Input: fix signedness warning in input_set_keycode()
[deliverable/linux.git] / drivers / input / input.c
1 /*
2 * The input core
3 *
4 * Copyright (c) 1999-2002 Vojtech Pavlik
5 */
6
7 /*
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License version 2 as published by
10 * the Free Software Foundation.
11 */
12
13 #include <linux/init.h>
14 #include <linux/types.h>
15 #include <linux/input.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/random.h>
19 #include <linux/major.h>
20 #include <linux/proc_fs.h>
21 #include <linux/sched.h>
22 #include <linux/seq_file.h>
23 #include <linux/poll.h>
24 #include <linux/device.h>
25 #include <linux/mutex.h>
26 #include <linux/rcupdate.h>
27 #include <linux/smp_lock.h>
28 #include "input-compat.h"
29
30 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
31 MODULE_DESCRIPTION("Input core");
32 MODULE_LICENSE("GPL");
33
34 #define INPUT_DEVICES 256
35
36 /*
37 * EV_ABS events which should not be cached are listed here.
38 */
39 static unsigned int input_abs_bypass_init_data[] __initdata = {
40 ABS_MT_TOUCH_MAJOR,
41 ABS_MT_TOUCH_MINOR,
42 ABS_MT_WIDTH_MAJOR,
43 ABS_MT_WIDTH_MINOR,
44 ABS_MT_ORIENTATION,
45 ABS_MT_POSITION_X,
46 ABS_MT_POSITION_Y,
47 ABS_MT_TOOL_TYPE,
48 ABS_MT_BLOB_ID,
49 ABS_MT_TRACKING_ID,
50 ABS_MT_PRESSURE,
51 0
52 };
53 static unsigned long input_abs_bypass[BITS_TO_LONGS(ABS_CNT)];
54
55 static LIST_HEAD(input_dev_list);
56 static LIST_HEAD(input_handler_list);
57
58 /*
59 * input_mutex protects access to both input_dev_list and input_handler_list.
60 * This also causes input_[un]register_device and input_[un]register_handler
61 * be mutually exclusive which simplifies locking in drivers implementing
62 * input handlers.
63 */
64 static DEFINE_MUTEX(input_mutex);
65
66 static struct input_handler *input_table[8];
67
68 static inline int is_event_supported(unsigned int code,
69 unsigned long *bm, unsigned int max)
70 {
71 return code <= max && test_bit(code, bm);
72 }
73
74 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
75 {
76 if (fuzz) {
77 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
78 return old_val;
79
80 if (value > old_val - fuzz && value < old_val + fuzz)
81 return (old_val * 3 + value) / 4;
82
83 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
84 return (old_val + value) / 2;
85 }
86
87 return value;
88 }
89
90 /*
91 * Pass event first through all filters and then, if event has not been
92 * filtered out, through all open handles. This function is called with
93 * dev->event_lock held and interrupts disabled.
94 */
95 static void input_pass_event(struct input_dev *dev,
96 unsigned int type, unsigned int code, int value)
97 {
98 struct input_handler *handler;
99 struct input_handle *handle;
100
101 rcu_read_lock();
102
103 handle = rcu_dereference(dev->grab);
104 if (handle)
105 handle->handler->event(handle, type, code, value);
106 else {
107 bool filtered = false;
108
109 list_for_each_entry_rcu(handle, &dev->h_list, d_node) {
110 if (!handle->open)
111 continue;
112
113 handler = handle->handler;
114 if (!handler->filter) {
115 if (filtered)
116 break;
117
118 handler->event(handle, type, code, value);
119
120 } else if (handler->filter(handle, type, code, value))
121 filtered = true;
122 }
123 }
124
125 rcu_read_unlock();
126 }
127
128 /*
129 * Generate software autorepeat event. Note that we take
130 * dev->event_lock here to avoid racing with input_event
131 * which may cause keys get "stuck".
132 */
133 static void input_repeat_key(unsigned long data)
134 {
135 struct input_dev *dev = (void *) data;
136 unsigned long flags;
137
138 spin_lock_irqsave(&dev->event_lock, flags);
139
140 if (test_bit(dev->repeat_key, dev->key) &&
141 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
142
143 input_pass_event(dev, EV_KEY, dev->repeat_key, 2);
144
145 if (dev->sync) {
146 /*
147 * Only send SYN_REPORT if we are not in a middle
148 * of driver parsing a new hardware packet.
149 * Otherwise assume that the driver will send
150 * SYN_REPORT once it's done.
151 */
152 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
153 }
154
155 if (dev->rep[REP_PERIOD])
156 mod_timer(&dev->timer, jiffies +
157 msecs_to_jiffies(dev->rep[REP_PERIOD]));
158 }
159
160 spin_unlock_irqrestore(&dev->event_lock, flags);
161 }
162
163 static void input_start_autorepeat(struct input_dev *dev, int code)
164 {
165 if (test_bit(EV_REP, dev->evbit) &&
166 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
167 dev->timer.data) {
168 dev->repeat_key = code;
169 mod_timer(&dev->timer,
170 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
171 }
172 }
173
174 static void input_stop_autorepeat(struct input_dev *dev)
175 {
176 del_timer(&dev->timer);
177 }
178
179 #define INPUT_IGNORE_EVENT 0
180 #define INPUT_PASS_TO_HANDLERS 1
181 #define INPUT_PASS_TO_DEVICE 2
182 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
183
184 static void input_handle_event(struct input_dev *dev,
185 unsigned int type, unsigned int code, int value)
186 {
187 int disposition = INPUT_IGNORE_EVENT;
188
189 switch (type) {
190
191 case EV_SYN:
192 switch (code) {
193 case SYN_CONFIG:
194 disposition = INPUT_PASS_TO_ALL;
195 break;
196
197 case SYN_REPORT:
198 if (!dev->sync) {
199 dev->sync = 1;
200 disposition = INPUT_PASS_TO_HANDLERS;
201 }
202 break;
203 case SYN_MT_REPORT:
204 dev->sync = 0;
205 disposition = INPUT_PASS_TO_HANDLERS;
206 break;
207 }
208 break;
209
210 case EV_KEY:
211 if (is_event_supported(code, dev->keybit, KEY_MAX) &&
212 !!test_bit(code, dev->key) != value) {
213
214 if (value != 2) {
215 __change_bit(code, dev->key);
216 if (value)
217 input_start_autorepeat(dev, code);
218 else
219 input_stop_autorepeat(dev);
220 }
221
222 disposition = INPUT_PASS_TO_HANDLERS;
223 }
224 break;
225
226 case EV_SW:
227 if (is_event_supported(code, dev->swbit, SW_MAX) &&
228 !!test_bit(code, dev->sw) != value) {
229
230 __change_bit(code, dev->sw);
231 disposition = INPUT_PASS_TO_HANDLERS;
232 }
233 break;
234
235 case EV_ABS:
236 if (is_event_supported(code, dev->absbit, ABS_MAX)) {
237
238 if (test_bit(code, input_abs_bypass)) {
239 disposition = INPUT_PASS_TO_HANDLERS;
240 break;
241 }
242
243 value = input_defuzz_abs_event(value,
244 dev->abs[code], dev->absfuzz[code]);
245
246 if (dev->abs[code] != value) {
247 dev->abs[code] = value;
248 disposition = INPUT_PASS_TO_HANDLERS;
249 }
250 }
251 break;
252
253 case EV_REL:
254 if (is_event_supported(code, dev->relbit, REL_MAX) && value)
255 disposition = INPUT_PASS_TO_HANDLERS;
256
257 break;
258
259 case EV_MSC:
260 if (is_event_supported(code, dev->mscbit, MSC_MAX))
261 disposition = INPUT_PASS_TO_ALL;
262
263 break;
264
265 case EV_LED:
266 if (is_event_supported(code, dev->ledbit, LED_MAX) &&
267 !!test_bit(code, dev->led) != value) {
268
269 __change_bit(code, dev->led);
270 disposition = INPUT_PASS_TO_ALL;
271 }
272 break;
273
274 case EV_SND:
275 if (is_event_supported(code, dev->sndbit, SND_MAX)) {
276
277 if (!!test_bit(code, dev->snd) != !!value)
278 __change_bit(code, dev->snd);
279 disposition = INPUT_PASS_TO_ALL;
280 }
281 break;
282
283 case EV_REP:
284 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
285 dev->rep[code] = value;
286 disposition = INPUT_PASS_TO_ALL;
287 }
288 break;
289
290 case EV_FF:
291 if (value >= 0)
292 disposition = INPUT_PASS_TO_ALL;
293 break;
294
295 case EV_PWR:
296 disposition = INPUT_PASS_TO_ALL;
297 break;
298 }
299
300 if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
301 dev->sync = 0;
302
303 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
304 dev->event(dev, type, code, value);
305
306 if (disposition & INPUT_PASS_TO_HANDLERS)
307 input_pass_event(dev, type, code, value);
308 }
309
310 /**
311 * input_event() - report new input event
312 * @dev: device that generated the event
313 * @type: type of the event
314 * @code: event code
315 * @value: value of the event
316 *
317 * This function should be used by drivers implementing various input
318 * devices to report input events. See also input_inject_event().
319 *
320 * NOTE: input_event() may be safely used right after input device was
321 * allocated with input_allocate_device(), even before it is registered
322 * with input_register_device(), but the event will not reach any of the
323 * input handlers. Such early invocation of input_event() may be used
324 * to 'seed' initial state of a switch or initial position of absolute
325 * axis, etc.
326 */
327 void input_event(struct input_dev *dev,
328 unsigned int type, unsigned int code, int value)
329 {
330 unsigned long flags;
331
332 if (is_event_supported(type, dev->evbit, EV_MAX)) {
333
334 spin_lock_irqsave(&dev->event_lock, flags);
335 add_input_randomness(type, code, value);
336 input_handle_event(dev, type, code, value);
337 spin_unlock_irqrestore(&dev->event_lock, flags);
338 }
339 }
340 EXPORT_SYMBOL(input_event);
341
342 /**
343 * input_inject_event() - send input event from input handler
344 * @handle: input handle to send event through
345 * @type: type of the event
346 * @code: event code
347 * @value: value of the event
348 *
349 * Similar to input_event() but will ignore event if device is
350 * "grabbed" and handle injecting event is not the one that owns
351 * the device.
352 */
353 void input_inject_event(struct input_handle *handle,
354 unsigned int type, unsigned int code, int value)
355 {
356 struct input_dev *dev = handle->dev;
357 struct input_handle *grab;
358 unsigned long flags;
359
360 if (is_event_supported(type, dev->evbit, EV_MAX)) {
361 spin_lock_irqsave(&dev->event_lock, flags);
362
363 rcu_read_lock();
364 grab = rcu_dereference(dev->grab);
365 if (!grab || grab == handle)
366 input_handle_event(dev, type, code, value);
367 rcu_read_unlock();
368
369 spin_unlock_irqrestore(&dev->event_lock, flags);
370 }
371 }
372 EXPORT_SYMBOL(input_inject_event);
373
374 /**
375 * input_grab_device - grabs device for exclusive use
376 * @handle: input handle that wants to own the device
377 *
378 * When a device is grabbed by an input handle all events generated by
379 * the device are delivered only to this handle. Also events injected
380 * by other input handles are ignored while device is grabbed.
381 */
382 int input_grab_device(struct input_handle *handle)
383 {
384 struct input_dev *dev = handle->dev;
385 int retval;
386
387 retval = mutex_lock_interruptible(&dev->mutex);
388 if (retval)
389 return retval;
390
391 if (dev->grab) {
392 retval = -EBUSY;
393 goto out;
394 }
395
396 rcu_assign_pointer(dev->grab, handle);
397 synchronize_rcu();
398
399 out:
400 mutex_unlock(&dev->mutex);
401 return retval;
402 }
403 EXPORT_SYMBOL(input_grab_device);
404
405 static void __input_release_device(struct input_handle *handle)
406 {
407 struct input_dev *dev = handle->dev;
408
409 if (dev->grab == handle) {
410 rcu_assign_pointer(dev->grab, NULL);
411 /* Make sure input_pass_event() notices that grab is gone */
412 synchronize_rcu();
413
414 list_for_each_entry(handle, &dev->h_list, d_node)
415 if (handle->open && handle->handler->start)
416 handle->handler->start(handle);
417 }
418 }
419
420 /**
421 * input_release_device - release previously grabbed device
422 * @handle: input handle that owns the device
423 *
424 * Releases previously grabbed device so that other input handles can
425 * start receiving input events. Upon release all handlers attached
426 * to the device have their start() method called so they have a change
427 * to synchronize device state with the rest of the system.
428 */
429 void input_release_device(struct input_handle *handle)
430 {
431 struct input_dev *dev = handle->dev;
432
433 mutex_lock(&dev->mutex);
434 __input_release_device(handle);
435 mutex_unlock(&dev->mutex);
436 }
437 EXPORT_SYMBOL(input_release_device);
438
439 /**
440 * input_open_device - open input device
441 * @handle: handle through which device is being accessed
442 *
443 * This function should be called by input handlers when they
444 * want to start receive events from given input device.
445 */
446 int input_open_device(struct input_handle *handle)
447 {
448 struct input_dev *dev = handle->dev;
449 int retval;
450
451 retval = mutex_lock_interruptible(&dev->mutex);
452 if (retval)
453 return retval;
454
455 if (dev->going_away) {
456 retval = -ENODEV;
457 goto out;
458 }
459
460 handle->open++;
461
462 if (!dev->users++ && dev->open)
463 retval = dev->open(dev);
464
465 if (retval) {
466 dev->users--;
467 if (!--handle->open) {
468 /*
469 * Make sure we are not delivering any more events
470 * through this handle
471 */
472 synchronize_rcu();
473 }
474 }
475
476 out:
477 mutex_unlock(&dev->mutex);
478 return retval;
479 }
480 EXPORT_SYMBOL(input_open_device);
481
482 int input_flush_device(struct input_handle *handle, struct file *file)
483 {
484 struct input_dev *dev = handle->dev;
485 int retval;
486
487 retval = mutex_lock_interruptible(&dev->mutex);
488 if (retval)
489 return retval;
490
491 if (dev->flush)
492 retval = dev->flush(dev, file);
493
494 mutex_unlock(&dev->mutex);
495 return retval;
496 }
497 EXPORT_SYMBOL(input_flush_device);
498
499 /**
500 * input_close_device - close input device
501 * @handle: handle through which device is being accessed
502 *
503 * This function should be called by input handlers when they
504 * want to stop receive events from given input device.
505 */
506 void input_close_device(struct input_handle *handle)
507 {
508 struct input_dev *dev = handle->dev;
509
510 mutex_lock(&dev->mutex);
511
512 __input_release_device(handle);
513
514 if (!--dev->users && dev->close)
515 dev->close(dev);
516
517 if (!--handle->open) {
518 /*
519 * synchronize_rcu() makes sure that input_pass_event()
520 * completed and that no more input events are delivered
521 * through this handle
522 */
523 synchronize_rcu();
524 }
525
526 mutex_unlock(&dev->mutex);
527 }
528 EXPORT_SYMBOL(input_close_device);
529
530 /*
531 * Simulate keyup events for all keys that are marked as pressed.
532 * The function must be called with dev->event_lock held.
533 */
534 static void input_dev_release_keys(struct input_dev *dev)
535 {
536 int code;
537
538 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
539 for (code = 0; code <= KEY_MAX; code++) {
540 if (is_event_supported(code, dev->keybit, KEY_MAX) &&
541 __test_and_clear_bit(code, dev->key)) {
542 input_pass_event(dev, EV_KEY, code, 0);
543 }
544 }
545 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
546 }
547 }
548
549 /*
550 * Prepare device for unregistering
551 */
552 static void input_disconnect_device(struct input_dev *dev)
553 {
554 struct input_handle *handle;
555
556 /*
557 * Mark device as going away. Note that we take dev->mutex here
558 * not to protect access to dev->going_away but rather to ensure
559 * that there are no threads in the middle of input_open_device()
560 */
561 mutex_lock(&dev->mutex);
562 dev->going_away = true;
563 mutex_unlock(&dev->mutex);
564
565 spin_lock_irq(&dev->event_lock);
566
567 /*
568 * Simulate keyup events for all pressed keys so that handlers
569 * are not left with "stuck" keys. The driver may continue
570 * generate events even after we done here but they will not
571 * reach any handlers.
572 */
573 input_dev_release_keys(dev);
574
575 list_for_each_entry(handle, &dev->h_list, d_node)
576 handle->open = 0;
577
578 spin_unlock_irq(&dev->event_lock);
579 }
580
581 static int input_fetch_keycode(struct input_dev *dev, int scancode)
582 {
583 switch (dev->keycodesize) {
584 case 1:
585 return ((u8 *)dev->keycode)[scancode];
586
587 case 2:
588 return ((u16 *)dev->keycode)[scancode];
589
590 default:
591 return ((u32 *)dev->keycode)[scancode];
592 }
593 }
594
595 static int input_default_getkeycode(struct input_dev *dev,
596 unsigned int scancode,
597 unsigned int *keycode)
598 {
599 if (!dev->keycodesize)
600 return -EINVAL;
601
602 if (scancode >= dev->keycodemax)
603 return -EINVAL;
604
605 *keycode = input_fetch_keycode(dev, scancode);
606
607 return 0;
608 }
609
610 static int input_default_setkeycode(struct input_dev *dev,
611 unsigned int scancode,
612 unsigned int keycode)
613 {
614 int old_keycode;
615 int i;
616
617 if (scancode >= dev->keycodemax)
618 return -EINVAL;
619
620 if (!dev->keycodesize)
621 return -EINVAL;
622
623 if (dev->keycodesize < sizeof(keycode) && (keycode >> (dev->keycodesize * 8)))
624 return -EINVAL;
625
626 switch (dev->keycodesize) {
627 case 1: {
628 u8 *k = (u8 *)dev->keycode;
629 old_keycode = k[scancode];
630 k[scancode] = keycode;
631 break;
632 }
633 case 2: {
634 u16 *k = (u16 *)dev->keycode;
635 old_keycode = k[scancode];
636 k[scancode] = keycode;
637 break;
638 }
639 default: {
640 u32 *k = (u32 *)dev->keycode;
641 old_keycode = k[scancode];
642 k[scancode] = keycode;
643 break;
644 }
645 }
646
647 __clear_bit(old_keycode, dev->keybit);
648 __set_bit(keycode, dev->keybit);
649
650 for (i = 0; i < dev->keycodemax; i++) {
651 if (input_fetch_keycode(dev, i) == old_keycode) {
652 __set_bit(old_keycode, dev->keybit);
653 break; /* Setting the bit twice is useless, so break */
654 }
655 }
656
657 return 0;
658 }
659
660 /**
661 * input_get_keycode - retrieve keycode currently mapped to a given scancode
662 * @dev: input device which keymap is being queried
663 * @scancode: scancode (or its equivalent for device in question) for which
664 * keycode is needed
665 * @keycode: result
666 *
667 * This function should be called by anyone interested in retrieving current
668 * keymap. Presently keyboard and evdev handlers use it.
669 */
670 int input_get_keycode(struct input_dev *dev,
671 unsigned int scancode, unsigned int *keycode)
672 {
673 unsigned long flags;
674 int retval;
675
676 spin_lock_irqsave(&dev->event_lock, flags);
677 retval = dev->getkeycode(dev, scancode, keycode);
678 spin_unlock_irqrestore(&dev->event_lock, flags);
679
680 return retval;
681 }
682 EXPORT_SYMBOL(input_get_keycode);
683
684 /**
685 * input_get_keycode - assign new keycode to a given scancode
686 * @dev: input device which keymap is being updated
687 * @scancode: scancode (or its equivalent for device in question)
688 * @keycode: new keycode to be assigned to the scancode
689 *
690 * This function should be called by anyone needing to update current
691 * keymap. Presently keyboard and evdev handlers use it.
692 */
693 int input_set_keycode(struct input_dev *dev,
694 unsigned int scancode, unsigned int keycode)
695 {
696 unsigned long flags;
697 unsigned int old_keycode;
698 int retval;
699
700 if (keycode > KEY_MAX)
701 return -EINVAL;
702
703 spin_lock_irqsave(&dev->event_lock, flags);
704
705 retval = dev->getkeycode(dev, scancode, &old_keycode);
706 if (retval)
707 goto out;
708
709 retval = dev->setkeycode(dev, scancode, keycode);
710 if (retval)
711 goto out;
712
713 /* Make sure KEY_RESERVED did not get enabled. */
714 __clear_bit(KEY_RESERVED, dev->keybit);
715
716 /*
717 * Simulate keyup event if keycode is not present
718 * in the keymap anymore
719 */
720 if (test_bit(EV_KEY, dev->evbit) &&
721 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
722 __test_and_clear_bit(old_keycode, dev->key)) {
723
724 input_pass_event(dev, EV_KEY, old_keycode, 0);
725 if (dev->sync)
726 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
727 }
728
729 out:
730 spin_unlock_irqrestore(&dev->event_lock, flags);
731
732 return retval;
733 }
734 EXPORT_SYMBOL(input_set_keycode);
735
736 #define MATCH_BIT(bit, max) \
737 for (i = 0; i < BITS_TO_LONGS(max); i++) \
738 if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
739 break; \
740 if (i != BITS_TO_LONGS(max)) \
741 continue;
742
743 static const struct input_device_id *input_match_device(struct input_handler *handler,
744 struct input_dev *dev)
745 {
746 const struct input_device_id *id;
747 int i;
748
749 for (id = handler->id_table; id->flags || id->driver_info; id++) {
750
751 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
752 if (id->bustype != dev->id.bustype)
753 continue;
754
755 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
756 if (id->vendor != dev->id.vendor)
757 continue;
758
759 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
760 if (id->product != dev->id.product)
761 continue;
762
763 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
764 if (id->version != dev->id.version)
765 continue;
766
767 MATCH_BIT(evbit, EV_MAX);
768 MATCH_BIT(keybit, KEY_MAX);
769 MATCH_BIT(relbit, REL_MAX);
770 MATCH_BIT(absbit, ABS_MAX);
771 MATCH_BIT(mscbit, MSC_MAX);
772 MATCH_BIT(ledbit, LED_MAX);
773 MATCH_BIT(sndbit, SND_MAX);
774 MATCH_BIT(ffbit, FF_MAX);
775 MATCH_BIT(swbit, SW_MAX);
776
777 if (!handler->match || handler->match(handler, dev))
778 return id;
779 }
780
781 return NULL;
782 }
783
784 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
785 {
786 const struct input_device_id *id;
787 int error;
788
789 id = input_match_device(handler, dev);
790 if (!id)
791 return -ENODEV;
792
793 error = handler->connect(handler, dev, id);
794 if (error && error != -ENODEV)
795 printk(KERN_ERR
796 "input: failed to attach handler %s to device %s, "
797 "error: %d\n",
798 handler->name, kobject_name(&dev->dev.kobj), error);
799
800 return error;
801 }
802
803 #ifdef CONFIG_COMPAT
804
805 static int input_bits_to_string(char *buf, int buf_size,
806 unsigned long bits, bool skip_empty)
807 {
808 int len = 0;
809
810 if (INPUT_COMPAT_TEST) {
811 u32 dword = bits >> 32;
812 if (dword || !skip_empty)
813 len += snprintf(buf, buf_size, "%x ", dword);
814
815 dword = bits & 0xffffffffUL;
816 if (dword || !skip_empty || len)
817 len += snprintf(buf + len, max(buf_size - len, 0),
818 "%x", dword);
819 } else {
820 if (bits || !skip_empty)
821 len += snprintf(buf, buf_size, "%lx", bits);
822 }
823
824 return len;
825 }
826
827 #else /* !CONFIG_COMPAT */
828
829 static int input_bits_to_string(char *buf, int buf_size,
830 unsigned long bits, bool skip_empty)
831 {
832 return bits || !skip_empty ?
833 snprintf(buf, buf_size, "%lx", bits) : 0;
834 }
835
836 #endif
837
838 #ifdef CONFIG_PROC_FS
839
840 static struct proc_dir_entry *proc_bus_input_dir;
841 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
842 static int input_devices_state;
843
844 static inline void input_wakeup_procfs_readers(void)
845 {
846 input_devices_state++;
847 wake_up(&input_devices_poll_wait);
848 }
849
850 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
851 {
852 poll_wait(file, &input_devices_poll_wait, wait);
853 if (file->f_version != input_devices_state) {
854 file->f_version = input_devices_state;
855 return POLLIN | POLLRDNORM;
856 }
857
858 return 0;
859 }
860
861 union input_seq_state {
862 struct {
863 unsigned short pos;
864 bool mutex_acquired;
865 };
866 void *p;
867 };
868
869 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
870 {
871 union input_seq_state *state = (union input_seq_state *)&seq->private;
872 int error;
873
874 /* We need to fit into seq->private pointer */
875 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
876
877 error = mutex_lock_interruptible(&input_mutex);
878 if (error) {
879 state->mutex_acquired = false;
880 return ERR_PTR(error);
881 }
882
883 state->mutex_acquired = true;
884
885 return seq_list_start(&input_dev_list, *pos);
886 }
887
888 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
889 {
890 return seq_list_next(v, &input_dev_list, pos);
891 }
892
893 static void input_seq_stop(struct seq_file *seq, void *v)
894 {
895 union input_seq_state *state = (union input_seq_state *)&seq->private;
896
897 if (state->mutex_acquired)
898 mutex_unlock(&input_mutex);
899 }
900
901 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
902 unsigned long *bitmap, int max)
903 {
904 int i;
905 bool skip_empty = true;
906 char buf[18];
907
908 seq_printf(seq, "B: %s=", name);
909
910 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
911 if (input_bits_to_string(buf, sizeof(buf),
912 bitmap[i], skip_empty)) {
913 skip_empty = false;
914 seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
915 }
916 }
917
918 /*
919 * If no output was produced print a single 0.
920 */
921 if (skip_empty)
922 seq_puts(seq, "0");
923
924 seq_putc(seq, '\n');
925 }
926
927 static int input_devices_seq_show(struct seq_file *seq, void *v)
928 {
929 struct input_dev *dev = container_of(v, struct input_dev, node);
930 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
931 struct input_handle *handle;
932
933 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
934 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
935
936 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
937 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
938 seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
939 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
940 seq_printf(seq, "H: Handlers=");
941
942 list_for_each_entry(handle, &dev->h_list, d_node)
943 seq_printf(seq, "%s ", handle->name);
944 seq_putc(seq, '\n');
945
946 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
947 if (test_bit(EV_KEY, dev->evbit))
948 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
949 if (test_bit(EV_REL, dev->evbit))
950 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
951 if (test_bit(EV_ABS, dev->evbit))
952 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
953 if (test_bit(EV_MSC, dev->evbit))
954 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
955 if (test_bit(EV_LED, dev->evbit))
956 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
957 if (test_bit(EV_SND, dev->evbit))
958 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
959 if (test_bit(EV_FF, dev->evbit))
960 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
961 if (test_bit(EV_SW, dev->evbit))
962 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
963
964 seq_putc(seq, '\n');
965
966 kfree(path);
967 return 0;
968 }
969
970 static const struct seq_operations input_devices_seq_ops = {
971 .start = input_devices_seq_start,
972 .next = input_devices_seq_next,
973 .stop = input_seq_stop,
974 .show = input_devices_seq_show,
975 };
976
977 static int input_proc_devices_open(struct inode *inode, struct file *file)
978 {
979 return seq_open(file, &input_devices_seq_ops);
980 }
981
982 static const struct file_operations input_devices_fileops = {
983 .owner = THIS_MODULE,
984 .open = input_proc_devices_open,
985 .poll = input_proc_devices_poll,
986 .read = seq_read,
987 .llseek = seq_lseek,
988 .release = seq_release,
989 };
990
991 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
992 {
993 union input_seq_state *state = (union input_seq_state *)&seq->private;
994 int error;
995
996 /* We need to fit into seq->private pointer */
997 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
998
999 error = mutex_lock_interruptible(&input_mutex);
1000 if (error) {
1001 state->mutex_acquired = false;
1002 return ERR_PTR(error);
1003 }
1004
1005 state->mutex_acquired = true;
1006 state->pos = *pos;
1007
1008 return seq_list_start(&input_handler_list, *pos);
1009 }
1010
1011 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1012 {
1013 union input_seq_state *state = (union input_seq_state *)&seq->private;
1014
1015 state->pos = *pos + 1;
1016 return seq_list_next(v, &input_handler_list, pos);
1017 }
1018
1019 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1020 {
1021 struct input_handler *handler = container_of(v, struct input_handler, node);
1022 union input_seq_state *state = (union input_seq_state *)&seq->private;
1023
1024 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1025 if (handler->filter)
1026 seq_puts(seq, " (filter)");
1027 if (handler->fops)
1028 seq_printf(seq, " Minor=%d", handler->minor);
1029 seq_putc(seq, '\n');
1030
1031 return 0;
1032 }
1033
1034 static const struct seq_operations input_handlers_seq_ops = {
1035 .start = input_handlers_seq_start,
1036 .next = input_handlers_seq_next,
1037 .stop = input_seq_stop,
1038 .show = input_handlers_seq_show,
1039 };
1040
1041 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1042 {
1043 return seq_open(file, &input_handlers_seq_ops);
1044 }
1045
1046 static const struct file_operations input_handlers_fileops = {
1047 .owner = THIS_MODULE,
1048 .open = input_proc_handlers_open,
1049 .read = seq_read,
1050 .llseek = seq_lseek,
1051 .release = seq_release,
1052 };
1053
1054 static int __init input_proc_init(void)
1055 {
1056 struct proc_dir_entry *entry;
1057
1058 proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1059 if (!proc_bus_input_dir)
1060 return -ENOMEM;
1061
1062 entry = proc_create("devices", 0, proc_bus_input_dir,
1063 &input_devices_fileops);
1064 if (!entry)
1065 goto fail1;
1066
1067 entry = proc_create("handlers", 0, proc_bus_input_dir,
1068 &input_handlers_fileops);
1069 if (!entry)
1070 goto fail2;
1071
1072 return 0;
1073
1074 fail2: remove_proc_entry("devices", proc_bus_input_dir);
1075 fail1: remove_proc_entry("bus/input", NULL);
1076 return -ENOMEM;
1077 }
1078
1079 static void input_proc_exit(void)
1080 {
1081 remove_proc_entry("devices", proc_bus_input_dir);
1082 remove_proc_entry("handlers", proc_bus_input_dir);
1083 remove_proc_entry("bus/input", NULL);
1084 }
1085
1086 #else /* !CONFIG_PROC_FS */
1087 static inline void input_wakeup_procfs_readers(void) { }
1088 static inline int input_proc_init(void) { return 0; }
1089 static inline void input_proc_exit(void) { }
1090 #endif
1091
1092 #define INPUT_DEV_STRING_ATTR_SHOW(name) \
1093 static ssize_t input_dev_show_##name(struct device *dev, \
1094 struct device_attribute *attr, \
1095 char *buf) \
1096 { \
1097 struct input_dev *input_dev = to_input_dev(dev); \
1098 \
1099 return scnprintf(buf, PAGE_SIZE, "%s\n", \
1100 input_dev->name ? input_dev->name : ""); \
1101 } \
1102 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1103
1104 INPUT_DEV_STRING_ATTR_SHOW(name);
1105 INPUT_DEV_STRING_ATTR_SHOW(phys);
1106 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1107
1108 static int input_print_modalias_bits(char *buf, int size,
1109 char name, unsigned long *bm,
1110 unsigned int min_bit, unsigned int max_bit)
1111 {
1112 int len = 0, i;
1113
1114 len += snprintf(buf, max(size, 0), "%c", name);
1115 for (i = min_bit; i < max_bit; i++)
1116 if (bm[BIT_WORD(i)] & BIT_MASK(i))
1117 len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1118 return len;
1119 }
1120
1121 static int input_print_modalias(char *buf, int size, struct input_dev *id,
1122 int add_cr)
1123 {
1124 int len;
1125
1126 len = snprintf(buf, max(size, 0),
1127 "input:b%04Xv%04Xp%04Xe%04X-",
1128 id->id.bustype, id->id.vendor,
1129 id->id.product, id->id.version);
1130
1131 len += input_print_modalias_bits(buf + len, size - len,
1132 'e', id->evbit, 0, EV_MAX);
1133 len += input_print_modalias_bits(buf + len, size - len,
1134 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1135 len += input_print_modalias_bits(buf + len, size - len,
1136 'r', id->relbit, 0, REL_MAX);
1137 len += input_print_modalias_bits(buf + len, size - len,
1138 'a', id->absbit, 0, ABS_MAX);
1139 len += input_print_modalias_bits(buf + len, size - len,
1140 'm', id->mscbit, 0, MSC_MAX);
1141 len += input_print_modalias_bits(buf + len, size - len,
1142 'l', id->ledbit, 0, LED_MAX);
1143 len += input_print_modalias_bits(buf + len, size - len,
1144 's', id->sndbit, 0, SND_MAX);
1145 len += input_print_modalias_bits(buf + len, size - len,
1146 'f', id->ffbit, 0, FF_MAX);
1147 len += input_print_modalias_bits(buf + len, size - len,
1148 'w', id->swbit, 0, SW_MAX);
1149
1150 if (add_cr)
1151 len += snprintf(buf + len, max(size - len, 0), "\n");
1152
1153 return len;
1154 }
1155
1156 static ssize_t input_dev_show_modalias(struct device *dev,
1157 struct device_attribute *attr,
1158 char *buf)
1159 {
1160 struct input_dev *id = to_input_dev(dev);
1161 ssize_t len;
1162
1163 len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1164
1165 return min_t(int, len, PAGE_SIZE);
1166 }
1167 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1168
1169 static struct attribute *input_dev_attrs[] = {
1170 &dev_attr_name.attr,
1171 &dev_attr_phys.attr,
1172 &dev_attr_uniq.attr,
1173 &dev_attr_modalias.attr,
1174 NULL
1175 };
1176
1177 static struct attribute_group input_dev_attr_group = {
1178 .attrs = input_dev_attrs,
1179 };
1180
1181 #define INPUT_DEV_ID_ATTR(name) \
1182 static ssize_t input_dev_show_id_##name(struct device *dev, \
1183 struct device_attribute *attr, \
1184 char *buf) \
1185 { \
1186 struct input_dev *input_dev = to_input_dev(dev); \
1187 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1188 } \
1189 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1190
1191 INPUT_DEV_ID_ATTR(bustype);
1192 INPUT_DEV_ID_ATTR(vendor);
1193 INPUT_DEV_ID_ATTR(product);
1194 INPUT_DEV_ID_ATTR(version);
1195
1196 static struct attribute *input_dev_id_attrs[] = {
1197 &dev_attr_bustype.attr,
1198 &dev_attr_vendor.attr,
1199 &dev_attr_product.attr,
1200 &dev_attr_version.attr,
1201 NULL
1202 };
1203
1204 static struct attribute_group input_dev_id_attr_group = {
1205 .name = "id",
1206 .attrs = input_dev_id_attrs,
1207 };
1208
1209 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1210 int max, int add_cr)
1211 {
1212 int i;
1213 int len = 0;
1214 bool skip_empty = true;
1215
1216 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1217 len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1218 bitmap[i], skip_empty);
1219 if (len) {
1220 skip_empty = false;
1221 if (i > 0)
1222 len += snprintf(buf + len, max(buf_size - len, 0), " ");
1223 }
1224 }
1225
1226 /*
1227 * If no output was produced print a single 0.
1228 */
1229 if (len == 0)
1230 len = snprintf(buf, buf_size, "%d", 0);
1231
1232 if (add_cr)
1233 len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1234
1235 return len;
1236 }
1237
1238 #define INPUT_DEV_CAP_ATTR(ev, bm) \
1239 static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1240 struct device_attribute *attr, \
1241 char *buf) \
1242 { \
1243 struct input_dev *input_dev = to_input_dev(dev); \
1244 int len = input_print_bitmap(buf, PAGE_SIZE, \
1245 input_dev->bm##bit, ev##_MAX, \
1246 true); \
1247 return min_t(int, len, PAGE_SIZE); \
1248 } \
1249 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1250
1251 INPUT_DEV_CAP_ATTR(EV, ev);
1252 INPUT_DEV_CAP_ATTR(KEY, key);
1253 INPUT_DEV_CAP_ATTR(REL, rel);
1254 INPUT_DEV_CAP_ATTR(ABS, abs);
1255 INPUT_DEV_CAP_ATTR(MSC, msc);
1256 INPUT_DEV_CAP_ATTR(LED, led);
1257 INPUT_DEV_CAP_ATTR(SND, snd);
1258 INPUT_DEV_CAP_ATTR(FF, ff);
1259 INPUT_DEV_CAP_ATTR(SW, sw);
1260
1261 static struct attribute *input_dev_caps_attrs[] = {
1262 &dev_attr_ev.attr,
1263 &dev_attr_key.attr,
1264 &dev_attr_rel.attr,
1265 &dev_attr_abs.attr,
1266 &dev_attr_msc.attr,
1267 &dev_attr_led.attr,
1268 &dev_attr_snd.attr,
1269 &dev_attr_ff.attr,
1270 &dev_attr_sw.attr,
1271 NULL
1272 };
1273
1274 static struct attribute_group input_dev_caps_attr_group = {
1275 .name = "capabilities",
1276 .attrs = input_dev_caps_attrs,
1277 };
1278
1279 static const struct attribute_group *input_dev_attr_groups[] = {
1280 &input_dev_attr_group,
1281 &input_dev_id_attr_group,
1282 &input_dev_caps_attr_group,
1283 NULL
1284 };
1285
1286 static void input_dev_release(struct device *device)
1287 {
1288 struct input_dev *dev = to_input_dev(device);
1289
1290 input_ff_destroy(dev);
1291 kfree(dev);
1292
1293 module_put(THIS_MODULE);
1294 }
1295
1296 /*
1297 * Input uevent interface - loading event handlers based on
1298 * device bitfields.
1299 */
1300 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1301 const char *name, unsigned long *bitmap, int max)
1302 {
1303 int len;
1304
1305 if (add_uevent_var(env, "%s=", name))
1306 return -ENOMEM;
1307
1308 len = input_print_bitmap(&env->buf[env->buflen - 1],
1309 sizeof(env->buf) - env->buflen,
1310 bitmap, max, false);
1311 if (len >= (sizeof(env->buf) - env->buflen))
1312 return -ENOMEM;
1313
1314 env->buflen += len;
1315 return 0;
1316 }
1317
1318 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1319 struct input_dev *dev)
1320 {
1321 int len;
1322
1323 if (add_uevent_var(env, "MODALIAS="))
1324 return -ENOMEM;
1325
1326 len = input_print_modalias(&env->buf[env->buflen - 1],
1327 sizeof(env->buf) - env->buflen,
1328 dev, 0);
1329 if (len >= (sizeof(env->buf) - env->buflen))
1330 return -ENOMEM;
1331
1332 env->buflen += len;
1333 return 0;
1334 }
1335
1336 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1337 do { \
1338 int err = add_uevent_var(env, fmt, val); \
1339 if (err) \
1340 return err; \
1341 } while (0)
1342
1343 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1344 do { \
1345 int err = input_add_uevent_bm_var(env, name, bm, max); \
1346 if (err) \
1347 return err; \
1348 } while (0)
1349
1350 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1351 do { \
1352 int err = input_add_uevent_modalias_var(env, dev); \
1353 if (err) \
1354 return err; \
1355 } while (0)
1356
1357 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1358 {
1359 struct input_dev *dev = to_input_dev(device);
1360
1361 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1362 dev->id.bustype, dev->id.vendor,
1363 dev->id.product, dev->id.version);
1364 if (dev->name)
1365 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1366 if (dev->phys)
1367 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1368 if (dev->uniq)
1369 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1370
1371 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1372 if (test_bit(EV_KEY, dev->evbit))
1373 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1374 if (test_bit(EV_REL, dev->evbit))
1375 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1376 if (test_bit(EV_ABS, dev->evbit))
1377 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1378 if (test_bit(EV_MSC, dev->evbit))
1379 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1380 if (test_bit(EV_LED, dev->evbit))
1381 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1382 if (test_bit(EV_SND, dev->evbit))
1383 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1384 if (test_bit(EV_FF, dev->evbit))
1385 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1386 if (test_bit(EV_SW, dev->evbit))
1387 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1388
1389 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1390
1391 return 0;
1392 }
1393
1394 #define INPUT_DO_TOGGLE(dev, type, bits, on) \
1395 do { \
1396 int i; \
1397 bool active; \
1398 \
1399 if (!test_bit(EV_##type, dev->evbit)) \
1400 break; \
1401 \
1402 for (i = 0; i < type##_MAX; i++) { \
1403 if (!test_bit(i, dev->bits##bit)) \
1404 continue; \
1405 \
1406 active = test_bit(i, dev->bits); \
1407 if (!active && !on) \
1408 continue; \
1409 \
1410 dev->event(dev, EV_##type, i, on ? active : 0); \
1411 } \
1412 } while (0)
1413
1414 #ifdef CONFIG_PM
1415 static void input_dev_reset(struct input_dev *dev, bool activate)
1416 {
1417 if (!dev->event)
1418 return;
1419
1420 INPUT_DO_TOGGLE(dev, LED, led, activate);
1421 INPUT_DO_TOGGLE(dev, SND, snd, activate);
1422
1423 if (activate && test_bit(EV_REP, dev->evbit)) {
1424 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1425 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1426 }
1427 }
1428
1429 static int input_dev_suspend(struct device *dev)
1430 {
1431 struct input_dev *input_dev = to_input_dev(dev);
1432
1433 mutex_lock(&input_dev->mutex);
1434 input_dev_reset(input_dev, false);
1435 mutex_unlock(&input_dev->mutex);
1436
1437 return 0;
1438 }
1439
1440 static int input_dev_resume(struct device *dev)
1441 {
1442 struct input_dev *input_dev = to_input_dev(dev);
1443
1444 mutex_lock(&input_dev->mutex);
1445 input_dev_reset(input_dev, true);
1446
1447 /*
1448 * Keys that have been pressed at suspend time are unlikely
1449 * to be still pressed when we resume.
1450 */
1451 spin_lock_irq(&input_dev->event_lock);
1452 input_dev_release_keys(input_dev);
1453 spin_unlock_irq(&input_dev->event_lock);
1454
1455 mutex_unlock(&input_dev->mutex);
1456
1457 return 0;
1458 }
1459
1460 static const struct dev_pm_ops input_dev_pm_ops = {
1461 .suspend = input_dev_suspend,
1462 .resume = input_dev_resume,
1463 .poweroff = input_dev_suspend,
1464 .restore = input_dev_resume,
1465 };
1466 #endif /* CONFIG_PM */
1467
1468 static struct device_type input_dev_type = {
1469 .groups = input_dev_attr_groups,
1470 .release = input_dev_release,
1471 .uevent = input_dev_uevent,
1472 #ifdef CONFIG_PM
1473 .pm = &input_dev_pm_ops,
1474 #endif
1475 };
1476
1477 static char *input_devnode(struct device *dev, mode_t *mode)
1478 {
1479 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1480 }
1481
1482 struct class input_class = {
1483 .name = "input",
1484 .devnode = input_devnode,
1485 };
1486 EXPORT_SYMBOL_GPL(input_class);
1487
1488 /**
1489 * input_allocate_device - allocate memory for new input device
1490 *
1491 * Returns prepared struct input_dev or NULL.
1492 *
1493 * NOTE: Use input_free_device() to free devices that have not been
1494 * registered; input_unregister_device() should be used for already
1495 * registered devices.
1496 */
1497 struct input_dev *input_allocate_device(void)
1498 {
1499 struct input_dev *dev;
1500
1501 dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
1502 if (dev) {
1503 dev->dev.type = &input_dev_type;
1504 dev->dev.class = &input_class;
1505 device_initialize(&dev->dev);
1506 mutex_init(&dev->mutex);
1507 spin_lock_init(&dev->event_lock);
1508 INIT_LIST_HEAD(&dev->h_list);
1509 INIT_LIST_HEAD(&dev->node);
1510
1511 __module_get(THIS_MODULE);
1512 }
1513
1514 return dev;
1515 }
1516 EXPORT_SYMBOL(input_allocate_device);
1517
1518 /**
1519 * input_free_device - free memory occupied by input_dev structure
1520 * @dev: input device to free
1521 *
1522 * This function should only be used if input_register_device()
1523 * was not called yet or if it failed. Once device was registered
1524 * use input_unregister_device() and memory will be freed once last
1525 * reference to the device is dropped.
1526 *
1527 * Device should be allocated by input_allocate_device().
1528 *
1529 * NOTE: If there are references to the input device then memory
1530 * will not be freed until last reference is dropped.
1531 */
1532 void input_free_device(struct input_dev *dev)
1533 {
1534 if (dev)
1535 input_put_device(dev);
1536 }
1537 EXPORT_SYMBOL(input_free_device);
1538
1539 /**
1540 * input_set_capability - mark device as capable of a certain event
1541 * @dev: device that is capable of emitting or accepting event
1542 * @type: type of the event (EV_KEY, EV_REL, etc...)
1543 * @code: event code
1544 *
1545 * In addition to setting up corresponding bit in appropriate capability
1546 * bitmap the function also adjusts dev->evbit.
1547 */
1548 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1549 {
1550 switch (type) {
1551 case EV_KEY:
1552 __set_bit(code, dev->keybit);
1553 break;
1554
1555 case EV_REL:
1556 __set_bit(code, dev->relbit);
1557 break;
1558
1559 case EV_ABS:
1560 __set_bit(code, dev->absbit);
1561 break;
1562
1563 case EV_MSC:
1564 __set_bit(code, dev->mscbit);
1565 break;
1566
1567 case EV_SW:
1568 __set_bit(code, dev->swbit);
1569 break;
1570
1571 case EV_LED:
1572 __set_bit(code, dev->ledbit);
1573 break;
1574
1575 case EV_SND:
1576 __set_bit(code, dev->sndbit);
1577 break;
1578
1579 case EV_FF:
1580 __set_bit(code, dev->ffbit);
1581 break;
1582
1583 case EV_PWR:
1584 /* do nothing */
1585 break;
1586
1587 default:
1588 printk(KERN_ERR
1589 "input_set_capability: unknown type %u (code %u)\n",
1590 type, code);
1591 dump_stack();
1592 return;
1593 }
1594
1595 __set_bit(type, dev->evbit);
1596 }
1597 EXPORT_SYMBOL(input_set_capability);
1598
1599 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \
1600 do { \
1601 if (!test_bit(EV_##type, dev->evbit)) \
1602 memset(dev->bits##bit, 0, \
1603 sizeof(dev->bits##bit)); \
1604 } while (0)
1605
1606 static void input_cleanse_bitmasks(struct input_dev *dev)
1607 {
1608 INPUT_CLEANSE_BITMASK(dev, KEY, key);
1609 INPUT_CLEANSE_BITMASK(dev, REL, rel);
1610 INPUT_CLEANSE_BITMASK(dev, ABS, abs);
1611 INPUT_CLEANSE_BITMASK(dev, MSC, msc);
1612 INPUT_CLEANSE_BITMASK(dev, LED, led);
1613 INPUT_CLEANSE_BITMASK(dev, SND, snd);
1614 INPUT_CLEANSE_BITMASK(dev, FF, ff);
1615 INPUT_CLEANSE_BITMASK(dev, SW, sw);
1616 }
1617
1618 /**
1619 * input_register_device - register device with input core
1620 * @dev: device to be registered
1621 *
1622 * This function registers device with input core. The device must be
1623 * allocated with input_allocate_device() and all it's capabilities
1624 * set up before registering.
1625 * If function fails the device must be freed with input_free_device().
1626 * Once device has been successfully registered it can be unregistered
1627 * with input_unregister_device(); input_free_device() should not be
1628 * called in this case.
1629 */
1630 int input_register_device(struct input_dev *dev)
1631 {
1632 static atomic_t input_no = ATOMIC_INIT(0);
1633 struct input_handler *handler;
1634 const char *path;
1635 int error;
1636
1637 /* Every input device generates EV_SYN/SYN_REPORT events. */
1638 __set_bit(EV_SYN, dev->evbit);
1639
1640 /* KEY_RESERVED is not supposed to be transmitted to userspace. */
1641 __clear_bit(KEY_RESERVED, dev->keybit);
1642
1643 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
1644 input_cleanse_bitmasks(dev);
1645
1646 /*
1647 * If delay and period are pre-set by the driver, then autorepeating
1648 * is handled by the driver itself and we don't do it in input.c.
1649 */
1650 init_timer(&dev->timer);
1651 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
1652 dev->timer.data = (long) dev;
1653 dev->timer.function = input_repeat_key;
1654 dev->rep[REP_DELAY] = 250;
1655 dev->rep[REP_PERIOD] = 33;
1656 }
1657
1658 if (!dev->getkeycode)
1659 dev->getkeycode = input_default_getkeycode;
1660
1661 if (!dev->setkeycode)
1662 dev->setkeycode = input_default_setkeycode;
1663
1664 dev_set_name(&dev->dev, "input%ld",
1665 (unsigned long) atomic_inc_return(&input_no) - 1);
1666
1667 error = device_add(&dev->dev);
1668 if (error)
1669 return error;
1670
1671 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1672 printk(KERN_INFO "input: %s as %s\n",
1673 dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
1674 kfree(path);
1675
1676 error = mutex_lock_interruptible(&input_mutex);
1677 if (error) {
1678 device_del(&dev->dev);
1679 return error;
1680 }
1681
1682 list_add_tail(&dev->node, &input_dev_list);
1683
1684 list_for_each_entry(handler, &input_handler_list, node)
1685 input_attach_handler(dev, handler);
1686
1687 input_wakeup_procfs_readers();
1688
1689 mutex_unlock(&input_mutex);
1690
1691 return 0;
1692 }
1693 EXPORT_SYMBOL(input_register_device);
1694
1695 /**
1696 * input_unregister_device - unregister previously registered device
1697 * @dev: device to be unregistered
1698 *
1699 * This function unregisters an input device. Once device is unregistered
1700 * the caller should not try to access it as it may get freed at any moment.
1701 */
1702 void input_unregister_device(struct input_dev *dev)
1703 {
1704 struct input_handle *handle, *next;
1705
1706 input_disconnect_device(dev);
1707
1708 mutex_lock(&input_mutex);
1709
1710 list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
1711 handle->handler->disconnect(handle);
1712 WARN_ON(!list_empty(&dev->h_list));
1713
1714 del_timer_sync(&dev->timer);
1715 list_del_init(&dev->node);
1716
1717 input_wakeup_procfs_readers();
1718
1719 mutex_unlock(&input_mutex);
1720
1721 device_unregister(&dev->dev);
1722 }
1723 EXPORT_SYMBOL(input_unregister_device);
1724
1725 /**
1726 * input_register_handler - register a new input handler
1727 * @handler: handler to be registered
1728 *
1729 * This function registers a new input handler (interface) for input
1730 * devices in the system and attaches it to all input devices that
1731 * are compatible with the handler.
1732 */
1733 int input_register_handler(struct input_handler *handler)
1734 {
1735 struct input_dev *dev;
1736 int retval;
1737
1738 retval = mutex_lock_interruptible(&input_mutex);
1739 if (retval)
1740 return retval;
1741
1742 INIT_LIST_HEAD(&handler->h_list);
1743
1744 if (handler->fops != NULL) {
1745 if (input_table[handler->minor >> 5]) {
1746 retval = -EBUSY;
1747 goto out;
1748 }
1749 input_table[handler->minor >> 5] = handler;
1750 }
1751
1752 list_add_tail(&handler->node, &input_handler_list);
1753
1754 list_for_each_entry(dev, &input_dev_list, node)
1755 input_attach_handler(dev, handler);
1756
1757 input_wakeup_procfs_readers();
1758
1759 out:
1760 mutex_unlock(&input_mutex);
1761 return retval;
1762 }
1763 EXPORT_SYMBOL(input_register_handler);
1764
1765 /**
1766 * input_unregister_handler - unregisters an input handler
1767 * @handler: handler to be unregistered
1768 *
1769 * This function disconnects a handler from its input devices and
1770 * removes it from lists of known handlers.
1771 */
1772 void input_unregister_handler(struct input_handler *handler)
1773 {
1774 struct input_handle *handle, *next;
1775
1776 mutex_lock(&input_mutex);
1777
1778 list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
1779 handler->disconnect(handle);
1780 WARN_ON(!list_empty(&handler->h_list));
1781
1782 list_del_init(&handler->node);
1783
1784 if (handler->fops != NULL)
1785 input_table[handler->minor >> 5] = NULL;
1786
1787 input_wakeup_procfs_readers();
1788
1789 mutex_unlock(&input_mutex);
1790 }
1791 EXPORT_SYMBOL(input_unregister_handler);
1792
1793 /**
1794 * input_handler_for_each_handle - handle iterator
1795 * @handler: input handler to iterate
1796 * @data: data for the callback
1797 * @fn: function to be called for each handle
1798 *
1799 * Iterate over @bus's list of devices, and call @fn for each, passing
1800 * it @data and stop when @fn returns a non-zero value. The function is
1801 * using RCU to traverse the list and therefore may be usind in atonic
1802 * contexts. The @fn callback is invoked from RCU critical section and
1803 * thus must not sleep.
1804 */
1805 int input_handler_for_each_handle(struct input_handler *handler, void *data,
1806 int (*fn)(struct input_handle *, void *))
1807 {
1808 struct input_handle *handle;
1809 int retval = 0;
1810
1811 rcu_read_lock();
1812
1813 list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
1814 retval = fn(handle, data);
1815 if (retval)
1816 break;
1817 }
1818
1819 rcu_read_unlock();
1820
1821 return retval;
1822 }
1823 EXPORT_SYMBOL(input_handler_for_each_handle);
1824
1825 /**
1826 * input_register_handle - register a new input handle
1827 * @handle: handle to register
1828 *
1829 * This function puts a new input handle onto device's
1830 * and handler's lists so that events can flow through
1831 * it once it is opened using input_open_device().
1832 *
1833 * This function is supposed to be called from handler's
1834 * connect() method.
1835 */
1836 int input_register_handle(struct input_handle *handle)
1837 {
1838 struct input_handler *handler = handle->handler;
1839 struct input_dev *dev = handle->dev;
1840 int error;
1841
1842 /*
1843 * We take dev->mutex here to prevent race with
1844 * input_release_device().
1845 */
1846 error = mutex_lock_interruptible(&dev->mutex);
1847 if (error)
1848 return error;
1849
1850 /*
1851 * Filters go to the head of the list, normal handlers
1852 * to the tail.
1853 */
1854 if (handler->filter)
1855 list_add_rcu(&handle->d_node, &dev->h_list);
1856 else
1857 list_add_tail_rcu(&handle->d_node, &dev->h_list);
1858
1859 mutex_unlock(&dev->mutex);
1860
1861 /*
1862 * Since we are supposed to be called from ->connect()
1863 * which is mutually exclusive with ->disconnect()
1864 * we can't be racing with input_unregister_handle()
1865 * and so separate lock is not needed here.
1866 */
1867 list_add_tail_rcu(&handle->h_node, &handler->h_list);
1868
1869 if (handler->start)
1870 handler->start(handle);
1871
1872 return 0;
1873 }
1874 EXPORT_SYMBOL(input_register_handle);
1875
1876 /**
1877 * input_unregister_handle - unregister an input handle
1878 * @handle: handle to unregister
1879 *
1880 * This function removes input handle from device's
1881 * and handler's lists.
1882 *
1883 * This function is supposed to be called from handler's
1884 * disconnect() method.
1885 */
1886 void input_unregister_handle(struct input_handle *handle)
1887 {
1888 struct input_dev *dev = handle->dev;
1889
1890 list_del_rcu(&handle->h_node);
1891
1892 /*
1893 * Take dev->mutex to prevent race with input_release_device().
1894 */
1895 mutex_lock(&dev->mutex);
1896 list_del_rcu(&handle->d_node);
1897 mutex_unlock(&dev->mutex);
1898
1899 synchronize_rcu();
1900 }
1901 EXPORT_SYMBOL(input_unregister_handle);
1902
1903 static int input_open_file(struct inode *inode, struct file *file)
1904 {
1905 struct input_handler *handler;
1906 const struct file_operations *old_fops, *new_fops = NULL;
1907 int err;
1908
1909 err = mutex_lock_interruptible(&input_mutex);
1910 if (err)
1911 return err;
1912
1913 /* No load-on-demand here? */
1914 handler = input_table[iminor(inode) >> 5];
1915 if (handler)
1916 new_fops = fops_get(handler->fops);
1917
1918 mutex_unlock(&input_mutex);
1919
1920 /*
1921 * That's _really_ odd. Usually NULL ->open means "nothing special",
1922 * not "no device". Oh, well...
1923 */
1924 if (!new_fops || !new_fops->open) {
1925 fops_put(new_fops);
1926 err = -ENODEV;
1927 goto out;
1928 }
1929
1930 old_fops = file->f_op;
1931 file->f_op = new_fops;
1932
1933 err = new_fops->open(inode, file);
1934 if (err) {
1935 fops_put(file->f_op);
1936 file->f_op = fops_get(old_fops);
1937 }
1938 fops_put(old_fops);
1939 out:
1940 return err;
1941 }
1942
1943 static const struct file_operations input_fops = {
1944 .owner = THIS_MODULE,
1945 .open = input_open_file,
1946 };
1947
1948 static void __init input_init_abs_bypass(void)
1949 {
1950 const unsigned int *p;
1951
1952 for (p = input_abs_bypass_init_data; *p; p++)
1953 input_abs_bypass[BIT_WORD(*p)] |= BIT_MASK(*p);
1954 }
1955
1956 static int __init input_init(void)
1957 {
1958 int err;
1959
1960 input_init_abs_bypass();
1961
1962 err = class_register(&input_class);
1963 if (err) {
1964 printk(KERN_ERR "input: unable to register input_dev class\n");
1965 return err;
1966 }
1967
1968 err = input_proc_init();
1969 if (err)
1970 goto fail1;
1971
1972 err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
1973 if (err) {
1974 printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR);
1975 goto fail2;
1976 }
1977
1978 return 0;
1979
1980 fail2: input_proc_exit();
1981 fail1: class_unregister(&input_class);
1982 return err;
1983 }
1984
1985 static void __exit input_exit(void)
1986 {
1987 input_proc_exit();
1988 unregister_chrdev(INPUT_MAJOR, "input");
1989 class_unregister(&input_class);
1990 }
1991
1992 subsys_initcall(input_init);
1993 module_exit(input_exit);
This page took 0.107867 seconds and 5 git commands to generate.