248 }
1249
1250 static const struct file_operations input_handlers_fileops = {
1251 .owner = THIS_MODULE,
1252 .open = input_proc_handlers_open,
1253 .read = seq_read,
1254 .llseek = seq_lseek,
1255 .release = seq_release,
1256 };
1257
1258 static int __init input_proc_init(void)
1259 {
1260 struct proc_dir_entry *entry;
1261
1262 proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1263 if (!proc_bus_input_dir)
1264 return -ENOMEM;
1265
1266 entry = proc_create("devices", 0, proc_bus_input_dir,
1267 &input_devices_fileops);
1268 if (!entry)
1269 goto fail1;
1270
1271 entry = proc_create("handlers", 0, proc_bus_input_dir,
1272 &input_handlers_fileops);
1273 if (!entry)
1274 goto fail2;
1275
1276 return 0;
1277
1278 fail2: remove_proc_entry("devices", proc_bus_input_dir);
1279 fail1: remove_proc_entry("bus/input", NULL);
1280 return -ENOMEM;
1281 }
1282
1283 static void input_proc_exit(void)
1284 {
1285 remove_proc_entry("devices", proc_bus_input_dir);
1286 remove_proc_entry("handlers", proc_bus_input_dir);
1287 remove_proc_entry("bus/input", NULL);
1288 }
1289
1290 #else /* !CONFIG_PROC_FS */
1291 static inline void input_wakeup_procfs_readers(void) { }
1292 static inline int input_proc_init(void) { return 0; }
1293 static inline void input_proc_exit(void) { }
1294 #endif
1295
1296 #define INPUT_DEV_STRING_ATTR_SHOW(name) \
1297 static ssize_t input_dev_show_##name(struct device *dev, \
1298 struct device_attribute *attr, \
1299 char *buf) \
1300 { \
1301 struct input_dev *input_dev = to_input_dev(dev); \
1302 \
1303 return scnprintf(buf, PAGE_SIZE, "%s\n", \
1304 input_dev->name ? input_dev->name : ""); \
1305 } \
1306 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1307
1308 INPUT_DEV_STRING_ATTR_SHOW(name);
1309 INPUT_DEV_STRING_ATTR_SHOW(phys);
1310 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1311
1312 static int input_print_modalias_bits(char *buf, int size,
1313 char name, unsigned long *bm,
1314 unsigned int min_bit, unsigned int max_bit)
1315 {
1316 int len = 0, i;
1317
1318 len += snprintf(buf, max(size, 0), "%c", name);
1319 for (i = min_bit; i < max_bit; i++)
1320 if (bm[BIT_WORD(i)] & BIT_MASK(i))
1321 len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1322 return len;
1323 }
1324
1325 static int input_print_modalias(char *buf, int size, struct input_dev *id,
1326 int add_cr)
1327 {
1328 int len;
1329
1330 len = snprintf(buf, max(size, 0),
1331 "input:b%04Xv%04Xp%04Xe%04X-",
1332 id->id.bustype, id->id.vendor,
1333 id->id.product, id->id.version);
1334
1335 len += input_print_modalias_bits(buf + len, size - len,
1336 'e', id->evbit, 0, EV_MAX);
1337 len += input_print_modalias_bits(buf + len, size - len,
1338 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1339 len += input_print_modalias_bits(buf + len, size - len,
1340 'r', id->relbit, 0, REL_MAX);
1341 len += input_print_modalias_bits(buf + len, size - len,
1342 'a', id->absbit, 0, ABS_MAX);
1343 len += input_print_modalias_bits(buf + len, size - len,
1344 'm', id->mscbit, 0, MSC_MAX);
1345 len += input_print_modalias_bits(buf + len, size - len,
1346 'l', id->ledbit, 0, LED_MAX);
1347 len += input_print_modalias_bits(buf + len, size - len,
1348 's', id->sndbit, 0, SND_MAX);
1349 len += input_print_modalias_bits(buf + len, size - len,
1350 'f', id->ffbit, 0, FF_MAX);
1351 len += input_print_modalias_bits(buf + len, size - len,
1352 'w', id->swbit, 0, SW_MAX);
1353
1354 if (add_cr)
1355 len += snprintf(buf + len, max(size - len, 0), "\n");
1356
1357 return len;
1358 }
1359
1360 static ssize_t input_dev_show_modalias(struct device *dev,
1361 struct device_attribute *attr,
1362 char *buf)
1363 {
1364 struct input_dev *id = to_input_dev(dev);
1365 ssize_t len;
1366
1367 len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1368
1369 return min_t(int, len, PAGE_SIZE);
1370 }
1371 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1372
1373 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1374 int max, int add_cr);
1375
1376 static ssize_t input_dev_show_properties(struct device *dev,
1377 struct device_attribute *attr,
1378 char *buf)
1379 {
1380 struct input_dev *input_dev = to_input_dev(dev);
1381 int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1382 INPUT_PROP_MAX, true);
1383 return min_t(int, len, PAGE_SIZE);
1384 }
1385 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1386
1387 static struct attribute *input_dev_attrs[] = {
1388 &dev_attr_name.attr,
1389 &dev_attr_phys.attr,
1390 &dev_attr_uniq.attr,
1391 &dev_attr_modalias.attr,
1392 &dev_attr_properties.attr,
1393 NULL
1394 };
1395
1396 static struct attribute_group input_dev_attr_group = {
1397 .attrs = input_dev_attrs,
1398 };
1399
1400 #define INPUT_DEV_ID_ATTR(name) \
1401 static ssize_t input_dev_show_id_##name(struct device *dev, \
1402 struct device_attribute *attr, \
1403 char *buf) \
1404 { \
1405 struct input_dev *input_dev = to_input_dev(dev); \
1406 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1407 } \
1408 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1409
1410 INPUT_DEV_ID_ATTR(bustype);
1411 INPUT_DEV_ID_ATTR(vendor);
1412 INPUT_DEV_ID_ATTR(product);
1413 INPUT_DEV_ID_ATTR(version);
1414
1415 static struct attribute *input_dev_id_attrs[] = {
1416 &dev_attr_bustype.attr,
1417 &dev_attr_vendor.attr,
1418 &dev_attr_product.attr,
1419 &dev_attr_version.attr,
1420 NULL
1421 };
1422
1423 static struct attribute_group input_dev_id_attr_group = {
1424 .name = "id",
1425 .attrs = input_dev_id_attrs,
1426 };
1427
1428 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1429 int max, int add_cr)
1430 {
1431 int i;
1432 int len = 0;
1433 bool skip_empty = true;
1434
1435 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1436 len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1437 bitmap[i], skip_empty);
1438 if (len) {
1439 skip_empty = false;
1440 if (i > 0)
1441 len += snprintf(buf + len, max(buf_size - len, 0), " ");
1442 }
1443 }
1444
1445 /*
1446 * If no output was produced print a single 0.
1447 */
1448 if (len == 0)
1449 len = snprintf(buf, buf_size, "%d", 0);
1450
1451 if (add_cr)
1452 len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1453
1454 return len;
1455 }
1456
1457 #define INPUT_DEV_CAP_ATTR(ev, bm) \
1458 static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1459 struct device_attribute *attr, \
1460 char *buf) \
1461 { \
1462 struct input_dev *input_dev = to_input_dev(dev); \
1463 int len = input_print_bitmap(buf, PAGE_SIZE, \
1464 input_dev->bm##bit, ev##_MAX, \
1465 true); \
1466 return min_t(int, len, PAGE_SIZE); \
1467 } \
1468 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1469
1470 INPUT_DEV_CAP_ATTR(EV, ev);
1471 INPUT_DEV_CAP_ATTR(KEY, key);
1472 INPUT_DEV_CAP_ATTR(REL, rel);
1473 INPUT_DEV_CAP_ATTR(ABS, abs);
1474 INPUT_DEV_CAP_ATTR(MSC, msc);
1475 INPUT_DEV_CAP_ATTR(LED, led);
1476 INPUT_DEV_CAP_ATTR(SND, snd);
1477 INPUT_DEV_CAP_ATTR(FF, ff);
1478 INPUT_DEV_CAP_ATTR(SW, sw);
1479
1480 static struct attribute *input_dev_caps_attrs[] = {
1481 &dev_attr_ev.attr,
1482 &dev_attr_key.attr,
1483 &dev_attr_rel.attr,
1484 &dev_attr_abs.attr,
1485 &dev_attr_msc.attr,
1486 &dev_attr_led.attr,
1487 &dev_attr_snd.attr,
1488 &dev_attr_ff.attr,
1489 &dev_attr_sw.attr,
1490 NULL
1491 };
1492
1493 static struct attribute_group input_dev_caps_attr_group = {
1494 .name = "capabilities",
1495 .attrs = input_dev_caps_attrs,
1496 };
1497
1498 static const struct attribute_group *input_dev_attr_groups[] = {
1499 &input_dev_attr_group,
1500 &input_dev_id_attr_group,
1501 &input_dev_caps_attr_group,
1502 NULL
1503 };
1504
1505 static void input_dev_release(struct device *device)
1506 {
1507 struct input_dev *dev = to_input_dev(device);
1508
1509 input_ff_destroy(dev);
1510 input_mt_destroy_slots(dev);
1511 kfree(dev->absinfo);
1512 kfree(dev->vals);
1513 kfree(dev);
1514
1515 module_put(THIS_MODULE);
1516 }
1517
1518 /*
1519 * Input uevent interface - loading event handlers based on
1520 * device bitfields.
1521 */
1522 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1523 const char *name, unsigned long *bitmap, int max)
1524 {
1525 int len;
1526
1527 if (add_uevent_var(env, "%s", name))
1528 return -ENOMEM;
1529
1530 len = input_print_bitmap(&env->buf[env->buflen - 1],
1531 sizeof(env->buf) - env->buflen,
1532 bitmap, max, false);
1533 if (len >= (sizeof(env->buf) - env->buflen))
1534 return -ENOMEM;
1535
1536 env->buflen += len;
1537 return 0;
1538 }
1539
1540 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1541 struct input_dev *dev)
1542 {
1543 int len;
1544
1545 if (add_uevent_var(env, "MODALIAS="))
1546 return -ENOMEM;
1547
1548 len = input_print_modalias(&env->buf[env->buflen - 1],
1549 sizeof(env->buf) - env->buflen,
1550 dev, 0);
1551 if (len >= (sizeof(env->buf) - env->buflen))
1552 return -ENOMEM;
1553
1554 env->buflen += len;
1555 return 0;
1556 }
1557
1558 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1559 do { \
1560 int err = add_uevent_var(env, fmt, val); \
1561 if (err) \
1562 return err; \
1563 } while (0)
1564
1565 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1566 do { \
1567 int err = input_add_uevent_bm_var(env, name, bm, max); \
1568 if (err) \
1569 return err; \
1570 } while (0)
1571
1572 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1573 do { \
1574 int err = input_add_uevent_modalias_var(env, dev); \
1575 if (err) \
1576 return err; \
1577 } while (0)
1578
1579 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1580 {
1581 struct input_dev *dev = to_input_dev(device);
1582
1583 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1584 dev->id.bustype, dev->id.vendor,
1585 dev->id.product, dev->id.version);
1586 if (dev->name)
1587 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1588 if (dev->phys)
1589 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1590 if (dev->uniq)
1591 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1592
1593 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1594
1595 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1596 if (test_bit(EV_KEY, dev->evbit))
1597 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1598 if (test_bit(EV_REL, dev->evbit))
1599 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1600 if (test_bit(EV_ABS, dev->evbit))
1601 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1602 if (test_bit(EV_MSC, dev->evbit))
1603 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1604 if (test_bit(EV_LED, dev->evbit))
1605 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1606 if (test_bit(EV_SND, dev->evbit))
1607 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1608 if (test_bit(EV_FF, dev->evbit))
1609 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1610 if (test_bit(EV_SW, dev->evbit))
1611 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1612
1613 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1614
1615 return 0;
1616 }
1617
1618 #define INPUT_DO_TOGGLE(dev, type, bits, on) \
1619 do { \
1620 int i; \
1621 bool active; \
1622 \
1623 if (!test_bit(EV_##type, dev->evbit)) \
1624 break; \
1625 \
1626 for_each_set_bit(i, dev->bits##bit, type##_CNT) { \
1627 active = test_bit(i, dev->bits); \
1628 if (!active && !on) \
1629 continue; \
1630 \
1631 dev->event(dev, EV_##type, i, on ? active : 0); \
1632 } \
1633 } while (0)
1634
1635 static void input_dev_toggle(struct input_dev *dev, bool activate)
1636 {
1637 if (!dev->event)
1638 return;
1639
1640 INPUT_DO_TOGGLE(dev, LED, led, activate);
1641 INPUT_DO_TOGGLE(dev, SND, snd, activate);
1642
1643 if (activate && test_bit(EV_REP, dev->evbit)) {
1644 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1645 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1646 }
1647 }
1648
1649 /**
1650 * input_reset_device() - reset/restore the state of input device
1651 * @dev: input device whose state needs to be reset
1652 *
1653 * This function tries to reset the state of an opened input device and
1654 * bring internal state and state if the hardware in sync with each other.
1655 * We mark all keys as released, restore LED state, repeat rate, etc.
1656 */
1657 void input_reset_device(struct input_dev *dev)
1658 {
1659 unsigned long flags;
1660
1661 mutex_lock(&dev->mutex);
1662 spin_lock_irqsave(&dev->event_lock, flags);
1663
1664 input_dev_toggle(dev, true);
1665 input_dev_release_keys(dev);
1666
1667 spin_unlock_irqrestore(&dev->event_lock, flags);
1668 mutex_unlock(&dev->mutex);
1669 }
1670 EXPORT_SYMBOL(input_reset_device);
1671
1672 #ifdef CONFIG_PM_SLEEP
1673 static int input_dev_suspend(struct device *dev)
1674 {
1675 struct input_dev *input_dev = to_input_dev(dev);
1676
1677 spin_lock_irq(&input_dev->event_lock);
1678
1679 /*
1680 * Keys that are pressed now are unlikely to be
1681 * still pressed when we resume.
1682 */
1683 input_dev_release_keys(input_dev);
1684
1685 /* Turn off LEDs and sounds, if any are active. */
1686 input_dev_toggle(input_dev, false);
1687
1688 spin_unlock_irq(&input_dev->event_lock);
1689
1690 return 0;
1691 }
1692
1693 static int input_dev_resume(struct device *dev)
1694 {
1695 struct input_dev *input_dev = to_input_dev(dev);
1696
1697 spin_lock_irq(&input_dev->event_lock);
1698
1699 /* Restore state of LEDs and sounds, if any were active. */
1700 input_dev_toggle(input_dev, true);
1701
1702 spin_unlock_irq(&input_dev->event_lock);
1703
1704 return 0;
1705 }
1706
1707 static int input_dev_freeze(struct device *dev)
1708 {
1709 struct input_dev *input_dev = to_input_dev(dev);
1710
1711 spin_lock_irq(&input_dev->event_lock);
1712
1713 /*
1714 * Keys that are pressed now are unlikely to be
1715 * still pressed when we resume.
1716 */
1717 input_dev_release_keys(input_dev);
1718
1719 spin_unlock_irq(&input_dev->event_lock);
1720
1721 return 0;
1722 }
1723
1724 static int input_dev_poweroff(struct device *dev)
1725 {
1726 struct input_dev *input_dev = to_input_dev(dev);
1727
1728 spin_lock_irq(&input_dev->event_lock);
1729
1730 /* Turn off LEDs and sounds, if any are active. */
1731 input_dev_toggle(input_dev, false);
1732
1733 spin_unlock_irq(&input_dev->event_lock);
1734
1735 return 0;
1736 }
1737
1738 static const struct dev_pm_ops input_dev_pm_ops = {
1739 .suspend = input_dev_suspend,
1740 .resume = input_dev_resume,
1741 .freeze = input_dev_freeze,
1742 .poweroff = input_dev_poweroff,
1743 .restore = input_dev_resume,
1744 };
1745 #endif /* CONFIG_PM */
1746
1747 static struct device_type input_dev_type = {
1748 .groups = input_dev_attr_groups,
1749 .release = input_dev_release,
1750 .uevent = input_dev_uevent,
1751 #ifdef CONFIG_PM_SLEEP
1752 .pm = &input_dev_pm_ops,
1753 #endif
1754 };
1755
1756 static char *input_devnode(struct device *dev, umode_t *mode)
1757 {
1758 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1759 }
1760
1761 struct class input_class = {
1762 .name = "input",
1763 .devnode = input_devnode,
1764 };
1765 EXPORT_SYMBOL_GPL(input_class);
1766
1767 /**
1768 * input_allocate_device - allocate memory for new input device
1769 *
1770 * Returns prepared struct input_dev or %NULL.
1771 *
1772 * NOTE: Use input_free_device() to free devices that have not been
1773 * registered; input_unregister_device() should be used for already
1774 * registered devices.
1775 */
1776 struct input_dev *input_allocate_device(void)
1777 {
1778 static atomic_t input_no = ATOMIC_INIT(-1);
1779 struct input_dev *dev;
1780
1781 dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
1782 if (dev) {
1783 dev->dev.type = &input_dev_type;
1784 dev->dev.class = &input_class;
1785 device_initialize(&dev->dev);
1786 mutex_init(&dev->mutex);
1787 spin_lock_init(&dev->event_lock);
1788 init_timer(&dev->timer);
1789 INIT_LIST_HEAD(&dev->h_list);
1790 INIT_LIST_HEAD(&dev->node);
1791
1792 dev_set_name(&dev->dev, "input%lu",
1793 (unsigned long)atomic_inc_return(&input_no));
1794
1795 __module_get(THIS_MODULE);
1796 }
1797
1798 return dev;
1799 }
1800 EXPORT_SYMBOL(input_allocate_device);
1801
1802 struct input_devres {
1803 struct input_dev *input;
1804 };
1805
1806 static int devm_input_device_match(struct device *dev, void *res, void *data)
1807 {
1808 struct input_devres *devres = res;
1809
1810 return devres->input == data;
1811 }
1812
1813 static void devm_input_device_release(struct device *dev, void *res)
1814 {
1815 struct input_devres *devres = res;
1816 struct input_dev *input = devres->input;
1817
1818 dev_dbg(dev, "%s: dropping reference to %s\n",
1819 __func__, dev_name(&input->dev));
1820 input_put_device(input);
1821 }
1822
1823 /**
1824 * devm_input_allocate_device - allocate managed input device
1825 * @dev: device owning the input device being created
1826 *
1827 * Returns prepared struct input_dev or %NULL.
1828 *
1829 * Managed input devices do not need to be explicitly unregistered or
1830 * freed as it will be done automatically when owner device unbinds from
1831 * its driver (or binding fails). Once managed input device is allocated,
1832 * it is ready to be set up and registered in the same fashion as regular
1833 * input device. There are no special devm_input_device_[un]register()
1834 * variants, regular ones work with both managed and unmanaged devices,
1835 * should you need them. In most cases however, managed input device need
1836 * not be explicitly unregistered or freed.
1837 *
1838 * NOTE: the owner device is set up as parent of input device and users
1839 * should not override it.
1840 */
1841 struct input_dev *devm_input_allocate_device(struct device *dev)
1842 {
1843 struct input_dev *input;
1844 struct input_devres *devres;
1845
1846 devres = devres_alloc(devm_input_device_release,
1847 sizeof(struct input_devres), GFP_KERNEL);
1848 if (!devres)
1849 return NULL;
1850
1851 input = input_allocate_device();
1852 if (!input) {
1853 devres_free(devres);
1854 return NULL;
1855 }
1856
1857 input->dev.parent = dev;
1858 input->devres_managed = true;
1859
1860 devres->input = input;
1861 devres_add(dev, devres);
1862
1863 return input;
1864 }
1865 EXPORT_SYMBOL(devm_input_allocate_device);
1866
1867 /**
1868 * input_free_device - free memory occupied by input_dev structure
1869 * @dev: input device to free
1870 *
1871 * This function should only be used if input_register_device()
1872 * was not called yet or if it failed. Once device was registered
1873 * use input_unregister_device() and memory will be freed once last
1874 * reference to the device is dropped.
1875 *
1876 * Device should be allocated by input_allocate_device().
1877 *
1878 * NOTE: If there are references to the input device then memory
1879 * will not be freed until last reference is dropped.
1880 */
1881 void input_free_device(struct input_dev *dev)
1882 {
1883 if (dev) {
1884 if (dev->devres_managed)
1885 WARN_ON(devres_destroy(dev->dev.parent,
1886 devm_input_device_release,
1887 devm_input_device_match,
1888 dev));
1889 input_put_device(dev);
1890 }
1891 }
1892 EXPORT_SYMBOL(input_free_device);
1893
1894 /**
1895 * input_set_capability - mark device as capable of a certain event
1896 * @dev: device that is capable of emitting or accepting event
1897 * @type: type of the event (EV_KEY, EV_REL, etc...)
1898 * @code: event code
1899 *
1900 * In addition to setting up corresponding bit in appropriate capability
1901 * bitmap the function also adjusts dev->evbit.
1902 */
1903 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1904 {
1905 switch (type) {
1906 case EV_KEY:
1907 __set_bit(code, dev->keybit);
1908 break;
1909
1910 case EV_REL:
1911 __set_bit(code, dev->relbit);
1912 break;
1913
1914 case EV_ABS:
1915 input_alloc_absinfo(dev);
1916 if (!dev->absinfo)
1917 return;
1918
1919 __set_bit(code, dev->absbit);
1920 break;
1921
1922 case EV_MSC:
1923 __set_bit(code, dev->mscbit);
1924 break;
1925
1926 case EV_SW:
1927 __set_bit(code, dev->swbit);
1928 break;
1929
1930 case EV_LED:
1931 __set_bit(code, dev->ledbit);
1932 break;
1933
1934 case EV_SND:
1935 __set_bit(code, dev->sndbit);
1936 break;
1937
1938 case EV_FF:
1939 __set_bit(code, dev->ffbit);
1940 break;
1941
1942 case EV_PWR:
1943 /* do nothing */
1944 break;
1945
1946 default:
1947 pr_err("input_set_capability: unknown type %u (code %u)\n",
1948 type, code);
1949 dump_stack();
1950 return;
1951 }
1952
1953 __set_bit(type, dev->evbit);
1954 }
1955 EXPORT_SYMBOL(input_set_capability);
1956
1957 static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
1958 {
1959 int mt_slots;
1960 int i;
1961 unsigned int events;
1962
1963 if (dev->mt) {
1964 mt_slots = dev->mt->num_slots;
1965 } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
1966 mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
1967 dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
1968 mt_slots = clamp(mt_slots, 2, 32);
1969 } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
1970 mt_slots = 2;
1971 } else {
1972 mt_slots = 0;
1973 }
1974
1975 events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
1976
1977 if (test_bit(EV_ABS, dev->evbit))
1978 for_each_set_bit(i, dev->absbit, ABS_CNT)
1979 events += input_is_mt_axis(i) ? mt_slots : 1;
1980
1981 if (test_bit(EV_REL, dev->evbit))
1982 events += bitmap_weight(dev->relbit, REL_CNT);
1983
1984 /* Make room for KEY and MSC events */
1985 events += 7;
1986
1987 return events;
1988 }
1989
1990 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \
1991 do { \
1992 if (!test_bit(EV_##type, dev->evbit)) \
1993 memset(dev->bits##bit, 0, \
1994 sizeof(dev->bits##bit)); \
1995 } while (0)
1996
1997 static void input_cleanse_bitmasks(struct input_dev *dev)
1998 {
1999 INPUT_CLEANSE_BITMASK(dev, KEY, key);
2000 INPUT_CLEANSE_BITMASK(dev, REL, rel);
2001 INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2002 INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2003 INPUT_CLEANSE_BITMASK(dev, LED, led);
2004 INPUT_CLEANSE_BITMASK(dev, SND, snd);
2005 INPUT_CLEANSE_BITMASK(dev, FF, ff);
2006 INPUT_CLEANSE_BITMASK(dev, SW, sw);
2007 }
2008
2009 static void __input_unregister_device(struct input_dev *dev)
2010 {
2011 struct input_handle *handle, *next;
2012
2013 input_disconnect_device(dev);
2014
2015 mutex_lock(&input_mutex);
2016
2017 list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2018 handle->handler->disconnect(handle);
2019 WARN_ON(!list_empty(&dev->h_list));
2020
2021 del_timer_sync(&dev->timer);
2022 list_del_init(&dev->node);
2023
2024 input_wakeup_procfs_readers();
2025
2026 mutex_unlock(&input_mutex);
2027
2028 device_del(&dev->dev);
2029 }
2030
2031 static void devm_input_device_unregister(struct device *dev, void *res)
2032 {
2033 struct input_devres *devres = res;
2034 struct input_dev *input = devres->input;
2035
2036 dev_dbg(dev, "%s: unregistering device %s\n",
2037 __func__, dev_name(&input->dev));
2038 __input_unregister_device(input);
2039 }
2040
2041 /**
2042 * input_register_device - register device with input core
2043 * @dev: device to be registered
2044 *
2045 * This function registers device with input core. The device must be
2046 * allocated with input_allocate_device() and all it's capabilities
2047 * set up before registering.
2048 * If function fails the device must be freed with input_free_device().
2049 * Once device has been successfully registered it can be unregistered
2050 * with input_unregister_device(); input_free_device() should not be
2051 * called in this case.
2052 *
2053 * Note that this function is also used to register managed input devices
2054 * (ones allocated with devm_input_allocate_device()). Such managed input
2055 * devices need not be explicitly unregistered or freed, their tear down
2056 * is controlled by the devres infrastructure. It is also worth noting
2057 * that tear down of managed input devices is internally a 2-step process:
2058 * registered managed input device is first unregistered, but stays in
2059 * memory and can still handle input_event() calls (although events will
2060 * not be delivered anywhere). The freeing of managed input device will
2061 * happen later, when devres stack is unwound to the point where device
2062 * allocation was made.
2063 */
2064 int input_register_device(struct input_dev *dev)
2065 {
2066 struct input_devres *devres = NULL;
2067 struct input_handler *handler;
2068 unsigned int packet_size;
2069 const char *path;
2070 int error;
2071
2072 if (dev->devres_managed) {
2073 devres = devres_alloc(devm_input_device_unregister,
2074 sizeof(struct input_devres), GFP_KERNEL);
2075 if (!devres)
2076 return -ENOMEM;
2077
2078 devres->input = dev;
2079 }
2080
2081 /* Every input device generates EV_SYN/SYN_REPORT events. */
2082 __set_bit(EV_SYN, dev->evbit);
2083
2084 /* KEY_RESERVED is not supposed to be transmitted to userspace. */
2085 __clear_bit(KEY_RESERVED, dev->keybit);
2086
2087 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2088 input_cleanse_bitmasks(dev);
2089
2090 packet_size = input_estimate_events_per_packet(dev);
2091 if (dev->hint_events_per_packet < packet_size)
2092 dev->hint_events_per_packet = packet_size;
2093
2094 dev->max_vals = dev->hint_events_per_packet + 2;
2095 dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
2096 if (!dev->vals) {
2097 error = -ENOMEM;
2098 goto err_devres_free;
2099 }
2100
2101 /*
2102 * If delay and period are pre-set by the driver, then autorepeating
2103 * is handled by the driver itself and we don't do it in input.c.
2104 */
2105 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
2106 dev->timer.data = (long) dev;
2107 dev->timer.function = input_repeat_key;
2108 dev->rep[REP_DELAY] = 250;
2109 dev->rep[REP_PERIOD] = 33;
2110 }
2111
2112 if (!dev->getkeycode)
2113 dev->getkeycode = input_default_getkeycode;
2114
2115 if (!dev->setkeycode)
2116 dev->setkeycode = input_default_setkeycode;
2117
2118 error = device_add(&dev->dev);
2119 if (error)
2120 goto err_free_vals;
2121
2122 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2123 pr_info("%s as %s\n",
2124 dev->name ? dev->name : "Unspecified device",
2125 path ? path : "N/A");
2126 kfree(path);
2127
2128 error = mutex_lock_interruptible(&input_mutex);
2129 if (error)
2130 goto err_device_del;
2131
2132 list_add_tail(&dev->node, &input_dev_list);
2133
2134 list_for_each_entry(handler, &input_handler_list, node)
2135 input_attach_handler(dev, handler);
2136
2137 input_wakeup_procfs_readers();
2138
2139 mutex_unlock(&input_mutex);
2140
2141 if (dev->devres_managed) {
2142 dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2143 __func__, dev_name(&dev->dev));
2144 devres_add(dev->dev.parent, devres);
2145 }
2146 return 0;
2147
2148 err_device_del:
2149 device_del(&dev->dev);
2150 err_free_vals:
2151 kfree(dev->vals);
2152 dev->vals = NULL;
2153 err_devres_free:
2154 devres_free(devres);
2155 return error;
2156 }
2157 EXPORT_SYMBOL(input_register_device);
2158
2159 /**
2160 * input_unregister_device - unregister previously registered device
2161 * @dev: device to be unregistered
2162 *
2163 * This function unregisters an input device. Once device is unregistered
2164 * the caller should not try to access it as it may get freed at any moment.
2165 */
2166 void input_unregister_device(struct input_dev *dev)
2167 {
2168 if (dev->devres_managed) {
2169 WARN_ON(devres_destroy(dev->dev.parent,
2170 devm_input_device_unregister,
2171 devm_input_device_match,
2172 dev));
2173 __input_unregister_device(dev);
2174 /*
2175 * We do not do input_put_device() here because it will be done
2176 * when 2nd devres fires up.
2177 */
2178 } else {
2179 __input_unregister_device(dev);
2180 input_put_device(dev);
2181 }
2182 }
2183 EXPORT_SYMBOL(input_unregister_device);
2184
2185 /**
2186 * input_register_handler - register a new input handler
2187 * @handler: handler to be registered
2188 *
2189 * This function registers a new input handler (interface) for input
2190 * devices in the system and attaches it to all input devices that
2191 * are compatible with the handler.
2192 */
2193 int input_register_handler(struct input_handler *handler)
2194 {
2195 struct input_dev *dev;
2196 int error;
2197
2198 error = mutex_lock_interruptible(&input_mutex);
2199 if (error)
2200 return error;
2201
2202 INIT_LIST_HEAD(&handler->h_list);
2203
2204 list_add_tail(&handler->node, &input_handler_list);
2205
2206 list_for_each_entry(dev, &input_dev_list, node)
2207 input_attach_handler(dev, handler);
2208
2209 input_wakeup_procfs_readers();
2210
2211 mutex_unlock(&input_mutex);
2212 return 0;
2213 }
2214 EXPORT_SYMBOL(input_register_handler);
2215
2216 /**
2217 * input_unregister_handler - unregisters an input handler
2218 * @handler: handler to be unregistered
2219 *
2220 * This function disconnects a handler from its input devices and
2221 * removes it from lists of known handlers.
2222 */
2223 void input_unregister_handler(struct input_handler *handler)
2224 {
2225 struct input_handle *handle, *next;
2226
2227 mutex_lock(&input_mutex);
2228
2229 list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2230 handler->disconnect(handle);
2231 WARN_ON(!list_empty(&handler->h_list));
2232
2233 list_del_init(&handler->node);
2234
2235 input_wakeup_procfs_readers();
2236
2237 mutex_unlock(&input_mutex);
2238 }
2239 EXPORT_SYMBOL(input_unregister_handler);
2240
2241 /**
2242 * input_handler_for_each_handle - handle iterator
2243 * @handler: input handler to iterate
2244 * @data: data for the callback
2245 * @fn: function to be called for each handle
2246 *
2247 * Iterate over @bus's list of devices, and call @fn for each, passing
2248 * it @data and stop when @fn returns a non-zero value. The function is
2249 * using RCU to traverse the list and therefore may be using in atomic
2250 * contexts. The @fn callback is invoked from RCU critical section and
2251 * thus must not sleep.
2252 */
2253 int input_handler_for_each_handle(struct input_handler *handler, void *data,
2254 int (*fn)(struct input_handle *, void *))
2255 {
2256 struct input_handle *handle;
2257 int retval = 0;
2258
2259 rcu_read_lock();
2260
2261 list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2262 retval = fn(handle, data);
2263 if (retval)
2264 break;
2265 }
2266
2267 rcu_read_unlock();
2268
2269 return retval;
2270 }
2271 EXPORT_SYMBOL(input_handler_for_each_handle);
2272
2273 /**
2274 * input_register_handle - register a new input handle
2275 * @handle: handle to register
2276 *
2277 * This function puts a new input handle onto device's
2278 * and handler's lists so that events can flow through
2279 * it once it is opened using input_open_device().
2280 *
2281 * This function is supposed to be called from handler's
2282 * connect() method.
2283 */
2284 int input_register_handle(struct input_handle *handle)
2285 {
2286 struct input_handler *handler = handle->handler;
2287 struct input_dev *dev = handle->dev;
2288 int error;
2289
2290 /*
2291 * We take dev->mutex here to prevent race with
2292 * input_release_device().
2293 */
2294 error = mutex_lock_interruptible(&dev->mutex);
2295 if (error)
2296 return error;
2297
2298 /*
2299 * Filters go to the head of the list, normal handlers
2300 * to the tail.
2301 */
2302 if (handler->filter)
2303 list_add_rcu(&handle->d_node, &dev->h_list);
2304 else
2305 list_add_tail_rcu(&handle->d_node, &dev->h_list);
2306
2307 mutex_unlock(&dev->mutex);
2308
2309 /*
2310 * Since we are supposed to be called from ->connect()
2311 * which is mutually exclusive with ->disconnect()
2312 * we can't be racing with input_unregister_handle()
2313 * and so separate lock is not needed here.
2314 */
2315 list_add_tail_rcu(&handle->h_node, &handler->h_list);
2316
2317 if (handler->start)
2318 handler->start(handle);
2319
2320 return 0;
2321 }
2322 EXPORT_SYMBOL(input_register_handle);
2323
2324 /**
2325 * input_unregister_handle - unregister an input handle
2326 * @handle: handle to unregister
2327 *
2328 * This function removes input handle from device's
2329 * and handler's lists.
2330 *
2331 * This function is supposed to be called from handler's
2332 * disconnect() method.
2333 */
2334 void input_unregister_handle(struct input_handle *handle)
2335 {
2336 struct input_dev *dev = handle->dev;
2337
2338 list_del_rcu(&handle->h_node);
2339
2340 /*
2341 * Take dev->mutex to prevent race with input_release_device().
2342 */
2343 mutex_lock(&dev->mutex);
2344 list_del_rcu(&handle->d_node);
2345 mutex_unlock(&dev->mutex);
2346
2347 synchronize_rcu();
2348 }
2349 EXPORT_SYMBOL(input_unregister_handle);
2350
2351 /**
2352 * input_get_new_minor - allocates a new input minor number
2353 * @legacy_base: beginning or the legacy range to be searched
2354 * @legacy_num: size of legacy range
2355 * @allow_dynamic: whether we can also take ID from the dynamic range
2356 *
2357 * This function allocates a new device minor for from input major namespace.
2358 * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2359 * parameters and whether ID can be allocated from dynamic range if there are
2360 * no free IDs in legacy range.
2361 */
2362 int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2363 bool allow_dynamic)
2364 {
2365 /*
2366 * This function should be called from input handler's ->connect()
2367 * methods, which are serialized with input_mutex, so no additional
2368 * locking is needed here.
2369 */
2370 if (legacy_base >= 0) {
2371 int minor = ida_simple_get(&input_ida,
2372 legacy_base,
2373 legacy_base + legacy_num,
2374 GFP_KERNEL);
2375 if (minor >= 0 || !allow_dynamic)
2376 return minor;
2377 }
2378
2379 return ida_simple_get(&input_ida,
2380 INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES,
2381 GFP_KERNEL);
2382 }
2383 EXPORT_SYMBOL(input_get_new_minor);
2384
2385 /**
2386 * input_free_minor - release previously allocated minor
2387 * @minor: minor to be released
2388 *
2389 * This function releases previously allocated input minor so that it can be
2390 * reused later.
2391 */
2392 void input_free_minor(unsigned int minor)
2393 {
2394 ida_simple_remove(&input_ida, minor);
2395 }
2396 EXPORT_SYMBOL(input_free_minor);
2397
2398 static int __init input_init(void)
2399 {
2400 int err;
2401
2402 err = class_register(&input_class);
2403 if (err) {
2404 pr_err("unable to register input_dev class\n");
2405 return err;
2406 }
2407
2408 err = input_proc_init();
2409 if (err)
2410 goto fail1;
2411
2412 err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2413 INPUT_MAX_CHAR_DEVICES, "input");
2414 if (err) {
2415 pr_err("unable to register char major %d", INPUT_MAJOR);
2416 goto fail2;
2417 }
2418
2419 return 0;
2420
2421 fail2: input_proc_exit();
2422 fail1: class_unregister(&input_class);
2423 return err;
2424 }
2425
2426 static void __exit input_exit(void)
2427 {
2428 input_proc_exit();
2429 unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2430 INPUT_MAX_CHAR_DEVICES);
2431 class_unregister(&input_class);
2432 }
2433
2434 subsys_initcall(input_init);
2435 module_exit(input_exit);
This page took 0.08143 seconds and 5 git commands to generate.