qed: Add slowpath L2 support
[deliverable/linux.git] / drivers / iommu / amd_iommu.c
1 /*
2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <jroedel@suse.de>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20 #include <linux/ratelimit.h>
21 #include <linux/pci.h>
22 #include <linux/pci-ats.h>
23 #include <linux/bitmap.h>
24 #include <linux/slab.h>
25 #include <linux/debugfs.h>
26 #include <linux/scatterlist.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/iommu-helper.h>
29 #include <linux/iommu.h>
30 #include <linux/delay.h>
31 #include <linux/amd-iommu.h>
32 #include <linux/notifier.h>
33 #include <linux/export.h>
34 #include <linux/irq.h>
35 #include <linux/msi.h>
36 #include <linux/dma-contiguous.h>
37 #include <linux/irqdomain.h>
38 #include <asm/irq_remapping.h>
39 #include <asm/io_apic.h>
40 #include <asm/apic.h>
41 #include <asm/hw_irq.h>
42 #include <asm/msidef.h>
43 #include <asm/proto.h>
44 #include <asm/iommu.h>
45 #include <asm/gart.h>
46 #include <asm/dma.h>
47
48 #include "amd_iommu_proto.h"
49 #include "amd_iommu_types.h"
50 #include "irq_remapping.h"
51
52 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
53
54 #define LOOP_TIMEOUT 100000
55
56 /*
57 * This bitmap is used to advertise the page sizes our hardware support
58 * to the IOMMU core, which will then use this information to split
59 * physically contiguous memory regions it is mapping into page sizes
60 * that we support.
61 *
62 * 512GB Pages are not supported due to a hardware bug
63 */
64 #define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38))
65
66 static DEFINE_RWLOCK(amd_iommu_devtable_lock);
67
68 /* List of all available dev_data structures */
69 static LIST_HEAD(dev_data_list);
70 static DEFINE_SPINLOCK(dev_data_list_lock);
71
72 LIST_HEAD(ioapic_map);
73 LIST_HEAD(hpet_map);
74
75 /*
76 * Domain for untranslated devices - only allocated
77 * if iommu=pt passed on kernel cmd line.
78 */
79 static const struct iommu_ops amd_iommu_ops;
80
81 static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
82 int amd_iommu_max_glx_val = -1;
83
84 static struct dma_map_ops amd_iommu_dma_ops;
85
86 /*
87 * This struct contains device specific data for the IOMMU
88 */
89 struct iommu_dev_data {
90 struct list_head list; /* For domain->dev_list */
91 struct list_head dev_data_list; /* For global dev_data_list */
92 struct list_head alias_list; /* Link alias-groups together */
93 struct iommu_dev_data *alias_data;/* The alias dev_data */
94 struct protection_domain *domain; /* Domain the device is bound to */
95 u16 devid; /* PCI Device ID */
96 bool iommu_v2; /* Device can make use of IOMMUv2 */
97 bool passthrough; /* Device is identity mapped */
98 struct {
99 bool enabled;
100 int qdep;
101 } ats; /* ATS state */
102 bool pri_tlp; /* PASID TLB required for
103 PPR completions */
104 u32 errata; /* Bitmap for errata to apply */
105 };
106
107 /*
108 * general struct to manage commands send to an IOMMU
109 */
110 struct iommu_cmd {
111 u32 data[4];
112 };
113
114 struct kmem_cache *amd_iommu_irq_cache;
115
116 static void update_domain(struct protection_domain *domain);
117 static int protection_domain_init(struct protection_domain *domain);
118
119 /****************************************************************************
120 *
121 * Helper functions
122 *
123 ****************************************************************************/
124
125 static struct protection_domain *to_pdomain(struct iommu_domain *dom)
126 {
127 return container_of(dom, struct protection_domain, domain);
128 }
129
130 static struct iommu_dev_data *alloc_dev_data(u16 devid)
131 {
132 struct iommu_dev_data *dev_data;
133 unsigned long flags;
134
135 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
136 if (!dev_data)
137 return NULL;
138
139 INIT_LIST_HEAD(&dev_data->alias_list);
140
141 dev_data->devid = devid;
142
143 spin_lock_irqsave(&dev_data_list_lock, flags);
144 list_add_tail(&dev_data->dev_data_list, &dev_data_list);
145 spin_unlock_irqrestore(&dev_data_list_lock, flags);
146
147 return dev_data;
148 }
149
150 static void free_dev_data(struct iommu_dev_data *dev_data)
151 {
152 unsigned long flags;
153
154 spin_lock_irqsave(&dev_data_list_lock, flags);
155 list_del(&dev_data->dev_data_list);
156 spin_unlock_irqrestore(&dev_data_list_lock, flags);
157
158 kfree(dev_data);
159 }
160
161 static struct iommu_dev_data *search_dev_data(u16 devid)
162 {
163 struct iommu_dev_data *dev_data;
164 unsigned long flags;
165
166 spin_lock_irqsave(&dev_data_list_lock, flags);
167 list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
168 if (dev_data->devid == devid)
169 goto out_unlock;
170 }
171
172 dev_data = NULL;
173
174 out_unlock:
175 spin_unlock_irqrestore(&dev_data_list_lock, flags);
176
177 return dev_data;
178 }
179
180 static struct iommu_dev_data *find_dev_data(u16 devid)
181 {
182 struct iommu_dev_data *dev_data;
183
184 dev_data = search_dev_data(devid);
185
186 if (dev_data == NULL)
187 dev_data = alloc_dev_data(devid);
188
189 return dev_data;
190 }
191
192 static inline u16 get_device_id(struct device *dev)
193 {
194 struct pci_dev *pdev = to_pci_dev(dev);
195
196 return PCI_DEVID(pdev->bus->number, pdev->devfn);
197 }
198
199 static struct iommu_dev_data *get_dev_data(struct device *dev)
200 {
201 return dev->archdata.iommu;
202 }
203
204 static bool pci_iommuv2_capable(struct pci_dev *pdev)
205 {
206 static const int caps[] = {
207 PCI_EXT_CAP_ID_ATS,
208 PCI_EXT_CAP_ID_PRI,
209 PCI_EXT_CAP_ID_PASID,
210 };
211 int i, pos;
212
213 for (i = 0; i < 3; ++i) {
214 pos = pci_find_ext_capability(pdev, caps[i]);
215 if (pos == 0)
216 return false;
217 }
218
219 return true;
220 }
221
222 static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
223 {
224 struct iommu_dev_data *dev_data;
225
226 dev_data = get_dev_data(&pdev->dev);
227
228 return dev_data->errata & (1 << erratum) ? true : false;
229 }
230
231 /*
232 * This function actually applies the mapping to the page table of the
233 * dma_ops domain.
234 */
235 static void alloc_unity_mapping(struct dma_ops_domain *dma_dom,
236 struct unity_map_entry *e)
237 {
238 u64 addr;
239
240 for (addr = e->address_start; addr < e->address_end;
241 addr += PAGE_SIZE) {
242 if (addr < dma_dom->aperture_size)
243 __set_bit(addr >> PAGE_SHIFT,
244 dma_dom->aperture[0]->bitmap);
245 }
246 }
247
248 /*
249 * Inits the unity mappings required for a specific device
250 */
251 static void init_unity_mappings_for_device(struct device *dev,
252 struct dma_ops_domain *dma_dom)
253 {
254 struct unity_map_entry *e;
255 u16 devid;
256
257 devid = get_device_id(dev);
258
259 list_for_each_entry(e, &amd_iommu_unity_map, list) {
260 if (!(devid >= e->devid_start && devid <= e->devid_end))
261 continue;
262 alloc_unity_mapping(dma_dom, e);
263 }
264 }
265
266 /*
267 * This function checks if the driver got a valid device from the caller to
268 * avoid dereferencing invalid pointers.
269 */
270 static bool check_device(struct device *dev)
271 {
272 u16 devid;
273
274 if (!dev || !dev->dma_mask)
275 return false;
276
277 /* No PCI device */
278 if (!dev_is_pci(dev))
279 return false;
280
281 devid = get_device_id(dev);
282
283 /* Out of our scope? */
284 if (devid > amd_iommu_last_bdf)
285 return false;
286
287 if (amd_iommu_rlookup_table[devid] == NULL)
288 return false;
289
290 return true;
291 }
292
293 static void init_iommu_group(struct device *dev)
294 {
295 struct dma_ops_domain *dma_domain;
296 struct iommu_domain *domain;
297 struct iommu_group *group;
298
299 group = iommu_group_get_for_dev(dev);
300 if (IS_ERR(group))
301 return;
302
303 domain = iommu_group_default_domain(group);
304 if (!domain)
305 goto out;
306
307 dma_domain = to_pdomain(domain)->priv;
308
309 init_unity_mappings_for_device(dev, dma_domain);
310 out:
311 iommu_group_put(group);
312 }
313
314 static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
315 {
316 *(u16 *)data = alias;
317 return 0;
318 }
319
320 static u16 get_alias(struct device *dev)
321 {
322 struct pci_dev *pdev = to_pci_dev(dev);
323 u16 devid, ivrs_alias, pci_alias;
324
325 devid = get_device_id(dev);
326 ivrs_alias = amd_iommu_alias_table[devid];
327 pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);
328
329 if (ivrs_alias == pci_alias)
330 return ivrs_alias;
331
332 /*
333 * DMA alias showdown
334 *
335 * The IVRS is fairly reliable in telling us about aliases, but it
336 * can't know about every screwy device. If we don't have an IVRS
337 * reported alias, use the PCI reported alias. In that case we may
338 * still need to initialize the rlookup and dev_table entries if the
339 * alias is to a non-existent device.
340 */
341 if (ivrs_alias == devid) {
342 if (!amd_iommu_rlookup_table[pci_alias]) {
343 amd_iommu_rlookup_table[pci_alias] =
344 amd_iommu_rlookup_table[devid];
345 memcpy(amd_iommu_dev_table[pci_alias].data,
346 amd_iommu_dev_table[devid].data,
347 sizeof(amd_iommu_dev_table[pci_alias].data));
348 }
349
350 return pci_alias;
351 }
352
353 pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
354 "for device %s[%04x:%04x], kernel reported alias "
355 "%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
356 PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
357 PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
358 PCI_FUNC(pci_alias));
359
360 /*
361 * If we don't have a PCI DMA alias and the IVRS alias is on the same
362 * bus, then the IVRS table may know about a quirk that we don't.
363 */
364 if (pci_alias == devid &&
365 PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
366 pdev->dev_flags |= PCI_DEV_FLAGS_DMA_ALIAS_DEVFN;
367 pdev->dma_alias_devfn = ivrs_alias & 0xff;
368 pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
369 PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
370 dev_name(dev));
371 }
372
373 return ivrs_alias;
374 }
375
376 static int iommu_init_device(struct device *dev)
377 {
378 struct pci_dev *pdev = to_pci_dev(dev);
379 struct iommu_dev_data *dev_data;
380 u16 alias;
381
382 if (dev->archdata.iommu)
383 return 0;
384
385 dev_data = find_dev_data(get_device_id(dev));
386 if (!dev_data)
387 return -ENOMEM;
388
389 alias = get_alias(dev);
390
391 if (alias != dev_data->devid) {
392 struct iommu_dev_data *alias_data;
393
394 alias_data = find_dev_data(alias);
395 if (alias_data == NULL) {
396 pr_err("AMD-Vi: Warning: Unhandled device %s\n",
397 dev_name(dev));
398 free_dev_data(dev_data);
399 return -ENOTSUPP;
400 }
401 dev_data->alias_data = alias_data;
402
403 /* Add device to the alias_list */
404 list_add(&dev_data->alias_list, &alias_data->alias_list);
405 }
406
407 if (pci_iommuv2_capable(pdev)) {
408 struct amd_iommu *iommu;
409
410 iommu = amd_iommu_rlookup_table[dev_data->devid];
411 dev_data->iommu_v2 = iommu->is_iommu_v2;
412 }
413
414 dev->archdata.iommu = dev_data;
415
416 iommu_device_link(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
417 dev);
418
419 return 0;
420 }
421
422 static void iommu_ignore_device(struct device *dev)
423 {
424 u16 devid, alias;
425
426 devid = get_device_id(dev);
427 alias = amd_iommu_alias_table[devid];
428
429 memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
430 memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
431
432 amd_iommu_rlookup_table[devid] = NULL;
433 amd_iommu_rlookup_table[alias] = NULL;
434 }
435
436 static void iommu_uninit_device(struct device *dev)
437 {
438 struct iommu_dev_data *dev_data = search_dev_data(get_device_id(dev));
439
440 if (!dev_data)
441 return;
442
443 iommu_device_unlink(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
444 dev);
445
446 iommu_group_remove_device(dev);
447
448 /* Unlink from alias, it may change if another device is re-plugged */
449 dev_data->alias_data = NULL;
450
451 /* Remove dma-ops */
452 dev->archdata.dma_ops = NULL;
453
454 /*
455 * We keep dev_data around for unplugged devices and reuse it when the
456 * device is re-plugged - not doing so would introduce a ton of races.
457 */
458 }
459
460 #ifdef CONFIG_AMD_IOMMU_STATS
461
462 /*
463 * Initialization code for statistics collection
464 */
465
466 DECLARE_STATS_COUNTER(compl_wait);
467 DECLARE_STATS_COUNTER(cnt_map_single);
468 DECLARE_STATS_COUNTER(cnt_unmap_single);
469 DECLARE_STATS_COUNTER(cnt_map_sg);
470 DECLARE_STATS_COUNTER(cnt_unmap_sg);
471 DECLARE_STATS_COUNTER(cnt_alloc_coherent);
472 DECLARE_STATS_COUNTER(cnt_free_coherent);
473 DECLARE_STATS_COUNTER(cross_page);
474 DECLARE_STATS_COUNTER(domain_flush_single);
475 DECLARE_STATS_COUNTER(domain_flush_all);
476 DECLARE_STATS_COUNTER(alloced_io_mem);
477 DECLARE_STATS_COUNTER(total_map_requests);
478 DECLARE_STATS_COUNTER(complete_ppr);
479 DECLARE_STATS_COUNTER(invalidate_iotlb);
480 DECLARE_STATS_COUNTER(invalidate_iotlb_all);
481 DECLARE_STATS_COUNTER(pri_requests);
482
483 static struct dentry *stats_dir;
484 static struct dentry *de_fflush;
485
486 static void amd_iommu_stats_add(struct __iommu_counter *cnt)
487 {
488 if (stats_dir == NULL)
489 return;
490
491 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
492 &cnt->value);
493 }
494
495 static void amd_iommu_stats_init(void)
496 {
497 stats_dir = debugfs_create_dir("amd-iommu", NULL);
498 if (stats_dir == NULL)
499 return;
500
501 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
502 &amd_iommu_unmap_flush);
503
504 amd_iommu_stats_add(&compl_wait);
505 amd_iommu_stats_add(&cnt_map_single);
506 amd_iommu_stats_add(&cnt_unmap_single);
507 amd_iommu_stats_add(&cnt_map_sg);
508 amd_iommu_stats_add(&cnt_unmap_sg);
509 amd_iommu_stats_add(&cnt_alloc_coherent);
510 amd_iommu_stats_add(&cnt_free_coherent);
511 amd_iommu_stats_add(&cross_page);
512 amd_iommu_stats_add(&domain_flush_single);
513 amd_iommu_stats_add(&domain_flush_all);
514 amd_iommu_stats_add(&alloced_io_mem);
515 amd_iommu_stats_add(&total_map_requests);
516 amd_iommu_stats_add(&complete_ppr);
517 amd_iommu_stats_add(&invalidate_iotlb);
518 amd_iommu_stats_add(&invalidate_iotlb_all);
519 amd_iommu_stats_add(&pri_requests);
520 }
521
522 #endif
523
524 /****************************************************************************
525 *
526 * Interrupt handling functions
527 *
528 ****************************************************************************/
529
530 static void dump_dte_entry(u16 devid)
531 {
532 int i;
533
534 for (i = 0; i < 4; ++i)
535 pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
536 amd_iommu_dev_table[devid].data[i]);
537 }
538
539 static void dump_command(unsigned long phys_addr)
540 {
541 struct iommu_cmd *cmd = phys_to_virt(phys_addr);
542 int i;
543
544 for (i = 0; i < 4; ++i)
545 pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
546 }
547
548 static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
549 {
550 int type, devid, domid, flags;
551 volatile u32 *event = __evt;
552 int count = 0;
553 u64 address;
554
555 retry:
556 type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
557 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
558 domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
559 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
560 address = (u64)(((u64)event[3]) << 32) | event[2];
561
562 if (type == 0) {
563 /* Did we hit the erratum? */
564 if (++count == LOOP_TIMEOUT) {
565 pr_err("AMD-Vi: No event written to event log\n");
566 return;
567 }
568 udelay(1);
569 goto retry;
570 }
571
572 printk(KERN_ERR "AMD-Vi: Event logged [");
573
574 switch (type) {
575 case EVENT_TYPE_ILL_DEV:
576 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
577 "address=0x%016llx flags=0x%04x]\n",
578 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
579 address, flags);
580 dump_dte_entry(devid);
581 break;
582 case EVENT_TYPE_IO_FAULT:
583 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
584 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
585 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
586 domid, address, flags);
587 break;
588 case EVENT_TYPE_DEV_TAB_ERR:
589 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
590 "address=0x%016llx flags=0x%04x]\n",
591 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
592 address, flags);
593 break;
594 case EVENT_TYPE_PAGE_TAB_ERR:
595 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
596 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
597 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
598 domid, address, flags);
599 break;
600 case EVENT_TYPE_ILL_CMD:
601 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
602 dump_command(address);
603 break;
604 case EVENT_TYPE_CMD_HARD_ERR:
605 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
606 "flags=0x%04x]\n", address, flags);
607 break;
608 case EVENT_TYPE_IOTLB_INV_TO:
609 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
610 "address=0x%016llx]\n",
611 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
612 address);
613 break;
614 case EVENT_TYPE_INV_DEV_REQ:
615 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
616 "address=0x%016llx flags=0x%04x]\n",
617 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
618 address, flags);
619 break;
620 default:
621 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
622 }
623
624 memset(__evt, 0, 4 * sizeof(u32));
625 }
626
627 static void iommu_poll_events(struct amd_iommu *iommu)
628 {
629 u32 head, tail;
630
631 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
632 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
633
634 while (head != tail) {
635 iommu_print_event(iommu, iommu->evt_buf + head);
636 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
637 }
638
639 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
640 }
641
642 static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
643 {
644 struct amd_iommu_fault fault;
645
646 INC_STATS_COUNTER(pri_requests);
647
648 if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
649 pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
650 return;
651 }
652
653 fault.address = raw[1];
654 fault.pasid = PPR_PASID(raw[0]);
655 fault.device_id = PPR_DEVID(raw[0]);
656 fault.tag = PPR_TAG(raw[0]);
657 fault.flags = PPR_FLAGS(raw[0]);
658
659 atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
660 }
661
662 static void iommu_poll_ppr_log(struct amd_iommu *iommu)
663 {
664 u32 head, tail;
665
666 if (iommu->ppr_log == NULL)
667 return;
668
669 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
670 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
671
672 while (head != tail) {
673 volatile u64 *raw;
674 u64 entry[2];
675 int i;
676
677 raw = (u64 *)(iommu->ppr_log + head);
678
679 /*
680 * Hardware bug: Interrupt may arrive before the entry is
681 * written to memory. If this happens we need to wait for the
682 * entry to arrive.
683 */
684 for (i = 0; i < LOOP_TIMEOUT; ++i) {
685 if (PPR_REQ_TYPE(raw[0]) != 0)
686 break;
687 udelay(1);
688 }
689
690 /* Avoid memcpy function-call overhead */
691 entry[0] = raw[0];
692 entry[1] = raw[1];
693
694 /*
695 * To detect the hardware bug we need to clear the entry
696 * back to zero.
697 */
698 raw[0] = raw[1] = 0UL;
699
700 /* Update head pointer of hardware ring-buffer */
701 head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
702 writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
703
704 /* Handle PPR entry */
705 iommu_handle_ppr_entry(iommu, entry);
706
707 /* Refresh ring-buffer information */
708 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
709 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
710 }
711 }
712
713 irqreturn_t amd_iommu_int_thread(int irq, void *data)
714 {
715 struct amd_iommu *iommu = (struct amd_iommu *) data;
716 u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
717
718 while (status & (MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK)) {
719 /* Enable EVT and PPR interrupts again */
720 writel((MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK),
721 iommu->mmio_base + MMIO_STATUS_OFFSET);
722
723 if (status & MMIO_STATUS_EVT_INT_MASK) {
724 pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
725 iommu_poll_events(iommu);
726 }
727
728 if (status & MMIO_STATUS_PPR_INT_MASK) {
729 pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
730 iommu_poll_ppr_log(iommu);
731 }
732
733 /*
734 * Hardware bug: ERBT1312
735 * When re-enabling interrupt (by writing 1
736 * to clear the bit), the hardware might also try to set
737 * the interrupt bit in the event status register.
738 * In this scenario, the bit will be set, and disable
739 * subsequent interrupts.
740 *
741 * Workaround: The IOMMU driver should read back the
742 * status register and check if the interrupt bits are cleared.
743 * If not, driver will need to go through the interrupt handler
744 * again and re-clear the bits
745 */
746 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
747 }
748 return IRQ_HANDLED;
749 }
750
751 irqreturn_t amd_iommu_int_handler(int irq, void *data)
752 {
753 return IRQ_WAKE_THREAD;
754 }
755
756 /****************************************************************************
757 *
758 * IOMMU command queuing functions
759 *
760 ****************************************************************************/
761
762 static int wait_on_sem(volatile u64 *sem)
763 {
764 int i = 0;
765
766 while (*sem == 0 && i < LOOP_TIMEOUT) {
767 udelay(1);
768 i += 1;
769 }
770
771 if (i == LOOP_TIMEOUT) {
772 pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
773 return -EIO;
774 }
775
776 return 0;
777 }
778
779 static void copy_cmd_to_buffer(struct amd_iommu *iommu,
780 struct iommu_cmd *cmd,
781 u32 tail)
782 {
783 u8 *target;
784
785 target = iommu->cmd_buf + tail;
786 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
787
788 /* Copy command to buffer */
789 memcpy(target, cmd, sizeof(*cmd));
790
791 /* Tell the IOMMU about it */
792 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
793 }
794
795 static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
796 {
797 WARN_ON(address & 0x7ULL);
798
799 memset(cmd, 0, sizeof(*cmd));
800 cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
801 cmd->data[1] = upper_32_bits(__pa(address));
802 cmd->data[2] = 1;
803 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
804 }
805
806 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
807 {
808 memset(cmd, 0, sizeof(*cmd));
809 cmd->data[0] = devid;
810 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
811 }
812
813 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
814 size_t size, u16 domid, int pde)
815 {
816 u64 pages;
817 bool s;
818
819 pages = iommu_num_pages(address, size, PAGE_SIZE);
820 s = false;
821
822 if (pages > 1) {
823 /*
824 * If we have to flush more than one page, flush all
825 * TLB entries for this domain
826 */
827 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
828 s = true;
829 }
830
831 address &= PAGE_MASK;
832
833 memset(cmd, 0, sizeof(*cmd));
834 cmd->data[1] |= domid;
835 cmd->data[2] = lower_32_bits(address);
836 cmd->data[3] = upper_32_bits(address);
837 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
838 if (s) /* size bit - we flush more than one 4kb page */
839 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
840 if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
841 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
842 }
843
844 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
845 u64 address, size_t size)
846 {
847 u64 pages;
848 bool s;
849
850 pages = iommu_num_pages(address, size, PAGE_SIZE);
851 s = false;
852
853 if (pages > 1) {
854 /*
855 * If we have to flush more than one page, flush all
856 * TLB entries for this domain
857 */
858 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
859 s = true;
860 }
861
862 address &= PAGE_MASK;
863
864 memset(cmd, 0, sizeof(*cmd));
865 cmd->data[0] = devid;
866 cmd->data[0] |= (qdep & 0xff) << 24;
867 cmd->data[1] = devid;
868 cmd->data[2] = lower_32_bits(address);
869 cmd->data[3] = upper_32_bits(address);
870 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
871 if (s)
872 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
873 }
874
875 static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
876 u64 address, bool size)
877 {
878 memset(cmd, 0, sizeof(*cmd));
879
880 address &= ~(0xfffULL);
881
882 cmd->data[0] = pasid;
883 cmd->data[1] = domid;
884 cmd->data[2] = lower_32_bits(address);
885 cmd->data[3] = upper_32_bits(address);
886 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
887 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
888 if (size)
889 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
890 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
891 }
892
893 static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
894 int qdep, u64 address, bool size)
895 {
896 memset(cmd, 0, sizeof(*cmd));
897
898 address &= ~(0xfffULL);
899
900 cmd->data[0] = devid;
901 cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
902 cmd->data[0] |= (qdep & 0xff) << 24;
903 cmd->data[1] = devid;
904 cmd->data[1] |= (pasid & 0xff) << 16;
905 cmd->data[2] = lower_32_bits(address);
906 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
907 cmd->data[3] = upper_32_bits(address);
908 if (size)
909 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
910 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
911 }
912
913 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
914 int status, int tag, bool gn)
915 {
916 memset(cmd, 0, sizeof(*cmd));
917
918 cmd->data[0] = devid;
919 if (gn) {
920 cmd->data[1] = pasid;
921 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
922 }
923 cmd->data[3] = tag & 0x1ff;
924 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
925
926 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
927 }
928
929 static void build_inv_all(struct iommu_cmd *cmd)
930 {
931 memset(cmd, 0, sizeof(*cmd));
932 CMD_SET_TYPE(cmd, CMD_INV_ALL);
933 }
934
935 static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
936 {
937 memset(cmd, 0, sizeof(*cmd));
938 cmd->data[0] = devid;
939 CMD_SET_TYPE(cmd, CMD_INV_IRT);
940 }
941
942 /*
943 * Writes the command to the IOMMUs command buffer and informs the
944 * hardware about the new command.
945 */
946 static int iommu_queue_command_sync(struct amd_iommu *iommu,
947 struct iommu_cmd *cmd,
948 bool sync)
949 {
950 u32 left, tail, head, next_tail;
951 unsigned long flags;
952
953 WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
954
955 again:
956 spin_lock_irqsave(&iommu->lock, flags);
957
958 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
959 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
960 next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
961 left = (head - next_tail) % iommu->cmd_buf_size;
962
963 if (left <= 2) {
964 struct iommu_cmd sync_cmd;
965 volatile u64 sem = 0;
966 int ret;
967
968 build_completion_wait(&sync_cmd, (u64)&sem);
969 copy_cmd_to_buffer(iommu, &sync_cmd, tail);
970
971 spin_unlock_irqrestore(&iommu->lock, flags);
972
973 if ((ret = wait_on_sem(&sem)) != 0)
974 return ret;
975
976 goto again;
977 }
978
979 copy_cmd_to_buffer(iommu, cmd, tail);
980
981 /* We need to sync now to make sure all commands are processed */
982 iommu->need_sync = sync;
983
984 spin_unlock_irqrestore(&iommu->lock, flags);
985
986 return 0;
987 }
988
989 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
990 {
991 return iommu_queue_command_sync(iommu, cmd, true);
992 }
993
994 /*
995 * This function queues a completion wait command into the command
996 * buffer of an IOMMU
997 */
998 static int iommu_completion_wait(struct amd_iommu *iommu)
999 {
1000 struct iommu_cmd cmd;
1001 volatile u64 sem = 0;
1002 int ret;
1003
1004 if (!iommu->need_sync)
1005 return 0;
1006
1007 build_completion_wait(&cmd, (u64)&sem);
1008
1009 ret = iommu_queue_command_sync(iommu, &cmd, false);
1010 if (ret)
1011 return ret;
1012
1013 return wait_on_sem(&sem);
1014 }
1015
1016 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1017 {
1018 struct iommu_cmd cmd;
1019
1020 build_inv_dte(&cmd, devid);
1021
1022 return iommu_queue_command(iommu, &cmd);
1023 }
1024
1025 static void iommu_flush_dte_all(struct amd_iommu *iommu)
1026 {
1027 u32 devid;
1028
1029 for (devid = 0; devid <= 0xffff; ++devid)
1030 iommu_flush_dte(iommu, devid);
1031
1032 iommu_completion_wait(iommu);
1033 }
1034
1035 /*
1036 * This function uses heavy locking and may disable irqs for some time. But
1037 * this is no issue because it is only called during resume.
1038 */
1039 static void iommu_flush_tlb_all(struct amd_iommu *iommu)
1040 {
1041 u32 dom_id;
1042
1043 for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
1044 struct iommu_cmd cmd;
1045 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1046 dom_id, 1);
1047 iommu_queue_command(iommu, &cmd);
1048 }
1049
1050 iommu_completion_wait(iommu);
1051 }
1052
1053 static void iommu_flush_all(struct amd_iommu *iommu)
1054 {
1055 struct iommu_cmd cmd;
1056
1057 build_inv_all(&cmd);
1058
1059 iommu_queue_command(iommu, &cmd);
1060 iommu_completion_wait(iommu);
1061 }
1062
1063 static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1064 {
1065 struct iommu_cmd cmd;
1066
1067 build_inv_irt(&cmd, devid);
1068
1069 iommu_queue_command(iommu, &cmd);
1070 }
1071
1072 static void iommu_flush_irt_all(struct amd_iommu *iommu)
1073 {
1074 u32 devid;
1075
1076 for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
1077 iommu_flush_irt(iommu, devid);
1078
1079 iommu_completion_wait(iommu);
1080 }
1081
1082 void iommu_flush_all_caches(struct amd_iommu *iommu)
1083 {
1084 if (iommu_feature(iommu, FEATURE_IA)) {
1085 iommu_flush_all(iommu);
1086 } else {
1087 iommu_flush_dte_all(iommu);
1088 iommu_flush_irt_all(iommu);
1089 iommu_flush_tlb_all(iommu);
1090 }
1091 }
1092
1093 /*
1094 * Command send function for flushing on-device TLB
1095 */
1096 static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1097 u64 address, size_t size)
1098 {
1099 struct amd_iommu *iommu;
1100 struct iommu_cmd cmd;
1101 int qdep;
1102
1103 qdep = dev_data->ats.qdep;
1104 iommu = amd_iommu_rlookup_table[dev_data->devid];
1105
1106 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1107
1108 return iommu_queue_command(iommu, &cmd);
1109 }
1110
1111 /*
1112 * Command send function for invalidating a device table entry
1113 */
1114 static int device_flush_dte(struct iommu_dev_data *dev_data)
1115 {
1116 struct amd_iommu *iommu;
1117 int ret;
1118
1119 iommu = amd_iommu_rlookup_table[dev_data->devid];
1120
1121 ret = iommu_flush_dte(iommu, dev_data->devid);
1122 if (ret)
1123 return ret;
1124
1125 if (dev_data->ats.enabled)
1126 ret = device_flush_iotlb(dev_data, 0, ~0UL);
1127
1128 return ret;
1129 }
1130
1131 /*
1132 * TLB invalidation function which is called from the mapping functions.
1133 * It invalidates a single PTE if the range to flush is within a single
1134 * page. Otherwise it flushes the whole TLB of the IOMMU.
1135 */
1136 static void __domain_flush_pages(struct protection_domain *domain,
1137 u64 address, size_t size, int pde)
1138 {
1139 struct iommu_dev_data *dev_data;
1140 struct iommu_cmd cmd;
1141 int ret = 0, i;
1142
1143 build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1144
1145 for (i = 0; i < amd_iommus_present; ++i) {
1146 if (!domain->dev_iommu[i])
1147 continue;
1148
1149 /*
1150 * Devices of this domain are behind this IOMMU
1151 * We need a TLB flush
1152 */
1153 ret |= iommu_queue_command(amd_iommus[i], &cmd);
1154 }
1155
1156 list_for_each_entry(dev_data, &domain->dev_list, list) {
1157
1158 if (!dev_data->ats.enabled)
1159 continue;
1160
1161 ret |= device_flush_iotlb(dev_data, address, size);
1162 }
1163
1164 WARN_ON(ret);
1165 }
1166
1167 static void domain_flush_pages(struct protection_domain *domain,
1168 u64 address, size_t size)
1169 {
1170 __domain_flush_pages(domain, address, size, 0);
1171 }
1172
1173 /* Flush the whole IO/TLB for a given protection domain */
1174 static void domain_flush_tlb(struct protection_domain *domain)
1175 {
1176 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1177 }
1178
1179 /* Flush the whole IO/TLB for a given protection domain - including PDE */
1180 static void domain_flush_tlb_pde(struct protection_domain *domain)
1181 {
1182 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1183 }
1184
1185 static void domain_flush_complete(struct protection_domain *domain)
1186 {
1187 int i;
1188
1189 for (i = 0; i < amd_iommus_present; ++i) {
1190 if (!domain->dev_iommu[i])
1191 continue;
1192
1193 /*
1194 * Devices of this domain are behind this IOMMU
1195 * We need to wait for completion of all commands.
1196 */
1197 iommu_completion_wait(amd_iommus[i]);
1198 }
1199 }
1200
1201
1202 /*
1203 * This function flushes the DTEs for all devices in domain
1204 */
1205 static void domain_flush_devices(struct protection_domain *domain)
1206 {
1207 struct iommu_dev_data *dev_data;
1208
1209 list_for_each_entry(dev_data, &domain->dev_list, list)
1210 device_flush_dte(dev_data);
1211 }
1212
1213 /****************************************************************************
1214 *
1215 * The functions below are used the create the page table mappings for
1216 * unity mapped regions.
1217 *
1218 ****************************************************************************/
1219
1220 /*
1221 * This function is used to add another level to an IO page table. Adding
1222 * another level increases the size of the address space by 9 bits to a size up
1223 * to 64 bits.
1224 */
1225 static bool increase_address_space(struct protection_domain *domain,
1226 gfp_t gfp)
1227 {
1228 u64 *pte;
1229
1230 if (domain->mode == PAGE_MODE_6_LEVEL)
1231 /* address space already 64 bit large */
1232 return false;
1233
1234 pte = (void *)get_zeroed_page(gfp);
1235 if (!pte)
1236 return false;
1237
1238 *pte = PM_LEVEL_PDE(domain->mode,
1239 virt_to_phys(domain->pt_root));
1240 domain->pt_root = pte;
1241 domain->mode += 1;
1242 domain->updated = true;
1243
1244 return true;
1245 }
1246
1247 static u64 *alloc_pte(struct protection_domain *domain,
1248 unsigned long address,
1249 unsigned long page_size,
1250 u64 **pte_page,
1251 gfp_t gfp)
1252 {
1253 int level, end_lvl;
1254 u64 *pte, *page;
1255
1256 BUG_ON(!is_power_of_2(page_size));
1257
1258 while (address > PM_LEVEL_SIZE(domain->mode))
1259 increase_address_space(domain, gfp);
1260
1261 level = domain->mode - 1;
1262 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1263 address = PAGE_SIZE_ALIGN(address, page_size);
1264 end_lvl = PAGE_SIZE_LEVEL(page_size);
1265
1266 while (level > end_lvl) {
1267 if (!IOMMU_PTE_PRESENT(*pte)) {
1268 page = (u64 *)get_zeroed_page(gfp);
1269 if (!page)
1270 return NULL;
1271 *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
1272 }
1273
1274 /* No level skipping support yet */
1275 if (PM_PTE_LEVEL(*pte) != level)
1276 return NULL;
1277
1278 level -= 1;
1279
1280 pte = IOMMU_PTE_PAGE(*pte);
1281
1282 if (pte_page && level == end_lvl)
1283 *pte_page = pte;
1284
1285 pte = &pte[PM_LEVEL_INDEX(level, address)];
1286 }
1287
1288 return pte;
1289 }
1290
1291 /*
1292 * This function checks if there is a PTE for a given dma address. If
1293 * there is one, it returns the pointer to it.
1294 */
1295 static u64 *fetch_pte(struct protection_domain *domain,
1296 unsigned long address,
1297 unsigned long *page_size)
1298 {
1299 int level;
1300 u64 *pte;
1301
1302 if (address > PM_LEVEL_SIZE(domain->mode))
1303 return NULL;
1304
1305 level = domain->mode - 1;
1306 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1307 *page_size = PTE_LEVEL_PAGE_SIZE(level);
1308
1309 while (level > 0) {
1310
1311 /* Not Present */
1312 if (!IOMMU_PTE_PRESENT(*pte))
1313 return NULL;
1314
1315 /* Large PTE */
1316 if (PM_PTE_LEVEL(*pte) == 7 ||
1317 PM_PTE_LEVEL(*pte) == 0)
1318 break;
1319
1320 /* No level skipping support yet */
1321 if (PM_PTE_LEVEL(*pte) != level)
1322 return NULL;
1323
1324 level -= 1;
1325
1326 /* Walk to the next level */
1327 pte = IOMMU_PTE_PAGE(*pte);
1328 pte = &pte[PM_LEVEL_INDEX(level, address)];
1329 *page_size = PTE_LEVEL_PAGE_SIZE(level);
1330 }
1331
1332 if (PM_PTE_LEVEL(*pte) == 0x07) {
1333 unsigned long pte_mask;
1334
1335 /*
1336 * If we have a series of large PTEs, make
1337 * sure to return a pointer to the first one.
1338 */
1339 *page_size = pte_mask = PTE_PAGE_SIZE(*pte);
1340 pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
1341 pte = (u64 *)(((unsigned long)pte) & pte_mask);
1342 }
1343
1344 return pte;
1345 }
1346
1347 /*
1348 * Generic mapping functions. It maps a physical address into a DMA
1349 * address space. It allocates the page table pages if necessary.
1350 * In the future it can be extended to a generic mapping function
1351 * supporting all features of AMD IOMMU page tables like level skipping
1352 * and full 64 bit address spaces.
1353 */
1354 static int iommu_map_page(struct protection_domain *dom,
1355 unsigned long bus_addr,
1356 unsigned long phys_addr,
1357 int prot,
1358 unsigned long page_size)
1359 {
1360 u64 __pte, *pte;
1361 int i, count;
1362
1363 BUG_ON(!IS_ALIGNED(bus_addr, page_size));
1364 BUG_ON(!IS_ALIGNED(phys_addr, page_size));
1365
1366 if (!(prot & IOMMU_PROT_MASK))
1367 return -EINVAL;
1368
1369 count = PAGE_SIZE_PTE_COUNT(page_size);
1370 pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
1371
1372 if (!pte)
1373 return -ENOMEM;
1374
1375 for (i = 0; i < count; ++i)
1376 if (IOMMU_PTE_PRESENT(pte[i]))
1377 return -EBUSY;
1378
1379 if (count > 1) {
1380 __pte = PAGE_SIZE_PTE(phys_addr, page_size);
1381 __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
1382 } else
1383 __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1384
1385 if (prot & IOMMU_PROT_IR)
1386 __pte |= IOMMU_PTE_IR;
1387 if (prot & IOMMU_PROT_IW)
1388 __pte |= IOMMU_PTE_IW;
1389
1390 for (i = 0; i < count; ++i)
1391 pte[i] = __pte;
1392
1393 update_domain(dom);
1394
1395 return 0;
1396 }
1397
1398 static unsigned long iommu_unmap_page(struct protection_domain *dom,
1399 unsigned long bus_addr,
1400 unsigned long page_size)
1401 {
1402 unsigned long long unmapped;
1403 unsigned long unmap_size;
1404 u64 *pte;
1405
1406 BUG_ON(!is_power_of_2(page_size));
1407
1408 unmapped = 0;
1409
1410 while (unmapped < page_size) {
1411
1412 pte = fetch_pte(dom, bus_addr, &unmap_size);
1413
1414 if (pte) {
1415 int i, count;
1416
1417 count = PAGE_SIZE_PTE_COUNT(unmap_size);
1418 for (i = 0; i < count; i++)
1419 pte[i] = 0ULL;
1420 }
1421
1422 bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1423 unmapped += unmap_size;
1424 }
1425
1426 BUG_ON(unmapped && !is_power_of_2(unmapped));
1427
1428 return unmapped;
1429 }
1430
1431 /****************************************************************************
1432 *
1433 * The next functions belong to the address allocator for the dma_ops
1434 * interface functions. They work like the allocators in the other IOMMU
1435 * drivers. Its basically a bitmap which marks the allocated pages in
1436 * the aperture. Maybe it could be enhanced in the future to a more
1437 * efficient allocator.
1438 *
1439 ****************************************************************************/
1440
1441 /*
1442 * The address allocator core functions.
1443 *
1444 * called with domain->lock held
1445 */
1446
1447 /*
1448 * Used to reserve address ranges in the aperture (e.g. for exclusion
1449 * ranges.
1450 */
1451 static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1452 unsigned long start_page,
1453 unsigned int pages)
1454 {
1455 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
1456
1457 if (start_page + pages > last_page)
1458 pages = last_page - start_page;
1459
1460 for (i = start_page; i < start_page + pages; ++i) {
1461 int index = i / APERTURE_RANGE_PAGES;
1462 int page = i % APERTURE_RANGE_PAGES;
1463 __set_bit(page, dom->aperture[index]->bitmap);
1464 }
1465 }
1466
1467 /*
1468 * This function is used to add a new aperture range to an existing
1469 * aperture in case of dma_ops domain allocation or address allocation
1470 * failure.
1471 */
1472 static int alloc_new_range(struct dma_ops_domain *dma_dom,
1473 bool populate, gfp_t gfp)
1474 {
1475 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1476 struct amd_iommu *iommu;
1477 unsigned long i, old_size, pte_pgsize;
1478
1479 #ifdef CONFIG_IOMMU_STRESS
1480 populate = false;
1481 #endif
1482
1483 if (index >= APERTURE_MAX_RANGES)
1484 return -ENOMEM;
1485
1486 dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
1487 if (!dma_dom->aperture[index])
1488 return -ENOMEM;
1489
1490 dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
1491 if (!dma_dom->aperture[index]->bitmap)
1492 goto out_free;
1493
1494 dma_dom->aperture[index]->offset = dma_dom->aperture_size;
1495
1496 if (populate) {
1497 unsigned long address = dma_dom->aperture_size;
1498 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
1499 u64 *pte, *pte_page;
1500
1501 for (i = 0; i < num_ptes; ++i) {
1502 pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1503 &pte_page, gfp);
1504 if (!pte)
1505 goto out_free;
1506
1507 dma_dom->aperture[index]->pte_pages[i] = pte_page;
1508
1509 address += APERTURE_RANGE_SIZE / 64;
1510 }
1511 }
1512
1513 old_size = dma_dom->aperture_size;
1514 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
1515
1516 /* Reserve address range used for MSI messages */
1517 if (old_size < MSI_ADDR_BASE_LO &&
1518 dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
1519 unsigned long spage;
1520 int pages;
1521
1522 pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
1523 spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;
1524
1525 dma_ops_reserve_addresses(dma_dom, spage, pages);
1526 }
1527
1528 /* Initialize the exclusion range if necessary */
1529 for_each_iommu(iommu) {
1530 if (iommu->exclusion_start &&
1531 iommu->exclusion_start >= dma_dom->aperture[index]->offset
1532 && iommu->exclusion_start < dma_dom->aperture_size) {
1533 unsigned long startpage;
1534 int pages = iommu_num_pages(iommu->exclusion_start,
1535 iommu->exclusion_length,
1536 PAGE_SIZE);
1537 startpage = iommu->exclusion_start >> PAGE_SHIFT;
1538 dma_ops_reserve_addresses(dma_dom, startpage, pages);
1539 }
1540 }
1541
1542 /*
1543 * Check for areas already mapped as present in the new aperture
1544 * range and mark those pages as reserved in the allocator. Such
1545 * mappings may already exist as a result of requested unity
1546 * mappings for devices.
1547 */
1548 for (i = dma_dom->aperture[index]->offset;
1549 i < dma_dom->aperture_size;
1550 i += pte_pgsize) {
1551 u64 *pte = fetch_pte(&dma_dom->domain, i, &pte_pgsize);
1552 if (!pte || !IOMMU_PTE_PRESENT(*pte))
1553 continue;
1554
1555 dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT,
1556 pte_pgsize >> 12);
1557 }
1558
1559 update_domain(&dma_dom->domain);
1560
1561 return 0;
1562
1563 out_free:
1564 update_domain(&dma_dom->domain);
1565
1566 free_page((unsigned long)dma_dom->aperture[index]->bitmap);
1567
1568 kfree(dma_dom->aperture[index]);
1569 dma_dom->aperture[index] = NULL;
1570
1571 return -ENOMEM;
1572 }
1573
1574 static unsigned long dma_ops_area_alloc(struct device *dev,
1575 struct dma_ops_domain *dom,
1576 unsigned int pages,
1577 unsigned long align_mask,
1578 u64 dma_mask,
1579 unsigned long start)
1580 {
1581 unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1582 int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
1583 int i = start >> APERTURE_RANGE_SHIFT;
1584 unsigned long boundary_size, mask;
1585 unsigned long address = -1;
1586 unsigned long limit;
1587
1588 next_bit >>= PAGE_SHIFT;
1589
1590 mask = dma_get_seg_boundary(dev);
1591
1592 boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
1593 1UL << (BITS_PER_LONG - PAGE_SHIFT);
1594
1595 for (;i < max_index; ++i) {
1596 unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
1597
1598 if (dom->aperture[i]->offset >= dma_mask)
1599 break;
1600
1601 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
1602 dma_mask >> PAGE_SHIFT);
1603
1604 address = iommu_area_alloc(dom->aperture[i]->bitmap,
1605 limit, next_bit, pages, 0,
1606 boundary_size, align_mask);
1607 if (address != -1) {
1608 address = dom->aperture[i]->offset +
1609 (address << PAGE_SHIFT);
1610 dom->next_address = address + (pages << PAGE_SHIFT);
1611 break;
1612 }
1613
1614 next_bit = 0;
1615 }
1616
1617 return address;
1618 }
1619
1620 static unsigned long dma_ops_alloc_addresses(struct device *dev,
1621 struct dma_ops_domain *dom,
1622 unsigned int pages,
1623 unsigned long align_mask,
1624 u64 dma_mask)
1625 {
1626 unsigned long address;
1627
1628 #ifdef CONFIG_IOMMU_STRESS
1629 dom->next_address = 0;
1630 dom->need_flush = true;
1631 #endif
1632
1633 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1634 dma_mask, dom->next_address);
1635
1636 if (address == -1) {
1637 dom->next_address = 0;
1638 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1639 dma_mask, 0);
1640 dom->need_flush = true;
1641 }
1642
1643 if (unlikely(address == -1))
1644 address = DMA_ERROR_CODE;
1645
1646 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
1647
1648 return address;
1649 }
1650
1651 /*
1652 * The address free function.
1653 *
1654 * called with domain->lock held
1655 */
1656 static void dma_ops_free_addresses(struct dma_ops_domain *dom,
1657 unsigned long address,
1658 unsigned int pages)
1659 {
1660 unsigned i = address >> APERTURE_RANGE_SHIFT;
1661 struct aperture_range *range = dom->aperture[i];
1662
1663 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
1664
1665 #ifdef CONFIG_IOMMU_STRESS
1666 if (i < 4)
1667 return;
1668 #endif
1669
1670 if (address >= dom->next_address)
1671 dom->need_flush = true;
1672
1673 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1674
1675 bitmap_clear(range->bitmap, address, pages);
1676
1677 }
1678
1679 /****************************************************************************
1680 *
1681 * The next functions belong to the domain allocation. A domain is
1682 * allocated for every IOMMU as the default domain. If device isolation
1683 * is enabled, every device get its own domain. The most important thing
1684 * about domains is the page table mapping the DMA address space they
1685 * contain.
1686 *
1687 ****************************************************************************/
1688
1689 /*
1690 * This function adds a protection domain to the global protection domain list
1691 */
1692 static void add_domain_to_list(struct protection_domain *domain)
1693 {
1694 unsigned long flags;
1695
1696 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1697 list_add(&domain->list, &amd_iommu_pd_list);
1698 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1699 }
1700
1701 /*
1702 * This function removes a protection domain to the global
1703 * protection domain list
1704 */
1705 static void del_domain_from_list(struct protection_domain *domain)
1706 {
1707 unsigned long flags;
1708
1709 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1710 list_del(&domain->list);
1711 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1712 }
1713
1714 static u16 domain_id_alloc(void)
1715 {
1716 unsigned long flags;
1717 int id;
1718
1719 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1720 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1721 BUG_ON(id == 0);
1722 if (id > 0 && id < MAX_DOMAIN_ID)
1723 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1724 else
1725 id = 0;
1726 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1727
1728 return id;
1729 }
1730
1731 static void domain_id_free(int id)
1732 {
1733 unsigned long flags;
1734
1735 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1736 if (id > 0 && id < MAX_DOMAIN_ID)
1737 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1738 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1739 }
1740
1741 #define DEFINE_FREE_PT_FN(LVL, FN) \
1742 static void free_pt_##LVL (unsigned long __pt) \
1743 { \
1744 unsigned long p; \
1745 u64 *pt; \
1746 int i; \
1747 \
1748 pt = (u64 *)__pt; \
1749 \
1750 for (i = 0; i < 512; ++i) { \
1751 /* PTE present? */ \
1752 if (!IOMMU_PTE_PRESENT(pt[i])) \
1753 continue; \
1754 \
1755 /* Large PTE? */ \
1756 if (PM_PTE_LEVEL(pt[i]) == 0 || \
1757 PM_PTE_LEVEL(pt[i]) == 7) \
1758 continue; \
1759 \
1760 p = (unsigned long)IOMMU_PTE_PAGE(pt[i]); \
1761 FN(p); \
1762 } \
1763 free_page((unsigned long)pt); \
1764 }
1765
1766 DEFINE_FREE_PT_FN(l2, free_page)
1767 DEFINE_FREE_PT_FN(l3, free_pt_l2)
1768 DEFINE_FREE_PT_FN(l4, free_pt_l3)
1769 DEFINE_FREE_PT_FN(l5, free_pt_l4)
1770 DEFINE_FREE_PT_FN(l6, free_pt_l5)
1771
1772 static void free_pagetable(struct protection_domain *domain)
1773 {
1774 unsigned long root = (unsigned long)domain->pt_root;
1775
1776 switch (domain->mode) {
1777 case PAGE_MODE_NONE:
1778 break;
1779 case PAGE_MODE_1_LEVEL:
1780 free_page(root);
1781 break;
1782 case PAGE_MODE_2_LEVEL:
1783 free_pt_l2(root);
1784 break;
1785 case PAGE_MODE_3_LEVEL:
1786 free_pt_l3(root);
1787 break;
1788 case PAGE_MODE_4_LEVEL:
1789 free_pt_l4(root);
1790 break;
1791 case PAGE_MODE_5_LEVEL:
1792 free_pt_l5(root);
1793 break;
1794 case PAGE_MODE_6_LEVEL:
1795 free_pt_l6(root);
1796 break;
1797 default:
1798 BUG();
1799 }
1800 }
1801
1802 static void free_gcr3_tbl_level1(u64 *tbl)
1803 {
1804 u64 *ptr;
1805 int i;
1806
1807 for (i = 0; i < 512; ++i) {
1808 if (!(tbl[i] & GCR3_VALID))
1809 continue;
1810
1811 ptr = __va(tbl[i] & PAGE_MASK);
1812
1813 free_page((unsigned long)ptr);
1814 }
1815 }
1816
1817 static void free_gcr3_tbl_level2(u64 *tbl)
1818 {
1819 u64 *ptr;
1820 int i;
1821
1822 for (i = 0; i < 512; ++i) {
1823 if (!(tbl[i] & GCR3_VALID))
1824 continue;
1825
1826 ptr = __va(tbl[i] & PAGE_MASK);
1827
1828 free_gcr3_tbl_level1(ptr);
1829 }
1830 }
1831
1832 static void free_gcr3_table(struct protection_domain *domain)
1833 {
1834 if (domain->glx == 2)
1835 free_gcr3_tbl_level2(domain->gcr3_tbl);
1836 else if (domain->glx == 1)
1837 free_gcr3_tbl_level1(domain->gcr3_tbl);
1838 else
1839 BUG_ON(domain->glx != 0);
1840
1841 free_page((unsigned long)domain->gcr3_tbl);
1842 }
1843
1844 /*
1845 * Free a domain, only used if something went wrong in the
1846 * allocation path and we need to free an already allocated page table
1847 */
1848 static void dma_ops_domain_free(struct dma_ops_domain *dom)
1849 {
1850 int i;
1851
1852 if (!dom)
1853 return;
1854
1855 del_domain_from_list(&dom->domain);
1856
1857 free_pagetable(&dom->domain);
1858
1859 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1860 if (!dom->aperture[i])
1861 continue;
1862 free_page((unsigned long)dom->aperture[i]->bitmap);
1863 kfree(dom->aperture[i]);
1864 }
1865
1866 kfree(dom);
1867 }
1868
1869 /*
1870 * Allocates a new protection domain usable for the dma_ops functions.
1871 * It also initializes the page table and the address allocator data
1872 * structures required for the dma_ops interface
1873 */
1874 static struct dma_ops_domain *dma_ops_domain_alloc(void)
1875 {
1876 struct dma_ops_domain *dma_dom;
1877
1878 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1879 if (!dma_dom)
1880 return NULL;
1881
1882 if (protection_domain_init(&dma_dom->domain))
1883 goto free_dma_dom;
1884
1885 dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1886 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1887 dma_dom->domain.flags = PD_DMA_OPS_MASK;
1888 dma_dom->domain.priv = dma_dom;
1889 if (!dma_dom->domain.pt_root)
1890 goto free_dma_dom;
1891
1892 dma_dom->need_flush = false;
1893
1894 add_domain_to_list(&dma_dom->domain);
1895
1896 if (alloc_new_range(dma_dom, true, GFP_KERNEL))
1897 goto free_dma_dom;
1898
1899 /*
1900 * mark the first page as allocated so we never return 0 as
1901 * a valid dma-address. So we can use 0 as error value
1902 */
1903 dma_dom->aperture[0]->bitmap[0] = 1;
1904 dma_dom->next_address = 0;
1905
1906
1907 return dma_dom;
1908
1909 free_dma_dom:
1910 dma_ops_domain_free(dma_dom);
1911
1912 return NULL;
1913 }
1914
1915 /*
1916 * little helper function to check whether a given protection domain is a
1917 * dma_ops domain
1918 */
1919 static bool dma_ops_domain(struct protection_domain *domain)
1920 {
1921 return domain->flags & PD_DMA_OPS_MASK;
1922 }
1923
1924 static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
1925 {
1926 u64 pte_root = 0;
1927 u64 flags = 0;
1928
1929 if (domain->mode != PAGE_MODE_NONE)
1930 pte_root = virt_to_phys(domain->pt_root);
1931
1932 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1933 << DEV_ENTRY_MODE_SHIFT;
1934 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1935
1936 flags = amd_iommu_dev_table[devid].data[1];
1937
1938 if (ats)
1939 flags |= DTE_FLAG_IOTLB;
1940
1941 if (domain->flags & PD_IOMMUV2_MASK) {
1942 u64 gcr3 = __pa(domain->gcr3_tbl);
1943 u64 glx = domain->glx;
1944 u64 tmp;
1945
1946 pte_root |= DTE_FLAG_GV;
1947 pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
1948
1949 /* First mask out possible old values for GCR3 table */
1950 tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
1951 flags &= ~tmp;
1952
1953 tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
1954 flags &= ~tmp;
1955
1956 /* Encode GCR3 table into DTE */
1957 tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
1958 pte_root |= tmp;
1959
1960 tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
1961 flags |= tmp;
1962
1963 tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
1964 flags |= tmp;
1965 }
1966
1967 flags &= ~(0xffffUL);
1968 flags |= domain->id;
1969
1970 amd_iommu_dev_table[devid].data[1] = flags;
1971 amd_iommu_dev_table[devid].data[0] = pte_root;
1972 }
1973
1974 static void clear_dte_entry(u16 devid)
1975 {
1976 /* remove entry from the device table seen by the hardware */
1977 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
1978 amd_iommu_dev_table[devid].data[1] = 0;
1979
1980 amd_iommu_apply_erratum_63(devid);
1981 }
1982
1983 static void do_attach(struct iommu_dev_data *dev_data,
1984 struct protection_domain *domain)
1985 {
1986 struct amd_iommu *iommu;
1987 bool ats;
1988
1989 iommu = amd_iommu_rlookup_table[dev_data->devid];
1990 ats = dev_data->ats.enabled;
1991
1992 /* Update data structures */
1993 dev_data->domain = domain;
1994 list_add(&dev_data->list, &domain->dev_list);
1995 set_dte_entry(dev_data->devid, domain, ats);
1996
1997 /* Do reference counting */
1998 domain->dev_iommu[iommu->index] += 1;
1999 domain->dev_cnt += 1;
2000
2001 /* Flush the DTE entry */
2002 device_flush_dte(dev_data);
2003 }
2004
2005 static void do_detach(struct iommu_dev_data *dev_data)
2006 {
2007 struct amd_iommu *iommu;
2008
2009 /*
2010 * First check if the device is still attached. It might already
2011 * be detached from its domain because the generic
2012 * iommu_detach_group code detached it and we try again here in
2013 * our alias handling.
2014 */
2015 if (!dev_data->domain)
2016 return;
2017
2018 iommu = amd_iommu_rlookup_table[dev_data->devid];
2019
2020 /* decrease reference counters */
2021 dev_data->domain->dev_iommu[iommu->index] -= 1;
2022 dev_data->domain->dev_cnt -= 1;
2023
2024 /* Update data structures */
2025 dev_data->domain = NULL;
2026 list_del(&dev_data->list);
2027 clear_dte_entry(dev_data->devid);
2028
2029 /* Flush the DTE entry */
2030 device_flush_dte(dev_data);
2031 }
2032
2033 /*
2034 * If a device is not yet associated with a domain, this function does
2035 * assigns it visible for the hardware
2036 */
2037 static int __attach_device(struct iommu_dev_data *dev_data,
2038 struct protection_domain *domain)
2039 {
2040 struct iommu_dev_data *head, *entry;
2041 int ret;
2042
2043 /* lock domain */
2044 spin_lock(&domain->lock);
2045
2046 head = dev_data;
2047
2048 if (head->alias_data != NULL)
2049 head = head->alias_data;
2050
2051 /* Now we have the root of the alias group, if any */
2052
2053 ret = -EBUSY;
2054 if (head->domain != NULL)
2055 goto out_unlock;
2056
2057 /* Attach alias group root */
2058 do_attach(head, domain);
2059
2060 /* Attach other devices in the alias group */
2061 list_for_each_entry(entry, &head->alias_list, alias_list)
2062 do_attach(entry, domain);
2063
2064 ret = 0;
2065
2066 out_unlock:
2067
2068 /* ready */
2069 spin_unlock(&domain->lock);
2070
2071 return ret;
2072 }
2073
2074
2075 static void pdev_iommuv2_disable(struct pci_dev *pdev)
2076 {
2077 pci_disable_ats(pdev);
2078 pci_disable_pri(pdev);
2079 pci_disable_pasid(pdev);
2080 }
2081
2082 /* FIXME: Change generic reset-function to do the same */
2083 static int pri_reset_while_enabled(struct pci_dev *pdev)
2084 {
2085 u16 control;
2086 int pos;
2087
2088 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2089 if (!pos)
2090 return -EINVAL;
2091
2092 pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
2093 control |= PCI_PRI_CTRL_RESET;
2094 pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2095
2096 return 0;
2097 }
2098
2099 static int pdev_iommuv2_enable(struct pci_dev *pdev)
2100 {
2101 bool reset_enable;
2102 int reqs, ret;
2103
2104 /* FIXME: Hardcode number of outstanding requests for now */
2105 reqs = 32;
2106 if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
2107 reqs = 1;
2108 reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2109
2110 /* Only allow access to user-accessible pages */
2111 ret = pci_enable_pasid(pdev, 0);
2112 if (ret)
2113 goto out_err;
2114
2115 /* First reset the PRI state of the device */
2116 ret = pci_reset_pri(pdev);
2117 if (ret)
2118 goto out_err;
2119
2120 /* Enable PRI */
2121 ret = pci_enable_pri(pdev, reqs);
2122 if (ret)
2123 goto out_err;
2124
2125 if (reset_enable) {
2126 ret = pri_reset_while_enabled(pdev);
2127 if (ret)
2128 goto out_err;
2129 }
2130
2131 ret = pci_enable_ats(pdev, PAGE_SHIFT);
2132 if (ret)
2133 goto out_err;
2134
2135 return 0;
2136
2137 out_err:
2138 pci_disable_pri(pdev);
2139 pci_disable_pasid(pdev);
2140
2141 return ret;
2142 }
2143
2144 /* FIXME: Move this to PCI code */
2145 #define PCI_PRI_TLP_OFF (1 << 15)
2146
2147 static bool pci_pri_tlp_required(struct pci_dev *pdev)
2148 {
2149 u16 status;
2150 int pos;
2151
2152 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2153 if (!pos)
2154 return false;
2155
2156 pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2157
2158 return (status & PCI_PRI_TLP_OFF) ? true : false;
2159 }
2160
2161 /*
2162 * If a device is not yet associated with a domain, this function
2163 * assigns it visible for the hardware
2164 */
2165 static int attach_device(struct device *dev,
2166 struct protection_domain *domain)
2167 {
2168 struct pci_dev *pdev = to_pci_dev(dev);
2169 struct iommu_dev_data *dev_data;
2170 unsigned long flags;
2171 int ret;
2172
2173 dev_data = get_dev_data(dev);
2174
2175 if (domain->flags & PD_IOMMUV2_MASK) {
2176 if (!dev_data->passthrough)
2177 return -EINVAL;
2178
2179 if (dev_data->iommu_v2) {
2180 if (pdev_iommuv2_enable(pdev) != 0)
2181 return -EINVAL;
2182
2183 dev_data->ats.enabled = true;
2184 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2185 dev_data->pri_tlp = pci_pri_tlp_required(pdev);
2186 }
2187 } else if (amd_iommu_iotlb_sup &&
2188 pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2189 dev_data->ats.enabled = true;
2190 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2191 }
2192
2193 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2194 ret = __attach_device(dev_data, domain);
2195 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2196
2197 /*
2198 * We might boot into a crash-kernel here. The crashed kernel
2199 * left the caches in the IOMMU dirty. So we have to flush
2200 * here to evict all dirty stuff.
2201 */
2202 domain_flush_tlb_pde(domain);
2203
2204 return ret;
2205 }
2206
2207 /*
2208 * Removes a device from a protection domain (unlocked)
2209 */
2210 static void __detach_device(struct iommu_dev_data *dev_data)
2211 {
2212 struct iommu_dev_data *head, *entry;
2213 struct protection_domain *domain;
2214 unsigned long flags;
2215
2216 BUG_ON(!dev_data->domain);
2217
2218 domain = dev_data->domain;
2219
2220 spin_lock_irqsave(&domain->lock, flags);
2221
2222 head = dev_data;
2223 if (head->alias_data != NULL)
2224 head = head->alias_data;
2225
2226 list_for_each_entry(entry, &head->alias_list, alias_list)
2227 do_detach(entry);
2228
2229 do_detach(head);
2230
2231 spin_unlock_irqrestore(&domain->lock, flags);
2232 }
2233
2234 /*
2235 * Removes a device from a protection domain (with devtable_lock held)
2236 */
2237 static void detach_device(struct device *dev)
2238 {
2239 struct protection_domain *domain;
2240 struct iommu_dev_data *dev_data;
2241 unsigned long flags;
2242
2243 dev_data = get_dev_data(dev);
2244 domain = dev_data->domain;
2245
2246 /* lock device table */
2247 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2248 __detach_device(dev_data);
2249 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2250
2251 if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2252 pdev_iommuv2_disable(to_pci_dev(dev));
2253 else if (dev_data->ats.enabled)
2254 pci_disable_ats(to_pci_dev(dev));
2255
2256 dev_data->ats.enabled = false;
2257 }
2258
2259 static int amd_iommu_add_device(struct device *dev)
2260 {
2261 struct iommu_dev_data *dev_data;
2262 struct iommu_domain *domain;
2263 struct amd_iommu *iommu;
2264 u16 devid;
2265 int ret;
2266
2267 if (!check_device(dev) || get_dev_data(dev))
2268 return 0;
2269
2270 devid = get_device_id(dev);
2271 iommu = amd_iommu_rlookup_table[devid];
2272
2273 ret = iommu_init_device(dev);
2274 if (ret) {
2275 if (ret != -ENOTSUPP)
2276 pr_err("Failed to initialize device %s - trying to proceed anyway\n",
2277 dev_name(dev));
2278
2279 iommu_ignore_device(dev);
2280 dev->archdata.dma_ops = &nommu_dma_ops;
2281 goto out;
2282 }
2283 init_iommu_group(dev);
2284
2285 dev_data = get_dev_data(dev);
2286
2287 BUG_ON(!dev_data);
2288
2289 if (iommu_pass_through || dev_data->iommu_v2)
2290 iommu_request_dm_for_dev(dev);
2291
2292 /* Domains are initialized for this device - have a look what we ended up with */
2293 domain = iommu_get_domain_for_dev(dev);
2294 if (domain->type == IOMMU_DOMAIN_IDENTITY)
2295 dev_data->passthrough = true;
2296 else
2297 dev->archdata.dma_ops = &amd_iommu_dma_ops;
2298
2299 out:
2300 iommu_completion_wait(iommu);
2301
2302 return 0;
2303 }
2304
2305 static void amd_iommu_remove_device(struct device *dev)
2306 {
2307 struct amd_iommu *iommu;
2308 u16 devid;
2309
2310 if (!check_device(dev))
2311 return;
2312
2313 devid = get_device_id(dev);
2314 iommu = amd_iommu_rlookup_table[devid];
2315
2316 iommu_uninit_device(dev);
2317 iommu_completion_wait(iommu);
2318 }
2319
2320 /*****************************************************************************
2321 *
2322 * The next functions belong to the dma_ops mapping/unmapping code.
2323 *
2324 *****************************************************************************/
2325
2326 /*
2327 * In the dma_ops path we only have the struct device. This function
2328 * finds the corresponding IOMMU, the protection domain and the
2329 * requestor id for a given device.
2330 * If the device is not yet associated with a domain this is also done
2331 * in this function.
2332 */
2333 static struct protection_domain *get_domain(struct device *dev)
2334 {
2335 struct protection_domain *domain;
2336 struct iommu_domain *io_domain;
2337
2338 if (!check_device(dev))
2339 return ERR_PTR(-EINVAL);
2340
2341 io_domain = iommu_get_domain_for_dev(dev);
2342 if (!io_domain)
2343 return NULL;
2344
2345 domain = to_pdomain(io_domain);
2346 if (!dma_ops_domain(domain))
2347 return ERR_PTR(-EBUSY);
2348
2349 return domain;
2350 }
2351
2352 static void update_device_table(struct protection_domain *domain)
2353 {
2354 struct iommu_dev_data *dev_data;
2355
2356 list_for_each_entry(dev_data, &domain->dev_list, list)
2357 set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2358 }
2359
2360 static void update_domain(struct protection_domain *domain)
2361 {
2362 if (!domain->updated)
2363 return;
2364
2365 update_device_table(domain);
2366
2367 domain_flush_devices(domain);
2368 domain_flush_tlb_pde(domain);
2369
2370 domain->updated = false;
2371 }
2372
2373 /*
2374 * This function fetches the PTE for a given address in the aperture
2375 */
2376 static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
2377 unsigned long address)
2378 {
2379 struct aperture_range *aperture;
2380 u64 *pte, *pte_page;
2381
2382 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2383 if (!aperture)
2384 return NULL;
2385
2386 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2387 if (!pte) {
2388 pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
2389 GFP_ATOMIC);
2390 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
2391 } else
2392 pte += PM_LEVEL_INDEX(0, address);
2393
2394 update_domain(&dom->domain);
2395
2396 return pte;
2397 }
2398
2399 /*
2400 * This is the generic map function. It maps one 4kb page at paddr to
2401 * the given address in the DMA address space for the domain.
2402 */
2403 static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
2404 unsigned long address,
2405 phys_addr_t paddr,
2406 int direction)
2407 {
2408 u64 *pte, __pte;
2409
2410 WARN_ON(address > dom->aperture_size);
2411
2412 paddr &= PAGE_MASK;
2413
2414 pte = dma_ops_get_pte(dom, address);
2415 if (!pte)
2416 return DMA_ERROR_CODE;
2417
2418 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
2419
2420 if (direction == DMA_TO_DEVICE)
2421 __pte |= IOMMU_PTE_IR;
2422 else if (direction == DMA_FROM_DEVICE)
2423 __pte |= IOMMU_PTE_IW;
2424 else if (direction == DMA_BIDIRECTIONAL)
2425 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
2426
2427 WARN_ON(*pte);
2428
2429 *pte = __pte;
2430
2431 return (dma_addr_t)address;
2432 }
2433
2434 /*
2435 * The generic unmapping function for on page in the DMA address space.
2436 */
2437 static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2438 unsigned long address)
2439 {
2440 struct aperture_range *aperture;
2441 u64 *pte;
2442
2443 if (address >= dom->aperture_size)
2444 return;
2445
2446 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2447 if (!aperture)
2448 return;
2449
2450 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2451 if (!pte)
2452 return;
2453
2454 pte += PM_LEVEL_INDEX(0, address);
2455
2456 WARN_ON(!*pte);
2457
2458 *pte = 0ULL;
2459 }
2460
2461 /*
2462 * This function contains common code for mapping of a physically
2463 * contiguous memory region into DMA address space. It is used by all
2464 * mapping functions provided with this IOMMU driver.
2465 * Must be called with the domain lock held.
2466 */
2467 static dma_addr_t __map_single(struct device *dev,
2468 struct dma_ops_domain *dma_dom,
2469 phys_addr_t paddr,
2470 size_t size,
2471 int dir,
2472 bool align,
2473 u64 dma_mask)
2474 {
2475 dma_addr_t offset = paddr & ~PAGE_MASK;
2476 dma_addr_t address, start, ret;
2477 unsigned int pages;
2478 unsigned long align_mask = 0;
2479 int i;
2480
2481 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2482 paddr &= PAGE_MASK;
2483
2484 INC_STATS_COUNTER(total_map_requests);
2485
2486 if (pages > 1)
2487 INC_STATS_COUNTER(cross_page);
2488
2489 if (align)
2490 align_mask = (1UL << get_order(size)) - 1;
2491
2492 retry:
2493 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
2494 dma_mask);
2495 if (unlikely(address == DMA_ERROR_CODE)) {
2496 /*
2497 * setting next_address here will let the address
2498 * allocator only scan the new allocated range in the
2499 * first run. This is a small optimization.
2500 */
2501 dma_dom->next_address = dma_dom->aperture_size;
2502
2503 if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
2504 goto out;
2505
2506 /*
2507 * aperture was successfully enlarged by 128 MB, try
2508 * allocation again
2509 */
2510 goto retry;
2511 }
2512
2513 start = address;
2514 for (i = 0; i < pages; ++i) {
2515 ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2516 if (ret == DMA_ERROR_CODE)
2517 goto out_unmap;
2518
2519 paddr += PAGE_SIZE;
2520 start += PAGE_SIZE;
2521 }
2522 address += offset;
2523
2524 ADD_STATS_COUNTER(alloced_io_mem, size);
2525
2526 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
2527 domain_flush_tlb(&dma_dom->domain);
2528 dma_dom->need_flush = false;
2529 } else if (unlikely(amd_iommu_np_cache))
2530 domain_flush_pages(&dma_dom->domain, address, size);
2531
2532 out:
2533 return address;
2534
2535 out_unmap:
2536
2537 for (--i; i >= 0; --i) {
2538 start -= PAGE_SIZE;
2539 dma_ops_domain_unmap(dma_dom, start);
2540 }
2541
2542 dma_ops_free_addresses(dma_dom, address, pages);
2543
2544 return DMA_ERROR_CODE;
2545 }
2546
2547 /*
2548 * Does the reverse of the __map_single function. Must be called with
2549 * the domain lock held too
2550 */
2551 static void __unmap_single(struct dma_ops_domain *dma_dom,
2552 dma_addr_t dma_addr,
2553 size_t size,
2554 int dir)
2555 {
2556 dma_addr_t flush_addr;
2557 dma_addr_t i, start;
2558 unsigned int pages;
2559
2560 if ((dma_addr == DMA_ERROR_CODE) ||
2561 (dma_addr + size > dma_dom->aperture_size))
2562 return;
2563
2564 flush_addr = dma_addr;
2565 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2566 dma_addr &= PAGE_MASK;
2567 start = dma_addr;
2568
2569 for (i = 0; i < pages; ++i) {
2570 dma_ops_domain_unmap(dma_dom, start);
2571 start += PAGE_SIZE;
2572 }
2573
2574 SUB_STATS_COUNTER(alloced_io_mem, size);
2575
2576 dma_ops_free_addresses(dma_dom, dma_addr, pages);
2577
2578 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
2579 domain_flush_pages(&dma_dom->domain, flush_addr, size);
2580 dma_dom->need_flush = false;
2581 }
2582 }
2583
2584 /*
2585 * The exported map_single function for dma_ops.
2586 */
2587 static dma_addr_t map_page(struct device *dev, struct page *page,
2588 unsigned long offset, size_t size,
2589 enum dma_data_direction dir,
2590 struct dma_attrs *attrs)
2591 {
2592 unsigned long flags;
2593 struct protection_domain *domain;
2594 dma_addr_t addr;
2595 u64 dma_mask;
2596 phys_addr_t paddr = page_to_phys(page) + offset;
2597
2598 INC_STATS_COUNTER(cnt_map_single);
2599
2600 domain = get_domain(dev);
2601 if (PTR_ERR(domain) == -EINVAL)
2602 return (dma_addr_t)paddr;
2603 else if (IS_ERR(domain))
2604 return DMA_ERROR_CODE;
2605
2606 dma_mask = *dev->dma_mask;
2607
2608 spin_lock_irqsave(&domain->lock, flags);
2609
2610 addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2611 dma_mask);
2612 if (addr == DMA_ERROR_CODE)
2613 goto out;
2614
2615 domain_flush_complete(domain);
2616
2617 out:
2618 spin_unlock_irqrestore(&domain->lock, flags);
2619
2620 return addr;
2621 }
2622
2623 /*
2624 * The exported unmap_single function for dma_ops.
2625 */
2626 static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2627 enum dma_data_direction dir, struct dma_attrs *attrs)
2628 {
2629 unsigned long flags;
2630 struct protection_domain *domain;
2631
2632 INC_STATS_COUNTER(cnt_unmap_single);
2633
2634 domain = get_domain(dev);
2635 if (IS_ERR(domain))
2636 return;
2637
2638 spin_lock_irqsave(&domain->lock, flags);
2639
2640 __unmap_single(domain->priv, dma_addr, size, dir);
2641
2642 domain_flush_complete(domain);
2643
2644 spin_unlock_irqrestore(&domain->lock, flags);
2645 }
2646
2647 /*
2648 * The exported map_sg function for dma_ops (handles scatter-gather
2649 * lists).
2650 */
2651 static int map_sg(struct device *dev, struct scatterlist *sglist,
2652 int nelems, enum dma_data_direction dir,
2653 struct dma_attrs *attrs)
2654 {
2655 unsigned long flags;
2656 struct protection_domain *domain;
2657 int i;
2658 struct scatterlist *s;
2659 phys_addr_t paddr;
2660 int mapped_elems = 0;
2661 u64 dma_mask;
2662
2663 INC_STATS_COUNTER(cnt_map_sg);
2664
2665 domain = get_domain(dev);
2666 if (IS_ERR(domain))
2667 return 0;
2668
2669 dma_mask = *dev->dma_mask;
2670
2671 spin_lock_irqsave(&domain->lock, flags);
2672
2673 for_each_sg(sglist, s, nelems, i) {
2674 paddr = sg_phys(s);
2675
2676 s->dma_address = __map_single(dev, domain->priv,
2677 paddr, s->length, dir, false,
2678 dma_mask);
2679
2680 if (s->dma_address) {
2681 s->dma_length = s->length;
2682 mapped_elems++;
2683 } else
2684 goto unmap;
2685 }
2686
2687 domain_flush_complete(domain);
2688
2689 out:
2690 spin_unlock_irqrestore(&domain->lock, flags);
2691
2692 return mapped_elems;
2693 unmap:
2694 for_each_sg(sglist, s, mapped_elems, i) {
2695 if (s->dma_address)
2696 __unmap_single(domain->priv, s->dma_address,
2697 s->dma_length, dir);
2698 s->dma_address = s->dma_length = 0;
2699 }
2700
2701 mapped_elems = 0;
2702
2703 goto out;
2704 }
2705
2706 /*
2707 * The exported map_sg function for dma_ops (handles scatter-gather
2708 * lists).
2709 */
2710 static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2711 int nelems, enum dma_data_direction dir,
2712 struct dma_attrs *attrs)
2713 {
2714 unsigned long flags;
2715 struct protection_domain *domain;
2716 struct scatterlist *s;
2717 int i;
2718
2719 INC_STATS_COUNTER(cnt_unmap_sg);
2720
2721 domain = get_domain(dev);
2722 if (IS_ERR(domain))
2723 return;
2724
2725 spin_lock_irqsave(&domain->lock, flags);
2726
2727 for_each_sg(sglist, s, nelems, i) {
2728 __unmap_single(domain->priv, s->dma_address,
2729 s->dma_length, dir);
2730 s->dma_address = s->dma_length = 0;
2731 }
2732
2733 domain_flush_complete(domain);
2734
2735 spin_unlock_irqrestore(&domain->lock, flags);
2736 }
2737
2738 /*
2739 * The exported alloc_coherent function for dma_ops.
2740 */
2741 static void *alloc_coherent(struct device *dev, size_t size,
2742 dma_addr_t *dma_addr, gfp_t flag,
2743 struct dma_attrs *attrs)
2744 {
2745 u64 dma_mask = dev->coherent_dma_mask;
2746 struct protection_domain *domain;
2747 unsigned long flags;
2748 struct page *page;
2749
2750 INC_STATS_COUNTER(cnt_alloc_coherent);
2751
2752 domain = get_domain(dev);
2753 if (PTR_ERR(domain) == -EINVAL) {
2754 page = alloc_pages(flag, get_order(size));
2755 *dma_addr = page_to_phys(page);
2756 return page_address(page);
2757 } else if (IS_ERR(domain))
2758 return NULL;
2759
2760 size = PAGE_ALIGN(size);
2761 dma_mask = dev->coherent_dma_mask;
2762 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2763 flag |= __GFP_ZERO;
2764
2765 page = alloc_pages(flag | __GFP_NOWARN, get_order(size));
2766 if (!page) {
2767 if (!(flag & __GFP_WAIT))
2768 return NULL;
2769
2770 page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
2771 get_order(size));
2772 if (!page)
2773 return NULL;
2774 }
2775
2776 if (!dma_mask)
2777 dma_mask = *dev->dma_mask;
2778
2779 spin_lock_irqsave(&domain->lock, flags);
2780
2781 *dma_addr = __map_single(dev, domain->priv, page_to_phys(page),
2782 size, DMA_BIDIRECTIONAL, true, dma_mask);
2783
2784 if (*dma_addr == DMA_ERROR_CODE) {
2785 spin_unlock_irqrestore(&domain->lock, flags);
2786 goto out_free;
2787 }
2788
2789 domain_flush_complete(domain);
2790
2791 spin_unlock_irqrestore(&domain->lock, flags);
2792
2793 return page_address(page);
2794
2795 out_free:
2796
2797 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
2798 __free_pages(page, get_order(size));
2799
2800 return NULL;
2801 }
2802
2803 /*
2804 * The exported free_coherent function for dma_ops.
2805 */
2806 static void free_coherent(struct device *dev, size_t size,
2807 void *virt_addr, dma_addr_t dma_addr,
2808 struct dma_attrs *attrs)
2809 {
2810 struct protection_domain *domain;
2811 unsigned long flags;
2812 struct page *page;
2813
2814 INC_STATS_COUNTER(cnt_free_coherent);
2815
2816 page = virt_to_page(virt_addr);
2817 size = PAGE_ALIGN(size);
2818
2819 domain = get_domain(dev);
2820 if (IS_ERR(domain))
2821 goto free_mem;
2822
2823 spin_lock_irqsave(&domain->lock, flags);
2824
2825 __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2826
2827 domain_flush_complete(domain);
2828
2829 spin_unlock_irqrestore(&domain->lock, flags);
2830
2831 free_mem:
2832 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
2833 __free_pages(page, get_order(size));
2834 }
2835
2836 /*
2837 * This function is called by the DMA layer to find out if we can handle a
2838 * particular device. It is part of the dma_ops.
2839 */
2840 static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2841 {
2842 return check_device(dev);
2843 }
2844
2845 static struct dma_map_ops amd_iommu_dma_ops = {
2846 .alloc = alloc_coherent,
2847 .free = free_coherent,
2848 .map_page = map_page,
2849 .unmap_page = unmap_page,
2850 .map_sg = map_sg,
2851 .unmap_sg = unmap_sg,
2852 .dma_supported = amd_iommu_dma_supported,
2853 };
2854
2855 int __init amd_iommu_init_api(void)
2856 {
2857 return bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
2858 }
2859
2860 int __init amd_iommu_init_dma_ops(void)
2861 {
2862 swiotlb = iommu_pass_through ? 1 : 0;
2863 iommu_detected = 1;
2864
2865 /*
2866 * In case we don't initialize SWIOTLB (actually the common case
2867 * when AMD IOMMU is enabled), make sure there are global
2868 * dma_ops set as a fall-back for devices not handled by this
2869 * driver (for example non-PCI devices).
2870 */
2871 if (!swiotlb)
2872 dma_ops = &nommu_dma_ops;
2873
2874 amd_iommu_stats_init();
2875
2876 if (amd_iommu_unmap_flush)
2877 pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
2878 else
2879 pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
2880
2881 return 0;
2882 }
2883
2884 /*****************************************************************************
2885 *
2886 * The following functions belong to the exported interface of AMD IOMMU
2887 *
2888 * This interface allows access to lower level functions of the IOMMU
2889 * like protection domain handling and assignement of devices to domains
2890 * which is not possible with the dma_ops interface.
2891 *
2892 *****************************************************************************/
2893
2894 static void cleanup_domain(struct protection_domain *domain)
2895 {
2896 struct iommu_dev_data *entry;
2897 unsigned long flags;
2898
2899 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2900
2901 while (!list_empty(&domain->dev_list)) {
2902 entry = list_first_entry(&domain->dev_list,
2903 struct iommu_dev_data, list);
2904 __detach_device(entry);
2905 }
2906
2907 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2908 }
2909
2910 static void protection_domain_free(struct protection_domain *domain)
2911 {
2912 if (!domain)
2913 return;
2914
2915 del_domain_from_list(domain);
2916
2917 if (domain->id)
2918 domain_id_free(domain->id);
2919
2920 kfree(domain);
2921 }
2922
2923 static int protection_domain_init(struct protection_domain *domain)
2924 {
2925 spin_lock_init(&domain->lock);
2926 mutex_init(&domain->api_lock);
2927 domain->id = domain_id_alloc();
2928 if (!domain->id)
2929 return -ENOMEM;
2930 INIT_LIST_HEAD(&domain->dev_list);
2931
2932 return 0;
2933 }
2934
2935 static struct protection_domain *protection_domain_alloc(void)
2936 {
2937 struct protection_domain *domain;
2938
2939 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2940 if (!domain)
2941 return NULL;
2942
2943 if (protection_domain_init(domain))
2944 goto out_err;
2945
2946 add_domain_to_list(domain);
2947
2948 return domain;
2949
2950 out_err:
2951 kfree(domain);
2952
2953 return NULL;
2954 }
2955
2956 static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2957 {
2958 struct protection_domain *pdomain;
2959 struct dma_ops_domain *dma_domain;
2960
2961 switch (type) {
2962 case IOMMU_DOMAIN_UNMANAGED:
2963 pdomain = protection_domain_alloc();
2964 if (!pdomain)
2965 return NULL;
2966
2967 pdomain->mode = PAGE_MODE_3_LEVEL;
2968 pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2969 if (!pdomain->pt_root) {
2970 protection_domain_free(pdomain);
2971 return NULL;
2972 }
2973
2974 pdomain->domain.geometry.aperture_start = 0;
2975 pdomain->domain.geometry.aperture_end = ~0ULL;
2976 pdomain->domain.geometry.force_aperture = true;
2977
2978 break;
2979 case IOMMU_DOMAIN_DMA:
2980 dma_domain = dma_ops_domain_alloc();
2981 if (!dma_domain) {
2982 pr_err("AMD-Vi: Failed to allocate\n");
2983 return NULL;
2984 }
2985 pdomain = &dma_domain->domain;
2986 break;
2987 case IOMMU_DOMAIN_IDENTITY:
2988 pdomain = protection_domain_alloc();
2989 if (!pdomain)
2990 return NULL;
2991
2992 pdomain->mode = PAGE_MODE_NONE;
2993 break;
2994 default:
2995 return NULL;
2996 }
2997
2998 return &pdomain->domain;
2999 }
3000
3001 static void amd_iommu_domain_free(struct iommu_domain *dom)
3002 {
3003 struct protection_domain *domain;
3004
3005 if (!dom)
3006 return;
3007
3008 domain = to_pdomain(dom);
3009
3010 if (domain->dev_cnt > 0)
3011 cleanup_domain(domain);
3012
3013 BUG_ON(domain->dev_cnt != 0);
3014
3015 if (domain->mode != PAGE_MODE_NONE)
3016 free_pagetable(domain);
3017
3018 if (domain->flags & PD_IOMMUV2_MASK)
3019 free_gcr3_table(domain);
3020
3021 protection_domain_free(domain);
3022 }
3023
3024 static void amd_iommu_detach_device(struct iommu_domain *dom,
3025 struct device *dev)
3026 {
3027 struct iommu_dev_data *dev_data = dev->archdata.iommu;
3028 struct amd_iommu *iommu;
3029 u16 devid;
3030
3031 if (!check_device(dev))
3032 return;
3033
3034 devid = get_device_id(dev);
3035
3036 if (dev_data->domain != NULL)
3037 detach_device(dev);
3038
3039 iommu = amd_iommu_rlookup_table[devid];
3040 if (!iommu)
3041 return;
3042
3043 iommu_completion_wait(iommu);
3044 }
3045
3046 static int amd_iommu_attach_device(struct iommu_domain *dom,
3047 struct device *dev)
3048 {
3049 struct protection_domain *domain = to_pdomain(dom);
3050 struct iommu_dev_data *dev_data;
3051 struct amd_iommu *iommu;
3052 int ret;
3053
3054 if (!check_device(dev))
3055 return -EINVAL;
3056
3057 dev_data = dev->archdata.iommu;
3058
3059 iommu = amd_iommu_rlookup_table[dev_data->devid];
3060 if (!iommu)
3061 return -EINVAL;
3062
3063 if (dev_data->domain)
3064 detach_device(dev);
3065
3066 ret = attach_device(dev, domain);
3067
3068 iommu_completion_wait(iommu);
3069
3070 return ret;
3071 }
3072
3073 static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3074 phys_addr_t paddr, size_t page_size, int iommu_prot)
3075 {
3076 struct protection_domain *domain = to_pdomain(dom);
3077 int prot = 0;
3078 int ret;
3079
3080 if (domain->mode == PAGE_MODE_NONE)
3081 return -EINVAL;
3082
3083 if (iommu_prot & IOMMU_READ)
3084 prot |= IOMMU_PROT_IR;
3085 if (iommu_prot & IOMMU_WRITE)
3086 prot |= IOMMU_PROT_IW;
3087
3088 mutex_lock(&domain->api_lock);
3089 ret = iommu_map_page(domain, iova, paddr, prot, page_size);
3090 mutex_unlock(&domain->api_lock);
3091
3092 return ret;
3093 }
3094
3095 static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
3096 size_t page_size)
3097 {
3098 struct protection_domain *domain = to_pdomain(dom);
3099 size_t unmap_size;
3100
3101 if (domain->mode == PAGE_MODE_NONE)
3102 return -EINVAL;
3103
3104 mutex_lock(&domain->api_lock);
3105 unmap_size = iommu_unmap_page(domain, iova, page_size);
3106 mutex_unlock(&domain->api_lock);
3107
3108 domain_flush_tlb_pde(domain);
3109
3110 return unmap_size;
3111 }
3112
3113 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3114 dma_addr_t iova)
3115 {
3116 struct protection_domain *domain = to_pdomain(dom);
3117 unsigned long offset_mask, pte_pgsize;
3118 u64 *pte, __pte;
3119
3120 if (domain->mode == PAGE_MODE_NONE)
3121 return iova;
3122
3123 pte = fetch_pte(domain, iova, &pte_pgsize);
3124
3125 if (!pte || !IOMMU_PTE_PRESENT(*pte))
3126 return 0;
3127
3128 offset_mask = pte_pgsize - 1;
3129 __pte = *pte & PM_ADDR_MASK;
3130
3131 return (__pte & ~offset_mask) | (iova & offset_mask);
3132 }
3133
3134 static bool amd_iommu_capable(enum iommu_cap cap)
3135 {
3136 switch (cap) {
3137 case IOMMU_CAP_CACHE_COHERENCY:
3138 return true;
3139 case IOMMU_CAP_INTR_REMAP:
3140 return (irq_remapping_enabled == 1);
3141 case IOMMU_CAP_NOEXEC:
3142 return false;
3143 }
3144
3145 return false;
3146 }
3147
3148 static void amd_iommu_get_dm_regions(struct device *dev,
3149 struct list_head *head)
3150 {
3151 struct unity_map_entry *entry;
3152 u16 devid;
3153
3154 devid = get_device_id(dev);
3155
3156 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
3157 struct iommu_dm_region *region;
3158
3159 if (devid < entry->devid_start || devid > entry->devid_end)
3160 continue;
3161
3162 region = kzalloc(sizeof(*region), GFP_KERNEL);
3163 if (!region) {
3164 pr_err("Out of memory allocating dm-regions for %s\n",
3165 dev_name(dev));
3166 return;
3167 }
3168
3169 region->start = entry->address_start;
3170 region->length = entry->address_end - entry->address_start;
3171 if (entry->prot & IOMMU_PROT_IR)
3172 region->prot |= IOMMU_READ;
3173 if (entry->prot & IOMMU_PROT_IW)
3174 region->prot |= IOMMU_WRITE;
3175
3176 list_add_tail(&region->list, head);
3177 }
3178 }
3179
3180 static void amd_iommu_put_dm_regions(struct device *dev,
3181 struct list_head *head)
3182 {
3183 struct iommu_dm_region *entry, *next;
3184
3185 list_for_each_entry_safe(entry, next, head, list)
3186 kfree(entry);
3187 }
3188
3189 static const struct iommu_ops amd_iommu_ops = {
3190 .capable = amd_iommu_capable,
3191 .domain_alloc = amd_iommu_domain_alloc,
3192 .domain_free = amd_iommu_domain_free,
3193 .attach_dev = amd_iommu_attach_device,
3194 .detach_dev = amd_iommu_detach_device,
3195 .map = amd_iommu_map,
3196 .unmap = amd_iommu_unmap,
3197 .map_sg = default_iommu_map_sg,
3198 .iova_to_phys = amd_iommu_iova_to_phys,
3199 .add_device = amd_iommu_add_device,
3200 .remove_device = amd_iommu_remove_device,
3201 .get_dm_regions = amd_iommu_get_dm_regions,
3202 .put_dm_regions = amd_iommu_put_dm_regions,
3203 .pgsize_bitmap = AMD_IOMMU_PGSIZES,
3204 };
3205
3206 /*****************************************************************************
3207 *
3208 * The next functions do a basic initialization of IOMMU for pass through
3209 * mode
3210 *
3211 * In passthrough mode the IOMMU is initialized and enabled but not used for
3212 * DMA-API translation.
3213 *
3214 *****************************************************************************/
3215
3216 /* IOMMUv2 specific functions */
3217 int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
3218 {
3219 return atomic_notifier_chain_register(&ppr_notifier, nb);
3220 }
3221 EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
3222
3223 int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
3224 {
3225 return atomic_notifier_chain_unregister(&ppr_notifier, nb);
3226 }
3227 EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3228
3229 void amd_iommu_domain_direct_map(struct iommu_domain *dom)
3230 {
3231 struct protection_domain *domain = to_pdomain(dom);
3232 unsigned long flags;
3233
3234 spin_lock_irqsave(&domain->lock, flags);
3235
3236 /* Update data structure */
3237 domain->mode = PAGE_MODE_NONE;
3238 domain->updated = true;
3239
3240 /* Make changes visible to IOMMUs */
3241 update_domain(domain);
3242
3243 /* Page-table is not visible to IOMMU anymore, so free it */
3244 free_pagetable(domain);
3245
3246 spin_unlock_irqrestore(&domain->lock, flags);
3247 }
3248 EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3249
3250 int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
3251 {
3252 struct protection_domain *domain = to_pdomain(dom);
3253 unsigned long flags;
3254 int levels, ret;
3255
3256 if (pasids <= 0 || pasids > (PASID_MASK + 1))
3257 return -EINVAL;
3258
3259 /* Number of GCR3 table levels required */
3260 for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
3261 levels += 1;
3262
3263 if (levels > amd_iommu_max_glx_val)
3264 return -EINVAL;
3265
3266 spin_lock_irqsave(&domain->lock, flags);
3267
3268 /*
3269 * Save us all sanity checks whether devices already in the
3270 * domain support IOMMUv2. Just force that the domain has no
3271 * devices attached when it is switched into IOMMUv2 mode.
3272 */
3273 ret = -EBUSY;
3274 if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
3275 goto out;
3276
3277 ret = -ENOMEM;
3278 domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
3279 if (domain->gcr3_tbl == NULL)
3280 goto out;
3281
3282 domain->glx = levels;
3283 domain->flags |= PD_IOMMUV2_MASK;
3284 domain->updated = true;
3285
3286 update_domain(domain);
3287
3288 ret = 0;
3289
3290 out:
3291 spin_unlock_irqrestore(&domain->lock, flags);
3292
3293 return ret;
3294 }
3295 EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3296
3297 static int __flush_pasid(struct protection_domain *domain, int pasid,
3298 u64 address, bool size)
3299 {
3300 struct iommu_dev_data *dev_data;
3301 struct iommu_cmd cmd;
3302 int i, ret;
3303
3304 if (!(domain->flags & PD_IOMMUV2_MASK))
3305 return -EINVAL;
3306
3307 build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
3308
3309 /*
3310 * IOMMU TLB needs to be flushed before Device TLB to
3311 * prevent device TLB refill from IOMMU TLB
3312 */
3313 for (i = 0; i < amd_iommus_present; ++i) {
3314 if (domain->dev_iommu[i] == 0)
3315 continue;
3316
3317 ret = iommu_queue_command(amd_iommus[i], &cmd);
3318 if (ret != 0)
3319 goto out;
3320 }
3321
3322 /* Wait until IOMMU TLB flushes are complete */
3323 domain_flush_complete(domain);
3324
3325 /* Now flush device TLBs */
3326 list_for_each_entry(dev_data, &domain->dev_list, list) {
3327 struct amd_iommu *iommu;
3328 int qdep;
3329
3330 /*
3331 There might be non-IOMMUv2 capable devices in an IOMMUv2
3332 * domain.
3333 */
3334 if (!dev_data->ats.enabled)
3335 continue;
3336
3337 qdep = dev_data->ats.qdep;
3338 iommu = amd_iommu_rlookup_table[dev_data->devid];
3339
3340 build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
3341 qdep, address, size);
3342
3343 ret = iommu_queue_command(iommu, &cmd);
3344 if (ret != 0)
3345 goto out;
3346 }
3347
3348 /* Wait until all device TLBs are flushed */
3349 domain_flush_complete(domain);
3350
3351 ret = 0;
3352
3353 out:
3354
3355 return ret;
3356 }
3357
3358 static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
3359 u64 address)
3360 {
3361 INC_STATS_COUNTER(invalidate_iotlb);
3362
3363 return __flush_pasid(domain, pasid, address, false);
3364 }
3365
3366 int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
3367 u64 address)
3368 {
3369 struct protection_domain *domain = to_pdomain(dom);
3370 unsigned long flags;
3371 int ret;
3372
3373 spin_lock_irqsave(&domain->lock, flags);
3374 ret = __amd_iommu_flush_page(domain, pasid, address);
3375 spin_unlock_irqrestore(&domain->lock, flags);
3376
3377 return ret;
3378 }
3379 EXPORT_SYMBOL(amd_iommu_flush_page);
3380
3381 static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
3382 {
3383 INC_STATS_COUNTER(invalidate_iotlb_all);
3384
3385 return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
3386 true);
3387 }
3388
3389 int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
3390 {
3391 struct protection_domain *domain = to_pdomain(dom);
3392 unsigned long flags;
3393 int ret;
3394
3395 spin_lock_irqsave(&domain->lock, flags);
3396 ret = __amd_iommu_flush_tlb(domain, pasid);
3397 spin_unlock_irqrestore(&domain->lock, flags);
3398
3399 return ret;
3400 }
3401 EXPORT_SYMBOL(amd_iommu_flush_tlb);
3402
3403 static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
3404 {
3405 int index;
3406 u64 *pte;
3407
3408 while (true) {
3409
3410 index = (pasid >> (9 * level)) & 0x1ff;
3411 pte = &root[index];
3412
3413 if (level == 0)
3414 break;
3415
3416 if (!(*pte & GCR3_VALID)) {
3417 if (!alloc)
3418 return NULL;
3419
3420 root = (void *)get_zeroed_page(GFP_ATOMIC);
3421 if (root == NULL)
3422 return NULL;
3423
3424 *pte = __pa(root) | GCR3_VALID;
3425 }
3426
3427 root = __va(*pte & PAGE_MASK);
3428
3429 level -= 1;
3430 }
3431
3432 return pte;
3433 }
3434
3435 static int __set_gcr3(struct protection_domain *domain, int pasid,
3436 unsigned long cr3)
3437 {
3438 u64 *pte;
3439
3440 if (domain->mode != PAGE_MODE_NONE)
3441 return -EINVAL;
3442
3443 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
3444 if (pte == NULL)
3445 return -ENOMEM;
3446
3447 *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
3448
3449 return __amd_iommu_flush_tlb(domain, pasid);
3450 }
3451
3452 static int __clear_gcr3(struct protection_domain *domain, int pasid)
3453 {
3454 u64 *pte;
3455
3456 if (domain->mode != PAGE_MODE_NONE)
3457 return -EINVAL;
3458
3459 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
3460 if (pte == NULL)
3461 return 0;
3462
3463 *pte = 0;
3464
3465 return __amd_iommu_flush_tlb(domain, pasid);
3466 }
3467
3468 int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
3469 unsigned long cr3)
3470 {
3471 struct protection_domain *domain = to_pdomain(dom);
3472 unsigned long flags;
3473 int ret;
3474
3475 spin_lock_irqsave(&domain->lock, flags);
3476 ret = __set_gcr3(domain, pasid, cr3);
3477 spin_unlock_irqrestore(&domain->lock, flags);
3478
3479 return ret;
3480 }
3481 EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
3482
3483 int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
3484 {
3485 struct protection_domain *domain = to_pdomain(dom);
3486 unsigned long flags;
3487 int ret;
3488
3489 spin_lock_irqsave(&domain->lock, flags);
3490 ret = __clear_gcr3(domain, pasid);
3491 spin_unlock_irqrestore(&domain->lock, flags);
3492
3493 return ret;
3494 }
3495 EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3496
3497 int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
3498 int status, int tag)
3499 {
3500 struct iommu_dev_data *dev_data;
3501 struct amd_iommu *iommu;
3502 struct iommu_cmd cmd;
3503
3504 INC_STATS_COUNTER(complete_ppr);
3505
3506 dev_data = get_dev_data(&pdev->dev);
3507 iommu = amd_iommu_rlookup_table[dev_data->devid];
3508
3509 build_complete_ppr(&cmd, dev_data->devid, pasid, status,
3510 tag, dev_data->pri_tlp);
3511
3512 return iommu_queue_command(iommu, &cmd);
3513 }
3514 EXPORT_SYMBOL(amd_iommu_complete_ppr);
3515
3516 struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
3517 {
3518 struct protection_domain *pdomain;
3519
3520 pdomain = get_domain(&pdev->dev);
3521 if (IS_ERR(pdomain))
3522 return NULL;
3523
3524 /* Only return IOMMUv2 domains */
3525 if (!(pdomain->flags & PD_IOMMUV2_MASK))
3526 return NULL;
3527
3528 return &pdomain->domain;
3529 }
3530 EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3531
3532 void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
3533 {
3534 struct iommu_dev_data *dev_data;
3535
3536 if (!amd_iommu_v2_supported())
3537 return;
3538
3539 dev_data = get_dev_data(&pdev->dev);
3540 dev_data->errata |= (1 << erratum);
3541 }
3542 EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3543
3544 int amd_iommu_device_info(struct pci_dev *pdev,
3545 struct amd_iommu_device_info *info)
3546 {
3547 int max_pasids;
3548 int pos;
3549
3550 if (pdev == NULL || info == NULL)
3551 return -EINVAL;
3552
3553 if (!amd_iommu_v2_supported())
3554 return -EINVAL;
3555
3556 memset(info, 0, sizeof(*info));
3557
3558 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
3559 if (pos)
3560 info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
3561
3562 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
3563 if (pos)
3564 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
3565
3566 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
3567 if (pos) {
3568 int features;
3569
3570 max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
3571 max_pasids = min(max_pasids, (1 << 20));
3572
3573 info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
3574 info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
3575
3576 features = pci_pasid_features(pdev);
3577 if (features & PCI_PASID_CAP_EXEC)
3578 info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
3579 if (features & PCI_PASID_CAP_PRIV)
3580 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
3581 }
3582
3583 return 0;
3584 }
3585 EXPORT_SYMBOL(amd_iommu_device_info);
3586
3587 #ifdef CONFIG_IRQ_REMAP
3588
3589 /*****************************************************************************
3590 *
3591 * Interrupt Remapping Implementation
3592 *
3593 *****************************************************************************/
3594
3595 union irte {
3596 u32 val;
3597 struct {
3598 u32 valid : 1,
3599 no_fault : 1,
3600 int_type : 3,
3601 rq_eoi : 1,
3602 dm : 1,
3603 rsvd_1 : 1,
3604 destination : 8,
3605 vector : 8,
3606 rsvd_2 : 8;
3607 } fields;
3608 };
3609
3610 struct irq_2_irte {
3611 u16 devid; /* Device ID for IRTE table */
3612 u16 index; /* Index into IRTE table*/
3613 };
3614
3615 struct amd_ir_data {
3616 struct irq_2_irte irq_2_irte;
3617 union irte irte_entry;
3618 union {
3619 struct msi_msg msi_entry;
3620 };
3621 };
3622
3623 static struct irq_chip amd_ir_chip;
3624
3625 #define DTE_IRQ_PHYS_ADDR_MASK (((1ULL << 45)-1) << 6)
3626 #define DTE_IRQ_REMAP_INTCTL (2ULL << 60)
3627 #define DTE_IRQ_TABLE_LEN (8ULL << 1)
3628 #define DTE_IRQ_REMAP_ENABLE 1ULL
3629
3630 static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
3631 {
3632 u64 dte;
3633
3634 dte = amd_iommu_dev_table[devid].data[2];
3635 dte &= ~DTE_IRQ_PHYS_ADDR_MASK;
3636 dte |= virt_to_phys(table->table);
3637 dte |= DTE_IRQ_REMAP_INTCTL;
3638 dte |= DTE_IRQ_TABLE_LEN;
3639 dte |= DTE_IRQ_REMAP_ENABLE;
3640
3641 amd_iommu_dev_table[devid].data[2] = dte;
3642 }
3643
3644 #define IRTE_ALLOCATED (~1U)
3645
3646 static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
3647 {
3648 struct irq_remap_table *table = NULL;
3649 struct amd_iommu *iommu;
3650 unsigned long flags;
3651 u16 alias;
3652
3653 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
3654
3655 iommu = amd_iommu_rlookup_table[devid];
3656 if (!iommu)
3657 goto out_unlock;
3658
3659 table = irq_lookup_table[devid];
3660 if (table)
3661 goto out;
3662
3663 alias = amd_iommu_alias_table[devid];
3664 table = irq_lookup_table[alias];
3665 if (table) {
3666 irq_lookup_table[devid] = table;
3667 set_dte_irq_entry(devid, table);
3668 iommu_flush_dte(iommu, devid);
3669 goto out;
3670 }
3671
3672 /* Nothing there yet, allocate new irq remapping table */
3673 table = kzalloc(sizeof(*table), GFP_ATOMIC);
3674 if (!table)
3675 goto out;
3676
3677 /* Initialize table spin-lock */
3678 spin_lock_init(&table->lock);
3679
3680 if (ioapic)
3681 /* Keep the first 32 indexes free for IOAPIC interrupts */
3682 table->min_index = 32;
3683
3684 table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
3685 if (!table->table) {
3686 kfree(table);
3687 table = NULL;
3688 goto out;
3689 }
3690
3691 memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));
3692
3693 if (ioapic) {
3694 int i;
3695
3696 for (i = 0; i < 32; ++i)
3697 table->table[i] = IRTE_ALLOCATED;
3698 }
3699
3700 irq_lookup_table[devid] = table;
3701 set_dte_irq_entry(devid, table);
3702 iommu_flush_dte(iommu, devid);
3703 if (devid != alias) {
3704 irq_lookup_table[alias] = table;
3705 set_dte_irq_entry(alias, table);
3706 iommu_flush_dte(iommu, alias);
3707 }
3708
3709 out:
3710 iommu_completion_wait(iommu);
3711
3712 out_unlock:
3713 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
3714
3715 return table;
3716 }
3717
3718 static int alloc_irq_index(u16 devid, int count)
3719 {
3720 struct irq_remap_table *table;
3721 unsigned long flags;
3722 int index, c;
3723
3724 table = get_irq_table(devid, false);
3725 if (!table)
3726 return -ENODEV;
3727
3728 spin_lock_irqsave(&table->lock, flags);
3729
3730 /* Scan table for free entries */
3731 for (c = 0, index = table->min_index;
3732 index < MAX_IRQS_PER_TABLE;
3733 ++index) {
3734 if (table->table[index] == 0)
3735 c += 1;
3736 else
3737 c = 0;
3738
3739 if (c == count) {
3740 for (; c != 0; --c)
3741 table->table[index - c + 1] = IRTE_ALLOCATED;
3742
3743 index -= count - 1;
3744 goto out;
3745 }
3746 }
3747
3748 index = -ENOSPC;
3749
3750 out:
3751 spin_unlock_irqrestore(&table->lock, flags);
3752
3753 return index;
3754 }
3755
3756 static int modify_irte(u16 devid, int index, union irte irte)
3757 {
3758 struct irq_remap_table *table;
3759 struct amd_iommu *iommu;
3760 unsigned long flags;
3761
3762 iommu = amd_iommu_rlookup_table[devid];
3763 if (iommu == NULL)
3764 return -EINVAL;
3765
3766 table = get_irq_table(devid, false);
3767 if (!table)
3768 return -ENOMEM;
3769
3770 spin_lock_irqsave(&table->lock, flags);
3771 table->table[index] = irte.val;
3772 spin_unlock_irqrestore(&table->lock, flags);
3773
3774 iommu_flush_irt(iommu, devid);
3775 iommu_completion_wait(iommu);
3776
3777 return 0;
3778 }
3779
3780 static void free_irte(u16 devid, int index)
3781 {
3782 struct irq_remap_table *table;
3783 struct amd_iommu *iommu;
3784 unsigned long flags;
3785
3786 iommu = amd_iommu_rlookup_table[devid];
3787 if (iommu == NULL)
3788 return;
3789
3790 table = get_irq_table(devid, false);
3791 if (!table)
3792 return;
3793
3794 spin_lock_irqsave(&table->lock, flags);
3795 table->table[index] = 0;
3796 spin_unlock_irqrestore(&table->lock, flags);
3797
3798 iommu_flush_irt(iommu, devid);
3799 iommu_completion_wait(iommu);
3800 }
3801
3802 static int get_devid(struct irq_alloc_info *info)
3803 {
3804 int devid = -1;
3805
3806 switch (info->type) {
3807 case X86_IRQ_ALLOC_TYPE_IOAPIC:
3808 devid = get_ioapic_devid(info->ioapic_id);
3809 break;
3810 case X86_IRQ_ALLOC_TYPE_HPET:
3811 devid = get_hpet_devid(info->hpet_id);
3812 break;
3813 case X86_IRQ_ALLOC_TYPE_MSI:
3814 case X86_IRQ_ALLOC_TYPE_MSIX:
3815 devid = get_device_id(&info->msi_dev->dev);
3816 break;
3817 default:
3818 BUG_ON(1);
3819 break;
3820 }
3821
3822 return devid;
3823 }
3824
3825 static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
3826 {
3827 struct amd_iommu *iommu;
3828 int devid;
3829
3830 if (!info)
3831 return NULL;
3832
3833 devid = get_devid(info);
3834 if (devid >= 0) {
3835 iommu = amd_iommu_rlookup_table[devid];
3836 if (iommu)
3837 return iommu->ir_domain;
3838 }
3839
3840 return NULL;
3841 }
3842
3843 static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
3844 {
3845 struct amd_iommu *iommu;
3846 int devid;
3847
3848 if (!info)
3849 return NULL;
3850
3851 switch (info->type) {
3852 case X86_IRQ_ALLOC_TYPE_MSI:
3853 case X86_IRQ_ALLOC_TYPE_MSIX:
3854 devid = get_device_id(&info->msi_dev->dev);
3855 if (devid >= 0) {
3856 iommu = amd_iommu_rlookup_table[devid];
3857 if (iommu)
3858 return iommu->msi_domain;
3859 }
3860 break;
3861 default:
3862 break;
3863 }
3864
3865 return NULL;
3866 }
3867
3868 struct irq_remap_ops amd_iommu_irq_ops = {
3869 .prepare = amd_iommu_prepare,
3870 .enable = amd_iommu_enable,
3871 .disable = amd_iommu_disable,
3872 .reenable = amd_iommu_reenable,
3873 .enable_faulting = amd_iommu_enable_faulting,
3874 .get_ir_irq_domain = get_ir_irq_domain,
3875 .get_irq_domain = get_irq_domain,
3876 };
3877
3878 static void irq_remapping_prepare_irte(struct amd_ir_data *data,
3879 struct irq_cfg *irq_cfg,
3880 struct irq_alloc_info *info,
3881 int devid, int index, int sub_handle)
3882 {
3883 struct irq_2_irte *irte_info = &data->irq_2_irte;
3884 struct msi_msg *msg = &data->msi_entry;
3885 union irte *irte = &data->irte_entry;
3886 struct IO_APIC_route_entry *entry;
3887
3888 data->irq_2_irte.devid = devid;
3889 data->irq_2_irte.index = index + sub_handle;
3890
3891 /* Setup IRTE for IOMMU */
3892 irte->val = 0;
3893 irte->fields.vector = irq_cfg->vector;
3894 irte->fields.int_type = apic->irq_delivery_mode;
3895 irte->fields.destination = irq_cfg->dest_apicid;
3896 irte->fields.dm = apic->irq_dest_mode;
3897 irte->fields.valid = 1;
3898
3899 switch (info->type) {
3900 case X86_IRQ_ALLOC_TYPE_IOAPIC:
3901 /* Setup IOAPIC entry */
3902 entry = info->ioapic_entry;
3903 info->ioapic_entry = NULL;
3904 memset(entry, 0, sizeof(*entry));
3905 entry->vector = index;
3906 entry->mask = 0;
3907 entry->trigger = info->ioapic_trigger;
3908 entry->polarity = info->ioapic_polarity;
3909 /* Mask level triggered irqs. */
3910 if (info->ioapic_trigger)
3911 entry->mask = 1;
3912 break;
3913
3914 case X86_IRQ_ALLOC_TYPE_HPET:
3915 case X86_IRQ_ALLOC_TYPE_MSI:
3916 case X86_IRQ_ALLOC_TYPE_MSIX:
3917 msg->address_hi = MSI_ADDR_BASE_HI;
3918 msg->address_lo = MSI_ADDR_BASE_LO;
3919 msg->data = irte_info->index;
3920 break;
3921
3922 default:
3923 BUG_ON(1);
3924 break;
3925 }
3926 }
3927
3928 static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
3929 unsigned int nr_irqs, void *arg)
3930 {
3931 struct irq_alloc_info *info = arg;
3932 struct irq_data *irq_data;
3933 struct amd_ir_data *data;
3934 struct irq_cfg *cfg;
3935 int i, ret, devid;
3936 int index = -1;
3937
3938 if (!info)
3939 return -EINVAL;
3940 if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
3941 info->type != X86_IRQ_ALLOC_TYPE_MSIX)
3942 return -EINVAL;
3943
3944 /*
3945 * With IRQ remapping enabled, don't need contiguous CPU vectors
3946 * to support multiple MSI interrupts.
3947 */
3948 if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
3949 info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
3950
3951 devid = get_devid(info);
3952 if (devid < 0)
3953 return -EINVAL;
3954
3955 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
3956 if (ret < 0)
3957 return ret;
3958
3959 if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
3960 if (get_irq_table(devid, true))
3961 index = info->ioapic_pin;
3962 else
3963 ret = -ENOMEM;
3964 } else {
3965 index = alloc_irq_index(devid, nr_irqs);
3966 }
3967 if (index < 0) {
3968 pr_warn("Failed to allocate IRTE\n");
3969 goto out_free_parent;
3970 }
3971
3972 for (i = 0; i < nr_irqs; i++) {
3973 irq_data = irq_domain_get_irq_data(domain, virq + i);
3974 cfg = irqd_cfg(irq_data);
3975 if (!irq_data || !cfg) {
3976 ret = -EINVAL;
3977 goto out_free_data;
3978 }
3979
3980 ret = -ENOMEM;
3981 data = kzalloc(sizeof(*data), GFP_KERNEL);
3982 if (!data)
3983 goto out_free_data;
3984
3985 irq_data->hwirq = (devid << 16) + i;
3986 irq_data->chip_data = data;
3987 irq_data->chip = &amd_ir_chip;
3988 irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
3989 irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
3990 }
3991
3992 return 0;
3993
3994 out_free_data:
3995 for (i--; i >= 0; i--) {
3996 irq_data = irq_domain_get_irq_data(domain, virq + i);
3997 if (irq_data)
3998 kfree(irq_data->chip_data);
3999 }
4000 for (i = 0; i < nr_irqs; i++)
4001 free_irte(devid, index + i);
4002 out_free_parent:
4003 irq_domain_free_irqs_common(domain, virq, nr_irqs);
4004 return ret;
4005 }
4006
4007 static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
4008 unsigned int nr_irqs)
4009 {
4010 struct irq_2_irte *irte_info;
4011 struct irq_data *irq_data;
4012 struct amd_ir_data *data;
4013 int i;
4014
4015 for (i = 0; i < nr_irqs; i++) {
4016 irq_data = irq_domain_get_irq_data(domain, virq + i);
4017 if (irq_data && irq_data->chip_data) {
4018 data = irq_data->chip_data;
4019 irte_info = &data->irq_2_irte;
4020 free_irte(irte_info->devid, irte_info->index);
4021 kfree(data);
4022 }
4023 }
4024 irq_domain_free_irqs_common(domain, virq, nr_irqs);
4025 }
4026
4027 static void irq_remapping_activate(struct irq_domain *domain,
4028 struct irq_data *irq_data)
4029 {
4030 struct amd_ir_data *data = irq_data->chip_data;
4031 struct irq_2_irte *irte_info = &data->irq_2_irte;
4032
4033 modify_irte(irte_info->devid, irte_info->index, data->irte_entry);
4034 }
4035
4036 static void irq_remapping_deactivate(struct irq_domain *domain,
4037 struct irq_data *irq_data)
4038 {
4039 struct amd_ir_data *data = irq_data->chip_data;
4040 struct irq_2_irte *irte_info = &data->irq_2_irte;
4041 union irte entry;
4042
4043 entry.val = 0;
4044 modify_irte(irte_info->devid, irte_info->index, data->irte_entry);
4045 }
4046
4047 static struct irq_domain_ops amd_ir_domain_ops = {
4048 .alloc = irq_remapping_alloc,
4049 .free = irq_remapping_free,
4050 .activate = irq_remapping_activate,
4051 .deactivate = irq_remapping_deactivate,
4052 };
4053
4054 static int amd_ir_set_affinity(struct irq_data *data,
4055 const struct cpumask *mask, bool force)
4056 {
4057 struct amd_ir_data *ir_data = data->chip_data;
4058 struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4059 struct irq_cfg *cfg = irqd_cfg(data);
4060 struct irq_data *parent = data->parent_data;
4061 int ret;
4062
4063 ret = parent->chip->irq_set_affinity(parent, mask, force);
4064 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
4065 return ret;
4066
4067 /*
4068 * Atomically updates the IRTE with the new destination, vector
4069 * and flushes the interrupt entry cache.
4070 */
4071 ir_data->irte_entry.fields.vector = cfg->vector;
4072 ir_data->irte_entry.fields.destination = cfg->dest_apicid;
4073 modify_irte(irte_info->devid, irte_info->index, ir_data->irte_entry);
4074
4075 /*
4076 * After this point, all the interrupts will start arriving
4077 * at the new destination. So, time to cleanup the previous
4078 * vector allocation.
4079 */
4080 send_cleanup_vector(cfg);
4081
4082 return IRQ_SET_MASK_OK_DONE;
4083 }
4084
4085 static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4086 {
4087 struct amd_ir_data *ir_data = irq_data->chip_data;
4088
4089 *msg = ir_data->msi_entry;
4090 }
4091
4092 static struct irq_chip amd_ir_chip = {
4093 .irq_ack = ir_ack_apic_edge,
4094 .irq_set_affinity = amd_ir_set_affinity,
4095 .irq_compose_msi_msg = ir_compose_msi_msg,
4096 };
4097
4098 int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
4099 {
4100 iommu->ir_domain = irq_domain_add_tree(NULL, &amd_ir_domain_ops, iommu);
4101 if (!iommu->ir_domain)
4102 return -ENOMEM;
4103
4104 iommu->ir_domain->parent = arch_get_ir_parent_domain();
4105 iommu->msi_domain = arch_create_msi_irq_domain(iommu->ir_domain);
4106
4107 return 0;
4108 }
4109 #endif
This page took 0.178138 seconds and 5 git commands to generate.