mwifiex: separate interface combination for multichannel and DFS
[deliverable/linux.git] / drivers / input / input.c
1 /*
2 * The input core
3 *
4 * Copyright (c) 1999-2002 Vojtech Pavlik
5 */
6
7 /*
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License version 2 as published by
10 * the Free Software Foundation.
11 */
12
13 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
14
15 #include <linux/init.h>
16 #include <linux/types.h>
17 #include <linux/idr.h>
18 #include <linux/input/mt.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/random.h>
22 #include <linux/major.h>
23 #include <linux/proc_fs.h>
24 #include <linux/sched.h>
25 #include <linux/seq_file.h>
26 #include <linux/poll.h>
27 #include <linux/device.h>
28 #include <linux/mutex.h>
29 #include <linux/rcupdate.h>
30 #include "input-compat.h"
31
32 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
33 MODULE_DESCRIPTION("Input core");
34 MODULE_LICENSE("GPL");
35
36 #define INPUT_MAX_CHAR_DEVICES 1024
37 #define INPUT_FIRST_DYNAMIC_DEV 256
38 static DEFINE_IDA(input_ida);
39
40 static LIST_HEAD(input_dev_list);
41 static LIST_HEAD(input_handler_list);
42
43 /*
44 * input_mutex protects access to both input_dev_list and input_handler_list.
45 * This also causes input_[un]register_device and input_[un]register_handler
46 * be mutually exclusive which simplifies locking in drivers implementing
47 * input handlers.
48 */
49 static DEFINE_MUTEX(input_mutex);
50
51 static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
52
53 static inline int is_event_supported(unsigned int code,
54 unsigned long *bm, unsigned int max)
55 {
56 return code <= max && test_bit(code, bm);
57 }
58
59 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
60 {
61 if (fuzz) {
62 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
63 return old_val;
64
65 if (value > old_val - fuzz && value < old_val + fuzz)
66 return (old_val * 3 + value) / 4;
67
68 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
69 return (old_val + value) / 2;
70 }
71
72 return value;
73 }
74
75 static void input_start_autorepeat(struct input_dev *dev, int code)
76 {
77 if (test_bit(EV_REP, dev->evbit) &&
78 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
79 dev->timer.data) {
80 dev->repeat_key = code;
81 mod_timer(&dev->timer,
82 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
83 }
84 }
85
86 static void input_stop_autorepeat(struct input_dev *dev)
87 {
88 del_timer(&dev->timer);
89 }
90
91 /*
92 * Pass event first through all filters and then, if event has not been
93 * filtered out, through all open handles. This function is called with
94 * dev->event_lock held and interrupts disabled.
95 */
96 static unsigned int input_to_handler(struct input_handle *handle,
97 struct input_value *vals, unsigned int count)
98 {
99 struct input_handler *handler = handle->handler;
100 struct input_value *end = vals;
101 struct input_value *v;
102
103 if (handler->filter) {
104 for (v = vals; v != vals + count; v++) {
105 if (handler->filter(handle, v->type, v->code, v->value))
106 continue;
107 if (end != v)
108 *end = *v;
109 end++;
110 }
111 count = end - vals;
112 }
113
114 if (!count)
115 return 0;
116
117 if (handler->events)
118 handler->events(handle, vals, count);
119 else if (handler->event)
120 for (v = vals; v != vals + count; v++)
121 handler->event(handle, v->type, v->code, v->value);
122
123 return count;
124 }
125
126 /*
127 * Pass values first through all filters and then, if event has not been
128 * filtered out, through all open handles. This function is called with
129 * dev->event_lock held and interrupts disabled.
130 */
131 static void input_pass_values(struct input_dev *dev,
132 struct input_value *vals, unsigned int count)
133 {
134 struct input_handle *handle;
135 struct input_value *v;
136
137 if (!count)
138 return;
139
140 rcu_read_lock();
141
142 handle = rcu_dereference(dev->grab);
143 if (handle) {
144 count = input_to_handler(handle, vals, count);
145 } else {
146 list_for_each_entry_rcu(handle, &dev->h_list, d_node)
147 if (handle->open) {
148 count = input_to_handler(handle, vals, count);
149 if (!count)
150 break;
151 }
152 }
153
154 rcu_read_unlock();
155
156 add_input_randomness(vals->type, vals->code, vals->value);
157
158 /* trigger auto repeat for key events */
159 if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
160 for (v = vals; v != vals + count; v++) {
161 if (v->type == EV_KEY && v->value != 2) {
162 if (v->value)
163 input_start_autorepeat(dev, v->code);
164 else
165 input_stop_autorepeat(dev);
166 }
167 }
168 }
169 }
170
171 static void input_pass_event(struct input_dev *dev,
172 unsigned int type, unsigned int code, int value)
173 {
174 struct input_value vals[] = { { type, code, value } };
175
176 input_pass_values(dev, vals, ARRAY_SIZE(vals));
177 }
178
179 /*
180 * Generate software autorepeat event. Note that we take
181 * dev->event_lock here to avoid racing with input_event
182 * which may cause keys get "stuck".
183 */
184 static void input_repeat_key(unsigned long data)
185 {
186 struct input_dev *dev = (void *) data;
187 unsigned long flags;
188
189 spin_lock_irqsave(&dev->event_lock, flags);
190
191 if (test_bit(dev->repeat_key, dev->key) &&
192 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
193 struct input_value vals[] = {
194 { EV_KEY, dev->repeat_key, 2 },
195 input_value_sync
196 };
197
198 input_pass_values(dev, vals, ARRAY_SIZE(vals));
199
200 if (dev->rep[REP_PERIOD])
201 mod_timer(&dev->timer, jiffies +
202 msecs_to_jiffies(dev->rep[REP_PERIOD]));
203 }
204
205 spin_unlock_irqrestore(&dev->event_lock, flags);
206 }
207
208 #define INPUT_IGNORE_EVENT 0
209 #define INPUT_PASS_TO_HANDLERS 1
210 #define INPUT_PASS_TO_DEVICE 2
211 #define INPUT_SLOT 4
212 #define INPUT_FLUSH 8
213 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
214
215 static int input_handle_abs_event(struct input_dev *dev,
216 unsigned int code, int *pval)
217 {
218 struct input_mt *mt = dev->mt;
219 bool is_mt_event;
220 int *pold;
221
222 if (code == ABS_MT_SLOT) {
223 /*
224 * "Stage" the event; we'll flush it later, when we
225 * get actual touch data.
226 */
227 if (mt && *pval >= 0 && *pval < mt->num_slots)
228 mt->slot = *pval;
229
230 return INPUT_IGNORE_EVENT;
231 }
232
233 is_mt_event = input_is_mt_value(code);
234
235 if (!is_mt_event) {
236 pold = &dev->absinfo[code].value;
237 } else if (mt) {
238 pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
239 } else {
240 /*
241 * Bypass filtering for multi-touch events when
242 * not employing slots.
243 */
244 pold = NULL;
245 }
246
247 if (pold) {
248 *pval = input_defuzz_abs_event(*pval, *pold,
249 dev->absinfo[code].fuzz);
250 if (*pold == *pval)
251 return INPUT_IGNORE_EVENT;
252
253 *pold = *pval;
254 }
255
256 /* Flush pending "slot" event */
257 if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
258 input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);
259 return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
260 }
261
262 return INPUT_PASS_TO_HANDLERS;
263 }
264
265 static int input_get_disposition(struct input_dev *dev,
266 unsigned int type, unsigned int code, int *pval)
267 {
268 int disposition = INPUT_IGNORE_EVENT;
269 int value = *pval;
270
271 switch (type) {
272
273 case EV_SYN:
274 switch (code) {
275 case SYN_CONFIG:
276 disposition = INPUT_PASS_TO_ALL;
277 break;
278
279 case SYN_REPORT:
280 disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
281 break;
282 case SYN_MT_REPORT:
283 disposition = INPUT_PASS_TO_HANDLERS;
284 break;
285 }
286 break;
287
288 case EV_KEY:
289 if (is_event_supported(code, dev->keybit, KEY_MAX)) {
290
291 /* auto-repeat bypasses state updates */
292 if (value == 2) {
293 disposition = INPUT_PASS_TO_HANDLERS;
294 break;
295 }
296
297 if (!!test_bit(code, dev->key) != !!value) {
298
299 __change_bit(code, dev->key);
300 disposition = INPUT_PASS_TO_HANDLERS;
301 }
302 }
303 break;
304
305 case EV_SW:
306 if (is_event_supported(code, dev->swbit, SW_MAX) &&
307 !!test_bit(code, dev->sw) != !!value) {
308
309 __change_bit(code, dev->sw);
310 disposition = INPUT_PASS_TO_HANDLERS;
311 }
312 break;
313
314 case EV_ABS:
315 if (is_event_supported(code, dev->absbit, ABS_MAX))
316 disposition = input_handle_abs_event(dev, code, &value);
317
318 break;
319
320 case EV_REL:
321 if (is_event_supported(code, dev->relbit, REL_MAX) && value)
322 disposition = INPUT_PASS_TO_HANDLERS;
323
324 break;
325
326 case EV_MSC:
327 if (is_event_supported(code, dev->mscbit, MSC_MAX))
328 disposition = INPUT_PASS_TO_ALL;
329
330 break;
331
332 case EV_LED:
333 if (is_event_supported(code, dev->ledbit, LED_MAX) &&
334 !!test_bit(code, dev->led) != !!value) {
335
336 __change_bit(code, dev->led);
337 disposition = INPUT_PASS_TO_ALL;
338 }
339 break;
340
341 case EV_SND:
342 if (is_event_supported(code, dev->sndbit, SND_MAX)) {
343
344 if (!!test_bit(code, dev->snd) != !!value)
345 __change_bit(code, dev->snd);
346 disposition = INPUT_PASS_TO_ALL;
347 }
348 break;
349
350 case EV_REP:
351 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
352 dev->rep[code] = value;
353 disposition = INPUT_PASS_TO_ALL;
354 }
355 break;
356
357 case EV_FF:
358 if (value >= 0)
359 disposition = INPUT_PASS_TO_ALL;
360 break;
361
362 case EV_PWR:
363 disposition = INPUT_PASS_TO_ALL;
364 break;
365 }
366
367 *pval = value;
368 return disposition;
369 }
370
371 static void input_handle_event(struct input_dev *dev,
372 unsigned int type, unsigned int code, int value)
373 {
374 int disposition;
375
376 disposition = input_get_disposition(dev, type, code, &value);
377
378 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
379 dev->event(dev, type, code, value);
380
381 if (!dev->vals)
382 return;
383
384 if (disposition & INPUT_PASS_TO_HANDLERS) {
385 struct input_value *v;
386
387 if (disposition & INPUT_SLOT) {
388 v = &dev->vals[dev->num_vals++];
389 v->type = EV_ABS;
390 v->code = ABS_MT_SLOT;
391 v->value = dev->mt->slot;
392 }
393
394 v = &dev->vals[dev->num_vals++];
395 v->type = type;
396 v->code = code;
397 v->value = value;
398 }
399
400 if (disposition & INPUT_FLUSH) {
401 if (dev->num_vals >= 2)
402 input_pass_values(dev, dev->vals, dev->num_vals);
403 dev->num_vals = 0;
404 } else if (dev->num_vals >= dev->max_vals - 2) {
405 dev->vals[dev->num_vals++] = input_value_sync;
406 input_pass_values(dev, dev->vals, dev->num_vals);
407 dev->num_vals = 0;
408 }
409
410 }
411
412 /**
413 * input_event() - report new input event
414 * @dev: device that generated the event
415 * @type: type of the event
416 * @code: event code
417 * @value: value of the event
418 *
419 * This function should be used by drivers implementing various input
420 * devices to report input events. See also input_inject_event().
421 *
422 * NOTE: input_event() may be safely used right after input device was
423 * allocated with input_allocate_device(), even before it is registered
424 * with input_register_device(), but the event will not reach any of the
425 * input handlers. Such early invocation of input_event() may be used
426 * to 'seed' initial state of a switch or initial position of absolute
427 * axis, etc.
428 */
429 void input_event(struct input_dev *dev,
430 unsigned int type, unsigned int code, int value)
431 {
432 unsigned long flags;
433
434 if (is_event_supported(type, dev->evbit, EV_MAX)) {
435
436 spin_lock_irqsave(&dev->event_lock, flags);
437 input_handle_event(dev, type, code, value);
438 spin_unlock_irqrestore(&dev->event_lock, flags);
439 }
440 }
441 EXPORT_SYMBOL(input_event);
442
443 /**
444 * input_inject_event() - send input event from input handler
445 * @handle: input handle to send event through
446 * @type: type of the event
447 * @code: event code
448 * @value: value of the event
449 *
450 * Similar to input_event() but will ignore event if device is
451 * "grabbed" and handle injecting event is not the one that owns
452 * the device.
453 */
454 void input_inject_event(struct input_handle *handle,
455 unsigned int type, unsigned int code, int value)
456 {
457 struct input_dev *dev = handle->dev;
458 struct input_handle *grab;
459 unsigned long flags;
460
461 if (is_event_supported(type, dev->evbit, EV_MAX)) {
462 spin_lock_irqsave(&dev->event_lock, flags);
463
464 rcu_read_lock();
465 grab = rcu_dereference(dev->grab);
466 if (!grab || grab == handle)
467 input_handle_event(dev, type, code, value);
468 rcu_read_unlock();
469
470 spin_unlock_irqrestore(&dev->event_lock, flags);
471 }
472 }
473 EXPORT_SYMBOL(input_inject_event);
474
475 /**
476 * input_alloc_absinfo - allocates array of input_absinfo structs
477 * @dev: the input device emitting absolute events
478 *
479 * If the absinfo struct the caller asked for is already allocated, this
480 * functions will not do anything.
481 */
482 void input_alloc_absinfo(struct input_dev *dev)
483 {
484 if (!dev->absinfo)
485 dev->absinfo = kcalloc(ABS_CNT, sizeof(struct input_absinfo),
486 GFP_KERNEL);
487
488 WARN(!dev->absinfo, "%s(): kcalloc() failed?\n", __func__);
489 }
490 EXPORT_SYMBOL(input_alloc_absinfo);
491
492 void input_set_abs_params(struct input_dev *dev, unsigned int axis,
493 int min, int max, int fuzz, int flat)
494 {
495 struct input_absinfo *absinfo;
496
497 input_alloc_absinfo(dev);
498 if (!dev->absinfo)
499 return;
500
501 absinfo = &dev->absinfo[axis];
502 absinfo->minimum = min;
503 absinfo->maximum = max;
504 absinfo->fuzz = fuzz;
505 absinfo->flat = flat;
506
507 __set_bit(EV_ABS, dev->evbit);
508 __set_bit(axis, dev->absbit);
509 }
510 EXPORT_SYMBOL(input_set_abs_params);
511
512
513 /**
514 * input_grab_device - grabs device for exclusive use
515 * @handle: input handle that wants to own the device
516 *
517 * When a device is grabbed by an input handle all events generated by
518 * the device are delivered only to this handle. Also events injected
519 * by other input handles are ignored while device is grabbed.
520 */
521 int input_grab_device(struct input_handle *handle)
522 {
523 struct input_dev *dev = handle->dev;
524 int retval;
525
526 retval = mutex_lock_interruptible(&dev->mutex);
527 if (retval)
528 return retval;
529
530 if (dev->grab) {
531 retval = -EBUSY;
532 goto out;
533 }
534
535 rcu_assign_pointer(dev->grab, handle);
536
537 out:
538 mutex_unlock(&dev->mutex);
539 return retval;
540 }
541 EXPORT_SYMBOL(input_grab_device);
542
543 static void __input_release_device(struct input_handle *handle)
544 {
545 struct input_dev *dev = handle->dev;
546 struct input_handle *grabber;
547
548 grabber = rcu_dereference_protected(dev->grab,
549 lockdep_is_held(&dev->mutex));
550 if (grabber == handle) {
551 rcu_assign_pointer(dev->grab, NULL);
552 /* Make sure input_pass_event() notices that grab is gone */
553 synchronize_rcu();
554
555 list_for_each_entry(handle, &dev->h_list, d_node)
556 if (handle->open && handle->handler->start)
557 handle->handler->start(handle);
558 }
559 }
560
561 /**
562 * input_release_device - release previously grabbed device
563 * @handle: input handle that owns the device
564 *
565 * Releases previously grabbed device so that other input handles can
566 * start receiving input events. Upon release all handlers attached
567 * to the device have their start() method called so they have a change
568 * to synchronize device state with the rest of the system.
569 */
570 void input_release_device(struct input_handle *handle)
571 {
572 struct input_dev *dev = handle->dev;
573
574 mutex_lock(&dev->mutex);
575 __input_release_device(handle);
576 mutex_unlock(&dev->mutex);
577 }
578 EXPORT_SYMBOL(input_release_device);
579
580 /**
581 * input_open_device - open input device
582 * @handle: handle through which device is being accessed
583 *
584 * This function should be called by input handlers when they
585 * want to start receive events from given input device.
586 */
587 int input_open_device(struct input_handle *handle)
588 {
589 struct input_dev *dev = handle->dev;
590 int retval;
591
592 retval = mutex_lock_interruptible(&dev->mutex);
593 if (retval)
594 return retval;
595
596 if (dev->going_away) {
597 retval = -ENODEV;
598 goto out;
599 }
600
601 handle->open++;
602
603 if (!dev->users++ && dev->open)
604 retval = dev->open(dev);
605
606 if (retval) {
607 dev->users--;
608 if (!--handle->open) {
609 /*
610 * Make sure we are not delivering any more events
611 * through this handle
612 */
613 synchronize_rcu();
614 }
615 }
616
617 out:
618 mutex_unlock(&dev->mutex);
619 return retval;
620 }
621 EXPORT_SYMBOL(input_open_device);
622
623 int input_flush_device(struct input_handle *handle, struct file *file)
624 {
625 struct input_dev *dev = handle->dev;
626 int retval;
627
628 retval = mutex_lock_interruptible(&dev->mutex);
629 if (retval)
630 return retval;
631
632 if (dev->flush)
633 retval = dev->flush(dev, file);
634
635 mutex_unlock(&dev->mutex);
636 return retval;
637 }
638 EXPORT_SYMBOL(input_flush_device);
639
640 /**
641 * input_close_device - close input device
642 * @handle: handle through which device is being accessed
643 *
644 * This function should be called by input handlers when they
645 * want to stop receive events from given input device.
646 */
647 void input_close_device(struct input_handle *handle)
648 {
649 struct input_dev *dev = handle->dev;
650
651 mutex_lock(&dev->mutex);
652
653 __input_release_device(handle);
654
655 if (!--dev->users && dev->close)
656 dev->close(dev);
657
658 if (!--handle->open) {
659 /*
660 * synchronize_rcu() makes sure that input_pass_event()
661 * completed and that no more input events are delivered
662 * through this handle
663 */
664 synchronize_rcu();
665 }
666
667 mutex_unlock(&dev->mutex);
668 }
669 EXPORT_SYMBOL(input_close_device);
670
671 /*
672 * Simulate keyup events for all keys that are marked as pressed.
673 * The function must be called with dev->event_lock held.
674 */
675 static void input_dev_release_keys(struct input_dev *dev)
676 {
677 int code;
678
679 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
680 for (code = 0; code <= KEY_MAX; code++) {
681 if (is_event_supported(code, dev->keybit, KEY_MAX) &&
682 __test_and_clear_bit(code, dev->key)) {
683 input_pass_event(dev, EV_KEY, code, 0);
684 }
685 }
686 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
687 }
688 }
689
690 /*
691 * Prepare device for unregistering
692 */
693 static void input_disconnect_device(struct input_dev *dev)
694 {
695 struct input_handle *handle;
696
697 /*
698 * Mark device as going away. Note that we take dev->mutex here
699 * not to protect access to dev->going_away but rather to ensure
700 * that there are no threads in the middle of input_open_device()
701 */
702 mutex_lock(&dev->mutex);
703 dev->going_away = true;
704 mutex_unlock(&dev->mutex);
705
706 spin_lock_irq(&dev->event_lock);
707
708 /*
709 * Simulate keyup events for all pressed keys so that handlers
710 * are not left with "stuck" keys. The driver may continue
711 * generate events even after we done here but they will not
712 * reach any handlers.
713 */
714 input_dev_release_keys(dev);
715
716 list_for_each_entry(handle, &dev->h_list, d_node)
717 handle->open = 0;
718
719 spin_unlock_irq(&dev->event_lock);
720 }
721
722 /**
723 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
724 * @ke: keymap entry containing scancode to be converted.
725 * @scancode: pointer to the location where converted scancode should
726 * be stored.
727 *
728 * This function is used to convert scancode stored in &struct keymap_entry
729 * into scalar form understood by legacy keymap handling methods. These
730 * methods expect scancodes to be represented as 'unsigned int'.
731 */
732 int input_scancode_to_scalar(const struct input_keymap_entry *ke,
733 unsigned int *scancode)
734 {
735 switch (ke->len) {
736 case 1:
737 *scancode = *((u8 *)ke->scancode);
738 break;
739
740 case 2:
741 *scancode = *((u16 *)ke->scancode);
742 break;
743
744 case 4:
745 *scancode = *((u32 *)ke->scancode);
746 break;
747
748 default:
749 return -EINVAL;
750 }
751
752 return 0;
753 }
754 EXPORT_SYMBOL(input_scancode_to_scalar);
755
756 /*
757 * Those routines handle the default case where no [gs]etkeycode() is
758 * defined. In this case, an array indexed by the scancode is used.
759 */
760
761 static unsigned int input_fetch_keycode(struct input_dev *dev,
762 unsigned int index)
763 {
764 switch (dev->keycodesize) {
765 case 1:
766 return ((u8 *)dev->keycode)[index];
767
768 case 2:
769 return ((u16 *)dev->keycode)[index];
770
771 default:
772 return ((u32 *)dev->keycode)[index];
773 }
774 }
775
776 static int input_default_getkeycode(struct input_dev *dev,
777 struct input_keymap_entry *ke)
778 {
779 unsigned int index;
780 int error;
781
782 if (!dev->keycodesize)
783 return -EINVAL;
784
785 if (ke->flags & INPUT_KEYMAP_BY_INDEX)
786 index = ke->index;
787 else {
788 error = input_scancode_to_scalar(ke, &index);
789 if (error)
790 return error;
791 }
792
793 if (index >= dev->keycodemax)
794 return -EINVAL;
795
796 ke->keycode = input_fetch_keycode(dev, index);
797 ke->index = index;
798 ke->len = sizeof(index);
799 memcpy(ke->scancode, &index, sizeof(index));
800
801 return 0;
802 }
803
804 static int input_default_setkeycode(struct input_dev *dev,
805 const struct input_keymap_entry *ke,
806 unsigned int *old_keycode)
807 {
808 unsigned int index;
809 int error;
810 int i;
811
812 if (!dev->keycodesize)
813 return -EINVAL;
814
815 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
816 index = ke->index;
817 } else {
818 error = input_scancode_to_scalar(ke, &index);
819 if (error)
820 return error;
821 }
822
823 if (index >= dev->keycodemax)
824 return -EINVAL;
825
826 if (dev->keycodesize < sizeof(ke->keycode) &&
827 (ke->keycode >> (dev->keycodesize * 8)))
828 return -EINVAL;
829
830 switch (dev->keycodesize) {
831 case 1: {
832 u8 *k = (u8 *)dev->keycode;
833 *old_keycode = k[index];
834 k[index] = ke->keycode;
835 break;
836 }
837 case 2: {
838 u16 *k = (u16 *)dev->keycode;
839 *old_keycode = k[index];
840 k[index] = ke->keycode;
841 break;
842 }
843 default: {
844 u32 *k = (u32 *)dev->keycode;
845 *old_keycode = k[index];
846 k[index] = ke->keycode;
847 break;
848 }
849 }
850
851 __clear_bit(*old_keycode, dev->keybit);
852 __set_bit(ke->keycode, dev->keybit);
853
854 for (i = 0; i < dev->keycodemax; i++) {
855 if (input_fetch_keycode(dev, i) == *old_keycode) {
856 __set_bit(*old_keycode, dev->keybit);
857 break; /* Setting the bit twice is useless, so break */
858 }
859 }
860
861 return 0;
862 }
863
864 /**
865 * input_get_keycode - retrieve keycode currently mapped to a given scancode
866 * @dev: input device which keymap is being queried
867 * @ke: keymap entry
868 *
869 * This function should be called by anyone interested in retrieving current
870 * keymap. Presently evdev handlers use it.
871 */
872 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
873 {
874 unsigned long flags;
875 int retval;
876
877 spin_lock_irqsave(&dev->event_lock, flags);
878 retval = dev->getkeycode(dev, ke);
879 spin_unlock_irqrestore(&dev->event_lock, flags);
880
881 return retval;
882 }
883 EXPORT_SYMBOL(input_get_keycode);
884
885 /**
886 * input_set_keycode - attribute a keycode to a given scancode
887 * @dev: input device which keymap is being updated
888 * @ke: new keymap entry
889 *
890 * This function should be called by anyone needing to update current
891 * keymap. Presently keyboard and evdev handlers use it.
892 */
893 int input_set_keycode(struct input_dev *dev,
894 const struct input_keymap_entry *ke)
895 {
896 unsigned long flags;
897 unsigned int old_keycode;
898 int retval;
899
900 if (ke->keycode > KEY_MAX)
901 return -EINVAL;
902
903 spin_lock_irqsave(&dev->event_lock, flags);
904
905 retval = dev->setkeycode(dev, ke, &old_keycode);
906 if (retval)
907 goto out;
908
909 /* Make sure KEY_RESERVED did not get enabled. */
910 __clear_bit(KEY_RESERVED, dev->keybit);
911
912 /*
913 * Simulate keyup event if keycode is not present
914 * in the keymap anymore
915 */
916 if (test_bit(EV_KEY, dev->evbit) &&
917 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
918 __test_and_clear_bit(old_keycode, dev->key)) {
919 struct input_value vals[] = {
920 { EV_KEY, old_keycode, 0 },
921 input_value_sync
922 };
923
924 input_pass_values(dev, vals, ARRAY_SIZE(vals));
925 }
926
927 out:
928 spin_unlock_irqrestore(&dev->event_lock, flags);
929
930 return retval;
931 }
932 EXPORT_SYMBOL(input_set_keycode);
933
934 static const struct input_device_id *input_match_device(struct input_handler *handler,
935 struct input_dev *dev)
936 {
937 const struct input_device_id *id;
938
939 for (id = handler->id_table; id->flags || id->driver_info; id++) {
940
941 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
942 if (id->bustype != dev->id.bustype)
943 continue;
944
945 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
946 if (id->vendor != dev->id.vendor)
947 continue;
948
949 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
950 if (id->product != dev->id.product)
951 continue;
952
953 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
954 if (id->version != dev->id.version)
955 continue;
956
957 if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX))
958 continue;
959
960 if (!bitmap_subset(id->keybit, dev->keybit, KEY_MAX))
961 continue;
962
963 if (!bitmap_subset(id->relbit, dev->relbit, REL_MAX))
964 continue;
965
966 if (!bitmap_subset(id->absbit, dev->absbit, ABS_MAX))
967 continue;
968
969 if (!bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX))
970 continue;
971
972 if (!bitmap_subset(id->ledbit, dev->ledbit, LED_MAX))
973 continue;
974
975 if (!bitmap_subset(id->sndbit, dev->sndbit, SND_MAX))
976 continue;
977
978 if (!bitmap_subset(id->ffbit, dev->ffbit, FF_MAX))
979 continue;
980
981 if (!bitmap_subset(id->swbit, dev->swbit, SW_MAX))
982 continue;
983
984 if (!handler->match || handler->match(handler, dev))
985 return id;
986 }
987
988 return NULL;
989 }
990
991 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
992 {
993 const struct input_device_id *id;
994 int error;
995
996 id = input_match_device(handler, dev);
997 if (!id)
998 return -ENODEV;
999
1000 error = handler->connect(handler, dev, id);
1001 if (error && error != -ENODEV)
1002 pr_err("failed to attach handler %s to device %s, error: %d\n",
1003 handler->name, kobject_name(&dev->dev.kobj), error);
1004
1005 return error;
1006 }
1007
1008 #ifdef CONFIG_COMPAT
1009
1010 static int input_bits_to_string(char *buf, int buf_size,
1011 unsigned long bits, bool skip_empty)
1012 {
1013 int len = 0;
1014
1015 if (INPUT_COMPAT_TEST) {
1016 u32 dword = bits >> 32;
1017 if (dword || !skip_empty)
1018 len += snprintf(buf, buf_size, "%x ", dword);
1019
1020 dword = bits & 0xffffffffUL;
1021 if (dword || !skip_empty || len)
1022 len += snprintf(buf + len, max(buf_size - len, 0),
1023 "%x", dword);
1024 } else {
1025 if (bits || !skip_empty)
1026 len += snprintf(buf, buf_size, "%lx", bits);
1027 }
1028
1029 return len;
1030 }
1031
1032 #else /* !CONFIG_COMPAT */
1033
1034 static int input_bits_to_string(char *buf, int buf_size,
1035 unsigned long bits, bool skip_empty)
1036 {
1037 return bits || !skip_empty ?
1038 snprintf(buf, buf_size, "%lx", bits) : 0;
1039 }
1040
1041 #endif
1042
1043 #ifdef CONFIG_PROC_FS
1044
1045 static struct proc_dir_entry *proc_bus_input_dir;
1046 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1047 static int input_devices_state;
1048
1049 static inline void input_wakeup_procfs_readers(void)
1050 {
1051 input_devices_state++;
1052 wake_up(&input_devices_poll_wait);
1053 }
1054
1055 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
1056 {
1057 poll_wait(file, &input_devices_poll_wait, wait);
1058 if (file->f_version != input_devices_state) {
1059 file->f_version = input_devices_state;
1060 return POLLIN | POLLRDNORM;
1061 }
1062
1063 return 0;
1064 }
1065
1066 union input_seq_state {
1067 struct {
1068 unsigned short pos;
1069 bool mutex_acquired;
1070 };
1071 void *p;
1072 };
1073
1074 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1075 {
1076 union input_seq_state *state = (union input_seq_state *)&seq->private;
1077 int error;
1078
1079 /* We need to fit into seq->private pointer */
1080 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1081
1082 error = mutex_lock_interruptible(&input_mutex);
1083 if (error) {
1084 state->mutex_acquired = false;
1085 return ERR_PTR(error);
1086 }
1087
1088 state->mutex_acquired = true;
1089
1090 return seq_list_start(&input_dev_list, *pos);
1091 }
1092
1093 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1094 {
1095 return seq_list_next(v, &input_dev_list, pos);
1096 }
1097
1098 static void input_seq_stop(struct seq_file *seq, void *v)
1099 {
1100 union input_seq_state *state = (union input_seq_state *)&seq->private;
1101
1102 if (state->mutex_acquired)
1103 mutex_unlock(&input_mutex);
1104 }
1105
1106 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1107 unsigned long *bitmap, int max)
1108 {
1109 int i;
1110 bool skip_empty = true;
1111 char buf[18];
1112
1113 seq_printf(seq, "B: %s=", name);
1114
1115 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1116 if (input_bits_to_string(buf, sizeof(buf),
1117 bitmap[i], skip_empty)) {
1118 skip_empty = false;
1119 seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1120 }
1121 }
1122
1123 /*
1124 * If no output was produced print a single 0.
1125 */
1126 if (skip_empty)
1127 seq_puts(seq, "0");
1128
1129 seq_putc(seq, '\n');
1130 }
1131
1132 static int input_devices_seq_show(struct seq_file *seq, void *v)
1133 {
1134 struct input_dev *dev = container_of(v, struct input_dev, node);
1135 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1136 struct input_handle *handle;
1137
1138 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1139 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1140
1141 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1142 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1143 seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1144 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1145 seq_printf(seq, "H: Handlers=");
1146
1147 list_for_each_entry(handle, &dev->h_list, d_node)
1148 seq_printf(seq, "%s ", handle->name);
1149 seq_putc(seq, '\n');
1150
1151 input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1152
1153 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1154 if (test_bit(EV_KEY, dev->evbit))
1155 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1156 if (test_bit(EV_REL, dev->evbit))
1157 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1158 if (test_bit(EV_ABS, dev->evbit))
1159 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1160 if (test_bit(EV_MSC, dev->evbit))
1161 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1162 if (test_bit(EV_LED, dev->evbit))
1163 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1164 if (test_bit(EV_SND, dev->evbit))
1165 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1166 if (test_bit(EV_FF, dev->evbit))
1167 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1168 if (test_bit(EV_SW, dev->evbit))
1169 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1170
1171 seq_putc(seq, '\n');
1172
1173 kfree(path);
1174 return 0;
1175 }
1176
1177 static const struct seq_operations input_devices_seq_ops = {
1178 .start = input_devices_seq_start,
1179 .next = input_devices_seq_next,
1180 .stop = input_seq_stop,
1181 .show = input_devices_seq_show,
1182 };
1183
1184 static int input_proc_devices_open(struct inode *inode, struct file *file)
1185 {
1186 return seq_open(file, &input_devices_seq_ops);
1187 }
1188
1189 static const struct file_operations input_devices_fileops = {
1190 .owner = THIS_MODULE,
1191 .open = input_proc_devices_open,
1192 .poll = input_proc_devices_poll,
1193 .read = seq_read,
1194 .llseek = seq_lseek,
1195 .release = seq_release,
1196 };
1197
1198 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1199 {
1200 union input_seq_state *state = (union input_seq_state *)&seq->private;
1201 int error;
1202
1203 /* We need to fit into seq->private pointer */
1204 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1205
1206 error = mutex_lock_interruptible(&input_mutex);
1207 if (error) {
1208 state->mutex_acquired = false;
1209 return ERR_PTR(error);
1210 }
1211
1212 state->mutex_acquired = true;
1213 state->pos = *pos;
1214
1215 return seq_list_start(&input_handler_list, *pos);
1216 }
1217
1218 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1219 {
1220 union input_seq_state *state = (union input_seq_state *)&seq->private;
1221
1222 state->pos = *pos + 1;
1223 return seq_list_next(v, &input_handler_list, pos);
1224 }
1225
1226 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1227 {
1228 struct input_handler *handler = container_of(v, struct input_handler, node);
1229 union input_seq_state *state = (union input_seq_state *)&seq->private;
1230
1231 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1232 if (handler->filter)
1233 seq_puts(seq, " (filter)");
1234 if (handler->legacy_minors)
1235 seq_printf(seq, " Minor=%d", handler->minor);
1236 seq_putc(seq, '\n');
1237
1238 return 0;
1239 }
1240
1241 static const struct seq_operations input_handlers_seq_ops = {
1242 .start = input_handlers_seq_start,
1243 .next = input_handlers_seq_next,
1244 .stop = input_seq_stop,
1245 .show = input_handlers_seq_show,
1246 };
1247
1248 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1249 {
1250 return seq_open(file, &input_handlers_seq_ops);
1251 }
1252
1253 static const struct file_operations input_handlers_fileops = {
1254 .owner = THIS_MODULE,
1255 .open = input_proc_handlers_open,
1256 .read = seq_read,
1257 .llseek = seq_lseek,
1258 .release = seq_release,
1259 };
1260
1261 static int __init input_proc_init(void)
1262 {
1263 struct proc_dir_entry *entry;
1264
1265 proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1266 if (!proc_bus_input_dir)
1267 return -ENOMEM;
1268
1269 entry = proc_create("devices", 0, proc_bus_input_dir,
1270 &input_devices_fileops);
1271 if (!entry)
1272 goto fail1;
1273
1274 entry = proc_create("handlers", 0, proc_bus_input_dir,
1275 &input_handlers_fileops);
1276 if (!entry)
1277 goto fail2;
1278
1279 return 0;
1280
1281 fail2: remove_proc_entry("devices", proc_bus_input_dir);
1282 fail1: remove_proc_entry("bus/input", NULL);
1283 return -ENOMEM;
1284 }
1285
1286 static void input_proc_exit(void)
1287 {
1288 remove_proc_entry("devices", proc_bus_input_dir);
1289 remove_proc_entry("handlers", proc_bus_input_dir);
1290 remove_proc_entry("bus/input", NULL);
1291 }
1292
1293 #else /* !CONFIG_PROC_FS */
1294 static inline void input_wakeup_procfs_readers(void) { }
1295 static inline int input_proc_init(void) { return 0; }
1296 static inline void input_proc_exit(void) { }
1297 #endif
1298
1299 #define INPUT_DEV_STRING_ATTR_SHOW(name) \
1300 static ssize_t input_dev_show_##name(struct device *dev, \
1301 struct device_attribute *attr, \
1302 char *buf) \
1303 { \
1304 struct input_dev *input_dev = to_input_dev(dev); \
1305 \
1306 return scnprintf(buf, PAGE_SIZE, "%s\n", \
1307 input_dev->name ? input_dev->name : ""); \
1308 } \
1309 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1310
1311 INPUT_DEV_STRING_ATTR_SHOW(name);
1312 INPUT_DEV_STRING_ATTR_SHOW(phys);
1313 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1314
1315 static int input_print_modalias_bits(char *buf, int size,
1316 char name, unsigned long *bm,
1317 unsigned int min_bit, unsigned int max_bit)
1318 {
1319 int len = 0, i;
1320
1321 len += snprintf(buf, max(size, 0), "%c", name);
1322 for (i = min_bit; i < max_bit; i++)
1323 if (bm[BIT_WORD(i)] & BIT_MASK(i))
1324 len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1325 return len;
1326 }
1327
1328 static int input_print_modalias(char *buf, int size, struct input_dev *id,
1329 int add_cr)
1330 {
1331 int len;
1332
1333 len = snprintf(buf, max(size, 0),
1334 "input:b%04Xv%04Xp%04Xe%04X-",
1335 id->id.bustype, id->id.vendor,
1336 id->id.product, id->id.version);
1337
1338 len += input_print_modalias_bits(buf + len, size - len,
1339 'e', id->evbit, 0, EV_MAX);
1340 len += input_print_modalias_bits(buf + len, size - len,
1341 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1342 len += input_print_modalias_bits(buf + len, size - len,
1343 'r', id->relbit, 0, REL_MAX);
1344 len += input_print_modalias_bits(buf + len, size - len,
1345 'a', id->absbit, 0, ABS_MAX);
1346 len += input_print_modalias_bits(buf + len, size - len,
1347 'm', id->mscbit, 0, MSC_MAX);
1348 len += input_print_modalias_bits(buf + len, size - len,
1349 'l', id->ledbit, 0, LED_MAX);
1350 len += input_print_modalias_bits(buf + len, size - len,
1351 's', id->sndbit, 0, SND_MAX);
1352 len += input_print_modalias_bits(buf + len, size - len,
1353 'f', id->ffbit, 0, FF_MAX);
1354 len += input_print_modalias_bits(buf + len, size - len,
1355 'w', id->swbit, 0, SW_MAX);
1356
1357 if (add_cr)
1358 len += snprintf(buf + len, max(size - len, 0), "\n");
1359
1360 return len;
1361 }
1362
1363 static ssize_t input_dev_show_modalias(struct device *dev,
1364 struct device_attribute *attr,
1365 char *buf)
1366 {
1367 struct input_dev *id = to_input_dev(dev);
1368 ssize_t len;
1369
1370 len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1371
1372 return min_t(int, len, PAGE_SIZE);
1373 }
1374 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1375
1376 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1377 int max, int add_cr);
1378
1379 static ssize_t input_dev_show_properties(struct device *dev,
1380 struct device_attribute *attr,
1381 char *buf)
1382 {
1383 struct input_dev *input_dev = to_input_dev(dev);
1384 int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1385 INPUT_PROP_MAX, true);
1386 return min_t(int, len, PAGE_SIZE);
1387 }
1388 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1389
1390 static struct attribute *input_dev_attrs[] = {
1391 &dev_attr_name.attr,
1392 &dev_attr_phys.attr,
1393 &dev_attr_uniq.attr,
1394 &dev_attr_modalias.attr,
1395 &dev_attr_properties.attr,
1396 NULL
1397 };
1398
1399 static struct attribute_group input_dev_attr_group = {
1400 .attrs = input_dev_attrs,
1401 };
1402
1403 #define INPUT_DEV_ID_ATTR(name) \
1404 static ssize_t input_dev_show_id_##name(struct device *dev, \
1405 struct device_attribute *attr, \
1406 char *buf) \
1407 { \
1408 struct input_dev *input_dev = to_input_dev(dev); \
1409 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1410 } \
1411 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1412
1413 INPUT_DEV_ID_ATTR(bustype);
1414 INPUT_DEV_ID_ATTR(vendor);
1415 INPUT_DEV_ID_ATTR(product);
1416 INPUT_DEV_ID_ATTR(version);
1417
1418 static struct attribute *input_dev_id_attrs[] = {
1419 &dev_attr_bustype.attr,
1420 &dev_attr_vendor.attr,
1421 &dev_attr_product.attr,
1422 &dev_attr_version.attr,
1423 NULL
1424 };
1425
1426 static struct attribute_group input_dev_id_attr_group = {
1427 .name = "id",
1428 .attrs = input_dev_id_attrs,
1429 };
1430
1431 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1432 int max, int add_cr)
1433 {
1434 int i;
1435 int len = 0;
1436 bool skip_empty = true;
1437
1438 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1439 len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1440 bitmap[i], skip_empty);
1441 if (len) {
1442 skip_empty = false;
1443 if (i > 0)
1444 len += snprintf(buf + len, max(buf_size - len, 0), " ");
1445 }
1446 }
1447
1448 /*
1449 * If no output was produced print a single 0.
1450 */
1451 if (len == 0)
1452 len = snprintf(buf, buf_size, "%d", 0);
1453
1454 if (add_cr)
1455 len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1456
1457 return len;
1458 }
1459
1460 #define INPUT_DEV_CAP_ATTR(ev, bm) \
1461 static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1462 struct device_attribute *attr, \
1463 char *buf) \
1464 { \
1465 struct input_dev *input_dev = to_input_dev(dev); \
1466 int len = input_print_bitmap(buf, PAGE_SIZE, \
1467 input_dev->bm##bit, ev##_MAX, \
1468 true); \
1469 return min_t(int, len, PAGE_SIZE); \
1470 } \
1471 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1472
1473 INPUT_DEV_CAP_ATTR(EV, ev);
1474 INPUT_DEV_CAP_ATTR(KEY, key);
1475 INPUT_DEV_CAP_ATTR(REL, rel);
1476 INPUT_DEV_CAP_ATTR(ABS, abs);
1477 INPUT_DEV_CAP_ATTR(MSC, msc);
1478 INPUT_DEV_CAP_ATTR(LED, led);
1479 INPUT_DEV_CAP_ATTR(SND, snd);
1480 INPUT_DEV_CAP_ATTR(FF, ff);
1481 INPUT_DEV_CAP_ATTR(SW, sw);
1482
1483 static struct attribute *input_dev_caps_attrs[] = {
1484 &dev_attr_ev.attr,
1485 &dev_attr_key.attr,
1486 &dev_attr_rel.attr,
1487 &dev_attr_abs.attr,
1488 &dev_attr_msc.attr,
1489 &dev_attr_led.attr,
1490 &dev_attr_snd.attr,
1491 &dev_attr_ff.attr,
1492 &dev_attr_sw.attr,
1493 NULL
1494 };
1495
1496 static struct attribute_group input_dev_caps_attr_group = {
1497 .name = "capabilities",
1498 .attrs = input_dev_caps_attrs,
1499 };
1500
1501 static const struct attribute_group *input_dev_attr_groups[] = {
1502 &input_dev_attr_group,
1503 &input_dev_id_attr_group,
1504 &input_dev_caps_attr_group,
1505 NULL
1506 };
1507
1508 static void input_dev_release(struct device *device)
1509 {
1510 struct input_dev *dev = to_input_dev(device);
1511
1512 input_ff_destroy(dev);
1513 input_mt_destroy_slots(dev);
1514 kfree(dev->absinfo);
1515 kfree(dev->vals);
1516 kfree(dev);
1517
1518 module_put(THIS_MODULE);
1519 }
1520
1521 /*
1522 * Input uevent interface - loading event handlers based on
1523 * device bitfields.
1524 */
1525 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1526 const char *name, unsigned long *bitmap, int max)
1527 {
1528 int len;
1529
1530 if (add_uevent_var(env, "%s", name))
1531 return -ENOMEM;
1532
1533 len = input_print_bitmap(&env->buf[env->buflen - 1],
1534 sizeof(env->buf) - env->buflen,
1535 bitmap, max, false);
1536 if (len >= (sizeof(env->buf) - env->buflen))
1537 return -ENOMEM;
1538
1539 env->buflen += len;
1540 return 0;
1541 }
1542
1543 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1544 struct input_dev *dev)
1545 {
1546 int len;
1547
1548 if (add_uevent_var(env, "MODALIAS="))
1549 return -ENOMEM;
1550
1551 len = input_print_modalias(&env->buf[env->buflen - 1],
1552 sizeof(env->buf) - env->buflen,
1553 dev, 0);
1554 if (len >= (sizeof(env->buf) - env->buflen))
1555 return -ENOMEM;
1556
1557 env->buflen += len;
1558 return 0;
1559 }
1560
1561 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1562 do { \
1563 int err = add_uevent_var(env, fmt, val); \
1564 if (err) \
1565 return err; \
1566 } while (0)
1567
1568 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1569 do { \
1570 int err = input_add_uevent_bm_var(env, name, bm, max); \
1571 if (err) \
1572 return err; \
1573 } while (0)
1574
1575 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1576 do { \
1577 int err = input_add_uevent_modalias_var(env, dev); \
1578 if (err) \
1579 return err; \
1580 } while (0)
1581
1582 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1583 {
1584 struct input_dev *dev = to_input_dev(device);
1585
1586 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1587 dev->id.bustype, dev->id.vendor,
1588 dev->id.product, dev->id.version);
1589 if (dev->name)
1590 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1591 if (dev->phys)
1592 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1593 if (dev->uniq)
1594 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1595
1596 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1597
1598 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1599 if (test_bit(EV_KEY, dev->evbit))
1600 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1601 if (test_bit(EV_REL, dev->evbit))
1602 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1603 if (test_bit(EV_ABS, dev->evbit))
1604 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1605 if (test_bit(EV_MSC, dev->evbit))
1606 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1607 if (test_bit(EV_LED, dev->evbit))
1608 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1609 if (test_bit(EV_SND, dev->evbit))
1610 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1611 if (test_bit(EV_FF, dev->evbit))
1612 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1613 if (test_bit(EV_SW, dev->evbit))
1614 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1615
1616 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1617
1618 return 0;
1619 }
1620
1621 #define INPUT_DO_TOGGLE(dev, type, bits, on) \
1622 do { \
1623 int i; \
1624 bool active; \
1625 \
1626 if (!test_bit(EV_##type, dev->evbit)) \
1627 break; \
1628 \
1629 for (i = 0; i < type##_MAX; i++) { \
1630 if (!test_bit(i, dev->bits##bit)) \
1631 continue; \
1632 \
1633 active = test_bit(i, dev->bits); \
1634 if (!active && !on) \
1635 continue; \
1636 \
1637 dev->event(dev, EV_##type, i, on ? active : 0); \
1638 } \
1639 } while (0)
1640
1641 static void input_dev_toggle(struct input_dev *dev, bool activate)
1642 {
1643 if (!dev->event)
1644 return;
1645
1646 INPUT_DO_TOGGLE(dev, LED, led, activate);
1647 INPUT_DO_TOGGLE(dev, SND, snd, activate);
1648
1649 if (activate && test_bit(EV_REP, dev->evbit)) {
1650 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1651 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1652 }
1653 }
1654
1655 /**
1656 * input_reset_device() - reset/restore the state of input device
1657 * @dev: input device whose state needs to be reset
1658 *
1659 * This function tries to reset the state of an opened input device and
1660 * bring internal state and state if the hardware in sync with each other.
1661 * We mark all keys as released, restore LED state, repeat rate, etc.
1662 */
1663 void input_reset_device(struct input_dev *dev)
1664 {
1665 unsigned long flags;
1666
1667 mutex_lock(&dev->mutex);
1668 spin_lock_irqsave(&dev->event_lock, flags);
1669
1670 input_dev_toggle(dev, true);
1671 input_dev_release_keys(dev);
1672
1673 spin_unlock_irqrestore(&dev->event_lock, flags);
1674 mutex_unlock(&dev->mutex);
1675 }
1676 EXPORT_SYMBOL(input_reset_device);
1677
1678 #ifdef CONFIG_PM_SLEEP
1679 static int input_dev_suspend(struct device *dev)
1680 {
1681 struct input_dev *input_dev = to_input_dev(dev);
1682
1683 spin_lock_irq(&input_dev->event_lock);
1684
1685 /*
1686 * Keys that are pressed now are unlikely to be
1687 * still pressed when we resume.
1688 */
1689 input_dev_release_keys(input_dev);
1690
1691 /* Turn off LEDs and sounds, if any are active. */
1692 input_dev_toggle(input_dev, false);
1693
1694 spin_unlock_irq(&input_dev->event_lock);
1695
1696 return 0;
1697 }
1698
1699 static int input_dev_resume(struct device *dev)
1700 {
1701 struct input_dev *input_dev = to_input_dev(dev);
1702
1703 spin_lock_irq(&input_dev->event_lock);
1704
1705 /* Restore state of LEDs and sounds, if any were active. */
1706 input_dev_toggle(input_dev, true);
1707
1708 spin_unlock_irq(&input_dev->event_lock);
1709
1710 return 0;
1711 }
1712
1713 static int input_dev_freeze(struct device *dev)
1714 {
1715 struct input_dev *input_dev = to_input_dev(dev);
1716
1717 spin_lock_irq(&input_dev->event_lock);
1718
1719 /*
1720 * Keys that are pressed now are unlikely to be
1721 * still pressed when we resume.
1722 */
1723 input_dev_release_keys(input_dev);
1724
1725 spin_unlock_irq(&input_dev->event_lock);
1726
1727 return 0;
1728 }
1729
1730 static int input_dev_poweroff(struct device *dev)
1731 {
1732 struct input_dev *input_dev = to_input_dev(dev);
1733
1734 spin_lock_irq(&input_dev->event_lock);
1735
1736 /* Turn off LEDs and sounds, if any are active. */
1737 input_dev_toggle(input_dev, false);
1738
1739 spin_unlock_irq(&input_dev->event_lock);
1740
1741 return 0;
1742 }
1743
1744 static const struct dev_pm_ops input_dev_pm_ops = {
1745 .suspend = input_dev_suspend,
1746 .resume = input_dev_resume,
1747 .freeze = input_dev_freeze,
1748 .poweroff = input_dev_poweroff,
1749 .restore = input_dev_resume,
1750 };
1751 #endif /* CONFIG_PM */
1752
1753 static struct device_type input_dev_type = {
1754 .groups = input_dev_attr_groups,
1755 .release = input_dev_release,
1756 .uevent = input_dev_uevent,
1757 #ifdef CONFIG_PM_SLEEP
1758 .pm = &input_dev_pm_ops,
1759 #endif
1760 };
1761
1762 static char *input_devnode(struct device *dev, umode_t *mode)
1763 {
1764 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1765 }
1766
1767 struct class input_class = {
1768 .name = "input",
1769 .devnode = input_devnode,
1770 };
1771 EXPORT_SYMBOL_GPL(input_class);
1772
1773 /**
1774 * input_allocate_device - allocate memory for new input device
1775 *
1776 * Returns prepared struct input_dev or %NULL.
1777 *
1778 * NOTE: Use input_free_device() to free devices that have not been
1779 * registered; input_unregister_device() should be used for already
1780 * registered devices.
1781 */
1782 struct input_dev *input_allocate_device(void)
1783 {
1784 static atomic_t input_no = ATOMIC_INIT(-1);
1785 struct input_dev *dev;
1786
1787 dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
1788 if (dev) {
1789 dev->dev.type = &input_dev_type;
1790 dev->dev.class = &input_class;
1791 device_initialize(&dev->dev);
1792 mutex_init(&dev->mutex);
1793 spin_lock_init(&dev->event_lock);
1794 init_timer(&dev->timer);
1795 INIT_LIST_HEAD(&dev->h_list);
1796 INIT_LIST_HEAD(&dev->node);
1797
1798 dev_set_name(&dev->dev, "input%lu",
1799 (unsigned long)atomic_inc_return(&input_no));
1800
1801 __module_get(THIS_MODULE);
1802 }
1803
1804 return dev;
1805 }
1806 EXPORT_SYMBOL(input_allocate_device);
1807
1808 struct input_devres {
1809 struct input_dev *input;
1810 };
1811
1812 static int devm_input_device_match(struct device *dev, void *res, void *data)
1813 {
1814 struct input_devres *devres = res;
1815
1816 return devres->input == data;
1817 }
1818
1819 static void devm_input_device_release(struct device *dev, void *res)
1820 {
1821 struct input_devres *devres = res;
1822 struct input_dev *input = devres->input;
1823
1824 dev_dbg(dev, "%s: dropping reference to %s\n",
1825 __func__, dev_name(&input->dev));
1826 input_put_device(input);
1827 }
1828
1829 /**
1830 * devm_input_allocate_device - allocate managed input device
1831 * @dev: device owning the input device being created
1832 *
1833 * Returns prepared struct input_dev or %NULL.
1834 *
1835 * Managed input devices do not need to be explicitly unregistered or
1836 * freed as it will be done automatically when owner device unbinds from
1837 * its driver (or binding fails). Once managed input device is allocated,
1838 * it is ready to be set up and registered in the same fashion as regular
1839 * input device. There are no special devm_input_device_[un]register()
1840 * variants, regular ones work with both managed and unmanaged devices,
1841 * should you need them. In most cases however, managed input device need
1842 * not be explicitly unregistered or freed.
1843 *
1844 * NOTE: the owner device is set up as parent of input device and users
1845 * should not override it.
1846 */
1847 struct input_dev *devm_input_allocate_device(struct device *dev)
1848 {
1849 struct input_dev *input;
1850 struct input_devres *devres;
1851
1852 devres = devres_alloc(devm_input_device_release,
1853 sizeof(struct input_devres), GFP_KERNEL);
1854 if (!devres)
1855 return NULL;
1856
1857 input = input_allocate_device();
1858 if (!input) {
1859 devres_free(devres);
1860 return NULL;
1861 }
1862
1863 input->dev.parent = dev;
1864 input->devres_managed = true;
1865
1866 devres->input = input;
1867 devres_add(dev, devres);
1868
1869 return input;
1870 }
1871 EXPORT_SYMBOL(devm_input_allocate_device);
1872
1873 /**
1874 * input_free_device - free memory occupied by input_dev structure
1875 * @dev: input device to free
1876 *
1877 * This function should only be used if input_register_device()
1878 * was not called yet or if it failed. Once device was registered
1879 * use input_unregister_device() and memory will be freed once last
1880 * reference to the device is dropped.
1881 *
1882 * Device should be allocated by input_allocate_device().
1883 *
1884 * NOTE: If there are references to the input device then memory
1885 * will not be freed until last reference is dropped.
1886 */
1887 void input_free_device(struct input_dev *dev)
1888 {
1889 if (dev) {
1890 if (dev->devres_managed)
1891 WARN_ON(devres_destroy(dev->dev.parent,
1892 devm_input_device_release,
1893 devm_input_device_match,
1894 dev));
1895 input_put_device(dev);
1896 }
1897 }
1898 EXPORT_SYMBOL(input_free_device);
1899
1900 /**
1901 * input_set_capability - mark device as capable of a certain event
1902 * @dev: device that is capable of emitting or accepting event
1903 * @type: type of the event (EV_KEY, EV_REL, etc...)
1904 * @code: event code
1905 *
1906 * In addition to setting up corresponding bit in appropriate capability
1907 * bitmap the function also adjusts dev->evbit.
1908 */
1909 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1910 {
1911 switch (type) {
1912 case EV_KEY:
1913 __set_bit(code, dev->keybit);
1914 break;
1915
1916 case EV_REL:
1917 __set_bit(code, dev->relbit);
1918 break;
1919
1920 case EV_ABS:
1921 input_alloc_absinfo(dev);
1922 if (!dev->absinfo)
1923 return;
1924
1925 __set_bit(code, dev->absbit);
1926 break;
1927
1928 case EV_MSC:
1929 __set_bit(code, dev->mscbit);
1930 break;
1931
1932 case EV_SW:
1933 __set_bit(code, dev->swbit);
1934 break;
1935
1936 case EV_LED:
1937 __set_bit(code, dev->ledbit);
1938 break;
1939
1940 case EV_SND:
1941 __set_bit(code, dev->sndbit);
1942 break;
1943
1944 case EV_FF:
1945 __set_bit(code, dev->ffbit);
1946 break;
1947
1948 case EV_PWR:
1949 /* do nothing */
1950 break;
1951
1952 default:
1953 pr_err("input_set_capability: unknown type %u (code %u)\n",
1954 type, code);
1955 dump_stack();
1956 return;
1957 }
1958
1959 __set_bit(type, dev->evbit);
1960 }
1961 EXPORT_SYMBOL(input_set_capability);
1962
1963 static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
1964 {
1965 int mt_slots;
1966 int i;
1967 unsigned int events;
1968
1969 if (dev->mt) {
1970 mt_slots = dev->mt->num_slots;
1971 } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
1972 mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
1973 dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
1974 mt_slots = clamp(mt_slots, 2, 32);
1975 } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
1976 mt_slots = 2;
1977 } else {
1978 mt_slots = 0;
1979 }
1980
1981 events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
1982
1983 if (test_bit(EV_ABS, dev->evbit)) {
1984 for (i = 0; i < ABS_CNT; i++) {
1985 if (test_bit(i, dev->absbit)) {
1986 if (input_is_mt_axis(i))
1987 events += mt_slots;
1988 else
1989 events++;
1990 }
1991 }
1992 }
1993
1994 if (test_bit(EV_REL, dev->evbit)) {
1995 for (i = 0; i < REL_CNT; i++)
1996 if (test_bit(i, dev->relbit))
1997 events++;
1998 }
1999
2000 /* Make room for KEY and MSC events */
2001 events += 7;
2002
2003 return events;
2004 }
2005
2006 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \
2007 do { \
2008 if (!test_bit(EV_##type, dev->evbit)) \
2009 memset(dev->bits##bit, 0, \
2010 sizeof(dev->bits##bit)); \
2011 } while (0)
2012
2013 static void input_cleanse_bitmasks(struct input_dev *dev)
2014 {
2015 INPUT_CLEANSE_BITMASK(dev, KEY, key);
2016 INPUT_CLEANSE_BITMASK(dev, REL, rel);
2017 INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2018 INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2019 INPUT_CLEANSE_BITMASK(dev, LED, led);
2020 INPUT_CLEANSE_BITMASK(dev, SND, snd);
2021 INPUT_CLEANSE_BITMASK(dev, FF, ff);
2022 INPUT_CLEANSE_BITMASK(dev, SW, sw);
2023 }
2024
2025 static void __input_unregister_device(struct input_dev *dev)
2026 {
2027 struct input_handle *handle, *next;
2028
2029 input_disconnect_device(dev);
2030
2031 mutex_lock(&input_mutex);
2032
2033 list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2034 handle->handler->disconnect(handle);
2035 WARN_ON(!list_empty(&dev->h_list));
2036
2037 del_timer_sync(&dev->timer);
2038 list_del_init(&dev->node);
2039
2040 input_wakeup_procfs_readers();
2041
2042 mutex_unlock(&input_mutex);
2043
2044 device_del(&dev->dev);
2045 }
2046
2047 static void devm_input_device_unregister(struct device *dev, void *res)
2048 {
2049 struct input_devres *devres = res;
2050 struct input_dev *input = devres->input;
2051
2052 dev_dbg(dev, "%s: unregistering device %s\n",
2053 __func__, dev_name(&input->dev));
2054 __input_unregister_device(input);
2055 }
2056
2057 /**
2058 * input_register_device - register device with input core
2059 * @dev: device to be registered
2060 *
2061 * This function registers device with input core. The device must be
2062 * allocated with input_allocate_device() and all it's capabilities
2063 * set up before registering.
2064 * If function fails the device must be freed with input_free_device().
2065 * Once device has been successfully registered it can be unregistered
2066 * with input_unregister_device(); input_free_device() should not be
2067 * called in this case.
2068 *
2069 * Note that this function is also used to register managed input devices
2070 * (ones allocated with devm_input_allocate_device()). Such managed input
2071 * devices need not be explicitly unregistered or freed, their tear down
2072 * is controlled by the devres infrastructure. It is also worth noting
2073 * that tear down of managed input devices is internally a 2-step process:
2074 * registered managed input device is first unregistered, but stays in
2075 * memory and can still handle input_event() calls (although events will
2076 * not be delivered anywhere). The freeing of managed input device will
2077 * happen later, when devres stack is unwound to the point where device
2078 * allocation was made.
2079 */
2080 int input_register_device(struct input_dev *dev)
2081 {
2082 struct input_devres *devres = NULL;
2083 struct input_handler *handler;
2084 unsigned int packet_size;
2085 const char *path;
2086 int error;
2087
2088 if (dev->devres_managed) {
2089 devres = devres_alloc(devm_input_device_unregister,
2090 sizeof(struct input_devres), GFP_KERNEL);
2091 if (!devres)
2092 return -ENOMEM;
2093
2094 devres->input = dev;
2095 }
2096
2097 /* Every input device generates EV_SYN/SYN_REPORT events. */
2098 __set_bit(EV_SYN, dev->evbit);
2099
2100 /* KEY_RESERVED is not supposed to be transmitted to userspace. */
2101 __clear_bit(KEY_RESERVED, dev->keybit);
2102
2103 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2104 input_cleanse_bitmasks(dev);
2105
2106 packet_size = input_estimate_events_per_packet(dev);
2107 if (dev->hint_events_per_packet < packet_size)
2108 dev->hint_events_per_packet = packet_size;
2109
2110 dev->max_vals = dev->hint_events_per_packet + 2;
2111 dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
2112 if (!dev->vals) {
2113 error = -ENOMEM;
2114 goto err_devres_free;
2115 }
2116
2117 /*
2118 * If delay and period are pre-set by the driver, then autorepeating
2119 * is handled by the driver itself and we don't do it in input.c.
2120 */
2121 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
2122 dev->timer.data = (long) dev;
2123 dev->timer.function = input_repeat_key;
2124 dev->rep[REP_DELAY] = 250;
2125 dev->rep[REP_PERIOD] = 33;
2126 }
2127
2128 if (!dev->getkeycode)
2129 dev->getkeycode = input_default_getkeycode;
2130
2131 if (!dev->setkeycode)
2132 dev->setkeycode = input_default_setkeycode;
2133
2134 error = device_add(&dev->dev);
2135 if (error)
2136 goto err_free_vals;
2137
2138 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2139 pr_info("%s as %s\n",
2140 dev->name ? dev->name : "Unspecified device",
2141 path ? path : "N/A");
2142 kfree(path);
2143
2144 error = mutex_lock_interruptible(&input_mutex);
2145 if (error)
2146 goto err_device_del;
2147
2148 list_add_tail(&dev->node, &input_dev_list);
2149
2150 list_for_each_entry(handler, &input_handler_list, node)
2151 input_attach_handler(dev, handler);
2152
2153 input_wakeup_procfs_readers();
2154
2155 mutex_unlock(&input_mutex);
2156
2157 if (dev->devres_managed) {
2158 dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2159 __func__, dev_name(&dev->dev));
2160 devres_add(dev->dev.parent, devres);
2161 }
2162 return 0;
2163
2164 err_device_del:
2165 device_del(&dev->dev);
2166 err_free_vals:
2167 kfree(dev->vals);
2168 dev->vals = NULL;
2169 err_devres_free:
2170 devres_free(devres);
2171 return error;
2172 }
2173 EXPORT_SYMBOL(input_register_device);
2174
2175 /**
2176 * input_unregister_device - unregister previously registered device
2177 * @dev: device to be unregistered
2178 *
2179 * This function unregisters an input device. Once device is unregistered
2180 * the caller should not try to access it as it may get freed at any moment.
2181 */
2182 void input_unregister_device(struct input_dev *dev)
2183 {
2184 if (dev->devres_managed) {
2185 WARN_ON(devres_destroy(dev->dev.parent,
2186 devm_input_device_unregister,
2187 devm_input_device_match,
2188 dev));
2189 __input_unregister_device(dev);
2190 /*
2191 * We do not do input_put_device() here because it will be done
2192 * when 2nd devres fires up.
2193 */
2194 } else {
2195 __input_unregister_device(dev);
2196 input_put_device(dev);
2197 }
2198 }
2199 EXPORT_SYMBOL(input_unregister_device);
2200
2201 /**
2202 * input_register_handler - register a new input handler
2203 * @handler: handler to be registered
2204 *
2205 * This function registers a new input handler (interface) for input
2206 * devices in the system and attaches it to all input devices that
2207 * are compatible with the handler.
2208 */
2209 int input_register_handler(struct input_handler *handler)
2210 {
2211 struct input_dev *dev;
2212 int error;
2213
2214 error = mutex_lock_interruptible(&input_mutex);
2215 if (error)
2216 return error;
2217
2218 INIT_LIST_HEAD(&handler->h_list);
2219
2220 list_add_tail(&handler->node, &input_handler_list);
2221
2222 list_for_each_entry(dev, &input_dev_list, node)
2223 input_attach_handler(dev, handler);
2224
2225 input_wakeup_procfs_readers();
2226
2227 mutex_unlock(&input_mutex);
2228 return 0;
2229 }
2230 EXPORT_SYMBOL(input_register_handler);
2231
2232 /**
2233 * input_unregister_handler - unregisters an input handler
2234 * @handler: handler to be unregistered
2235 *
2236 * This function disconnects a handler from its input devices and
2237 * removes it from lists of known handlers.
2238 */
2239 void input_unregister_handler(struct input_handler *handler)
2240 {
2241 struct input_handle *handle, *next;
2242
2243 mutex_lock(&input_mutex);
2244
2245 list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2246 handler->disconnect(handle);
2247 WARN_ON(!list_empty(&handler->h_list));
2248
2249 list_del_init(&handler->node);
2250
2251 input_wakeup_procfs_readers();
2252
2253 mutex_unlock(&input_mutex);
2254 }
2255 EXPORT_SYMBOL(input_unregister_handler);
2256
2257 /**
2258 * input_handler_for_each_handle - handle iterator
2259 * @handler: input handler to iterate
2260 * @data: data for the callback
2261 * @fn: function to be called for each handle
2262 *
2263 * Iterate over @bus's list of devices, and call @fn for each, passing
2264 * it @data and stop when @fn returns a non-zero value. The function is
2265 * using RCU to traverse the list and therefore may be using in atomic
2266 * contexts. The @fn callback is invoked from RCU critical section and
2267 * thus must not sleep.
2268 */
2269 int input_handler_for_each_handle(struct input_handler *handler, void *data,
2270 int (*fn)(struct input_handle *, void *))
2271 {
2272 struct input_handle *handle;
2273 int retval = 0;
2274
2275 rcu_read_lock();
2276
2277 list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2278 retval = fn(handle, data);
2279 if (retval)
2280 break;
2281 }
2282
2283 rcu_read_unlock();
2284
2285 return retval;
2286 }
2287 EXPORT_SYMBOL(input_handler_for_each_handle);
2288
2289 /**
2290 * input_register_handle - register a new input handle
2291 * @handle: handle to register
2292 *
2293 * This function puts a new input handle onto device's
2294 * and handler's lists so that events can flow through
2295 * it once it is opened using input_open_device().
2296 *
2297 * This function is supposed to be called from handler's
2298 * connect() method.
2299 */
2300 int input_register_handle(struct input_handle *handle)
2301 {
2302 struct input_handler *handler = handle->handler;
2303 struct input_dev *dev = handle->dev;
2304 int error;
2305
2306 /*
2307 * We take dev->mutex here to prevent race with
2308 * input_release_device().
2309 */
2310 error = mutex_lock_interruptible(&dev->mutex);
2311 if (error)
2312 return error;
2313
2314 /*
2315 * Filters go to the head of the list, normal handlers
2316 * to the tail.
2317 */
2318 if (handler->filter)
2319 list_add_rcu(&handle->d_node, &dev->h_list);
2320 else
2321 list_add_tail_rcu(&handle->d_node, &dev->h_list);
2322
2323 mutex_unlock(&dev->mutex);
2324
2325 /*
2326 * Since we are supposed to be called from ->connect()
2327 * which is mutually exclusive with ->disconnect()
2328 * we can't be racing with input_unregister_handle()
2329 * and so separate lock is not needed here.
2330 */
2331 list_add_tail_rcu(&handle->h_node, &handler->h_list);
2332
2333 if (handler->start)
2334 handler->start(handle);
2335
2336 return 0;
2337 }
2338 EXPORT_SYMBOL(input_register_handle);
2339
2340 /**
2341 * input_unregister_handle - unregister an input handle
2342 * @handle: handle to unregister
2343 *
2344 * This function removes input handle from device's
2345 * and handler's lists.
2346 *
2347 * This function is supposed to be called from handler's
2348 * disconnect() method.
2349 */
2350 void input_unregister_handle(struct input_handle *handle)
2351 {
2352 struct input_dev *dev = handle->dev;
2353
2354 list_del_rcu(&handle->h_node);
2355
2356 /*
2357 * Take dev->mutex to prevent race with input_release_device().
2358 */
2359 mutex_lock(&dev->mutex);
2360 list_del_rcu(&handle->d_node);
2361 mutex_unlock(&dev->mutex);
2362
2363 synchronize_rcu();
2364 }
2365 EXPORT_SYMBOL(input_unregister_handle);
2366
2367 /**
2368 * input_get_new_minor - allocates a new input minor number
2369 * @legacy_base: beginning or the legacy range to be searched
2370 * @legacy_num: size of legacy range
2371 * @allow_dynamic: whether we can also take ID from the dynamic range
2372 *
2373 * This function allocates a new device minor for from input major namespace.
2374 * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2375 * parameters and whether ID can be allocated from dynamic range if there are
2376 * no free IDs in legacy range.
2377 */
2378 int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2379 bool allow_dynamic)
2380 {
2381 /*
2382 * This function should be called from input handler's ->connect()
2383 * methods, which are serialized with input_mutex, so no additional
2384 * locking is needed here.
2385 */
2386 if (legacy_base >= 0) {
2387 int minor = ida_simple_get(&input_ida,
2388 legacy_base,
2389 legacy_base + legacy_num,
2390 GFP_KERNEL);
2391 if (minor >= 0 || !allow_dynamic)
2392 return minor;
2393 }
2394
2395 return ida_simple_get(&input_ida,
2396 INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES,
2397 GFP_KERNEL);
2398 }
2399 EXPORT_SYMBOL(input_get_new_minor);
2400
2401 /**
2402 * input_free_minor - release previously allocated minor
2403 * @minor: minor to be released
2404 *
2405 * This function releases previously allocated input minor so that it can be
2406 * reused later.
2407 */
2408 void input_free_minor(unsigned int minor)
2409 {
2410 ida_simple_remove(&input_ida, minor);
2411 }
2412 EXPORT_SYMBOL(input_free_minor);
2413
2414 static int __init input_init(void)
2415 {
2416 int err;
2417
2418 err = class_register(&input_class);
2419 if (err) {
2420 pr_err("unable to register input_dev class\n");
2421 return err;
2422 }
2423
2424 err = input_proc_init();
2425 if (err)
2426 goto fail1;
2427
2428 err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2429 INPUT_MAX_CHAR_DEVICES, "input");
2430 if (err) {
2431 pr_err("unable to register char major %d", INPUT_MAJOR);
2432 goto fail2;
2433 }
2434
2435 return 0;
2436
2437 fail2: input_proc_exit();
2438 fail1: class_unregister(&input_class);
2439 return err;
2440 }
2441
2442 static void __exit input_exit(void)
2443 {
2444 input_proc_exit();
2445 unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2446 INPUT_MAX_CHAR_DEVICES);
2447 class_unregister(&input_class);
2448 }
2449
2450 subsys_initcall(input_init);
2451 module_exit(input_exit);
This page took 0.082703 seconds and 5 git commands to generate.