drm/radeon/kms: fix typo in r600 cs checker
[deliverable/linux.git] / drivers / input / input.c
1 /*
2 * The input core
3 *
4 * Copyright (c) 1999-2002 Vojtech Pavlik
5 */
6
7 /*
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License version 2 as published by
10 * the Free Software Foundation.
11 */
12
13 #include <linux/init.h>
14 #include <linux/types.h>
15 #include <linux/input.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/random.h>
19 #include <linux/major.h>
20 #include <linux/proc_fs.h>
21 #include <linux/sched.h>
22 #include <linux/seq_file.h>
23 #include <linux/poll.h>
24 #include <linux/device.h>
25 #include <linux/mutex.h>
26 #include <linux/rcupdate.h>
27 #include <linux/smp_lock.h>
28 #include "input-compat.h"
29
30 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
31 MODULE_DESCRIPTION("Input core");
32 MODULE_LICENSE("GPL");
33
34 #define INPUT_DEVICES 256
35
36 static LIST_HEAD(input_dev_list);
37 static LIST_HEAD(input_handler_list);
38
39 /*
40 * input_mutex protects access to both input_dev_list and input_handler_list.
41 * This also causes input_[un]register_device and input_[un]register_handler
42 * be mutually exclusive which simplifies locking in drivers implementing
43 * input handlers.
44 */
45 static DEFINE_MUTEX(input_mutex);
46
47 static struct input_handler *input_table[8];
48
49 static inline int is_event_supported(unsigned int code,
50 unsigned long *bm, unsigned int max)
51 {
52 return code <= max && test_bit(code, bm);
53 }
54
55 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
56 {
57 if (fuzz) {
58 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
59 return old_val;
60
61 if (value > old_val - fuzz && value < old_val + fuzz)
62 return (old_val * 3 + value) / 4;
63
64 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
65 return (old_val + value) / 2;
66 }
67
68 return value;
69 }
70
71 /*
72 * Pass event first through all filters and then, if event has not been
73 * filtered out, through all open handles. This function is called with
74 * dev->event_lock held and interrupts disabled.
75 */
76 static void input_pass_event(struct input_dev *dev,
77 struct input_handler *src_handler,
78 unsigned int type, unsigned int code, int value)
79 {
80 struct input_handler *handler;
81 struct input_handle *handle;
82
83 rcu_read_lock();
84
85 handle = rcu_dereference(dev->grab);
86 if (handle)
87 handle->handler->event(handle, type, code, value);
88 else {
89 bool filtered = false;
90
91 list_for_each_entry_rcu(handle, &dev->h_list, d_node) {
92 if (!handle->open)
93 continue;
94
95 handler = handle->handler;
96
97 /*
98 * If this is the handler that injected this
99 * particular event we want to skip it to avoid
100 * filters firing again and again.
101 */
102 if (handler == src_handler)
103 continue;
104
105 if (!handler->filter) {
106 if (filtered)
107 break;
108
109 handler->event(handle, type, code, value);
110
111 } else if (handler->filter(handle, type, code, value))
112 filtered = true;
113 }
114 }
115
116 rcu_read_unlock();
117 }
118
119 /*
120 * Generate software autorepeat event. Note that we take
121 * dev->event_lock here to avoid racing with input_event
122 * which may cause keys get "stuck".
123 */
124 static void input_repeat_key(unsigned long data)
125 {
126 struct input_dev *dev = (void *) data;
127 unsigned long flags;
128
129 spin_lock_irqsave(&dev->event_lock, flags);
130
131 if (test_bit(dev->repeat_key, dev->key) &&
132 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
133
134 input_pass_event(dev, NULL, EV_KEY, dev->repeat_key, 2);
135
136 if (dev->sync) {
137 /*
138 * Only send SYN_REPORT if we are not in a middle
139 * of driver parsing a new hardware packet.
140 * Otherwise assume that the driver will send
141 * SYN_REPORT once it's done.
142 */
143 input_pass_event(dev, NULL, EV_SYN, SYN_REPORT, 1);
144 }
145
146 if (dev->rep[REP_PERIOD])
147 mod_timer(&dev->timer, jiffies +
148 msecs_to_jiffies(dev->rep[REP_PERIOD]));
149 }
150
151 spin_unlock_irqrestore(&dev->event_lock, flags);
152 }
153
154 static void input_start_autorepeat(struct input_dev *dev, int code)
155 {
156 if (test_bit(EV_REP, dev->evbit) &&
157 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
158 dev->timer.data) {
159 dev->repeat_key = code;
160 mod_timer(&dev->timer,
161 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
162 }
163 }
164
165 static void input_stop_autorepeat(struct input_dev *dev)
166 {
167 del_timer(&dev->timer);
168 }
169
170 #define INPUT_IGNORE_EVENT 0
171 #define INPUT_PASS_TO_HANDLERS 1
172 #define INPUT_PASS_TO_DEVICE 2
173 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
174
175 static int input_handle_abs_event(struct input_dev *dev,
176 struct input_handler *src_handler,
177 unsigned int code, int *pval)
178 {
179 bool is_mt_event;
180 int *pold;
181
182 if (code == ABS_MT_SLOT) {
183 /*
184 * "Stage" the event; we'll flush it later, when we
185 * get actual touch data.
186 */
187 if (*pval >= 0 && *pval < dev->mtsize)
188 dev->slot = *pval;
189
190 return INPUT_IGNORE_EVENT;
191 }
192
193 is_mt_event = code >= ABS_MT_FIRST && code <= ABS_MT_LAST;
194
195 if (!is_mt_event) {
196 pold = &dev->absinfo[code].value;
197 } else if (dev->mt) {
198 struct input_mt_slot *mtslot = &dev->mt[dev->slot];
199 pold = &mtslot->abs[code - ABS_MT_FIRST];
200 } else {
201 /*
202 * Bypass filtering for multi-touch events when
203 * not employing slots.
204 */
205 pold = NULL;
206 }
207
208 if (pold) {
209 *pval = input_defuzz_abs_event(*pval, *pold,
210 dev->absinfo[code].fuzz);
211 if (*pold == *pval)
212 return INPUT_IGNORE_EVENT;
213
214 *pold = *pval;
215 }
216
217 /* Flush pending "slot" event */
218 if (is_mt_event && dev->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
219 input_abs_set_val(dev, ABS_MT_SLOT, dev->slot);
220 input_pass_event(dev, src_handler,
221 EV_ABS, ABS_MT_SLOT, dev->slot);
222 }
223
224 return INPUT_PASS_TO_HANDLERS;
225 }
226
227 static void input_handle_event(struct input_dev *dev,
228 struct input_handler *src_handler,
229 unsigned int type, unsigned int code, int value)
230 {
231 int disposition = INPUT_IGNORE_EVENT;
232
233 switch (type) {
234
235 case EV_SYN:
236 switch (code) {
237 case SYN_CONFIG:
238 disposition = INPUT_PASS_TO_ALL;
239 break;
240
241 case SYN_REPORT:
242 if (!dev->sync) {
243 dev->sync = true;
244 disposition = INPUT_PASS_TO_HANDLERS;
245 }
246 break;
247 case SYN_MT_REPORT:
248 dev->sync = false;
249 disposition = INPUT_PASS_TO_HANDLERS;
250 break;
251 }
252 break;
253
254 case EV_KEY:
255 if (is_event_supported(code, dev->keybit, KEY_MAX) &&
256 !!test_bit(code, dev->key) != value) {
257
258 if (value != 2) {
259 __change_bit(code, dev->key);
260 if (value)
261 input_start_autorepeat(dev, code);
262 else
263 input_stop_autorepeat(dev);
264 }
265
266 disposition = INPUT_PASS_TO_HANDLERS;
267 }
268 break;
269
270 case EV_SW:
271 if (is_event_supported(code, dev->swbit, SW_MAX) &&
272 !!test_bit(code, dev->sw) != value) {
273
274 __change_bit(code, dev->sw);
275 disposition = INPUT_PASS_TO_HANDLERS;
276 }
277 break;
278
279 case EV_ABS:
280 if (is_event_supported(code, dev->absbit, ABS_MAX))
281 disposition = input_handle_abs_event(dev, src_handler,
282 code, &value);
283
284 break;
285
286 case EV_REL:
287 if (is_event_supported(code, dev->relbit, REL_MAX) && value)
288 disposition = INPUT_PASS_TO_HANDLERS;
289
290 break;
291
292 case EV_MSC:
293 if (is_event_supported(code, dev->mscbit, MSC_MAX))
294 disposition = INPUT_PASS_TO_ALL;
295
296 break;
297
298 case EV_LED:
299 if (is_event_supported(code, dev->ledbit, LED_MAX) &&
300 !!test_bit(code, dev->led) != value) {
301
302 __change_bit(code, dev->led);
303 disposition = INPUT_PASS_TO_ALL;
304 }
305 break;
306
307 case EV_SND:
308 if (is_event_supported(code, dev->sndbit, SND_MAX)) {
309
310 if (!!test_bit(code, dev->snd) != !!value)
311 __change_bit(code, dev->snd);
312 disposition = INPUT_PASS_TO_ALL;
313 }
314 break;
315
316 case EV_REP:
317 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
318 dev->rep[code] = value;
319 disposition = INPUT_PASS_TO_ALL;
320 }
321 break;
322
323 case EV_FF:
324 if (value >= 0)
325 disposition = INPUT_PASS_TO_ALL;
326 break;
327
328 case EV_PWR:
329 disposition = INPUT_PASS_TO_ALL;
330 break;
331 }
332
333 if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
334 dev->sync = false;
335
336 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
337 dev->event(dev, type, code, value);
338
339 if (disposition & INPUT_PASS_TO_HANDLERS)
340 input_pass_event(dev, src_handler, type, code, value);
341 }
342
343 /**
344 * input_event() - report new input event
345 * @dev: device that generated the event
346 * @type: type of the event
347 * @code: event code
348 * @value: value of the event
349 *
350 * This function should be used by drivers implementing various input
351 * devices to report input events. See also input_inject_event().
352 *
353 * NOTE: input_event() may be safely used right after input device was
354 * allocated with input_allocate_device(), even before it is registered
355 * with input_register_device(), but the event will not reach any of the
356 * input handlers. Such early invocation of input_event() may be used
357 * to 'seed' initial state of a switch or initial position of absolute
358 * axis, etc.
359 */
360 void input_event(struct input_dev *dev,
361 unsigned int type, unsigned int code, int value)
362 {
363 unsigned long flags;
364
365 if (is_event_supported(type, dev->evbit, EV_MAX)) {
366
367 spin_lock_irqsave(&dev->event_lock, flags);
368 add_input_randomness(type, code, value);
369 input_handle_event(dev, NULL, type, code, value);
370 spin_unlock_irqrestore(&dev->event_lock, flags);
371 }
372 }
373 EXPORT_SYMBOL(input_event);
374
375 /**
376 * input_inject_event() - send input event from input handler
377 * @handle: input handle to send event through
378 * @type: type of the event
379 * @code: event code
380 * @value: value of the event
381 *
382 * Similar to input_event() but will ignore event if device is
383 * "grabbed" and handle injecting event is not the one that owns
384 * the device.
385 */
386 void input_inject_event(struct input_handle *handle,
387 unsigned int type, unsigned int code, int value)
388 {
389 struct input_dev *dev = handle->dev;
390 struct input_handle *grab;
391 unsigned long flags;
392
393 if (is_event_supported(type, dev->evbit, EV_MAX)) {
394 spin_lock_irqsave(&dev->event_lock, flags);
395
396 rcu_read_lock();
397 grab = rcu_dereference(dev->grab);
398 if (!grab || grab == handle)
399 input_handle_event(dev, handle->handler,
400 type, code, value);
401 rcu_read_unlock();
402
403 spin_unlock_irqrestore(&dev->event_lock, flags);
404 }
405 }
406 EXPORT_SYMBOL(input_inject_event);
407
408 /**
409 * input_alloc_absinfo - allocates array of input_absinfo structs
410 * @dev: the input device emitting absolute events
411 *
412 * If the absinfo struct the caller asked for is already allocated, this
413 * functions will not do anything.
414 */
415 void input_alloc_absinfo(struct input_dev *dev)
416 {
417 if (!dev->absinfo)
418 dev->absinfo = kcalloc(ABS_CNT, sizeof(struct input_absinfo),
419 GFP_KERNEL);
420
421 WARN(!dev->absinfo, "%s(): kcalloc() failed?\n", __func__);
422 }
423 EXPORT_SYMBOL(input_alloc_absinfo);
424
425 void input_set_abs_params(struct input_dev *dev, unsigned int axis,
426 int min, int max, int fuzz, int flat)
427 {
428 struct input_absinfo *absinfo;
429
430 input_alloc_absinfo(dev);
431 if (!dev->absinfo)
432 return;
433
434 absinfo = &dev->absinfo[axis];
435 absinfo->minimum = min;
436 absinfo->maximum = max;
437 absinfo->fuzz = fuzz;
438 absinfo->flat = flat;
439
440 dev->absbit[BIT_WORD(axis)] |= BIT_MASK(axis);
441 }
442 EXPORT_SYMBOL(input_set_abs_params);
443
444
445 /**
446 * input_grab_device - grabs device for exclusive use
447 * @handle: input handle that wants to own the device
448 *
449 * When a device is grabbed by an input handle all events generated by
450 * the device are delivered only to this handle. Also events injected
451 * by other input handles are ignored while device is grabbed.
452 */
453 int input_grab_device(struct input_handle *handle)
454 {
455 struct input_dev *dev = handle->dev;
456 int retval;
457
458 retval = mutex_lock_interruptible(&dev->mutex);
459 if (retval)
460 return retval;
461
462 if (dev->grab) {
463 retval = -EBUSY;
464 goto out;
465 }
466
467 rcu_assign_pointer(dev->grab, handle);
468 synchronize_rcu();
469
470 out:
471 mutex_unlock(&dev->mutex);
472 return retval;
473 }
474 EXPORT_SYMBOL(input_grab_device);
475
476 static void __input_release_device(struct input_handle *handle)
477 {
478 struct input_dev *dev = handle->dev;
479
480 if (dev->grab == handle) {
481 rcu_assign_pointer(dev->grab, NULL);
482 /* Make sure input_pass_event() notices that grab is gone */
483 synchronize_rcu();
484
485 list_for_each_entry(handle, &dev->h_list, d_node)
486 if (handle->open && handle->handler->start)
487 handle->handler->start(handle);
488 }
489 }
490
491 /**
492 * input_release_device - release previously grabbed device
493 * @handle: input handle that owns the device
494 *
495 * Releases previously grabbed device so that other input handles can
496 * start receiving input events. Upon release all handlers attached
497 * to the device have their start() method called so they have a change
498 * to synchronize device state with the rest of the system.
499 */
500 void input_release_device(struct input_handle *handle)
501 {
502 struct input_dev *dev = handle->dev;
503
504 mutex_lock(&dev->mutex);
505 __input_release_device(handle);
506 mutex_unlock(&dev->mutex);
507 }
508 EXPORT_SYMBOL(input_release_device);
509
510 /**
511 * input_open_device - open input device
512 * @handle: handle through which device is being accessed
513 *
514 * This function should be called by input handlers when they
515 * want to start receive events from given input device.
516 */
517 int input_open_device(struct input_handle *handle)
518 {
519 struct input_dev *dev = handle->dev;
520 int retval;
521
522 retval = mutex_lock_interruptible(&dev->mutex);
523 if (retval)
524 return retval;
525
526 if (dev->going_away) {
527 retval = -ENODEV;
528 goto out;
529 }
530
531 handle->open++;
532
533 if (!dev->users++ && dev->open)
534 retval = dev->open(dev);
535
536 if (retval) {
537 dev->users--;
538 if (!--handle->open) {
539 /*
540 * Make sure we are not delivering any more events
541 * through this handle
542 */
543 synchronize_rcu();
544 }
545 }
546
547 out:
548 mutex_unlock(&dev->mutex);
549 return retval;
550 }
551 EXPORT_SYMBOL(input_open_device);
552
553 int input_flush_device(struct input_handle *handle, struct file *file)
554 {
555 struct input_dev *dev = handle->dev;
556 int retval;
557
558 retval = mutex_lock_interruptible(&dev->mutex);
559 if (retval)
560 return retval;
561
562 if (dev->flush)
563 retval = dev->flush(dev, file);
564
565 mutex_unlock(&dev->mutex);
566 return retval;
567 }
568 EXPORT_SYMBOL(input_flush_device);
569
570 /**
571 * input_close_device - close input device
572 * @handle: handle through which device is being accessed
573 *
574 * This function should be called by input handlers when they
575 * want to stop receive events from given input device.
576 */
577 void input_close_device(struct input_handle *handle)
578 {
579 struct input_dev *dev = handle->dev;
580
581 mutex_lock(&dev->mutex);
582
583 __input_release_device(handle);
584
585 if (!--dev->users && dev->close)
586 dev->close(dev);
587
588 if (!--handle->open) {
589 /*
590 * synchronize_rcu() makes sure that input_pass_event()
591 * completed and that no more input events are delivered
592 * through this handle
593 */
594 synchronize_rcu();
595 }
596
597 mutex_unlock(&dev->mutex);
598 }
599 EXPORT_SYMBOL(input_close_device);
600
601 /*
602 * Simulate keyup events for all keys that are marked as pressed.
603 * The function must be called with dev->event_lock held.
604 */
605 static void input_dev_release_keys(struct input_dev *dev)
606 {
607 int code;
608
609 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
610 for (code = 0; code <= KEY_MAX; code++) {
611 if (is_event_supported(code, dev->keybit, KEY_MAX) &&
612 __test_and_clear_bit(code, dev->key)) {
613 input_pass_event(dev, NULL, EV_KEY, code, 0);
614 }
615 }
616 input_pass_event(dev, NULL, EV_SYN, SYN_REPORT, 1);
617 }
618 }
619
620 /*
621 * Prepare device for unregistering
622 */
623 static void input_disconnect_device(struct input_dev *dev)
624 {
625 struct input_handle *handle;
626
627 /*
628 * Mark device as going away. Note that we take dev->mutex here
629 * not to protect access to dev->going_away but rather to ensure
630 * that there are no threads in the middle of input_open_device()
631 */
632 mutex_lock(&dev->mutex);
633 dev->going_away = true;
634 mutex_unlock(&dev->mutex);
635
636 spin_lock_irq(&dev->event_lock);
637
638 /*
639 * Simulate keyup events for all pressed keys so that handlers
640 * are not left with "stuck" keys. The driver may continue
641 * generate events even after we done here but they will not
642 * reach any handlers.
643 */
644 input_dev_release_keys(dev);
645
646 list_for_each_entry(handle, &dev->h_list, d_node)
647 handle->open = 0;
648
649 spin_unlock_irq(&dev->event_lock);
650 }
651
652 /**
653 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
654 * @ke: keymap entry containing scancode to be converted.
655 * @scancode: pointer to the location where converted scancode should
656 * be stored.
657 *
658 * This function is used to convert scancode stored in &struct keymap_entry
659 * into scalar form understood by legacy keymap handling methods. These
660 * methods expect scancodes to be represented as 'unsigned int'.
661 */
662 int input_scancode_to_scalar(const struct input_keymap_entry *ke,
663 unsigned int *scancode)
664 {
665 switch (ke->len) {
666 case 1:
667 *scancode = *((u8 *)ke->scancode);
668 break;
669
670 case 2:
671 *scancode = *((u16 *)ke->scancode);
672 break;
673
674 case 4:
675 *scancode = *((u32 *)ke->scancode);
676 break;
677
678 default:
679 return -EINVAL;
680 }
681
682 return 0;
683 }
684 EXPORT_SYMBOL(input_scancode_to_scalar);
685
686 /*
687 * Those routines handle the default case where no [gs]etkeycode() is
688 * defined. In this case, an array indexed by the scancode is used.
689 */
690
691 static unsigned int input_fetch_keycode(struct input_dev *dev,
692 unsigned int index)
693 {
694 switch (dev->keycodesize) {
695 case 1:
696 return ((u8 *)dev->keycode)[index];
697
698 case 2:
699 return ((u16 *)dev->keycode)[index];
700
701 default:
702 return ((u32 *)dev->keycode)[index];
703 }
704 }
705
706 static int input_default_getkeycode(struct input_dev *dev,
707 struct input_keymap_entry *ke)
708 {
709 unsigned int index;
710 int error;
711
712 if (!dev->keycodesize)
713 return -EINVAL;
714
715 if (ke->flags & INPUT_KEYMAP_BY_INDEX)
716 index = ke->index;
717 else {
718 error = input_scancode_to_scalar(ke, &index);
719 if (error)
720 return error;
721 }
722
723 if (index >= dev->keycodemax)
724 return -EINVAL;
725
726 ke->keycode = input_fetch_keycode(dev, index);
727 ke->index = index;
728 ke->len = sizeof(index);
729 memcpy(ke->scancode, &index, sizeof(index));
730
731 return 0;
732 }
733
734 static int input_default_setkeycode(struct input_dev *dev,
735 const struct input_keymap_entry *ke,
736 unsigned int *old_keycode)
737 {
738 unsigned int index;
739 int error;
740 int i;
741
742 if (!dev->keycodesize)
743 return -EINVAL;
744
745 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
746 index = ke->index;
747 } else {
748 error = input_scancode_to_scalar(ke, &index);
749 if (error)
750 return error;
751 }
752
753 if (index >= dev->keycodemax)
754 return -EINVAL;
755
756 if (dev->keycodesize < sizeof(dev->keycode) &&
757 (ke->keycode >> (dev->keycodesize * 8)))
758 return -EINVAL;
759
760 switch (dev->keycodesize) {
761 case 1: {
762 u8 *k = (u8 *)dev->keycode;
763 *old_keycode = k[index];
764 k[index] = ke->keycode;
765 break;
766 }
767 case 2: {
768 u16 *k = (u16 *)dev->keycode;
769 *old_keycode = k[index];
770 k[index] = ke->keycode;
771 break;
772 }
773 default: {
774 u32 *k = (u32 *)dev->keycode;
775 *old_keycode = k[index];
776 k[index] = ke->keycode;
777 break;
778 }
779 }
780
781 __clear_bit(*old_keycode, dev->keybit);
782 __set_bit(ke->keycode, dev->keybit);
783
784 for (i = 0; i < dev->keycodemax; i++) {
785 if (input_fetch_keycode(dev, i) == *old_keycode) {
786 __set_bit(*old_keycode, dev->keybit);
787 break; /* Setting the bit twice is useless, so break */
788 }
789 }
790
791 return 0;
792 }
793
794 /**
795 * input_get_keycode - retrieve keycode currently mapped to a given scancode
796 * @dev: input device which keymap is being queried
797 * @ke: keymap entry
798 *
799 * This function should be called by anyone interested in retrieving current
800 * keymap. Presently evdev handlers use it.
801 */
802 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
803 {
804 unsigned long flags;
805 int retval;
806
807 spin_lock_irqsave(&dev->event_lock, flags);
808
809 if (dev->getkeycode) {
810 /*
811 * Support for legacy drivers, that don't implement the new
812 * ioctls
813 */
814 u32 scancode = ke->index;
815
816 memcpy(ke->scancode, &scancode, sizeof(scancode));
817 ke->len = sizeof(scancode);
818 retval = dev->getkeycode(dev, scancode, &ke->keycode);
819 } else {
820 retval = dev->getkeycode_new(dev, ke);
821 }
822
823 spin_unlock_irqrestore(&dev->event_lock, flags);
824 return retval;
825 }
826 EXPORT_SYMBOL(input_get_keycode);
827
828 /**
829 * input_set_keycode - attribute a keycode to a given scancode
830 * @dev: input device which keymap is being updated
831 * @ke: new keymap entry
832 *
833 * This function should be called by anyone needing to update current
834 * keymap. Presently keyboard and evdev handlers use it.
835 */
836 int input_set_keycode(struct input_dev *dev,
837 const struct input_keymap_entry *ke)
838 {
839 unsigned long flags;
840 unsigned int old_keycode;
841 int retval;
842
843 if (ke->keycode > KEY_MAX)
844 return -EINVAL;
845
846 spin_lock_irqsave(&dev->event_lock, flags);
847
848 if (dev->setkeycode) {
849 /*
850 * Support for legacy drivers, that don't implement the new
851 * ioctls
852 */
853 unsigned int scancode;
854
855 retval = input_scancode_to_scalar(ke, &scancode);
856 if (retval)
857 goto out;
858
859 /*
860 * We need to know the old scancode, in order to generate a
861 * keyup effect, if the set operation happens successfully
862 */
863 if (!dev->getkeycode) {
864 retval = -EINVAL;
865 goto out;
866 }
867
868 retval = dev->getkeycode(dev, scancode, &old_keycode);
869 if (retval)
870 goto out;
871
872 retval = dev->setkeycode(dev, scancode, ke->keycode);
873 } else {
874 retval = dev->setkeycode_new(dev, ke, &old_keycode);
875 }
876
877 if (retval)
878 goto out;
879
880 /* Make sure KEY_RESERVED did not get enabled. */
881 __clear_bit(KEY_RESERVED, dev->keybit);
882
883 /*
884 * Simulate keyup event if keycode is not present
885 * in the keymap anymore
886 */
887 if (test_bit(EV_KEY, dev->evbit) &&
888 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
889 __test_and_clear_bit(old_keycode, dev->key)) {
890
891 input_pass_event(dev, NULL, EV_KEY, old_keycode, 0);
892 if (dev->sync)
893 input_pass_event(dev, NULL, EV_SYN, SYN_REPORT, 1);
894 }
895
896 out:
897 spin_unlock_irqrestore(&dev->event_lock, flags);
898
899 return retval;
900 }
901 EXPORT_SYMBOL(input_set_keycode);
902
903 #define MATCH_BIT(bit, max) \
904 for (i = 0; i < BITS_TO_LONGS(max); i++) \
905 if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
906 break; \
907 if (i != BITS_TO_LONGS(max)) \
908 continue;
909
910 static const struct input_device_id *input_match_device(struct input_handler *handler,
911 struct input_dev *dev)
912 {
913 const struct input_device_id *id;
914 int i;
915
916 for (id = handler->id_table; id->flags || id->driver_info; id++) {
917
918 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
919 if (id->bustype != dev->id.bustype)
920 continue;
921
922 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
923 if (id->vendor != dev->id.vendor)
924 continue;
925
926 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
927 if (id->product != dev->id.product)
928 continue;
929
930 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
931 if (id->version != dev->id.version)
932 continue;
933
934 MATCH_BIT(evbit, EV_MAX);
935 MATCH_BIT(keybit, KEY_MAX);
936 MATCH_BIT(relbit, REL_MAX);
937 MATCH_BIT(absbit, ABS_MAX);
938 MATCH_BIT(mscbit, MSC_MAX);
939 MATCH_BIT(ledbit, LED_MAX);
940 MATCH_BIT(sndbit, SND_MAX);
941 MATCH_BIT(ffbit, FF_MAX);
942 MATCH_BIT(swbit, SW_MAX);
943
944 if (!handler->match || handler->match(handler, dev))
945 return id;
946 }
947
948 return NULL;
949 }
950
951 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
952 {
953 const struct input_device_id *id;
954 int error;
955
956 id = input_match_device(handler, dev);
957 if (!id)
958 return -ENODEV;
959
960 error = handler->connect(handler, dev, id);
961 if (error && error != -ENODEV)
962 printk(KERN_ERR
963 "input: failed to attach handler %s to device %s, "
964 "error: %d\n",
965 handler->name, kobject_name(&dev->dev.kobj), error);
966
967 return error;
968 }
969
970 #ifdef CONFIG_COMPAT
971
972 static int input_bits_to_string(char *buf, int buf_size,
973 unsigned long bits, bool skip_empty)
974 {
975 int len = 0;
976
977 if (INPUT_COMPAT_TEST) {
978 u32 dword = bits >> 32;
979 if (dword || !skip_empty)
980 len += snprintf(buf, buf_size, "%x ", dword);
981
982 dword = bits & 0xffffffffUL;
983 if (dword || !skip_empty || len)
984 len += snprintf(buf + len, max(buf_size - len, 0),
985 "%x", dword);
986 } else {
987 if (bits || !skip_empty)
988 len += snprintf(buf, buf_size, "%lx", bits);
989 }
990
991 return len;
992 }
993
994 #else /* !CONFIG_COMPAT */
995
996 static int input_bits_to_string(char *buf, int buf_size,
997 unsigned long bits, bool skip_empty)
998 {
999 return bits || !skip_empty ?
1000 snprintf(buf, buf_size, "%lx", bits) : 0;
1001 }
1002
1003 #endif
1004
1005 #ifdef CONFIG_PROC_FS
1006
1007 static struct proc_dir_entry *proc_bus_input_dir;
1008 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1009 static int input_devices_state;
1010
1011 static inline void input_wakeup_procfs_readers(void)
1012 {
1013 input_devices_state++;
1014 wake_up(&input_devices_poll_wait);
1015 }
1016
1017 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
1018 {
1019 poll_wait(file, &input_devices_poll_wait, wait);
1020 if (file->f_version != input_devices_state) {
1021 file->f_version = input_devices_state;
1022 return POLLIN | POLLRDNORM;
1023 }
1024
1025 return 0;
1026 }
1027
1028 union input_seq_state {
1029 struct {
1030 unsigned short pos;
1031 bool mutex_acquired;
1032 };
1033 void *p;
1034 };
1035
1036 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1037 {
1038 union input_seq_state *state = (union input_seq_state *)&seq->private;
1039 int error;
1040
1041 /* We need to fit into seq->private pointer */
1042 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1043
1044 error = mutex_lock_interruptible(&input_mutex);
1045 if (error) {
1046 state->mutex_acquired = false;
1047 return ERR_PTR(error);
1048 }
1049
1050 state->mutex_acquired = true;
1051
1052 return seq_list_start(&input_dev_list, *pos);
1053 }
1054
1055 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1056 {
1057 return seq_list_next(v, &input_dev_list, pos);
1058 }
1059
1060 static void input_seq_stop(struct seq_file *seq, void *v)
1061 {
1062 union input_seq_state *state = (union input_seq_state *)&seq->private;
1063
1064 if (state->mutex_acquired)
1065 mutex_unlock(&input_mutex);
1066 }
1067
1068 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1069 unsigned long *bitmap, int max)
1070 {
1071 int i;
1072 bool skip_empty = true;
1073 char buf[18];
1074
1075 seq_printf(seq, "B: %s=", name);
1076
1077 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1078 if (input_bits_to_string(buf, sizeof(buf),
1079 bitmap[i], skip_empty)) {
1080 skip_empty = false;
1081 seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1082 }
1083 }
1084
1085 /*
1086 * If no output was produced print a single 0.
1087 */
1088 if (skip_empty)
1089 seq_puts(seq, "0");
1090
1091 seq_putc(seq, '\n');
1092 }
1093
1094 static int input_devices_seq_show(struct seq_file *seq, void *v)
1095 {
1096 struct input_dev *dev = container_of(v, struct input_dev, node);
1097 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1098 struct input_handle *handle;
1099
1100 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1101 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1102
1103 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1104 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1105 seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1106 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1107 seq_printf(seq, "H: Handlers=");
1108
1109 list_for_each_entry(handle, &dev->h_list, d_node)
1110 seq_printf(seq, "%s ", handle->name);
1111 seq_putc(seq, '\n');
1112
1113 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1114 if (test_bit(EV_KEY, dev->evbit))
1115 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1116 if (test_bit(EV_REL, dev->evbit))
1117 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1118 if (test_bit(EV_ABS, dev->evbit))
1119 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1120 if (test_bit(EV_MSC, dev->evbit))
1121 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1122 if (test_bit(EV_LED, dev->evbit))
1123 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1124 if (test_bit(EV_SND, dev->evbit))
1125 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1126 if (test_bit(EV_FF, dev->evbit))
1127 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1128 if (test_bit(EV_SW, dev->evbit))
1129 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1130
1131 seq_putc(seq, '\n');
1132
1133 kfree(path);
1134 return 0;
1135 }
1136
1137 static const struct seq_operations input_devices_seq_ops = {
1138 .start = input_devices_seq_start,
1139 .next = input_devices_seq_next,
1140 .stop = input_seq_stop,
1141 .show = input_devices_seq_show,
1142 };
1143
1144 static int input_proc_devices_open(struct inode *inode, struct file *file)
1145 {
1146 return seq_open(file, &input_devices_seq_ops);
1147 }
1148
1149 static const struct file_operations input_devices_fileops = {
1150 .owner = THIS_MODULE,
1151 .open = input_proc_devices_open,
1152 .poll = input_proc_devices_poll,
1153 .read = seq_read,
1154 .llseek = seq_lseek,
1155 .release = seq_release,
1156 };
1157
1158 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1159 {
1160 union input_seq_state *state = (union input_seq_state *)&seq->private;
1161 int error;
1162
1163 /* We need to fit into seq->private pointer */
1164 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1165
1166 error = mutex_lock_interruptible(&input_mutex);
1167 if (error) {
1168 state->mutex_acquired = false;
1169 return ERR_PTR(error);
1170 }
1171
1172 state->mutex_acquired = true;
1173 state->pos = *pos;
1174
1175 return seq_list_start(&input_handler_list, *pos);
1176 }
1177
1178 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1179 {
1180 union input_seq_state *state = (union input_seq_state *)&seq->private;
1181
1182 state->pos = *pos + 1;
1183 return seq_list_next(v, &input_handler_list, pos);
1184 }
1185
1186 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1187 {
1188 struct input_handler *handler = container_of(v, struct input_handler, node);
1189 union input_seq_state *state = (union input_seq_state *)&seq->private;
1190
1191 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1192 if (handler->filter)
1193 seq_puts(seq, " (filter)");
1194 if (handler->fops)
1195 seq_printf(seq, " Minor=%d", handler->minor);
1196 seq_putc(seq, '\n');
1197
1198 return 0;
1199 }
1200
1201 static const struct seq_operations input_handlers_seq_ops = {
1202 .start = input_handlers_seq_start,
1203 .next = input_handlers_seq_next,
1204 .stop = input_seq_stop,
1205 .show = input_handlers_seq_show,
1206 };
1207
1208 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1209 {
1210 return seq_open(file, &input_handlers_seq_ops);
1211 }
1212
1213 static const struct file_operations input_handlers_fileops = {
1214 .owner = THIS_MODULE,
1215 .open = input_proc_handlers_open,
1216 .read = seq_read,
1217 .llseek = seq_lseek,
1218 .release = seq_release,
1219 };
1220
1221 static int __init input_proc_init(void)
1222 {
1223 struct proc_dir_entry *entry;
1224
1225 proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1226 if (!proc_bus_input_dir)
1227 return -ENOMEM;
1228
1229 entry = proc_create("devices", 0, proc_bus_input_dir,
1230 &input_devices_fileops);
1231 if (!entry)
1232 goto fail1;
1233
1234 entry = proc_create("handlers", 0, proc_bus_input_dir,
1235 &input_handlers_fileops);
1236 if (!entry)
1237 goto fail2;
1238
1239 return 0;
1240
1241 fail2: remove_proc_entry("devices", proc_bus_input_dir);
1242 fail1: remove_proc_entry("bus/input", NULL);
1243 return -ENOMEM;
1244 }
1245
1246 static void input_proc_exit(void)
1247 {
1248 remove_proc_entry("devices", proc_bus_input_dir);
1249 remove_proc_entry("handlers", proc_bus_input_dir);
1250 remove_proc_entry("bus/input", NULL);
1251 }
1252
1253 #else /* !CONFIG_PROC_FS */
1254 static inline void input_wakeup_procfs_readers(void) { }
1255 static inline int input_proc_init(void) { return 0; }
1256 static inline void input_proc_exit(void) { }
1257 #endif
1258
1259 #define INPUT_DEV_STRING_ATTR_SHOW(name) \
1260 static ssize_t input_dev_show_##name(struct device *dev, \
1261 struct device_attribute *attr, \
1262 char *buf) \
1263 { \
1264 struct input_dev *input_dev = to_input_dev(dev); \
1265 \
1266 return scnprintf(buf, PAGE_SIZE, "%s\n", \
1267 input_dev->name ? input_dev->name : ""); \
1268 } \
1269 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1270
1271 INPUT_DEV_STRING_ATTR_SHOW(name);
1272 INPUT_DEV_STRING_ATTR_SHOW(phys);
1273 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1274
1275 static int input_print_modalias_bits(char *buf, int size,
1276 char name, unsigned long *bm,
1277 unsigned int min_bit, unsigned int max_bit)
1278 {
1279 int len = 0, i;
1280
1281 len += snprintf(buf, max(size, 0), "%c", name);
1282 for (i = min_bit; i < max_bit; i++)
1283 if (bm[BIT_WORD(i)] & BIT_MASK(i))
1284 len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1285 return len;
1286 }
1287
1288 static int input_print_modalias(char *buf, int size, struct input_dev *id,
1289 int add_cr)
1290 {
1291 int len;
1292
1293 len = snprintf(buf, max(size, 0),
1294 "input:b%04Xv%04Xp%04Xe%04X-",
1295 id->id.bustype, id->id.vendor,
1296 id->id.product, id->id.version);
1297
1298 len += input_print_modalias_bits(buf + len, size - len,
1299 'e', id->evbit, 0, EV_MAX);
1300 len += input_print_modalias_bits(buf + len, size - len,
1301 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1302 len += input_print_modalias_bits(buf + len, size - len,
1303 'r', id->relbit, 0, REL_MAX);
1304 len += input_print_modalias_bits(buf + len, size - len,
1305 'a', id->absbit, 0, ABS_MAX);
1306 len += input_print_modalias_bits(buf + len, size - len,
1307 'm', id->mscbit, 0, MSC_MAX);
1308 len += input_print_modalias_bits(buf + len, size - len,
1309 'l', id->ledbit, 0, LED_MAX);
1310 len += input_print_modalias_bits(buf + len, size - len,
1311 's', id->sndbit, 0, SND_MAX);
1312 len += input_print_modalias_bits(buf + len, size - len,
1313 'f', id->ffbit, 0, FF_MAX);
1314 len += input_print_modalias_bits(buf + len, size - len,
1315 'w', id->swbit, 0, SW_MAX);
1316
1317 if (add_cr)
1318 len += snprintf(buf + len, max(size - len, 0), "\n");
1319
1320 return len;
1321 }
1322
1323 static ssize_t input_dev_show_modalias(struct device *dev,
1324 struct device_attribute *attr,
1325 char *buf)
1326 {
1327 struct input_dev *id = to_input_dev(dev);
1328 ssize_t len;
1329
1330 len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1331
1332 return min_t(int, len, PAGE_SIZE);
1333 }
1334 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1335
1336 static struct attribute *input_dev_attrs[] = {
1337 &dev_attr_name.attr,
1338 &dev_attr_phys.attr,
1339 &dev_attr_uniq.attr,
1340 &dev_attr_modalias.attr,
1341 NULL
1342 };
1343
1344 static struct attribute_group input_dev_attr_group = {
1345 .attrs = input_dev_attrs,
1346 };
1347
1348 #define INPUT_DEV_ID_ATTR(name) \
1349 static ssize_t input_dev_show_id_##name(struct device *dev, \
1350 struct device_attribute *attr, \
1351 char *buf) \
1352 { \
1353 struct input_dev *input_dev = to_input_dev(dev); \
1354 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1355 } \
1356 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1357
1358 INPUT_DEV_ID_ATTR(bustype);
1359 INPUT_DEV_ID_ATTR(vendor);
1360 INPUT_DEV_ID_ATTR(product);
1361 INPUT_DEV_ID_ATTR(version);
1362
1363 static struct attribute *input_dev_id_attrs[] = {
1364 &dev_attr_bustype.attr,
1365 &dev_attr_vendor.attr,
1366 &dev_attr_product.attr,
1367 &dev_attr_version.attr,
1368 NULL
1369 };
1370
1371 static struct attribute_group input_dev_id_attr_group = {
1372 .name = "id",
1373 .attrs = input_dev_id_attrs,
1374 };
1375
1376 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1377 int max, int add_cr)
1378 {
1379 int i;
1380 int len = 0;
1381 bool skip_empty = true;
1382
1383 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1384 len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1385 bitmap[i], skip_empty);
1386 if (len) {
1387 skip_empty = false;
1388 if (i > 0)
1389 len += snprintf(buf + len, max(buf_size - len, 0), " ");
1390 }
1391 }
1392
1393 /*
1394 * If no output was produced print a single 0.
1395 */
1396 if (len == 0)
1397 len = snprintf(buf, buf_size, "%d", 0);
1398
1399 if (add_cr)
1400 len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1401
1402 return len;
1403 }
1404
1405 #define INPUT_DEV_CAP_ATTR(ev, bm) \
1406 static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1407 struct device_attribute *attr, \
1408 char *buf) \
1409 { \
1410 struct input_dev *input_dev = to_input_dev(dev); \
1411 int len = input_print_bitmap(buf, PAGE_SIZE, \
1412 input_dev->bm##bit, ev##_MAX, \
1413 true); \
1414 return min_t(int, len, PAGE_SIZE); \
1415 } \
1416 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1417
1418 INPUT_DEV_CAP_ATTR(EV, ev);
1419 INPUT_DEV_CAP_ATTR(KEY, key);
1420 INPUT_DEV_CAP_ATTR(REL, rel);
1421 INPUT_DEV_CAP_ATTR(ABS, abs);
1422 INPUT_DEV_CAP_ATTR(MSC, msc);
1423 INPUT_DEV_CAP_ATTR(LED, led);
1424 INPUT_DEV_CAP_ATTR(SND, snd);
1425 INPUT_DEV_CAP_ATTR(FF, ff);
1426 INPUT_DEV_CAP_ATTR(SW, sw);
1427
1428 static struct attribute *input_dev_caps_attrs[] = {
1429 &dev_attr_ev.attr,
1430 &dev_attr_key.attr,
1431 &dev_attr_rel.attr,
1432 &dev_attr_abs.attr,
1433 &dev_attr_msc.attr,
1434 &dev_attr_led.attr,
1435 &dev_attr_snd.attr,
1436 &dev_attr_ff.attr,
1437 &dev_attr_sw.attr,
1438 NULL
1439 };
1440
1441 static struct attribute_group input_dev_caps_attr_group = {
1442 .name = "capabilities",
1443 .attrs = input_dev_caps_attrs,
1444 };
1445
1446 static const struct attribute_group *input_dev_attr_groups[] = {
1447 &input_dev_attr_group,
1448 &input_dev_id_attr_group,
1449 &input_dev_caps_attr_group,
1450 NULL
1451 };
1452
1453 static void input_dev_release(struct device *device)
1454 {
1455 struct input_dev *dev = to_input_dev(device);
1456
1457 input_ff_destroy(dev);
1458 input_mt_destroy_slots(dev);
1459 kfree(dev->absinfo);
1460 kfree(dev);
1461
1462 module_put(THIS_MODULE);
1463 }
1464
1465 /*
1466 * Input uevent interface - loading event handlers based on
1467 * device bitfields.
1468 */
1469 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1470 const char *name, unsigned long *bitmap, int max)
1471 {
1472 int len;
1473
1474 if (add_uevent_var(env, "%s=", name))
1475 return -ENOMEM;
1476
1477 len = input_print_bitmap(&env->buf[env->buflen - 1],
1478 sizeof(env->buf) - env->buflen,
1479 bitmap, max, false);
1480 if (len >= (sizeof(env->buf) - env->buflen))
1481 return -ENOMEM;
1482
1483 env->buflen += len;
1484 return 0;
1485 }
1486
1487 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1488 struct input_dev *dev)
1489 {
1490 int len;
1491
1492 if (add_uevent_var(env, "MODALIAS="))
1493 return -ENOMEM;
1494
1495 len = input_print_modalias(&env->buf[env->buflen - 1],
1496 sizeof(env->buf) - env->buflen,
1497 dev, 0);
1498 if (len >= (sizeof(env->buf) - env->buflen))
1499 return -ENOMEM;
1500
1501 env->buflen += len;
1502 return 0;
1503 }
1504
1505 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1506 do { \
1507 int err = add_uevent_var(env, fmt, val); \
1508 if (err) \
1509 return err; \
1510 } while (0)
1511
1512 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1513 do { \
1514 int err = input_add_uevent_bm_var(env, name, bm, max); \
1515 if (err) \
1516 return err; \
1517 } while (0)
1518
1519 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1520 do { \
1521 int err = input_add_uevent_modalias_var(env, dev); \
1522 if (err) \
1523 return err; \
1524 } while (0)
1525
1526 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1527 {
1528 struct input_dev *dev = to_input_dev(device);
1529
1530 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1531 dev->id.bustype, dev->id.vendor,
1532 dev->id.product, dev->id.version);
1533 if (dev->name)
1534 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1535 if (dev->phys)
1536 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1537 if (dev->uniq)
1538 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1539
1540 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1541 if (test_bit(EV_KEY, dev->evbit))
1542 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1543 if (test_bit(EV_REL, dev->evbit))
1544 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1545 if (test_bit(EV_ABS, dev->evbit))
1546 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1547 if (test_bit(EV_MSC, dev->evbit))
1548 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1549 if (test_bit(EV_LED, dev->evbit))
1550 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1551 if (test_bit(EV_SND, dev->evbit))
1552 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1553 if (test_bit(EV_FF, dev->evbit))
1554 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1555 if (test_bit(EV_SW, dev->evbit))
1556 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1557
1558 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1559
1560 return 0;
1561 }
1562
1563 #define INPUT_DO_TOGGLE(dev, type, bits, on) \
1564 do { \
1565 int i; \
1566 bool active; \
1567 \
1568 if (!test_bit(EV_##type, dev->evbit)) \
1569 break; \
1570 \
1571 for (i = 0; i < type##_MAX; i++) { \
1572 if (!test_bit(i, dev->bits##bit)) \
1573 continue; \
1574 \
1575 active = test_bit(i, dev->bits); \
1576 if (!active && !on) \
1577 continue; \
1578 \
1579 dev->event(dev, EV_##type, i, on ? active : 0); \
1580 } \
1581 } while (0)
1582
1583 static void input_dev_toggle(struct input_dev *dev, bool activate)
1584 {
1585 if (!dev->event)
1586 return;
1587
1588 INPUT_DO_TOGGLE(dev, LED, led, activate);
1589 INPUT_DO_TOGGLE(dev, SND, snd, activate);
1590
1591 if (activate && test_bit(EV_REP, dev->evbit)) {
1592 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1593 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1594 }
1595 }
1596
1597 /**
1598 * input_reset_device() - reset/restore the state of input device
1599 * @dev: input device whose state needs to be reset
1600 *
1601 * This function tries to reset the state of an opened input device and
1602 * bring internal state and state if the hardware in sync with each other.
1603 * We mark all keys as released, restore LED state, repeat rate, etc.
1604 */
1605 void input_reset_device(struct input_dev *dev)
1606 {
1607 mutex_lock(&dev->mutex);
1608
1609 if (dev->users) {
1610 input_dev_toggle(dev, true);
1611
1612 /*
1613 * Keys that have been pressed at suspend time are unlikely
1614 * to be still pressed when we resume.
1615 */
1616 spin_lock_irq(&dev->event_lock);
1617 input_dev_release_keys(dev);
1618 spin_unlock_irq(&dev->event_lock);
1619 }
1620
1621 mutex_unlock(&dev->mutex);
1622 }
1623 EXPORT_SYMBOL(input_reset_device);
1624
1625 #ifdef CONFIG_PM
1626 static int input_dev_suspend(struct device *dev)
1627 {
1628 struct input_dev *input_dev = to_input_dev(dev);
1629
1630 mutex_lock(&input_dev->mutex);
1631
1632 if (input_dev->users)
1633 input_dev_toggle(input_dev, false);
1634
1635 mutex_unlock(&input_dev->mutex);
1636
1637 return 0;
1638 }
1639
1640 static int input_dev_resume(struct device *dev)
1641 {
1642 struct input_dev *input_dev = to_input_dev(dev);
1643
1644 input_reset_device(input_dev);
1645
1646 return 0;
1647 }
1648
1649 static const struct dev_pm_ops input_dev_pm_ops = {
1650 .suspend = input_dev_suspend,
1651 .resume = input_dev_resume,
1652 .poweroff = input_dev_suspend,
1653 .restore = input_dev_resume,
1654 };
1655 #endif /* CONFIG_PM */
1656
1657 static struct device_type input_dev_type = {
1658 .groups = input_dev_attr_groups,
1659 .release = input_dev_release,
1660 .uevent = input_dev_uevent,
1661 #ifdef CONFIG_PM
1662 .pm = &input_dev_pm_ops,
1663 #endif
1664 };
1665
1666 static char *input_devnode(struct device *dev, mode_t *mode)
1667 {
1668 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1669 }
1670
1671 struct class input_class = {
1672 .name = "input",
1673 .devnode = input_devnode,
1674 };
1675 EXPORT_SYMBOL_GPL(input_class);
1676
1677 /**
1678 * input_allocate_device - allocate memory for new input device
1679 *
1680 * Returns prepared struct input_dev or NULL.
1681 *
1682 * NOTE: Use input_free_device() to free devices that have not been
1683 * registered; input_unregister_device() should be used for already
1684 * registered devices.
1685 */
1686 struct input_dev *input_allocate_device(void)
1687 {
1688 struct input_dev *dev;
1689
1690 dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
1691 if (dev) {
1692 dev->dev.type = &input_dev_type;
1693 dev->dev.class = &input_class;
1694 device_initialize(&dev->dev);
1695 mutex_init(&dev->mutex);
1696 spin_lock_init(&dev->event_lock);
1697 INIT_LIST_HEAD(&dev->h_list);
1698 INIT_LIST_HEAD(&dev->node);
1699
1700 __module_get(THIS_MODULE);
1701 }
1702
1703 return dev;
1704 }
1705 EXPORT_SYMBOL(input_allocate_device);
1706
1707 /**
1708 * input_free_device - free memory occupied by input_dev structure
1709 * @dev: input device to free
1710 *
1711 * This function should only be used if input_register_device()
1712 * was not called yet or if it failed. Once device was registered
1713 * use input_unregister_device() and memory will be freed once last
1714 * reference to the device is dropped.
1715 *
1716 * Device should be allocated by input_allocate_device().
1717 *
1718 * NOTE: If there are references to the input device then memory
1719 * will not be freed until last reference is dropped.
1720 */
1721 void input_free_device(struct input_dev *dev)
1722 {
1723 if (dev)
1724 input_put_device(dev);
1725 }
1726 EXPORT_SYMBOL(input_free_device);
1727
1728 /**
1729 * input_mt_create_slots() - create MT input slots
1730 * @dev: input device supporting MT events and finger tracking
1731 * @num_slots: number of slots used by the device
1732 *
1733 * This function allocates all necessary memory for MT slot handling in the
1734 * input device, and adds ABS_MT_SLOT to the device capabilities. All slots
1735 * are initially marked as unused by setting ABS_MT_TRACKING_ID to -1.
1736 */
1737 int input_mt_create_slots(struct input_dev *dev, unsigned int num_slots)
1738 {
1739 int i;
1740
1741 if (!num_slots)
1742 return 0;
1743
1744 dev->mt = kcalloc(num_slots, sizeof(struct input_mt_slot), GFP_KERNEL);
1745 if (!dev->mt)
1746 return -ENOMEM;
1747
1748 dev->mtsize = num_slots;
1749 input_set_abs_params(dev, ABS_MT_SLOT, 0, num_slots - 1, 0, 0);
1750
1751 /* Mark slots as 'unused' */
1752 for (i = 0; i < num_slots; i++)
1753 dev->mt[i].abs[ABS_MT_TRACKING_ID - ABS_MT_FIRST] = -1;
1754
1755 return 0;
1756 }
1757 EXPORT_SYMBOL(input_mt_create_slots);
1758
1759 /**
1760 * input_mt_destroy_slots() - frees the MT slots of the input device
1761 * @dev: input device with allocated MT slots
1762 *
1763 * This function is only needed in error path as the input core will
1764 * automatically free the MT slots when the device is destroyed.
1765 */
1766 void input_mt_destroy_slots(struct input_dev *dev)
1767 {
1768 kfree(dev->mt);
1769 dev->mt = NULL;
1770 dev->mtsize = 0;
1771 }
1772 EXPORT_SYMBOL(input_mt_destroy_slots);
1773
1774 /**
1775 * input_set_capability - mark device as capable of a certain event
1776 * @dev: device that is capable of emitting or accepting event
1777 * @type: type of the event (EV_KEY, EV_REL, etc...)
1778 * @code: event code
1779 *
1780 * In addition to setting up corresponding bit in appropriate capability
1781 * bitmap the function also adjusts dev->evbit.
1782 */
1783 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1784 {
1785 switch (type) {
1786 case EV_KEY:
1787 __set_bit(code, dev->keybit);
1788 break;
1789
1790 case EV_REL:
1791 __set_bit(code, dev->relbit);
1792 break;
1793
1794 case EV_ABS:
1795 __set_bit(code, dev->absbit);
1796 break;
1797
1798 case EV_MSC:
1799 __set_bit(code, dev->mscbit);
1800 break;
1801
1802 case EV_SW:
1803 __set_bit(code, dev->swbit);
1804 break;
1805
1806 case EV_LED:
1807 __set_bit(code, dev->ledbit);
1808 break;
1809
1810 case EV_SND:
1811 __set_bit(code, dev->sndbit);
1812 break;
1813
1814 case EV_FF:
1815 __set_bit(code, dev->ffbit);
1816 break;
1817
1818 case EV_PWR:
1819 /* do nothing */
1820 break;
1821
1822 default:
1823 printk(KERN_ERR
1824 "input_set_capability: unknown type %u (code %u)\n",
1825 type, code);
1826 dump_stack();
1827 return;
1828 }
1829
1830 __set_bit(type, dev->evbit);
1831 }
1832 EXPORT_SYMBOL(input_set_capability);
1833
1834 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \
1835 do { \
1836 if (!test_bit(EV_##type, dev->evbit)) \
1837 memset(dev->bits##bit, 0, \
1838 sizeof(dev->bits##bit)); \
1839 } while (0)
1840
1841 static void input_cleanse_bitmasks(struct input_dev *dev)
1842 {
1843 INPUT_CLEANSE_BITMASK(dev, KEY, key);
1844 INPUT_CLEANSE_BITMASK(dev, REL, rel);
1845 INPUT_CLEANSE_BITMASK(dev, ABS, abs);
1846 INPUT_CLEANSE_BITMASK(dev, MSC, msc);
1847 INPUT_CLEANSE_BITMASK(dev, LED, led);
1848 INPUT_CLEANSE_BITMASK(dev, SND, snd);
1849 INPUT_CLEANSE_BITMASK(dev, FF, ff);
1850 INPUT_CLEANSE_BITMASK(dev, SW, sw);
1851 }
1852
1853 /**
1854 * input_register_device - register device with input core
1855 * @dev: device to be registered
1856 *
1857 * This function registers device with input core. The device must be
1858 * allocated with input_allocate_device() and all it's capabilities
1859 * set up before registering.
1860 * If function fails the device must be freed with input_free_device().
1861 * Once device has been successfully registered it can be unregistered
1862 * with input_unregister_device(); input_free_device() should not be
1863 * called in this case.
1864 */
1865 int input_register_device(struct input_dev *dev)
1866 {
1867 static atomic_t input_no = ATOMIC_INIT(0);
1868 struct input_handler *handler;
1869 const char *path;
1870 int error;
1871
1872 /* Every input device generates EV_SYN/SYN_REPORT events. */
1873 __set_bit(EV_SYN, dev->evbit);
1874
1875 /* KEY_RESERVED is not supposed to be transmitted to userspace. */
1876 __clear_bit(KEY_RESERVED, dev->keybit);
1877
1878 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
1879 input_cleanse_bitmasks(dev);
1880
1881 /*
1882 * If delay and period are pre-set by the driver, then autorepeating
1883 * is handled by the driver itself and we don't do it in input.c.
1884 */
1885 init_timer(&dev->timer);
1886 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
1887 dev->timer.data = (long) dev;
1888 dev->timer.function = input_repeat_key;
1889 dev->rep[REP_DELAY] = 250;
1890 dev->rep[REP_PERIOD] = 33;
1891 }
1892
1893 if (!dev->getkeycode && !dev->getkeycode_new)
1894 dev->getkeycode_new = input_default_getkeycode;
1895
1896 if (!dev->setkeycode && !dev->setkeycode_new)
1897 dev->setkeycode_new = input_default_setkeycode;
1898
1899 dev_set_name(&dev->dev, "input%ld",
1900 (unsigned long) atomic_inc_return(&input_no) - 1);
1901
1902 error = device_add(&dev->dev);
1903 if (error)
1904 return error;
1905
1906 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1907 printk(KERN_INFO "input: %s as %s\n",
1908 dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
1909 kfree(path);
1910
1911 error = mutex_lock_interruptible(&input_mutex);
1912 if (error) {
1913 device_del(&dev->dev);
1914 return error;
1915 }
1916
1917 list_add_tail(&dev->node, &input_dev_list);
1918
1919 list_for_each_entry(handler, &input_handler_list, node)
1920 input_attach_handler(dev, handler);
1921
1922 input_wakeup_procfs_readers();
1923
1924 mutex_unlock(&input_mutex);
1925
1926 return 0;
1927 }
1928 EXPORT_SYMBOL(input_register_device);
1929
1930 /**
1931 * input_unregister_device - unregister previously registered device
1932 * @dev: device to be unregistered
1933 *
1934 * This function unregisters an input device. Once device is unregistered
1935 * the caller should not try to access it as it may get freed at any moment.
1936 */
1937 void input_unregister_device(struct input_dev *dev)
1938 {
1939 struct input_handle *handle, *next;
1940
1941 input_disconnect_device(dev);
1942
1943 mutex_lock(&input_mutex);
1944
1945 list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
1946 handle->handler->disconnect(handle);
1947 WARN_ON(!list_empty(&dev->h_list));
1948
1949 del_timer_sync(&dev->timer);
1950 list_del_init(&dev->node);
1951
1952 input_wakeup_procfs_readers();
1953
1954 mutex_unlock(&input_mutex);
1955
1956 device_unregister(&dev->dev);
1957 }
1958 EXPORT_SYMBOL(input_unregister_device);
1959
1960 /**
1961 * input_register_handler - register a new input handler
1962 * @handler: handler to be registered
1963 *
1964 * This function registers a new input handler (interface) for input
1965 * devices in the system and attaches it to all input devices that
1966 * are compatible with the handler.
1967 */
1968 int input_register_handler(struct input_handler *handler)
1969 {
1970 struct input_dev *dev;
1971 int retval;
1972
1973 retval = mutex_lock_interruptible(&input_mutex);
1974 if (retval)
1975 return retval;
1976
1977 INIT_LIST_HEAD(&handler->h_list);
1978
1979 if (handler->fops != NULL) {
1980 if (input_table[handler->minor >> 5]) {
1981 retval = -EBUSY;
1982 goto out;
1983 }
1984 input_table[handler->minor >> 5] = handler;
1985 }
1986
1987 list_add_tail(&handler->node, &input_handler_list);
1988
1989 list_for_each_entry(dev, &input_dev_list, node)
1990 input_attach_handler(dev, handler);
1991
1992 input_wakeup_procfs_readers();
1993
1994 out:
1995 mutex_unlock(&input_mutex);
1996 return retval;
1997 }
1998 EXPORT_SYMBOL(input_register_handler);
1999
2000 /**
2001 * input_unregister_handler - unregisters an input handler
2002 * @handler: handler to be unregistered
2003 *
2004 * This function disconnects a handler from its input devices and
2005 * removes it from lists of known handlers.
2006 */
2007 void input_unregister_handler(struct input_handler *handler)
2008 {
2009 struct input_handle *handle, *next;
2010
2011 mutex_lock(&input_mutex);
2012
2013 list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2014 handler->disconnect(handle);
2015 WARN_ON(!list_empty(&handler->h_list));
2016
2017 list_del_init(&handler->node);
2018
2019 if (handler->fops != NULL)
2020 input_table[handler->minor >> 5] = NULL;
2021
2022 input_wakeup_procfs_readers();
2023
2024 mutex_unlock(&input_mutex);
2025 }
2026 EXPORT_SYMBOL(input_unregister_handler);
2027
2028 /**
2029 * input_handler_for_each_handle - handle iterator
2030 * @handler: input handler to iterate
2031 * @data: data for the callback
2032 * @fn: function to be called for each handle
2033 *
2034 * Iterate over @bus's list of devices, and call @fn for each, passing
2035 * it @data and stop when @fn returns a non-zero value. The function is
2036 * using RCU to traverse the list and therefore may be usind in atonic
2037 * contexts. The @fn callback is invoked from RCU critical section and
2038 * thus must not sleep.
2039 */
2040 int input_handler_for_each_handle(struct input_handler *handler, void *data,
2041 int (*fn)(struct input_handle *, void *))
2042 {
2043 struct input_handle *handle;
2044 int retval = 0;
2045
2046 rcu_read_lock();
2047
2048 list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2049 retval = fn(handle, data);
2050 if (retval)
2051 break;
2052 }
2053
2054 rcu_read_unlock();
2055
2056 return retval;
2057 }
2058 EXPORT_SYMBOL(input_handler_for_each_handle);
2059
2060 /**
2061 * input_register_handle - register a new input handle
2062 * @handle: handle to register
2063 *
2064 * This function puts a new input handle onto device's
2065 * and handler's lists so that events can flow through
2066 * it once it is opened using input_open_device().
2067 *
2068 * This function is supposed to be called from handler's
2069 * connect() method.
2070 */
2071 int input_register_handle(struct input_handle *handle)
2072 {
2073 struct input_handler *handler = handle->handler;
2074 struct input_dev *dev = handle->dev;
2075 int error;
2076
2077 /*
2078 * We take dev->mutex here to prevent race with
2079 * input_release_device().
2080 */
2081 error = mutex_lock_interruptible(&dev->mutex);
2082 if (error)
2083 return error;
2084
2085 /*
2086 * Filters go to the head of the list, normal handlers
2087 * to the tail.
2088 */
2089 if (handler->filter)
2090 list_add_rcu(&handle->d_node, &dev->h_list);
2091 else
2092 list_add_tail_rcu(&handle->d_node, &dev->h_list);
2093
2094 mutex_unlock(&dev->mutex);
2095
2096 /*
2097 * Since we are supposed to be called from ->connect()
2098 * which is mutually exclusive with ->disconnect()
2099 * we can't be racing with input_unregister_handle()
2100 * and so separate lock is not needed here.
2101 */
2102 list_add_tail_rcu(&handle->h_node, &handler->h_list);
2103
2104 if (handler->start)
2105 handler->start(handle);
2106
2107 return 0;
2108 }
2109 EXPORT_SYMBOL(input_register_handle);
2110
2111 /**
2112 * input_unregister_handle - unregister an input handle
2113 * @handle: handle to unregister
2114 *
2115 * This function removes input handle from device's
2116 * and handler's lists.
2117 *
2118 * This function is supposed to be called from handler's
2119 * disconnect() method.
2120 */
2121 void input_unregister_handle(struct input_handle *handle)
2122 {
2123 struct input_dev *dev = handle->dev;
2124
2125 list_del_rcu(&handle->h_node);
2126
2127 /*
2128 * Take dev->mutex to prevent race with input_release_device().
2129 */
2130 mutex_lock(&dev->mutex);
2131 list_del_rcu(&handle->d_node);
2132 mutex_unlock(&dev->mutex);
2133
2134 synchronize_rcu();
2135 }
2136 EXPORT_SYMBOL(input_unregister_handle);
2137
2138 static int input_open_file(struct inode *inode, struct file *file)
2139 {
2140 struct input_handler *handler;
2141 const struct file_operations *old_fops, *new_fops = NULL;
2142 int err;
2143
2144 err = mutex_lock_interruptible(&input_mutex);
2145 if (err)
2146 return err;
2147
2148 /* No load-on-demand here? */
2149 handler = input_table[iminor(inode) >> 5];
2150 if (handler)
2151 new_fops = fops_get(handler->fops);
2152
2153 mutex_unlock(&input_mutex);
2154
2155 /*
2156 * That's _really_ odd. Usually NULL ->open means "nothing special",
2157 * not "no device". Oh, well...
2158 */
2159 if (!new_fops || !new_fops->open) {
2160 fops_put(new_fops);
2161 err = -ENODEV;
2162 goto out;
2163 }
2164
2165 old_fops = file->f_op;
2166 file->f_op = new_fops;
2167
2168 err = new_fops->open(inode, file);
2169 if (err) {
2170 fops_put(file->f_op);
2171 file->f_op = fops_get(old_fops);
2172 }
2173 fops_put(old_fops);
2174 out:
2175 return err;
2176 }
2177
2178 static const struct file_operations input_fops = {
2179 .owner = THIS_MODULE,
2180 .open = input_open_file,
2181 .llseek = noop_llseek,
2182 };
2183
2184 static int __init input_init(void)
2185 {
2186 int err;
2187
2188 err = class_register(&input_class);
2189 if (err) {
2190 printk(KERN_ERR "input: unable to register input_dev class\n");
2191 return err;
2192 }
2193
2194 err = input_proc_init();
2195 if (err)
2196 goto fail1;
2197
2198 err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
2199 if (err) {
2200 printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR);
2201 goto fail2;
2202 }
2203
2204 return 0;
2205
2206 fail2: input_proc_exit();
2207 fail1: class_unregister(&input_class);
2208 return err;
2209 }
2210
2211 static void __exit input_exit(void)
2212 {
2213 input_proc_exit();
2214 unregister_chrdev(INPUT_MAJOR, "input");
2215 class_unregister(&input_class);
2216 }
2217
2218 subsys_initcall(input_init);
2219 module_exit(input_exit);
This page took 0.079292 seconds and 5 git commands to generate.