iommu/amd: Fix resource leak in iommu_init_device()
[deliverable/linux.git] / drivers / iommu / amd_iommu.c
1 /*
2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20 #include <linux/ratelimit.h>
21 #include <linux/pci.h>
22 #include <linux/pci-ats.h>
23 #include <linux/bitmap.h>
24 #include <linux/slab.h>
25 #include <linux/debugfs.h>
26 #include <linux/scatterlist.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/iommu-helper.h>
29 #include <linux/iommu.h>
30 #include <linux/delay.h>
31 #include <linux/amd-iommu.h>
32 #include <linux/notifier.h>
33 #include <linux/export.h>
34 #include <linux/irq.h>
35 #include <linux/msi.h>
36 #include <asm/irq_remapping.h>
37 #include <asm/io_apic.h>
38 #include <asm/apic.h>
39 #include <asm/hw_irq.h>
40 #include <asm/msidef.h>
41 #include <asm/proto.h>
42 #include <asm/iommu.h>
43 #include <asm/gart.h>
44 #include <asm/dma.h>
45
46 #include "amd_iommu_proto.h"
47 #include "amd_iommu_types.h"
48 #include "irq_remapping.h"
49 #include "pci.h"
50
51 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
52
53 #define LOOP_TIMEOUT 100000
54
55 /*
56 * This bitmap is used to advertise the page sizes our hardware support
57 * to the IOMMU core, which will then use this information to split
58 * physically contiguous memory regions it is mapping into page sizes
59 * that we support.
60 *
61 * 512GB Pages are not supported due to a hardware bug
62 */
63 #define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38))
64
65 static DEFINE_RWLOCK(amd_iommu_devtable_lock);
66
67 /* A list of preallocated protection domains */
68 static LIST_HEAD(iommu_pd_list);
69 static DEFINE_SPINLOCK(iommu_pd_list_lock);
70
71 /* List of all available dev_data structures */
72 static LIST_HEAD(dev_data_list);
73 static DEFINE_SPINLOCK(dev_data_list_lock);
74
75 LIST_HEAD(ioapic_map);
76 LIST_HEAD(hpet_map);
77
78 /*
79 * Domain for untranslated devices - only allocated
80 * if iommu=pt passed on kernel cmd line.
81 */
82 static struct protection_domain *pt_domain;
83
84 static struct iommu_ops amd_iommu_ops;
85
86 static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
87 int amd_iommu_max_glx_val = -1;
88
89 static struct dma_map_ops amd_iommu_dma_ops;
90
91 /*
92 * general struct to manage commands send to an IOMMU
93 */
94 struct iommu_cmd {
95 u32 data[4];
96 };
97
98 struct kmem_cache *amd_iommu_irq_cache;
99
100 static void update_domain(struct protection_domain *domain);
101 static int __init alloc_passthrough_domain(void);
102
103 /****************************************************************************
104 *
105 * Helper functions
106 *
107 ****************************************************************************/
108
109 static struct iommu_dev_data *alloc_dev_data(u16 devid)
110 {
111 struct iommu_dev_data *dev_data;
112 unsigned long flags;
113
114 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
115 if (!dev_data)
116 return NULL;
117
118 dev_data->devid = devid;
119 atomic_set(&dev_data->bind, 0);
120
121 spin_lock_irqsave(&dev_data_list_lock, flags);
122 list_add_tail(&dev_data->dev_data_list, &dev_data_list);
123 spin_unlock_irqrestore(&dev_data_list_lock, flags);
124
125 return dev_data;
126 }
127
128 static void free_dev_data(struct iommu_dev_data *dev_data)
129 {
130 unsigned long flags;
131
132 spin_lock_irqsave(&dev_data_list_lock, flags);
133 list_del(&dev_data->dev_data_list);
134 spin_unlock_irqrestore(&dev_data_list_lock, flags);
135
136 if (dev_data->group)
137 iommu_group_put(dev_data->group);
138
139 kfree(dev_data);
140 }
141
142 static struct iommu_dev_data *search_dev_data(u16 devid)
143 {
144 struct iommu_dev_data *dev_data;
145 unsigned long flags;
146
147 spin_lock_irqsave(&dev_data_list_lock, flags);
148 list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
149 if (dev_data->devid == devid)
150 goto out_unlock;
151 }
152
153 dev_data = NULL;
154
155 out_unlock:
156 spin_unlock_irqrestore(&dev_data_list_lock, flags);
157
158 return dev_data;
159 }
160
161 static struct iommu_dev_data *find_dev_data(u16 devid)
162 {
163 struct iommu_dev_data *dev_data;
164
165 dev_data = search_dev_data(devid);
166
167 if (dev_data == NULL)
168 dev_data = alloc_dev_data(devid);
169
170 return dev_data;
171 }
172
173 static inline u16 get_device_id(struct device *dev)
174 {
175 struct pci_dev *pdev = to_pci_dev(dev);
176
177 return PCI_DEVID(pdev->bus->number, pdev->devfn);
178 }
179
180 static struct iommu_dev_data *get_dev_data(struct device *dev)
181 {
182 return dev->archdata.iommu;
183 }
184
185 static bool pci_iommuv2_capable(struct pci_dev *pdev)
186 {
187 static const int caps[] = {
188 PCI_EXT_CAP_ID_ATS,
189 PCI_EXT_CAP_ID_PRI,
190 PCI_EXT_CAP_ID_PASID,
191 };
192 int i, pos;
193
194 for (i = 0; i < 3; ++i) {
195 pos = pci_find_ext_capability(pdev, caps[i]);
196 if (pos == 0)
197 return false;
198 }
199
200 return true;
201 }
202
203 static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
204 {
205 struct iommu_dev_data *dev_data;
206
207 dev_data = get_dev_data(&pdev->dev);
208
209 return dev_data->errata & (1 << erratum) ? true : false;
210 }
211
212 /*
213 * In this function the list of preallocated protection domains is traversed to
214 * find the domain for a specific device
215 */
216 static struct dma_ops_domain *find_protection_domain(u16 devid)
217 {
218 struct dma_ops_domain *entry, *ret = NULL;
219 unsigned long flags;
220 u16 alias = amd_iommu_alias_table[devid];
221
222 if (list_empty(&iommu_pd_list))
223 return NULL;
224
225 spin_lock_irqsave(&iommu_pd_list_lock, flags);
226
227 list_for_each_entry(entry, &iommu_pd_list, list) {
228 if (entry->target_dev == devid ||
229 entry->target_dev == alias) {
230 ret = entry;
231 break;
232 }
233 }
234
235 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
236
237 return ret;
238 }
239
240 /*
241 * This function checks if the driver got a valid device from the caller to
242 * avoid dereferencing invalid pointers.
243 */
244 static bool check_device(struct device *dev)
245 {
246 u16 devid;
247
248 if (!dev || !dev->dma_mask)
249 return false;
250
251 /* No device or no PCI device */
252 if (dev->bus != &pci_bus_type)
253 return false;
254
255 devid = get_device_id(dev);
256
257 /* Out of our scope? */
258 if (devid > amd_iommu_last_bdf)
259 return false;
260
261 if (amd_iommu_rlookup_table[devid] == NULL)
262 return false;
263
264 return true;
265 }
266
267 static struct pci_bus *find_hosted_bus(struct pci_bus *bus)
268 {
269 while (!bus->self) {
270 if (!pci_is_root_bus(bus))
271 bus = bus->parent;
272 else
273 return ERR_PTR(-ENODEV);
274 }
275
276 return bus;
277 }
278
279 #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
280
281 static struct pci_dev *get_isolation_root(struct pci_dev *pdev)
282 {
283 struct pci_dev *dma_pdev = pdev;
284
285 /* Account for quirked devices */
286 swap_pci_ref(&dma_pdev, pci_get_dma_source(dma_pdev));
287
288 /*
289 * If it's a multifunction device that does not support our
290 * required ACS flags, add to the same group as lowest numbered
291 * function that also does not suport the required ACS flags.
292 */
293 if (dma_pdev->multifunction &&
294 !pci_acs_enabled(dma_pdev, REQ_ACS_FLAGS)) {
295 u8 i, slot = PCI_SLOT(dma_pdev->devfn);
296
297 for (i = 0; i < 8; i++) {
298 struct pci_dev *tmp;
299
300 tmp = pci_get_slot(dma_pdev->bus, PCI_DEVFN(slot, i));
301 if (!tmp)
302 continue;
303
304 if (!pci_acs_enabled(tmp, REQ_ACS_FLAGS)) {
305 swap_pci_ref(&dma_pdev, tmp);
306 break;
307 }
308 pci_dev_put(tmp);
309 }
310 }
311
312 /*
313 * Devices on the root bus go through the iommu. If that's not us,
314 * find the next upstream device and test ACS up to the root bus.
315 * Finding the next device may require skipping virtual buses.
316 */
317 while (!pci_is_root_bus(dma_pdev->bus)) {
318 struct pci_bus *bus = find_hosted_bus(dma_pdev->bus);
319 if (IS_ERR(bus))
320 break;
321
322 if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
323 break;
324
325 swap_pci_ref(&dma_pdev, pci_dev_get(bus->self));
326 }
327
328 return dma_pdev;
329 }
330
331 static int use_pdev_iommu_group(struct pci_dev *pdev, struct device *dev)
332 {
333 struct iommu_group *group = iommu_group_get(&pdev->dev);
334 int ret;
335
336 if (!group) {
337 group = iommu_group_alloc();
338 if (IS_ERR(group))
339 return PTR_ERR(group);
340
341 WARN_ON(&pdev->dev != dev);
342 }
343
344 ret = iommu_group_add_device(group, dev);
345 iommu_group_put(group);
346 return ret;
347 }
348
349 static int use_dev_data_iommu_group(struct iommu_dev_data *dev_data,
350 struct device *dev)
351 {
352 if (!dev_data->group) {
353 struct iommu_group *group = iommu_group_alloc();
354 if (IS_ERR(group))
355 return PTR_ERR(group);
356
357 dev_data->group = group;
358 }
359
360 return iommu_group_add_device(dev_data->group, dev);
361 }
362
363 static int init_iommu_group(struct device *dev)
364 {
365 struct iommu_dev_data *dev_data;
366 struct iommu_group *group;
367 struct pci_dev *dma_pdev;
368 int ret;
369
370 group = iommu_group_get(dev);
371 if (group) {
372 iommu_group_put(group);
373 return 0;
374 }
375
376 dev_data = find_dev_data(get_device_id(dev));
377 if (!dev_data)
378 return -ENOMEM;
379
380 if (dev_data->alias_data) {
381 u16 alias;
382 struct pci_bus *bus;
383
384 if (dev_data->alias_data->group)
385 goto use_group;
386
387 /*
388 * If the alias device exists, it's effectively just a first
389 * level quirk for finding the DMA source.
390 */
391 alias = amd_iommu_alias_table[dev_data->devid];
392 dma_pdev = pci_get_bus_and_slot(alias >> 8, alias & 0xff);
393 if (dma_pdev) {
394 dma_pdev = get_isolation_root(dma_pdev);
395 goto use_pdev;
396 }
397
398 /*
399 * If the alias is virtual, try to find a parent device
400 * and test whether the IOMMU group is actualy rooted above
401 * the alias. Be careful to also test the parent device if
402 * we think the alias is the root of the group.
403 */
404 bus = pci_find_bus(0, alias >> 8);
405 if (!bus)
406 goto use_group;
407
408 bus = find_hosted_bus(bus);
409 if (IS_ERR(bus) || !bus->self)
410 goto use_group;
411
412 dma_pdev = get_isolation_root(pci_dev_get(bus->self));
413 if (dma_pdev != bus->self || (dma_pdev->multifunction &&
414 !pci_acs_enabled(dma_pdev, REQ_ACS_FLAGS)))
415 goto use_pdev;
416
417 pci_dev_put(dma_pdev);
418 goto use_group;
419 }
420
421 dma_pdev = get_isolation_root(pci_dev_get(to_pci_dev(dev)));
422 use_pdev:
423 ret = use_pdev_iommu_group(dma_pdev, dev);
424 pci_dev_put(dma_pdev);
425 return ret;
426 use_group:
427 return use_dev_data_iommu_group(dev_data->alias_data, dev);
428 }
429
430 static int iommu_init_device(struct device *dev)
431 {
432 struct pci_dev *pdev = to_pci_dev(dev);
433 struct iommu_dev_data *dev_data;
434 u16 alias;
435 int ret;
436
437 if (dev->archdata.iommu)
438 return 0;
439
440 dev_data = find_dev_data(get_device_id(dev));
441 if (!dev_data)
442 return -ENOMEM;
443
444 alias = amd_iommu_alias_table[dev_data->devid];
445 if (alias != dev_data->devid) {
446 struct iommu_dev_data *alias_data;
447
448 alias_data = find_dev_data(alias);
449 if (alias_data == NULL) {
450 pr_err("AMD-Vi: Warning: Unhandled device %s\n",
451 dev_name(dev));
452 free_dev_data(dev_data);
453 return -ENOTSUPP;
454 }
455 dev_data->alias_data = alias_data;
456 }
457
458 ret = init_iommu_group(dev);
459 if (ret) {
460 free_dev_data(dev_data);
461 return ret;
462 }
463
464 if (pci_iommuv2_capable(pdev)) {
465 struct amd_iommu *iommu;
466
467 iommu = amd_iommu_rlookup_table[dev_data->devid];
468 dev_data->iommu_v2 = iommu->is_iommu_v2;
469 }
470
471 dev->archdata.iommu = dev_data;
472
473 return 0;
474 }
475
476 static void iommu_ignore_device(struct device *dev)
477 {
478 u16 devid, alias;
479
480 devid = get_device_id(dev);
481 alias = amd_iommu_alias_table[devid];
482
483 memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
484 memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
485
486 amd_iommu_rlookup_table[devid] = NULL;
487 amd_iommu_rlookup_table[alias] = NULL;
488 }
489
490 static void iommu_uninit_device(struct device *dev)
491 {
492 iommu_group_remove_device(dev);
493
494 /*
495 * Nothing to do here - we keep dev_data around for unplugged devices
496 * and reuse it when the device is re-plugged - not doing so would
497 * introduce a ton of races.
498 */
499 }
500
501 void __init amd_iommu_uninit_devices(void)
502 {
503 struct iommu_dev_data *dev_data, *n;
504 struct pci_dev *pdev = NULL;
505
506 for_each_pci_dev(pdev) {
507
508 if (!check_device(&pdev->dev))
509 continue;
510
511 iommu_uninit_device(&pdev->dev);
512 }
513
514 /* Free all of our dev_data structures */
515 list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
516 free_dev_data(dev_data);
517 }
518
519 int __init amd_iommu_init_devices(void)
520 {
521 struct pci_dev *pdev = NULL;
522 int ret = 0;
523
524 for_each_pci_dev(pdev) {
525
526 if (!check_device(&pdev->dev))
527 continue;
528
529 ret = iommu_init_device(&pdev->dev);
530 if (ret == -ENOTSUPP)
531 iommu_ignore_device(&pdev->dev);
532 else if (ret)
533 goto out_free;
534 }
535
536 return 0;
537
538 out_free:
539
540 amd_iommu_uninit_devices();
541
542 return ret;
543 }
544 #ifdef CONFIG_AMD_IOMMU_STATS
545
546 /*
547 * Initialization code for statistics collection
548 */
549
550 DECLARE_STATS_COUNTER(compl_wait);
551 DECLARE_STATS_COUNTER(cnt_map_single);
552 DECLARE_STATS_COUNTER(cnt_unmap_single);
553 DECLARE_STATS_COUNTER(cnt_map_sg);
554 DECLARE_STATS_COUNTER(cnt_unmap_sg);
555 DECLARE_STATS_COUNTER(cnt_alloc_coherent);
556 DECLARE_STATS_COUNTER(cnt_free_coherent);
557 DECLARE_STATS_COUNTER(cross_page);
558 DECLARE_STATS_COUNTER(domain_flush_single);
559 DECLARE_STATS_COUNTER(domain_flush_all);
560 DECLARE_STATS_COUNTER(alloced_io_mem);
561 DECLARE_STATS_COUNTER(total_map_requests);
562 DECLARE_STATS_COUNTER(complete_ppr);
563 DECLARE_STATS_COUNTER(invalidate_iotlb);
564 DECLARE_STATS_COUNTER(invalidate_iotlb_all);
565 DECLARE_STATS_COUNTER(pri_requests);
566
567 static struct dentry *stats_dir;
568 static struct dentry *de_fflush;
569
570 static void amd_iommu_stats_add(struct __iommu_counter *cnt)
571 {
572 if (stats_dir == NULL)
573 return;
574
575 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
576 &cnt->value);
577 }
578
579 static void amd_iommu_stats_init(void)
580 {
581 stats_dir = debugfs_create_dir("amd-iommu", NULL);
582 if (stats_dir == NULL)
583 return;
584
585 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
586 &amd_iommu_unmap_flush);
587
588 amd_iommu_stats_add(&compl_wait);
589 amd_iommu_stats_add(&cnt_map_single);
590 amd_iommu_stats_add(&cnt_unmap_single);
591 amd_iommu_stats_add(&cnt_map_sg);
592 amd_iommu_stats_add(&cnt_unmap_sg);
593 amd_iommu_stats_add(&cnt_alloc_coherent);
594 amd_iommu_stats_add(&cnt_free_coherent);
595 amd_iommu_stats_add(&cross_page);
596 amd_iommu_stats_add(&domain_flush_single);
597 amd_iommu_stats_add(&domain_flush_all);
598 amd_iommu_stats_add(&alloced_io_mem);
599 amd_iommu_stats_add(&total_map_requests);
600 amd_iommu_stats_add(&complete_ppr);
601 amd_iommu_stats_add(&invalidate_iotlb);
602 amd_iommu_stats_add(&invalidate_iotlb_all);
603 amd_iommu_stats_add(&pri_requests);
604 }
605
606 #endif
607
608 /****************************************************************************
609 *
610 * Interrupt handling functions
611 *
612 ****************************************************************************/
613
614 static void dump_dte_entry(u16 devid)
615 {
616 int i;
617
618 for (i = 0; i < 4; ++i)
619 pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
620 amd_iommu_dev_table[devid].data[i]);
621 }
622
623 static void dump_command(unsigned long phys_addr)
624 {
625 struct iommu_cmd *cmd = phys_to_virt(phys_addr);
626 int i;
627
628 for (i = 0; i < 4; ++i)
629 pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
630 }
631
632 static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
633 {
634 int type, devid, domid, flags;
635 volatile u32 *event = __evt;
636 int count = 0;
637 u64 address;
638
639 retry:
640 type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
641 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
642 domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
643 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
644 address = (u64)(((u64)event[3]) << 32) | event[2];
645
646 if (type == 0) {
647 /* Did we hit the erratum? */
648 if (++count == LOOP_TIMEOUT) {
649 pr_err("AMD-Vi: No event written to event log\n");
650 return;
651 }
652 udelay(1);
653 goto retry;
654 }
655
656 printk(KERN_ERR "AMD-Vi: Event logged [");
657
658 switch (type) {
659 case EVENT_TYPE_ILL_DEV:
660 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
661 "address=0x%016llx flags=0x%04x]\n",
662 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
663 address, flags);
664 dump_dte_entry(devid);
665 break;
666 case EVENT_TYPE_IO_FAULT:
667 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
668 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
669 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
670 domid, address, flags);
671 break;
672 case EVENT_TYPE_DEV_TAB_ERR:
673 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
674 "address=0x%016llx flags=0x%04x]\n",
675 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
676 address, flags);
677 break;
678 case EVENT_TYPE_PAGE_TAB_ERR:
679 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
680 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
681 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
682 domid, address, flags);
683 break;
684 case EVENT_TYPE_ILL_CMD:
685 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
686 dump_command(address);
687 break;
688 case EVENT_TYPE_CMD_HARD_ERR:
689 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
690 "flags=0x%04x]\n", address, flags);
691 break;
692 case EVENT_TYPE_IOTLB_INV_TO:
693 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
694 "address=0x%016llx]\n",
695 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
696 address);
697 break;
698 case EVENT_TYPE_INV_DEV_REQ:
699 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
700 "address=0x%016llx flags=0x%04x]\n",
701 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
702 address, flags);
703 break;
704 default:
705 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
706 }
707
708 memset(__evt, 0, 4 * sizeof(u32));
709 }
710
711 static void iommu_poll_events(struct amd_iommu *iommu)
712 {
713 u32 head, tail;
714
715 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
716 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
717
718 while (head != tail) {
719 iommu_print_event(iommu, iommu->evt_buf + head);
720 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
721 }
722
723 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
724 }
725
726 static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
727 {
728 struct amd_iommu_fault fault;
729
730 INC_STATS_COUNTER(pri_requests);
731
732 if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
733 pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
734 return;
735 }
736
737 fault.address = raw[1];
738 fault.pasid = PPR_PASID(raw[0]);
739 fault.device_id = PPR_DEVID(raw[0]);
740 fault.tag = PPR_TAG(raw[0]);
741 fault.flags = PPR_FLAGS(raw[0]);
742
743 atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
744 }
745
746 static void iommu_poll_ppr_log(struct amd_iommu *iommu)
747 {
748 u32 head, tail;
749
750 if (iommu->ppr_log == NULL)
751 return;
752
753 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
754 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
755
756 while (head != tail) {
757 volatile u64 *raw;
758 u64 entry[2];
759 int i;
760
761 raw = (u64 *)(iommu->ppr_log + head);
762
763 /*
764 * Hardware bug: Interrupt may arrive before the entry is
765 * written to memory. If this happens we need to wait for the
766 * entry to arrive.
767 */
768 for (i = 0; i < LOOP_TIMEOUT; ++i) {
769 if (PPR_REQ_TYPE(raw[0]) != 0)
770 break;
771 udelay(1);
772 }
773
774 /* Avoid memcpy function-call overhead */
775 entry[0] = raw[0];
776 entry[1] = raw[1];
777
778 /*
779 * To detect the hardware bug we need to clear the entry
780 * back to zero.
781 */
782 raw[0] = raw[1] = 0UL;
783
784 /* Update head pointer of hardware ring-buffer */
785 head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
786 writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
787
788 /* Handle PPR entry */
789 iommu_handle_ppr_entry(iommu, entry);
790
791 /* Refresh ring-buffer information */
792 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
793 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
794 }
795 }
796
797 irqreturn_t amd_iommu_int_thread(int irq, void *data)
798 {
799 struct amd_iommu *iommu = (struct amd_iommu *) data;
800 u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
801
802 while (status & (MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK)) {
803 /* Enable EVT and PPR interrupts again */
804 writel((MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK),
805 iommu->mmio_base + MMIO_STATUS_OFFSET);
806
807 if (status & MMIO_STATUS_EVT_INT_MASK) {
808 pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
809 iommu_poll_events(iommu);
810 }
811
812 if (status & MMIO_STATUS_PPR_INT_MASK) {
813 pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
814 iommu_poll_ppr_log(iommu);
815 }
816
817 /*
818 * Hardware bug: ERBT1312
819 * When re-enabling interrupt (by writing 1
820 * to clear the bit), the hardware might also try to set
821 * the interrupt bit in the event status register.
822 * In this scenario, the bit will be set, and disable
823 * subsequent interrupts.
824 *
825 * Workaround: The IOMMU driver should read back the
826 * status register and check if the interrupt bits are cleared.
827 * If not, driver will need to go through the interrupt handler
828 * again and re-clear the bits
829 */
830 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
831 }
832 return IRQ_HANDLED;
833 }
834
835 irqreturn_t amd_iommu_int_handler(int irq, void *data)
836 {
837 return IRQ_WAKE_THREAD;
838 }
839
840 /****************************************************************************
841 *
842 * IOMMU command queuing functions
843 *
844 ****************************************************************************/
845
846 static int wait_on_sem(volatile u64 *sem)
847 {
848 int i = 0;
849
850 while (*sem == 0 && i < LOOP_TIMEOUT) {
851 udelay(1);
852 i += 1;
853 }
854
855 if (i == LOOP_TIMEOUT) {
856 pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
857 return -EIO;
858 }
859
860 return 0;
861 }
862
863 static void copy_cmd_to_buffer(struct amd_iommu *iommu,
864 struct iommu_cmd *cmd,
865 u32 tail)
866 {
867 u8 *target;
868
869 target = iommu->cmd_buf + tail;
870 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
871
872 /* Copy command to buffer */
873 memcpy(target, cmd, sizeof(*cmd));
874
875 /* Tell the IOMMU about it */
876 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
877 }
878
879 static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
880 {
881 WARN_ON(address & 0x7ULL);
882
883 memset(cmd, 0, sizeof(*cmd));
884 cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
885 cmd->data[1] = upper_32_bits(__pa(address));
886 cmd->data[2] = 1;
887 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
888 }
889
890 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
891 {
892 memset(cmd, 0, sizeof(*cmd));
893 cmd->data[0] = devid;
894 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
895 }
896
897 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
898 size_t size, u16 domid, int pde)
899 {
900 u64 pages;
901 int s;
902
903 pages = iommu_num_pages(address, size, PAGE_SIZE);
904 s = 0;
905
906 if (pages > 1) {
907 /*
908 * If we have to flush more than one page, flush all
909 * TLB entries for this domain
910 */
911 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
912 s = 1;
913 }
914
915 address &= PAGE_MASK;
916
917 memset(cmd, 0, sizeof(*cmd));
918 cmd->data[1] |= domid;
919 cmd->data[2] = lower_32_bits(address);
920 cmd->data[3] = upper_32_bits(address);
921 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
922 if (s) /* size bit - we flush more than one 4kb page */
923 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
924 if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
925 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
926 }
927
928 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
929 u64 address, size_t size)
930 {
931 u64 pages;
932 int s;
933
934 pages = iommu_num_pages(address, size, PAGE_SIZE);
935 s = 0;
936
937 if (pages > 1) {
938 /*
939 * If we have to flush more than one page, flush all
940 * TLB entries for this domain
941 */
942 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
943 s = 1;
944 }
945
946 address &= PAGE_MASK;
947
948 memset(cmd, 0, sizeof(*cmd));
949 cmd->data[0] = devid;
950 cmd->data[0] |= (qdep & 0xff) << 24;
951 cmd->data[1] = devid;
952 cmd->data[2] = lower_32_bits(address);
953 cmd->data[3] = upper_32_bits(address);
954 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
955 if (s)
956 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
957 }
958
959 static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
960 u64 address, bool size)
961 {
962 memset(cmd, 0, sizeof(*cmd));
963
964 address &= ~(0xfffULL);
965
966 cmd->data[0] = pasid & PASID_MASK;
967 cmd->data[1] = domid;
968 cmd->data[2] = lower_32_bits(address);
969 cmd->data[3] = upper_32_bits(address);
970 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
971 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
972 if (size)
973 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
974 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
975 }
976
977 static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
978 int qdep, u64 address, bool size)
979 {
980 memset(cmd, 0, sizeof(*cmd));
981
982 address &= ~(0xfffULL);
983
984 cmd->data[0] = devid;
985 cmd->data[0] |= (pasid & 0xff) << 16;
986 cmd->data[0] |= (qdep & 0xff) << 24;
987 cmd->data[1] = devid;
988 cmd->data[1] |= ((pasid >> 8) & 0xfff) << 16;
989 cmd->data[2] = lower_32_bits(address);
990 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
991 cmd->data[3] = upper_32_bits(address);
992 if (size)
993 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
994 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
995 }
996
997 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
998 int status, int tag, bool gn)
999 {
1000 memset(cmd, 0, sizeof(*cmd));
1001
1002 cmd->data[0] = devid;
1003 if (gn) {
1004 cmd->data[1] = pasid & PASID_MASK;
1005 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
1006 }
1007 cmd->data[3] = tag & 0x1ff;
1008 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
1009
1010 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
1011 }
1012
1013 static void build_inv_all(struct iommu_cmd *cmd)
1014 {
1015 memset(cmd, 0, sizeof(*cmd));
1016 CMD_SET_TYPE(cmd, CMD_INV_ALL);
1017 }
1018
1019 static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
1020 {
1021 memset(cmd, 0, sizeof(*cmd));
1022 cmd->data[0] = devid;
1023 CMD_SET_TYPE(cmd, CMD_INV_IRT);
1024 }
1025
1026 /*
1027 * Writes the command to the IOMMUs command buffer and informs the
1028 * hardware about the new command.
1029 */
1030 static int iommu_queue_command_sync(struct amd_iommu *iommu,
1031 struct iommu_cmd *cmd,
1032 bool sync)
1033 {
1034 u32 left, tail, head, next_tail;
1035 unsigned long flags;
1036
1037 WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
1038
1039 again:
1040 spin_lock_irqsave(&iommu->lock, flags);
1041
1042 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
1043 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
1044 next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
1045 left = (head - next_tail) % iommu->cmd_buf_size;
1046
1047 if (left <= 2) {
1048 struct iommu_cmd sync_cmd;
1049 volatile u64 sem = 0;
1050 int ret;
1051
1052 build_completion_wait(&sync_cmd, (u64)&sem);
1053 copy_cmd_to_buffer(iommu, &sync_cmd, tail);
1054
1055 spin_unlock_irqrestore(&iommu->lock, flags);
1056
1057 if ((ret = wait_on_sem(&sem)) != 0)
1058 return ret;
1059
1060 goto again;
1061 }
1062
1063 copy_cmd_to_buffer(iommu, cmd, tail);
1064
1065 /* We need to sync now to make sure all commands are processed */
1066 iommu->need_sync = sync;
1067
1068 spin_unlock_irqrestore(&iommu->lock, flags);
1069
1070 return 0;
1071 }
1072
1073 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1074 {
1075 return iommu_queue_command_sync(iommu, cmd, true);
1076 }
1077
1078 /*
1079 * This function queues a completion wait command into the command
1080 * buffer of an IOMMU
1081 */
1082 static int iommu_completion_wait(struct amd_iommu *iommu)
1083 {
1084 struct iommu_cmd cmd;
1085 volatile u64 sem = 0;
1086 int ret;
1087
1088 if (!iommu->need_sync)
1089 return 0;
1090
1091 build_completion_wait(&cmd, (u64)&sem);
1092
1093 ret = iommu_queue_command_sync(iommu, &cmd, false);
1094 if (ret)
1095 return ret;
1096
1097 return wait_on_sem(&sem);
1098 }
1099
1100 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1101 {
1102 struct iommu_cmd cmd;
1103
1104 build_inv_dte(&cmd, devid);
1105
1106 return iommu_queue_command(iommu, &cmd);
1107 }
1108
1109 static void iommu_flush_dte_all(struct amd_iommu *iommu)
1110 {
1111 u32 devid;
1112
1113 for (devid = 0; devid <= 0xffff; ++devid)
1114 iommu_flush_dte(iommu, devid);
1115
1116 iommu_completion_wait(iommu);
1117 }
1118
1119 /*
1120 * This function uses heavy locking and may disable irqs for some time. But
1121 * this is no issue because it is only called during resume.
1122 */
1123 static void iommu_flush_tlb_all(struct amd_iommu *iommu)
1124 {
1125 u32 dom_id;
1126
1127 for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
1128 struct iommu_cmd cmd;
1129 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1130 dom_id, 1);
1131 iommu_queue_command(iommu, &cmd);
1132 }
1133
1134 iommu_completion_wait(iommu);
1135 }
1136
1137 static void iommu_flush_all(struct amd_iommu *iommu)
1138 {
1139 struct iommu_cmd cmd;
1140
1141 build_inv_all(&cmd);
1142
1143 iommu_queue_command(iommu, &cmd);
1144 iommu_completion_wait(iommu);
1145 }
1146
1147 static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1148 {
1149 struct iommu_cmd cmd;
1150
1151 build_inv_irt(&cmd, devid);
1152
1153 iommu_queue_command(iommu, &cmd);
1154 }
1155
1156 static void iommu_flush_irt_all(struct amd_iommu *iommu)
1157 {
1158 u32 devid;
1159
1160 for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
1161 iommu_flush_irt(iommu, devid);
1162
1163 iommu_completion_wait(iommu);
1164 }
1165
1166 void iommu_flush_all_caches(struct amd_iommu *iommu)
1167 {
1168 if (iommu_feature(iommu, FEATURE_IA)) {
1169 iommu_flush_all(iommu);
1170 } else {
1171 iommu_flush_dte_all(iommu);
1172 iommu_flush_irt_all(iommu);
1173 iommu_flush_tlb_all(iommu);
1174 }
1175 }
1176
1177 /*
1178 * Command send function for flushing on-device TLB
1179 */
1180 static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1181 u64 address, size_t size)
1182 {
1183 struct amd_iommu *iommu;
1184 struct iommu_cmd cmd;
1185 int qdep;
1186
1187 qdep = dev_data->ats.qdep;
1188 iommu = amd_iommu_rlookup_table[dev_data->devid];
1189
1190 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1191
1192 return iommu_queue_command(iommu, &cmd);
1193 }
1194
1195 /*
1196 * Command send function for invalidating a device table entry
1197 */
1198 static int device_flush_dte(struct iommu_dev_data *dev_data)
1199 {
1200 struct amd_iommu *iommu;
1201 int ret;
1202
1203 iommu = amd_iommu_rlookup_table[dev_data->devid];
1204
1205 ret = iommu_flush_dte(iommu, dev_data->devid);
1206 if (ret)
1207 return ret;
1208
1209 if (dev_data->ats.enabled)
1210 ret = device_flush_iotlb(dev_data, 0, ~0UL);
1211
1212 return ret;
1213 }
1214
1215 /*
1216 * TLB invalidation function which is called from the mapping functions.
1217 * It invalidates a single PTE if the range to flush is within a single
1218 * page. Otherwise it flushes the whole TLB of the IOMMU.
1219 */
1220 static void __domain_flush_pages(struct protection_domain *domain,
1221 u64 address, size_t size, int pde)
1222 {
1223 struct iommu_dev_data *dev_data;
1224 struct iommu_cmd cmd;
1225 int ret = 0, i;
1226
1227 build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1228
1229 for (i = 0; i < amd_iommus_present; ++i) {
1230 if (!domain->dev_iommu[i])
1231 continue;
1232
1233 /*
1234 * Devices of this domain are behind this IOMMU
1235 * We need a TLB flush
1236 */
1237 ret |= iommu_queue_command(amd_iommus[i], &cmd);
1238 }
1239
1240 list_for_each_entry(dev_data, &domain->dev_list, list) {
1241
1242 if (!dev_data->ats.enabled)
1243 continue;
1244
1245 ret |= device_flush_iotlb(dev_data, address, size);
1246 }
1247
1248 WARN_ON(ret);
1249 }
1250
1251 static void domain_flush_pages(struct protection_domain *domain,
1252 u64 address, size_t size)
1253 {
1254 __domain_flush_pages(domain, address, size, 0);
1255 }
1256
1257 /* Flush the whole IO/TLB for a given protection domain */
1258 static void domain_flush_tlb(struct protection_domain *domain)
1259 {
1260 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1261 }
1262
1263 /* Flush the whole IO/TLB for a given protection domain - including PDE */
1264 static void domain_flush_tlb_pde(struct protection_domain *domain)
1265 {
1266 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1267 }
1268
1269 static void domain_flush_complete(struct protection_domain *domain)
1270 {
1271 int i;
1272
1273 for (i = 0; i < amd_iommus_present; ++i) {
1274 if (!domain->dev_iommu[i])
1275 continue;
1276
1277 /*
1278 * Devices of this domain are behind this IOMMU
1279 * We need to wait for completion of all commands.
1280 */
1281 iommu_completion_wait(amd_iommus[i]);
1282 }
1283 }
1284
1285
1286 /*
1287 * This function flushes the DTEs for all devices in domain
1288 */
1289 static void domain_flush_devices(struct protection_domain *domain)
1290 {
1291 struct iommu_dev_data *dev_data;
1292
1293 list_for_each_entry(dev_data, &domain->dev_list, list)
1294 device_flush_dte(dev_data);
1295 }
1296
1297 /****************************************************************************
1298 *
1299 * The functions below are used the create the page table mappings for
1300 * unity mapped regions.
1301 *
1302 ****************************************************************************/
1303
1304 /*
1305 * This function is used to add another level to an IO page table. Adding
1306 * another level increases the size of the address space by 9 bits to a size up
1307 * to 64 bits.
1308 */
1309 static bool increase_address_space(struct protection_domain *domain,
1310 gfp_t gfp)
1311 {
1312 u64 *pte;
1313
1314 if (domain->mode == PAGE_MODE_6_LEVEL)
1315 /* address space already 64 bit large */
1316 return false;
1317
1318 pte = (void *)get_zeroed_page(gfp);
1319 if (!pte)
1320 return false;
1321
1322 *pte = PM_LEVEL_PDE(domain->mode,
1323 virt_to_phys(domain->pt_root));
1324 domain->pt_root = pte;
1325 domain->mode += 1;
1326 domain->updated = true;
1327
1328 return true;
1329 }
1330
1331 static u64 *alloc_pte(struct protection_domain *domain,
1332 unsigned long address,
1333 unsigned long page_size,
1334 u64 **pte_page,
1335 gfp_t gfp)
1336 {
1337 int level, end_lvl;
1338 u64 *pte, *page;
1339
1340 BUG_ON(!is_power_of_2(page_size));
1341
1342 while (address > PM_LEVEL_SIZE(domain->mode))
1343 increase_address_space(domain, gfp);
1344
1345 level = domain->mode - 1;
1346 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1347 address = PAGE_SIZE_ALIGN(address, page_size);
1348 end_lvl = PAGE_SIZE_LEVEL(page_size);
1349
1350 while (level > end_lvl) {
1351 if (!IOMMU_PTE_PRESENT(*pte)) {
1352 page = (u64 *)get_zeroed_page(gfp);
1353 if (!page)
1354 return NULL;
1355 *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
1356 }
1357
1358 /* No level skipping support yet */
1359 if (PM_PTE_LEVEL(*pte) != level)
1360 return NULL;
1361
1362 level -= 1;
1363
1364 pte = IOMMU_PTE_PAGE(*pte);
1365
1366 if (pte_page && level == end_lvl)
1367 *pte_page = pte;
1368
1369 pte = &pte[PM_LEVEL_INDEX(level, address)];
1370 }
1371
1372 return pte;
1373 }
1374
1375 /*
1376 * This function checks if there is a PTE for a given dma address. If
1377 * there is one, it returns the pointer to it.
1378 */
1379 static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
1380 {
1381 int level;
1382 u64 *pte;
1383
1384 if (address > PM_LEVEL_SIZE(domain->mode))
1385 return NULL;
1386
1387 level = domain->mode - 1;
1388 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1389
1390 while (level > 0) {
1391
1392 /* Not Present */
1393 if (!IOMMU_PTE_PRESENT(*pte))
1394 return NULL;
1395
1396 /* Large PTE */
1397 if (PM_PTE_LEVEL(*pte) == 0x07) {
1398 unsigned long pte_mask, __pte;
1399
1400 /*
1401 * If we have a series of large PTEs, make
1402 * sure to return a pointer to the first one.
1403 */
1404 pte_mask = PTE_PAGE_SIZE(*pte);
1405 pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
1406 __pte = ((unsigned long)pte) & pte_mask;
1407
1408 return (u64 *)__pte;
1409 }
1410
1411 /* No level skipping support yet */
1412 if (PM_PTE_LEVEL(*pte) != level)
1413 return NULL;
1414
1415 level -= 1;
1416
1417 /* Walk to the next level */
1418 pte = IOMMU_PTE_PAGE(*pte);
1419 pte = &pte[PM_LEVEL_INDEX(level, address)];
1420 }
1421
1422 return pte;
1423 }
1424
1425 /*
1426 * Generic mapping functions. It maps a physical address into a DMA
1427 * address space. It allocates the page table pages if necessary.
1428 * In the future it can be extended to a generic mapping function
1429 * supporting all features of AMD IOMMU page tables like level skipping
1430 * and full 64 bit address spaces.
1431 */
1432 static int iommu_map_page(struct protection_domain *dom,
1433 unsigned long bus_addr,
1434 unsigned long phys_addr,
1435 int prot,
1436 unsigned long page_size)
1437 {
1438 u64 __pte, *pte;
1439 int i, count;
1440
1441 if (!(prot & IOMMU_PROT_MASK))
1442 return -EINVAL;
1443
1444 bus_addr = PAGE_ALIGN(bus_addr);
1445 phys_addr = PAGE_ALIGN(phys_addr);
1446 count = PAGE_SIZE_PTE_COUNT(page_size);
1447 pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
1448
1449 for (i = 0; i < count; ++i)
1450 if (IOMMU_PTE_PRESENT(pte[i]))
1451 return -EBUSY;
1452
1453 if (page_size > PAGE_SIZE) {
1454 __pte = PAGE_SIZE_PTE(phys_addr, page_size);
1455 __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
1456 } else
1457 __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1458
1459 if (prot & IOMMU_PROT_IR)
1460 __pte |= IOMMU_PTE_IR;
1461 if (prot & IOMMU_PROT_IW)
1462 __pte |= IOMMU_PTE_IW;
1463
1464 for (i = 0; i < count; ++i)
1465 pte[i] = __pte;
1466
1467 update_domain(dom);
1468
1469 return 0;
1470 }
1471
1472 static unsigned long iommu_unmap_page(struct protection_domain *dom,
1473 unsigned long bus_addr,
1474 unsigned long page_size)
1475 {
1476 unsigned long long unmap_size, unmapped;
1477 u64 *pte;
1478
1479 BUG_ON(!is_power_of_2(page_size));
1480
1481 unmapped = 0;
1482
1483 while (unmapped < page_size) {
1484
1485 pte = fetch_pte(dom, bus_addr);
1486
1487 if (!pte) {
1488 /*
1489 * No PTE for this address
1490 * move forward in 4kb steps
1491 */
1492 unmap_size = PAGE_SIZE;
1493 } else if (PM_PTE_LEVEL(*pte) == 0) {
1494 /* 4kb PTE found for this address */
1495 unmap_size = PAGE_SIZE;
1496 *pte = 0ULL;
1497 } else {
1498 int count, i;
1499
1500 /* Large PTE found which maps this address */
1501 unmap_size = PTE_PAGE_SIZE(*pte);
1502
1503 /* Only unmap from the first pte in the page */
1504 if ((unmap_size - 1) & bus_addr)
1505 break;
1506 count = PAGE_SIZE_PTE_COUNT(unmap_size);
1507 for (i = 0; i < count; i++)
1508 pte[i] = 0ULL;
1509 }
1510
1511 bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1512 unmapped += unmap_size;
1513 }
1514
1515 BUG_ON(unmapped && !is_power_of_2(unmapped));
1516
1517 return unmapped;
1518 }
1519
1520 /*
1521 * This function checks if a specific unity mapping entry is needed for
1522 * this specific IOMMU.
1523 */
1524 static int iommu_for_unity_map(struct amd_iommu *iommu,
1525 struct unity_map_entry *entry)
1526 {
1527 u16 bdf, i;
1528
1529 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
1530 bdf = amd_iommu_alias_table[i];
1531 if (amd_iommu_rlookup_table[bdf] == iommu)
1532 return 1;
1533 }
1534
1535 return 0;
1536 }
1537
1538 /*
1539 * This function actually applies the mapping to the page table of the
1540 * dma_ops domain.
1541 */
1542 static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
1543 struct unity_map_entry *e)
1544 {
1545 u64 addr;
1546 int ret;
1547
1548 for (addr = e->address_start; addr < e->address_end;
1549 addr += PAGE_SIZE) {
1550 ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
1551 PAGE_SIZE);
1552 if (ret)
1553 return ret;
1554 /*
1555 * if unity mapping is in aperture range mark the page
1556 * as allocated in the aperture
1557 */
1558 if (addr < dma_dom->aperture_size)
1559 __set_bit(addr >> PAGE_SHIFT,
1560 dma_dom->aperture[0]->bitmap);
1561 }
1562
1563 return 0;
1564 }
1565
1566 /*
1567 * Init the unity mappings for a specific IOMMU in the system
1568 *
1569 * Basically iterates over all unity mapping entries and applies them to
1570 * the default domain DMA of that IOMMU if necessary.
1571 */
1572 static int iommu_init_unity_mappings(struct amd_iommu *iommu)
1573 {
1574 struct unity_map_entry *entry;
1575 int ret;
1576
1577 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
1578 if (!iommu_for_unity_map(iommu, entry))
1579 continue;
1580 ret = dma_ops_unity_map(iommu->default_dom, entry);
1581 if (ret)
1582 return ret;
1583 }
1584
1585 return 0;
1586 }
1587
1588 /*
1589 * Inits the unity mappings required for a specific device
1590 */
1591 static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
1592 u16 devid)
1593 {
1594 struct unity_map_entry *e;
1595 int ret;
1596
1597 list_for_each_entry(e, &amd_iommu_unity_map, list) {
1598 if (!(devid >= e->devid_start && devid <= e->devid_end))
1599 continue;
1600 ret = dma_ops_unity_map(dma_dom, e);
1601 if (ret)
1602 return ret;
1603 }
1604
1605 return 0;
1606 }
1607
1608 /****************************************************************************
1609 *
1610 * The next functions belong to the address allocator for the dma_ops
1611 * interface functions. They work like the allocators in the other IOMMU
1612 * drivers. Its basically a bitmap which marks the allocated pages in
1613 * the aperture. Maybe it could be enhanced in the future to a more
1614 * efficient allocator.
1615 *
1616 ****************************************************************************/
1617
1618 /*
1619 * The address allocator core functions.
1620 *
1621 * called with domain->lock held
1622 */
1623
1624 /*
1625 * Used to reserve address ranges in the aperture (e.g. for exclusion
1626 * ranges.
1627 */
1628 static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1629 unsigned long start_page,
1630 unsigned int pages)
1631 {
1632 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
1633
1634 if (start_page + pages > last_page)
1635 pages = last_page - start_page;
1636
1637 for (i = start_page; i < start_page + pages; ++i) {
1638 int index = i / APERTURE_RANGE_PAGES;
1639 int page = i % APERTURE_RANGE_PAGES;
1640 __set_bit(page, dom->aperture[index]->bitmap);
1641 }
1642 }
1643
1644 /*
1645 * This function is used to add a new aperture range to an existing
1646 * aperture in case of dma_ops domain allocation or address allocation
1647 * failure.
1648 */
1649 static int alloc_new_range(struct dma_ops_domain *dma_dom,
1650 bool populate, gfp_t gfp)
1651 {
1652 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1653 struct amd_iommu *iommu;
1654 unsigned long i, old_size;
1655
1656 #ifdef CONFIG_IOMMU_STRESS
1657 populate = false;
1658 #endif
1659
1660 if (index >= APERTURE_MAX_RANGES)
1661 return -ENOMEM;
1662
1663 dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
1664 if (!dma_dom->aperture[index])
1665 return -ENOMEM;
1666
1667 dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
1668 if (!dma_dom->aperture[index]->bitmap)
1669 goto out_free;
1670
1671 dma_dom->aperture[index]->offset = dma_dom->aperture_size;
1672
1673 if (populate) {
1674 unsigned long address = dma_dom->aperture_size;
1675 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
1676 u64 *pte, *pte_page;
1677
1678 for (i = 0; i < num_ptes; ++i) {
1679 pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1680 &pte_page, gfp);
1681 if (!pte)
1682 goto out_free;
1683
1684 dma_dom->aperture[index]->pte_pages[i] = pte_page;
1685
1686 address += APERTURE_RANGE_SIZE / 64;
1687 }
1688 }
1689
1690 old_size = dma_dom->aperture_size;
1691 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
1692
1693 /* Reserve address range used for MSI messages */
1694 if (old_size < MSI_ADDR_BASE_LO &&
1695 dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
1696 unsigned long spage;
1697 int pages;
1698
1699 pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
1700 spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;
1701
1702 dma_ops_reserve_addresses(dma_dom, spage, pages);
1703 }
1704
1705 /* Initialize the exclusion range if necessary */
1706 for_each_iommu(iommu) {
1707 if (iommu->exclusion_start &&
1708 iommu->exclusion_start >= dma_dom->aperture[index]->offset
1709 && iommu->exclusion_start < dma_dom->aperture_size) {
1710 unsigned long startpage;
1711 int pages = iommu_num_pages(iommu->exclusion_start,
1712 iommu->exclusion_length,
1713 PAGE_SIZE);
1714 startpage = iommu->exclusion_start >> PAGE_SHIFT;
1715 dma_ops_reserve_addresses(dma_dom, startpage, pages);
1716 }
1717 }
1718
1719 /*
1720 * Check for areas already mapped as present in the new aperture
1721 * range and mark those pages as reserved in the allocator. Such
1722 * mappings may already exist as a result of requested unity
1723 * mappings for devices.
1724 */
1725 for (i = dma_dom->aperture[index]->offset;
1726 i < dma_dom->aperture_size;
1727 i += PAGE_SIZE) {
1728 u64 *pte = fetch_pte(&dma_dom->domain, i);
1729 if (!pte || !IOMMU_PTE_PRESENT(*pte))
1730 continue;
1731
1732 dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT, 1);
1733 }
1734
1735 update_domain(&dma_dom->domain);
1736
1737 return 0;
1738
1739 out_free:
1740 update_domain(&dma_dom->domain);
1741
1742 free_page((unsigned long)dma_dom->aperture[index]->bitmap);
1743
1744 kfree(dma_dom->aperture[index]);
1745 dma_dom->aperture[index] = NULL;
1746
1747 return -ENOMEM;
1748 }
1749
1750 static unsigned long dma_ops_area_alloc(struct device *dev,
1751 struct dma_ops_domain *dom,
1752 unsigned int pages,
1753 unsigned long align_mask,
1754 u64 dma_mask,
1755 unsigned long start)
1756 {
1757 unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1758 int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
1759 int i = start >> APERTURE_RANGE_SHIFT;
1760 unsigned long boundary_size;
1761 unsigned long address = -1;
1762 unsigned long limit;
1763
1764 next_bit >>= PAGE_SHIFT;
1765
1766 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
1767 PAGE_SIZE) >> PAGE_SHIFT;
1768
1769 for (;i < max_index; ++i) {
1770 unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
1771
1772 if (dom->aperture[i]->offset >= dma_mask)
1773 break;
1774
1775 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
1776 dma_mask >> PAGE_SHIFT);
1777
1778 address = iommu_area_alloc(dom->aperture[i]->bitmap,
1779 limit, next_bit, pages, 0,
1780 boundary_size, align_mask);
1781 if (address != -1) {
1782 address = dom->aperture[i]->offset +
1783 (address << PAGE_SHIFT);
1784 dom->next_address = address + (pages << PAGE_SHIFT);
1785 break;
1786 }
1787
1788 next_bit = 0;
1789 }
1790
1791 return address;
1792 }
1793
1794 static unsigned long dma_ops_alloc_addresses(struct device *dev,
1795 struct dma_ops_domain *dom,
1796 unsigned int pages,
1797 unsigned long align_mask,
1798 u64 dma_mask)
1799 {
1800 unsigned long address;
1801
1802 #ifdef CONFIG_IOMMU_STRESS
1803 dom->next_address = 0;
1804 dom->need_flush = true;
1805 #endif
1806
1807 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1808 dma_mask, dom->next_address);
1809
1810 if (address == -1) {
1811 dom->next_address = 0;
1812 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1813 dma_mask, 0);
1814 dom->need_flush = true;
1815 }
1816
1817 if (unlikely(address == -1))
1818 address = DMA_ERROR_CODE;
1819
1820 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
1821
1822 return address;
1823 }
1824
1825 /*
1826 * The address free function.
1827 *
1828 * called with domain->lock held
1829 */
1830 static void dma_ops_free_addresses(struct dma_ops_domain *dom,
1831 unsigned long address,
1832 unsigned int pages)
1833 {
1834 unsigned i = address >> APERTURE_RANGE_SHIFT;
1835 struct aperture_range *range = dom->aperture[i];
1836
1837 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
1838
1839 #ifdef CONFIG_IOMMU_STRESS
1840 if (i < 4)
1841 return;
1842 #endif
1843
1844 if (address >= dom->next_address)
1845 dom->need_flush = true;
1846
1847 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1848
1849 bitmap_clear(range->bitmap, address, pages);
1850
1851 }
1852
1853 /****************************************************************************
1854 *
1855 * The next functions belong to the domain allocation. A domain is
1856 * allocated for every IOMMU as the default domain. If device isolation
1857 * is enabled, every device get its own domain. The most important thing
1858 * about domains is the page table mapping the DMA address space they
1859 * contain.
1860 *
1861 ****************************************************************************/
1862
1863 /*
1864 * This function adds a protection domain to the global protection domain list
1865 */
1866 static void add_domain_to_list(struct protection_domain *domain)
1867 {
1868 unsigned long flags;
1869
1870 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1871 list_add(&domain->list, &amd_iommu_pd_list);
1872 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1873 }
1874
1875 /*
1876 * This function removes a protection domain to the global
1877 * protection domain list
1878 */
1879 static void del_domain_from_list(struct protection_domain *domain)
1880 {
1881 unsigned long flags;
1882
1883 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1884 list_del(&domain->list);
1885 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1886 }
1887
1888 static u16 domain_id_alloc(void)
1889 {
1890 unsigned long flags;
1891 int id;
1892
1893 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1894 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1895 BUG_ON(id == 0);
1896 if (id > 0 && id < MAX_DOMAIN_ID)
1897 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1898 else
1899 id = 0;
1900 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1901
1902 return id;
1903 }
1904
1905 static void domain_id_free(int id)
1906 {
1907 unsigned long flags;
1908
1909 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1910 if (id > 0 && id < MAX_DOMAIN_ID)
1911 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1912 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1913 }
1914
1915 #define DEFINE_FREE_PT_FN(LVL, FN) \
1916 static void free_pt_##LVL (unsigned long __pt) \
1917 { \
1918 unsigned long p; \
1919 u64 *pt; \
1920 int i; \
1921 \
1922 pt = (u64 *)__pt; \
1923 \
1924 for (i = 0; i < 512; ++i) { \
1925 if (!IOMMU_PTE_PRESENT(pt[i])) \
1926 continue; \
1927 \
1928 p = (unsigned long)IOMMU_PTE_PAGE(pt[i]); \
1929 FN(p); \
1930 } \
1931 free_page((unsigned long)pt); \
1932 }
1933
1934 DEFINE_FREE_PT_FN(l2, free_page)
1935 DEFINE_FREE_PT_FN(l3, free_pt_l2)
1936 DEFINE_FREE_PT_FN(l4, free_pt_l3)
1937 DEFINE_FREE_PT_FN(l5, free_pt_l4)
1938 DEFINE_FREE_PT_FN(l6, free_pt_l5)
1939
1940 static void free_pagetable(struct protection_domain *domain)
1941 {
1942 unsigned long root = (unsigned long)domain->pt_root;
1943
1944 switch (domain->mode) {
1945 case PAGE_MODE_NONE:
1946 break;
1947 case PAGE_MODE_1_LEVEL:
1948 free_page(root);
1949 break;
1950 case PAGE_MODE_2_LEVEL:
1951 free_pt_l2(root);
1952 break;
1953 case PAGE_MODE_3_LEVEL:
1954 free_pt_l3(root);
1955 break;
1956 case PAGE_MODE_4_LEVEL:
1957 free_pt_l4(root);
1958 break;
1959 case PAGE_MODE_5_LEVEL:
1960 free_pt_l5(root);
1961 break;
1962 case PAGE_MODE_6_LEVEL:
1963 free_pt_l6(root);
1964 break;
1965 default:
1966 BUG();
1967 }
1968 }
1969
1970 static void free_gcr3_tbl_level1(u64 *tbl)
1971 {
1972 u64 *ptr;
1973 int i;
1974
1975 for (i = 0; i < 512; ++i) {
1976 if (!(tbl[i] & GCR3_VALID))
1977 continue;
1978
1979 ptr = __va(tbl[i] & PAGE_MASK);
1980
1981 free_page((unsigned long)ptr);
1982 }
1983 }
1984
1985 static void free_gcr3_tbl_level2(u64 *tbl)
1986 {
1987 u64 *ptr;
1988 int i;
1989
1990 for (i = 0; i < 512; ++i) {
1991 if (!(tbl[i] & GCR3_VALID))
1992 continue;
1993
1994 ptr = __va(tbl[i] & PAGE_MASK);
1995
1996 free_gcr3_tbl_level1(ptr);
1997 }
1998 }
1999
2000 static void free_gcr3_table(struct protection_domain *domain)
2001 {
2002 if (domain->glx == 2)
2003 free_gcr3_tbl_level2(domain->gcr3_tbl);
2004 else if (domain->glx == 1)
2005 free_gcr3_tbl_level1(domain->gcr3_tbl);
2006 else if (domain->glx != 0)
2007 BUG();
2008
2009 free_page((unsigned long)domain->gcr3_tbl);
2010 }
2011
2012 /*
2013 * Free a domain, only used if something went wrong in the
2014 * allocation path and we need to free an already allocated page table
2015 */
2016 static void dma_ops_domain_free(struct dma_ops_domain *dom)
2017 {
2018 int i;
2019
2020 if (!dom)
2021 return;
2022
2023 del_domain_from_list(&dom->domain);
2024
2025 free_pagetable(&dom->domain);
2026
2027 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
2028 if (!dom->aperture[i])
2029 continue;
2030 free_page((unsigned long)dom->aperture[i]->bitmap);
2031 kfree(dom->aperture[i]);
2032 }
2033
2034 kfree(dom);
2035 }
2036
2037 /*
2038 * Allocates a new protection domain usable for the dma_ops functions.
2039 * It also initializes the page table and the address allocator data
2040 * structures required for the dma_ops interface
2041 */
2042 static struct dma_ops_domain *dma_ops_domain_alloc(void)
2043 {
2044 struct dma_ops_domain *dma_dom;
2045
2046 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
2047 if (!dma_dom)
2048 return NULL;
2049
2050 spin_lock_init(&dma_dom->domain.lock);
2051
2052 dma_dom->domain.id = domain_id_alloc();
2053 if (dma_dom->domain.id == 0)
2054 goto free_dma_dom;
2055 INIT_LIST_HEAD(&dma_dom->domain.dev_list);
2056 dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
2057 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2058 dma_dom->domain.flags = PD_DMA_OPS_MASK;
2059 dma_dom->domain.priv = dma_dom;
2060 if (!dma_dom->domain.pt_root)
2061 goto free_dma_dom;
2062
2063 dma_dom->need_flush = false;
2064 dma_dom->target_dev = 0xffff;
2065
2066 add_domain_to_list(&dma_dom->domain);
2067
2068 if (alloc_new_range(dma_dom, true, GFP_KERNEL))
2069 goto free_dma_dom;
2070
2071 /*
2072 * mark the first page as allocated so we never return 0 as
2073 * a valid dma-address. So we can use 0 as error value
2074 */
2075 dma_dom->aperture[0]->bitmap[0] = 1;
2076 dma_dom->next_address = 0;
2077
2078
2079 return dma_dom;
2080
2081 free_dma_dom:
2082 dma_ops_domain_free(dma_dom);
2083
2084 return NULL;
2085 }
2086
2087 /*
2088 * little helper function to check whether a given protection domain is a
2089 * dma_ops domain
2090 */
2091 static bool dma_ops_domain(struct protection_domain *domain)
2092 {
2093 return domain->flags & PD_DMA_OPS_MASK;
2094 }
2095
2096 static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
2097 {
2098 u64 pte_root = 0;
2099 u64 flags = 0;
2100
2101 if (domain->mode != PAGE_MODE_NONE)
2102 pte_root = virt_to_phys(domain->pt_root);
2103
2104 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
2105 << DEV_ENTRY_MODE_SHIFT;
2106 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
2107
2108 flags = amd_iommu_dev_table[devid].data[1];
2109
2110 if (ats)
2111 flags |= DTE_FLAG_IOTLB;
2112
2113 if (domain->flags & PD_IOMMUV2_MASK) {
2114 u64 gcr3 = __pa(domain->gcr3_tbl);
2115 u64 glx = domain->glx;
2116 u64 tmp;
2117
2118 pte_root |= DTE_FLAG_GV;
2119 pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
2120
2121 /* First mask out possible old values for GCR3 table */
2122 tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
2123 flags &= ~tmp;
2124
2125 tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
2126 flags &= ~tmp;
2127
2128 /* Encode GCR3 table into DTE */
2129 tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
2130 pte_root |= tmp;
2131
2132 tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
2133 flags |= tmp;
2134
2135 tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
2136 flags |= tmp;
2137 }
2138
2139 flags &= ~(0xffffUL);
2140 flags |= domain->id;
2141
2142 amd_iommu_dev_table[devid].data[1] = flags;
2143 amd_iommu_dev_table[devid].data[0] = pte_root;
2144 }
2145
2146 static void clear_dte_entry(u16 devid)
2147 {
2148 /* remove entry from the device table seen by the hardware */
2149 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
2150 amd_iommu_dev_table[devid].data[1] = 0;
2151
2152 amd_iommu_apply_erratum_63(devid);
2153 }
2154
2155 static void do_attach(struct iommu_dev_data *dev_data,
2156 struct protection_domain *domain)
2157 {
2158 struct amd_iommu *iommu;
2159 bool ats;
2160
2161 iommu = amd_iommu_rlookup_table[dev_data->devid];
2162 ats = dev_data->ats.enabled;
2163
2164 /* Update data structures */
2165 dev_data->domain = domain;
2166 list_add(&dev_data->list, &domain->dev_list);
2167 set_dte_entry(dev_data->devid, domain, ats);
2168
2169 /* Do reference counting */
2170 domain->dev_iommu[iommu->index] += 1;
2171 domain->dev_cnt += 1;
2172
2173 /* Flush the DTE entry */
2174 device_flush_dte(dev_data);
2175 }
2176
2177 static void do_detach(struct iommu_dev_data *dev_data)
2178 {
2179 struct amd_iommu *iommu;
2180
2181 iommu = amd_iommu_rlookup_table[dev_data->devid];
2182
2183 /* decrease reference counters */
2184 dev_data->domain->dev_iommu[iommu->index] -= 1;
2185 dev_data->domain->dev_cnt -= 1;
2186
2187 /* Update data structures */
2188 dev_data->domain = NULL;
2189 list_del(&dev_data->list);
2190 clear_dte_entry(dev_data->devid);
2191
2192 /* Flush the DTE entry */
2193 device_flush_dte(dev_data);
2194 }
2195
2196 /*
2197 * If a device is not yet associated with a domain, this function does
2198 * assigns it visible for the hardware
2199 */
2200 static int __attach_device(struct iommu_dev_data *dev_data,
2201 struct protection_domain *domain)
2202 {
2203 int ret;
2204
2205 /* lock domain */
2206 spin_lock(&domain->lock);
2207
2208 if (dev_data->alias_data != NULL) {
2209 struct iommu_dev_data *alias_data = dev_data->alias_data;
2210
2211 /* Some sanity checks */
2212 ret = -EBUSY;
2213 if (alias_data->domain != NULL &&
2214 alias_data->domain != domain)
2215 goto out_unlock;
2216
2217 if (dev_data->domain != NULL &&
2218 dev_data->domain != domain)
2219 goto out_unlock;
2220
2221 /* Do real assignment */
2222 if (alias_data->domain == NULL)
2223 do_attach(alias_data, domain);
2224
2225 atomic_inc(&alias_data->bind);
2226 }
2227
2228 if (dev_data->domain == NULL)
2229 do_attach(dev_data, domain);
2230
2231 atomic_inc(&dev_data->bind);
2232
2233 ret = 0;
2234
2235 out_unlock:
2236
2237 /* ready */
2238 spin_unlock(&domain->lock);
2239
2240 return ret;
2241 }
2242
2243
2244 static void pdev_iommuv2_disable(struct pci_dev *pdev)
2245 {
2246 pci_disable_ats(pdev);
2247 pci_disable_pri(pdev);
2248 pci_disable_pasid(pdev);
2249 }
2250
2251 /* FIXME: Change generic reset-function to do the same */
2252 static int pri_reset_while_enabled(struct pci_dev *pdev)
2253 {
2254 u16 control;
2255 int pos;
2256
2257 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2258 if (!pos)
2259 return -EINVAL;
2260
2261 pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
2262 control |= PCI_PRI_CTRL_RESET;
2263 pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2264
2265 return 0;
2266 }
2267
2268 static int pdev_iommuv2_enable(struct pci_dev *pdev)
2269 {
2270 bool reset_enable;
2271 int reqs, ret;
2272
2273 /* FIXME: Hardcode number of outstanding requests for now */
2274 reqs = 32;
2275 if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
2276 reqs = 1;
2277 reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2278
2279 /* Only allow access to user-accessible pages */
2280 ret = pci_enable_pasid(pdev, 0);
2281 if (ret)
2282 goto out_err;
2283
2284 /* First reset the PRI state of the device */
2285 ret = pci_reset_pri(pdev);
2286 if (ret)
2287 goto out_err;
2288
2289 /* Enable PRI */
2290 ret = pci_enable_pri(pdev, reqs);
2291 if (ret)
2292 goto out_err;
2293
2294 if (reset_enable) {
2295 ret = pri_reset_while_enabled(pdev);
2296 if (ret)
2297 goto out_err;
2298 }
2299
2300 ret = pci_enable_ats(pdev, PAGE_SHIFT);
2301 if (ret)
2302 goto out_err;
2303
2304 return 0;
2305
2306 out_err:
2307 pci_disable_pri(pdev);
2308 pci_disable_pasid(pdev);
2309
2310 return ret;
2311 }
2312
2313 /* FIXME: Move this to PCI code */
2314 #define PCI_PRI_TLP_OFF (1 << 15)
2315
2316 static bool pci_pri_tlp_required(struct pci_dev *pdev)
2317 {
2318 u16 status;
2319 int pos;
2320
2321 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2322 if (!pos)
2323 return false;
2324
2325 pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2326
2327 return (status & PCI_PRI_TLP_OFF) ? true : false;
2328 }
2329
2330 /*
2331 * If a device is not yet associated with a domain, this function
2332 * assigns it visible for the hardware
2333 */
2334 static int attach_device(struct device *dev,
2335 struct protection_domain *domain)
2336 {
2337 struct pci_dev *pdev = to_pci_dev(dev);
2338 struct iommu_dev_data *dev_data;
2339 unsigned long flags;
2340 int ret;
2341
2342 dev_data = get_dev_data(dev);
2343
2344 if (domain->flags & PD_IOMMUV2_MASK) {
2345 if (!dev_data->iommu_v2 || !dev_data->passthrough)
2346 return -EINVAL;
2347
2348 if (pdev_iommuv2_enable(pdev) != 0)
2349 return -EINVAL;
2350
2351 dev_data->ats.enabled = true;
2352 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2353 dev_data->pri_tlp = pci_pri_tlp_required(pdev);
2354 } else if (amd_iommu_iotlb_sup &&
2355 pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2356 dev_data->ats.enabled = true;
2357 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2358 }
2359
2360 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2361 ret = __attach_device(dev_data, domain);
2362 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2363
2364 /*
2365 * We might boot into a crash-kernel here. The crashed kernel
2366 * left the caches in the IOMMU dirty. So we have to flush
2367 * here to evict all dirty stuff.
2368 */
2369 domain_flush_tlb_pde(domain);
2370
2371 return ret;
2372 }
2373
2374 /*
2375 * Removes a device from a protection domain (unlocked)
2376 */
2377 static void __detach_device(struct iommu_dev_data *dev_data)
2378 {
2379 struct protection_domain *domain;
2380 unsigned long flags;
2381
2382 BUG_ON(!dev_data->domain);
2383
2384 domain = dev_data->domain;
2385
2386 spin_lock_irqsave(&domain->lock, flags);
2387
2388 if (dev_data->alias_data != NULL) {
2389 struct iommu_dev_data *alias_data = dev_data->alias_data;
2390
2391 if (atomic_dec_and_test(&alias_data->bind))
2392 do_detach(alias_data);
2393 }
2394
2395 if (atomic_dec_and_test(&dev_data->bind))
2396 do_detach(dev_data);
2397
2398 spin_unlock_irqrestore(&domain->lock, flags);
2399
2400 /*
2401 * If we run in passthrough mode the device must be assigned to the
2402 * passthrough domain if it is detached from any other domain.
2403 * Make sure we can deassign from the pt_domain itself.
2404 */
2405 if (dev_data->passthrough &&
2406 (dev_data->domain == NULL && domain != pt_domain))
2407 __attach_device(dev_data, pt_domain);
2408 }
2409
2410 /*
2411 * Removes a device from a protection domain (with devtable_lock held)
2412 */
2413 static void detach_device(struct device *dev)
2414 {
2415 struct protection_domain *domain;
2416 struct iommu_dev_data *dev_data;
2417 unsigned long flags;
2418
2419 dev_data = get_dev_data(dev);
2420 domain = dev_data->domain;
2421
2422 /* lock device table */
2423 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2424 __detach_device(dev_data);
2425 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2426
2427 if (domain->flags & PD_IOMMUV2_MASK)
2428 pdev_iommuv2_disable(to_pci_dev(dev));
2429 else if (dev_data->ats.enabled)
2430 pci_disable_ats(to_pci_dev(dev));
2431
2432 dev_data->ats.enabled = false;
2433 }
2434
2435 /*
2436 * Find out the protection domain structure for a given PCI device. This
2437 * will give us the pointer to the page table root for example.
2438 */
2439 static struct protection_domain *domain_for_device(struct device *dev)
2440 {
2441 struct iommu_dev_data *dev_data;
2442 struct protection_domain *dom = NULL;
2443 unsigned long flags;
2444
2445 dev_data = get_dev_data(dev);
2446
2447 if (dev_data->domain)
2448 return dev_data->domain;
2449
2450 if (dev_data->alias_data != NULL) {
2451 struct iommu_dev_data *alias_data = dev_data->alias_data;
2452
2453 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
2454 if (alias_data->domain != NULL) {
2455 __attach_device(dev_data, alias_data->domain);
2456 dom = alias_data->domain;
2457 }
2458 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2459 }
2460
2461 return dom;
2462 }
2463
2464 static int device_change_notifier(struct notifier_block *nb,
2465 unsigned long action, void *data)
2466 {
2467 struct dma_ops_domain *dma_domain;
2468 struct protection_domain *domain;
2469 struct iommu_dev_data *dev_data;
2470 struct device *dev = data;
2471 struct amd_iommu *iommu;
2472 unsigned long flags;
2473 u16 devid;
2474
2475 if (!check_device(dev))
2476 return 0;
2477
2478 devid = get_device_id(dev);
2479 iommu = amd_iommu_rlookup_table[devid];
2480 dev_data = get_dev_data(dev);
2481
2482 switch (action) {
2483 case BUS_NOTIFY_UNBOUND_DRIVER:
2484
2485 domain = domain_for_device(dev);
2486
2487 if (!domain)
2488 goto out;
2489 if (dev_data->passthrough)
2490 break;
2491 detach_device(dev);
2492 break;
2493 case BUS_NOTIFY_ADD_DEVICE:
2494
2495 iommu_init_device(dev);
2496
2497 /*
2498 * dev_data is still NULL and
2499 * got initialized in iommu_init_device
2500 */
2501 dev_data = get_dev_data(dev);
2502
2503 if (iommu_pass_through || dev_data->iommu_v2) {
2504 dev_data->passthrough = true;
2505 attach_device(dev, pt_domain);
2506 break;
2507 }
2508
2509 domain = domain_for_device(dev);
2510
2511 /* allocate a protection domain if a device is added */
2512 dma_domain = find_protection_domain(devid);
2513 if (!dma_domain) {
2514 dma_domain = dma_ops_domain_alloc();
2515 if (!dma_domain)
2516 goto out;
2517 dma_domain->target_dev = devid;
2518
2519 spin_lock_irqsave(&iommu_pd_list_lock, flags);
2520 list_add_tail(&dma_domain->list, &iommu_pd_list);
2521 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
2522 }
2523
2524 dev->archdata.dma_ops = &amd_iommu_dma_ops;
2525
2526 break;
2527 case BUS_NOTIFY_DEL_DEVICE:
2528
2529 iommu_uninit_device(dev);
2530
2531 default:
2532 goto out;
2533 }
2534
2535 iommu_completion_wait(iommu);
2536
2537 out:
2538 return 0;
2539 }
2540
2541 static struct notifier_block device_nb = {
2542 .notifier_call = device_change_notifier,
2543 };
2544
2545 void amd_iommu_init_notifier(void)
2546 {
2547 bus_register_notifier(&pci_bus_type, &device_nb);
2548 }
2549
2550 /*****************************************************************************
2551 *
2552 * The next functions belong to the dma_ops mapping/unmapping code.
2553 *
2554 *****************************************************************************/
2555
2556 /*
2557 * In the dma_ops path we only have the struct device. This function
2558 * finds the corresponding IOMMU, the protection domain and the
2559 * requestor id for a given device.
2560 * If the device is not yet associated with a domain this is also done
2561 * in this function.
2562 */
2563 static struct protection_domain *get_domain(struct device *dev)
2564 {
2565 struct protection_domain *domain;
2566 struct dma_ops_domain *dma_dom;
2567 u16 devid = get_device_id(dev);
2568
2569 if (!check_device(dev))
2570 return ERR_PTR(-EINVAL);
2571
2572 domain = domain_for_device(dev);
2573 if (domain != NULL && !dma_ops_domain(domain))
2574 return ERR_PTR(-EBUSY);
2575
2576 if (domain != NULL)
2577 return domain;
2578
2579 /* Device not bound yet - bind it */
2580 dma_dom = find_protection_domain(devid);
2581 if (!dma_dom)
2582 dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
2583 attach_device(dev, &dma_dom->domain);
2584 DUMP_printk("Using protection domain %d for device %s\n",
2585 dma_dom->domain.id, dev_name(dev));
2586
2587 return &dma_dom->domain;
2588 }
2589
2590 static void update_device_table(struct protection_domain *domain)
2591 {
2592 struct iommu_dev_data *dev_data;
2593
2594 list_for_each_entry(dev_data, &domain->dev_list, list)
2595 set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2596 }
2597
2598 static void update_domain(struct protection_domain *domain)
2599 {
2600 if (!domain->updated)
2601 return;
2602
2603 update_device_table(domain);
2604
2605 domain_flush_devices(domain);
2606 domain_flush_tlb_pde(domain);
2607
2608 domain->updated = false;
2609 }
2610
2611 /*
2612 * This function fetches the PTE for a given address in the aperture
2613 */
2614 static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
2615 unsigned long address)
2616 {
2617 struct aperture_range *aperture;
2618 u64 *pte, *pte_page;
2619
2620 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2621 if (!aperture)
2622 return NULL;
2623
2624 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2625 if (!pte) {
2626 pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
2627 GFP_ATOMIC);
2628 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
2629 } else
2630 pte += PM_LEVEL_INDEX(0, address);
2631
2632 update_domain(&dom->domain);
2633
2634 return pte;
2635 }
2636
2637 /*
2638 * This is the generic map function. It maps one 4kb page at paddr to
2639 * the given address in the DMA address space for the domain.
2640 */
2641 static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
2642 unsigned long address,
2643 phys_addr_t paddr,
2644 int direction)
2645 {
2646 u64 *pte, __pte;
2647
2648 WARN_ON(address > dom->aperture_size);
2649
2650 paddr &= PAGE_MASK;
2651
2652 pte = dma_ops_get_pte(dom, address);
2653 if (!pte)
2654 return DMA_ERROR_CODE;
2655
2656 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
2657
2658 if (direction == DMA_TO_DEVICE)
2659 __pte |= IOMMU_PTE_IR;
2660 else if (direction == DMA_FROM_DEVICE)
2661 __pte |= IOMMU_PTE_IW;
2662 else if (direction == DMA_BIDIRECTIONAL)
2663 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
2664
2665 WARN_ON(*pte);
2666
2667 *pte = __pte;
2668
2669 return (dma_addr_t)address;
2670 }
2671
2672 /*
2673 * The generic unmapping function for on page in the DMA address space.
2674 */
2675 static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2676 unsigned long address)
2677 {
2678 struct aperture_range *aperture;
2679 u64 *pte;
2680
2681 if (address >= dom->aperture_size)
2682 return;
2683
2684 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2685 if (!aperture)
2686 return;
2687
2688 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2689 if (!pte)
2690 return;
2691
2692 pte += PM_LEVEL_INDEX(0, address);
2693
2694 WARN_ON(!*pte);
2695
2696 *pte = 0ULL;
2697 }
2698
2699 /*
2700 * This function contains common code for mapping of a physically
2701 * contiguous memory region into DMA address space. It is used by all
2702 * mapping functions provided with this IOMMU driver.
2703 * Must be called with the domain lock held.
2704 */
2705 static dma_addr_t __map_single(struct device *dev,
2706 struct dma_ops_domain *dma_dom,
2707 phys_addr_t paddr,
2708 size_t size,
2709 int dir,
2710 bool align,
2711 u64 dma_mask)
2712 {
2713 dma_addr_t offset = paddr & ~PAGE_MASK;
2714 dma_addr_t address, start, ret;
2715 unsigned int pages;
2716 unsigned long align_mask = 0;
2717 int i;
2718
2719 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2720 paddr &= PAGE_MASK;
2721
2722 INC_STATS_COUNTER(total_map_requests);
2723
2724 if (pages > 1)
2725 INC_STATS_COUNTER(cross_page);
2726
2727 if (align)
2728 align_mask = (1UL << get_order(size)) - 1;
2729
2730 retry:
2731 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
2732 dma_mask);
2733 if (unlikely(address == DMA_ERROR_CODE)) {
2734 /*
2735 * setting next_address here will let the address
2736 * allocator only scan the new allocated range in the
2737 * first run. This is a small optimization.
2738 */
2739 dma_dom->next_address = dma_dom->aperture_size;
2740
2741 if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
2742 goto out;
2743
2744 /*
2745 * aperture was successfully enlarged by 128 MB, try
2746 * allocation again
2747 */
2748 goto retry;
2749 }
2750
2751 start = address;
2752 for (i = 0; i < pages; ++i) {
2753 ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2754 if (ret == DMA_ERROR_CODE)
2755 goto out_unmap;
2756
2757 paddr += PAGE_SIZE;
2758 start += PAGE_SIZE;
2759 }
2760 address += offset;
2761
2762 ADD_STATS_COUNTER(alloced_io_mem, size);
2763
2764 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
2765 domain_flush_tlb(&dma_dom->domain);
2766 dma_dom->need_flush = false;
2767 } else if (unlikely(amd_iommu_np_cache))
2768 domain_flush_pages(&dma_dom->domain, address, size);
2769
2770 out:
2771 return address;
2772
2773 out_unmap:
2774
2775 for (--i; i >= 0; --i) {
2776 start -= PAGE_SIZE;
2777 dma_ops_domain_unmap(dma_dom, start);
2778 }
2779
2780 dma_ops_free_addresses(dma_dom, address, pages);
2781
2782 return DMA_ERROR_CODE;
2783 }
2784
2785 /*
2786 * Does the reverse of the __map_single function. Must be called with
2787 * the domain lock held too
2788 */
2789 static void __unmap_single(struct dma_ops_domain *dma_dom,
2790 dma_addr_t dma_addr,
2791 size_t size,
2792 int dir)
2793 {
2794 dma_addr_t flush_addr;
2795 dma_addr_t i, start;
2796 unsigned int pages;
2797
2798 if ((dma_addr == DMA_ERROR_CODE) ||
2799 (dma_addr + size > dma_dom->aperture_size))
2800 return;
2801
2802 flush_addr = dma_addr;
2803 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2804 dma_addr &= PAGE_MASK;
2805 start = dma_addr;
2806
2807 for (i = 0; i < pages; ++i) {
2808 dma_ops_domain_unmap(dma_dom, start);
2809 start += PAGE_SIZE;
2810 }
2811
2812 SUB_STATS_COUNTER(alloced_io_mem, size);
2813
2814 dma_ops_free_addresses(dma_dom, dma_addr, pages);
2815
2816 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
2817 domain_flush_pages(&dma_dom->domain, flush_addr, size);
2818 dma_dom->need_flush = false;
2819 }
2820 }
2821
2822 /*
2823 * The exported map_single function for dma_ops.
2824 */
2825 static dma_addr_t map_page(struct device *dev, struct page *page,
2826 unsigned long offset, size_t size,
2827 enum dma_data_direction dir,
2828 struct dma_attrs *attrs)
2829 {
2830 unsigned long flags;
2831 struct protection_domain *domain;
2832 dma_addr_t addr;
2833 u64 dma_mask;
2834 phys_addr_t paddr = page_to_phys(page) + offset;
2835
2836 INC_STATS_COUNTER(cnt_map_single);
2837
2838 domain = get_domain(dev);
2839 if (PTR_ERR(domain) == -EINVAL)
2840 return (dma_addr_t)paddr;
2841 else if (IS_ERR(domain))
2842 return DMA_ERROR_CODE;
2843
2844 dma_mask = *dev->dma_mask;
2845
2846 spin_lock_irqsave(&domain->lock, flags);
2847
2848 addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2849 dma_mask);
2850 if (addr == DMA_ERROR_CODE)
2851 goto out;
2852
2853 domain_flush_complete(domain);
2854
2855 out:
2856 spin_unlock_irqrestore(&domain->lock, flags);
2857
2858 return addr;
2859 }
2860
2861 /*
2862 * The exported unmap_single function for dma_ops.
2863 */
2864 static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2865 enum dma_data_direction dir, struct dma_attrs *attrs)
2866 {
2867 unsigned long flags;
2868 struct protection_domain *domain;
2869
2870 INC_STATS_COUNTER(cnt_unmap_single);
2871
2872 domain = get_domain(dev);
2873 if (IS_ERR(domain))
2874 return;
2875
2876 spin_lock_irqsave(&domain->lock, flags);
2877
2878 __unmap_single(domain->priv, dma_addr, size, dir);
2879
2880 domain_flush_complete(domain);
2881
2882 spin_unlock_irqrestore(&domain->lock, flags);
2883 }
2884
2885 /*
2886 * The exported map_sg function for dma_ops (handles scatter-gather
2887 * lists).
2888 */
2889 static int map_sg(struct device *dev, struct scatterlist *sglist,
2890 int nelems, enum dma_data_direction dir,
2891 struct dma_attrs *attrs)
2892 {
2893 unsigned long flags;
2894 struct protection_domain *domain;
2895 int i;
2896 struct scatterlist *s;
2897 phys_addr_t paddr;
2898 int mapped_elems = 0;
2899 u64 dma_mask;
2900
2901 INC_STATS_COUNTER(cnt_map_sg);
2902
2903 domain = get_domain(dev);
2904 if (IS_ERR(domain))
2905 return 0;
2906
2907 dma_mask = *dev->dma_mask;
2908
2909 spin_lock_irqsave(&domain->lock, flags);
2910
2911 for_each_sg(sglist, s, nelems, i) {
2912 paddr = sg_phys(s);
2913
2914 s->dma_address = __map_single(dev, domain->priv,
2915 paddr, s->length, dir, false,
2916 dma_mask);
2917
2918 if (s->dma_address) {
2919 s->dma_length = s->length;
2920 mapped_elems++;
2921 } else
2922 goto unmap;
2923 }
2924
2925 domain_flush_complete(domain);
2926
2927 out:
2928 spin_unlock_irqrestore(&domain->lock, flags);
2929
2930 return mapped_elems;
2931 unmap:
2932 for_each_sg(sglist, s, mapped_elems, i) {
2933 if (s->dma_address)
2934 __unmap_single(domain->priv, s->dma_address,
2935 s->dma_length, dir);
2936 s->dma_address = s->dma_length = 0;
2937 }
2938
2939 mapped_elems = 0;
2940
2941 goto out;
2942 }
2943
2944 /*
2945 * The exported map_sg function for dma_ops (handles scatter-gather
2946 * lists).
2947 */
2948 static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2949 int nelems, enum dma_data_direction dir,
2950 struct dma_attrs *attrs)
2951 {
2952 unsigned long flags;
2953 struct protection_domain *domain;
2954 struct scatterlist *s;
2955 int i;
2956
2957 INC_STATS_COUNTER(cnt_unmap_sg);
2958
2959 domain = get_domain(dev);
2960 if (IS_ERR(domain))
2961 return;
2962
2963 spin_lock_irqsave(&domain->lock, flags);
2964
2965 for_each_sg(sglist, s, nelems, i) {
2966 __unmap_single(domain->priv, s->dma_address,
2967 s->dma_length, dir);
2968 s->dma_address = s->dma_length = 0;
2969 }
2970
2971 domain_flush_complete(domain);
2972
2973 spin_unlock_irqrestore(&domain->lock, flags);
2974 }
2975
2976 /*
2977 * The exported alloc_coherent function for dma_ops.
2978 */
2979 static void *alloc_coherent(struct device *dev, size_t size,
2980 dma_addr_t *dma_addr, gfp_t flag,
2981 struct dma_attrs *attrs)
2982 {
2983 unsigned long flags;
2984 void *virt_addr;
2985 struct protection_domain *domain;
2986 phys_addr_t paddr;
2987 u64 dma_mask = dev->coherent_dma_mask;
2988
2989 INC_STATS_COUNTER(cnt_alloc_coherent);
2990
2991 domain = get_domain(dev);
2992 if (PTR_ERR(domain) == -EINVAL) {
2993 virt_addr = (void *)__get_free_pages(flag, get_order(size));
2994 *dma_addr = __pa(virt_addr);
2995 return virt_addr;
2996 } else if (IS_ERR(domain))
2997 return NULL;
2998
2999 dma_mask = dev->coherent_dma_mask;
3000 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
3001 flag |= __GFP_ZERO;
3002
3003 virt_addr = (void *)__get_free_pages(flag, get_order(size));
3004 if (!virt_addr)
3005 return NULL;
3006
3007 paddr = virt_to_phys(virt_addr);
3008
3009 if (!dma_mask)
3010 dma_mask = *dev->dma_mask;
3011
3012 spin_lock_irqsave(&domain->lock, flags);
3013
3014 *dma_addr = __map_single(dev, domain->priv, paddr,
3015 size, DMA_BIDIRECTIONAL, true, dma_mask);
3016
3017 if (*dma_addr == DMA_ERROR_CODE) {
3018 spin_unlock_irqrestore(&domain->lock, flags);
3019 goto out_free;
3020 }
3021
3022 domain_flush_complete(domain);
3023
3024 spin_unlock_irqrestore(&domain->lock, flags);
3025
3026 return virt_addr;
3027
3028 out_free:
3029
3030 free_pages((unsigned long)virt_addr, get_order(size));
3031
3032 return NULL;
3033 }
3034
3035 /*
3036 * The exported free_coherent function for dma_ops.
3037 */
3038 static void free_coherent(struct device *dev, size_t size,
3039 void *virt_addr, dma_addr_t dma_addr,
3040 struct dma_attrs *attrs)
3041 {
3042 unsigned long flags;
3043 struct protection_domain *domain;
3044
3045 INC_STATS_COUNTER(cnt_free_coherent);
3046
3047 domain = get_domain(dev);
3048 if (IS_ERR(domain))
3049 goto free_mem;
3050
3051 spin_lock_irqsave(&domain->lock, flags);
3052
3053 __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
3054
3055 domain_flush_complete(domain);
3056
3057 spin_unlock_irqrestore(&domain->lock, flags);
3058
3059 free_mem:
3060 free_pages((unsigned long)virt_addr, get_order(size));
3061 }
3062
3063 /*
3064 * This function is called by the DMA layer to find out if we can handle a
3065 * particular device. It is part of the dma_ops.
3066 */
3067 static int amd_iommu_dma_supported(struct device *dev, u64 mask)
3068 {
3069 return check_device(dev);
3070 }
3071
3072 /*
3073 * The function for pre-allocating protection domains.
3074 *
3075 * If the driver core informs the DMA layer if a driver grabs a device
3076 * we don't need to preallocate the protection domains anymore.
3077 * For now we have to.
3078 */
3079 static void __init prealloc_protection_domains(void)
3080 {
3081 struct iommu_dev_data *dev_data;
3082 struct dma_ops_domain *dma_dom;
3083 struct pci_dev *dev = NULL;
3084 u16 devid;
3085
3086 for_each_pci_dev(dev) {
3087
3088 /* Do we handle this device? */
3089 if (!check_device(&dev->dev))
3090 continue;
3091
3092 dev_data = get_dev_data(&dev->dev);
3093 if (!amd_iommu_force_isolation && dev_data->iommu_v2) {
3094 /* Make sure passthrough domain is allocated */
3095 alloc_passthrough_domain();
3096 dev_data->passthrough = true;
3097 attach_device(&dev->dev, pt_domain);
3098 pr_info("AMD-Vi: Using passthrough domain for device %s\n",
3099 dev_name(&dev->dev));
3100 }
3101
3102 /* Is there already any domain for it? */
3103 if (domain_for_device(&dev->dev))
3104 continue;
3105
3106 devid = get_device_id(&dev->dev);
3107
3108 dma_dom = dma_ops_domain_alloc();
3109 if (!dma_dom)
3110 continue;
3111 init_unity_mappings_for_device(dma_dom, devid);
3112 dma_dom->target_dev = devid;
3113
3114 attach_device(&dev->dev, &dma_dom->domain);
3115
3116 list_add_tail(&dma_dom->list, &iommu_pd_list);
3117 }
3118 }
3119
3120 static struct dma_map_ops amd_iommu_dma_ops = {
3121 .alloc = alloc_coherent,
3122 .free = free_coherent,
3123 .map_page = map_page,
3124 .unmap_page = unmap_page,
3125 .map_sg = map_sg,
3126 .unmap_sg = unmap_sg,
3127 .dma_supported = amd_iommu_dma_supported,
3128 };
3129
3130 static unsigned device_dma_ops_init(void)
3131 {
3132 struct iommu_dev_data *dev_data;
3133 struct pci_dev *pdev = NULL;
3134 unsigned unhandled = 0;
3135
3136 for_each_pci_dev(pdev) {
3137 if (!check_device(&pdev->dev)) {
3138
3139 iommu_ignore_device(&pdev->dev);
3140
3141 unhandled += 1;
3142 continue;
3143 }
3144
3145 dev_data = get_dev_data(&pdev->dev);
3146
3147 if (!dev_data->passthrough)
3148 pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
3149 else
3150 pdev->dev.archdata.dma_ops = &nommu_dma_ops;
3151 }
3152
3153 return unhandled;
3154 }
3155
3156 /*
3157 * The function which clues the AMD IOMMU driver into dma_ops.
3158 */
3159
3160 void __init amd_iommu_init_api(void)
3161 {
3162 bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
3163 }
3164
3165 int __init amd_iommu_init_dma_ops(void)
3166 {
3167 struct amd_iommu *iommu;
3168 int ret, unhandled;
3169
3170 /*
3171 * first allocate a default protection domain for every IOMMU we
3172 * found in the system. Devices not assigned to any other
3173 * protection domain will be assigned to the default one.
3174 */
3175 for_each_iommu(iommu) {
3176 iommu->default_dom = dma_ops_domain_alloc();
3177 if (iommu->default_dom == NULL)
3178 return -ENOMEM;
3179 iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
3180 ret = iommu_init_unity_mappings(iommu);
3181 if (ret)
3182 goto free_domains;
3183 }
3184
3185 /*
3186 * Pre-allocate the protection domains for each device.
3187 */
3188 prealloc_protection_domains();
3189
3190 iommu_detected = 1;
3191 swiotlb = 0;
3192
3193 /* Make the driver finally visible to the drivers */
3194 unhandled = device_dma_ops_init();
3195 if (unhandled && max_pfn > MAX_DMA32_PFN) {
3196 /* There are unhandled devices - initialize swiotlb for them */
3197 swiotlb = 1;
3198 }
3199
3200 amd_iommu_stats_init();
3201
3202 if (amd_iommu_unmap_flush)
3203 pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
3204 else
3205 pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
3206
3207 return 0;
3208
3209 free_domains:
3210
3211 for_each_iommu(iommu) {
3212 dma_ops_domain_free(iommu->default_dom);
3213 }
3214
3215 return ret;
3216 }
3217
3218 /*****************************************************************************
3219 *
3220 * The following functions belong to the exported interface of AMD IOMMU
3221 *
3222 * This interface allows access to lower level functions of the IOMMU
3223 * like protection domain handling and assignement of devices to domains
3224 * which is not possible with the dma_ops interface.
3225 *
3226 *****************************************************************************/
3227
3228 static void cleanup_domain(struct protection_domain *domain)
3229 {
3230 struct iommu_dev_data *dev_data, *next;
3231 unsigned long flags;
3232
3233 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
3234
3235 list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
3236 __detach_device(dev_data);
3237 atomic_set(&dev_data->bind, 0);
3238 }
3239
3240 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
3241 }
3242
3243 static void protection_domain_free(struct protection_domain *domain)
3244 {
3245 if (!domain)
3246 return;
3247
3248 del_domain_from_list(domain);
3249
3250 if (domain->id)
3251 domain_id_free(domain->id);
3252
3253 kfree(domain);
3254 }
3255
3256 static struct protection_domain *protection_domain_alloc(void)
3257 {
3258 struct protection_domain *domain;
3259
3260 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
3261 if (!domain)
3262 return NULL;
3263
3264 spin_lock_init(&domain->lock);
3265 mutex_init(&domain->api_lock);
3266 domain->id = domain_id_alloc();
3267 if (!domain->id)
3268 goto out_err;
3269 INIT_LIST_HEAD(&domain->dev_list);
3270
3271 add_domain_to_list(domain);
3272
3273 return domain;
3274
3275 out_err:
3276 kfree(domain);
3277
3278 return NULL;
3279 }
3280
3281 static int __init alloc_passthrough_domain(void)
3282 {
3283 if (pt_domain != NULL)
3284 return 0;
3285
3286 /* allocate passthrough domain */
3287 pt_domain = protection_domain_alloc();
3288 if (!pt_domain)
3289 return -ENOMEM;
3290
3291 pt_domain->mode = PAGE_MODE_NONE;
3292
3293 return 0;
3294 }
3295 static int amd_iommu_domain_init(struct iommu_domain *dom)
3296 {
3297 struct protection_domain *domain;
3298
3299 domain = protection_domain_alloc();
3300 if (!domain)
3301 goto out_free;
3302
3303 domain->mode = PAGE_MODE_3_LEVEL;
3304 domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
3305 if (!domain->pt_root)
3306 goto out_free;
3307
3308 domain->iommu_domain = dom;
3309
3310 dom->priv = domain;
3311
3312 dom->geometry.aperture_start = 0;
3313 dom->geometry.aperture_end = ~0ULL;
3314 dom->geometry.force_aperture = true;
3315
3316 return 0;
3317
3318 out_free:
3319 protection_domain_free(domain);
3320
3321 return -ENOMEM;
3322 }
3323
3324 static void amd_iommu_domain_destroy(struct iommu_domain *dom)
3325 {
3326 struct protection_domain *domain = dom->priv;
3327
3328 if (!domain)
3329 return;
3330
3331 if (domain->dev_cnt > 0)
3332 cleanup_domain(domain);
3333
3334 BUG_ON(domain->dev_cnt != 0);
3335
3336 if (domain->mode != PAGE_MODE_NONE)
3337 free_pagetable(domain);
3338
3339 if (domain->flags & PD_IOMMUV2_MASK)
3340 free_gcr3_table(domain);
3341
3342 protection_domain_free(domain);
3343
3344 dom->priv = NULL;
3345 }
3346
3347 static void amd_iommu_detach_device(struct iommu_domain *dom,
3348 struct device *dev)
3349 {
3350 struct iommu_dev_data *dev_data = dev->archdata.iommu;
3351 struct amd_iommu *iommu;
3352 u16 devid;
3353
3354 if (!check_device(dev))
3355 return;
3356
3357 devid = get_device_id(dev);
3358
3359 if (dev_data->domain != NULL)
3360 detach_device(dev);
3361
3362 iommu = amd_iommu_rlookup_table[devid];
3363 if (!iommu)
3364 return;
3365
3366 iommu_completion_wait(iommu);
3367 }
3368
3369 static int amd_iommu_attach_device(struct iommu_domain *dom,
3370 struct device *dev)
3371 {
3372 struct protection_domain *domain = dom->priv;
3373 struct iommu_dev_data *dev_data;
3374 struct amd_iommu *iommu;
3375 int ret;
3376
3377 if (!check_device(dev))
3378 return -EINVAL;
3379
3380 dev_data = dev->archdata.iommu;
3381
3382 iommu = amd_iommu_rlookup_table[dev_data->devid];
3383 if (!iommu)
3384 return -EINVAL;
3385
3386 if (dev_data->domain)
3387 detach_device(dev);
3388
3389 ret = attach_device(dev, domain);
3390
3391 iommu_completion_wait(iommu);
3392
3393 return ret;
3394 }
3395
3396 static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3397 phys_addr_t paddr, size_t page_size, int iommu_prot)
3398 {
3399 struct protection_domain *domain = dom->priv;
3400 int prot = 0;
3401 int ret;
3402
3403 if (domain->mode == PAGE_MODE_NONE)
3404 return -EINVAL;
3405
3406 if (iommu_prot & IOMMU_READ)
3407 prot |= IOMMU_PROT_IR;
3408 if (iommu_prot & IOMMU_WRITE)
3409 prot |= IOMMU_PROT_IW;
3410
3411 mutex_lock(&domain->api_lock);
3412 ret = iommu_map_page(domain, iova, paddr, prot, page_size);
3413 mutex_unlock(&domain->api_lock);
3414
3415 return ret;
3416 }
3417
3418 static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
3419 size_t page_size)
3420 {
3421 struct protection_domain *domain = dom->priv;
3422 size_t unmap_size;
3423
3424 if (domain->mode == PAGE_MODE_NONE)
3425 return -EINVAL;
3426
3427 mutex_lock(&domain->api_lock);
3428 unmap_size = iommu_unmap_page(domain, iova, page_size);
3429 mutex_unlock(&domain->api_lock);
3430
3431 domain_flush_tlb_pde(domain);
3432
3433 return unmap_size;
3434 }
3435
3436 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3437 dma_addr_t iova)
3438 {
3439 struct protection_domain *domain = dom->priv;
3440 unsigned long offset_mask;
3441 phys_addr_t paddr;
3442 u64 *pte, __pte;
3443
3444 if (domain->mode == PAGE_MODE_NONE)
3445 return iova;
3446
3447 pte = fetch_pte(domain, iova);
3448
3449 if (!pte || !IOMMU_PTE_PRESENT(*pte))
3450 return 0;
3451
3452 if (PM_PTE_LEVEL(*pte) == 0)
3453 offset_mask = PAGE_SIZE - 1;
3454 else
3455 offset_mask = PTE_PAGE_SIZE(*pte) - 1;
3456
3457 __pte = *pte & PM_ADDR_MASK;
3458 paddr = (__pte & ~offset_mask) | (iova & offset_mask);
3459
3460 return paddr;
3461 }
3462
3463 static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
3464 unsigned long cap)
3465 {
3466 switch (cap) {
3467 case IOMMU_CAP_CACHE_COHERENCY:
3468 return 1;
3469 case IOMMU_CAP_INTR_REMAP:
3470 return irq_remapping_enabled;
3471 }
3472
3473 return 0;
3474 }
3475
3476 static struct iommu_ops amd_iommu_ops = {
3477 .domain_init = amd_iommu_domain_init,
3478 .domain_destroy = amd_iommu_domain_destroy,
3479 .attach_dev = amd_iommu_attach_device,
3480 .detach_dev = amd_iommu_detach_device,
3481 .map = amd_iommu_map,
3482 .unmap = amd_iommu_unmap,
3483 .iova_to_phys = amd_iommu_iova_to_phys,
3484 .domain_has_cap = amd_iommu_domain_has_cap,
3485 .pgsize_bitmap = AMD_IOMMU_PGSIZES,
3486 };
3487
3488 /*****************************************************************************
3489 *
3490 * The next functions do a basic initialization of IOMMU for pass through
3491 * mode
3492 *
3493 * In passthrough mode the IOMMU is initialized and enabled but not used for
3494 * DMA-API translation.
3495 *
3496 *****************************************************************************/
3497
3498 int __init amd_iommu_init_passthrough(void)
3499 {
3500 struct iommu_dev_data *dev_data;
3501 struct pci_dev *dev = NULL;
3502 struct amd_iommu *iommu;
3503 u16 devid;
3504 int ret;
3505
3506 ret = alloc_passthrough_domain();
3507 if (ret)
3508 return ret;
3509
3510 for_each_pci_dev(dev) {
3511 if (!check_device(&dev->dev))
3512 continue;
3513
3514 dev_data = get_dev_data(&dev->dev);
3515 dev_data->passthrough = true;
3516
3517 devid = get_device_id(&dev->dev);
3518
3519 iommu = amd_iommu_rlookup_table[devid];
3520 if (!iommu)
3521 continue;
3522
3523 attach_device(&dev->dev, pt_domain);
3524 }
3525
3526 amd_iommu_stats_init();
3527
3528 pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
3529
3530 return 0;
3531 }
3532
3533 /* IOMMUv2 specific functions */
3534 int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
3535 {
3536 return atomic_notifier_chain_register(&ppr_notifier, nb);
3537 }
3538 EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
3539
3540 int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
3541 {
3542 return atomic_notifier_chain_unregister(&ppr_notifier, nb);
3543 }
3544 EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3545
3546 void amd_iommu_domain_direct_map(struct iommu_domain *dom)
3547 {
3548 struct protection_domain *domain = dom->priv;
3549 unsigned long flags;
3550
3551 spin_lock_irqsave(&domain->lock, flags);
3552
3553 /* Update data structure */
3554 domain->mode = PAGE_MODE_NONE;
3555 domain->updated = true;
3556
3557 /* Make changes visible to IOMMUs */
3558 update_domain(domain);
3559
3560 /* Page-table is not visible to IOMMU anymore, so free it */
3561 free_pagetable(domain);
3562
3563 spin_unlock_irqrestore(&domain->lock, flags);
3564 }
3565 EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3566
3567 int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
3568 {
3569 struct protection_domain *domain = dom->priv;
3570 unsigned long flags;
3571 int levels, ret;
3572
3573 if (pasids <= 0 || pasids > (PASID_MASK + 1))
3574 return -EINVAL;
3575
3576 /* Number of GCR3 table levels required */
3577 for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
3578 levels += 1;
3579
3580 if (levels > amd_iommu_max_glx_val)
3581 return -EINVAL;
3582
3583 spin_lock_irqsave(&domain->lock, flags);
3584
3585 /*
3586 * Save us all sanity checks whether devices already in the
3587 * domain support IOMMUv2. Just force that the domain has no
3588 * devices attached when it is switched into IOMMUv2 mode.
3589 */
3590 ret = -EBUSY;
3591 if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
3592 goto out;
3593
3594 ret = -ENOMEM;
3595 domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
3596 if (domain->gcr3_tbl == NULL)
3597 goto out;
3598
3599 domain->glx = levels;
3600 domain->flags |= PD_IOMMUV2_MASK;
3601 domain->updated = true;
3602
3603 update_domain(domain);
3604
3605 ret = 0;
3606
3607 out:
3608 spin_unlock_irqrestore(&domain->lock, flags);
3609
3610 return ret;
3611 }
3612 EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3613
3614 static int __flush_pasid(struct protection_domain *domain, int pasid,
3615 u64 address, bool size)
3616 {
3617 struct iommu_dev_data *dev_data;
3618 struct iommu_cmd cmd;
3619 int i, ret;
3620
3621 if (!(domain->flags & PD_IOMMUV2_MASK))
3622 return -EINVAL;
3623
3624 build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
3625
3626 /*
3627 * IOMMU TLB needs to be flushed before Device TLB to
3628 * prevent device TLB refill from IOMMU TLB
3629 */
3630 for (i = 0; i < amd_iommus_present; ++i) {
3631 if (domain->dev_iommu[i] == 0)
3632 continue;
3633
3634 ret = iommu_queue_command(amd_iommus[i], &cmd);
3635 if (ret != 0)
3636 goto out;
3637 }
3638
3639 /* Wait until IOMMU TLB flushes are complete */
3640 domain_flush_complete(domain);
3641
3642 /* Now flush device TLBs */
3643 list_for_each_entry(dev_data, &domain->dev_list, list) {
3644 struct amd_iommu *iommu;
3645 int qdep;
3646
3647 BUG_ON(!dev_data->ats.enabled);
3648
3649 qdep = dev_data->ats.qdep;
3650 iommu = amd_iommu_rlookup_table[dev_data->devid];
3651
3652 build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
3653 qdep, address, size);
3654
3655 ret = iommu_queue_command(iommu, &cmd);
3656 if (ret != 0)
3657 goto out;
3658 }
3659
3660 /* Wait until all device TLBs are flushed */
3661 domain_flush_complete(domain);
3662
3663 ret = 0;
3664
3665 out:
3666
3667 return ret;
3668 }
3669
3670 static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
3671 u64 address)
3672 {
3673 INC_STATS_COUNTER(invalidate_iotlb);
3674
3675 return __flush_pasid(domain, pasid, address, false);
3676 }
3677
3678 int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
3679 u64 address)
3680 {
3681 struct protection_domain *domain = dom->priv;
3682 unsigned long flags;
3683 int ret;
3684
3685 spin_lock_irqsave(&domain->lock, flags);
3686 ret = __amd_iommu_flush_page(domain, pasid, address);
3687 spin_unlock_irqrestore(&domain->lock, flags);
3688
3689 return ret;
3690 }
3691 EXPORT_SYMBOL(amd_iommu_flush_page);
3692
3693 static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
3694 {
3695 INC_STATS_COUNTER(invalidate_iotlb_all);
3696
3697 return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
3698 true);
3699 }
3700
3701 int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
3702 {
3703 struct protection_domain *domain = dom->priv;
3704 unsigned long flags;
3705 int ret;
3706
3707 spin_lock_irqsave(&domain->lock, flags);
3708 ret = __amd_iommu_flush_tlb(domain, pasid);
3709 spin_unlock_irqrestore(&domain->lock, flags);
3710
3711 return ret;
3712 }
3713 EXPORT_SYMBOL(amd_iommu_flush_tlb);
3714
3715 static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
3716 {
3717 int index;
3718 u64 *pte;
3719
3720 while (true) {
3721
3722 index = (pasid >> (9 * level)) & 0x1ff;
3723 pte = &root[index];
3724
3725 if (level == 0)
3726 break;
3727
3728 if (!(*pte & GCR3_VALID)) {
3729 if (!alloc)
3730 return NULL;
3731
3732 root = (void *)get_zeroed_page(GFP_ATOMIC);
3733 if (root == NULL)
3734 return NULL;
3735
3736 *pte = __pa(root) | GCR3_VALID;
3737 }
3738
3739 root = __va(*pte & PAGE_MASK);
3740
3741 level -= 1;
3742 }
3743
3744 return pte;
3745 }
3746
3747 static int __set_gcr3(struct protection_domain *domain, int pasid,
3748 unsigned long cr3)
3749 {
3750 u64 *pte;
3751
3752 if (domain->mode != PAGE_MODE_NONE)
3753 return -EINVAL;
3754
3755 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
3756 if (pte == NULL)
3757 return -ENOMEM;
3758
3759 *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
3760
3761 return __amd_iommu_flush_tlb(domain, pasid);
3762 }
3763
3764 static int __clear_gcr3(struct protection_domain *domain, int pasid)
3765 {
3766 u64 *pte;
3767
3768 if (domain->mode != PAGE_MODE_NONE)
3769 return -EINVAL;
3770
3771 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
3772 if (pte == NULL)
3773 return 0;
3774
3775 *pte = 0;
3776
3777 return __amd_iommu_flush_tlb(domain, pasid);
3778 }
3779
3780 int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
3781 unsigned long cr3)
3782 {
3783 struct protection_domain *domain = dom->priv;
3784 unsigned long flags;
3785 int ret;
3786
3787 spin_lock_irqsave(&domain->lock, flags);
3788 ret = __set_gcr3(domain, pasid, cr3);
3789 spin_unlock_irqrestore(&domain->lock, flags);
3790
3791 return ret;
3792 }
3793 EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
3794
3795 int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
3796 {
3797 struct protection_domain *domain = dom->priv;
3798 unsigned long flags;
3799 int ret;
3800
3801 spin_lock_irqsave(&domain->lock, flags);
3802 ret = __clear_gcr3(domain, pasid);
3803 spin_unlock_irqrestore(&domain->lock, flags);
3804
3805 return ret;
3806 }
3807 EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3808
3809 int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
3810 int status, int tag)
3811 {
3812 struct iommu_dev_data *dev_data;
3813 struct amd_iommu *iommu;
3814 struct iommu_cmd cmd;
3815
3816 INC_STATS_COUNTER(complete_ppr);
3817
3818 dev_data = get_dev_data(&pdev->dev);
3819 iommu = amd_iommu_rlookup_table[dev_data->devid];
3820
3821 build_complete_ppr(&cmd, dev_data->devid, pasid, status,
3822 tag, dev_data->pri_tlp);
3823
3824 return iommu_queue_command(iommu, &cmd);
3825 }
3826 EXPORT_SYMBOL(amd_iommu_complete_ppr);
3827
3828 struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
3829 {
3830 struct protection_domain *domain;
3831
3832 domain = get_domain(&pdev->dev);
3833 if (IS_ERR(domain))
3834 return NULL;
3835
3836 /* Only return IOMMUv2 domains */
3837 if (!(domain->flags & PD_IOMMUV2_MASK))
3838 return NULL;
3839
3840 return domain->iommu_domain;
3841 }
3842 EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3843
3844 void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
3845 {
3846 struct iommu_dev_data *dev_data;
3847
3848 if (!amd_iommu_v2_supported())
3849 return;
3850
3851 dev_data = get_dev_data(&pdev->dev);
3852 dev_data->errata |= (1 << erratum);
3853 }
3854 EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3855
3856 int amd_iommu_device_info(struct pci_dev *pdev,
3857 struct amd_iommu_device_info *info)
3858 {
3859 int max_pasids;
3860 int pos;
3861
3862 if (pdev == NULL || info == NULL)
3863 return -EINVAL;
3864
3865 if (!amd_iommu_v2_supported())
3866 return -EINVAL;
3867
3868 memset(info, 0, sizeof(*info));
3869
3870 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
3871 if (pos)
3872 info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
3873
3874 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
3875 if (pos)
3876 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
3877
3878 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
3879 if (pos) {
3880 int features;
3881
3882 max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
3883 max_pasids = min(max_pasids, (1 << 20));
3884
3885 info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
3886 info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
3887
3888 features = pci_pasid_features(pdev);
3889 if (features & PCI_PASID_CAP_EXEC)
3890 info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
3891 if (features & PCI_PASID_CAP_PRIV)
3892 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
3893 }
3894
3895 return 0;
3896 }
3897 EXPORT_SYMBOL(amd_iommu_device_info);
3898
3899 #ifdef CONFIG_IRQ_REMAP
3900
3901 /*****************************************************************************
3902 *
3903 * Interrupt Remapping Implementation
3904 *
3905 *****************************************************************************/
3906
3907 union irte {
3908 u32 val;
3909 struct {
3910 u32 valid : 1,
3911 no_fault : 1,
3912 int_type : 3,
3913 rq_eoi : 1,
3914 dm : 1,
3915 rsvd_1 : 1,
3916 destination : 8,
3917 vector : 8,
3918 rsvd_2 : 8;
3919 } fields;
3920 };
3921
3922 #define DTE_IRQ_PHYS_ADDR_MASK (((1ULL << 45)-1) << 6)
3923 #define DTE_IRQ_REMAP_INTCTL (2ULL << 60)
3924 #define DTE_IRQ_TABLE_LEN (8ULL << 1)
3925 #define DTE_IRQ_REMAP_ENABLE 1ULL
3926
3927 static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
3928 {
3929 u64 dte;
3930
3931 dte = amd_iommu_dev_table[devid].data[2];
3932 dte &= ~DTE_IRQ_PHYS_ADDR_MASK;
3933 dte |= virt_to_phys(table->table);
3934 dte |= DTE_IRQ_REMAP_INTCTL;
3935 dte |= DTE_IRQ_TABLE_LEN;
3936 dte |= DTE_IRQ_REMAP_ENABLE;
3937
3938 amd_iommu_dev_table[devid].data[2] = dte;
3939 }
3940
3941 #define IRTE_ALLOCATED (~1U)
3942
3943 static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
3944 {
3945 struct irq_remap_table *table = NULL;
3946 struct amd_iommu *iommu;
3947 unsigned long flags;
3948 u16 alias;
3949
3950 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
3951
3952 iommu = amd_iommu_rlookup_table[devid];
3953 if (!iommu)
3954 goto out_unlock;
3955
3956 table = irq_lookup_table[devid];
3957 if (table)
3958 goto out;
3959
3960 alias = amd_iommu_alias_table[devid];
3961 table = irq_lookup_table[alias];
3962 if (table) {
3963 irq_lookup_table[devid] = table;
3964 set_dte_irq_entry(devid, table);
3965 iommu_flush_dte(iommu, devid);
3966 goto out;
3967 }
3968
3969 /* Nothing there yet, allocate new irq remapping table */
3970 table = kzalloc(sizeof(*table), GFP_ATOMIC);
3971 if (!table)
3972 goto out;
3973
3974 /* Initialize table spin-lock */
3975 spin_lock_init(&table->lock);
3976
3977 if (ioapic)
3978 /* Keep the first 32 indexes free for IOAPIC interrupts */
3979 table->min_index = 32;
3980
3981 table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
3982 if (!table->table) {
3983 kfree(table);
3984 table = NULL;
3985 goto out;
3986 }
3987
3988 memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));
3989
3990 if (ioapic) {
3991 int i;
3992
3993 for (i = 0; i < 32; ++i)
3994 table->table[i] = IRTE_ALLOCATED;
3995 }
3996
3997 irq_lookup_table[devid] = table;
3998 set_dte_irq_entry(devid, table);
3999 iommu_flush_dte(iommu, devid);
4000 if (devid != alias) {
4001 irq_lookup_table[alias] = table;
4002 set_dte_irq_entry(devid, table);
4003 iommu_flush_dte(iommu, alias);
4004 }
4005
4006 out:
4007 iommu_completion_wait(iommu);
4008
4009 out_unlock:
4010 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
4011
4012 return table;
4013 }
4014
4015 static int alloc_irq_index(struct irq_cfg *cfg, u16 devid, int count)
4016 {
4017 struct irq_remap_table *table;
4018 unsigned long flags;
4019 int index, c;
4020
4021 table = get_irq_table(devid, false);
4022 if (!table)
4023 return -ENODEV;
4024
4025 spin_lock_irqsave(&table->lock, flags);
4026
4027 /* Scan table for free entries */
4028 for (c = 0, index = table->min_index;
4029 index < MAX_IRQS_PER_TABLE;
4030 ++index) {
4031 if (table->table[index] == 0)
4032 c += 1;
4033 else
4034 c = 0;
4035
4036 if (c == count) {
4037 struct irq_2_irte *irte_info;
4038
4039 for (; c != 0; --c)
4040 table->table[index - c + 1] = IRTE_ALLOCATED;
4041
4042 index -= count - 1;
4043
4044 cfg->remapped = 1;
4045 irte_info = &cfg->irq_2_irte;
4046 irte_info->devid = devid;
4047 irte_info->index = index;
4048
4049 goto out;
4050 }
4051 }
4052
4053 index = -ENOSPC;
4054
4055 out:
4056 spin_unlock_irqrestore(&table->lock, flags);
4057
4058 return index;
4059 }
4060
4061 static int get_irte(u16 devid, int index, union irte *irte)
4062 {
4063 struct irq_remap_table *table;
4064 unsigned long flags;
4065
4066 table = get_irq_table(devid, false);
4067 if (!table)
4068 return -ENOMEM;
4069
4070 spin_lock_irqsave(&table->lock, flags);
4071 irte->val = table->table[index];
4072 spin_unlock_irqrestore(&table->lock, flags);
4073
4074 return 0;
4075 }
4076
4077 static int modify_irte(u16 devid, int index, union irte irte)
4078 {
4079 struct irq_remap_table *table;
4080 struct amd_iommu *iommu;
4081 unsigned long flags;
4082
4083 iommu = amd_iommu_rlookup_table[devid];
4084 if (iommu == NULL)
4085 return -EINVAL;
4086
4087 table = get_irq_table(devid, false);
4088 if (!table)
4089 return -ENOMEM;
4090
4091 spin_lock_irqsave(&table->lock, flags);
4092 table->table[index] = irte.val;
4093 spin_unlock_irqrestore(&table->lock, flags);
4094
4095 iommu_flush_irt(iommu, devid);
4096 iommu_completion_wait(iommu);
4097
4098 return 0;
4099 }
4100
4101 static void free_irte(u16 devid, int index)
4102 {
4103 struct irq_remap_table *table;
4104 struct amd_iommu *iommu;
4105 unsigned long flags;
4106
4107 iommu = amd_iommu_rlookup_table[devid];
4108 if (iommu == NULL)
4109 return;
4110
4111 table = get_irq_table(devid, false);
4112 if (!table)
4113 return;
4114
4115 spin_lock_irqsave(&table->lock, flags);
4116 table->table[index] = 0;
4117 spin_unlock_irqrestore(&table->lock, flags);
4118
4119 iommu_flush_irt(iommu, devid);
4120 iommu_completion_wait(iommu);
4121 }
4122
4123 static int setup_ioapic_entry(int irq, struct IO_APIC_route_entry *entry,
4124 unsigned int destination, int vector,
4125 struct io_apic_irq_attr *attr)
4126 {
4127 struct irq_remap_table *table;
4128 struct irq_2_irte *irte_info;
4129 struct irq_cfg *cfg;
4130 union irte irte;
4131 int ioapic_id;
4132 int index;
4133 int devid;
4134 int ret;
4135
4136 cfg = irq_get_chip_data(irq);
4137 if (!cfg)
4138 return -EINVAL;
4139
4140 irte_info = &cfg->irq_2_irte;
4141 ioapic_id = mpc_ioapic_id(attr->ioapic);
4142 devid = get_ioapic_devid(ioapic_id);
4143
4144 if (devid < 0)
4145 return devid;
4146
4147 table = get_irq_table(devid, true);
4148 if (table == NULL)
4149 return -ENOMEM;
4150
4151 index = attr->ioapic_pin;
4152
4153 /* Setup IRQ remapping info */
4154 cfg->remapped = 1;
4155 irte_info->devid = devid;
4156 irte_info->index = index;
4157
4158 /* Setup IRTE for IOMMU */
4159 irte.val = 0;
4160 irte.fields.vector = vector;
4161 irte.fields.int_type = apic->irq_delivery_mode;
4162 irte.fields.destination = destination;
4163 irte.fields.dm = apic->irq_dest_mode;
4164 irte.fields.valid = 1;
4165
4166 ret = modify_irte(devid, index, irte);
4167 if (ret)
4168 return ret;
4169
4170 /* Setup IOAPIC entry */
4171 memset(entry, 0, sizeof(*entry));
4172
4173 entry->vector = index;
4174 entry->mask = 0;
4175 entry->trigger = attr->trigger;
4176 entry->polarity = attr->polarity;
4177
4178 /*
4179 * Mask level triggered irqs.
4180 */
4181 if (attr->trigger)
4182 entry->mask = 1;
4183
4184 return 0;
4185 }
4186
4187 static int set_affinity(struct irq_data *data, const struct cpumask *mask,
4188 bool force)
4189 {
4190 struct irq_2_irte *irte_info;
4191 unsigned int dest, irq;
4192 struct irq_cfg *cfg;
4193 union irte irte;
4194 int err;
4195
4196 if (!config_enabled(CONFIG_SMP))
4197 return -1;
4198
4199 cfg = data->chip_data;
4200 irq = data->irq;
4201 irte_info = &cfg->irq_2_irte;
4202
4203 if (!cpumask_intersects(mask, cpu_online_mask))
4204 return -EINVAL;
4205
4206 if (get_irte(irte_info->devid, irte_info->index, &irte))
4207 return -EBUSY;
4208
4209 if (assign_irq_vector(irq, cfg, mask))
4210 return -EBUSY;
4211
4212 err = apic->cpu_mask_to_apicid_and(cfg->domain, mask, &dest);
4213 if (err) {
4214 if (assign_irq_vector(irq, cfg, data->affinity))
4215 pr_err("AMD-Vi: Failed to recover vector for irq %d\n", irq);
4216 return err;
4217 }
4218
4219 irte.fields.vector = cfg->vector;
4220 irte.fields.destination = dest;
4221
4222 modify_irte(irte_info->devid, irte_info->index, irte);
4223
4224 if (cfg->move_in_progress)
4225 send_cleanup_vector(cfg);
4226
4227 cpumask_copy(data->affinity, mask);
4228
4229 return 0;
4230 }
4231
4232 static int free_irq(int irq)
4233 {
4234 struct irq_2_irte *irte_info;
4235 struct irq_cfg *cfg;
4236
4237 cfg = irq_get_chip_data(irq);
4238 if (!cfg)
4239 return -EINVAL;
4240
4241 irte_info = &cfg->irq_2_irte;
4242
4243 free_irte(irte_info->devid, irte_info->index);
4244
4245 return 0;
4246 }
4247
4248 static void compose_msi_msg(struct pci_dev *pdev,
4249 unsigned int irq, unsigned int dest,
4250 struct msi_msg *msg, u8 hpet_id)
4251 {
4252 struct irq_2_irte *irte_info;
4253 struct irq_cfg *cfg;
4254 union irte irte;
4255
4256 cfg = irq_get_chip_data(irq);
4257 if (!cfg)
4258 return;
4259
4260 irte_info = &cfg->irq_2_irte;
4261
4262 irte.val = 0;
4263 irte.fields.vector = cfg->vector;
4264 irte.fields.int_type = apic->irq_delivery_mode;
4265 irte.fields.destination = dest;
4266 irte.fields.dm = apic->irq_dest_mode;
4267 irte.fields.valid = 1;
4268
4269 modify_irte(irte_info->devid, irte_info->index, irte);
4270
4271 msg->address_hi = MSI_ADDR_BASE_HI;
4272 msg->address_lo = MSI_ADDR_BASE_LO;
4273 msg->data = irte_info->index;
4274 }
4275
4276 static int msi_alloc_irq(struct pci_dev *pdev, int irq, int nvec)
4277 {
4278 struct irq_cfg *cfg;
4279 int index;
4280 u16 devid;
4281
4282 if (!pdev)
4283 return -EINVAL;
4284
4285 cfg = irq_get_chip_data(irq);
4286 if (!cfg)
4287 return -EINVAL;
4288
4289 devid = get_device_id(&pdev->dev);
4290 index = alloc_irq_index(cfg, devid, nvec);
4291
4292 return index < 0 ? MAX_IRQS_PER_TABLE : index;
4293 }
4294
4295 static int msi_setup_irq(struct pci_dev *pdev, unsigned int irq,
4296 int index, int offset)
4297 {
4298 struct irq_2_irte *irte_info;
4299 struct irq_cfg *cfg;
4300 u16 devid;
4301
4302 if (!pdev)
4303 return -EINVAL;
4304
4305 cfg = irq_get_chip_data(irq);
4306 if (!cfg)
4307 return -EINVAL;
4308
4309 if (index >= MAX_IRQS_PER_TABLE)
4310 return 0;
4311
4312 devid = get_device_id(&pdev->dev);
4313 irte_info = &cfg->irq_2_irte;
4314
4315 cfg->remapped = 1;
4316 irte_info->devid = devid;
4317 irte_info->index = index + offset;
4318
4319 return 0;
4320 }
4321
4322 static int setup_hpet_msi(unsigned int irq, unsigned int id)
4323 {
4324 struct irq_2_irte *irte_info;
4325 struct irq_cfg *cfg;
4326 int index, devid;
4327
4328 cfg = irq_get_chip_data(irq);
4329 if (!cfg)
4330 return -EINVAL;
4331
4332 irte_info = &cfg->irq_2_irte;
4333 devid = get_hpet_devid(id);
4334 if (devid < 0)
4335 return devid;
4336
4337 index = alloc_irq_index(cfg, devid, 1);
4338 if (index < 0)
4339 return index;
4340
4341 cfg->remapped = 1;
4342 irte_info->devid = devid;
4343 irte_info->index = index;
4344
4345 return 0;
4346 }
4347
4348 struct irq_remap_ops amd_iommu_irq_ops = {
4349 .supported = amd_iommu_supported,
4350 .prepare = amd_iommu_prepare,
4351 .enable = amd_iommu_enable,
4352 .disable = amd_iommu_disable,
4353 .reenable = amd_iommu_reenable,
4354 .enable_faulting = amd_iommu_enable_faulting,
4355 .setup_ioapic_entry = setup_ioapic_entry,
4356 .set_affinity = set_affinity,
4357 .free_irq = free_irq,
4358 .compose_msi_msg = compose_msi_msg,
4359 .msi_alloc_irq = msi_alloc_irq,
4360 .msi_setup_irq = msi_setup_irq,
4361 .setup_hpet_msi = setup_hpet_msi,
4362 };
4363 #endif
This page took 0.129991 seconds and 5 git commands to generate.