Merge tag 'topic/drm-misc-2016-04-01' of git://anongit.freedesktop.org/drm-intel...
[deliverable/linux.git] / drivers / input / rmi4 / rmi_driver.c
1 /*
2 * Copyright (c) 2011-2016 Synaptics Incorporated
3 * Copyright (c) 2011 Unixphere
4 *
5 * This driver provides the core support for a single RMI4-based device.
6 *
7 * The RMI4 specification can be found here (URL split for line length):
8 *
9 * http://www.synaptics.com/sites/default/files/
10 * 511-000136-01-Rev-E-RMI4-Interfacing-Guide.pdf
11 *
12 * This program is free software; you can redistribute it and/or modify it
13 * under the terms of the GNU General Public License version 2 as published by
14 * the Free Software Foundation.
15 */
16
17 #include <linux/bitmap.h>
18 #include <linux/delay.h>
19 #include <linux/fs.h>
20 #include <linux/kconfig.h>
21 #include <linux/pm.h>
22 #include <linux/slab.h>
23 #include <linux/of.h>
24 #include <uapi/linux/input.h>
25 #include <linux/rmi.h>
26 #include "rmi_bus.h"
27 #include "rmi_driver.h"
28
29 #define HAS_NONSTANDARD_PDT_MASK 0x40
30 #define RMI4_MAX_PAGE 0xff
31 #define RMI4_PAGE_SIZE 0x100
32 #define RMI4_PAGE_MASK 0xFF00
33
34 #define RMI_DEVICE_RESET_CMD 0x01
35 #define DEFAULT_RESET_DELAY_MS 100
36
37 static void rmi_free_function_list(struct rmi_device *rmi_dev)
38 {
39 struct rmi_function *fn, *tmp;
40 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
41
42 data->f01_container = NULL;
43
44 /* Doing it in the reverse order so F01 will be removed last */
45 list_for_each_entry_safe_reverse(fn, tmp,
46 &data->function_list, node) {
47 list_del(&fn->node);
48 rmi_unregister_function(fn);
49 }
50 }
51
52 static int reset_one_function(struct rmi_function *fn)
53 {
54 struct rmi_function_handler *fh;
55 int retval = 0;
56
57 if (!fn || !fn->dev.driver)
58 return 0;
59
60 fh = to_rmi_function_handler(fn->dev.driver);
61 if (fh->reset) {
62 retval = fh->reset(fn);
63 if (retval < 0)
64 dev_err(&fn->dev, "Reset failed with code %d.\n",
65 retval);
66 }
67
68 return retval;
69 }
70
71 static int configure_one_function(struct rmi_function *fn)
72 {
73 struct rmi_function_handler *fh;
74 int retval = 0;
75
76 if (!fn || !fn->dev.driver)
77 return 0;
78
79 fh = to_rmi_function_handler(fn->dev.driver);
80 if (fh->config) {
81 retval = fh->config(fn);
82 if (retval < 0)
83 dev_err(&fn->dev, "Config failed with code %d.\n",
84 retval);
85 }
86
87 return retval;
88 }
89
90 static int rmi_driver_process_reset_requests(struct rmi_device *rmi_dev)
91 {
92 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
93 struct rmi_function *entry;
94 int retval;
95
96 list_for_each_entry(entry, &data->function_list, node) {
97 retval = reset_one_function(entry);
98 if (retval < 0)
99 return retval;
100 }
101
102 return 0;
103 }
104
105 static int rmi_driver_process_config_requests(struct rmi_device *rmi_dev)
106 {
107 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
108 struct rmi_function *entry;
109 int retval;
110
111 list_for_each_entry(entry, &data->function_list, node) {
112 retval = configure_one_function(entry);
113 if (retval < 0)
114 return retval;
115 }
116
117 return 0;
118 }
119
120 static void process_one_interrupt(struct rmi_driver_data *data,
121 struct rmi_function *fn)
122 {
123 struct rmi_function_handler *fh;
124
125 if (!fn || !fn->dev.driver)
126 return;
127
128 fh = to_rmi_function_handler(fn->dev.driver);
129 if (fh->attention) {
130 bitmap_and(data->fn_irq_bits, data->irq_status, fn->irq_mask,
131 data->irq_count);
132 if (!bitmap_empty(data->fn_irq_bits, data->irq_count))
133 fh->attention(fn, data->fn_irq_bits);
134 }
135 }
136
137 int rmi_process_interrupt_requests(struct rmi_device *rmi_dev)
138 {
139 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
140 struct device *dev = &rmi_dev->dev;
141 struct rmi_function *entry;
142 int error;
143
144 if (!data)
145 return 0;
146
147 if (!rmi_dev->xport->attn_data) {
148 error = rmi_read_block(rmi_dev,
149 data->f01_container->fd.data_base_addr + 1,
150 data->irq_status, data->num_of_irq_regs);
151 if (error < 0) {
152 dev_err(dev, "Failed to read irqs, code=%d\n", error);
153 return error;
154 }
155 }
156
157 mutex_lock(&data->irq_mutex);
158 bitmap_and(data->irq_status, data->irq_status, data->current_irq_mask,
159 data->irq_count);
160 /*
161 * At this point, irq_status has all bits that are set in the
162 * interrupt status register and are enabled.
163 */
164 mutex_unlock(&data->irq_mutex);
165
166 /*
167 * It would be nice to be able to use irq_chip to handle these
168 * nested IRQs. Unfortunately, most of the current customers for
169 * this driver are using older kernels (3.0.x) that don't support
170 * the features required for that. Once they've shifted to more
171 * recent kernels (say, 3.3 and higher), this should be switched to
172 * use irq_chip.
173 */
174 list_for_each_entry(entry, &data->function_list, node)
175 process_one_interrupt(data, entry);
176
177 if (data->input)
178 input_sync(data->input);
179
180 return 0;
181 }
182 EXPORT_SYMBOL_GPL(rmi_process_interrupt_requests);
183
184 static int suspend_one_function(struct rmi_function *fn)
185 {
186 struct rmi_function_handler *fh;
187 int retval = 0;
188
189 if (!fn || !fn->dev.driver)
190 return 0;
191
192 fh = to_rmi_function_handler(fn->dev.driver);
193 if (fh->suspend) {
194 retval = fh->suspend(fn);
195 if (retval < 0)
196 dev_err(&fn->dev, "Suspend failed with code %d.\n",
197 retval);
198 }
199
200 return retval;
201 }
202
203 static int rmi_suspend_functions(struct rmi_device *rmi_dev)
204 {
205 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
206 struct rmi_function *entry;
207 int retval;
208
209 list_for_each_entry(entry, &data->function_list, node) {
210 retval = suspend_one_function(entry);
211 if (retval < 0)
212 return retval;
213 }
214
215 return 0;
216 }
217
218 static int resume_one_function(struct rmi_function *fn)
219 {
220 struct rmi_function_handler *fh;
221 int retval = 0;
222
223 if (!fn || !fn->dev.driver)
224 return 0;
225
226 fh = to_rmi_function_handler(fn->dev.driver);
227 if (fh->resume) {
228 retval = fh->resume(fn);
229 if (retval < 0)
230 dev_err(&fn->dev, "Resume failed with code %d.\n",
231 retval);
232 }
233
234 return retval;
235 }
236
237 static int rmi_resume_functions(struct rmi_device *rmi_dev)
238 {
239 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
240 struct rmi_function *entry;
241 int retval;
242
243 list_for_each_entry(entry, &data->function_list, node) {
244 retval = resume_one_function(entry);
245 if (retval < 0)
246 return retval;
247 }
248
249 return 0;
250 }
251
252 static int enable_sensor(struct rmi_device *rmi_dev)
253 {
254 int retval = 0;
255
256 retval = rmi_driver_process_config_requests(rmi_dev);
257 if (retval < 0)
258 return retval;
259
260 return rmi_process_interrupt_requests(rmi_dev);
261 }
262
263 /**
264 * rmi_driver_set_input_params - set input device id and other data.
265 *
266 * @rmi_dev: Pointer to an RMI device
267 * @input: Pointer to input device
268 *
269 */
270 static int rmi_driver_set_input_params(struct rmi_device *rmi_dev,
271 struct input_dev *input)
272 {
273 input->name = SYNAPTICS_INPUT_DEVICE_NAME;
274 input->id.vendor = SYNAPTICS_VENDOR_ID;
275 input->id.bustype = BUS_RMI;
276 return 0;
277 }
278
279 static void rmi_driver_set_input_name(struct rmi_device *rmi_dev,
280 struct input_dev *input)
281 {
282 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
283 char *device_name = rmi_f01_get_product_ID(data->f01_container);
284 char *name;
285
286 name = devm_kasprintf(&rmi_dev->dev, GFP_KERNEL,
287 "Synaptics %s", device_name);
288 if (!name)
289 return;
290
291 input->name = name;
292 }
293
294 static int rmi_driver_set_irq_bits(struct rmi_device *rmi_dev,
295 unsigned long *mask)
296 {
297 int error = 0;
298 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
299 struct device *dev = &rmi_dev->dev;
300
301 mutex_lock(&data->irq_mutex);
302 bitmap_or(data->new_irq_mask,
303 data->current_irq_mask, mask, data->irq_count);
304
305 error = rmi_write_block(rmi_dev,
306 data->f01_container->fd.control_base_addr + 1,
307 data->new_irq_mask, data->num_of_irq_regs);
308 if (error < 0) {
309 dev_err(dev, "%s: Failed to change enabled interrupts!",
310 __func__);
311 goto error_unlock;
312 }
313 bitmap_copy(data->current_irq_mask, data->new_irq_mask,
314 data->num_of_irq_regs);
315
316 error_unlock:
317 mutex_unlock(&data->irq_mutex);
318 return error;
319 }
320
321 static int rmi_driver_clear_irq_bits(struct rmi_device *rmi_dev,
322 unsigned long *mask)
323 {
324 int error = 0;
325 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
326 struct device *dev = &rmi_dev->dev;
327
328 mutex_lock(&data->irq_mutex);
329 bitmap_andnot(data->new_irq_mask,
330 data->current_irq_mask, mask, data->irq_count);
331
332 error = rmi_write_block(rmi_dev,
333 data->f01_container->fd.control_base_addr + 1,
334 data->new_irq_mask, data->num_of_irq_regs);
335 if (error < 0) {
336 dev_err(dev, "%s: Failed to change enabled interrupts!",
337 __func__);
338 goto error_unlock;
339 }
340 bitmap_copy(data->current_irq_mask, data->new_irq_mask,
341 data->num_of_irq_regs);
342
343 error_unlock:
344 mutex_unlock(&data->irq_mutex);
345 return error;
346 }
347
348 static int rmi_driver_reset_handler(struct rmi_device *rmi_dev)
349 {
350 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
351 int error;
352
353 /*
354 * Can get called before the driver is fully ready to deal with
355 * this situation.
356 */
357 if (!data || !data->f01_container) {
358 dev_warn(&rmi_dev->dev,
359 "Not ready to handle reset yet!\n");
360 return 0;
361 }
362
363 error = rmi_read_block(rmi_dev,
364 data->f01_container->fd.control_base_addr + 1,
365 data->current_irq_mask, data->num_of_irq_regs);
366 if (error < 0) {
367 dev_err(&rmi_dev->dev, "%s: Failed to read current IRQ mask.\n",
368 __func__);
369 return error;
370 }
371
372 error = rmi_driver_process_reset_requests(rmi_dev);
373 if (error < 0)
374 return error;
375
376 error = rmi_driver_process_config_requests(rmi_dev);
377 if (error < 0)
378 return error;
379
380 return 0;
381 }
382
383 int rmi_read_pdt_entry(struct rmi_device *rmi_dev, struct pdt_entry *entry,
384 u16 pdt_address)
385 {
386 u8 buf[RMI_PDT_ENTRY_SIZE];
387 int error;
388
389 error = rmi_read_block(rmi_dev, pdt_address, buf, RMI_PDT_ENTRY_SIZE);
390 if (error) {
391 dev_err(&rmi_dev->dev, "Read PDT entry at %#06x failed, code: %d.\n",
392 pdt_address, error);
393 return error;
394 }
395
396 entry->page_start = pdt_address & RMI4_PAGE_MASK;
397 entry->query_base_addr = buf[0];
398 entry->command_base_addr = buf[1];
399 entry->control_base_addr = buf[2];
400 entry->data_base_addr = buf[3];
401 entry->interrupt_source_count = buf[4] & RMI_PDT_INT_SOURCE_COUNT_MASK;
402 entry->function_version = (buf[4] & RMI_PDT_FUNCTION_VERSION_MASK) >> 5;
403 entry->function_number = buf[5];
404
405 return 0;
406 }
407 EXPORT_SYMBOL_GPL(rmi_read_pdt_entry);
408
409 static void rmi_driver_copy_pdt_to_fd(const struct pdt_entry *pdt,
410 struct rmi_function_descriptor *fd)
411 {
412 fd->query_base_addr = pdt->query_base_addr + pdt->page_start;
413 fd->command_base_addr = pdt->command_base_addr + pdt->page_start;
414 fd->control_base_addr = pdt->control_base_addr + pdt->page_start;
415 fd->data_base_addr = pdt->data_base_addr + pdt->page_start;
416 fd->function_number = pdt->function_number;
417 fd->interrupt_source_count = pdt->interrupt_source_count;
418 fd->function_version = pdt->function_version;
419 }
420
421 #define RMI_SCAN_CONTINUE 0
422 #define RMI_SCAN_DONE 1
423
424 static int rmi_scan_pdt_page(struct rmi_device *rmi_dev,
425 int page,
426 void *ctx,
427 int (*callback)(struct rmi_device *rmi_dev,
428 void *ctx,
429 const struct pdt_entry *entry))
430 {
431 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
432 struct pdt_entry pdt_entry;
433 u16 page_start = RMI4_PAGE_SIZE * page;
434 u16 pdt_start = page_start + PDT_START_SCAN_LOCATION;
435 u16 pdt_end = page_start + PDT_END_SCAN_LOCATION;
436 u16 addr;
437 int error;
438 int retval;
439
440 for (addr = pdt_start; addr >= pdt_end; addr -= RMI_PDT_ENTRY_SIZE) {
441 error = rmi_read_pdt_entry(rmi_dev, &pdt_entry, addr);
442 if (error)
443 return error;
444
445 if (RMI4_END_OF_PDT(pdt_entry.function_number))
446 break;
447
448 retval = callback(rmi_dev, ctx, &pdt_entry);
449 if (retval != RMI_SCAN_CONTINUE)
450 return retval;
451 }
452
453 return (data->f01_bootloader_mode || addr == pdt_start) ?
454 RMI_SCAN_DONE : RMI_SCAN_CONTINUE;
455 }
456
457 static int rmi_scan_pdt(struct rmi_device *rmi_dev, void *ctx,
458 int (*callback)(struct rmi_device *rmi_dev,
459 void *ctx,
460 const struct pdt_entry *entry))
461 {
462 int page;
463 int retval = RMI_SCAN_DONE;
464
465 for (page = 0; page <= RMI4_MAX_PAGE; page++) {
466 retval = rmi_scan_pdt_page(rmi_dev, page, ctx, callback);
467 if (retval != RMI_SCAN_CONTINUE)
468 break;
469 }
470
471 return retval < 0 ? retval : 0;
472 }
473
474 int rmi_read_register_desc(struct rmi_device *d, u16 addr,
475 struct rmi_register_descriptor *rdesc)
476 {
477 int ret;
478 u8 size_presence_reg;
479 u8 buf[35];
480 int presense_offset = 1;
481 u8 *struct_buf;
482 int reg;
483 int offset = 0;
484 int map_offset = 0;
485 int i;
486 int b;
487
488 /*
489 * The first register of the register descriptor is the size of
490 * the register descriptor's presense register.
491 */
492 ret = rmi_read(d, addr, &size_presence_reg);
493 if (ret)
494 return ret;
495 ++addr;
496
497 if (size_presence_reg < 0 || size_presence_reg > 35)
498 return -EIO;
499
500 memset(buf, 0, sizeof(buf));
501
502 /*
503 * The presence register contains the size of the register structure
504 * and a bitmap which identified which packet registers are present
505 * for this particular register type (ie query, control, or data).
506 */
507 ret = rmi_read_block(d, addr, buf, size_presence_reg);
508 if (ret)
509 return ret;
510 ++addr;
511
512 if (buf[0] == 0) {
513 presense_offset = 3;
514 rdesc->struct_size = buf[1] | (buf[2] << 8);
515 } else {
516 rdesc->struct_size = buf[0];
517 }
518
519 for (i = presense_offset; i < size_presence_reg; i++) {
520 for (b = 0; b < 8; b++) {
521 if (buf[i] & (0x1 << b))
522 bitmap_set(rdesc->presense_map, map_offset, 1);
523 ++map_offset;
524 }
525 }
526
527 rdesc->num_registers = bitmap_weight(rdesc->presense_map,
528 RMI_REG_DESC_PRESENSE_BITS);
529
530 rdesc->registers = devm_kzalloc(&d->dev, rdesc->num_registers *
531 sizeof(struct rmi_register_desc_item),
532 GFP_KERNEL);
533 if (!rdesc->registers)
534 return -ENOMEM;
535
536 /*
537 * Allocate a temporary buffer to hold the register structure.
538 * I'm not using devm_kzalloc here since it will not be retained
539 * after exiting this function
540 */
541 struct_buf = kzalloc(rdesc->struct_size, GFP_KERNEL);
542 if (!struct_buf)
543 return -ENOMEM;
544
545 /*
546 * The register structure contains information about every packet
547 * register of this type. This includes the size of the packet
548 * register and a bitmap of all subpackets contained in the packet
549 * register.
550 */
551 ret = rmi_read_block(d, addr, struct_buf, rdesc->struct_size);
552 if (ret)
553 goto free_struct_buff;
554
555 reg = find_first_bit(rdesc->presense_map, RMI_REG_DESC_PRESENSE_BITS);
556 map_offset = 0;
557 for (i = 0; i < rdesc->num_registers; i++) {
558 struct rmi_register_desc_item *item = &rdesc->registers[i];
559 int reg_size = struct_buf[offset];
560
561 ++offset;
562 if (reg_size == 0) {
563 reg_size = struct_buf[offset] |
564 (struct_buf[offset + 1] << 8);
565 offset += 2;
566 }
567
568 if (reg_size == 0) {
569 reg_size = struct_buf[offset] |
570 (struct_buf[offset + 1] << 8) |
571 (struct_buf[offset + 2] << 16) |
572 (struct_buf[offset + 3] << 24);
573 offset += 4;
574 }
575
576 item->reg = reg;
577 item->reg_size = reg_size;
578
579 do {
580 for (b = 0; b < 7; b++) {
581 if (struct_buf[offset] & (0x1 << b))
582 bitmap_set(item->subpacket_map,
583 map_offset, 1);
584 ++map_offset;
585 }
586 } while (struct_buf[offset++] & 0x80);
587
588 item->num_subpackets = bitmap_weight(item->subpacket_map,
589 RMI_REG_DESC_SUBPACKET_BITS);
590
591 rmi_dbg(RMI_DEBUG_CORE, &d->dev,
592 "%s: reg: %d reg size: %ld subpackets: %d\n", __func__,
593 item->reg, item->reg_size, item->num_subpackets);
594
595 reg = find_next_bit(rdesc->presense_map,
596 RMI_REG_DESC_PRESENSE_BITS, reg + 1);
597 }
598
599 free_struct_buff:
600 kfree(struct_buf);
601 return ret;
602 }
603 EXPORT_SYMBOL_GPL(rmi_read_register_desc);
604
605 const struct rmi_register_desc_item *rmi_get_register_desc_item(
606 struct rmi_register_descriptor *rdesc, u16 reg)
607 {
608 const struct rmi_register_desc_item *item;
609 int i;
610
611 for (i = 0; i < rdesc->num_registers; i++) {
612 item = &rdesc->registers[i];
613 if (item->reg == reg)
614 return item;
615 }
616
617 return NULL;
618 }
619 EXPORT_SYMBOL_GPL(rmi_get_register_desc_item);
620
621 size_t rmi_register_desc_calc_size(struct rmi_register_descriptor *rdesc)
622 {
623 const struct rmi_register_desc_item *item;
624 int i;
625 size_t size = 0;
626
627 for (i = 0; i < rdesc->num_registers; i++) {
628 item = &rdesc->registers[i];
629 size += item->reg_size;
630 }
631 return size;
632 }
633 EXPORT_SYMBOL_GPL(rmi_register_desc_calc_size);
634
635 /* Compute the register offset relative to the base address */
636 int rmi_register_desc_calc_reg_offset(
637 struct rmi_register_descriptor *rdesc, u16 reg)
638 {
639 const struct rmi_register_desc_item *item;
640 int offset = 0;
641 int i;
642
643 for (i = 0; i < rdesc->num_registers; i++) {
644 item = &rdesc->registers[i];
645 if (item->reg == reg)
646 return offset;
647 ++offset;
648 }
649 return -1;
650 }
651 EXPORT_SYMBOL_GPL(rmi_register_desc_calc_reg_offset);
652
653 bool rmi_register_desc_has_subpacket(const struct rmi_register_desc_item *item,
654 u8 subpacket)
655 {
656 return find_next_bit(item->subpacket_map, RMI_REG_DESC_PRESENSE_BITS,
657 subpacket) == subpacket;
658 }
659
660 /* Indicates that flash programming is enabled (bootloader mode). */
661 #define RMI_F01_STATUS_BOOTLOADER(status) (!!((status) & 0x40))
662
663 /*
664 * Given the PDT entry for F01, read the device status register to determine
665 * if we're stuck in bootloader mode or not.
666 *
667 */
668 static int rmi_check_bootloader_mode(struct rmi_device *rmi_dev,
669 const struct pdt_entry *pdt)
670 {
671 int error;
672 u8 device_status;
673
674 error = rmi_read(rmi_dev, pdt->data_base_addr + pdt->page_start,
675 &device_status);
676 if (error) {
677 dev_err(&rmi_dev->dev,
678 "Failed to read device status: %d.\n", error);
679 return error;
680 }
681
682 return RMI_F01_STATUS_BOOTLOADER(device_status);
683 }
684
685 static int rmi_count_irqs(struct rmi_device *rmi_dev,
686 void *ctx, const struct pdt_entry *pdt)
687 {
688 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
689 int *irq_count = ctx;
690
691 *irq_count += pdt->interrupt_source_count;
692 if (pdt->function_number == 0x01) {
693 data->f01_bootloader_mode =
694 rmi_check_bootloader_mode(rmi_dev, pdt);
695 if (data->f01_bootloader_mode)
696 dev_warn(&rmi_dev->dev,
697 "WARNING: RMI4 device is in bootloader mode!\n");
698 }
699
700 return RMI_SCAN_CONTINUE;
701 }
702
703 static int rmi_initial_reset(struct rmi_device *rmi_dev,
704 void *ctx, const struct pdt_entry *pdt)
705 {
706 int error;
707
708 if (pdt->function_number == 0x01) {
709 u16 cmd_addr = pdt->page_start + pdt->command_base_addr;
710 u8 cmd_buf = RMI_DEVICE_RESET_CMD;
711 const struct rmi_device_platform_data *pdata =
712 rmi_get_platform_data(rmi_dev);
713
714 if (rmi_dev->xport->ops->reset) {
715 error = rmi_dev->xport->ops->reset(rmi_dev->xport,
716 cmd_addr);
717 if (error)
718 return error;
719
720 return RMI_SCAN_DONE;
721 }
722
723 error = rmi_write_block(rmi_dev, cmd_addr, &cmd_buf, 1);
724 if (error) {
725 dev_err(&rmi_dev->dev,
726 "Initial reset failed. Code = %d.\n", error);
727 return error;
728 }
729
730 mdelay(pdata->reset_delay_ms ?: DEFAULT_RESET_DELAY_MS);
731
732 return RMI_SCAN_DONE;
733 }
734
735 /* F01 should always be on page 0. If we don't find it there, fail. */
736 return pdt->page_start == 0 ? RMI_SCAN_CONTINUE : -ENODEV;
737 }
738
739 static int rmi_create_function(struct rmi_device *rmi_dev,
740 void *ctx, const struct pdt_entry *pdt)
741 {
742 struct device *dev = &rmi_dev->dev;
743 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
744 int *current_irq_count = ctx;
745 struct rmi_function *fn;
746 int i;
747 int error;
748
749 rmi_dbg(RMI_DEBUG_CORE, dev, "Initializing F%02X.\n",
750 pdt->function_number);
751
752 fn = kzalloc(sizeof(struct rmi_function) +
753 BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long),
754 GFP_KERNEL);
755 if (!fn) {
756 dev_err(dev, "Failed to allocate memory for F%02X\n",
757 pdt->function_number);
758 return -ENOMEM;
759 }
760
761 INIT_LIST_HEAD(&fn->node);
762 rmi_driver_copy_pdt_to_fd(pdt, &fn->fd);
763
764 fn->rmi_dev = rmi_dev;
765
766 fn->num_of_irqs = pdt->interrupt_source_count;
767 fn->irq_pos = *current_irq_count;
768 *current_irq_count += fn->num_of_irqs;
769
770 for (i = 0; i < fn->num_of_irqs; i++)
771 set_bit(fn->irq_pos + i, fn->irq_mask);
772
773 error = rmi_register_function(fn);
774 if (error)
775 goto err_put_fn;
776
777 if (pdt->function_number == 0x01)
778 data->f01_container = fn;
779
780 list_add_tail(&fn->node, &data->function_list);
781
782 return RMI_SCAN_CONTINUE;
783
784 err_put_fn:
785 put_device(&fn->dev);
786 return error;
787 }
788
789 int rmi_driver_suspend(struct rmi_device *rmi_dev)
790 {
791 int retval = 0;
792
793 retval = rmi_suspend_functions(rmi_dev);
794 if (retval)
795 dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
796 retval);
797
798 return retval;
799 }
800 EXPORT_SYMBOL_GPL(rmi_driver_suspend);
801
802 int rmi_driver_resume(struct rmi_device *rmi_dev)
803 {
804 int retval;
805
806 retval = rmi_resume_functions(rmi_dev);
807 if (retval)
808 dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
809 retval);
810
811 return retval;
812 }
813 EXPORT_SYMBOL_GPL(rmi_driver_resume);
814
815 static int rmi_driver_remove(struct device *dev)
816 {
817 struct rmi_device *rmi_dev = to_rmi_device(dev);
818
819 rmi_free_function_list(rmi_dev);
820
821 return 0;
822 }
823
824 #ifdef CONFIG_OF
825 static int rmi_driver_of_probe(struct device *dev,
826 struct rmi_device_platform_data *pdata)
827 {
828 int retval;
829
830 retval = rmi_of_property_read_u32(dev, &pdata->reset_delay_ms,
831 "syna,reset-delay-ms", 1);
832 if (retval)
833 return retval;
834
835 return 0;
836 }
837 #else
838 static inline int rmi_driver_of_probe(struct device *dev,
839 struct rmi_device_platform_data *pdata)
840 {
841 return -ENODEV;
842 }
843 #endif
844
845 static int rmi_driver_probe(struct device *dev)
846 {
847 struct rmi_driver *rmi_driver;
848 struct rmi_driver_data *data;
849 struct rmi_device_platform_data *pdata;
850 struct rmi_device *rmi_dev;
851 size_t size;
852 void *irq_memory;
853 int irq_count;
854 int retval;
855
856 rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Starting probe.\n",
857 __func__);
858
859 if (!rmi_is_physical_device(dev)) {
860 rmi_dbg(RMI_DEBUG_CORE, dev, "Not a physical device.\n");
861 return -ENODEV;
862 }
863
864 rmi_dev = to_rmi_device(dev);
865 rmi_driver = to_rmi_driver(dev->driver);
866 rmi_dev->driver = rmi_driver;
867
868 pdata = rmi_get_platform_data(rmi_dev);
869
870 if (rmi_dev->xport->dev->of_node) {
871 retval = rmi_driver_of_probe(rmi_dev->xport->dev, pdata);
872 if (retval)
873 return retval;
874 }
875
876 data = devm_kzalloc(dev, sizeof(struct rmi_driver_data), GFP_KERNEL);
877 if (!data)
878 return -ENOMEM;
879
880 INIT_LIST_HEAD(&data->function_list);
881 data->rmi_dev = rmi_dev;
882 dev_set_drvdata(&rmi_dev->dev, data);
883
884 /*
885 * Right before a warm boot, the sensor might be in some unusual state,
886 * such as F54 diagnostics, or F34 bootloader mode after a firmware
887 * or configuration update. In order to clear the sensor to a known
888 * state and/or apply any updates, we issue a initial reset to clear any
889 * previous settings and force it into normal operation.
890 *
891 * We have to do this before actually building the PDT because
892 * the reflash updates (if any) might cause various registers to move
893 * around.
894 *
895 * For a number of reasons, this initial reset may fail to return
896 * within the specified time, but we'll still be able to bring up the
897 * driver normally after that failure. This occurs most commonly in
898 * a cold boot situation (where then firmware takes longer to come up
899 * than from a warm boot) and the reset_delay_ms in the platform data
900 * has been set too short to accommodate that. Since the sensor will
901 * eventually come up and be usable, we don't want to just fail here
902 * and leave the customer's device unusable. So we warn them, and
903 * continue processing.
904 */
905 retval = rmi_scan_pdt(rmi_dev, NULL, rmi_initial_reset);
906 if (retval < 0)
907 dev_warn(dev, "RMI initial reset failed! Continuing in spite of this.\n");
908
909 retval = rmi_read(rmi_dev, PDT_PROPERTIES_LOCATION, &data->pdt_props);
910 if (retval < 0) {
911 /*
912 * we'll print out a warning and continue since
913 * failure to get the PDT properties is not a cause to fail
914 */
915 dev_warn(dev, "Could not read PDT properties from %#06x (code %d). Assuming 0x00.\n",
916 PDT_PROPERTIES_LOCATION, retval);
917 }
918
919 /*
920 * We need to count the IRQs and allocate their storage before scanning
921 * the PDT and creating the function entries, because adding a new
922 * function can trigger events that result in the IRQ related storage
923 * being accessed.
924 */
925 rmi_dbg(RMI_DEBUG_CORE, dev, "Counting IRQs.\n");
926 irq_count = 0;
927 retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_count_irqs);
928 if (retval < 0) {
929 dev_err(dev, "IRQ counting failed with code %d.\n", retval);
930 goto err;
931 }
932 data->irq_count = irq_count;
933 data->num_of_irq_regs = (data->irq_count + 7) / 8;
934
935 mutex_init(&data->irq_mutex);
936
937 size = BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long);
938 irq_memory = devm_kzalloc(dev, size * 4, GFP_KERNEL);
939 if (!irq_memory) {
940 dev_err(dev, "Failed to allocate memory for irq masks.\n");
941 goto err;
942 }
943
944 data->irq_status = irq_memory + size * 0;
945 data->fn_irq_bits = irq_memory + size * 1;
946 data->current_irq_mask = irq_memory + size * 2;
947 data->new_irq_mask = irq_memory + size * 3;
948
949 if (rmi_dev->xport->input) {
950 /*
951 * The transport driver already has an input device.
952 * In some cases it is preferable to reuse the transport
953 * devices input device instead of creating a new one here.
954 * One example is some HID touchpads report "pass-through"
955 * button events are not reported by rmi registers.
956 */
957 data->input = rmi_dev->xport->input;
958 } else {
959 data->input = devm_input_allocate_device(dev);
960 if (!data->input) {
961 dev_err(dev, "%s: Failed to allocate input device.\n",
962 __func__);
963 retval = -ENOMEM;
964 goto err_destroy_functions;
965 }
966 rmi_driver_set_input_params(rmi_dev, data->input);
967 data->input->phys = devm_kasprintf(dev, GFP_KERNEL,
968 "%s/input0", dev_name(dev));
969 }
970
971 irq_count = 0;
972 rmi_dbg(RMI_DEBUG_CORE, dev, "Creating functions.");
973 retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_create_function);
974 if (retval < 0) {
975 dev_err(dev, "Function creation failed with code %d.\n",
976 retval);
977 goto err_destroy_functions;
978 }
979
980 if (!data->f01_container) {
981 dev_err(dev, "Missing F01 container!\n");
982 retval = -EINVAL;
983 goto err_destroy_functions;
984 }
985
986 retval = rmi_read_block(rmi_dev,
987 data->f01_container->fd.control_base_addr + 1,
988 data->current_irq_mask, data->num_of_irq_regs);
989 if (retval < 0) {
990 dev_err(dev, "%s: Failed to read current IRQ mask.\n",
991 __func__);
992 goto err_destroy_functions;
993 }
994
995 if (data->input) {
996 rmi_driver_set_input_name(rmi_dev, data->input);
997 if (!rmi_dev->xport->input) {
998 if (input_register_device(data->input)) {
999 dev_err(dev, "%s: Failed to register input device.\n",
1000 __func__);
1001 goto err_destroy_functions;
1002 }
1003 }
1004 }
1005
1006 if (data->f01_container->dev.driver)
1007 /* Driver already bound, so enable ATTN now. */
1008 return enable_sensor(rmi_dev);
1009
1010 return 0;
1011
1012 err_destroy_functions:
1013 rmi_free_function_list(rmi_dev);
1014 err:
1015 return retval < 0 ? retval : 0;
1016 }
1017
1018 static struct rmi_driver rmi_physical_driver = {
1019 .driver = {
1020 .owner = THIS_MODULE,
1021 .name = "rmi4_physical",
1022 .bus = &rmi_bus_type,
1023 .probe = rmi_driver_probe,
1024 .remove = rmi_driver_remove,
1025 },
1026 .reset_handler = rmi_driver_reset_handler,
1027 .clear_irq_bits = rmi_driver_clear_irq_bits,
1028 .set_irq_bits = rmi_driver_set_irq_bits,
1029 .set_input_params = rmi_driver_set_input_params,
1030 };
1031
1032 bool rmi_is_physical_driver(struct device_driver *drv)
1033 {
1034 return drv == &rmi_physical_driver.driver;
1035 }
1036
1037 int __init rmi_register_physical_driver(void)
1038 {
1039 int error;
1040
1041 error = driver_register(&rmi_physical_driver.driver);
1042 if (error) {
1043 pr_err("%s: driver register failed, code=%d.\n", __func__,
1044 error);
1045 return error;
1046 }
1047
1048 return 0;
1049 }
1050
1051 void __exit rmi_unregister_physical_driver(void)
1052 {
1053 driver_unregister(&rmi_physical_driver.driver);
1054 }
This page took 0.069895 seconds and 5 git commands to generate.