Merge branch 'for-linus' of git://gitorious.org/linux-omap-dss2/linux
[deliverable/linux.git] / drivers / input / input.c
1 /*
2 * The input core
3 *
4 * Copyright (c) 1999-2002 Vojtech Pavlik
5 */
6
7 /*
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License version 2 as published by
10 * the Free Software Foundation.
11 */
12
13 #include <linux/init.h>
14 #include <linux/types.h>
15 #include <linux/input.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/random.h>
19 #include <linux/major.h>
20 #include <linux/proc_fs.h>
21 #include <linux/sched.h>
22 #include <linux/seq_file.h>
23 #include <linux/poll.h>
24 #include <linux/device.h>
25 #include <linux/mutex.h>
26 #include <linux/rcupdate.h>
27 #include <linux/smp_lock.h>
28 #include "input-compat.h"
29
30 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
31 MODULE_DESCRIPTION("Input core");
32 MODULE_LICENSE("GPL");
33
34 #define INPUT_DEVICES 256
35
36 static LIST_HEAD(input_dev_list);
37 static LIST_HEAD(input_handler_list);
38
39 /*
40 * input_mutex protects access to both input_dev_list and input_handler_list.
41 * This also causes input_[un]register_device and input_[un]register_handler
42 * be mutually exclusive which simplifies locking in drivers implementing
43 * input handlers.
44 */
45 static DEFINE_MUTEX(input_mutex);
46
47 static struct input_handler *input_table[8];
48
49 static inline int is_event_supported(unsigned int code,
50 unsigned long *bm, unsigned int max)
51 {
52 return code <= max && test_bit(code, bm);
53 }
54
55 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
56 {
57 if (fuzz) {
58 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
59 return old_val;
60
61 if (value > old_val - fuzz && value < old_val + fuzz)
62 return (old_val * 3 + value) / 4;
63
64 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
65 return (old_val + value) / 2;
66 }
67
68 return value;
69 }
70
71 /*
72 * Pass event first through all filters and then, if event has not been
73 * filtered out, through all open handles. This function is called with
74 * dev->event_lock held and interrupts disabled.
75 */
76 static void input_pass_event(struct input_dev *dev,
77 unsigned int type, unsigned int code, int value)
78 {
79 struct input_handler *handler;
80 struct input_handle *handle;
81
82 rcu_read_lock();
83
84 handle = rcu_dereference(dev->grab);
85 if (handle)
86 handle->handler->event(handle, type, code, value);
87 else {
88 bool filtered = false;
89
90 list_for_each_entry_rcu(handle, &dev->h_list, d_node) {
91 if (!handle->open)
92 continue;
93
94 handler = handle->handler;
95 if (!handler->filter) {
96 if (filtered)
97 break;
98
99 handler->event(handle, type, code, value);
100
101 } else if (handler->filter(handle, type, code, value))
102 filtered = true;
103 }
104 }
105
106 rcu_read_unlock();
107 }
108
109 /*
110 * Generate software autorepeat event. Note that we take
111 * dev->event_lock here to avoid racing with input_event
112 * which may cause keys get "stuck".
113 */
114 static void input_repeat_key(unsigned long data)
115 {
116 struct input_dev *dev = (void *) data;
117 unsigned long flags;
118
119 spin_lock_irqsave(&dev->event_lock, flags);
120
121 if (test_bit(dev->repeat_key, dev->key) &&
122 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
123
124 input_pass_event(dev, EV_KEY, dev->repeat_key, 2);
125
126 if (dev->sync) {
127 /*
128 * Only send SYN_REPORT if we are not in a middle
129 * of driver parsing a new hardware packet.
130 * Otherwise assume that the driver will send
131 * SYN_REPORT once it's done.
132 */
133 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
134 }
135
136 if (dev->rep[REP_PERIOD])
137 mod_timer(&dev->timer, jiffies +
138 msecs_to_jiffies(dev->rep[REP_PERIOD]));
139 }
140
141 spin_unlock_irqrestore(&dev->event_lock, flags);
142 }
143
144 static void input_start_autorepeat(struct input_dev *dev, int code)
145 {
146 if (test_bit(EV_REP, dev->evbit) &&
147 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
148 dev->timer.data) {
149 dev->repeat_key = code;
150 mod_timer(&dev->timer,
151 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
152 }
153 }
154
155 static void input_stop_autorepeat(struct input_dev *dev)
156 {
157 del_timer(&dev->timer);
158 }
159
160 #define INPUT_IGNORE_EVENT 0
161 #define INPUT_PASS_TO_HANDLERS 1
162 #define INPUT_PASS_TO_DEVICE 2
163 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
164
165 static int input_handle_abs_event(struct input_dev *dev,
166 unsigned int code, int *pval)
167 {
168 bool is_mt_event;
169 int *pold;
170
171 if (code == ABS_MT_SLOT) {
172 /*
173 * "Stage" the event; we'll flush it later, when we
174 * get actual touch data.
175 */
176 if (*pval >= 0 && *pval < dev->mtsize)
177 dev->slot = *pval;
178
179 return INPUT_IGNORE_EVENT;
180 }
181
182 is_mt_event = code >= ABS_MT_FIRST && code <= ABS_MT_LAST;
183
184 if (!is_mt_event) {
185 pold = &dev->absinfo[code].value;
186 } else if (dev->mt) {
187 struct input_mt_slot *mtslot = &dev->mt[dev->slot];
188 pold = &mtslot->abs[code - ABS_MT_FIRST];
189 } else {
190 /*
191 * Bypass filtering for multi-touch events when
192 * not employing slots.
193 */
194 pold = NULL;
195 }
196
197 if (pold) {
198 *pval = input_defuzz_abs_event(*pval, *pold,
199 dev->absinfo[code].fuzz);
200 if (*pold == *pval)
201 return INPUT_IGNORE_EVENT;
202
203 *pold = *pval;
204 }
205
206 /* Flush pending "slot" event */
207 if (is_mt_event && dev->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
208 input_abs_set_val(dev, ABS_MT_SLOT, dev->slot);
209 input_pass_event(dev, EV_ABS, ABS_MT_SLOT, dev->slot);
210 }
211
212 return INPUT_PASS_TO_HANDLERS;
213 }
214
215 static void input_handle_event(struct input_dev *dev,
216 unsigned int type, unsigned int code, int value)
217 {
218 int disposition = INPUT_IGNORE_EVENT;
219
220 switch (type) {
221
222 case EV_SYN:
223 switch (code) {
224 case SYN_CONFIG:
225 disposition = INPUT_PASS_TO_ALL;
226 break;
227
228 case SYN_REPORT:
229 if (!dev->sync) {
230 dev->sync = true;
231 disposition = INPUT_PASS_TO_HANDLERS;
232 }
233 break;
234 case SYN_MT_REPORT:
235 dev->sync = false;
236 disposition = INPUT_PASS_TO_HANDLERS;
237 break;
238 }
239 break;
240
241 case EV_KEY:
242 if (is_event_supported(code, dev->keybit, KEY_MAX) &&
243 !!test_bit(code, dev->key) != value) {
244
245 if (value != 2) {
246 __change_bit(code, dev->key);
247 if (value)
248 input_start_autorepeat(dev, code);
249 else
250 input_stop_autorepeat(dev);
251 }
252
253 disposition = INPUT_PASS_TO_HANDLERS;
254 }
255 break;
256
257 case EV_SW:
258 if (is_event_supported(code, dev->swbit, SW_MAX) &&
259 !!test_bit(code, dev->sw) != value) {
260
261 __change_bit(code, dev->sw);
262 disposition = INPUT_PASS_TO_HANDLERS;
263 }
264 break;
265
266 case EV_ABS:
267 if (is_event_supported(code, dev->absbit, ABS_MAX))
268 disposition = input_handle_abs_event(dev, code, &value);
269
270 break;
271
272 case EV_REL:
273 if (is_event_supported(code, dev->relbit, REL_MAX) && value)
274 disposition = INPUT_PASS_TO_HANDLERS;
275
276 break;
277
278 case EV_MSC:
279 if (is_event_supported(code, dev->mscbit, MSC_MAX))
280 disposition = INPUT_PASS_TO_ALL;
281
282 break;
283
284 case EV_LED:
285 if (is_event_supported(code, dev->ledbit, LED_MAX) &&
286 !!test_bit(code, dev->led) != value) {
287
288 __change_bit(code, dev->led);
289 disposition = INPUT_PASS_TO_ALL;
290 }
291 break;
292
293 case EV_SND:
294 if (is_event_supported(code, dev->sndbit, SND_MAX)) {
295
296 if (!!test_bit(code, dev->snd) != !!value)
297 __change_bit(code, dev->snd);
298 disposition = INPUT_PASS_TO_ALL;
299 }
300 break;
301
302 case EV_REP:
303 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
304 dev->rep[code] = value;
305 disposition = INPUT_PASS_TO_ALL;
306 }
307 break;
308
309 case EV_FF:
310 if (value >= 0)
311 disposition = INPUT_PASS_TO_ALL;
312 break;
313
314 case EV_PWR:
315 disposition = INPUT_PASS_TO_ALL;
316 break;
317 }
318
319 if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
320 dev->sync = false;
321
322 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
323 dev->event(dev, type, code, value);
324
325 if (disposition & INPUT_PASS_TO_HANDLERS)
326 input_pass_event(dev, type, code, value);
327 }
328
329 /**
330 * input_event() - report new input event
331 * @dev: device that generated the event
332 * @type: type of the event
333 * @code: event code
334 * @value: value of the event
335 *
336 * This function should be used by drivers implementing various input
337 * devices to report input events. See also input_inject_event().
338 *
339 * NOTE: input_event() may be safely used right after input device was
340 * allocated with input_allocate_device(), even before it is registered
341 * with input_register_device(), but the event will not reach any of the
342 * input handlers. Such early invocation of input_event() may be used
343 * to 'seed' initial state of a switch or initial position of absolute
344 * axis, etc.
345 */
346 void input_event(struct input_dev *dev,
347 unsigned int type, unsigned int code, int value)
348 {
349 unsigned long flags;
350
351 if (is_event_supported(type, dev->evbit, EV_MAX)) {
352
353 spin_lock_irqsave(&dev->event_lock, flags);
354 add_input_randomness(type, code, value);
355 input_handle_event(dev, type, code, value);
356 spin_unlock_irqrestore(&dev->event_lock, flags);
357 }
358 }
359 EXPORT_SYMBOL(input_event);
360
361 /**
362 * input_inject_event() - send input event from input handler
363 * @handle: input handle to send event through
364 * @type: type of the event
365 * @code: event code
366 * @value: value of the event
367 *
368 * Similar to input_event() but will ignore event if device is
369 * "grabbed" and handle injecting event is not the one that owns
370 * the device.
371 */
372 void input_inject_event(struct input_handle *handle,
373 unsigned int type, unsigned int code, int value)
374 {
375 struct input_dev *dev = handle->dev;
376 struct input_handle *grab;
377 unsigned long flags;
378
379 if (is_event_supported(type, dev->evbit, EV_MAX)) {
380 spin_lock_irqsave(&dev->event_lock, flags);
381
382 rcu_read_lock();
383 grab = rcu_dereference(dev->grab);
384 if (!grab || grab == handle)
385 input_handle_event(dev, type, code, value);
386 rcu_read_unlock();
387
388 spin_unlock_irqrestore(&dev->event_lock, flags);
389 }
390 }
391 EXPORT_SYMBOL(input_inject_event);
392
393 /**
394 * input_alloc_absinfo - allocates array of input_absinfo structs
395 * @dev: the input device emitting absolute events
396 *
397 * If the absinfo struct the caller asked for is already allocated, this
398 * functions will not do anything.
399 */
400 void input_alloc_absinfo(struct input_dev *dev)
401 {
402 if (!dev->absinfo)
403 dev->absinfo = kcalloc(ABS_CNT, sizeof(struct input_absinfo),
404 GFP_KERNEL);
405
406 WARN(!dev->absinfo, "%s(): kcalloc() failed?\n", __func__);
407 }
408 EXPORT_SYMBOL(input_alloc_absinfo);
409
410 void input_set_abs_params(struct input_dev *dev, unsigned int axis,
411 int min, int max, int fuzz, int flat)
412 {
413 struct input_absinfo *absinfo;
414
415 input_alloc_absinfo(dev);
416 if (!dev->absinfo)
417 return;
418
419 absinfo = &dev->absinfo[axis];
420 absinfo->minimum = min;
421 absinfo->maximum = max;
422 absinfo->fuzz = fuzz;
423 absinfo->flat = flat;
424
425 dev->absbit[BIT_WORD(axis)] |= BIT_MASK(axis);
426 }
427 EXPORT_SYMBOL(input_set_abs_params);
428
429
430 /**
431 * input_grab_device - grabs device for exclusive use
432 * @handle: input handle that wants to own the device
433 *
434 * When a device is grabbed by an input handle all events generated by
435 * the device are delivered only to this handle. Also events injected
436 * by other input handles are ignored while device is grabbed.
437 */
438 int input_grab_device(struct input_handle *handle)
439 {
440 struct input_dev *dev = handle->dev;
441 int retval;
442
443 retval = mutex_lock_interruptible(&dev->mutex);
444 if (retval)
445 return retval;
446
447 if (dev->grab) {
448 retval = -EBUSY;
449 goto out;
450 }
451
452 rcu_assign_pointer(dev->grab, handle);
453 synchronize_rcu();
454
455 out:
456 mutex_unlock(&dev->mutex);
457 return retval;
458 }
459 EXPORT_SYMBOL(input_grab_device);
460
461 static void __input_release_device(struct input_handle *handle)
462 {
463 struct input_dev *dev = handle->dev;
464
465 if (dev->grab == handle) {
466 rcu_assign_pointer(dev->grab, NULL);
467 /* Make sure input_pass_event() notices that grab is gone */
468 synchronize_rcu();
469
470 list_for_each_entry(handle, &dev->h_list, d_node)
471 if (handle->open && handle->handler->start)
472 handle->handler->start(handle);
473 }
474 }
475
476 /**
477 * input_release_device - release previously grabbed device
478 * @handle: input handle that owns the device
479 *
480 * Releases previously grabbed device so that other input handles can
481 * start receiving input events. Upon release all handlers attached
482 * to the device have their start() method called so they have a change
483 * to synchronize device state with the rest of the system.
484 */
485 void input_release_device(struct input_handle *handle)
486 {
487 struct input_dev *dev = handle->dev;
488
489 mutex_lock(&dev->mutex);
490 __input_release_device(handle);
491 mutex_unlock(&dev->mutex);
492 }
493 EXPORT_SYMBOL(input_release_device);
494
495 /**
496 * input_open_device - open input device
497 * @handle: handle through which device is being accessed
498 *
499 * This function should be called by input handlers when they
500 * want to start receive events from given input device.
501 */
502 int input_open_device(struct input_handle *handle)
503 {
504 struct input_dev *dev = handle->dev;
505 int retval;
506
507 retval = mutex_lock_interruptible(&dev->mutex);
508 if (retval)
509 return retval;
510
511 if (dev->going_away) {
512 retval = -ENODEV;
513 goto out;
514 }
515
516 handle->open++;
517
518 if (!dev->users++ && dev->open)
519 retval = dev->open(dev);
520
521 if (retval) {
522 dev->users--;
523 if (!--handle->open) {
524 /*
525 * Make sure we are not delivering any more events
526 * through this handle
527 */
528 synchronize_rcu();
529 }
530 }
531
532 out:
533 mutex_unlock(&dev->mutex);
534 return retval;
535 }
536 EXPORT_SYMBOL(input_open_device);
537
538 int input_flush_device(struct input_handle *handle, struct file *file)
539 {
540 struct input_dev *dev = handle->dev;
541 int retval;
542
543 retval = mutex_lock_interruptible(&dev->mutex);
544 if (retval)
545 return retval;
546
547 if (dev->flush)
548 retval = dev->flush(dev, file);
549
550 mutex_unlock(&dev->mutex);
551 return retval;
552 }
553 EXPORT_SYMBOL(input_flush_device);
554
555 /**
556 * input_close_device - close input device
557 * @handle: handle through which device is being accessed
558 *
559 * This function should be called by input handlers when they
560 * want to stop receive events from given input device.
561 */
562 void input_close_device(struct input_handle *handle)
563 {
564 struct input_dev *dev = handle->dev;
565
566 mutex_lock(&dev->mutex);
567
568 __input_release_device(handle);
569
570 if (!--dev->users && dev->close)
571 dev->close(dev);
572
573 if (!--handle->open) {
574 /*
575 * synchronize_rcu() makes sure that input_pass_event()
576 * completed and that no more input events are delivered
577 * through this handle
578 */
579 synchronize_rcu();
580 }
581
582 mutex_unlock(&dev->mutex);
583 }
584 EXPORT_SYMBOL(input_close_device);
585
586 /*
587 * Simulate keyup events for all keys that are marked as pressed.
588 * The function must be called with dev->event_lock held.
589 */
590 static void input_dev_release_keys(struct input_dev *dev)
591 {
592 int code;
593
594 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
595 for (code = 0; code <= KEY_MAX; code++) {
596 if (is_event_supported(code, dev->keybit, KEY_MAX) &&
597 __test_and_clear_bit(code, dev->key)) {
598 input_pass_event(dev, EV_KEY, code, 0);
599 }
600 }
601 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
602 }
603 }
604
605 /*
606 * Prepare device for unregistering
607 */
608 static void input_disconnect_device(struct input_dev *dev)
609 {
610 struct input_handle *handle;
611
612 /*
613 * Mark device as going away. Note that we take dev->mutex here
614 * not to protect access to dev->going_away but rather to ensure
615 * that there are no threads in the middle of input_open_device()
616 */
617 mutex_lock(&dev->mutex);
618 dev->going_away = true;
619 mutex_unlock(&dev->mutex);
620
621 spin_lock_irq(&dev->event_lock);
622
623 /*
624 * Simulate keyup events for all pressed keys so that handlers
625 * are not left with "stuck" keys. The driver may continue
626 * generate events even after we done here but they will not
627 * reach any handlers.
628 */
629 input_dev_release_keys(dev);
630
631 list_for_each_entry(handle, &dev->h_list, d_node)
632 handle->open = 0;
633
634 spin_unlock_irq(&dev->event_lock);
635 }
636
637 /**
638 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
639 * @ke: keymap entry containing scancode to be converted.
640 * @scancode: pointer to the location where converted scancode should
641 * be stored.
642 *
643 * This function is used to convert scancode stored in &struct keymap_entry
644 * into scalar form understood by legacy keymap handling methods. These
645 * methods expect scancodes to be represented as 'unsigned int'.
646 */
647 int input_scancode_to_scalar(const struct input_keymap_entry *ke,
648 unsigned int *scancode)
649 {
650 switch (ke->len) {
651 case 1:
652 *scancode = *((u8 *)ke->scancode);
653 break;
654
655 case 2:
656 *scancode = *((u16 *)ke->scancode);
657 break;
658
659 case 4:
660 *scancode = *((u32 *)ke->scancode);
661 break;
662
663 default:
664 return -EINVAL;
665 }
666
667 return 0;
668 }
669 EXPORT_SYMBOL(input_scancode_to_scalar);
670
671 /*
672 * Those routines handle the default case where no [gs]etkeycode() is
673 * defined. In this case, an array indexed by the scancode is used.
674 */
675
676 static unsigned int input_fetch_keycode(struct input_dev *dev,
677 unsigned int index)
678 {
679 switch (dev->keycodesize) {
680 case 1:
681 return ((u8 *)dev->keycode)[index];
682
683 case 2:
684 return ((u16 *)dev->keycode)[index];
685
686 default:
687 return ((u32 *)dev->keycode)[index];
688 }
689 }
690
691 static int input_default_getkeycode(struct input_dev *dev,
692 struct input_keymap_entry *ke)
693 {
694 unsigned int index;
695 int error;
696
697 if (!dev->keycodesize)
698 return -EINVAL;
699
700 if (ke->flags & INPUT_KEYMAP_BY_INDEX)
701 index = ke->index;
702 else {
703 error = input_scancode_to_scalar(ke, &index);
704 if (error)
705 return error;
706 }
707
708 if (index >= dev->keycodemax)
709 return -EINVAL;
710
711 ke->keycode = input_fetch_keycode(dev, index);
712 ke->index = index;
713 ke->len = sizeof(index);
714 memcpy(ke->scancode, &index, sizeof(index));
715
716 return 0;
717 }
718
719 static int input_default_setkeycode(struct input_dev *dev,
720 const struct input_keymap_entry *ke,
721 unsigned int *old_keycode)
722 {
723 unsigned int index;
724 int error;
725 int i;
726
727 if (!dev->keycodesize)
728 return -EINVAL;
729
730 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
731 index = ke->index;
732 } else {
733 error = input_scancode_to_scalar(ke, &index);
734 if (error)
735 return error;
736 }
737
738 if (index >= dev->keycodemax)
739 return -EINVAL;
740
741 if (dev->keycodesize < sizeof(dev->keycode) &&
742 (ke->keycode >> (dev->keycodesize * 8)))
743 return -EINVAL;
744
745 switch (dev->keycodesize) {
746 case 1: {
747 u8 *k = (u8 *)dev->keycode;
748 *old_keycode = k[index];
749 k[index] = ke->keycode;
750 break;
751 }
752 case 2: {
753 u16 *k = (u16 *)dev->keycode;
754 *old_keycode = k[index];
755 k[index] = ke->keycode;
756 break;
757 }
758 default: {
759 u32 *k = (u32 *)dev->keycode;
760 *old_keycode = k[index];
761 k[index] = ke->keycode;
762 break;
763 }
764 }
765
766 __clear_bit(*old_keycode, dev->keybit);
767 __set_bit(ke->keycode, dev->keybit);
768
769 for (i = 0; i < dev->keycodemax; i++) {
770 if (input_fetch_keycode(dev, i) == *old_keycode) {
771 __set_bit(*old_keycode, dev->keybit);
772 break; /* Setting the bit twice is useless, so break */
773 }
774 }
775
776 return 0;
777 }
778
779 /**
780 * input_get_keycode - retrieve keycode currently mapped to a given scancode
781 * @dev: input device which keymap is being queried
782 * @ke: keymap entry
783 *
784 * This function should be called by anyone interested in retrieving current
785 * keymap. Presently evdev handlers use it.
786 */
787 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
788 {
789 unsigned long flags;
790 int retval;
791
792 spin_lock_irqsave(&dev->event_lock, flags);
793
794 if (dev->getkeycode) {
795 /*
796 * Support for legacy drivers, that don't implement the new
797 * ioctls
798 */
799 u32 scancode = ke->index;
800
801 memcpy(ke->scancode, &scancode, sizeof(scancode));
802 ke->len = sizeof(scancode);
803 retval = dev->getkeycode(dev, scancode, &ke->keycode);
804 } else {
805 retval = dev->getkeycode_new(dev, ke);
806 }
807
808 spin_unlock_irqrestore(&dev->event_lock, flags);
809 return retval;
810 }
811 EXPORT_SYMBOL(input_get_keycode);
812
813 /**
814 * input_set_keycode - attribute a keycode to a given scancode
815 * @dev: input device which keymap is being updated
816 * @ke: new keymap entry
817 *
818 * This function should be called by anyone needing to update current
819 * keymap. Presently keyboard and evdev handlers use it.
820 */
821 int input_set_keycode(struct input_dev *dev,
822 const struct input_keymap_entry *ke)
823 {
824 unsigned long flags;
825 unsigned int old_keycode;
826 int retval;
827
828 if (ke->keycode > KEY_MAX)
829 return -EINVAL;
830
831 spin_lock_irqsave(&dev->event_lock, flags);
832
833 if (dev->setkeycode) {
834 /*
835 * Support for legacy drivers, that don't implement the new
836 * ioctls
837 */
838 unsigned int scancode;
839
840 retval = input_scancode_to_scalar(ke, &scancode);
841 if (retval)
842 goto out;
843
844 /*
845 * We need to know the old scancode, in order to generate a
846 * keyup effect, if the set operation happens successfully
847 */
848 if (!dev->getkeycode) {
849 retval = -EINVAL;
850 goto out;
851 }
852
853 retval = dev->getkeycode(dev, scancode, &old_keycode);
854 if (retval)
855 goto out;
856
857 retval = dev->setkeycode(dev, scancode, ke->keycode);
858 } else {
859 retval = dev->setkeycode_new(dev, ke, &old_keycode);
860 }
861
862 if (retval)
863 goto out;
864
865 /* Make sure KEY_RESERVED did not get enabled. */
866 __clear_bit(KEY_RESERVED, dev->keybit);
867
868 /*
869 * Simulate keyup event if keycode is not present
870 * in the keymap anymore
871 */
872 if (test_bit(EV_KEY, dev->evbit) &&
873 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
874 __test_and_clear_bit(old_keycode, dev->key)) {
875
876 input_pass_event(dev, EV_KEY, old_keycode, 0);
877 if (dev->sync)
878 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
879 }
880
881 out:
882 spin_unlock_irqrestore(&dev->event_lock, flags);
883
884 return retval;
885 }
886 EXPORT_SYMBOL(input_set_keycode);
887
888 #define MATCH_BIT(bit, max) \
889 for (i = 0; i < BITS_TO_LONGS(max); i++) \
890 if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
891 break; \
892 if (i != BITS_TO_LONGS(max)) \
893 continue;
894
895 static const struct input_device_id *input_match_device(struct input_handler *handler,
896 struct input_dev *dev)
897 {
898 const struct input_device_id *id;
899 int i;
900
901 for (id = handler->id_table; id->flags || id->driver_info; id++) {
902
903 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
904 if (id->bustype != dev->id.bustype)
905 continue;
906
907 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
908 if (id->vendor != dev->id.vendor)
909 continue;
910
911 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
912 if (id->product != dev->id.product)
913 continue;
914
915 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
916 if (id->version != dev->id.version)
917 continue;
918
919 MATCH_BIT(evbit, EV_MAX);
920 MATCH_BIT(keybit, KEY_MAX);
921 MATCH_BIT(relbit, REL_MAX);
922 MATCH_BIT(absbit, ABS_MAX);
923 MATCH_BIT(mscbit, MSC_MAX);
924 MATCH_BIT(ledbit, LED_MAX);
925 MATCH_BIT(sndbit, SND_MAX);
926 MATCH_BIT(ffbit, FF_MAX);
927 MATCH_BIT(swbit, SW_MAX);
928
929 if (!handler->match || handler->match(handler, dev))
930 return id;
931 }
932
933 return NULL;
934 }
935
936 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
937 {
938 const struct input_device_id *id;
939 int error;
940
941 id = input_match_device(handler, dev);
942 if (!id)
943 return -ENODEV;
944
945 error = handler->connect(handler, dev, id);
946 if (error && error != -ENODEV)
947 printk(KERN_ERR
948 "input: failed to attach handler %s to device %s, "
949 "error: %d\n",
950 handler->name, kobject_name(&dev->dev.kobj), error);
951
952 return error;
953 }
954
955 #ifdef CONFIG_COMPAT
956
957 static int input_bits_to_string(char *buf, int buf_size,
958 unsigned long bits, bool skip_empty)
959 {
960 int len = 0;
961
962 if (INPUT_COMPAT_TEST) {
963 u32 dword = bits >> 32;
964 if (dword || !skip_empty)
965 len += snprintf(buf, buf_size, "%x ", dword);
966
967 dword = bits & 0xffffffffUL;
968 if (dword || !skip_empty || len)
969 len += snprintf(buf + len, max(buf_size - len, 0),
970 "%x", dword);
971 } else {
972 if (bits || !skip_empty)
973 len += snprintf(buf, buf_size, "%lx", bits);
974 }
975
976 return len;
977 }
978
979 #else /* !CONFIG_COMPAT */
980
981 static int input_bits_to_string(char *buf, int buf_size,
982 unsigned long bits, bool skip_empty)
983 {
984 return bits || !skip_empty ?
985 snprintf(buf, buf_size, "%lx", bits) : 0;
986 }
987
988 #endif
989
990 #ifdef CONFIG_PROC_FS
991
992 static struct proc_dir_entry *proc_bus_input_dir;
993 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
994 static int input_devices_state;
995
996 static inline void input_wakeup_procfs_readers(void)
997 {
998 input_devices_state++;
999 wake_up(&input_devices_poll_wait);
1000 }
1001
1002 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
1003 {
1004 poll_wait(file, &input_devices_poll_wait, wait);
1005 if (file->f_version != input_devices_state) {
1006 file->f_version = input_devices_state;
1007 return POLLIN | POLLRDNORM;
1008 }
1009
1010 return 0;
1011 }
1012
1013 union input_seq_state {
1014 struct {
1015 unsigned short pos;
1016 bool mutex_acquired;
1017 };
1018 void *p;
1019 };
1020
1021 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1022 {
1023 union input_seq_state *state = (union input_seq_state *)&seq->private;
1024 int error;
1025
1026 /* We need to fit into seq->private pointer */
1027 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1028
1029 error = mutex_lock_interruptible(&input_mutex);
1030 if (error) {
1031 state->mutex_acquired = false;
1032 return ERR_PTR(error);
1033 }
1034
1035 state->mutex_acquired = true;
1036
1037 return seq_list_start(&input_dev_list, *pos);
1038 }
1039
1040 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1041 {
1042 return seq_list_next(v, &input_dev_list, pos);
1043 }
1044
1045 static void input_seq_stop(struct seq_file *seq, void *v)
1046 {
1047 union input_seq_state *state = (union input_seq_state *)&seq->private;
1048
1049 if (state->mutex_acquired)
1050 mutex_unlock(&input_mutex);
1051 }
1052
1053 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1054 unsigned long *bitmap, int max)
1055 {
1056 int i;
1057 bool skip_empty = true;
1058 char buf[18];
1059
1060 seq_printf(seq, "B: %s=", name);
1061
1062 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1063 if (input_bits_to_string(buf, sizeof(buf),
1064 bitmap[i], skip_empty)) {
1065 skip_empty = false;
1066 seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1067 }
1068 }
1069
1070 /*
1071 * If no output was produced print a single 0.
1072 */
1073 if (skip_empty)
1074 seq_puts(seq, "0");
1075
1076 seq_putc(seq, '\n');
1077 }
1078
1079 static int input_devices_seq_show(struct seq_file *seq, void *v)
1080 {
1081 struct input_dev *dev = container_of(v, struct input_dev, node);
1082 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1083 struct input_handle *handle;
1084
1085 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1086 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1087
1088 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1089 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1090 seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1091 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1092 seq_printf(seq, "H: Handlers=");
1093
1094 list_for_each_entry(handle, &dev->h_list, d_node)
1095 seq_printf(seq, "%s ", handle->name);
1096 seq_putc(seq, '\n');
1097
1098 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1099 if (test_bit(EV_KEY, dev->evbit))
1100 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1101 if (test_bit(EV_REL, dev->evbit))
1102 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1103 if (test_bit(EV_ABS, dev->evbit))
1104 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1105 if (test_bit(EV_MSC, dev->evbit))
1106 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1107 if (test_bit(EV_LED, dev->evbit))
1108 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1109 if (test_bit(EV_SND, dev->evbit))
1110 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1111 if (test_bit(EV_FF, dev->evbit))
1112 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1113 if (test_bit(EV_SW, dev->evbit))
1114 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1115
1116 seq_putc(seq, '\n');
1117
1118 kfree(path);
1119 return 0;
1120 }
1121
1122 static const struct seq_operations input_devices_seq_ops = {
1123 .start = input_devices_seq_start,
1124 .next = input_devices_seq_next,
1125 .stop = input_seq_stop,
1126 .show = input_devices_seq_show,
1127 };
1128
1129 static int input_proc_devices_open(struct inode *inode, struct file *file)
1130 {
1131 return seq_open(file, &input_devices_seq_ops);
1132 }
1133
1134 static const struct file_operations input_devices_fileops = {
1135 .owner = THIS_MODULE,
1136 .open = input_proc_devices_open,
1137 .poll = input_proc_devices_poll,
1138 .read = seq_read,
1139 .llseek = seq_lseek,
1140 .release = seq_release,
1141 };
1142
1143 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1144 {
1145 union input_seq_state *state = (union input_seq_state *)&seq->private;
1146 int error;
1147
1148 /* We need to fit into seq->private pointer */
1149 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1150
1151 error = mutex_lock_interruptible(&input_mutex);
1152 if (error) {
1153 state->mutex_acquired = false;
1154 return ERR_PTR(error);
1155 }
1156
1157 state->mutex_acquired = true;
1158 state->pos = *pos;
1159
1160 return seq_list_start(&input_handler_list, *pos);
1161 }
1162
1163 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1164 {
1165 union input_seq_state *state = (union input_seq_state *)&seq->private;
1166
1167 state->pos = *pos + 1;
1168 return seq_list_next(v, &input_handler_list, pos);
1169 }
1170
1171 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1172 {
1173 struct input_handler *handler = container_of(v, struct input_handler, node);
1174 union input_seq_state *state = (union input_seq_state *)&seq->private;
1175
1176 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1177 if (handler->filter)
1178 seq_puts(seq, " (filter)");
1179 if (handler->fops)
1180 seq_printf(seq, " Minor=%d", handler->minor);
1181 seq_putc(seq, '\n');
1182
1183 return 0;
1184 }
1185
1186 static const struct seq_operations input_handlers_seq_ops = {
1187 .start = input_handlers_seq_start,
1188 .next = input_handlers_seq_next,
1189 .stop = input_seq_stop,
1190 .show = input_handlers_seq_show,
1191 };
1192
1193 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1194 {
1195 return seq_open(file, &input_handlers_seq_ops);
1196 }
1197
1198 static const struct file_operations input_handlers_fileops = {
1199 .owner = THIS_MODULE,
1200 .open = input_proc_handlers_open,
1201 .read = seq_read,
1202 .llseek = seq_lseek,
1203 .release = seq_release,
1204 };
1205
1206 static int __init input_proc_init(void)
1207 {
1208 struct proc_dir_entry *entry;
1209
1210 proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1211 if (!proc_bus_input_dir)
1212 return -ENOMEM;
1213
1214 entry = proc_create("devices", 0, proc_bus_input_dir,
1215 &input_devices_fileops);
1216 if (!entry)
1217 goto fail1;
1218
1219 entry = proc_create("handlers", 0, proc_bus_input_dir,
1220 &input_handlers_fileops);
1221 if (!entry)
1222 goto fail2;
1223
1224 return 0;
1225
1226 fail2: remove_proc_entry("devices", proc_bus_input_dir);
1227 fail1: remove_proc_entry("bus/input", NULL);
1228 return -ENOMEM;
1229 }
1230
1231 static void input_proc_exit(void)
1232 {
1233 remove_proc_entry("devices", proc_bus_input_dir);
1234 remove_proc_entry("handlers", proc_bus_input_dir);
1235 remove_proc_entry("bus/input", NULL);
1236 }
1237
1238 #else /* !CONFIG_PROC_FS */
1239 static inline void input_wakeup_procfs_readers(void) { }
1240 static inline int input_proc_init(void) { return 0; }
1241 static inline void input_proc_exit(void) { }
1242 #endif
1243
1244 #define INPUT_DEV_STRING_ATTR_SHOW(name) \
1245 static ssize_t input_dev_show_##name(struct device *dev, \
1246 struct device_attribute *attr, \
1247 char *buf) \
1248 { \
1249 struct input_dev *input_dev = to_input_dev(dev); \
1250 \
1251 return scnprintf(buf, PAGE_SIZE, "%s\n", \
1252 input_dev->name ? input_dev->name : ""); \
1253 } \
1254 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1255
1256 INPUT_DEV_STRING_ATTR_SHOW(name);
1257 INPUT_DEV_STRING_ATTR_SHOW(phys);
1258 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1259
1260 static int input_print_modalias_bits(char *buf, int size,
1261 char name, unsigned long *bm,
1262 unsigned int min_bit, unsigned int max_bit)
1263 {
1264 int len = 0, i;
1265
1266 len += snprintf(buf, max(size, 0), "%c", name);
1267 for (i = min_bit; i < max_bit; i++)
1268 if (bm[BIT_WORD(i)] & BIT_MASK(i))
1269 len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1270 return len;
1271 }
1272
1273 static int input_print_modalias(char *buf, int size, struct input_dev *id,
1274 int add_cr)
1275 {
1276 int len;
1277
1278 len = snprintf(buf, max(size, 0),
1279 "input:b%04Xv%04Xp%04Xe%04X-",
1280 id->id.bustype, id->id.vendor,
1281 id->id.product, id->id.version);
1282
1283 len += input_print_modalias_bits(buf + len, size - len,
1284 'e', id->evbit, 0, EV_MAX);
1285 len += input_print_modalias_bits(buf + len, size - len,
1286 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1287 len += input_print_modalias_bits(buf + len, size - len,
1288 'r', id->relbit, 0, REL_MAX);
1289 len += input_print_modalias_bits(buf + len, size - len,
1290 'a', id->absbit, 0, ABS_MAX);
1291 len += input_print_modalias_bits(buf + len, size - len,
1292 'm', id->mscbit, 0, MSC_MAX);
1293 len += input_print_modalias_bits(buf + len, size - len,
1294 'l', id->ledbit, 0, LED_MAX);
1295 len += input_print_modalias_bits(buf + len, size - len,
1296 's', id->sndbit, 0, SND_MAX);
1297 len += input_print_modalias_bits(buf + len, size - len,
1298 'f', id->ffbit, 0, FF_MAX);
1299 len += input_print_modalias_bits(buf + len, size - len,
1300 'w', id->swbit, 0, SW_MAX);
1301
1302 if (add_cr)
1303 len += snprintf(buf + len, max(size - len, 0), "\n");
1304
1305 return len;
1306 }
1307
1308 static ssize_t input_dev_show_modalias(struct device *dev,
1309 struct device_attribute *attr,
1310 char *buf)
1311 {
1312 struct input_dev *id = to_input_dev(dev);
1313 ssize_t len;
1314
1315 len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1316
1317 return min_t(int, len, PAGE_SIZE);
1318 }
1319 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1320
1321 static struct attribute *input_dev_attrs[] = {
1322 &dev_attr_name.attr,
1323 &dev_attr_phys.attr,
1324 &dev_attr_uniq.attr,
1325 &dev_attr_modalias.attr,
1326 NULL
1327 };
1328
1329 static struct attribute_group input_dev_attr_group = {
1330 .attrs = input_dev_attrs,
1331 };
1332
1333 #define INPUT_DEV_ID_ATTR(name) \
1334 static ssize_t input_dev_show_id_##name(struct device *dev, \
1335 struct device_attribute *attr, \
1336 char *buf) \
1337 { \
1338 struct input_dev *input_dev = to_input_dev(dev); \
1339 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1340 } \
1341 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1342
1343 INPUT_DEV_ID_ATTR(bustype);
1344 INPUT_DEV_ID_ATTR(vendor);
1345 INPUT_DEV_ID_ATTR(product);
1346 INPUT_DEV_ID_ATTR(version);
1347
1348 static struct attribute *input_dev_id_attrs[] = {
1349 &dev_attr_bustype.attr,
1350 &dev_attr_vendor.attr,
1351 &dev_attr_product.attr,
1352 &dev_attr_version.attr,
1353 NULL
1354 };
1355
1356 static struct attribute_group input_dev_id_attr_group = {
1357 .name = "id",
1358 .attrs = input_dev_id_attrs,
1359 };
1360
1361 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1362 int max, int add_cr)
1363 {
1364 int i;
1365 int len = 0;
1366 bool skip_empty = true;
1367
1368 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1369 len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1370 bitmap[i], skip_empty);
1371 if (len) {
1372 skip_empty = false;
1373 if (i > 0)
1374 len += snprintf(buf + len, max(buf_size - len, 0), " ");
1375 }
1376 }
1377
1378 /*
1379 * If no output was produced print a single 0.
1380 */
1381 if (len == 0)
1382 len = snprintf(buf, buf_size, "%d", 0);
1383
1384 if (add_cr)
1385 len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1386
1387 return len;
1388 }
1389
1390 #define INPUT_DEV_CAP_ATTR(ev, bm) \
1391 static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1392 struct device_attribute *attr, \
1393 char *buf) \
1394 { \
1395 struct input_dev *input_dev = to_input_dev(dev); \
1396 int len = input_print_bitmap(buf, PAGE_SIZE, \
1397 input_dev->bm##bit, ev##_MAX, \
1398 true); \
1399 return min_t(int, len, PAGE_SIZE); \
1400 } \
1401 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1402
1403 INPUT_DEV_CAP_ATTR(EV, ev);
1404 INPUT_DEV_CAP_ATTR(KEY, key);
1405 INPUT_DEV_CAP_ATTR(REL, rel);
1406 INPUT_DEV_CAP_ATTR(ABS, abs);
1407 INPUT_DEV_CAP_ATTR(MSC, msc);
1408 INPUT_DEV_CAP_ATTR(LED, led);
1409 INPUT_DEV_CAP_ATTR(SND, snd);
1410 INPUT_DEV_CAP_ATTR(FF, ff);
1411 INPUT_DEV_CAP_ATTR(SW, sw);
1412
1413 static struct attribute *input_dev_caps_attrs[] = {
1414 &dev_attr_ev.attr,
1415 &dev_attr_key.attr,
1416 &dev_attr_rel.attr,
1417 &dev_attr_abs.attr,
1418 &dev_attr_msc.attr,
1419 &dev_attr_led.attr,
1420 &dev_attr_snd.attr,
1421 &dev_attr_ff.attr,
1422 &dev_attr_sw.attr,
1423 NULL
1424 };
1425
1426 static struct attribute_group input_dev_caps_attr_group = {
1427 .name = "capabilities",
1428 .attrs = input_dev_caps_attrs,
1429 };
1430
1431 static const struct attribute_group *input_dev_attr_groups[] = {
1432 &input_dev_attr_group,
1433 &input_dev_id_attr_group,
1434 &input_dev_caps_attr_group,
1435 NULL
1436 };
1437
1438 static void input_dev_release(struct device *device)
1439 {
1440 struct input_dev *dev = to_input_dev(device);
1441
1442 input_ff_destroy(dev);
1443 input_mt_destroy_slots(dev);
1444 kfree(dev->absinfo);
1445 kfree(dev);
1446
1447 module_put(THIS_MODULE);
1448 }
1449
1450 /*
1451 * Input uevent interface - loading event handlers based on
1452 * device bitfields.
1453 */
1454 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1455 const char *name, unsigned long *bitmap, int max)
1456 {
1457 int len;
1458
1459 if (add_uevent_var(env, "%s=", name))
1460 return -ENOMEM;
1461
1462 len = input_print_bitmap(&env->buf[env->buflen - 1],
1463 sizeof(env->buf) - env->buflen,
1464 bitmap, max, false);
1465 if (len >= (sizeof(env->buf) - env->buflen))
1466 return -ENOMEM;
1467
1468 env->buflen += len;
1469 return 0;
1470 }
1471
1472 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1473 struct input_dev *dev)
1474 {
1475 int len;
1476
1477 if (add_uevent_var(env, "MODALIAS="))
1478 return -ENOMEM;
1479
1480 len = input_print_modalias(&env->buf[env->buflen - 1],
1481 sizeof(env->buf) - env->buflen,
1482 dev, 0);
1483 if (len >= (sizeof(env->buf) - env->buflen))
1484 return -ENOMEM;
1485
1486 env->buflen += len;
1487 return 0;
1488 }
1489
1490 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1491 do { \
1492 int err = add_uevent_var(env, fmt, val); \
1493 if (err) \
1494 return err; \
1495 } while (0)
1496
1497 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1498 do { \
1499 int err = input_add_uevent_bm_var(env, name, bm, max); \
1500 if (err) \
1501 return err; \
1502 } while (0)
1503
1504 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1505 do { \
1506 int err = input_add_uevent_modalias_var(env, dev); \
1507 if (err) \
1508 return err; \
1509 } while (0)
1510
1511 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1512 {
1513 struct input_dev *dev = to_input_dev(device);
1514
1515 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1516 dev->id.bustype, dev->id.vendor,
1517 dev->id.product, dev->id.version);
1518 if (dev->name)
1519 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1520 if (dev->phys)
1521 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1522 if (dev->uniq)
1523 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1524
1525 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1526 if (test_bit(EV_KEY, dev->evbit))
1527 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1528 if (test_bit(EV_REL, dev->evbit))
1529 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1530 if (test_bit(EV_ABS, dev->evbit))
1531 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1532 if (test_bit(EV_MSC, dev->evbit))
1533 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1534 if (test_bit(EV_LED, dev->evbit))
1535 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1536 if (test_bit(EV_SND, dev->evbit))
1537 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1538 if (test_bit(EV_FF, dev->evbit))
1539 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1540 if (test_bit(EV_SW, dev->evbit))
1541 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1542
1543 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1544
1545 return 0;
1546 }
1547
1548 #define INPUT_DO_TOGGLE(dev, type, bits, on) \
1549 do { \
1550 int i; \
1551 bool active; \
1552 \
1553 if (!test_bit(EV_##type, dev->evbit)) \
1554 break; \
1555 \
1556 for (i = 0; i < type##_MAX; i++) { \
1557 if (!test_bit(i, dev->bits##bit)) \
1558 continue; \
1559 \
1560 active = test_bit(i, dev->bits); \
1561 if (!active && !on) \
1562 continue; \
1563 \
1564 dev->event(dev, EV_##type, i, on ? active : 0); \
1565 } \
1566 } while (0)
1567
1568 #ifdef CONFIG_PM
1569 static void input_dev_reset(struct input_dev *dev, bool activate)
1570 {
1571 if (!dev->event)
1572 return;
1573
1574 INPUT_DO_TOGGLE(dev, LED, led, activate);
1575 INPUT_DO_TOGGLE(dev, SND, snd, activate);
1576
1577 if (activate && test_bit(EV_REP, dev->evbit)) {
1578 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1579 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1580 }
1581 }
1582
1583 static int input_dev_suspend(struct device *dev)
1584 {
1585 struct input_dev *input_dev = to_input_dev(dev);
1586
1587 mutex_lock(&input_dev->mutex);
1588 input_dev_reset(input_dev, false);
1589 mutex_unlock(&input_dev->mutex);
1590
1591 return 0;
1592 }
1593
1594 static int input_dev_resume(struct device *dev)
1595 {
1596 struct input_dev *input_dev = to_input_dev(dev);
1597
1598 mutex_lock(&input_dev->mutex);
1599 input_dev_reset(input_dev, true);
1600
1601 /*
1602 * Keys that have been pressed at suspend time are unlikely
1603 * to be still pressed when we resume.
1604 */
1605 spin_lock_irq(&input_dev->event_lock);
1606 input_dev_release_keys(input_dev);
1607 spin_unlock_irq(&input_dev->event_lock);
1608
1609 mutex_unlock(&input_dev->mutex);
1610
1611 return 0;
1612 }
1613
1614 static const struct dev_pm_ops input_dev_pm_ops = {
1615 .suspend = input_dev_suspend,
1616 .resume = input_dev_resume,
1617 .poweroff = input_dev_suspend,
1618 .restore = input_dev_resume,
1619 };
1620 #endif /* CONFIG_PM */
1621
1622 static struct device_type input_dev_type = {
1623 .groups = input_dev_attr_groups,
1624 .release = input_dev_release,
1625 .uevent = input_dev_uevent,
1626 #ifdef CONFIG_PM
1627 .pm = &input_dev_pm_ops,
1628 #endif
1629 };
1630
1631 static char *input_devnode(struct device *dev, mode_t *mode)
1632 {
1633 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1634 }
1635
1636 struct class input_class = {
1637 .name = "input",
1638 .devnode = input_devnode,
1639 };
1640 EXPORT_SYMBOL_GPL(input_class);
1641
1642 /**
1643 * input_allocate_device - allocate memory for new input device
1644 *
1645 * Returns prepared struct input_dev or NULL.
1646 *
1647 * NOTE: Use input_free_device() to free devices that have not been
1648 * registered; input_unregister_device() should be used for already
1649 * registered devices.
1650 */
1651 struct input_dev *input_allocate_device(void)
1652 {
1653 struct input_dev *dev;
1654
1655 dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
1656 if (dev) {
1657 dev->dev.type = &input_dev_type;
1658 dev->dev.class = &input_class;
1659 device_initialize(&dev->dev);
1660 mutex_init(&dev->mutex);
1661 spin_lock_init(&dev->event_lock);
1662 INIT_LIST_HEAD(&dev->h_list);
1663 INIT_LIST_HEAD(&dev->node);
1664
1665 __module_get(THIS_MODULE);
1666 }
1667
1668 return dev;
1669 }
1670 EXPORT_SYMBOL(input_allocate_device);
1671
1672 /**
1673 * input_free_device - free memory occupied by input_dev structure
1674 * @dev: input device to free
1675 *
1676 * This function should only be used if input_register_device()
1677 * was not called yet or if it failed. Once device was registered
1678 * use input_unregister_device() and memory will be freed once last
1679 * reference to the device is dropped.
1680 *
1681 * Device should be allocated by input_allocate_device().
1682 *
1683 * NOTE: If there are references to the input device then memory
1684 * will not be freed until last reference is dropped.
1685 */
1686 void input_free_device(struct input_dev *dev)
1687 {
1688 if (dev)
1689 input_put_device(dev);
1690 }
1691 EXPORT_SYMBOL(input_free_device);
1692
1693 /**
1694 * input_mt_create_slots() - create MT input slots
1695 * @dev: input device supporting MT events and finger tracking
1696 * @num_slots: number of slots used by the device
1697 *
1698 * This function allocates all necessary memory for MT slot handling in the
1699 * input device, and adds ABS_MT_SLOT to the device capabilities. All slots
1700 * are initially marked as unused by setting ABS_MT_TRACKING_ID to -1.
1701 */
1702 int input_mt_create_slots(struct input_dev *dev, unsigned int num_slots)
1703 {
1704 int i;
1705
1706 if (!num_slots)
1707 return 0;
1708
1709 dev->mt = kcalloc(num_slots, sizeof(struct input_mt_slot), GFP_KERNEL);
1710 if (!dev->mt)
1711 return -ENOMEM;
1712
1713 dev->mtsize = num_slots;
1714 input_set_abs_params(dev, ABS_MT_SLOT, 0, num_slots - 1, 0, 0);
1715
1716 /* Mark slots as 'unused' */
1717 for (i = 0; i < num_slots; i++)
1718 dev->mt[i].abs[ABS_MT_TRACKING_ID - ABS_MT_FIRST] = -1;
1719
1720 return 0;
1721 }
1722 EXPORT_SYMBOL(input_mt_create_slots);
1723
1724 /**
1725 * input_mt_destroy_slots() - frees the MT slots of the input device
1726 * @dev: input device with allocated MT slots
1727 *
1728 * This function is only needed in error path as the input core will
1729 * automatically free the MT slots when the device is destroyed.
1730 */
1731 void input_mt_destroy_slots(struct input_dev *dev)
1732 {
1733 kfree(dev->mt);
1734 dev->mt = NULL;
1735 dev->mtsize = 0;
1736 }
1737 EXPORT_SYMBOL(input_mt_destroy_slots);
1738
1739 /**
1740 * input_set_capability - mark device as capable of a certain event
1741 * @dev: device that is capable of emitting or accepting event
1742 * @type: type of the event (EV_KEY, EV_REL, etc...)
1743 * @code: event code
1744 *
1745 * In addition to setting up corresponding bit in appropriate capability
1746 * bitmap the function also adjusts dev->evbit.
1747 */
1748 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1749 {
1750 switch (type) {
1751 case EV_KEY:
1752 __set_bit(code, dev->keybit);
1753 break;
1754
1755 case EV_REL:
1756 __set_bit(code, dev->relbit);
1757 break;
1758
1759 case EV_ABS:
1760 __set_bit(code, dev->absbit);
1761 break;
1762
1763 case EV_MSC:
1764 __set_bit(code, dev->mscbit);
1765 break;
1766
1767 case EV_SW:
1768 __set_bit(code, dev->swbit);
1769 break;
1770
1771 case EV_LED:
1772 __set_bit(code, dev->ledbit);
1773 break;
1774
1775 case EV_SND:
1776 __set_bit(code, dev->sndbit);
1777 break;
1778
1779 case EV_FF:
1780 __set_bit(code, dev->ffbit);
1781 break;
1782
1783 case EV_PWR:
1784 /* do nothing */
1785 break;
1786
1787 default:
1788 printk(KERN_ERR
1789 "input_set_capability: unknown type %u (code %u)\n",
1790 type, code);
1791 dump_stack();
1792 return;
1793 }
1794
1795 __set_bit(type, dev->evbit);
1796 }
1797 EXPORT_SYMBOL(input_set_capability);
1798
1799 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \
1800 do { \
1801 if (!test_bit(EV_##type, dev->evbit)) \
1802 memset(dev->bits##bit, 0, \
1803 sizeof(dev->bits##bit)); \
1804 } while (0)
1805
1806 static void input_cleanse_bitmasks(struct input_dev *dev)
1807 {
1808 INPUT_CLEANSE_BITMASK(dev, KEY, key);
1809 INPUT_CLEANSE_BITMASK(dev, REL, rel);
1810 INPUT_CLEANSE_BITMASK(dev, ABS, abs);
1811 INPUT_CLEANSE_BITMASK(dev, MSC, msc);
1812 INPUT_CLEANSE_BITMASK(dev, LED, led);
1813 INPUT_CLEANSE_BITMASK(dev, SND, snd);
1814 INPUT_CLEANSE_BITMASK(dev, FF, ff);
1815 INPUT_CLEANSE_BITMASK(dev, SW, sw);
1816 }
1817
1818 /**
1819 * input_register_device - register device with input core
1820 * @dev: device to be registered
1821 *
1822 * This function registers device with input core. The device must be
1823 * allocated with input_allocate_device() and all it's capabilities
1824 * set up before registering.
1825 * If function fails the device must be freed with input_free_device().
1826 * Once device has been successfully registered it can be unregistered
1827 * with input_unregister_device(); input_free_device() should not be
1828 * called in this case.
1829 */
1830 int input_register_device(struct input_dev *dev)
1831 {
1832 static atomic_t input_no = ATOMIC_INIT(0);
1833 struct input_handler *handler;
1834 const char *path;
1835 int error;
1836
1837 /* Every input device generates EV_SYN/SYN_REPORT events. */
1838 __set_bit(EV_SYN, dev->evbit);
1839
1840 /* KEY_RESERVED is not supposed to be transmitted to userspace. */
1841 __clear_bit(KEY_RESERVED, dev->keybit);
1842
1843 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
1844 input_cleanse_bitmasks(dev);
1845
1846 /*
1847 * If delay and period are pre-set by the driver, then autorepeating
1848 * is handled by the driver itself and we don't do it in input.c.
1849 */
1850 init_timer(&dev->timer);
1851 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
1852 dev->timer.data = (long) dev;
1853 dev->timer.function = input_repeat_key;
1854 dev->rep[REP_DELAY] = 250;
1855 dev->rep[REP_PERIOD] = 33;
1856 }
1857
1858 if (!dev->getkeycode && !dev->getkeycode_new)
1859 dev->getkeycode_new = input_default_getkeycode;
1860
1861 if (!dev->setkeycode && !dev->setkeycode_new)
1862 dev->setkeycode_new = input_default_setkeycode;
1863
1864 dev_set_name(&dev->dev, "input%ld",
1865 (unsigned long) atomic_inc_return(&input_no) - 1);
1866
1867 error = device_add(&dev->dev);
1868 if (error)
1869 return error;
1870
1871 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1872 printk(KERN_INFO "input: %s as %s\n",
1873 dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
1874 kfree(path);
1875
1876 error = mutex_lock_interruptible(&input_mutex);
1877 if (error) {
1878 device_del(&dev->dev);
1879 return error;
1880 }
1881
1882 list_add_tail(&dev->node, &input_dev_list);
1883
1884 list_for_each_entry(handler, &input_handler_list, node)
1885 input_attach_handler(dev, handler);
1886
1887 input_wakeup_procfs_readers();
1888
1889 mutex_unlock(&input_mutex);
1890
1891 return 0;
1892 }
1893 EXPORT_SYMBOL(input_register_device);
1894
1895 /**
1896 * input_unregister_device - unregister previously registered device
1897 * @dev: device to be unregistered
1898 *
1899 * This function unregisters an input device. Once device is unregistered
1900 * the caller should not try to access it as it may get freed at any moment.
1901 */
1902 void input_unregister_device(struct input_dev *dev)
1903 {
1904 struct input_handle *handle, *next;
1905
1906 input_disconnect_device(dev);
1907
1908 mutex_lock(&input_mutex);
1909
1910 list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
1911 handle->handler->disconnect(handle);
1912 WARN_ON(!list_empty(&dev->h_list));
1913
1914 del_timer_sync(&dev->timer);
1915 list_del_init(&dev->node);
1916
1917 input_wakeup_procfs_readers();
1918
1919 mutex_unlock(&input_mutex);
1920
1921 device_unregister(&dev->dev);
1922 }
1923 EXPORT_SYMBOL(input_unregister_device);
1924
1925 /**
1926 * input_register_handler - register a new input handler
1927 * @handler: handler to be registered
1928 *
1929 * This function registers a new input handler (interface) for input
1930 * devices in the system and attaches it to all input devices that
1931 * are compatible with the handler.
1932 */
1933 int input_register_handler(struct input_handler *handler)
1934 {
1935 struct input_dev *dev;
1936 int retval;
1937
1938 retval = mutex_lock_interruptible(&input_mutex);
1939 if (retval)
1940 return retval;
1941
1942 INIT_LIST_HEAD(&handler->h_list);
1943
1944 if (handler->fops != NULL) {
1945 if (input_table[handler->minor >> 5]) {
1946 retval = -EBUSY;
1947 goto out;
1948 }
1949 input_table[handler->minor >> 5] = handler;
1950 }
1951
1952 list_add_tail(&handler->node, &input_handler_list);
1953
1954 list_for_each_entry(dev, &input_dev_list, node)
1955 input_attach_handler(dev, handler);
1956
1957 input_wakeup_procfs_readers();
1958
1959 out:
1960 mutex_unlock(&input_mutex);
1961 return retval;
1962 }
1963 EXPORT_SYMBOL(input_register_handler);
1964
1965 /**
1966 * input_unregister_handler - unregisters an input handler
1967 * @handler: handler to be unregistered
1968 *
1969 * This function disconnects a handler from its input devices and
1970 * removes it from lists of known handlers.
1971 */
1972 void input_unregister_handler(struct input_handler *handler)
1973 {
1974 struct input_handle *handle, *next;
1975
1976 mutex_lock(&input_mutex);
1977
1978 list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
1979 handler->disconnect(handle);
1980 WARN_ON(!list_empty(&handler->h_list));
1981
1982 list_del_init(&handler->node);
1983
1984 if (handler->fops != NULL)
1985 input_table[handler->minor >> 5] = NULL;
1986
1987 input_wakeup_procfs_readers();
1988
1989 mutex_unlock(&input_mutex);
1990 }
1991 EXPORT_SYMBOL(input_unregister_handler);
1992
1993 /**
1994 * input_handler_for_each_handle - handle iterator
1995 * @handler: input handler to iterate
1996 * @data: data for the callback
1997 * @fn: function to be called for each handle
1998 *
1999 * Iterate over @bus's list of devices, and call @fn for each, passing
2000 * it @data and stop when @fn returns a non-zero value. The function is
2001 * using RCU to traverse the list and therefore may be usind in atonic
2002 * contexts. The @fn callback is invoked from RCU critical section and
2003 * thus must not sleep.
2004 */
2005 int input_handler_for_each_handle(struct input_handler *handler, void *data,
2006 int (*fn)(struct input_handle *, void *))
2007 {
2008 struct input_handle *handle;
2009 int retval = 0;
2010
2011 rcu_read_lock();
2012
2013 list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2014 retval = fn(handle, data);
2015 if (retval)
2016 break;
2017 }
2018
2019 rcu_read_unlock();
2020
2021 return retval;
2022 }
2023 EXPORT_SYMBOL(input_handler_for_each_handle);
2024
2025 /**
2026 * input_register_handle - register a new input handle
2027 * @handle: handle to register
2028 *
2029 * This function puts a new input handle onto device's
2030 * and handler's lists so that events can flow through
2031 * it once it is opened using input_open_device().
2032 *
2033 * This function is supposed to be called from handler's
2034 * connect() method.
2035 */
2036 int input_register_handle(struct input_handle *handle)
2037 {
2038 struct input_handler *handler = handle->handler;
2039 struct input_dev *dev = handle->dev;
2040 int error;
2041
2042 /*
2043 * We take dev->mutex here to prevent race with
2044 * input_release_device().
2045 */
2046 error = mutex_lock_interruptible(&dev->mutex);
2047 if (error)
2048 return error;
2049
2050 /*
2051 * Filters go to the head of the list, normal handlers
2052 * to the tail.
2053 */
2054 if (handler->filter)
2055 list_add_rcu(&handle->d_node, &dev->h_list);
2056 else
2057 list_add_tail_rcu(&handle->d_node, &dev->h_list);
2058
2059 mutex_unlock(&dev->mutex);
2060
2061 /*
2062 * Since we are supposed to be called from ->connect()
2063 * which is mutually exclusive with ->disconnect()
2064 * we can't be racing with input_unregister_handle()
2065 * and so separate lock is not needed here.
2066 */
2067 list_add_tail_rcu(&handle->h_node, &handler->h_list);
2068
2069 if (handler->start)
2070 handler->start(handle);
2071
2072 return 0;
2073 }
2074 EXPORT_SYMBOL(input_register_handle);
2075
2076 /**
2077 * input_unregister_handle - unregister an input handle
2078 * @handle: handle to unregister
2079 *
2080 * This function removes input handle from device's
2081 * and handler's lists.
2082 *
2083 * This function is supposed to be called from handler's
2084 * disconnect() method.
2085 */
2086 void input_unregister_handle(struct input_handle *handle)
2087 {
2088 struct input_dev *dev = handle->dev;
2089
2090 list_del_rcu(&handle->h_node);
2091
2092 /*
2093 * Take dev->mutex to prevent race with input_release_device().
2094 */
2095 mutex_lock(&dev->mutex);
2096 list_del_rcu(&handle->d_node);
2097 mutex_unlock(&dev->mutex);
2098
2099 synchronize_rcu();
2100 }
2101 EXPORT_SYMBOL(input_unregister_handle);
2102
2103 static int input_open_file(struct inode *inode, struct file *file)
2104 {
2105 struct input_handler *handler;
2106 const struct file_operations *old_fops, *new_fops = NULL;
2107 int err;
2108
2109 err = mutex_lock_interruptible(&input_mutex);
2110 if (err)
2111 return err;
2112
2113 /* No load-on-demand here? */
2114 handler = input_table[iminor(inode) >> 5];
2115 if (handler)
2116 new_fops = fops_get(handler->fops);
2117
2118 mutex_unlock(&input_mutex);
2119
2120 /*
2121 * That's _really_ odd. Usually NULL ->open means "nothing special",
2122 * not "no device". Oh, well...
2123 */
2124 if (!new_fops || !new_fops->open) {
2125 fops_put(new_fops);
2126 err = -ENODEV;
2127 goto out;
2128 }
2129
2130 old_fops = file->f_op;
2131 file->f_op = new_fops;
2132
2133 err = new_fops->open(inode, file);
2134 if (err) {
2135 fops_put(file->f_op);
2136 file->f_op = fops_get(old_fops);
2137 }
2138 fops_put(old_fops);
2139 out:
2140 return err;
2141 }
2142
2143 static const struct file_operations input_fops = {
2144 .owner = THIS_MODULE,
2145 .open = input_open_file,
2146 .llseek = noop_llseek,
2147 };
2148
2149 static int __init input_init(void)
2150 {
2151 int err;
2152
2153 err = class_register(&input_class);
2154 if (err) {
2155 printk(KERN_ERR "input: unable to register input_dev class\n");
2156 return err;
2157 }
2158
2159 err = input_proc_init();
2160 if (err)
2161 goto fail1;
2162
2163 err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
2164 if (err) {
2165 printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR);
2166 goto fail2;
2167 }
2168
2169 return 0;
2170
2171 fail2: input_proc_exit();
2172 fail1: class_unregister(&input_class);
2173 return err;
2174 }
2175
2176 static void __exit input_exit(void)
2177 {
2178 input_proc_exit();
2179 unregister_chrdev(INPUT_MAJOR, "input");
2180 class_unregister(&input_class);
2181 }
2182
2183 subsys_initcall(input_init);
2184 module_exit(input_exit);
This page took 0.085665 seconds and 5 git commands to generate.