Merge tag 'iommu-fixes-v4.2' of git://git.kernel.org/pub/scm/linux/kernel/git/joro...
[deliverable/linux.git] / drivers / iommu / amd_iommu.c
1 /*
2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <jroedel@suse.de>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20 #include <linux/ratelimit.h>
21 #include <linux/pci.h>
22 #include <linux/pci-ats.h>
23 #include <linux/bitmap.h>
24 #include <linux/slab.h>
25 #include <linux/debugfs.h>
26 #include <linux/scatterlist.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/iommu-helper.h>
29 #include <linux/iommu.h>
30 #include <linux/delay.h>
31 #include <linux/amd-iommu.h>
32 #include <linux/notifier.h>
33 #include <linux/export.h>
34 #include <linux/irq.h>
35 #include <linux/msi.h>
36 #include <linux/dma-contiguous.h>
37 #include <linux/irqdomain.h>
38 #include <asm/irq_remapping.h>
39 #include <asm/io_apic.h>
40 #include <asm/apic.h>
41 #include <asm/hw_irq.h>
42 #include <asm/msidef.h>
43 #include <asm/proto.h>
44 #include <asm/iommu.h>
45 #include <asm/gart.h>
46 #include <asm/dma.h>
47
48 #include "amd_iommu_proto.h"
49 #include "amd_iommu_types.h"
50 #include "irq_remapping.h"
51
52 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
53
54 #define LOOP_TIMEOUT 100000
55
56 /*
57 * This bitmap is used to advertise the page sizes our hardware support
58 * to the IOMMU core, which will then use this information to split
59 * physically contiguous memory regions it is mapping into page sizes
60 * that we support.
61 *
62 * 512GB Pages are not supported due to a hardware bug
63 */
64 #define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38))
65
66 static DEFINE_RWLOCK(amd_iommu_devtable_lock);
67
68 /* List of all available dev_data structures */
69 static LIST_HEAD(dev_data_list);
70 static DEFINE_SPINLOCK(dev_data_list_lock);
71
72 LIST_HEAD(ioapic_map);
73 LIST_HEAD(hpet_map);
74
75 /*
76 * Domain for untranslated devices - only allocated
77 * if iommu=pt passed on kernel cmd line.
78 */
79 static struct protection_domain *pt_domain;
80
81 static const struct iommu_ops amd_iommu_ops;
82
83 static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
84 int amd_iommu_max_glx_val = -1;
85
86 static struct dma_map_ops amd_iommu_dma_ops;
87
88 /*
89 * This struct contains device specific data for the IOMMU
90 */
91 struct iommu_dev_data {
92 struct list_head list; /* For domain->dev_list */
93 struct list_head dev_data_list; /* For global dev_data_list */
94 struct list_head alias_list; /* Link alias-groups together */
95 struct iommu_dev_data *alias_data;/* The alias dev_data */
96 struct protection_domain *domain; /* Domain the device is bound to */
97 u16 devid; /* PCI Device ID */
98 bool iommu_v2; /* Device can make use of IOMMUv2 */
99 bool passthrough; /* Default for device is pt_domain */
100 struct {
101 bool enabled;
102 int qdep;
103 } ats; /* ATS state */
104 bool pri_tlp; /* PASID TLB required for
105 PPR completions */
106 u32 errata; /* Bitmap for errata to apply */
107 };
108
109 /*
110 * general struct to manage commands send to an IOMMU
111 */
112 struct iommu_cmd {
113 u32 data[4];
114 };
115
116 struct kmem_cache *amd_iommu_irq_cache;
117
118 static void update_domain(struct protection_domain *domain);
119 static int alloc_passthrough_domain(void);
120 static int protection_domain_init(struct protection_domain *domain);
121
122 /****************************************************************************
123 *
124 * Helper functions
125 *
126 ****************************************************************************/
127
128 static struct protection_domain *to_pdomain(struct iommu_domain *dom)
129 {
130 return container_of(dom, struct protection_domain, domain);
131 }
132
133 static struct iommu_dev_data *alloc_dev_data(u16 devid)
134 {
135 struct iommu_dev_data *dev_data;
136 unsigned long flags;
137
138 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
139 if (!dev_data)
140 return NULL;
141
142 INIT_LIST_HEAD(&dev_data->alias_list);
143
144 dev_data->devid = devid;
145
146 spin_lock_irqsave(&dev_data_list_lock, flags);
147 list_add_tail(&dev_data->dev_data_list, &dev_data_list);
148 spin_unlock_irqrestore(&dev_data_list_lock, flags);
149
150 return dev_data;
151 }
152
153 static void free_dev_data(struct iommu_dev_data *dev_data)
154 {
155 unsigned long flags;
156
157 spin_lock_irqsave(&dev_data_list_lock, flags);
158 list_del(&dev_data->dev_data_list);
159 spin_unlock_irqrestore(&dev_data_list_lock, flags);
160
161 kfree(dev_data);
162 }
163
164 static struct iommu_dev_data *search_dev_data(u16 devid)
165 {
166 struct iommu_dev_data *dev_data;
167 unsigned long flags;
168
169 spin_lock_irqsave(&dev_data_list_lock, flags);
170 list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
171 if (dev_data->devid == devid)
172 goto out_unlock;
173 }
174
175 dev_data = NULL;
176
177 out_unlock:
178 spin_unlock_irqrestore(&dev_data_list_lock, flags);
179
180 return dev_data;
181 }
182
183 static struct iommu_dev_data *find_dev_data(u16 devid)
184 {
185 struct iommu_dev_data *dev_data;
186
187 dev_data = search_dev_data(devid);
188
189 if (dev_data == NULL)
190 dev_data = alloc_dev_data(devid);
191
192 return dev_data;
193 }
194
195 static inline u16 get_device_id(struct device *dev)
196 {
197 struct pci_dev *pdev = to_pci_dev(dev);
198
199 return PCI_DEVID(pdev->bus->number, pdev->devfn);
200 }
201
202 static struct iommu_dev_data *get_dev_data(struct device *dev)
203 {
204 return dev->archdata.iommu;
205 }
206
207 static bool pci_iommuv2_capable(struct pci_dev *pdev)
208 {
209 static const int caps[] = {
210 PCI_EXT_CAP_ID_ATS,
211 PCI_EXT_CAP_ID_PRI,
212 PCI_EXT_CAP_ID_PASID,
213 };
214 int i, pos;
215
216 for (i = 0; i < 3; ++i) {
217 pos = pci_find_ext_capability(pdev, caps[i]);
218 if (pos == 0)
219 return false;
220 }
221
222 return true;
223 }
224
225 static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
226 {
227 struct iommu_dev_data *dev_data;
228
229 dev_data = get_dev_data(&pdev->dev);
230
231 return dev_data->errata & (1 << erratum) ? true : false;
232 }
233
234 /*
235 * This function actually applies the mapping to the page table of the
236 * dma_ops domain.
237 */
238 static void alloc_unity_mapping(struct dma_ops_domain *dma_dom,
239 struct unity_map_entry *e)
240 {
241 u64 addr;
242
243 for (addr = e->address_start; addr < e->address_end;
244 addr += PAGE_SIZE) {
245 if (addr < dma_dom->aperture_size)
246 __set_bit(addr >> PAGE_SHIFT,
247 dma_dom->aperture[0]->bitmap);
248 }
249 }
250
251 /*
252 * Inits the unity mappings required for a specific device
253 */
254 static void init_unity_mappings_for_device(struct device *dev,
255 struct dma_ops_domain *dma_dom)
256 {
257 struct unity_map_entry *e;
258 u16 devid;
259
260 devid = get_device_id(dev);
261
262 list_for_each_entry(e, &amd_iommu_unity_map, list) {
263 if (!(devid >= e->devid_start && devid <= e->devid_end))
264 continue;
265 alloc_unity_mapping(dma_dom, e);
266 }
267 }
268
269 /*
270 * This function checks if the driver got a valid device from the caller to
271 * avoid dereferencing invalid pointers.
272 */
273 static bool check_device(struct device *dev)
274 {
275 u16 devid;
276
277 if (!dev || !dev->dma_mask)
278 return false;
279
280 /* No PCI device */
281 if (!dev_is_pci(dev))
282 return false;
283
284 devid = get_device_id(dev);
285
286 /* Out of our scope? */
287 if (devid > amd_iommu_last_bdf)
288 return false;
289
290 if (amd_iommu_rlookup_table[devid] == NULL)
291 return false;
292
293 return true;
294 }
295
296 static void init_iommu_group(struct device *dev)
297 {
298 struct dma_ops_domain *dma_domain;
299 struct iommu_domain *domain;
300 struct iommu_group *group;
301
302 group = iommu_group_get_for_dev(dev);
303 if (IS_ERR(group))
304 return;
305
306 domain = iommu_group_default_domain(group);
307 if (!domain)
308 goto out;
309
310 dma_domain = to_pdomain(domain)->priv;
311
312 init_unity_mappings_for_device(dev, dma_domain);
313 out:
314 iommu_group_put(group);
315 }
316
317 static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
318 {
319 *(u16 *)data = alias;
320 return 0;
321 }
322
323 static u16 get_alias(struct device *dev)
324 {
325 struct pci_dev *pdev = to_pci_dev(dev);
326 u16 devid, ivrs_alias, pci_alias;
327
328 devid = get_device_id(dev);
329 ivrs_alias = amd_iommu_alias_table[devid];
330 pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);
331
332 if (ivrs_alias == pci_alias)
333 return ivrs_alias;
334
335 /*
336 * DMA alias showdown
337 *
338 * The IVRS is fairly reliable in telling us about aliases, but it
339 * can't know about every screwy device. If we don't have an IVRS
340 * reported alias, use the PCI reported alias. In that case we may
341 * still need to initialize the rlookup and dev_table entries if the
342 * alias is to a non-existent device.
343 */
344 if (ivrs_alias == devid) {
345 if (!amd_iommu_rlookup_table[pci_alias]) {
346 amd_iommu_rlookup_table[pci_alias] =
347 amd_iommu_rlookup_table[devid];
348 memcpy(amd_iommu_dev_table[pci_alias].data,
349 amd_iommu_dev_table[devid].data,
350 sizeof(amd_iommu_dev_table[pci_alias].data));
351 }
352
353 return pci_alias;
354 }
355
356 pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
357 "for device %s[%04x:%04x], kernel reported alias "
358 "%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
359 PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
360 PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
361 PCI_FUNC(pci_alias));
362
363 /*
364 * If we don't have a PCI DMA alias and the IVRS alias is on the same
365 * bus, then the IVRS table may know about a quirk that we don't.
366 */
367 if (pci_alias == devid &&
368 PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
369 pdev->dev_flags |= PCI_DEV_FLAGS_DMA_ALIAS_DEVFN;
370 pdev->dma_alias_devfn = ivrs_alias & 0xff;
371 pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
372 PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
373 dev_name(dev));
374 }
375
376 return ivrs_alias;
377 }
378
379 static int iommu_init_device(struct device *dev)
380 {
381 struct pci_dev *pdev = to_pci_dev(dev);
382 struct iommu_dev_data *dev_data;
383 u16 alias;
384
385 if (dev->archdata.iommu)
386 return 0;
387
388 dev_data = find_dev_data(get_device_id(dev));
389 if (!dev_data)
390 return -ENOMEM;
391
392 alias = get_alias(dev);
393
394 if (alias != dev_data->devid) {
395 struct iommu_dev_data *alias_data;
396
397 alias_data = find_dev_data(alias);
398 if (alias_data == NULL) {
399 pr_err("AMD-Vi: Warning: Unhandled device %s\n",
400 dev_name(dev));
401 free_dev_data(dev_data);
402 return -ENOTSUPP;
403 }
404 dev_data->alias_data = alias_data;
405
406 /* Add device to the alias_list */
407 list_add(&dev_data->alias_list, &alias_data->alias_list);
408 }
409
410 if (pci_iommuv2_capable(pdev)) {
411 struct amd_iommu *iommu;
412
413 iommu = amd_iommu_rlookup_table[dev_data->devid];
414 dev_data->iommu_v2 = iommu->is_iommu_v2;
415 }
416
417 dev->archdata.iommu = dev_data;
418
419 iommu_device_link(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
420 dev);
421
422 return 0;
423 }
424
425 static void iommu_ignore_device(struct device *dev)
426 {
427 u16 devid, alias;
428
429 devid = get_device_id(dev);
430 alias = amd_iommu_alias_table[devid];
431
432 memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
433 memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
434
435 amd_iommu_rlookup_table[devid] = NULL;
436 amd_iommu_rlookup_table[alias] = NULL;
437 }
438
439 static void iommu_uninit_device(struct device *dev)
440 {
441 struct iommu_dev_data *dev_data = search_dev_data(get_device_id(dev));
442
443 if (!dev_data)
444 return;
445
446 iommu_device_unlink(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
447 dev);
448
449 iommu_group_remove_device(dev);
450
451 /* Unlink from alias, it may change if another device is re-plugged */
452 dev_data->alias_data = NULL;
453
454 /* Remove dma-ops */
455 dev->archdata.dma_ops = NULL;
456
457 /*
458 * We keep dev_data around for unplugged devices and reuse it when the
459 * device is re-plugged - not doing so would introduce a ton of races.
460 */
461 }
462
463 #ifdef CONFIG_AMD_IOMMU_STATS
464
465 /*
466 * Initialization code for statistics collection
467 */
468
469 DECLARE_STATS_COUNTER(compl_wait);
470 DECLARE_STATS_COUNTER(cnt_map_single);
471 DECLARE_STATS_COUNTER(cnt_unmap_single);
472 DECLARE_STATS_COUNTER(cnt_map_sg);
473 DECLARE_STATS_COUNTER(cnt_unmap_sg);
474 DECLARE_STATS_COUNTER(cnt_alloc_coherent);
475 DECLARE_STATS_COUNTER(cnt_free_coherent);
476 DECLARE_STATS_COUNTER(cross_page);
477 DECLARE_STATS_COUNTER(domain_flush_single);
478 DECLARE_STATS_COUNTER(domain_flush_all);
479 DECLARE_STATS_COUNTER(alloced_io_mem);
480 DECLARE_STATS_COUNTER(total_map_requests);
481 DECLARE_STATS_COUNTER(complete_ppr);
482 DECLARE_STATS_COUNTER(invalidate_iotlb);
483 DECLARE_STATS_COUNTER(invalidate_iotlb_all);
484 DECLARE_STATS_COUNTER(pri_requests);
485
486 static struct dentry *stats_dir;
487 static struct dentry *de_fflush;
488
489 static void amd_iommu_stats_add(struct __iommu_counter *cnt)
490 {
491 if (stats_dir == NULL)
492 return;
493
494 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
495 &cnt->value);
496 }
497
498 static void amd_iommu_stats_init(void)
499 {
500 stats_dir = debugfs_create_dir("amd-iommu", NULL);
501 if (stats_dir == NULL)
502 return;
503
504 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
505 &amd_iommu_unmap_flush);
506
507 amd_iommu_stats_add(&compl_wait);
508 amd_iommu_stats_add(&cnt_map_single);
509 amd_iommu_stats_add(&cnt_unmap_single);
510 amd_iommu_stats_add(&cnt_map_sg);
511 amd_iommu_stats_add(&cnt_unmap_sg);
512 amd_iommu_stats_add(&cnt_alloc_coherent);
513 amd_iommu_stats_add(&cnt_free_coherent);
514 amd_iommu_stats_add(&cross_page);
515 amd_iommu_stats_add(&domain_flush_single);
516 amd_iommu_stats_add(&domain_flush_all);
517 amd_iommu_stats_add(&alloced_io_mem);
518 amd_iommu_stats_add(&total_map_requests);
519 amd_iommu_stats_add(&complete_ppr);
520 amd_iommu_stats_add(&invalidate_iotlb);
521 amd_iommu_stats_add(&invalidate_iotlb_all);
522 amd_iommu_stats_add(&pri_requests);
523 }
524
525 #endif
526
527 /****************************************************************************
528 *
529 * Interrupt handling functions
530 *
531 ****************************************************************************/
532
533 static void dump_dte_entry(u16 devid)
534 {
535 int i;
536
537 for (i = 0; i < 4; ++i)
538 pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
539 amd_iommu_dev_table[devid].data[i]);
540 }
541
542 static void dump_command(unsigned long phys_addr)
543 {
544 struct iommu_cmd *cmd = phys_to_virt(phys_addr);
545 int i;
546
547 for (i = 0; i < 4; ++i)
548 pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
549 }
550
551 static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
552 {
553 int type, devid, domid, flags;
554 volatile u32 *event = __evt;
555 int count = 0;
556 u64 address;
557
558 retry:
559 type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
560 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
561 domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
562 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
563 address = (u64)(((u64)event[3]) << 32) | event[2];
564
565 if (type == 0) {
566 /* Did we hit the erratum? */
567 if (++count == LOOP_TIMEOUT) {
568 pr_err("AMD-Vi: No event written to event log\n");
569 return;
570 }
571 udelay(1);
572 goto retry;
573 }
574
575 printk(KERN_ERR "AMD-Vi: Event logged [");
576
577 switch (type) {
578 case EVENT_TYPE_ILL_DEV:
579 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
580 "address=0x%016llx flags=0x%04x]\n",
581 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
582 address, flags);
583 dump_dte_entry(devid);
584 break;
585 case EVENT_TYPE_IO_FAULT:
586 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
587 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
588 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
589 domid, address, flags);
590 break;
591 case EVENT_TYPE_DEV_TAB_ERR:
592 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
593 "address=0x%016llx flags=0x%04x]\n",
594 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
595 address, flags);
596 break;
597 case EVENT_TYPE_PAGE_TAB_ERR:
598 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
599 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
600 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
601 domid, address, flags);
602 break;
603 case EVENT_TYPE_ILL_CMD:
604 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
605 dump_command(address);
606 break;
607 case EVENT_TYPE_CMD_HARD_ERR:
608 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
609 "flags=0x%04x]\n", address, flags);
610 break;
611 case EVENT_TYPE_IOTLB_INV_TO:
612 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
613 "address=0x%016llx]\n",
614 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
615 address);
616 break;
617 case EVENT_TYPE_INV_DEV_REQ:
618 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
619 "address=0x%016llx flags=0x%04x]\n",
620 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
621 address, flags);
622 break;
623 default:
624 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
625 }
626
627 memset(__evt, 0, 4 * sizeof(u32));
628 }
629
630 static void iommu_poll_events(struct amd_iommu *iommu)
631 {
632 u32 head, tail;
633
634 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
635 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
636
637 while (head != tail) {
638 iommu_print_event(iommu, iommu->evt_buf + head);
639 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
640 }
641
642 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
643 }
644
645 static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
646 {
647 struct amd_iommu_fault fault;
648
649 INC_STATS_COUNTER(pri_requests);
650
651 if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
652 pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
653 return;
654 }
655
656 fault.address = raw[1];
657 fault.pasid = PPR_PASID(raw[0]);
658 fault.device_id = PPR_DEVID(raw[0]);
659 fault.tag = PPR_TAG(raw[0]);
660 fault.flags = PPR_FLAGS(raw[0]);
661
662 atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
663 }
664
665 static void iommu_poll_ppr_log(struct amd_iommu *iommu)
666 {
667 u32 head, tail;
668
669 if (iommu->ppr_log == NULL)
670 return;
671
672 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
673 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
674
675 while (head != tail) {
676 volatile u64 *raw;
677 u64 entry[2];
678 int i;
679
680 raw = (u64 *)(iommu->ppr_log + head);
681
682 /*
683 * Hardware bug: Interrupt may arrive before the entry is
684 * written to memory. If this happens we need to wait for the
685 * entry to arrive.
686 */
687 for (i = 0; i < LOOP_TIMEOUT; ++i) {
688 if (PPR_REQ_TYPE(raw[0]) != 0)
689 break;
690 udelay(1);
691 }
692
693 /* Avoid memcpy function-call overhead */
694 entry[0] = raw[0];
695 entry[1] = raw[1];
696
697 /*
698 * To detect the hardware bug we need to clear the entry
699 * back to zero.
700 */
701 raw[0] = raw[1] = 0UL;
702
703 /* Update head pointer of hardware ring-buffer */
704 head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
705 writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
706
707 /* Handle PPR entry */
708 iommu_handle_ppr_entry(iommu, entry);
709
710 /* Refresh ring-buffer information */
711 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
712 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
713 }
714 }
715
716 irqreturn_t amd_iommu_int_thread(int irq, void *data)
717 {
718 struct amd_iommu *iommu = (struct amd_iommu *) data;
719 u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
720
721 while (status & (MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK)) {
722 /* Enable EVT and PPR interrupts again */
723 writel((MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK),
724 iommu->mmio_base + MMIO_STATUS_OFFSET);
725
726 if (status & MMIO_STATUS_EVT_INT_MASK) {
727 pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
728 iommu_poll_events(iommu);
729 }
730
731 if (status & MMIO_STATUS_PPR_INT_MASK) {
732 pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
733 iommu_poll_ppr_log(iommu);
734 }
735
736 /*
737 * Hardware bug: ERBT1312
738 * When re-enabling interrupt (by writing 1
739 * to clear the bit), the hardware might also try to set
740 * the interrupt bit in the event status register.
741 * In this scenario, the bit will be set, and disable
742 * subsequent interrupts.
743 *
744 * Workaround: The IOMMU driver should read back the
745 * status register and check if the interrupt bits are cleared.
746 * If not, driver will need to go through the interrupt handler
747 * again and re-clear the bits
748 */
749 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
750 }
751 return IRQ_HANDLED;
752 }
753
754 irqreturn_t amd_iommu_int_handler(int irq, void *data)
755 {
756 return IRQ_WAKE_THREAD;
757 }
758
759 /****************************************************************************
760 *
761 * IOMMU command queuing functions
762 *
763 ****************************************************************************/
764
765 static int wait_on_sem(volatile u64 *sem)
766 {
767 int i = 0;
768
769 while (*sem == 0 && i < LOOP_TIMEOUT) {
770 udelay(1);
771 i += 1;
772 }
773
774 if (i == LOOP_TIMEOUT) {
775 pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
776 return -EIO;
777 }
778
779 return 0;
780 }
781
782 static void copy_cmd_to_buffer(struct amd_iommu *iommu,
783 struct iommu_cmd *cmd,
784 u32 tail)
785 {
786 u8 *target;
787
788 target = iommu->cmd_buf + tail;
789 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
790
791 /* Copy command to buffer */
792 memcpy(target, cmd, sizeof(*cmd));
793
794 /* Tell the IOMMU about it */
795 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
796 }
797
798 static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
799 {
800 WARN_ON(address & 0x7ULL);
801
802 memset(cmd, 0, sizeof(*cmd));
803 cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
804 cmd->data[1] = upper_32_bits(__pa(address));
805 cmd->data[2] = 1;
806 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
807 }
808
809 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
810 {
811 memset(cmd, 0, sizeof(*cmd));
812 cmd->data[0] = devid;
813 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
814 }
815
816 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
817 size_t size, u16 domid, int pde)
818 {
819 u64 pages;
820 bool s;
821
822 pages = iommu_num_pages(address, size, PAGE_SIZE);
823 s = false;
824
825 if (pages > 1) {
826 /*
827 * If we have to flush more than one page, flush all
828 * TLB entries for this domain
829 */
830 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
831 s = true;
832 }
833
834 address &= PAGE_MASK;
835
836 memset(cmd, 0, sizeof(*cmd));
837 cmd->data[1] |= domid;
838 cmd->data[2] = lower_32_bits(address);
839 cmd->data[3] = upper_32_bits(address);
840 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
841 if (s) /* size bit - we flush more than one 4kb page */
842 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
843 if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
844 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
845 }
846
847 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
848 u64 address, size_t size)
849 {
850 u64 pages;
851 bool s;
852
853 pages = iommu_num_pages(address, size, PAGE_SIZE);
854 s = false;
855
856 if (pages > 1) {
857 /*
858 * If we have to flush more than one page, flush all
859 * TLB entries for this domain
860 */
861 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
862 s = true;
863 }
864
865 address &= PAGE_MASK;
866
867 memset(cmd, 0, sizeof(*cmd));
868 cmd->data[0] = devid;
869 cmd->data[0] |= (qdep & 0xff) << 24;
870 cmd->data[1] = devid;
871 cmd->data[2] = lower_32_bits(address);
872 cmd->data[3] = upper_32_bits(address);
873 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
874 if (s)
875 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
876 }
877
878 static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
879 u64 address, bool size)
880 {
881 memset(cmd, 0, sizeof(*cmd));
882
883 address &= ~(0xfffULL);
884
885 cmd->data[0] = pasid;
886 cmd->data[1] = domid;
887 cmd->data[2] = lower_32_bits(address);
888 cmd->data[3] = upper_32_bits(address);
889 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
890 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
891 if (size)
892 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
893 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
894 }
895
896 static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
897 int qdep, u64 address, bool size)
898 {
899 memset(cmd, 0, sizeof(*cmd));
900
901 address &= ~(0xfffULL);
902
903 cmd->data[0] = devid;
904 cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
905 cmd->data[0] |= (qdep & 0xff) << 24;
906 cmd->data[1] = devid;
907 cmd->data[1] |= (pasid & 0xff) << 16;
908 cmd->data[2] = lower_32_bits(address);
909 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
910 cmd->data[3] = upper_32_bits(address);
911 if (size)
912 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
913 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
914 }
915
916 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
917 int status, int tag, bool gn)
918 {
919 memset(cmd, 0, sizeof(*cmd));
920
921 cmd->data[0] = devid;
922 if (gn) {
923 cmd->data[1] = pasid;
924 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
925 }
926 cmd->data[3] = tag & 0x1ff;
927 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
928
929 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
930 }
931
932 static void build_inv_all(struct iommu_cmd *cmd)
933 {
934 memset(cmd, 0, sizeof(*cmd));
935 CMD_SET_TYPE(cmd, CMD_INV_ALL);
936 }
937
938 static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
939 {
940 memset(cmd, 0, sizeof(*cmd));
941 cmd->data[0] = devid;
942 CMD_SET_TYPE(cmd, CMD_INV_IRT);
943 }
944
945 /*
946 * Writes the command to the IOMMUs command buffer and informs the
947 * hardware about the new command.
948 */
949 static int iommu_queue_command_sync(struct amd_iommu *iommu,
950 struct iommu_cmd *cmd,
951 bool sync)
952 {
953 u32 left, tail, head, next_tail;
954 unsigned long flags;
955
956 WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
957
958 again:
959 spin_lock_irqsave(&iommu->lock, flags);
960
961 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
962 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
963 next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
964 left = (head - next_tail) % iommu->cmd_buf_size;
965
966 if (left <= 2) {
967 struct iommu_cmd sync_cmd;
968 volatile u64 sem = 0;
969 int ret;
970
971 build_completion_wait(&sync_cmd, (u64)&sem);
972 copy_cmd_to_buffer(iommu, &sync_cmd, tail);
973
974 spin_unlock_irqrestore(&iommu->lock, flags);
975
976 if ((ret = wait_on_sem(&sem)) != 0)
977 return ret;
978
979 goto again;
980 }
981
982 copy_cmd_to_buffer(iommu, cmd, tail);
983
984 /* We need to sync now to make sure all commands are processed */
985 iommu->need_sync = sync;
986
987 spin_unlock_irqrestore(&iommu->lock, flags);
988
989 return 0;
990 }
991
992 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
993 {
994 return iommu_queue_command_sync(iommu, cmd, true);
995 }
996
997 /*
998 * This function queues a completion wait command into the command
999 * buffer of an IOMMU
1000 */
1001 static int iommu_completion_wait(struct amd_iommu *iommu)
1002 {
1003 struct iommu_cmd cmd;
1004 volatile u64 sem = 0;
1005 int ret;
1006
1007 if (!iommu->need_sync)
1008 return 0;
1009
1010 build_completion_wait(&cmd, (u64)&sem);
1011
1012 ret = iommu_queue_command_sync(iommu, &cmd, false);
1013 if (ret)
1014 return ret;
1015
1016 return wait_on_sem(&sem);
1017 }
1018
1019 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1020 {
1021 struct iommu_cmd cmd;
1022
1023 build_inv_dte(&cmd, devid);
1024
1025 return iommu_queue_command(iommu, &cmd);
1026 }
1027
1028 static void iommu_flush_dte_all(struct amd_iommu *iommu)
1029 {
1030 u32 devid;
1031
1032 for (devid = 0; devid <= 0xffff; ++devid)
1033 iommu_flush_dte(iommu, devid);
1034
1035 iommu_completion_wait(iommu);
1036 }
1037
1038 /*
1039 * This function uses heavy locking and may disable irqs for some time. But
1040 * this is no issue because it is only called during resume.
1041 */
1042 static void iommu_flush_tlb_all(struct amd_iommu *iommu)
1043 {
1044 u32 dom_id;
1045
1046 for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
1047 struct iommu_cmd cmd;
1048 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1049 dom_id, 1);
1050 iommu_queue_command(iommu, &cmd);
1051 }
1052
1053 iommu_completion_wait(iommu);
1054 }
1055
1056 static void iommu_flush_all(struct amd_iommu *iommu)
1057 {
1058 struct iommu_cmd cmd;
1059
1060 build_inv_all(&cmd);
1061
1062 iommu_queue_command(iommu, &cmd);
1063 iommu_completion_wait(iommu);
1064 }
1065
1066 static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1067 {
1068 struct iommu_cmd cmd;
1069
1070 build_inv_irt(&cmd, devid);
1071
1072 iommu_queue_command(iommu, &cmd);
1073 }
1074
1075 static void iommu_flush_irt_all(struct amd_iommu *iommu)
1076 {
1077 u32 devid;
1078
1079 for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
1080 iommu_flush_irt(iommu, devid);
1081
1082 iommu_completion_wait(iommu);
1083 }
1084
1085 void iommu_flush_all_caches(struct amd_iommu *iommu)
1086 {
1087 if (iommu_feature(iommu, FEATURE_IA)) {
1088 iommu_flush_all(iommu);
1089 } else {
1090 iommu_flush_dte_all(iommu);
1091 iommu_flush_irt_all(iommu);
1092 iommu_flush_tlb_all(iommu);
1093 }
1094 }
1095
1096 /*
1097 * Command send function for flushing on-device TLB
1098 */
1099 static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1100 u64 address, size_t size)
1101 {
1102 struct amd_iommu *iommu;
1103 struct iommu_cmd cmd;
1104 int qdep;
1105
1106 qdep = dev_data->ats.qdep;
1107 iommu = amd_iommu_rlookup_table[dev_data->devid];
1108
1109 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1110
1111 return iommu_queue_command(iommu, &cmd);
1112 }
1113
1114 /*
1115 * Command send function for invalidating a device table entry
1116 */
1117 static int device_flush_dte(struct iommu_dev_data *dev_data)
1118 {
1119 struct amd_iommu *iommu;
1120 int ret;
1121
1122 iommu = amd_iommu_rlookup_table[dev_data->devid];
1123
1124 ret = iommu_flush_dte(iommu, dev_data->devid);
1125 if (ret)
1126 return ret;
1127
1128 if (dev_data->ats.enabled)
1129 ret = device_flush_iotlb(dev_data, 0, ~0UL);
1130
1131 return ret;
1132 }
1133
1134 /*
1135 * TLB invalidation function which is called from the mapping functions.
1136 * It invalidates a single PTE if the range to flush is within a single
1137 * page. Otherwise it flushes the whole TLB of the IOMMU.
1138 */
1139 static void __domain_flush_pages(struct protection_domain *domain,
1140 u64 address, size_t size, int pde)
1141 {
1142 struct iommu_dev_data *dev_data;
1143 struct iommu_cmd cmd;
1144 int ret = 0, i;
1145
1146 build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1147
1148 for (i = 0; i < amd_iommus_present; ++i) {
1149 if (!domain->dev_iommu[i])
1150 continue;
1151
1152 /*
1153 * Devices of this domain are behind this IOMMU
1154 * We need a TLB flush
1155 */
1156 ret |= iommu_queue_command(amd_iommus[i], &cmd);
1157 }
1158
1159 list_for_each_entry(dev_data, &domain->dev_list, list) {
1160
1161 if (!dev_data->ats.enabled)
1162 continue;
1163
1164 ret |= device_flush_iotlb(dev_data, address, size);
1165 }
1166
1167 WARN_ON(ret);
1168 }
1169
1170 static void domain_flush_pages(struct protection_domain *domain,
1171 u64 address, size_t size)
1172 {
1173 __domain_flush_pages(domain, address, size, 0);
1174 }
1175
1176 /* Flush the whole IO/TLB for a given protection domain */
1177 static void domain_flush_tlb(struct protection_domain *domain)
1178 {
1179 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1180 }
1181
1182 /* Flush the whole IO/TLB for a given protection domain - including PDE */
1183 static void domain_flush_tlb_pde(struct protection_domain *domain)
1184 {
1185 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1186 }
1187
1188 static void domain_flush_complete(struct protection_domain *domain)
1189 {
1190 int i;
1191
1192 for (i = 0; i < amd_iommus_present; ++i) {
1193 if (!domain->dev_iommu[i])
1194 continue;
1195
1196 /*
1197 * Devices of this domain are behind this IOMMU
1198 * We need to wait for completion of all commands.
1199 */
1200 iommu_completion_wait(amd_iommus[i]);
1201 }
1202 }
1203
1204
1205 /*
1206 * This function flushes the DTEs for all devices in domain
1207 */
1208 static void domain_flush_devices(struct protection_domain *domain)
1209 {
1210 struct iommu_dev_data *dev_data;
1211
1212 list_for_each_entry(dev_data, &domain->dev_list, list)
1213 device_flush_dte(dev_data);
1214 }
1215
1216 /****************************************************************************
1217 *
1218 * The functions below are used the create the page table mappings for
1219 * unity mapped regions.
1220 *
1221 ****************************************************************************/
1222
1223 /*
1224 * This function is used to add another level to an IO page table. Adding
1225 * another level increases the size of the address space by 9 bits to a size up
1226 * to 64 bits.
1227 */
1228 static bool increase_address_space(struct protection_domain *domain,
1229 gfp_t gfp)
1230 {
1231 u64 *pte;
1232
1233 if (domain->mode == PAGE_MODE_6_LEVEL)
1234 /* address space already 64 bit large */
1235 return false;
1236
1237 pte = (void *)get_zeroed_page(gfp);
1238 if (!pte)
1239 return false;
1240
1241 *pte = PM_LEVEL_PDE(domain->mode,
1242 virt_to_phys(domain->pt_root));
1243 domain->pt_root = pte;
1244 domain->mode += 1;
1245 domain->updated = true;
1246
1247 return true;
1248 }
1249
1250 static u64 *alloc_pte(struct protection_domain *domain,
1251 unsigned long address,
1252 unsigned long page_size,
1253 u64 **pte_page,
1254 gfp_t gfp)
1255 {
1256 int level, end_lvl;
1257 u64 *pte, *page;
1258
1259 BUG_ON(!is_power_of_2(page_size));
1260
1261 while (address > PM_LEVEL_SIZE(domain->mode))
1262 increase_address_space(domain, gfp);
1263
1264 level = domain->mode - 1;
1265 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1266 address = PAGE_SIZE_ALIGN(address, page_size);
1267 end_lvl = PAGE_SIZE_LEVEL(page_size);
1268
1269 while (level > end_lvl) {
1270 if (!IOMMU_PTE_PRESENT(*pte)) {
1271 page = (u64 *)get_zeroed_page(gfp);
1272 if (!page)
1273 return NULL;
1274 *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
1275 }
1276
1277 /* No level skipping support yet */
1278 if (PM_PTE_LEVEL(*pte) != level)
1279 return NULL;
1280
1281 level -= 1;
1282
1283 pte = IOMMU_PTE_PAGE(*pte);
1284
1285 if (pte_page && level == end_lvl)
1286 *pte_page = pte;
1287
1288 pte = &pte[PM_LEVEL_INDEX(level, address)];
1289 }
1290
1291 return pte;
1292 }
1293
1294 /*
1295 * This function checks if there is a PTE for a given dma address. If
1296 * there is one, it returns the pointer to it.
1297 */
1298 static u64 *fetch_pte(struct protection_domain *domain,
1299 unsigned long address,
1300 unsigned long *page_size)
1301 {
1302 int level;
1303 u64 *pte;
1304
1305 if (address > PM_LEVEL_SIZE(domain->mode))
1306 return NULL;
1307
1308 level = domain->mode - 1;
1309 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1310 *page_size = PTE_LEVEL_PAGE_SIZE(level);
1311
1312 while (level > 0) {
1313
1314 /* Not Present */
1315 if (!IOMMU_PTE_PRESENT(*pte))
1316 return NULL;
1317
1318 /* Large PTE */
1319 if (PM_PTE_LEVEL(*pte) == 7 ||
1320 PM_PTE_LEVEL(*pte) == 0)
1321 break;
1322
1323 /* No level skipping support yet */
1324 if (PM_PTE_LEVEL(*pte) != level)
1325 return NULL;
1326
1327 level -= 1;
1328
1329 /* Walk to the next level */
1330 pte = IOMMU_PTE_PAGE(*pte);
1331 pte = &pte[PM_LEVEL_INDEX(level, address)];
1332 *page_size = PTE_LEVEL_PAGE_SIZE(level);
1333 }
1334
1335 if (PM_PTE_LEVEL(*pte) == 0x07) {
1336 unsigned long pte_mask;
1337
1338 /*
1339 * If we have a series of large PTEs, make
1340 * sure to return a pointer to the first one.
1341 */
1342 *page_size = pte_mask = PTE_PAGE_SIZE(*pte);
1343 pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
1344 pte = (u64 *)(((unsigned long)pte) & pte_mask);
1345 }
1346
1347 return pte;
1348 }
1349
1350 /*
1351 * Generic mapping functions. It maps a physical address into a DMA
1352 * address space. It allocates the page table pages if necessary.
1353 * In the future it can be extended to a generic mapping function
1354 * supporting all features of AMD IOMMU page tables like level skipping
1355 * and full 64 bit address spaces.
1356 */
1357 static int iommu_map_page(struct protection_domain *dom,
1358 unsigned long bus_addr,
1359 unsigned long phys_addr,
1360 int prot,
1361 unsigned long page_size)
1362 {
1363 u64 __pte, *pte;
1364 int i, count;
1365
1366 BUG_ON(!IS_ALIGNED(bus_addr, page_size));
1367 BUG_ON(!IS_ALIGNED(phys_addr, page_size));
1368
1369 if (!(prot & IOMMU_PROT_MASK))
1370 return -EINVAL;
1371
1372 count = PAGE_SIZE_PTE_COUNT(page_size);
1373 pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
1374
1375 if (!pte)
1376 return -ENOMEM;
1377
1378 for (i = 0; i < count; ++i)
1379 if (IOMMU_PTE_PRESENT(pte[i]))
1380 return -EBUSY;
1381
1382 if (count > 1) {
1383 __pte = PAGE_SIZE_PTE(phys_addr, page_size);
1384 __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
1385 } else
1386 __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1387
1388 if (prot & IOMMU_PROT_IR)
1389 __pte |= IOMMU_PTE_IR;
1390 if (prot & IOMMU_PROT_IW)
1391 __pte |= IOMMU_PTE_IW;
1392
1393 for (i = 0; i < count; ++i)
1394 pte[i] = __pte;
1395
1396 update_domain(dom);
1397
1398 return 0;
1399 }
1400
1401 static unsigned long iommu_unmap_page(struct protection_domain *dom,
1402 unsigned long bus_addr,
1403 unsigned long page_size)
1404 {
1405 unsigned long long unmapped;
1406 unsigned long unmap_size;
1407 u64 *pte;
1408
1409 BUG_ON(!is_power_of_2(page_size));
1410
1411 unmapped = 0;
1412
1413 while (unmapped < page_size) {
1414
1415 pte = fetch_pte(dom, bus_addr, &unmap_size);
1416
1417 if (pte) {
1418 int i, count;
1419
1420 count = PAGE_SIZE_PTE_COUNT(unmap_size);
1421 for (i = 0; i < count; i++)
1422 pte[i] = 0ULL;
1423 }
1424
1425 bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1426 unmapped += unmap_size;
1427 }
1428
1429 BUG_ON(unmapped && !is_power_of_2(unmapped));
1430
1431 return unmapped;
1432 }
1433
1434 /****************************************************************************
1435 *
1436 * The next functions belong to the address allocator for the dma_ops
1437 * interface functions. They work like the allocators in the other IOMMU
1438 * drivers. Its basically a bitmap which marks the allocated pages in
1439 * the aperture. Maybe it could be enhanced in the future to a more
1440 * efficient allocator.
1441 *
1442 ****************************************************************************/
1443
1444 /*
1445 * The address allocator core functions.
1446 *
1447 * called with domain->lock held
1448 */
1449
1450 /*
1451 * Used to reserve address ranges in the aperture (e.g. for exclusion
1452 * ranges.
1453 */
1454 static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1455 unsigned long start_page,
1456 unsigned int pages)
1457 {
1458 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
1459
1460 if (start_page + pages > last_page)
1461 pages = last_page - start_page;
1462
1463 for (i = start_page; i < start_page + pages; ++i) {
1464 int index = i / APERTURE_RANGE_PAGES;
1465 int page = i % APERTURE_RANGE_PAGES;
1466 __set_bit(page, dom->aperture[index]->bitmap);
1467 }
1468 }
1469
1470 /*
1471 * This function is used to add a new aperture range to an existing
1472 * aperture in case of dma_ops domain allocation or address allocation
1473 * failure.
1474 */
1475 static int alloc_new_range(struct dma_ops_domain *dma_dom,
1476 bool populate, gfp_t gfp)
1477 {
1478 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1479 struct amd_iommu *iommu;
1480 unsigned long i, old_size, pte_pgsize;
1481
1482 #ifdef CONFIG_IOMMU_STRESS
1483 populate = false;
1484 #endif
1485
1486 if (index >= APERTURE_MAX_RANGES)
1487 return -ENOMEM;
1488
1489 dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
1490 if (!dma_dom->aperture[index])
1491 return -ENOMEM;
1492
1493 dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
1494 if (!dma_dom->aperture[index]->bitmap)
1495 goto out_free;
1496
1497 dma_dom->aperture[index]->offset = dma_dom->aperture_size;
1498
1499 if (populate) {
1500 unsigned long address = dma_dom->aperture_size;
1501 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
1502 u64 *pte, *pte_page;
1503
1504 for (i = 0; i < num_ptes; ++i) {
1505 pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1506 &pte_page, gfp);
1507 if (!pte)
1508 goto out_free;
1509
1510 dma_dom->aperture[index]->pte_pages[i] = pte_page;
1511
1512 address += APERTURE_RANGE_SIZE / 64;
1513 }
1514 }
1515
1516 old_size = dma_dom->aperture_size;
1517 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
1518
1519 /* Reserve address range used for MSI messages */
1520 if (old_size < MSI_ADDR_BASE_LO &&
1521 dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
1522 unsigned long spage;
1523 int pages;
1524
1525 pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
1526 spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;
1527
1528 dma_ops_reserve_addresses(dma_dom, spage, pages);
1529 }
1530
1531 /* Initialize the exclusion range if necessary */
1532 for_each_iommu(iommu) {
1533 if (iommu->exclusion_start &&
1534 iommu->exclusion_start >= dma_dom->aperture[index]->offset
1535 && iommu->exclusion_start < dma_dom->aperture_size) {
1536 unsigned long startpage;
1537 int pages = iommu_num_pages(iommu->exclusion_start,
1538 iommu->exclusion_length,
1539 PAGE_SIZE);
1540 startpage = iommu->exclusion_start >> PAGE_SHIFT;
1541 dma_ops_reserve_addresses(dma_dom, startpage, pages);
1542 }
1543 }
1544
1545 /*
1546 * Check for areas already mapped as present in the new aperture
1547 * range and mark those pages as reserved in the allocator. Such
1548 * mappings may already exist as a result of requested unity
1549 * mappings for devices.
1550 */
1551 for (i = dma_dom->aperture[index]->offset;
1552 i < dma_dom->aperture_size;
1553 i += pte_pgsize) {
1554 u64 *pte = fetch_pte(&dma_dom->domain, i, &pte_pgsize);
1555 if (!pte || !IOMMU_PTE_PRESENT(*pte))
1556 continue;
1557
1558 dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT,
1559 pte_pgsize >> 12);
1560 }
1561
1562 update_domain(&dma_dom->domain);
1563
1564 return 0;
1565
1566 out_free:
1567 update_domain(&dma_dom->domain);
1568
1569 free_page((unsigned long)dma_dom->aperture[index]->bitmap);
1570
1571 kfree(dma_dom->aperture[index]);
1572 dma_dom->aperture[index] = NULL;
1573
1574 return -ENOMEM;
1575 }
1576
1577 static unsigned long dma_ops_area_alloc(struct device *dev,
1578 struct dma_ops_domain *dom,
1579 unsigned int pages,
1580 unsigned long align_mask,
1581 u64 dma_mask,
1582 unsigned long start)
1583 {
1584 unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1585 int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
1586 int i = start >> APERTURE_RANGE_SHIFT;
1587 unsigned long boundary_size, mask;
1588 unsigned long address = -1;
1589 unsigned long limit;
1590
1591 next_bit >>= PAGE_SHIFT;
1592
1593 mask = dma_get_seg_boundary(dev);
1594
1595 boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
1596 1UL << (BITS_PER_LONG - PAGE_SHIFT);
1597
1598 for (;i < max_index; ++i) {
1599 unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
1600
1601 if (dom->aperture[i]->offset >= dma_mask)
1602 break;
1603
1604 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
1605 dma_mask >> PAGE_SHIFT);
1606
1607 address = iommu_area_alloc(dom->aperture[i]->bitmap,
1608 limit, next_bit, pages, 0,
1609 boundary_size, align_mask);
1610 if (address != -1) {
1611 address = dom->aperture[i]->offset +
1612 (address << PAGE_SHIFT);
1613 dom->next_address = address + (pages << PAGE_SHIFT);
1614 break;
1615 }
1616
1617 next_bit = 0;
1618 }
1619
1620 return address;
1621 }
1622
1623 static unsigned long dma_ops_alloc_addresses(struct device *dev,
1624 struct dma_ops_domain *dom,
1625 unsigned int pages,
1626 unsigned long align_mask,
1627 u64 dma_mask)
1628 {
1629 unsigned long address;
1630
1631 #ifdef CONFIG_IOMMU_STRESS
1632 dom->next_address = 0;
1633 dom->need_flush = true;
1634 #endif
1635
1636 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1637 dma_mask, dom->next_address);
1638
1639 if (address == -1) {
1640 dom->next_address = 0;
1641 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1642 dma_mask, 0);
1643 dom->need_flush = true;
1644 }
1645
1646 if (unlikely(address == -1))
1647 address = DMA_ERROR_CODE;
1648
1649 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
1650
1651 return address;
1652 }
1653
1654 /*
1655 * The address free function.
1656 *
1657 * called with domain->lock held
1658 */
1659 static void dma_ops_free_addresses(struct dma_ops_domain *dom,
1660 unsigned long address,
1661 unsigned int pages)
1662 {
1663 unsigned i = address >> APERTURE_RANGE_SHIFT;
1664 struct aperture_range *range = dom->aperture[i];
1665
1666 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
1667
1668 #ifdef CONFIG_IOMMU_STRESS
1669 if (i < 4)
1670 return;
1671 #endif
1672
1673 if (address >= dom->next_address)
1674 dom->need_flush = true;
1675
1676 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1677
1678 bitmap_clear(range->bitmap, address, pages);
1679
1680 }
1681
1682 /****************************************************************************
1683 *
1684 * The next functions belong to the domain allocation. A domain is
1685 * allocated for every IOMMU as the default domain. If device isolation
1686 * is enabled, every device get its own domain. The most important thing
1687 * about domains is the page table mapping the DMA address space they
1688 * contain.
1689 *
1690 ****************************************************************************/
1691
1692 /*
1693 * This function adds a protection domain to the global protection domain list
1694 */
1695 static void add_domain_to_list(struct protection_domain *domain)
1696 {
1697 unsigned long flags;
1698
1699 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1700 list_add(&domain->list, &amd_iommu_pd_list);
1701 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1702 }
1703
1704 /*
1705 * This function removes a protection domain to the global
1706 * protection domain list
1707 */
1708 static void del_domain_from_list(struct protection_domain *domain)
1709 {
1710 unsigned long flags;
1711
1712 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1713 list_del(&domain->list);
1714 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1715 }
1716
1717 static u16 domain_id_alloc(void)
1718 {
1719 unsigned long flags;
1720 int id;
1721
1722 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1723 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1724 BUG_ON(id == 0);
1725 if (id > 0 && id < MAX_DOMAIN_ID)
1726 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1727 else
1728 id = 0;
1729 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1730
1731 return id;
1732 }
1733
1734 static void domain_id_free(int id)
1735 {
1736 unsigned long flags;
1737
1738 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1739 if (id > 0 && id < MAX_DOMAIN_ID)
1740 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1741 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1742 }
1743
1744 #define DEFINE_FREE_PT_FN(LVL, FN) \
1745 static void free_pt_##LVL (unsigned long __pt) \
1746 { \
1747 unsigned long p; \
1748 u64 *pt; \
1749 int i; \
1750 \
1751 pt = (u64 *)__pt; \
1752 \
1753 for (i = 0; i < 512; ++i) { \
1754 /* PTE present? */ \
1755 if (!IOMMU_PTE_PRESENT(pt[i])) \
1756 continue; \
1757 \
1758 /* Large PTE? */ \
1759 if (PM_PTE_LEVEL(pt[i]) == 0 || \
1760 PM_PTE_LEVEL(pt[i]) == 7) \
1761 continue; \
1762 \
1763 p = (unsigned long)IOMMU_PTE_PAGE(pt[i]); \
1764 FN(p); \
1765 } \
1766 free_page((unsigned long)pt); \
1767 }
1768
1769 DEFINE_FREE_PT_FN(l2, free_page)
1770 DEFINE_FREE_PT_FN(l3, free_pt_l2)
1771 DEFINE_FREE_PT_FN(l4, free_pt_l3)
1772 DEFINE_FREE_PT_FN(l5, free_pt_l4)
1773 DEFINE_FREE_PT_FN(l6, free_pt_l5)
1774
1775 static void free_pagetable(struct protection_domain *domain)
1776 {
1777 unsigned long root = (unsigned long)domain->pt_root;
1778
1779 switch (domain->mode) {
1780 case PAGE_MODE_NONE:
1781 break;
1782 case PAGE_MODE_1_LEVEL:
1783 free_page(root);
1784 break;
1785 case PAGE_MODE_2_LEVEL:
1786 free_pt_l2(root);
1787 break;
1788 case PAGE_MODE_3_LEVEL:
1789 free_pt_l3(root);
1790 break;
1791 case PAGE_MODE_4_LEVEL:
1792 free_pt_l4(root);
1793 break;
1794 case PAGE_MODE_5_LEVEL:
1795 free_pt_l5(root);
1796 break;
1797 case PAGE_MODE_6_LEVEL:
1798 free_pt_l6(root);
1799 break;
1800 default:
1801 BUG();
1802 }
1803 }
1804
1805 static void free_gcr3_tbl_level1(u64 *tbl)
1806 {
1807 u64 *ptr;
1808 int i;
1809
1810 for (i = 0; i < 512; ++i) {
1811 if (!(tbl[i] & GCR3_VALID))
1812 continue;
1813
1814 ptr = __va(tbl[i] & PAGE_MASK);
1815
1816 free_page((unsigned long)ptr);
1817 }
1818 }
1819
1820 static void free_gcr3_tbl_level2(u64 *tbl)
1821 {
1822 u64 *ptr;
1823 int i;
1824
1825 for (i = 0; i < 512; ++i) {
1826 if (!(tbl[i] & GCR3_VALID))
1827 continue;
1828
1829 ptr = __va(tbl[i] & PAGE_MASK);
1830
1831 free_gcr3_tbl_level1(ptr);
1832 }
1833 }
1834
1835 static void free_gcr3_table(struct protection_domain *domain)
1836 {
1837 if (domain->glx == 2)
1838 free_gcr3_tbl_level2(domain->gcr3_tbl);
1839 else if (domain->glx == 1)
1840 free_gcr3_tbl_level1(domain->gcr3_tbl);
1841 else if (domain->glx != 0)
1842 BUG();
1843
1844 free_page((unsigned long)domain->gcr3_tbl);
1845 }
1846
1847 /*
1848 * Free a domain, only used if something went wrong in the
1849 * allocation path and we need to free an already allocated page table
1850 */
1851 static void dma_ops_domain_free(struct dma_ops_domain *dom)
1852 {
1853 int i;
1854
1855 if (!dom)
1856 return;
1857
1858 del_domain_from_list(&dom->domain);
1859
1860 free_pagetable(&dom->domain);
1861
1862 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1863 if (!dom->aperture[i])
1864 continue;
1865 free_page((unsigned long)dom->aperture[i]->bitmap);
1866 kfree(dom->aperture[i]);
1867 }
1868
1869 kfree(dom);
1870 }
1871
1872 /*
1873 * Allocates a new protection domain usable for the dma_ops functions.
1874 * It also initializes the page table and the address allocator data
1875 * structures required for the dma_ops interface
1876 */
1877 static struct dma_ops_domain *dma_ops_domain_alloc(void)
1878 {
1879 struct dma_ops_domain *dma_dom;
1880
1881 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1882 if (!dma_dom)
1883 return NULL;
1884
1885 if (protection_domain_init(&dma_dom->domain))
1886 goto free_dma_dom;
1887
1888 dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1889 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1890 dma_dom->domain.flags = PD_DMA_OPS_MASK;
1891 dma_dom->domain.priv = dma_dom;
1892 if (!dma_dom->domain.pt_root)
1893 goto free_dma_dom;
1894
1895 dma_dom->need_flush = false;
1896
1897 add_domain_to_list(&dma_dom->domain);
1898
1899 if (alloc_new_range(dma_dom, true, GFP_KERNEL))
1900 goto free_dma_dom;
1901
1902 /*
1903 * mark the first page as allocated so we never return 0 as
1904 * a valid dma-address. So we can use 0 as error value
1905 */
1906 dma_dom->aperture[0]->bitmap[0] = 1;
1907 dma_dom->next_address = 0;
1908
1909
1910 return dma_dom;
1911
1912 free_dma_dom:
1913 dma_ops_domain_free(dma_dom);
1914
1915 return NULL;
1916 }
1917
1918 /*
1919 * little helper function to check whether a given protection domain is a
1920 * dma_ops domain
1921 */
1922 static bool dma_ops_domain(struct protection_domain *domain)
1923 {
1924 return domain->flags & PD_DMA_OPS_MASK;
1925 }
1926
1927 static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
1928 {
1929 u64 pte_root = 0;
1930 u64 flags = 0;
1931
1932 if (domain->mode != PAGE_MODE_NONE)
1933 pte_root = virt_to_phys(domain->pt_root);
1934
1935 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1936 << DEV_ENTRY_MODE_SHIFT;
1937 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1938
1939 flags = amd_iommu_dev_table[devid].data[1];
1940
1941 if (ats)
1942 flags |= DTE_FLAG_IOTLB;
1943
1944 if (domain->flags & PD_IOMMUV2_MASK) {
1945 u64 gcr3 = __pa(domain->gcr3_tbl);
1946 u64 glx = domain->glx;
1947 u64 tmp;
1948
1949 pte_root |= DTE_FLAG_GV;
1950 pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
1951
1952 /* First mask out possible old values for GCR3 table */
1953 tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
1954 flags &= ~tmp;
1955
1956 tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
1957 flags &= ~tmp;
1958
1959 /* Encode GCR3 table into DTE */
1960 tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
1961 pte_root |= tmp;
1962
1963 tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
1964 flags |= tmp;
1965
1966 tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
1967 flags |= tmp;
1968 }
1969
1970 flags &= ~(0xffffUL);
1971 flags |= domain->id;
1972
1973 amd_iommu_dev_table[devid].data[1] = flags;
1974 amd_iommu_dev_table[devid].data[0] = pte_root;
1975 }
1976
1977 static void clear_dte_entry(u16 devid)
1978 {
1979 /* remove entry from the device table seen by the hardware */
1980 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
1981 amd_iommu_dev_table[devid].data[1] = 0;
1982
1983 amd_iommu_apply_erratum_63(devid);
1984 }
1985
1986 static void do_attach(struct iommu_dev_data *dev_data,
1987 struct protection_domain *domain)
1988 {
1989 struct amd_iommu *iommu;
1990 bool ats;
1991
1992 iommu = amd_iommu_rlookup_table[dev_data->devid];
1993 ats = dev_data->ats.enabled;
1994
1995 /* Update data structures */
1996 dev_data->domain = domain;
1997 list_add(&dev_data->list, &domain->dev_list);
1998 set_dte_entry(dev_data->devid, domain, ats);
1999
2000 /* Do reference counting */
2001 domain->dev_iommu[iommu->index] += 1;
2002 domain->dev_cnt += 1;
2003
2004 /* Flush the DTE entry */
2005 device_flush_dte(dev_data);
2006 }
2007
2008 static void do_detach(struct iommu_dev_data *dev_data)
2009 {
2010 struct amd_iommu *iommu;
2011
2012 iommu = amd_iommu_rlookup_table[dev_data->devid];
2013
2014 /* decrease reference counters */
2015 dev_data->domain->dev_iommu[iommu->index] -= 1;
2016 dev_data->domain->dev_cnt -= 1;
2017
2018 /* Update data structures */
2019 dev_data->domain = NULL;
2020 list_del(&dev_data->list);
2021 clear_dte_entry(dev_data->devid);
2022
2023 /* Flush the DTE entry */
2024 device_flush_dte(dev_data);
2025 }
2026
2027 /*
2028 * If a device is not yet associated with a domain, this function does
2029 * assigns it visible for the hardware
2030 */
2031 static int __attach_device(struct iommu_dev_data *dev_data,
2032 struct protection_domain *domain)
2033 {
2034 struct iommu_dev_data *head, *entry;
2035 int ret;
2036
2037 /* lock domain */
2038 spin_lock(&domain->lock);
2039
2040 head = dev_data;
2041
2042 if (head->alias_data != NULL)
2043 head = head->alias_data;
2044
2045 /* Now we have the root of the alias group, if any */
2046
2047 ret = -EBUSY;
2048 if (head->domain != NULL)
2049 goto out_unlock;
2050
2051 /* Attach alias group root */
2052 do_attach(head, domain);
2053
2054 /* Attach other devices in the alias group */
2055 list_for_each_entry(entry, &head->alias_list, alias_list)
2056 do_attach(entry, domain);
2057
2058 ret = 0;
2059
2060 out_unlock:
2061
2062 /* ready */
2063 spin_unlock(&domain->lock);
2064
2065 return ret;
2066 }
2067
2068
2069 static void pdev_iommuv2_disable(struct pci_dev *pdev)
2070 {
2071 pci_disable_ats(pdev);
2072 pci_disable_pri(pdev);
2073 pci_disable_pasid(pdev);
2074 }
2075
2076 /* FIXME: Change generic reset-function to do the same */
2077 static int pri_reset_while_enabled(struct pci_dev *pdev)
2078 {
2079 u16 control;
2080 int pos;
2081
2082 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2083 if (!pos)
2084 return -EINVAL;
2085
2086 pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
2087 control |= PCI_PRI_CTRL_RESET;
2088 pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2089
2090 return 0;
2091 }
2092
2093 static int pdev_iommuv2_enable(struct pci_dev *pdev)
2094 {
2095 bool reset_enable;
2096 int reqs, ret;
2097
2098 /* FIXME: Hardcode number of outstanding requests for now */
2099 reqs = 32;
2100 if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
2101 reqs = 1;
2102 reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2103
2104 /* Only allow access to user-accessible pages */
2105 ret = pci_enable_pasid(pdev, 0);
2106 if (ret)
2107 goto out_err;
2108
2109 /* First reset the PRI state of the device */
2110 ret = pci_reset_pri(pdev);
2111 if (ret)
2112 goto out_err;
2113
2114 /* Enable PRI */
2115 ret = pci_enable_pri(pdev, reqs);
2116 if (ret)
2117 goto out_err;
2118
2119 if (reset_enable) {
2120 ret = pri_reset_while_enabled(pdev);
2121 if (ret)
2122 goto out_err;
2123 }
2124
2125 ret = pci_enable_ats(pdev, PAGE_SHIFT);
2126 if (ret)
2127 goto out_err;
2128
2129 return 0;
2130
2131 out_err:
2132 pci_disable_pri(pdev);
2133 pci_disable_pasid(pdev);
2134
2135 return ret;
2136 }
2137
2138 /* FIXME: Move this to PCI code */
2139 #define PCI_PRI_TLP_OFF (1 << 15)
2140
2141 static bool pci_pri_tlp_required(struct pci_dev *pdev)
2142 {
2143 u16 status;
2144 int pos;
2145
2146 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2147 if (!pos)
2148 return false;
2149
2150 pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2151
2152 return (status & PCI_PRI_TLP_OFF) ? true : false;
2153 }
2154
2155 /*
2156 * If a device is not yet associated with a domain, this function
2157 * assigns it visible for the hardware
2158 */
2159 static int attach_device(struct device *dev,
2160 struct protection_domain *domain)
2161 {
2162 struct pci_dev *pdev = to_pci_dev(dev);
2163 struct iommu_dev_data *dev_data;
2164 unsigned long flags;
2165 int ret;
2166
2167 dev_data = get_dev_data(dev);
2168
2169 if (domain->flags & PD_IOMMUV2_MASK) {
2170 if (!dev_data->iommu_v2 || !dev_data->passthrough)
2171 return -EINVAL;
2172
2173 if (pdev_iommuv2_enable(pdev) != 0)
2174 return -EINVAL;
2175
2176 dev_data->ats.enabled = true;
2177 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2178 dev_data->pri_tlp = pci_pri_tlp_required(pdev);
2179 } else if (amd_iommu_iotlb_sup &&
2180 pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2181 dev_data->ats.enabled = true;
2182 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2183 }
2184
2185 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2186 ret = __attach_device(dev_data, domain);
2187 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2188
2189 /*
2190 * We might boot into a crash-kernel here. The crashed kernel
2191 * left the caches in the IOMMU dirty. So we have to flush
2192 * here to evict all dirty stuff.
2193 */
2194 domain_flush_tlb_pde(domain);
2195
2196 return ret;
2197 }
2198
2199 /*
2200 * Removes a device from a protection domain (unlocked)
2201 */
2202 static void __detach_device(struct iommu_dev_data *dev_data)
2203 {
2204 struct iommu_dev_data *head, *entry;
2205 struct protection_domain *domain;
2206 unsigned long flags;
2207
2208 BUG_ON(!dev_data->domain);
2209
2210 domain = dev_data->domain;
2211
2212 spin_lock_irqsave(&domain->lock, flags);
2213
2214 head = dev_data;
2215 if (head->alias_data != NULL)
2216 head = head->alias_data;
2217
2218 list_for_each_entry(entry, &head->alias_list, alias_list)
2219 do_detach(entry);
2220
2221 do_detach(head);
2222
2223 spin_unlock_irqrestore(&domain->lock, flags);
2224
2225 /*
2226 * If we run in passthrough mode the device must be assigned to the
2227 * passthrough domain if it is detached from any other domain.
2228 * Make sure we can deassign from the pt_domain itself.
2229 */
2230 if (dev_data->passthrough &&
2231 (dev_data->domain == NULL && domain != pt_domain))
2232 __attach_device(dev_data, pt_domain);
2233 }
2234
2235 /*
2236 * Removes a device from a protection domain (with devtable_lock held)
2237 */
2238 static void detach_device(struct device *dev)
2239 {
2240 struct protection_domain *domain;
2241 struct iommu_dev_data *dev_data;
2242 unsigned long flags;
2243
2244 dev_data = get_dev_data(dev);
2245 domain = dev_data->domain;
2246
2247 /* lock device table */
2248 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2249 __detach_device(dev_data);
2250 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2251
2252 if (domain->flags & PD_IOMMUV2_MASK)
2253 pdev_iommuv2_disable(to_pci_dev(dev));
2254 else if (dev_data->ats.enabled)
2255 pci_disable_ats(to_pci_dev(dev));
2256
2257 dev_data->ats.enabled = false;
2258 }
2259
2260 static int amd_iommu_add_device(struct device *dev)
2261 {
2262 struct iommu_dev_data *dev_data;
2263 struct iommu_domain *domain;
2264 struct amd_iommu *iommu;
2265 u16 devid;
2266 int ret;
2267
2268 if (!check_device(dev) || get_dev_data(dev))
2269 return 0;
2270
2271 devid = get_device_id(dev);
2272 iommu = amd_iommu_rlookup_table[devid];
2273
2274 ret = iommu_init_device(dev);
2275 if (ret) {
2276 if (ret != -ENOTSUPP)
2277 pr_err("Failed to initialize device %s - trying to proceed anyway\n",
2278 dev_name(dev));
2279
2280 iommu_ignore_device(dev);
2281 dev->archdata.dma_ops = &nommu_dma_ops;
2282 goto out;
2283 }
2284 init_iommu_group(dev);
2285
2286 dev_data = get_dev_data(dev);
2287
2288 BUG_ON(!dev_data);
2289
2290 if (dev_data->iommu_v2)
2291 iommu_request_dm_for_dev(dev);
2292
2293 /* Domains are initialized for this device - have a look what we ended up with */
2294 domain = iommu_get_domain_for_dev(dev);
2295 if (domain->type == IOMMU_DOMAIN_IDENTITY) {
2296 dev_data->passthrough = true;
2297 dev->archdata.dma_ops = &nommu_dma_ops;
2298 } else {
2299 dev->archdata.dma_ops = &amd_iommu_dma_ops;
2300 }
2301
2302 out:
2303 iommu_completion_wait(iommu);
2304
2305 return 0;
2306 }
2307
2308 static void amd_iommu_remove_device(struct device *dev)
2309 {
2310 struct amd_iommu *iommu;
2311 u16 devid;
2312
2313 if (!check_device(dev))
2314 return;
2315
2316 devid = get_device_id(dev);
2317 iommu = amd_iommu_rlookup_table[devid];
2318
2319 iommu_uninit_device(dev);
2320 iommu_completion_wait(iommu);
2321 }
2322
2323 /*****************************************************************************
2324 *
2325 * The next functions belong to the dma_ops mapping/unmapping code.
2326 *
2327 *****************************************************************************/
2328
2329 /*
2330 * In the dma_ops path we only have the struct device. This function
2331 * finds the corresponding IOMMU, the protection domain and the
2332 * requestor id for a given device.
2333 * If the device is not yet associated with a domain this is also done
2334 * in this function.
2335 */
2336 static struct protection_domain *get_domain(struct device *dev)
2337 {
2338 struct protection_domain *domain;
2339 struct iommu_domain *io_domain;
2340
2341 if (!check_device(dev))
2342 return ERR_PTR(-EINVAL);
2343
2344 io_domain = iommu_get_domain_for_dev(dev);
2345 if (!io_domain)
2346 return NULL;
2347
2348 domain = to_pdomain(io_domain);
2349 if (!dma_ops_domain(domain))
2350 return ERR_PTR(-EBUSY);
2351
2352 return domain;
2353 }
2354
2355 static void update_device_table(struct protection_domain *domain)
2356 {
2357 struct iommu_dev_data *dev_data;
2358
2359 list_for_each_entry(dev_data, &domain->dev_list, list)
2360 set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2361 }
2362
2363 static void update_domain(struct protection_domain *domain)
2364 {
2365 if (!domain->updated)
2366 return;
2367
2368 update_device_table(domain);
2369
2370 domain_flush_devices(domain);
2371 domain_flush_tlb_pde(domain);
2372
2373 domain->updated = false;
2374 }
2375
2376 /*
2377 * This function fetches the PTE for a given address in the aperture
2378 */
2379 static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
2380 unsigned long address)
2381 {
2382 struct aperture_range *aperture;
2383 u64 *pte, *pte_page;
2384
2385 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2386 if (!aperture)
2387 return NULL;
2388
2389 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2390 if (!pte) {
2391 pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
2392 GFP_ATOMIC);
2393 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
2394 } else
2395 pte += PM_LEVEL_INDEX(0, address);
2396
2397 update_domain(&dom->domain);
2398
2399 return pte;
2400 }
2401
2402 /*
2403 * This is the generic map function. It maps one 4kb page at paddr to
2404 * the given address in the DMA address space for the domain.
2405 */
2406 static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
2407 unsigned long address,
2408 phys_addr_t paddr,
2409 int direction)
2410 {
2411 u64 *pte, __pte;
2412
2413 WARN_ON(address > dom->aperture_size);
2414
2415 paddr &= PAGE_MASK;
2416
2417 pte = dma_ops_get_pte(dom, address);
2418 if (!pte)
2419 return DMA_ERROR_CODE;
2420
2421 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
2422
2423 if (direction == DMA_TO_DEVICE)
2424 __pte |= IOMMU_PTE_IR;
2425 else if (direction == DMA_FROM_DEVICE)
2426 __pte |= IOMMU_PTE_IW;
2427 else if (direction == DMA_BIDIRECTIONAL)
2428 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
2429
2430 WARN_ON(*pte);
2431
2432 *pte = __pte;
2433
2434 return (dma_addr_t)address;
2435 }
2436
2437 /*
2438 * The generic unmapping function for on page in the DMA address space.
2439 */
2440 static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2441 unsigned long address)
2442 {
2443 struct aperture_range *aperture;
2444 u64 *pte;
2445
2446 if (address >= dom->aperture_size)
2447 return;
2448
2449 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2450 if (!aperture)
2451 return;
2452
2453 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2454 if (!pte)
2455 return;
2456
2457 pte += PM_LEVEL_INDEX(0, address);
2458
2459 WARN_ON(!*pte);
2460
2461 *pte = 0ULL;
2462 }
2463
2464 /*
2465 * This function contains common code for mapping of a physically
2466 * contiguous memory region into DMA address space. It is used by all
2467 * mapping functions provided with this IOMMU driver.
2468 * Must be called with the domain lock held.
2469 */
2470 static dma_addr_t __map_single(struct device *dev,
2471 struct dma_ops_domain *dma_dom,
2472 phys_addr_t paddr,
2473 size_t size,
2474 int dir,
2475 bool align,
2476 u64 dma_mask)
2477 {
2478 dma_addr_t offset = paddr & ~PAGE_MASK;
2479 dma_addr_t address, start, ret;
2480 unsigned int pages;
2481 unsigned long align_mask = 0;
2482 int i;
2483
2484 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2485 paddr &= PAGE_MASK;
2486
2487 INC_STATS_COUNTER(total_map_requests);
2488
2489 if (pages > 1)
2490 INC_STATS_COUNTER(cross_page);
2491
2492 if (align)
2493 align_mask = (1UL << get_order(size)) - 1;
2494
2495 retry:
2496 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
2497 dma_mask);
2498 if (unlikely(address == DMA_ERROR_CODE)) {
2499 /*
2500 * setting next_address here will let the address
2501 * allocator only scan the new allocated range in the
2502 * first run. This is a small optimization.
2503 */
2504 dma_dom->next_address = dma_dom->aperture_size;
2505
2506 if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
2507 goto out;
2508
2509 /*
2510 * aperture was successfully enlarged by 128 MB, try
2511 * allocation again
2512 */
2513 goto retry;
2514 }
2515
2516 start = address;
2517 for (i = 0; i < pages; ++i) {
2518 ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2519 if (ret == DMA_ERROR_CODE)
2520 goto out_unmap;
2521
2522 paddr += PAGE_SIZE;
2523 start += PAGE_SIZE;
2524 }
2525 address += offset;
2526
2527 ADD_STATS_COUNTER(alloced_io_mem, size);
2528
2529 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
2530 domain_flush_tlb(&dma_dom->domain);
2531 dma_dom->need_flush = false;
2532 } else if (unlikely(amd_iommu_np_cache))
2533 domain_flush_pages(&dma_dom->domain, address, size);
2534
2535 out:
2536 return address;
2537
2538 out_unmap:
2539
2540 for (--i; i >= 0; --i) {
2541 start -= PAGE_SIZE;
2542 dma_ops_domain_unmap(dma_dom, start);
2543 }
2544
2545 dma_ops_free_addresses(dma_dom, address, pages);
2546
2547 return DMA_ERROR_CODE;
2548 }
2549
2550 /*
2551 * Does the reverse of the __map_single function. Must be called with
2552 * the domain lock held too
2553 */
2554 static void __unmap_single(struct dma_ops_domain *dma_dom,
2555 dma_addr_t dma_addr,
2556 size_t size,
2557 int dir)
2558 {
2559 dma_addr_t flush_addr;
2560 dma_addr_t i, start;
2561 unsigned int pages;
2562
2563 if ((dma_addr == DMA_ERROR_CODE) ||
2564 (dma_addr + size > dma_dom->aperture_size))
2565 return;
2566
2567 flush_addr = dma_addr;
2568 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2569 dma_addr &= PAGE_MASK;
2570 start = dma_addr;
2571
2572 for (i = 0; i < pages; ++i) {
2573 dma_ops_domain_unmap(dma_dom, start);
2574 start += PAGE_SIZE;
2575 }
2576
2577 SUB_STATS_COUNTER(alloced_io_mem, size);
2578
2579 dma_ops_free_addresses(dma_dom, dma_addr, pages);
2580
2581 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
2582 domain_flush_pages(&dma_dom->domain, flush_addr, size);
2583 dma_dom->need_flush = false;
2584 }
2585 }
2586
2587 /*
2588 * The exported map_single function for dma_ops.
2589 */
2590 static dma_addr_t map_page(struct device *dev, struct page *page,
2591 unsigned long offset, size_t size,
2592 enum dma_data_direction dir,
2593 struct dma_attrs *attrs)
2594 {
2595 unsigned long flags;
2596 struct protection_domain *domain;
2597 dma_addr_t addr;
2598 u64 dma_mask;
2599 phys_addr_t paddr = page_to_phys(page) + offset;
2600
2601 INC_STATS_COUNTER(cnt_map_single);
2602
2603 domain = get_domain(dev);
2604 if (PTR_ERR(domain) == -EINVAL)
2605 return (dma_addr_t)paddr;
2606 else if (IS_ERR(domain))
2607 return DMA_ERROR_CODE;
2608
2609 dma_mask = *dev->dma_mask;
2610
2611 spin_lock_irqsave(&domain->lock, flags);
2612
2613 addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2614 dma_mask);
2615 if (addr == DMA_ERROR_CODE)
2616 goto out;
2617
2618 domain_flush_complete(domain);
2619
2620 out:
2621 spin_unlock_irqrestore(&domain->lock, flags);
2622
2623 return addr;
2624 }
2625
2626 /*
2627 * The exported unmap_single function for dma_ops.
2628 */
2629 static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2630 enum dma_data_direction dir, struct dma_attrs *attrs)
2631 {
2632 unsigned long flags;
2633 struct protection_domain *domain;
2634
2635 INC_STATS_COUNTER(cnt_unmap_single);
2636
2637 domain = get_domain(dev);
2638 if (IS_ERR(domain))
2639 return;
2640
2641 spin_lock_irqsave(&domain->lock, flags);
2642
2643 __unmap_single(domain->priv, dma_addr, size, dir);
2644
2645 domain_flush_complete(domain);
2646
2647 spin_unlock_irqrestore(&domain->lock, flags);
2648 }
2649
2650 /*
2651 * The exported map_sg function for dma_ops (handles scatter-gather
2652 * lists).
2653 */
2654 static int map_sg(struct device *dev, struct scatterlist *sglist,
2655 int nelems, enum dma_data_direction dir,
2656 struct dma_attrs *attrs)
2657 {
2658 unsigned long flags;
2659 struct protection_domain *domain;
2660 int i;
2661 struct scatterlist *s;
2662 phys_addr_t paddr;
2663 int mapped_elems = 0;
2664 u64 dma_mask;
2665
2666 INC_STATS_COUNTER(cnt_map_sg);
2667
2668 domain = get_domain(dev);
2669 if (IS_ERR(domain))
2670 return 0;
2671
2672 dma_mask = *dev->dma_mask;
2673
2674 spin_lock_irqsave(&domain->lock, flags);
2675
2676 for_each_sg(sglist, s, nelems, i) {
2677 paddr = sg_phys(s);
2678
2679 s->dma_address = __map_single(dev, domain->priv,
2680 paddr, s->length, dir, false,
2681 dma_mask);
2682
2683 if (s->dma_address) {
2684 s->dma_length = s->length;
2685 mapped_elems++;
2686 } else
2687 goto unmap;
2688 }
2689
2690 domain_flush_complete(domain);
2691
2692 out:
2693 spin_unlock_irqrestore(&domain->lock, flags);
2694
2695 return mapped_elems;
2696 unmap:
2697 for_each_sg(sglist, s, mapped_elems, i) {
2698 if (s->dma_address)
2699 __unmap_single(domain->priv, s->dma_address,
2700 s->dma_length, dir);
2701 s->dma_address = s->dma_length = 0;
2702 }
2703
2704 mapped_elems = 0;
2705
2706 goto out;
2707 }
2708
2709 /*
2710 * The exported map_sg function for dma_ops (handles scatter-gather
2711 * lists).
2712 */
2713 static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2714 int nelems, enum dma_data_direction dir,
2715 struct dma_attrs *attrs)
2716 {
2717 unsigned long flags;
2718 struct protection_domain *domain;
2719 struct scatterlist *s;
2720 int i;
2721
2722 INC_STATS_COUNTER(cnt_unmap_sg);
2723
2724 domain = get_domain(dev);
2725 if (IS_ERR(domain))
2726 return;
2727
2728 spin_lock_irqsave(&domain->lock, flags);
2729
2730 for_each_sg(sglist, s, nelems, i) {
2731 __unmap_single(domain->priv, s->dma_address,
2732 s->dma_length, dir);
2733 s->dma_address = s->dma_length = 0;
2734 }
2735
2736 domain_flush_complete(domain);
2737
2738 spin_unlock_irqrestore(&domain->lock, flags);
2739 }
2740
2741 /*
2742 * The exported alloc_coherent function for dma_ops.
2743 */
2744 static void *alloc_coherent(struct device *dev, size_t size,
2745 dma_addr_t *dma_addr, gfp_t flag,
2746 struct dma_attrs *attrs)
2747 {
2748 u64 dma_mask = dev->coherent_dma_mask;
2749 struct protection_domain *domain;
2750 unsigned long flags;
2751 struct page *page;
2752
2753 INC_STATS_COUNTER(cnt_alloc_coherent);
2754
2755 domain = get_domain(dev);
2756 if (PTR_ERR(domain) == -EINVAL) {
2757 page = alloc_pages(flag, get_order(size));
2758 *dma_addr = page_to_phys(page);
2759 return page_address(page);
2760 } else if (IS_ERR(domain))
2761 return NULL;
2762
2763 size = PAGE_ALIGN(size);
2764 dma_mask = dev->coherent_dma_mask;
2765 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2766 flag |= __GFP_ZERO;
2767
2768 page = alloc_pages(flag | __GFP_NOWARN, get_order(size));
2769 if (!page) {
2770 if (!(flag & __GFP_WAIT))
2771 return NULL;
2772
2773 page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
2774 get_order(size));
2775 if (!page)
2776 return NULL;
2777 }
2778
2779 if (!dma_mask)
2780 dma_mask = *dev->dma_mask;
2781
2782 spin_lock_irqsave(&domain->lock, flags);
2783
2784 *dma_addr = __map_single(dev, domain->priv, page_to_phys(page),
2785 size, DMA_BIDIRECTIONAL, true, dma_mask);
2786
2787 if (*dma_addr == DMA_ERROR_CODE) {
2788 spin_unlock_irqrestore(&domain->lock, flags);
2789 goto out_free;
2790 }
2791
2792 domain_flush_complete(domain);
2793
2794 spin_unlock_irqrestore(&domain->lock, flags);
2795
2796 return page_address(page);
2797
2798 out_free:
2799
2800 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
2801 __free_pages(page, get_order(size));
2802
2803 return NULL;
2804 }
2805
2806 /*
2807 * The exported free_coherent function for dma_ops.
2808 */
2809 static void free_coherent(struct device *dev, size_t size,
2810 void *virt_addr, dma_addr_t dma_addr,
2811 struct dma_attrs *attrs)
2812 {
2813 struct protection_domain *domain;
2814 unsigned long flags;
2815 struct page *page;
2816
2817 INC_STATS_COUNTER(cnt_free_coherent);
2818
2819 page = virt_to_page(virt_addr);
2820 size = PAGE_ALIGN(size);
2821
2822 domain = get_domain(dev);
2823 if (IS_ERR(domain))
2824 goto free_mem;
2825
2826 spin_lock_irqsave(&domain->lock, flags);
2827
2828 __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2829
2830 domain_flush_complete(domain);
2831
2832 spin_unlock_irqrestore(&domain->lock, flags);
2833
2834 free_mem:
2835 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
2836 __free_pages(page, get_order(size));
2837 }
2838
2839 /*
2840 * This function is called by the DMA layer to find out if we can handle a
2841 * particular device. It is part of the dma_ops.
2842 */
2843 static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2844 {
2845 return check_device(dev);
2846 }
2847
2848 static struct dma_map_ops amd_iommu_dma_ops = {
2849 .alloc = alloc_coherent,
2850 .free = free_coherent,
2851 .map_page = map_page,
2852 .unmap_page = unmap_page,
2853 .map_sg = map_sg,
2854 .unmap_sg = unmap_sg,
2855 .dma_supported = amd_iommu_dma_supported,
2856 };
2857
2858 int __init amd_iommu_init_api(void)
2859 {
2860 return bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
2861 }
2862
2863 int __init amd_iommu_init_dma_ops(void)
2864 {
2865 iommu_detected = 1;
2866 swiotlb = 0;
2867
2868 amd_iommu_stats_init();
2869
2870 if (amd_iommu_unmap_flush)
2871 pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
2872 else
2873 pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
2874
2875 return 0;
2876 }
2877
2878 /*****************************************************************************
2879 *
2880 * The following functions belong to the exported interface of AMD IOMMU
2881 *
2882 * This interface allows access to lower level functions of the IOMMU
2883 * like protection domain handling and assignement of devices to domains
2884 * which is not possible with the dma_ops interface.
2885 *
2886 *****************************************************************************/
2887
2888 static void cleanup_domain(struct protection_domain *domain)
2889 {
2890 struct iommu_dev_data *entry;
2891 unsigned long flags;
2892
2893 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2894
2895 while (!list_empty(&domain->dev_list)) {
2896 entry = list_first_entry(&domain->dev_list,
2897 struct iommu_dev_data, list);
2898 __detach_device(entry);
2899 }
2900
2901 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2902 }
2903
2904 static void protection_domain_free(struct protection_domain *domain)
2905 {
2906 if (!domain)
2907 return;
2908
2909 del_domain_from_list(domain);
2910
2911 if (domain->id)
2912 domain_id_free(domain->id);
2913
2914 kfree(domain);
2915 }
2916
2917 static int protection_domain_init(struct protection_domain *domain)
2918 {
2919 spin_lock_init(&domain->lock);
2920 mutex_init(&domain->api_lock);
2921 domain->id = domain_id_alloc();
2922 if (!domain->id)
2923 return -ENOMEM;
2924 INIT_LIST_HEAD(&domain->dev_list);
2925
2926 return 0;
2927 }
2928
2929 static struct protection_domain *protection_domain_alloc(void)
2930 {
2931 struct protection_domain *domain;
2932
2933 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2934 if (!domain)
2935 return NULL;
2936
2937 if (protection_domain_init(domain))
2938 goto out_err;
2939
2940 add_domain_to_list(domain);
2941
2942 return domain;
2943
2944 out_err:
2945 kfree(domain);
2946
2947 return NULL;
2948 }
2949
2950 static int alloc_passthrough_domain(void)
2951 {
2952 if (pt_domain != NULL)
2953 return 0;
2954
2955 /* allocate passthrough domain */
2956 pt_domain = protection_domain_alloc();
2957 if (!pt_domain)
2958 return -ENOMEM;
2959
2960 pt_domain->mode = PAGE_MODE_NONE;
2961
2962 return 0;
2963 }
2964
2965 static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2966 {
2967 struct protection_domain *pdomain;
2968 struct dma_ops_domain *dma_domain;
2969
2970 switch (type) {
2971 case IOMMU_DOMAIN_UNMANAGED:
2972 pdomain = protection_domain_alloc();
2973 if (!pdomain)
2974 return NULL;
2975
2976 pdomain->mode = PAGE_MODE_3_LEVEL;
2977 pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2978 if (!pdomain->pt_root) {
2979 protection_domain_free(pdomain);
2980 return NULL;
2981 }
2982
2983 pdomain->domain.geometry.aperture_start = 0;
2984 pdomain->domain.geometry.aperture_end = ~0ULL;
2985 pdomain->domain.geometry.force_aperture = true;
2986
2987 break;
2988 case IOMMU_DOMAIN_DMA:
2989 dma_domain = dma_ops_domain_alloc();
2990 if (!dma_domain) {
2991 pr_err("AMD-Vi: Failed to allocate\n");
2992 return NULL;
2993 }
2994 pdomain = &dma_domain->domain;
2995 break;
2996 case IOMMU_DOMAIN_IDENTITY:
2997 pdomain = protection_domain_alloc();
2998 if (!pdomain)
2999 return NULL;
3000
3001 pdomain->mode = PAGE_MODE_NONE;
3002 break;
3003 default:
3004 return NULL;
3005 }
3006
3007 return &pdomain->domain;
3008 }
3009
3010 static void amd_iommu_domain_free(struct iommu_domain *dom)
3011 {
3012 struct protection_domain *domain;
3013
3014 if (!dom)
3015 return;
3016
3017 domain = to_pdomain(dom);
3018
3019 if (domain->dev_cnt > 0)
3020 cleanup_domain(domain);
3021
3022 BUG_ON(domain->dev_cnt != 0);
3023
3024 if (domain->mode != PAGE_MODE_NONE)
3025 free_pagetable(domain);
3026
3027 if (domain->flags & PD_IOMMUV2_MASK)
3028 free_gcr3_table(domain);
3029
3030 protection_domain_free(domain);
3031 }
3032
3033 static void amd_iommu_detach_device(struct iommu_domain *dom,
3034 struct device *dev)
3035 {
3036 struct iommu_dev_data *dev_data = dev->archdata.iommu;
3037 struct amd_iommu *iommu;
3038 u16 devid;
3039
3040 if (!check_device(dev))
3041 return;
3042
3043 devid = get_device_id(dev);
3044
3045 if (dev_data->domain != NULL)
3046 detach_device(dev);
3047
3048 iommu = amd_iommu_rlookup_table[devid];
3049 if (!iommu)
3050 return;
3051
3052 iommu_completion_wait(iommu);
3053 }
3054
3055 static int amd_iommu_attach_device(struct iommu_domain *dom,
3056 struct device *dev)
3057 {
3058 struct protection_domain *domain = to_pdomain(dom);
3059 struct iommu_dev_data *dev_data;
3060 struct amd_iommu *iommu;
3061 int ret;
3062
3063 if (!check_device(dev))
3064 return -EINVAL;
3065
3066 dev_data = dev->archdata.iommu;
3067
3068 iommu = amd_iommu_rlookup_table[dev_data->devid];
3069 if (!iommu)
3070 return -EINVAL;
3071
3072 if (dev_data->domain)
3073 detach_device(dev);
3074
3075 ret = attach_device(dev, domain);
3076
3077 iommu_completion_wait(iommu);
3078
3079 return ret;
3080 }
3081
3082 static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3083 phys_addr_t paddr, size_t page_size, int iommu_prot)
3084 {
3085 struct protection_domain *domain = to_pdomain(dom);
3086 int prot = 0;
3087 int ret;
3088
3089 if (domain->mode == PAGE_MODE_NONE)
3090 return -EINVAL;
3091
3092 if (iommu_prot & IOMMU_READ)
3093 prot |= IOMMU_PROT_IR;
3094 if (iommu_prot & IOMMU_WRITE)
3095 prot |= IOMMU_PROT_IW;
3096
3097 mutex_lock(&domain->api_lock);
3098 ret = iommu_map_page(domain, iova, paddr, prot, page_size);
3099 mutex_unlock(&domain->api_lock);
3100
3101 return ret;
3102 }
3103
3104 static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
3105 size_t page_size)
3106 {
3107 struct protection_domain *domain = to_pdomain(dom);
3108 size_t unmap_size;
3109
3110 if (domain->mode == PAGE_MODE_NONE)
3111 return -EINVAL;
3112
3113 mutex_lock(&domain->api_lock);
3114 unmap_size = iommu_unmap_page(domain, iova, page_size);
3115 mutex_unlock(&domain->api_lock);
3116
3117 domain_flush_tlb_pde(domain);
3118
3119 return unmap_size;
3120 }
3121
3122 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3123 dma_addr_t iova)
3124 {
3125 struct protection_domain *domain = to_pdomain(dom);
3126 unsigned long offset_mask, pte_pgsize;
3127 u64 *pte, __pte;
3128
3129 if (domain->mode == PAGE_MODE_NONE)
3130 return iova;
3131
3132 pte = fetch_pte(domain, iova, &pte_pgsize);
3133
3134 if (!pte || !IOMMU_PTE_PRESENT(*pte))
3135 return 0;
3136
3137 offset_mask = pte_pgsize - 1;
3138 __pte = *pte & PM_ADDR_MASK;
3139
3140 return (__pte & ~offset_mask) | (iova & offset_mask);
3141 }
3142
3143 static bool amd_iommu_capable(enum iommu_cap cap)
3144 {
3145 switch (cap) {
3146 case IOMMU_CAP_CACHE_COHERENCY:
3147 return true;
3148 case IOMMU_CAP_INTR_REMAP:
3149 return (irq_remapping_enabled == 1);
3150 case IOMMU_CAP_NOEXEC:
3151 return false;
3152 }
3153
3154 return false;
3155 }
3156
3157 static void amd_iommu_get_dm_regions(struct device *dev,
3158 struct list_head *head)
3159 {
3160 struct unity_map_entry *entry;
3161 u16 devid;
3162
3163 devid = get_device_id(dev);
3164
3165 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
3166 struct iommu_dm_region *region;
3167
3168 if (devid < entry->devid_start || devid > entry->devid_end)
3169 continue;
3170
3171 region = kzalloc(sizeof(*region), GFP_KERNEL);
3172 if (!region) {
3173 pr_err("Out of memory allocating dm-regions for %s\n",
3174 dev_name(dev));
3175 return;
3176 }
3177
3178 region->start = entry->address_start;
3179 region->length = entry->address_end - entry->address_start;
3180 if (entry->prot & IOMMU_PROT_IR)
3181 region->prot |= IOMMU_READ;
3182 if (entry->prot & IOMMU_PROT_IW)
3183 region->prot |= IOMMU_WRITE;
3184
3185 list_add_tail(&region->list, head);
3186 }
3187 }
3188
3189 static void amd_iommu_put_dm_regions(struct device *dev,
3190 struct list_head *head)
3191 {
3192 struct iommu_dm_region *entry, *next;
3193
3194 list_for_each_entry_safe(entry, next, head, list)
3195 kfree(entry);
3196 }
3197
3198 static const struct iommu_ops amd_iommu_ops = {
3199 .capable = amd_iommu_capable,
3200 .domain_alloc = amd_iommu_domain_alloc,
3201 .domain_free = amd_iommu_domain_free,
3202 .attach_dev = amd_iommu_attach_device,
3203 .detach_dev = amd_iommu_detach_device,
3204 .map = amd_iommu_map,
3205 .unmap = amd_iommu_unmap,
3206 .map_sg = default_iommu_map_sg,
3207 .iova_to_phys = amd_iommu_iova_to_phys,
3208 .add_device = amd_iommu_add_device,
3209 .remove_device = amd_iommu_remove_device,
3210 .get_dm_regions = amd_iommu_get_dm_regions,
3211 .put_dm_regions = amd_iommu_put_dm_regions,
3212 .pgsize_bitmap = AMD_IOMMU_PGSIZES,
3213 };
3214
3215 /*****************************************************************************
3216 *
3217 * The next functions do a basic initialization of IOMMU for pass through
3218 * mode
3219 *
3220 * In passthrough mode the IOMMU is initialized and enabled but not used for
3221 * DMA-API translation.
3222 *
3223 *****************************************************************************/
3224
3225 int __init amd_iommu_init_passthrough(void)
3226 {
3227 struct iommu_dev_data *dev_data;
3228 struct pci_dev *dev = NULL;
3229 int ret;
3230
3231 ret = alloc_passthrough_domain();
3232 if (ret)
3233 return ret;
3234
3235 for_each_pci_dev(dev) {
3236 if (!check_device(&dev->dev))
3237 continue;
3238
3239 dev_data = get_dev_data(&dev->dev);
3240 dev_data->passthrough = true;
3241
3242 attach_device(&dev->dev, pt_domain);
3243 }
3244
3245 amd_iommu_stats_init();
3246
3247 pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
3248
3249 return 0;
3250 }
3251
3252 /* IOMMUv2 specific functions */
3253 int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
3254 {
3255 return atomic_notifier_chain_register(&ppr_notifier, nb);
3256 }
3257 EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
3258
3259 int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
3260 {
3261 return atomic_notifier_chain_unregister(&ppr_notifier, nb);
3262 }
3263 EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3264
3265 void amd_iommu_domain_direct_map(struct iommu_domain *dom)
3266 {
3267 struct protection_domain *domain = to_pdomain(dom);
3268 unsigned long flags;
3269
3270 spin_lock_irqsave(&domain->lock, flags);
3271
3272 /* Update data structure */
3273 domain->mode = PAGE_MODE_NONE;
3274 domain->updated = true;
3275
3276 /* Make changes visible to IOMMUs */
3277 update_domain(domain);
3278
3279 /* Page-table is not visible to IOMMU anymore, so free it */
3280 free_pagetable(domain);
3281
3282 spin_unlock_irqrestore(&domain->lock, flags);
3283 }
3284 EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3285
3286 int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
3287 {
3288 struct protection_domain *domain = to_pdomain(dom);
3289 unsigned long flags;
3290 int levels, ret;
3291
3292 if (pasids <= 0 || pasids > (PASID_MASK + 1))
3293 return -EINVAL;
3294
3295 /* Number of GCR3 table levels required */
3296 for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
3297 levels += 1;
3298
3299 if (levels > amd_iommu_max_glx_val)
3300 return -EINVAL;
3301
3302 spin_lock_irqsave(&domain->lock, flags);
3303
3304 /*
3305 * Save us all sanity checks whether devices already in the
3306 * domain support IOMMUv2. Just force that the domain has no
3307 * devices attached when it is switched into IOMMUv2 mode.
3308 */
3309 ret = -EBUSY;
3310 if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
3311 goto out;
3312
3313 ret = -ENOMEM;
3314 domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
3315 if (domain->gcr3_tbl == NULL)
3316 goto out;
3317
3318 domain->glx = levels;
3319 domain->flags |= PD_IOMMUV2_MASK;
3320 domain->updated = true;
3321
3322 update_domain(domain);
3323
3324 ret = 0;
3325
3326 out:
3327 spin_unlock_irqrestore(&domain->lock, flags);
3328
3329 return ret;
3330 }
3331 EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3332
3333 static int __flush_pasid(struct protection_domain *domain, int pasid,
3334 u64 address, bool size)
3335 {
3336 struct iommu_dev_data *dev_data;
3337 struct iommu_cmd cmd;
3338 int i, ret;
3339
3340 if (!(domain->flags & PD_IOMMUV2_MASK))
3341 return -EINVAL;
3342
3343 build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
3344
3345 /*
3346 * IOMMU TLB needs to be flushed before Device TLB to
3347 * prevent device TLB refill from IOMMU TLB
3348 */
3349 for (i = 0; i < amd_iommus_present; ++i) {
3350 if (domain->dev_iommu[i] == 0)
3351 continue;
3352
3353 ret = iommu_queue_command(amd_iommus[i], &cmd);
3354 if (ret != 0)
3355 goto out;
3356 }
3357
3358 /* Wait until IOMMU TLB flushes are complete */
3359 domain_flush_complete(domain);
3360
3361 /* Now flush device TLBs */
3362 list_for_each_entry(dev_data, &domain->dev_list, list) {
3363 struct amd_iommu *iommu;
3364 int qdep;
3365
3366 BUG_ON(!dev_data->ats.enabled);
3367
3368 qdep = dev_data->ats.qdep;
3369 iommu = amd_iommu_rlookup_table[dev_data->devid];
3370
3371 build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
3372 qdep, address, size);
3373
3374 ret = iommu_queue_command(iommu, &cmd);
3375 if (ret != 0)
3376 goto out;
3377 }
3378
3379 /* Wait until all device TLBs are flushed */
3380 domain_flush_complete(domain);
3381
3382 ret = 0;
3383
3384 out:
3385
3386 return ret;
3387 }
3388
3389 static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
3390 u64 address)
3391 {
3392 INC_STATS_COUNTER(invalidate_iotlb);
3393
3394 return __flush_pasid(domain, pasid, address, false);
3395 }
3396
3397 int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
3398 u64 address)
3399 {
3400 struct protection_domain *domain = to_pdomain(dom);
3401 unsigned long flags;
3402 int ret;
3403
3404 spin_lock_irqsave(&domain->lock, flags);
3405 ret = __amd_iommu_flush_page(domain, pasid, address);
3406 spin_unlock_irqrestore(&domain->lock, flags);
3407
3408 return ret;
3409 }
3410 EXPORT_SYMBOL(amd_iommu_flush_page);
3411
3412 static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
3413 {
3414 INC_STATS_COUNTER(invalidate_iotlb_all);
3415
3416 return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
3417 true);
3418 }
3419
3420 int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
3421 {
3422 struct protection_domain *domain = to_pdomain(dom);
3423 unsigned long flags;
3424 int ret;
3425
3426 spin_lock_irqsave(&domain->lock, flags);
3427 ret = __amd_iommu_flush_tlb(domain, pasid);
3428 spin_unlock_irqrestore(&domain->lock, flags);
3429
3430 return ret;
3431 }
3432 EXPORT_SYMBOL(amd_iommu_flush_tlb);
3433
3434 static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
3435 {
3436 int index;
3437 u64 *pte;
3438
3439 while (true) {
3440
3441 index = (pasid >> (9 * level)) & 0x1ff;
3442 pte = &root[index];
3443
3444 if (level == 0)
3445 break;
3446
3447 if (!(*pte & GCR3_VALID)) {
3448 if (!alloc)
3449 return NULL;
3450
3451 root = (void *)get_zeroed_page(GFP_ATOMIC);
3452 if (root == NULL)
3453 return NULL;
3454
3455 *pte = __pa(root) | GCR3_VALID;
3456 }
3457
3458 root = __va(*pte & PAGE_MASK);
3459
3460 level -= 1;
3461 }
3462
3463 return pte;
3464 }
3465
3466 static int __set_gcr3(struct protection_domain *domain, int pasid,
3467 unsigned long cr3)
3468 {
3469 u64 *pte;
3470
3471 if (domain->mode != PAGE_MODE_NONE)
3472 return -EINVAL;
3473
3474 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
3475 if (pte == NULL)
3476 return -ENOMEM;
3477
3478 *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
3479
3480 return __amd_iommu_flush_tlb(domain, pasid);
3481 }
3482
3483 static int __clear_gcr3(struct protection_domain *domain, int pasid)
3484 {
3485 u64 *pte;
3486
3487 if (domain->mode != PAGE_MODE_NONE)
3488 return -EINVAL;
3489
3490 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
3491 if (pte == NULL)
3492 return 0;
3493
3494 *pte = 0;
3495
3496 return __amd_iommu_flush_tlb(domain, pasid);
3497 }
3498
3499 int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
3500 unsigned long cr3)
3501 {
3502 struct protection_domain *domain = to_pdomain(dom);
3503 unsigned long flags;
3504 int ret;
3505
3506 spin_lock_irqsave(&domain->lock, flags);
3507 ret = __set_gcr3(domain, pasid, cr3);
3508 spin_unlock_irqrestore(&domain->lock, flags);
3509
3510 return ret;
3511 }
3512 EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
3513
3514 int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
3515 {
3516 struct protection_domain *domain = to_pdomain(dom);
3517 unsigned long flags;
3518 int ret;
3519
3520 spin_lock_irqsave(&domain->lock, flags);
3521 ret = __clear_gcr3(domain, pasid);
3522 spin_unlock_irqrestore(&domain->lock, flags);
3523
3524 return ret;
3525 }
3526 EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3527
3528 int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
3529 int status, int tag)
3530 {
3531 struct iommu_dev_data *dev_data;
3532 struct amd_iommu *iommu;
3533 struct iommu_cmd cmd;
3534
3535 INC_STATS_COUNTER(complete_ppr);
3536
3537 dev_data = get_dev_data(&pdev->dev);
3538 iommu = amd_iommu_rlookup_table[dev_data->devid];
3539
3540 build_complete_ppr(&cmd, dev_data->devid, pasid, status,
3541 tag, dev_data->pri_tlp);
3542
3543 return iommu_queue_command(iommu, &cmd);
3544 }
3545 EXPORT_SYMBOL(amd_iommu_complete_ppr);
3546
3547 struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
3548 {
3549 struct protection_domain *pdomain;
3550
3551 pdomain = get_domain(&pdev->dev);
3552 if (IS_ERR(pdomain))
3553 return NULL;
3554
3555 /* Only return IOMMUv2 domains */
3556 if (!(pdomain->flags & PD_IOMMUV2_MASK))
3557 return NULL;
3558
3559 return &pdomain->domain;
3560 }
3561 EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3562
3563 void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
3564 {
3565 struct iommu_dev_data *dev_data;
3566
3567 if (!amd_iommu_v2_supported())
3568 return;
3569
3570 dev_data = get_dev_data(&pdev->dev);
3571 dev_data->errata |= (1 << erratum);
3572 }
3573 EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3574
3575 int amd_iommu_device_info(struct pci_dev *pdev,
3576 struct amd_iommu_device_info *info)
3577 {
3578 int max_pasids;
3579 int pos;
3580
3581 if (pdev == NULL || info == NULL)
3582 return -EINVAL;
3583
3584 if (!amd_iommu_v2_supported())
3585 return -EINVAL;
3586
3587 memset(info, 0, sizeof(*info));
3588
3589 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
3590 if (pos)
3591 info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
3592
3593 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
3594 if (pos)
3595 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
3596
3597 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
3598 if (pos) {
3599 int features;
3600
3601 max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
3602 max_pasids = min(max_pasids, (1 << 20));
3603
3604 info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
3605 info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
3606
3607 features = pci_pasid_features(pdev);
3608 if (features & PCI_PASID_CAP_EXEC)
3609 info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
3610 if (features & PCI_PASID_CAP_PRIV)
3611 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
3612 }
3613
3614 return 0;
3615 }
3616 EXPORT_SYMBOL(amd_iommu_device_info);
3617
3618 #ifdef CONFIG_IRQ_REMAP
3619
3620 /*****************************************************************************
3621 *
3622 * Interrupt Remapping Implementation
3623 *
3624 *****************************************************************************/
3625
3626 union irte {
3627 u32 val;
3628 struct {
3629 u32 valid : 1,
3630 no_fault : 1,
3631 int_type : 3,
3632 rq_eoi : 1,
3633 dm : 1,
3634 rsvd_1 : 1,
3635 destination : 8,
3636 vector : 8,
3637 rsvd_2 : 8;
3638 } fields;
3639 };
3640
3641 struct irq_2_irte {
3642 u16 devid; /* Device ID for IRTE table */
3643 u16 index; /* Index into IRTE table*/
3644 };
3645
3646 struct amd_ir_data {
3647 struct irq_2_irte irq_2_irte;
3648 union irte irte_entry;
3649 union {
3650 struct msi_msg msi_entry;
3651 };
3652 };
3653
3654 static struct irq_chip amd_ir_chip;
3655
3656 #define DTE_IRQ_PHYS_ADDR_MASK (((1ULL << 45)-1) << 6)
3657 #define DTE_IRQ_REMAP_INTCTL (2ULL << 60)
3658 #define DTE_IRQ_TABLE_LEN (8ULL << 1)
3659 #define DTE_IRQ_REMAP_ENABLE 1ULL
3660
3661 static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
3662 {
3663 u64 dte;
3664
3665 dte = amd_iommu_dev_table[devid].data[2];
3666 dte &= ~DTE_IRQ_PHYS_ADDR_MASK;
3667 dte |= virt_to_phys(table->table);
3668 dte |= DTE_IRQ_REMAP_INTCTL;
3669 dte |= DTE_IRQ_TABLE_LEN;
3670 dte |= DTE_IRQ_REMAP_ENABLE;
3671
3672 amd_iommu_dev_table[devid].data[2] = dte;
3673 }
3674
3675 #define IRTE_ALLOCATED (~1U)
3676
3677 static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
3678 {
3679 struct irq_remap_table *table = NULL;
3680 struct amd_iommu *iommu;
3681 unsigned long flags;
3682 u16 alias;
3683
3684 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
3685
3686 iommu = amd_iommu_rlookup_table[devid];
3687 if (!iommu)
3688 goto out_unlock;
3689
3690 table = irq_lookup_table[devid];
3691 if (table)
3692 goto out;
3693
3694 alias = amd_iommu_alias_table[devid];
3695 table = irq_lookup_table[alias];
3696 if (table) {
3697 irq_lookup_table[devid] = table;
3698 set_dte_irq_entry(devid, table);
3699 iommu_flush_dte(iommu, devid);
3700 goto out;
3701 }
3702
3703 /* Nothing there yet, allocate new irq remapping table */
3704 table = kzalloc(sizeof(*table), GFP_ATOMIC);
3705 if (!table)
3706 goto out;
3707
3708 /* Initialize table spin-lock */
3709 spin_lock_init(&table->lock);
3710
3711 if (ioapic)
3712 /* Keep the first 32 indexes free for IOAPIC interrupts */
3713 table->min_index = 32;
3714
3715 table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
3716 if (!table->table) {
3717 kfree(table);
3718 table = NULL;
3719 goto out;
3720 }
3721
3722 memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));
3723
3724 if (ioapic) {
3725 int i;
3726
3727 for (i = 0; i < 32; ++i)
3728 table->table[i] = IRTE_ALLOCATED;
3729 }
3730
3731 irq_lookup_table[devid] = table;
3732 set_dte_irq_entry(devid, table);
3733 iommu_flush_dte(iommu, devid);
3734 if (devid != alias) {
3735 irq_lookup_table[alias] = table;
3736 set_dte_irq_entry(alias, table);
3737 iommu_flush_dte(iommu, alias);
3738 }
3739
3740 out:
3741 iommu_completion_wait(iommu);
3742
3743 out_unlock:
3744 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
3745
3746 return table;
3747 }
3748
3749 static int alloc_irq_index(u16 devid, int count)
3750 {
3751 struct irq_remap_table *table;
3752 unsigned long flags;
3753 int index, c;
3754
3755 table = get_irq_table(devid, false);
3756 if (!table)
3757 return -ENODEV;
3758
3759 spin_lock_irqsave(&table->lock, flags);
3760
3761 /* Scan table for free entries */
3762 for (c = 0, index = table->min_index;
3763 index < MAX_IRQS_PER_TABLE;
3764 ++index) {
3765 if (table->table[index] == 0)
3766 c += 1;
3767 else
3768 c = 0;
3769
3770 if (c == count) {
3771 for (; c != 0; --c)
3772 table->table[index - c + 1] = IRTE_ALLOCATED;
3773
3774 index -= count - 1;
3775 goto out;
3776 }
3777 }
3778
3779 index = -ENOSPC;
3780
3781 out:
3782 spin_unlock_irqrestore(&table->lock, flags);
3783
3784 return index;
3785 }
3786
3787 static int modify_irte(u16 devid, int index, union irte irte)
3788 {
3789 struct irq_remap_table *table;
3790 struct amd_iommu *iommu;
3791 unsigned long flags;
3792
3793 iommu = amd_iommu_rlookup_table[devid];
3794 if (iommu == NULL)
3795 return -EINVAL;
3796
3797 table = get_irq_table(devid, false);
3798 if (!table)
3799 return -ENOMEM;
3800
3801 spin_lock_irqsave(&table->lock, flags);
3802 table->table[index] = irte.val;
3803 spin_unlock_irqrestore(&table->lock, flags);
3804
3805 iommu_flush_irt(iommu, devid);
3806 iommu_completion_wait(iommu);
3807
3808 return 0;
3809 }
3810
3811 static void free_irte(u16 devid, int index)
3812 {
3813 struct irq_remap_table *table;
3814 struct amd_iommu *iommu;
3815 unsigned long flags;
3816
3817 iommu = amd_iommu_rlookup_table[devid];
3818 if (iommu == NULL)
3819 return;
3820
3821 table = get_irq_table(devid, false);
3822 if (!table)
3823 return;
3824
3825 spin_lock_irqsave(&table->lock, flags);
3826 table->table[index] = 0;
3827 spin_unlock_irqrestore(&table->lock, flags);
3828
3829 iommu_flush_irt(iommu, devid);
3830 iommu_completion_wait(iommu);
3831 }
3832
3833 static int get_devid(struct irq_alloc_info *info)
3834 {
3835 int devid = -1;
3836
3837 switch (info->type) {
3838 case X86_IRQ_ALLOC_TYPE_IOAPIC:
3839 devid = get_ioapic_devid(info->ioapic_id);
3840 break;
3841 case X86_IRQ_ALLOC_TYPE_HPET:
3842 devid = get_hpet_devid(info->hpet_id);
3843 break;
3844 case X86_IRQ_ALLOC_TYPE_MSI:
3845 case X86_IRQ_ALLOC_TYPE_MSIX:
3846 devid = get_device_id(&info->msi_dev->dev);
3847 break;
3848 default:
3849 BUG_ON(1);
3850 break;
3851 }
3852
3853 return devid;
3854 }
3855
3856 static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
3857 {
3858 struct amd_iommu *iommu;
3859 int devid;
3860
3861 if (!info)
3862 return NULL;
3863
3864 devid = get_devid(info);
3865 if (devid >= 0) {
3866 iommu = amd_iommu_rlookup_table[devid];
3867 if (iommu)
3868 return iommu->ir_domain;
3869 }
3870
3871 return NULL;
3872 }
3873
3874 static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
3875 {
3876 struct amd_iommu *iommu;
3877 int devid;
3878
3879 if (!info)
3880 return NULL;
3881
3882 switch (info->type) {
3883 case X86_IRQ_ALLOC_TYPE_MSI:
3884 case X86_IRQ_ALLOC_TYPE_MSIX:
3885 devid = get_device_id(&info->msi_dev->dev);
3886 if (devid >= 0) {
3887 iommu = amd_iommu_rlookup_table[devid];
3888 if (iommu)
3889 return iommu->msi_domain;
3890 }
3891 break;
3892 default:
3893 break;
3894 }
3895
3896 return NULL;
3897 }
3898
3899 struct irq_remap_ops amd_iommu_irq_ops = {
3900 .prepare = amd_iommu_prepare,
3901 .enable = amd_iommu_enable,
3902 .disable = amd_iommu_disable,
3903 .reenable = amd_iommu_reenable,
3904 .enable_faulting = amd_iommu_enable_faulting,
3905 .get_ir_irq_domain = get_ir_irq_domain,
3906 .get_irq_domain = get_irq_domain,
3907 };
3908
3909 static void irq_remapping_prepare_irte(struct amd_ir_data *data,
3910 struct irq_cfg *irq_cfg,
3911 struct irq_alloc_info *info,
3912 int devid, int index, int sub_handle)
3913 {
3914 struct irq_2_irte *irte_info = &data->irq_2_irte;
3915 struct msi_msg *msg = &data->msi_entry;
3916 union irte *irte = &data->irte_entry;
3917 struct IO_APIC_route_entry *entry;
3918
3919 data->irq_2_irte.devid = devid;
3920 data->irq_2_irte.index = index + sub_handle;
3921
3922 /* Setup IRTE for IOMMU */
3923 irte->val = 0;
3924 irte->fields.vector = irq_cfg->vector;
3925 irte->fields.int_type = apic->irq_delivery_mode;
3926 irte->fields.destination = irq_cfg->dest_apicid;
3927 irte->fields.dm = apic->irq_dest_mode;
3928 irte->fields.valid = 1;
3929
3930 switch (info->type) {
3931 case X86_IRQ_ALLOC_TYPE_IOAPIC:
3932 /* Setup IOAPIC entry */
3933 entry = info->ioapic_entry;
3934 info->ioapic_entry = NULL;
3935 memset(entry, 0, sizeof(*entry));
3936 entry->vector = index;
3937 entry->mask = 0;
3938 entry->trigger = info->ioapic_trigger;
3939 entry->polarity = info->ioapic_polarity;
3940 /* Mask level triggered irqs. */
3941 if (info->ioapic_trigger)
3942 entry->mask = 1;
3943 break;
3944
3945 case X86_IRQ_ALLOC_TYPE_HPET:
3946 case X86_IRQ_ALLOC_TYPE_MSI:
3947 case X86_IRQ_ALLOC_TYPE_MSIX:
3948 msg->address_hi = MSI_ADDR_BASE_HI;
3949 msg->address_lo = MSI_ADDR_BASE_LO;
3950 msg->data = irte_info->index;
3951 break;
3952
3953 default:
3954 BUG_ON(1);
3955 break;
3956 }
3957 }
3958
3959 static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
3960 unsigned int nr_irqs, void *arg)
3961 {
3962 struct irq_alloc_info *info = arg;
3963 struct irq_data *irq_data;
3964 struct amd_ir_data *data;
3965 struct irq_cfg *cfg;
3966 int i, ret, devid;
3967 int index = -1;
3968
3969 if (!info)
3970 return -EINVAL;
3971 if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
3972 info->type != X86_IRQ_ALLOC_TYPE_MSIX)
3973 return -EINVAL;
3974
3975 /*
3976 * With IRQ remapping enabled, don't need contiguous CPU vectors
3977 * to support multiple MSI interrupts.
3978 */
3979 if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
3980 info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
3981
3982 devid = get_devid(info);
3983 if (devid < 0)
3984 return -EINVAL;
3985
3986 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
3987 if (ret < 0)
3988 return ret;
3989
3990 ret = -ENOMEM;
3991 data = kzalloc(sizeof(*data), GFP_KERNEL);
3992 if (!data)
3993 goto out_free_parent;
3994
3995 if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
3996 if (get_irq_table(devid, true))
3997 index = info->ioapic_pin;
3998 else
3999 ret = -ENOMEM;
4000 } else {
4001 index = alloc_irq_index(devid, nr_irqs);
4002 }
4003 if (index < 0) {
4004 pr_warn("Failed to allocate IRTE\n");
4005 kfree(data);
4006 goto out_free_parent;
4007 }
4008
4009 for (i = 0; i < nr_irqs; i++) {
4010 irq_data = irq_domain_get_irq_data(domain, virq + i);
4011 cfg = irqd_cfg(irq_data);
4012 if (!irq_data || !cfg) {
4013 ret = -EINVAL;
4014 goto out_free_data;
4015 }
4016
4017 if (i > 0) {
4018 data = kzalloc(sizeof(*data), GFP_KERNEL);
4019 if (!data)
4020 goto out_free_data;
4021 }
4022 irq_data->hwirq = (devid << 16) + i;
4023 irq_data->chip_data = data;
4024 irq_data->chip = &amd_ir_chip;
4025 irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
4026 irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
4027 }
4028 return 0;
4029
4030 out_free_data:
4031 for (i--; i >= 0; i--) {
4032 irq_data = irq_domain_get_irq_data(domain, virq + i);
4033 if (irq_data)
4034 kfree(irq_data->chip_data);
4035 }
4036 for (i = 0; i < nr_irqs; i++)
4037 free_irte(devid, index + i);
4038 out_free_parent:
4039 irq_domain_free_irqs_common(domain, virq, nr_irqs);
4040 return ret;
4041 }
4042
4043 static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
4044 unsigned int nr_irqs)
4045 {
4046 struct irq_2_irte *irte_info;
4047 struct irq_data *irq_data;
4048 struct amd_ir_data *data;
4049 int i;
4050
4051 for (i = 0; i < nr_irqs; i++) {
4052 irq_data = irq_domain_get_irq_data(domain, virq + i);
4053 if (irq_data && irq_data->chip_data) {
4054 data = irq_data->chip_data;
4055 irte_info = &data->irq_2_irte;
4056 free_irte(irte_info->devid, irte_info->index);
4057 kfree(data);
4058 }
4059 }
4060 irq_domain_free_irqs_common(domain, virq, nr_irqs);
4061 }
4062
4063 static void irq_remapping_activate(struct irq_domain *domain,
4064 struct irq_data *irq_data)
4065 {
4066 struct amd_ir_data *data = irq_data->chip_data;
4067 struct irq_2_irte *irte_info = &data->irq_2_irte;
4068
4069 modify_irte(irte_info->devid, irte_info->index, data->irte_entry);
4070 }
4071
4072 static void irq_remapping_deactivate(struct irq_domain *domain,
4073 struct irq_data *irq_data)
4074 {
4075 struct amd_ir_data *data = irq_data->chip_data;
4076 struct irq_2_irte *irte_info = &data->irq_2_irte;
4077 union irte entry;
4078
4079 entry.val = 0;
4080 modify_irte(irte_info->devid, irte_info->index, data->irte_entry);
4081 }
4082
4083 static struct irq_domain_ops amd_ir_domain_ops = {
4084 .alloc = irq_remapping_alloc,
4085 .free = irq_remapping_free,
4086 .activate = irq_remapping_activate,
4087 .deactivate = irq_remapping_deactivate,
4088 };
4089
4090 static int amd_ir_set_affinity(struct irq_data *data,
4091 const struct cpumask *mask, bool force)
4092 {
4093 struct amd_ir_data *ir_data = data->chip_data;
4094 struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4095 struct irq_cfg *cfg = irqd_cfg(data);
4096 struct irq_data *parent = data->parent_data;
4097 int ret;
4098
4099 ret = parent->chip->irq_set_affinity(parent, mask, force);
4100 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
4101 return ret;
4102
4103 /*
4104 * Atomically updates the IRTE with the new destination, vector
4105 * and flushes the interrupt entry cache.
4106 */
4107 ir_data->irte_entry.fields.vector = cfg->vector;
4108 ir_data->irte_entry.fields.destination = cfg->dest_apicid;
4109 modify_irte(irte_info->devid, irte_info->index, ir_data->irte_entry);
4110
4111 /*
4112 * After this point, all the interrupts will start arriving
4113 * at the new destination. So, time to cleanup the previous
4114 * vector allocation.
4115 */
4116 send_cleanup_vector(cfg);
4117
4118 return IRQ_SET_MASK_OK_DONE;
4119 }
4120
4121 static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4122 {
4123 struct amd_ir_data *ir_data = irq_data->chip_data;
4124
4125 *msg = ir_data->msi_entry;
4126 }
4127
4128 static struct irq_chip amd_ir_chip = {
4129 .irq_ack = ir_ack_apic_edge,
4130 .irq_set_affinity = amd_ir_set_affinity,
4131 .irq_compose_msi_msg = ir_compose_msi_msg,
4132 };
4133
4134 int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
4135 {
4136 iommu->ir_domain = irq_domain_add_tree(NULL, &amd_ir_domain_ops, iommu);
4137 if (!iommu->ir_domain)
4138 return -ENOMEM;
4139
4140 iommu->ir_domain->parent = arch_get_ir_parent_domain();
4141 iommu->msi_domain = arch_create_msi_irq_domain(iommu->ir_domain);
4142
4143 return 0;
4144 }
4145 #endif
This page took 0.116636 seconds and 5 git commands to generate.