Staging: Merge branch 'tidspbridge-for-2.6.39' of git://dev.omapzoom.org/pub/scm...
[deliverable/linux.git] / drivers / input / touchscreen / ads7846.c
1 /*
2 * ADS7846 based touchscreen and sensor driver
3 *
4 * Copyright (c) 2005 David Brownell
5 * Copyright (c) 2006 Nokia Corporation
6 * Various changes: Imre Deak <imre.deak@nokia.com>
7 *
8 * Using code from:
9 * - corgi_ts.c
10 * Copyright (C) 2004-2005 Richard Purdie
11 * - omap_ts.[hc], ads7846.h, ts_osk.c
12 * Copyright (C) 2002 MontaVista Software
13 * Copyright (C) 2004 Texas Instruments
14 * Copyright (C) 2005 Dirk Behme
15 *
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License version 2 as
18 * published by the Free Software Foundation.
19 */
20 #include <linux/types.h>
21 #include <linux/hwmon.h>
22 #include <linux/init.h>
23 #include <linux/err.h>
24 #include <linux/sched.h>
25 #include <linux/delay.h>
26 #include <linux/input.h>
27 #include <linux/interrupt.h>
28 #include <linux/slab.h>
29 #include <linux/gpio.h>
30 #include <linux/spi/spi.h>
31 #include <linux/spi/ads7846.h>
32 #include <linux/regulator/consumer.h>
33 #include <asm/irq.h>
34
35 /*
36 * This code has been heavily tested on a Nokia 770, and lightly
37 * tested on other ads7846 devices (OSK/Mistral, Lubbock, Spitz).
38 * TSC2046 is just newer ads7846 silicon.
39 * Support for ads7843 tested on Atmel at91sam926x-EK.
40 * Support for ads7845 has only been stubbed in.
41 * Support for Analog Devices AD7873 and AD7843 tested.
42 *
43 * IRQ handling needs a workaround because of a shortcoming in handling
44 * edge triggered IRQs on some platforms like the OMAP1/2. These
45 * platforms don't handle the ARM lazy IRQ disabling properly, thus we
46 * have to maintain our own SW IRQ disabled status. This should be
47 * removed as soon as the affected platform's IRQ handling is fixed.
48 *
49 * App note sbaa036 talks in more detail about accurate sampling...
50 * that ought to help in situations like LCDs inducing noise (which
51 * can also be helped by using synch signals) and more generally.
52 * This driver tries to utilize the measures described in the app
53 * note. The strength of filtering can be set in the board-* specific
54 * files.
55 */
56
57 #define TS_POLL_DELAY 1 /* ms delay before the first sample */
58 #define TS_POLL_PERIOD 5 /* ms delay between samples */
59
60 /* this driver doesn't aim at the peak continuous sample rate */
61 #define SAMPLE_BITS (8 /*cmd*/ + 16 /*sample*/ + 2 /* before, after */)
62
63 struct ts_event {
64 /*
65 * For portability, we can't read 12 bit values using SPI (which
66 * would make the controller deliver them as native byte order u16
67 * with msbs zeroed). Instead, we read them as two 8-bit values,
68 * *** WHICH NEED BYTESWAPPING *** and range adjustment.
69 */
70 u16 x;
71 u16 y;
72 u16 z1, z2;
73 bool ignore;
74 u8 x_buf[3];
75 u8 y_buf[3];
76 };
77
78 /*
79 * We allocate this separately to avoid cache line sharing issues when
80 * driver is used with DMA-based SPI controllers (like atmel_spi) on
81 * systems where main memory is not DMA-coherent (most non-x86 boards).
82 */
83 struct ads7846_packet {
84 u8 read_x, read_y, read_z1, read_z2, pwrdown;
85 u16 dummy; /* for the pwrdown read */
86 struct ts_event tc;
87 /* for ads7845 with mpc5121 psc spi we use 3-byte buffers */
88 u8 read_x_cmd[3], read_y_cmd[3], pwrdown_cmd[3];
89 };
90
91 struct ads7846 {
92 struct input_dev *input;
93 char phys[32];
94 char name[32];
95
96 struct spi_device *spi;
97 struct regulator *reg;
98
99 #if defined(CONFIG_HWMON) || defined(CONFIG_HWMON_MODULE)
100 struct attribute_group *attr_group;
101 struct device *hwmon;
102 #endif
103
104 u16 model;
105 u16 vref_mv;
106 u16 vref_delay_usecs;
107 u16 x_plate_ohms;
108 u16 pressure_max;
109
110 bool swap_xy;
111
112 struct ads7846_packet *packet;
113
114 struct spi_transfer xfer[18];
115 struct spi_message msg[5];
116 int msg_count;
117 wait_queue_head_t wait;
118
119 bool pendown;
120
121 int read_cnt;
122 int read_rep;
123 int last_read;
124
125 u16 debounce_max;
126 u16 debounce_tol;
127 u16 debounce_rep;
128
129 u16 penirq_recheck_delay_usecs;
130
131 struct mutex lock;
132 bool stopped; /* P: lock */
133 bool disabled; /* P: lock */
134 bool suspended; /* P: lock */
135
136 int (*filter)(void *data, int data_idx, int *val);
137 void *filter_data;
138 void (*filter_cleanup)(void *data);
139 int (*get_pendown_state)(void);
140 int gpio_pendown;
141
142 void (*wait_for_sync)(void);
143 };
144
145 /* leave chip selected when we're done, for quicker re-select? */
146 #if 0
147 #define CS_CHANGE(xfer) ((xfer).cs_change = 1)
148 #else
149 #define CS_CHANGE(xfer) ((xfer).cs_change = 0)
150 #endif
151
152 /*--------------------------------------------------------------------------*/
153
154 /* The ADS7846 has touchscreen and other sensors.
155 * Earlier ads784x chips are somewhat compatible.
156 */
157 #define ADS_START (1 << 7)
158 #define ADS_A2A1A0_d_y (1 << 4) /* differential */
159 #define ADS_A2A1A0_d_z1 (3 << 4) /* differential */
160 #define ADS_A2A1A0_d_z2 (4 << 4) /* differential */
161 #define ADS_A2A1A0_d_x (5 << 4) /* differential */
162 #define ADS_A2A1A0_temp0 (0 << 4) /* non-differential */
163 #define ADS_A2A1A0_vbatt (2 << 4) /* non-differential */
164 #define ADS_A2A1A0_vaux (6 << 4) /* non-differential */
165 #define ADS_A2A1A0_temp1 (7 << 4) /* non-differential */
166 #define ADS_8_BIT (1 << 3)
167 #define ADS_12_BIT (0 << 3)
168 #define ADS_SER (1 << 2) /* non-differential */
169 #define ADS_DFR (0 << 2) /* differential */
170 #define ADS_PD10_PDOWN (0 << 0) /* low power mode + penirq */
171 #define ADS_PD10_ADC_ON (1 << 0) /* ADC on */
172 #define ADS_PD10_REF_ON (2 << 0) /* vREF on + penirq */
173 #define ADS_PD10_ALL_ON (3 << 0) /* ADC + vREF on */
174
175 #define MAX_12BIT ((1<<12)-1)
176
177 /* leave ADC powered up (disables penirq) between differential samples */
178 #define READ_12BIT_DFR(x, adc, vref) (ADS_START | ADS_A2A1A0_d_ ## x \
179 | ADS_12_BIT | ADS_DFR | \
180 (adc ? ADS_PD10_ADC_ON : 0) | (vref ? ADS_PD10_REF_ON : 0))
181
182 #define READ_Y(vref) (READ_12BIT_DFR(y, 1, vref))
183 #define READ_Z1(vref) (READ_12BIT_DFR(z1, 1, vref))
184 #define READ_Z2(vref) (READ_12BIT_DFR(z2, 1, vref))
185
186 #define READ_X(vref) (READ_12BIT_DFR(x, 1, vref))
187 #define PWRDOWN (READ_12BIT_DFR(y, 0, 0)) /* LAST */
188
189 /* single-ended samples need to first power up reference voltage;
190 * we leave both ADC and VREF powered
191 */
192 #define READ_12BIT_SER(x) (ADS_START | ADS_A2A1A0_ ## x \
193 | ADS_12_BIT | ADS_SER)
194
195 #define REF_ON (READ_12BIT_DFR(x, 1, 1))
196 #define REF_OFF (READ_12BIT_DFR(y, 0, 0))
197
198 /* Must be called with ts->lock held */
199 static void ads7846_stop(struct ads7846 *ts)
200 {
201 if (!ts->disabled && !ts->suspended) {
202 /* Signal IRQ thread to stop polling and disable the handler. */
203 ts->stopped = true;
204 mb();
205 wake_up(&ts->wait);
206 disable_irq(ts->spi->irq);
207 }
208 }
209
210 /* Must be called with ts->lock held */
211 static void ads7846_restart(struct ads7846 *ts)
212 {
213 if (!ts->disabled && !ts->suspended) {
214 /* Tell IRQ thread that it may poll the device. */
215 ts->stopped = false;
216 mb();
217 enable_irq(ts->spi->irq);
218 }
219 }
220
221 /* Must be called with ts->lock held */
222 static void __ads7846_disable(struct ads7846 *ts)
223 {
224 ads7846_stop(ts);
225 regulator_disable(ts->reg);
226
227 /*
228 * We know the chip's in low power mode since we always
229 * leave it that way after every request
230 */
231 }
232
233 /* Must be called with ts->lock held */
234 static void __ads7846_enable(struct ads7846 *ts)
235 {
236 regulator_enable(ts->reg);
237 ads7846_restart(ts);
238 }
239
240 static void ads7846_disable(struct ads7846 *ts)
241 {
242 mutex_lock(&ts->lock);
243
244 if (!ts->disabled) {
245
246 if (!ts->suspended)
247 __ads7846_disable(ts);
248
249 ts->disabled = true;
250 }
251
252 mutex_unlock(&ts->lock);
253 }
254
255 static void ads7846_enable(struct ads7846 *ts)
256 {
257 mutex_lock(&ts->lock);
258
259 if (ts->disabled) {
260
261 ts->disabled = false;
262
263 if (!ts->suspended)
264 __ads7846_enable(ts);
265 }
266
267 mutex_unlock(&ts->lock);
268 }
269
270 /*--------------------------------------------------------------------------*/
271
272 /*
273 * Non-touchscreen sensors only use single-ended conversions.
274 * The range is GND..vREF. The ads7843 and ads7835 must use external vREF;
275 * ads7846 lets that pin be unconnected, to use internal vREF.
276 */
277
278 struct ser_req {
279 u8 ref_on;
280 u8 command;
281 u8 ref_off;
282 u16 scratch;
283 __be16 sample;
284 struct spi_message msg;
285 struct spi_transfer xfer[6];
286 };
287
288 struct ads7845_ser_req {
289 u8 command[3];
290 u8 pwrdown[3];
291 u8 sample[3];
292 struct spi_message msg;
293 struct spi_transfer xfer[2];
294 };
295
296 static int ads7846_read12_ser(struct device *dev, unsigned command)
297 {
298 struct spi_device *spi = to_spi_device(dev);
299 struct ads7846 *ts = dev_get_drvdata(dev);
300 struct ser_req *req;
301 int status;
302 int use_internal;
303
304 req = kzalloc(sizeof *req, GFP_KERNEL);
305 if (!req)
306 return -ENOMEM;
307
308 spi_message_init(&req->msg);
309
310 /* FIXME boards with ads7846 might use external vref instead ... */
311 use_internal = (ts->model == 7846);
312
313 /* maybe turn on internal vREF, and let it settle */
314 if (use_internal) {
315 req->ref_on = REF_ON;
316 req->xfer[0].tx_buf = &req->ref_on;
317 req->xfer[0].len = 1;
318 spi_message_add_tail(&req->xfer[0], &req->msg);
319
320 req->xfer[1].rx_buf = &req->scratch;
321 req->xfer[1].len = 2;
322
323 /* for 1uF, settle for 800 usec; no cap, 100 usec. */
324 req->xfer[1].delay_usecs = ts->vref_delay_usecs;
325 spi_message_add_tail(&req->xfer[1], &req->msg);
326 }
327
328 /* take sample */
329 req->command = (u8) command;
330 req->xfer[2].tx_buf = &req->command;
331 req->xfer[2].len = 1;
332 spi_message_add_tail(&req->xfer[2], &req->msg);
333
334 req->xfer[3].rx_buf = &req->sample;
335 req->xfer[3].len = 2;
336 spi_message_add_tail(&req->xfer[3], &req->msg);
337
338 /* REVISIT: take a few more samples, and compare ... */
339
340 /* converter in low power mode & enable PENIRQ */
341 req->ref_off = PWRDOWN;
342 req->xfer[4].tx_buf = &req->ref_off;
343 req->xfer[4].len = 1;
344 spi_message_add_tail(&req->xfer[4], &req->msg);
345
346 req->xfer[5].rx_buf = &req->scratch;
347 req->xfer[5].len = 2;
348 CS_CHANGE(req->xfer[5]);
349 spi_message_add_tail(&req->xfer[5], &req->msg);
350
351 mutex_lock(&ts->lock);
352 ads7846_stop(ts);
353 status = spi_sync(spi, &req->msg);
354 ads7846_restart(ts);
355 mutex_unlock(&ts->lock);
356
357 if (status == 0) {
358 /* on-wire is a must-ignore bit, a BE12 value, then padding */
359 status = be16_to_cpu(req->sample);
360 status = status >> 3;
361 status &= 0x0fff;
362 }
363
364 kfree(req);
365 return status;
366 }
367
368 static int ads7845_read12_ser(struct device *dev, unsigned command)
369 {
370 struct spi_device *spi = to_spi_device(dev);
371 struct ads7846 *ts = dev_get_drvdata(dev);
372 struct ads7845_ser_req *req;
373 int status;
374
375 req = kzalloc(sizeof *req, GFP_KERNEL);
376 if (!req)
377 return -ENOMEM;
378
379 spi_message_init(&req->msg);
380
381 req->command[0] = (u8) command;
382 req->xfer[0].tx_buf = req->command;
383 req->xfer[0].rx_buf = req->sample;
384 req->xfer[0].len = 3;
385 spi_message_add_tail(&req->xfer[0], &req->msg);
386
387 mutex_lock(&ts->lock);
388 ads7846_stop(ts);
389 status = spi_sync(spi, &req->msg);
390 ads7846_restart(ts);
391 mutex_unlock(&ts->lock);
392
393 if (status == 0) {
394 /* BE12 value, then padding */
395 status = be16_to_cpu(*((u16 *)&req->sample[1]));
396 status = status >> 3;
397 status &= 0x0fff;
398 }
399
400 kfree(req);
401 return status;
402 }
403
404 #if defined(CONFIG_HWMON) || defined(CONFIG_HWMON_MODULE)
405
406 #define SHOW(name, var, adjust) static ssize_t \
407 name ## _show(struct device *dev, struct device_attribute *attr, char *buf) \
408 { \
409 struct ads7846 *ts = dev_get_drvdata(dev); \
410 ssize_t v = ads7846_read12_ser(dev, \
411 READ_12BIT_SER(var) | ADS_PD10_ALL_ON); \
412 if (v < 0) \
413 return v; \
414 return sprintf(buf, "%u\n", adjust(ts, v)); \
415 } \
416 static DEVICE_ATTR(name, S_IRUGO, name ## _show, NULL);
417
418
419 /* Sysfs conventions report temperatures in millidegrees Celsius.
420 * ADS7846 could use the low-accuracy two-sample scheme, but can't do the high
421 * accuracy scheme without calibration data. For now we won't try either;
422 * userspace sees raw sensor values, and must scale/calibrate appropriately.
423 */
424 static inline unsigned null_adjust(struct ads7846 *ts, ssize_t v)
425 {
426 return v;
427 }
428
429 SHOW(temp0, temp0, null_adjust) /* temp1_input */
430 SHOW(temp1, temp1, null_adjust) /* temp2_input */
431
432
433 /* sysfs conventions report voltages in millivolts. We can convert voltages
434 * if we know vREF. userspace may need to scale vAUX to match the board's
435 * external resistors; we assume that vBATT only uses the internal ones.
436 */
437 static inline unsigned vaux_adjust(struct ads7846 *ts, ssize_t v)
438 {
439 unsigned retval = v;
440
441 /* external resistors may scale vAUX into 0..vREF */
442 retval *= ts->vref_mv;
443 retval = retval >> 12;
444
445 return retval;
446 }
447
448 static inline unsigned vbatt_adjust(struct ads7846 *ts, ssize_t v)
449 {
450 unsigned retval = vaux_adjust(ts, v);
451
452 /* ads7846 has a resistor ladder to scale this signal down */
453 if (ts->model == 7846)
454 retval *= 4;
455
456 return retval;
457 }
458
459 SHOW(in0_input, vaux, vaux_adjust)
460 SHOW(in1_input, vbatt, vbatt_adjust)
461
462 static struct attribute *ads7846_attributes[] = {
463 &dev_attr_temp0.attr,
464 &dev_attr_temp1.attr,
465 &dev_attr_in0_input.attr,
466 &dev_attr_in1_input.attr,
467 NULL,
468 };
469
470 static struct attribute_group ads7846_attr_group = {
471 .attrs = ads7846_attributes,
472 };
473
474 static struct attribute *ads7843_attributes[] = {
475 &dev_attr_in0_input.attr,
476 &dev_attr_in1_input.attr,
477 NULL,
478 };
479
480 static struct attribute_group ads7843_attr_group = {
481 .attrs = ads7843_attributes,
482 };
483
484 static struct attribute *ads7845_attributes[] = {
485 &dev_attr_in0_input.attr,
486 NULL,
487 };
488
489 static struct attribute_group ads7845_attr_group = {
490 .attrs = ads7845_attributes,
491 };
492
493 static int ads784x_hwmon_register(struct spi_device *spi, struct ads7846 *ts)
494 {
495 struct device *hwmon;
496 int err;
497
498 /* hwmon sensors need a reference voltage */
499 switch (ts->model) {
500 case 7846:
501 if (!ts->vref_mv) {
502 dev_dbg(&spi->dev, "assuming 2.5V internal vREF\n");
503 ts->vref_mv = 2500;
504 }
505 break;
506 case 7845:
507 case 7843:
508 if (!ts->vref_mv) {
509 dev_warn(&spi->dev,
510 "external vREF for ADS%d not specified\n",
511 ts->model);
512 return 0;
513 }
514 break;
515 }
516
517 /* different chips have different sensor groups */
518 switch (ts->model) {
519 case 7846:
520 ts->attr_group = &ads7846_attr_group;
521 break;
522 case 7845:
523 ts->attr_group = &ads7845_attr_group;
524 break;
525 case 7843:
526 ts->attr_group = &ads7843_attr_group;
527 break;
528 default:
529 dev_dbg(&spi->dev, "ADS%d not recognized\n", ts->model);
530 return 0;
531 }
532
533 err = sysfs_create_group(&spi->dev.kobj, ts->attr_group);
534 if (err)
535 return err;
536
537 hwmon = hwmon_device_register(&spi->dev);
538 if (IS_ERR(hwmon)) {
539 sysfs_remove_group(&spi->dev.kobj, ts->attr_group);
540 return PTR_ERR(hwmon);
541 }
542
543 ts->hwmon = hwmon;
544 return 0;
545 }
546
547 static void ads784x_hwmon_unregister(struct spi_device *spi,
548 struct ads7846 *ts)
549 {
550 if (ts->hwmon) {
551 sysfs_remove_group(&spi->dev.kobj, ts->attr_group);
552 hwmon_device_unregister(ts->hwmon);
553 }
554 }
555
556 #else
557 static inline int ads784x_hwmon_register(struct spi_device *spi,
558 struct ads7846 *ts)
559 {
560 return 0;
561 }
562
563 static inline void ads784x_hwmon_unregister(struct spi_device *spi,
564 struct ads7846 *ts)
565 {
566 }
567 #endif
568
569 static ssize_t ads7846_pen_down_show(struct device *dev,
570 struct device_attribute *attr, char *buf)
571 {
572 struct ads7846 *ts = dev_get_drvdata(dev);
573
574 return sprintf(buf, "%u\n", ts->pendown);
575 }
576
577 static DEVICE_ATTR(pen_down, S_IRUGO, ads7846_pen_down_show, NULL);
578
579 static ssize_t ads7846_disable_show(struct device *dev,
580 struct device_attribute *attr, char *buf)
581 {
582 struct ads7846 *ts = dev_get_drvdata(dev);
583
584 return sprintf(buf, "%u\n", ts->disabled);
585 }
586
587 static ssize_t ads7846_disable_store(struct device *dev,
588 struct device_attribute *attr,
589 const char *buf, size_t count)
590 {
591 struct ads7846 *ts = dev_get_drvdata(dev);
592 unsigned long i;
593
594 if (strict_strtoul(buf, 10, &i))
595 return -EINVAL;
596
597 if (i)
598 ads7846_disable(ts);
599 else
600 ads7846_enable(ts);
601
602 return count;
603 }
604
605 static DEVICE_ATTR(disable, 0664, ads7846_disable_show, ads7846_disable_store);
606
607 static struct attribute *ads784x_attributes[] = {
608 &dev_attr_pen_down.attr,
609 &dev_attr_disable.attr,
610 NULL,
611 };
612
613 static struct attribute_group ads784x_attr_group = {
614 .attrs = ads784x_attributes,
615 };
616
617 /*--------------------------------------------------------------------------*/
618
619 static int get_pendown_state(struct ads7846 *ts)
620 {
621 if (ts->get_pendown_state)
622 return ts->get_pendown_state();
623
624 return !gpio_get_value(ts->gpio_pendown);
625 }
626
627 static void null_wait_for_sync(void)
628 {
629 }
630
631 static int ads7846_debounce_filter(void *ads, int data_idx, int *val)
632 {
633 struct ads7846 *ts = ads;
634
635 if (!ts->read_cnt || (abs(ts->last_read - *val) > ts->debounce_tol)) {
636 /* Start over collecting consistent readings. */
637 ts->read_rep = 0;
638 /*
639 * Repeat it, if this was the first read or the read
640 * wasn't consistent enough.
641 */
642 if (ts->read_cnt < ts->debounce_max) {
643 ts->last_read = *val;
644 ts->read_cnt++;
645 return ADS7846_FILTER_REPEAT;
646 } else {
647 /*
648 * Maximum number of debouncing reached and still
649 * not enough number of consistent readings. Abort
650 * the whole sample, repeat it in the next sampling
651 * period.
652 */
653 ts->read_cnt = 0;
654 return ADS7846_FILTER_IGNORE;
655 }
656 } else {
657 if (++ts->read_rep > ts->debounce_rep) {
658 /*
659 * Got a good reading for this coordinate,
660 * go for the next one.
661 */
662 ts->read_cnt = 0;
663 ts->read_rep = 0;
664 return ADS7846_FILTER_OK;
665 } else {
666 /* Read more values that are consistent. */
667 ts->read_cnt++;
668 return ADS7846_FILTER_REPEAT;
669 }
670 }
671 }
672
673 static int ads7846_no_filter(void *ads, int data_idx, int *val)
674 {
675 return ADS7846_FILTER_OK;
676 }
677
678 static int ads7846_get_value(struct ads7846 *ts, struct spi_message *m)
679 {
680 struct spi_transfer *t =
681 list_entry(m->transfers.prev, struct spi_transfer, transfer_list);
682
683 if (ts->model == 7845) {
684 return be16_to_cpup((__be16 *)&(((char*)t->rx_buf)[1])) >> 3;
685 } else {
686 /*
687 * adjust: on-wire is a must-ignore bit, a BE12 value, then
688 * padding; built from two 8 bit values written msb-first.
689 */
690 return be16_to_cpup((__be16 *)t->rx_buf) >> 3;
691 }
692 }
693
694 static void ads7846_update_value(struct spi_message *m, int val)
695 {
696 struct spi_transfer *t =
697 list_entry(m->transfers.prev, struct spi_transfer, transfer_list);
698
699 *(u16 *)t->rx_buf = val;
700 }
701
702 static void ads7846_read_state(struct ads7846 *ts)
703 {
704 struct ads7846_packet *packet = ts->packet;
705 struct spi_message *m;
706 int msg_idx = 0;
707 int val;
708 int action;
709 int error;
710
711 while (msg_idx < ts->msg_count) {
712
713 ts->wait_for_sync();
714
715 m = &ts->msg[msg_idx];
716 error = spi_sync(ts->spi, m);
717 if (error) {
718 dev_err(&ts->spi->dev, "spi_async --> %d\n", error);
719 packet->tc.ignore = true;
720 return;
721 }
722
723 /*
724 * Last message is power down request, no need to convert
725 * or filter the value.
726 */
727 if (msg_idx < ts->msg_count - 1) {
728
729 val = ads7846_get_value(ts, m);
730
731 action = ts->filter(ts->filter_data, msg_idx, &val);
732 switch (action) {
733 case ADS7846_FILTER_REPEAT:
734 continue;
735
736 case ADS7846_FILTER_IGNORE:
737 packet->tc.ignore = true;
738 msg_idx = ts->msg_count - 1;
739 continue;
740
741 case ADS7846_FILTER_OK:
742 ads7846_update_value(m, val);
743 packet->tc.ignore = false;
744 msg_idx++;
745 break;
746
747 default:
748 BUG();
749 }
750 } else {
751 msg_idx++;
752 }
753 }
754 }
755
756 static void ads7846_report_state(struct ads7846 *ts)
757 {
758 struct ads7846_packet *packet = ts->packet;
759 unsigned int Rt;
760 u16 x, y, z1, z2;
761
762 /*
763 * ads7846_get_value() does in-place conversion (including byte swap)
764 * from on-the-wire format as part of debouncing to get stable
765 * readings.
766 */
767 if (ts->model == 7845) {
768 x = *(u16 *)packet->tc.x_buf;
769 y = *(u16 *)packet->tc.y_buf;
770 z1 = 0;
771 z2 = 0;
772 } else {
773 x = packet->tc.x;
774 y = packet->tc.y;
775 z1 = packet->tc.z1;
776 z2 = packet->tc.z2;
777 }
778
779 /* range filtering */
780 if (x == MAX_12BIT)
781 x = 0;
782
783 if (ts->model == 7843) {
784 Rt = ts->pressure_max / 2;
785 } else if (ts->model == 7845) {
786 if (get_pendown_state(ts))
787 Rt = ts->pressure_max / 2;
788 else
789 Rt = 0;
790 dev_vdbg(&ts->spi->dev, "x/y: %d/%d, PD %d\n", x, y, Rt);
791 } else if (likely(x && z1)) {
792 /* compute touch pressure resistance using equation #2 */
793 Rt = z2;
794 Rt -= z1;
795 Rt *= x;
796 Rt *= ts->x_plate_ohms;
797 Rt /= z1;
798 Rt = (Rt + 2047) >> 12;
799 } else {
800 Rt = 0;
801 }
802
803 /*
804 * Sample found inconsistent by debouncing or pressure is beyond
805 * the maximum. Don't report it to user space, repeat at least
806 * once more the measurement
807 */
808 if (packet->tc.ignore || Rt > ts->pressure_max) {
809 dev_vdbg(&ts->spi->dev, "ignored %d pressure %d\n",
810 packet->tc.ignore, Rt);
811 return;
812 }
813
814 /*
815 * Maybe check the pendown state before reporting. This discards
816 * false readings when the pen is lifted.
817 */
818 if (ts->penirq_recheck_delay_usecs) {
819 udelay(ts->penirq_recheck_delay_usecs);
820 if (!get_pendown_state(ts))
821 Rt = 0;
822 }
823
824 /*
825 * NOTE: We can't rely on the pressure to determine the pen down
826 * state, even this controller has a pressure sensor. The pressure
827 * value can fluctuate for quite a while after lifting the pen and
828 * in some cases may not even settle at the expected value.
829 *
830 * The only safe way to check for the pen up condition is in the
831 * timer by reading the pen signal state (it's a GPIO _and_ IRQ).
832 */
833 if (Rt) {
834 struct input_dev *input = ts->input;
835
836 if (ts->swap_xy)
837 swap(x, y);
838
839 if (!ts->pendown) {
840 input_report_key(input, BTN_TOUCH, 1);
841 ts->pendown = true;
842 dev_vdbg(&ts->spi->dev, "DOWN\n");
843 }
844
845 input_report_abs(input, ABS_X, x);
846 input_report_abs(input, ABS_Y, y);
847 input_report_abs(input, ABS_PRESSURE, ts->pressure_max - Rt);
848
849 input_sync(input);
850 dev_vdbg(&ts->spi->dev, "%4d/%4d/%4d\n", x, y, Rt);
851 }
852 }
853
854 static irqreturn_t ads7846_hard_irq(int irq, void *handle)
855 {
856 struct ads7846 *ts = handle;
857
858 return get_pendown_state(ts) ? IRQ_WAKE_THREAD : IRQ_HANDLED;
859 }
860
861
862 static irqreturn_t ads7846_irq(int irq, void *handle)
863 {
864 struct ads7846 *ts = handle;
865
866 /* Start with a small delay before checking pendown state */
867 msleep(TS_POLL_DELAY);
868
869 while (!ts->stopped && get_pendown_state(ts)) {
870
871 /* pen is down, continue with the measurement */
872 ads7846_read_state(ts);
873
874 if (!ts->stopped)
875 ads7846_report_state(ts);
876
877 wait_event_timeout(ts->wait, ts->stopped,
878 msecs_to_jiffies(TS_POLL_PERIOD));
879 }
880
881 if (ts->pendown) {
882 struct input_dev *input = ts->input;
883
884 input_report_key(input, BTN_TOUCH, 0);
885 input_report_abs(input, ABS_PRESSURE, 0);
886 input_sync(input);
887
888 ts->pendown = false;
889 dev_vdbg(&ts->spi->dev, "UP\n");
890 }
891
892 return IRQ_HANDLED;
893 }
894
895 static int ads7846_suspend(struct spi_device *spi, pm_message_t message)
896 {
897 struct ads7846 *ts = dev_get_drvdata(&spi->dev);
898
899 mutex_lock(&ts->lock);
900
901 if (!ts->suspended) {
902
903 if (!ts->disabled)
904 __ads7846_disable(ts);
905
906 if (device_may_wakeup(&ts->spi->dev))
907 enable_irq_wake(ts->spi->irq);
908
909 ts->suspended = true;
910 }
911
912 mutex_unlock(&ts->lock);
913
914 return 0;
915 }
916
917 static int ads7846_resume(struct spi_device *spi)
918 {
919 struct ads7846 *ts = dev_get_drvdata(&spi->dev);
920
921 mutex_lock(&ts->lock);
922
923 if (ts->suspended) {
924
925 ts->suspended = false;
926
927 if (device_may_wakeup(&ts->spi->dev))
928 disable_irq_wake(ts->spi->irq);
929
930 if (!ts->disabled)
931 __ads7846_enable(ts);
932 }
933
934 mutex_unlock(&ts->lock);
935
936 return 0;
937 }
938
939 static int __devinit ads7846_setup_pendown(struct spi_device *spi, struct ads7846 *ts)
940 {
941 struct ads7846_platform_data *pdata = spi->dev.platform_data;
942 int err;
943
944 /* REVISIT when the irq can be triggered active-low, or if for some
945 * reason the touchscreen isn't hooked up, we don't need to access
946 * the pendown state.
947 */
948 if (!pdata->get_pendown_state && !gpio_is_valid(pdata->gpio_pendown)) {
949 dev_err(&spi->dev, "no get_pendown_state nor gpio_pendown?\n");
950 return -EINVAL;
951 }
952
953 if (pdata->get_pendown_state) {
954 ts->get_pendown_state = pdata->get_pendown_state;
955 return 0;
956 }
957
958 err = gpio_request(pdata->gpio_pendown, "ads7846_pendown");
959 if (err) {
960 dev_err(&spi->dev, "failed to request pendown GPIO%d\n",
961 pdata->gpio_pendown);
962 return err;
963 }
964
965 ts->gpio_pendown = pdata->gpio_pendown;
966
967 return 0;
968 }
969
970 /*
971 * Set up the transfers to read touchscreen state; this assumes we
972 * use formula #2 for pressure, not #3.
973 */
974 static void __devinit ads7846_setup_spi_msg(struct ads7846 *ts,
975 const struct ads7846_platform_data *pdata)
976 {
977 struct spi_message *m = &ts->msg[0];
978 struct spi_transfer *x = ts->xfer;
979 struct ads7846_packet *packet = ts->packet;
980 int vref = pdata->keep_vref_on;
981
982 if (ts->model == 7873) {
983 /*
984 * The AD7873 is almost identical to the ADS7846
985 * keep VREF off during differential/ratiometric
986 * conversion modes.
987 */
988 ts->model = 7846;
989 vref = 0;
990 }
991
992 ts->msg_count = 1;
993 spi_message_init(m);
994 m->context = ts;
995
996 if (ts->model == 7845) {
997 packet->read_y_cmd[0] = READ_Y(vref);
998 packet->read_y_cmd[1] = 0;
999 packet->read_y_cmd[2] = 0;
1000 x->tx_buf = &packet->read_y_cmd[0];
1001 x->rx_buf = &packet->tc.y_buf[0];
1002 x->len = 3;
1003 spi_message_add_tail(x, m);
1004 } else {
1005 /* y- still on; turn on only y+ (and ADC) */
1006 packet->read_y = READ_Y(vref);
1007 x->tx_buf = &packet->read_y;
1008 x->len = 1;
1009 spi_message_add_tail(x, m);
1010
1011 x++;
1012 x->rx_buf = &packet->tc.y;
1013 x->len = 2;
1014 spi_message_add_tail(x, m);
1015 }
1016
1017 /*
1018 * The first sample after switching drivers can be low quality;
1019 * optionally discard it, using a second one after the signals
1020 * have had enough time to stabilize.
1021 */
1022 if (pdata->settle_delay_usecs) {
1023 x->delay_usecs = pdata->settle_delay_usecs;
1024
1025 x++;
1026 x->tx_buf = &packet->read_y;
1027 x->len = 1;
1028 spi_message_add_tail(x, m);
1029
1030 x++;
1031 x->rx_buf = &packet->tc.y;
1032 x->len = 2;
1033 spi_message_add_tail(x, m);
1034 }
1035
1036 ts->msg_count++;
1037 m++;
1038 spi_message_init(m);
1039 m->context = ts;
1040
1041 if (ts->model == 7845) {
1042 x++;
1043 packet->read_x_cmd[0] = READ_X(vref);
1044 packet->read_x_cmd[1] = 0;
1045 packet->read_x_cmd[2] = 0;
1046 x->tx_buf = &packet->read_x_cmd[0];
1047 x->rx_buf = &packet->tc.x_buf[0];
1048 x->len = 3;
1049 spi_message_add_tail(x, m);
1050 } else {
1051 /* turn y- off, x+ on, then leave in lowpower */
1052 x++;
1053 packet->read_x = READ_X(vref);
1054 x->tx_buf = &packet->read_x;
1055 x->len = 1;
1056 spi_message_add_tail(x, m);
1057
1058 x++;
1059 x->rx_buf = &packet->tc.x;
1060 x->len = 2;
1061 spi_message_add_tail(x, m);
1062 }
1063
1064 /* ... maybe discard first sample ... */
1065 if (pdata->settle_delay_usecs) {
1066 x->delay_usecs = pdata->settle_delay_usecs;
1067
1068 x++;
1069 x->tx_buf = &packet->read_x;
1070 x->len = 1;
1071 spi_message_add_tail(x, m);
1072
1073 x++;
1074 x->rx_buf = &packet->tc.x;
1075 x->len = 2;
1076 spi_message_add_tail(x, m);
1077 }
1078
1079 /* turn y+ off, x- on; we'll use formula #2 */
1080 if (ts->model == 7846) {
1081 ts->msg_count++;
1082 m++;
1083 spi_message_init(m);
1084 m->context = ts;
1085
1086 x++;
1087 packet->read_z1 = READ_Z1(vref);
1088 x->tx_buf = &packet->read_z1;
1089 x->len = 1;
1090 spi_message_add_tail(x, m);
1091
1092 x++;
1093 x->rx_buf = &packet->tc.z1;
1094 x->len = 2;
1095 spi_message_add_tail(x, m);
1096
1097 /* ... maybe discard first sample ... */
1098 if (pdata->settle_delay_usecs) {
1099 x->delay_usecs = pdata->settle_delay_usecs;
1100
1101 x++;
1102 x->tx_buf = &packet->read_z1;
1103 x->len = 1;
1104 spi_message_add_tail(x, m);
1105
1106 x++;
1107 x->rx_buf = &packet->tc.z1;
1108 x->len = 2;
1109 spi_message_add_tail(x, m);
1110 }
1111
1112 ts->msg_count++;
1113 m++;
1114 spi_message_init(m);
1115 m->context = ts;
1116
1117 x++;
1118 packet->read_z2 = READ_Z2(vref);
1119 x->tx_buf = &packet->read_z2;
1120 x->len = 1;
1121 spi_message_add_tail(x, m);
1122
1123 x++;
1124 x->rx_buf = &packet->tc.z2;
1125 x->len = 2;
1126 spi_message_add_tail(x, m);
1127
1128 /* ... maybe discard first sample ... */
1129 if (pdata->settle_delay_usecs) {
1130 x->delay_usecs = pdata->settle_delay_usecs;
1131
1132 x++;
1133 x->tx_buf = &packet->read_z2;
1134 x->len = 1;
1135 spi_message_add_tail(x, m);
1136
1137 x++;
1138 x->rx_buf = &packet->tc.z2;
1139 x->len = 2;
1140 spi_message_add_tail(x, m);
1141 }
1142 }
1143
1144 /* power down */
1145 ts->msg_count++;
1146 m++;
1147 spi_message_init(m);
1148 m->context = ts;
1149
1150 if (ts->model == 7845) {
1151 x++;
1152 packet->pwrdown_cmd[0] = PWRDOWN;
1153 packet->pwrdown_cmd[1] = 0;
1154 packet->pwrdown_cmd[2] = 0;
1155 x->tx_buf = &packet->pwrdown_cmd[0];
1156 x->len = 3;
1157 } else {
1158 x++;
1159 packet->pwrdown = PWRDOWN;
1160 x->tx_buf = &packet->pwrdown;
1161 x->len = 1;
1162 spi_message_add_tail(x, m);
1163
1164 x++;
1165 x->rx_buf = &packet->dummy;
1166 x->len = 2;
1167 }
1168
1169 CS_CHANGE(*x);
1170 spi_message_add_tail(x, m);
1171 }
1172
1173 static int __devinit ads7846_probe(struct spi_device *spi)
1174 {
1175 struct ads7846 *ts;
1176 struct ads7846_packet *packet;
1177 struct input_dev *input_dev;
1178 struct ads7846_platform_data *pdata = spi->dev.platform_data;
1179 unsigned long irq_flags;
1180 int err;
1181
1182 if (!spi->irq) {
1183 dev_dbg(&spi->dev, "no IRQ?\n");
1184 return -ENODEV;
1185 }
1186
1187 if (!pdata) {
1188 dev_dbg(&spi->dev, "no platform data?\n");
1189 return -ENODEV;
1190 }
1191
1192 /* don't exceed max specified sample rate */
1193 if (spi->max_speed_hz > (125000 * SAMPLE_BITS)) {
1194 dev_dbg(&spi->dev, "f(sample) %d KHz?\n",
1195 (spi->max_speed_hz/SAMPLE_BITS)/1000);
1196 return -EINVAL;
1197 }
1198
1199 /* We'd set TX word size 8 bits and RX word size to 13 bits ... except
1200 * that even if the hardware can do that, the SPI controller driver
1201 * may not. So we stick to very-portable 8 bit words, both RX and TX.
1202 */
1203 spi->bits_per_word = 8;
1204 spi->mode = SPI_MODE_0;
1205 err = spi_setup(spi);
1206 if (err < 0)
1207 return err;
1208
1209 ts = kzalloc(sizeof(struct ads7846), GFP_KERNEL);
1210 packet = kzalloc(sizeof(struct ads7846_packet), GFP_KERNEL);
1211 input_dev = input_allocate_device();
1212 if (!ts || !packet || !input_dev) {
1213 err = -ENOMEM;
1214 goto err_free_mem;
1215 }
1216
1217 dev_set_drvdata(&spi->dev, ts);
1218
1219 ts->packet = packet;
1220 ts->spi = spi;
1221 ts->input = input_dev;
1222 ts->vref_mv = pdata->vref_mv;
1223 ts->swap_xy = pdata->swap_xy;
1224
1225 mutex_init(&ts->lock);
1226 init_waitqueue_head(&ts->wait);
1227
1228 ts->model = pdata->model ? : 7846;
1229 ts->vref_delay_usecs = pdata->vref_delay_usecs ? : 100;
1230 ts->x_plate_ohms = pdata->x_plate_ohms ? : 400;
1231 ts->pressure_max = pdata->pressure_max ? : ~0;
1232
1233 if (pdata->filter != NULL) {
1234 if (pdata->filter_init != NULL) {
1235 err = pdata->filter_init(pdata, &ts->filter_data);
1236 if (err < 0)
1237 goto err_free_mem;
1238 }
1239 ts->filter = pdata->filter;
1240 ts->filter_cleanup = pdata->filter_cleanup;
1241 } else if (pdata->debounce_max) {
1242 ts->debounce_max = pdata->debounce_max;
1243 if (ts->debounce_max < 2)
1244 ts->debounce_max = 2;
1245 ts->debounce_tol = pdata->debounce_tol;
1246 ts->debounce_rep = pdata->debounce_rep;
1247 ts->filter = ads7846_debounce_filter;
1248 ts->filter_data = ts;
1249 } else {
1250 ts->filter = ads7846_no_filter;
1251 }
1252
1253 err = ads7846_setup_pendown(spi, ts);
1254 if (err)
1255 goto err_cleanup_filter;
1256
1257 if (pdata->penirq_recheck_delay_usecs)
1258 ts->penirq_recheck_delay_usecs =
1259 pdata->penirq_recheck_delay_usecs;
1260
1261 ts->wait_for_sync = pdata->wait_for_sync ? : null_wait_for_sync;
1262
1263 snprintf(ts->phys, sizeof(ts->phys), "%s/input0", dev_name(&spi->dev));
1264 snprintf(ts->name, sizeof(ts->name), "ADS%d Touchscreen", ts->model);
1265
1266 input_dev->name = ts->name;
1267 input_dev->phys = ts->phys;
1268 input_dev->dev.parent = &spi->dev;
1269
1270 input_dev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS);
1271 input_dev->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH);
1272 input_set_abs_params(input_dev, ABS_X,
1273 pdata->x_min ? : 0,
1274 pdata->x_max ? : MAX_12BIT,
1275 0, 0);
1276 input_set_abs_params(input_dev, ABS_Y,
1277 pdata->y_min ? : 0,
1278 pdata->y_max ? : MAX_12BIT,
1279 0, 0);
1280 input_set_abs_params(input_dev, ABS_PRESSURE,
1281 pdata->pressure_min, pdata->pressure_max, 0, 0);
1282
1283 ads7846_setup_spi_msg(ts, pdata);
1284
1285 ts->reg = regulator_get(&spi->dev, "vcc");
1286 if (IS_ERR(ts->reg)) {
1287 err = PTR_ERR(ts->reg);
1288 dev_err(&spi->dev, "unable to get regulator: %d\n", err);
1289 goto err_free_gpio;
1290 }
1291
1292 err = regulator_enable(ts->reg);
1293 if (err) {
1294 dev_err(&spi->dev, "unable to enable regulator: %d\n", err);
1295 goto err_put_regulator;
1296 }
1297
1298 irq_flags = pdata->irq_flags ? : IRQF_TRIGGER_FALLING;
1299 irq_flags |= IRQF_ONESHOT;
1300
1301 err = request_threaded_irq(spi->irq, ads7846_hard_irq, ads7846_irq,
1302 irq_flags, spi->dev.driver->name, ts);
1303 if (err && !pdata->irq_flags) {
1304 dev_info(&spi->dev,
1305 "trying pin change workaround on irq %d\n", spi->irq);
1306 irq_flags |= IRQF_TRIGGER_RISING;
1307 err = request_threaded_irq(spi->irq,
1308 ads7846_hard_irq, ads7846_irq,
1309 irq_flags, spi->dev.driver->name, ts);
1310 }
1311
1312 if (err) {
1313 dev_dbg(&spi->dev, "irq %d busy?\n", spi->irq);
1314 goto err_disable_regulator;
1315 }
1316
1317 err = ads784x_hwmon_register(spi, ts);
1318 if (err)
1319 goto err_free_irq;
1320
1321 dev_info(&spi->dev, "touchscreen, irq %d\n", spi->irq);
1322
1323 /*
1324 * Take a first sample, leaving nPENIRQ active and vREF off; avoid
1325 * the touchscreen, in case it's not connected.
1326 */
1327 if (ts->model == 7845)
1328 ads7845_read12_ser(&spi->dev, PWRDOWN);
1329 else
1330 (void) ads7846_read12_ser(&spi->dev,
1331 READ_12BIT_SER(vaux) | ADS_PD10_ALL_ON);
1332
1333 err = sysfs_create_group(&spi->dev.kobj, &ads784x_attr_group);
1334 if (err)
1335 goto err_remove_hwmon;
1336
1337 err = input_register_device(input_dev);
1338 if (err)
1339 goto err_remove_attr_group;
1340
1341 device_init_wakeup(&spi->dev, pdata->wakeup);
1342
1343 return 0;
1344
1345 err_remove_attr_group:
1346 sysfs_remove_group(&spi->dev.kobj, &ads784x_attr_group);
1347 err_remove_hwmon:
1348 ads784x_hwmon_unregister(spi, ts);
1349 err_free_irq:
1350 free_irq(spi->irq, ts);
1351 err_disable_regulator:
1352 regulator_disable(ts->reg);
1353 err_put_regulator:
1354 regulator_put(ts->reg);
1355 err_free_gpio:
1356 if (ts->gpio_pendown != -1)
1357 gpio_free(ts->gpio_pendown);
1358 err_cleanup_filter:
1359 if (ts->filter_cleanup)
1360 ts->filter_cleanup(ts->filter_data);
1361 err_free_mem:
1362 input_free_device(input_dev);
1363 kfree(packet);
1364 kfree(ts);
1365 return err;
1366 }
1367
1368 static int __devexit ads7846_remove(struct spi_device *spi)
1369 {
1370 struct ads7846 *ts = dev_get_drvdata(&spi->dev);
1371
1372 device_init_wakeup(&spi->dev, false);
1373
1374 sysfs_remove_group(&spi->dev.kobj, &ads784x_attr_group);
1375
1376 ads7846_disable(ts);
1377 free_irq(ts->spi->irq, ts);
1378
1379 input_unregister_device(ts->input);
1380
1381 ads784x_hwmon_unregister(spi, ts);
1382
1383 regulator_disable(ts->reg);
1384 regulator_put(ts->reg);
1385
1386 if (ts->gpio_pendown != -1)
1387 gpio_free(ts->gpio_pendown);
1388
1389 if (ts->filter_cleanup)
1390 ts->filter_cleanup(ts->filter_data);
1391
1392 kfree(ts->packet);
1393 kfree(ts);
1394
1395 dev_dbg(&spi->dev, "unregistered touchscreen\n");
1396
1397 return 0;
1398 }
1399
1400 static struct spi_driver ads7846_driver = {
1401 .driver = {
1402 .name = "ads7846",
1403 .bus = &spi_bus_type,
1404 .owner = THIS_MODULE,
1405 },
1406 .probe = ads7846_probe,
1407 .remove = __devexit_p(ads7846_remove),
1408 .suspend = ads7846_suspend,
1409 .resume = ads7846_resume,
1410 };
1411
1412 static int __init ads7846_init(void)
1413 {
1414 return spi_register_driver(&ads7846_driver);
1415 }
1416 module_init(ads7846_init);
1417
1418 static void __exit ads7846_exit(void)
1419 {
1420 spi_unregister_driver(&ads7846_driver);
1421 }
1422 module_exit(ads7846_exit);
1423
1424 MODULE_DESCRIPTION("ADS7846 TouchScreen Driver");
1425 MODULE_LICENSE("GPL");
1426 MODULE_ALIAS("spi:ads7846");
This page took 0.07903 seconds and 5 git commands to generate.