Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/borntraeger...
[deliverable/linux.git] / drivers / iommu / arm-smmu.c
1 /*
2 * IOMMU API for ARM architected SMMU implementations.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
16 *
17 * Copyright (C) 2013 ARM Limited
18 *
19 * Author: Will Deacon <will.deacon@arm.com>
20 *
21 * This driver currently supports:
22 * - SMMUv1 and v2 implementations
23 * - Stream-matching and stream-indexing
24 * - v7/v8 long-descriptor format
25 * - Non-secure access to the SMMU
26 * - 4k and 64k pages, with contiguous pte hints.
27 * - Up to 48-bit addressing (dependent on VA_BITS)
28 * - Context fault reporting
29 */
30
31 #define pr_fmt(fmt) "arm-smmu: " fmt
32
33 #include <linux/delay.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/err.h>
36 #include <linux/interrupt.h>
37 #include <linux/io.h>
38 #include <linux/iommu.h>
39 #include <linux/mm.h>
40 #include <linux/module.h>
41 #include <linux/of.h>
42 #include <linux/pci.h>
43 #include <linux/platform_device.h>
44 #include <linux/slab.h>
45 #include <linux/spinlock.h>
46
47 #include <linux/amba/bus.h>
48
49 #include <asm/pgalloc.h>
50
51 /* Maximum number of stream IDs assigned to a single device */
52 #define MAX_MASTER_STREAMIDS MAX_PHANDLE_ARGS
53
54 /* Maximum number of context banks per SMMU */
55 #define ARM_SMMU_MAX_CBS 128
56
57 /* Maximum number of mapping groups per SMMU */
58 #define ARM_SMMU_MAX_SMRS 128
59
60 /* SMMU global address space */
61 #define ARM_SMMU_GR0(smmu) ((smmu)->base)
62 #define ARM_SMMU_GR1(smmu) ((smmu)->base + (1 << (smmu)->pgshift))
63
64 /*
65 * SMMU global address space with conditional offset to access secure
66 * aliases of non-secure registers (e.g. nsCR0: 0x400, nsGFSR: 0x448,
67 * nsGFSYNR0: 0x450)
68 */
69 #define ARM_SMMU_GR0_NS(smmu) \
70 ((smmu)->base + \
71 ((smmu->options & ARM_SMMU_OPT_SECURE_CFG_ACCESS) \
72 ? 0x400 : 0))
73
74 /* Page table bits */
75 #define ARM_SMMU_PTE_XN (((pteval_t)3) << 53)
76 #define ARM_SMMU_PTE_CONT (((pteval_t)1) << 52)
77 #define ARM_SMMU_PTE_AF (((pteval_t)1) << 10)
78 #define ARM_SMMU_PTE_SH_NS (((pteval_t)0) << 8)
79 #define ARM_SMMU_PTE_SH_OS (((pteval_t)2) << 8)
80 #define ARM_SMMU_PTE_SH_IS (((pteval_t)3) << 8)
81 #define ARM_SMMU_PTE_PAGE (((pteval_t)3) << 0)
82
83 #if PAGE_SIZE == SZ_4K
84 #define ARM_SMMU_PTE_CONT_ENTRIES 16
85 #elif PAGE_SIZE == SZ_64K
86 #define ARM_SMMU_PTE_CONT_ENTRIES 32
87 #else
88 #define ARM_SMMU_PTE_CONT_ENTRIES 1
89 #endif
90
91 #define ARM_SMMU_PTE_CONT_SIZE (PAGE_SIZE * ARM_SMMU_PTE_CONT_ENTRIES)
92 #define ARM_SMMU_PTE_CONT_MASK (~(ARM_SMMU_PTE_CONT_SIZE - 1))
93
94 /* Stage-1 PTE */
95 #define ARM_SMMU_PTE_AP_UNPRIV (((pteval_t)1) << 6)
96 #define ARM_SMMU_PTE_AP_RDONLY (((pteval_t)2) << 6)
97 #define ARM_SMMU_PTE_ATTRINDX_SHIFT 2
98 #define ARM_SMMU_PTE_nG (((pteval_t)1) << 11)
99
100 /* Stage-2 PTE */
101 #define ARM_SMMU_PTE_HAP_FAULT (((pteval_t)0) << 6)
102 #define ARM_SMMU_PTE_HAP_READ (((pteval_t)1) << 6)
103 #define ARM_SMMU_PTE_HAP_WRITE (((pteval_t)2) << 6)
104 #define ARM_SMMU_PTE_MEMATTR_OIWB (((pteval_t)0xf) << 2)
105 #define ARM_SMMU_PTE_MEMATTR_NC (((pteval_t)0x5) << 2)
106 #define ARM_SMMU_PTE_MEMATTR_DEV (((pteval_t)0x1) << 2)
107
108 /* Configuration registers */
109 #define ARM_SMMU_GR0_sCR0 0x0
110 #define sCR0_CLIENTPD (1 << 0)
111 #define sCR0_GFRE (1 << 1)
112 #define sCR0_GFIE (1 << 2)
113 #define sCR0_GCFGFRE (1 << 4)
114 #define sCR0_GCFGFIE (1 << 5)
115 #define sCR0_USFCFG (1 << 10)
116 #define sCR0_VMIDPNE (1 << 11)
117 #define sCR0_PTM (1 << 12)
118 #define sCR0_FB (1 << 13)
119 #define sCR0_BSU_SHIFT 14
120 #define sCR0_BSU_MASK 0x3
121
122 /* Identification registers */
123 #define ARM_SMMU_GR0_ID0 0x20
124 #define ARM_SMMU_GR0_ID1 0x24
125 #define ARM_SMMU_GR0_ID2 0x28
126 #define ARM_SMMU_GR0_ID3 0x2c
127 #define ARM_SMMU_GR0_ID4 0x30
128 #define ARM_SMMU_GR0_ID5 0x34
129 #define ARM_SMMU_GR0_ID6 0x38
130 #define ARM_SMMU_GR0_ID7 0x3c
131 #define ARM_SMMU_GR0_sGFSR 0x48
132 #define ARM_SMMU_GR0_sGFSYNR0 0x50
133 #define ARM_SMMU_GR0_sGFSYNR1 0x54
134 #define ARM_SMMU_GR0_sGFSYNR2 0x58
135 #define ARM_SMMU_GR0_PIDR0 0xfe0
136 #define ARM_SMMU_GR0_PIDR1 0xfe4
137 #define ARM_SMMU_GR0_PIDR2 0xfe8
138
139 #define ID0_S1TS (1 << 30)
140 #define ID0_S2TS (1 << 29)
141 #define ID0_NTS (1 << 28)
142 #define ID0_SMS (1 << 27)
143 #define ID0_PTFS_SHIFT 24
144 #define ID0_PTFS_MASK 0x2
145 #define ID0_PTFS_V8_ONLY 0x2
146 #define ID0_CTTW (1 << 14)
147 #define ID0_NUMIRPT_SHIFT 16
148 #define ID0_NUMIRPT_MASK 0xff
149 #define ID0_NUMSIDB_SHIFT 9
150 #define ID0_NUMSIDB_MASK 0xf
151 #define ID0_NUMSMRG_SHIFT 0
152 #define ID0_NUMSMRG_MASK 0xff
153
154 #define ID1_PAGESIZE (1 << 31)
155 #define ID1_NUMPAGENDXB_SHIFT 28
156 #define ID1_NUMPAGENDXB_MASK 7
157 #define ID1_NUMS2CB_SHIFT 16
158 #define ID1_NUMS2CB_MASK 0xff
159 #define ID1_NUMCB_SHIFT 0
160 #define ID1_NUMCB_MASK 0xff
161
162 #define ID2_OAS_SHIFT 4
163 #define ID2_OAS_MASK 0xf
164 #define ID2_IAS_SHIFT 0
165 #define ID2_IAS_MASK 0xf
166 #define ID2_UBS_SHIFT 8
167 #define ID2_UBS_MASK 0xf
168 #define ID2_PTFS_4K (1 << 12)
169 #define ID2_PTFS_16K (1 << 13)
170 #define ID2_PTFS_64K (1 << 14)
171
172 #define PIDR2_ARCH_SHIFT 4
173 #define PIDR2_ARCH_MASK 0xf
174
175 /* Global TLB invalidation */
176 #define ARM_SMMU_GR0_STLBIALL 0x60
177 #define ARM_SMMU_GR0_TLBIVMID 0x64
178 #define ARM_SMMU_GR0_TLBIALLNSNH 0x68
179 #define ARM_SMMU_GR0_TLBIALLH 0x6c
180 #define ARM_SMMU_GR0_sTLBGSYNC 0x70
181 #define ARM_SMMU_GR0_sTLBGSTATUS 0x74
182 #define sTLBGSTATUS_GSACTIVE (1 << 0)
183 #define TLB_LOOP_TIMEOUT 1000000 /* 1s! */
184
185 /* Stream mapping registers */
186 #define ARM_SMMU_GR0_SMR(n) (0x800 + ((n) << 2))
187 #define SMR_VALID (1 << 31)
188 #define SMR_MASK_SHIFT 16
189 #define SMR_MASK_MASK 0x7fff
190 #define SMR_ID_SHIFT 0
191 #define SMR_ID_MASK 0x7fff
192
193 #define ARM_SMMU_GR0_S2CR(n) (0xc00 + ((n) << 2))
194 #define S2CR_CBNDX_SHIFT 0
195 #define S2CR_CBNDX_MASK 0xff
196 #define S2CR_TYPE_SHIFT 16
197 #define S2CR_TYPE_MASK 0x3
198 #define S2CR_TYPE_TRANS (0 << S2CR_TYPE_SHIFT)
199 #define S2CR_TYPE_BYPASS (1 << S2CR_TYPE_SHIFT)
200 #define S2CR_TYPE_FAULT (2 << S2CR_TYPE_SHIFT)
201
202 /* Context bank attribute registers */
203 #define ARM_SMMU_GR1_CBAR(n) (0x0 + ((n) << 2))
204 #define CBAR_VMID_SHIFT 0
205 #define CBAR_VMID_MASK 0xff
206 #define CBAR_S1_BPSHCFG_SHIFT 8
207 #define CBAR_S1_BPSHCFG_MASK 3
208 #define CBAR_S1_BPSHCFG_NSH 3
209 #define CBAR_S1_MEMATTR_SHIFT 12
210 #define CBAR_S1_MEMATTR_MASK 0xf
211 #define CBAR_S1_MEMATTR_WB 0xf
212 #define CBAR_TYPE_SHIFT 16
213 #define CBAR_TYPE_MASK 0x3
214 #define CBAR_TYPE_S2_TRANS (0 << CBAR_TYPE_SHIFT)
215 #define CBAR_TYPE_S1_TRANS_S2_BYPASS (1 << CBAR_TYPE_SHIFT)
216 #define CBAR_TYPE_S1_TRANS_S2_FAULT (2 << CBAR_TYPE_SHIFT)
217 #define CBAR_TYPE_S1_TRANS_S2_TRANS (3 << CBAR_TYPE_SHIFT)
218 #define CBAR_IRPTNDX_SHIFT 24
219 #define CBAR_IRPTNDX_MASK 0xff
220
221 #define ARM_SMMU_GR1_CBA2R(n) (0x800 + ((n) << 2))
222 #define CBA2R_RW64_32BIT (0 << 0)
223 #define CBA2R_RW64_64BIT (1 << 0)
224
225 /* Translation context bank */
226 #define ARM_SMMU_CB_BASE(smmu) ((smmu)->base + ((smmu)->size >> 1))
227 #define ARM_SMMU_CB(smmu, n) ((n) * (1 << (smmu)->pgshift))
228
229 #define ARM_SMMU_CB_SCTLR 0x0
230 #define ARM_SMMU_CB_RESUME 0x8
231 #define ARM_SMMU_CB_TTBCR2 0x10
232 #define ARM_SMMU_CB_TTBR0_LO 0x20
233 #define ARM_SMMU_CB_TTBR0_HI 0x24
234 #define ARM_SMMU_CB_TTBCR 0x30
235 #define ARM_SMMU_CB_S1_MAIR0 0x38
236 #define ARM_SMMU_CB_FSR 0x58
237 #define ARM_SMMU_CB_FAR_LO 0x60
238 #define ARM_SMMU_CB_FAR_HI 0x64
239 #define ARM_SMMU_CB_FSYNR0 0x68
240 #define ARM_SMMU_CB_S1_TLBIASID 0x610
241
242 #define SCTLR_S1_ASIDPNE (1 << 12)
243 #define SCTLR_CFCFG (1 << 7)
244 #define SCTLR_CFIE (1 << 6)
245 #define SCTLR_CFRE (1 << 5)
246 #define SCTLR_E (1 << 4)
247 #define SCTLR_AFE (1 << 2)
248 #define SCTLR_TRE (1 << 1)
249 #define SCTLR_M (1 << 0)
250 #define SCTLR_EAE_SBOP (SCTLR_AFE | SCTLR_TRE)
251
252 #define RESUME_RETRY (0 << 0)
253 #define RESUME_TERMINATE (1 << 0)
254
255 #define TTBCR_EAE (1 << 31)
256
257 #define TTBCR_PASIZE_SHIFT 16
258 #define TTBCR_PASIZE_MASK 0x7
259
260 #define TTBCR_TG0_4K (0 << 14)
261 #define TTBCR_TG0_64K (1 << 14)
262
263 #define TTBCR_SH0_SHIFT 12
264 #define TTBCR_SH0_MASK 0x3
265 #define TTBCR_SH_NS 0
266 #define TTBCR_SH_OS 2
267 #define TTBCR_SH_IS 3
268
269 #define TTBCR_ORGN0_SHIFT 10
270 #define TTBCR_IRGN0_SHIFT 8
271 #define TTBCR_RGN_MASK 0x3
272 #define TTBCR_RGN_NC 0
273 #define TTBCR_RGN_WBWA 1
274 #define TTBCR_RGN_WT 2
275 #define TTBCR_RGN_WB 3
276
277 #define TTBCR_SL0_SHIFT 6
278 #define TTBCR_SL0_MASK 0x3
279 #define TTBCR_SL0_LVL_2 0
280 #define TTBCR_SL0_LVL_1 1
281
282 #define TTBCR_T1SZ_SHIFT 16
283 #define TTBCR_T0SZ_SHIFT 0
284 #define TTBCR_SZ_MASK 0xf
285
286 #define TTBCR2_SEP_SHIFT 15
287 #define TTBCR2_SEP_MASK 0x7
288
289 #define TTBCR2_PASIZE_SHIFT 0
290 #define TTBCR2_PASIZE_MASK 0x7
291
292 /* Common definitions for PASize and SEP fields */
293 #define TTBCR2_ADDR_32 0
294 #define TTBCR2_ADDR_36 1
295 #define TTBCR2_ADDR_40 2
296 #define TTBCR2_ADDR_42 3
297 #define TTBCR2_ADDR_44 4
298 #define TTBCR2_ADDR_48 5
299
300 #define TTBRn_HI_ASID_SHIFT 16
301
302 #define MAIR_ATTR_SHIFT(n) ((n) << 3)
303 #define MAIR_ATTR_MASK 0xff
304 #define MAIR_ATTR_DEVICE 0x04
305 #define MAIR_ATTR_NC 0x44
306 #define MAIR_ATTR_WBRWA 0xff
307 #define MAIR_ATTR_IDX_NC 0
308 #define MAIR_ATTR_IDX_CACHE 1
309 #define MAIR_ATTR_IDX_DEV 2
310
311 #define FSR_MULTI (1 << 31)
312 #define FSR_SS (1 << 30)
313 #define FSR_UUT (1 << 8)
314 #define FSR_ASF (1 << 7)
315 #define FSR_TLBLKF (1 << 6)
316 #define FSR_TLBMCF (1 << 5)
317 #define FSR_EF (1 << 4)
318 #define FSR_PF (1 << 3)
319 #define FSR_AFF (1 << 2)
320 #define FSR_TF (1 << 1)
321
322 #define FSR_IGN (FSR_AFF | FSR_ASF | \
323 FSR_TLBMCF | FSR_TLBLKF)
324 #define FSR_FAULT (FSR_MULTI | FSR_SS | FSR_UUT | \
325 FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
326
327 #define FSYNR0_WNR (1 << 4)
328
329 static int force_stage;
330 module_param_named(force_stage, force_stage, int, S_IRUGO | S_IWUSR);
331 MODULE_PARM_DESC(force_stage,
332 "Force SMMU mappings to be installed at a particular stage of translation. A value of '1' or '2' forces the corresponding stage. All other values are ignored (i.e. no stage is forced). Note that selecting a specific stage will disable support for nested translation.");
333
334 enum arm_smmu_arch_version {
335 ARM_SMMU_V1 = 1,
336 ARM_SMMU_V2,
337 };
338
339 struct arm_smmu_smr {
340 u8 idx;
341 u16 mask;
342 u16 id;
343 };
344
345 struct arm_smmu_master_cfg {
346 int num_streamids;
347 u16 streamids[MAX_MASTER_STREAMIDS];
348 struct arm_smmu_smr *smrs;
349 };
350
351 struct arm_smmu_master {
352 struct device_node *of_node;
353 struct rb_node node;
354 struct arm_smmu_master_cfg cfg;
355 };
356
357 struct arm_smmu_device {
358 struct device *dev;
359
360 void __iomem *base;
361 unsigned long size;
362 unsigned long pgshift;
363
364 #define ARM_SMMU_FEAT_COHERENT_WALK (1 << 0)
365 #define ARM_SMMU_FEAT_STREAM_MATCH (1 << 1)
366 #define ARM_SMMU_FEAT_TRANS_S1 (1 << 2)
367 #define ARM_SMMU_FEAT_TRANS_S2 (1 << 3)
368 #define ARM_SMMU_FEAT_TRANS_NESTED (1 << 4)
369 u32 features;
370
371 #define ARM_SMMU_OPT_SECURE_CFG_ACCESS (1 << 0)
372 u32 options;
373 enum arm_smmu_arch_version version;
374
375 u32 num_context_banks;
376 u32 num_s2_context_banks;
377 DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
378 atomic_t irptndx;
379
380 u32 num_mapping_groups;
381 DECLARE_BITMAP(smr_map, ARM_SMMU_MAX_SMRS);
382
383 unsigned long s1_input_size;
384 unsigned long s1_output_size;
385 unsigned long s2_input_size;
386 unsigned long s2_output_size;
387
388 u32 num_global_irqs;
389 u32 num_context_irqs;
390 unsigned int *irqs;
391
392 struct list_head list;
393 struct rb_root masters;
394 };
395
396 struct arm_smmu_cfg {
397 u8 cbndx;
398 u8 irptndx;
399 u32 cbar;
400 pgd_t *pgd;
401 };
402 #define INVALID_IRPTNDX 0xff
403
404 #define ARM_SMMU_CB_ASID(cfg) ((cfg)->cbndx)
405 #define ARM_SMMU_CB_VMID(cfg) ((cfg)->cbndx + 1)
406
407 enum arm_smmu_domain_stage {
408 ARM_SMMU_DOMAIN_S1 = 0,
409 ARM_SMMU_DOMAIN_S2,
410 ARM_SMMU_DOMAIN_NESTED,
411 };
412
413 struct arm_smmu_domain {
414 struct arm_smmu_device *smmu;
415 struct arm_smmu_cfg cfg;
416 enum arm_smmu_domain_stage stage;
417 spinlock_t lock;
418 };
419
420 static DEFINE_SPINLOCK(arm_smmu_devices_lock);
421 static LIST_HEAD(arm_smmu_devices);
422
423 struct arm_smmu_option_prop {
424 u32 opt;
425 const char *prop;
426 };
427
428 static struct arm_smmu_option_prop arm_smmu_options[] = {
429 { ARM_SMMU_OPT_SECURE_CFG_ACCESS, "calxeda,smmu-secure-config-access" },
430 { 0, NULL},
431 };
432
433 static void parse_driver_options(struct arm_smmu_device *smmu)
434 {
435 int i = 0;
436
437 do {
438 if (of_property_read_bool(smmu->dev->of_node,
439 arm_smmu_options[i].prop)) {
440 smmu->options |= arm_smmu_options[i].opt;
441 dev_notice(smmu->dev, "option %s\n",
442 arm_smmu_options[i].prop);
443 }
444 } while (arm_smmu_options[++i].opt);
445 }
446
447 static struct device_node *dev_get_dev_node(struct device *dev)
448 {
449 if (dev_is_pci(dev)) {
450 struct pci_bus *bus = to_pci_dev(dev)->bus;
451
452 while (!pci_is_root_bus(bus))
453 bus = bus->parent;
454 return bus->bridge->parent->of_node;
455 }
456
457 return dev->of_node;
458 }
459
460 static struct arm_smmu_master *find_smmu_master(struct arm_smmu_device *smmu,
461 struct device_node *dev_node)
462 {
463 struct rb_node *node = smmu->masters.rb_node;
464
465 while (node) {
466 struct arm_smmu_master *master;
467
468 master = container_of(node, struct arm_smmu_master, node);
469
470 if (dev_node < master->of_node)
471 node = node->rb_left;
472 else if (dev_node > master->of_node)
473 node = node->rb_right;
474 else
475 return master;
476 }
477
478 return NULL;
479 }
480
481 static struct arm_smmu_master_cfg *
482 find_smmu_master_cfg(struct device *dev)
483 {
484 struct arm_smmu_master_cfg *cfg = NULL;
485 struct iommu_group *group = iommu_group_get(dev);
486
487 if (group) {
488 cfg = iommu_group_get_iommudata(group);
489 iommu_group_put(group);
490 }
491
492 return cfg;
493 }
494
495 static int insert_smmu_master(struct arm_smmu_device *smmu,
496 struct arm_smmu_master *master)
497 {
498 struct rb_node **new, *parent;
499
500 new = &smmu->masters.rb_node;
501 parent = NULL;
502 while (*new) {
503 struct arm_smmu_master *this
504 = container_of(*new, struct arm_smmu_master, node);
505
506 parent = *new;
507 if (master->of_node < this->of_node)
508 new = &((*new)->rb_left);
509 else if (master->of_node > this->of_node)
510 new = &((*new)->rb_right);
511 else
512 return -EEXIST;
513 }
514
515 rb_link_node(&master->node, parent, new);
516 rb_insert_color(&master->node, &smmu->masters);
517 return 0;
518 }
519
520 static int register_smmu_master(struct arm_smmu_device *smmu,
521 struct device *dev,
522 struct of_phandle_args *masterspec)
523 {
524 int i;
525 struct arm_smmu_master *master;
526
527 master = find_smmu_master(smmu, masterspec->np);
528 if (master) {
529 dev_err(dev,
530 "rejecting multiple registrations for master device %s\n",
531 masterspec->np->name);
532 return -EBUSY;
533 }
534
535 if (masterspec->args_count > MAX_MASTER_STREAMIDS) {
536 dev_err(dev,
537 "reached maximum number (%d) of stream IDs for master device %s\n",
538 MAX_MASTER_STREAMIDS, masterspec->np->name);
539 return -ENOSPC;
540 }
541
542 master = devm_kzalloc(dev, sizeof(*master), GFP_KERNEL);
543 if (!master)
544 return -ENOMEM;
545
546 master->of_node = masterspec->np;
547 master->cfg.num_streamids = masterspec->args_count;
548
549 for (i = 0; i < master->cfg.num_streamids; ++i) {
550 u16 streamid = masterspec->args[i];
551
552 if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) &&
553 (streamid >= smmu->num_mapping_groups)) {
554 dev_err(dev,
555 "stream ID for master device %s greater than maximum allowed (%d)\n",
556 masterspec->np->name, smmu->num_mapping_groups);
557 return -ERANGE;
558 }
559 master->cfg.streamids[i] = streamid;
560 }
561 return insert_smmu_master(smmu, master);
562 }
563
564 static struct arm_smmu_device *find_smmu_for_device(struct device *dev)
565 {
566 struct arm_smmu_device *smmu;
567 struct arm_smmu_master *master = NULL;
568 struct device_node *dev_node = dev_get_dev_node(dev);
569
570 spin_lock(&arm_smmu_devices_lock);
571 list_for_each_entry(smmu, &arm_smmu_devices, list) {
572 master = find_smmu_master(smmu, dev_node);
573 if (master)
574 break;
575 }
576 spin_unlock(&arm_smmu_devices_lock);
577
578 return master ? smmu : NULL;
579 }
580
581 static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
582 {
583 int idx;
584
585 do {
586 idx = find_next_zero_bit(map, end, start);
587 if (idx == end)
588 return -ENOSPC;
589 } while (test_and_set_bit(idx, map));
590
591 return idx;
592 }
593
594 static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
595 {
596 clear_bit(idx, map);
597 }
598
599 /* Wait for any pending TLB invalidations to complete */
600 static void arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
601 {
602 int count = 0;
603 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
604
605 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_sTLBGSYNC);
606 while (readl_relaxed(gr0_base + ARM_SMMU_GR0_sTLBGSTATUS)
607 & sTLBGSTATUS_GSACTIVE) {
608 cpu_relax();
609 if (++count == TLB_LOOP_TIMEOUT) {
610 dev_err_ratelimited(smmu->dev,
611 "TLB sync timed out -- SMMU may be deadlocked\n");
612 return;
613 }
614 udelay(1);
615 }
616 }
617
618 static void arm_smmu_tlb_inv_context(struct arm_smmu_domain *smmu_domain)
619 {
620 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
621 struct arm_smmu_device *smmu = smmu_domain->smmu;
622 void __iomem *base = ARM_SMMU_GR0(smmu);
623 bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
624
625 if (stage1) {
626 base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
627 writel_relaxed(ARM_SMMU_CB_ASID(cfg),
628 base + ARM_SMMU_CB_S1_TLBIASID);
629 } else {
630 base = ARM_SMMU_GR0(smmu);
631 writel_relaxed(ARM_SMMU_CB_VMID(cfg),
632 base + ARM_SMMU_GR0_TLBIVMID);
633 }
634
635 arm_smmu_tlb_sync(smmu);
636 }
637
638 static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
639 {
640 int flags, ret;
641 u32 fsr, far, fsynr, resume;
642 unsigned long iova;
643 struct iommu_domain *domain = dev;
644 struct arm_smmu_domain *smmu_domain = domain->priv;
645 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
646 struct arm_smmu_device *smmu = smmu_domain->smmu;
647 void __iomem *cb_base;
648
649 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
650 fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);
651
652 if (!(fsr & FSR_FAULT))
653 return IRQ_NONE;
654
655 if (fsr & FSR_IGN)
656 dev_err_ratelimited(smmu->dev,
657 "Unexpected context fault (fsr 0x%x)\n",
658 fsr);
659
660 fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
661 flags = fsynr & FSYNR0_WNR ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;
662
663 far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_LO);
664 iova = far;
665 #ifdef CONFIG_64BIT
666 far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_HI);
667 iova |= ((unsigned long)far << 32);
668 #endif
669
670 if (!report_iommu_fault(domain, smmu->dev, iova, flags)) {
671 ret = IRQ_HANDLED;
672 resume = RESUME_RETRY;
673 } else {
674 dev_err_ratelimited(smmu->dev,
675 "Unhandled context fault: iova=0x%08lx, fsynr=0x%x, cb=%d\n",
676 iova, fsynr, cfg->cbndx);
677 ret = IRQ_NONE;
678 resume = RESUME_TERMINATE;
679 }
680
681 /* Clear the faulting FSR */
682 writel(fsr, cb_base + ARM_SMMU_CB_FSR);
683
684 /* Retry or terminate any stalled transactions */
685 if (fsr & FSR_SS)
686 writel_relaxed(resume, cb_base + ARM_SMMU_CB_RESUME);
687
688 return ret;
689 }
690
691 static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
692 {
693 u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
694 struct arm_smmu_device *smmu = dev;
695 void __iomem *gr0_base = ARM_SMMU_GR0_NS(smmu);
696
697 gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
698 gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
699 gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
700 gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);
701
702 if (!gfsr)
703 return IRQ_NONE;
704
705 dev_err_ratelimited(smmu->dev,
706 "Unexpected global fault, this could be serious\n");
707 dev_err_ratelimited(smmu->dev,
708 "\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
709 gfsr, gfsynr0, gfsynr1, gfsynr2);
710
711 writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
712 return IRQ_HANDLED;
713 }
714
715 static void arm_smmu_flush_pgtable(struct arm_smmu_device *smmu, void *addr,
716 size_t size)
717 {
718 unsigned long offset = (unsigned long)addr & ~PAGE_MASK;
719
720
721 /* Ensure new page tables are visible to the hardware walker */
722 if (smmu->features & ARM_SMMU_FEAT_COHERENT_WALK) {
723 dsb(ishst);
724 } else {
725 /*
726 * If the SMMU can't walk tables in the CPU caches, treat them
727 * like non-coherent DMA since we need to flush the new entries
728 * all the way out to memory. There's no possibility of
729 * recursion here as the SMMU table walker will not be wired
730 * through another SMMU.
731 */
732 dma_map_page(smmu->dev, virt_to_page(addr), offset, size,
733 DMA_TO_DEVICE);
734 }
735 }
736
737 static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain)
738 {
739 u32 reg;
740 bool stage1;
741 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
742 struct arm_smmu_device *smmu = smmu_domain->smmu;
743 void __iomem *cb_base, *gr0_base, *gr1_base;
744
745 gr0_base = ARM_SMMU_GR0(smmu);
746 gr1_base = ARM_SMMU_GR1(smmu);
747 stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
748 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
749
750 /* CBAR */
751 reg = cfg->cbar;
752 if (smmu->version == ARM_SMMU_V1)
753 reg |= cfg->irptndx << CBAR_IRPTNDX_SHIFT;
754
755 /*
756 * Use the weakest shareability/memory types, so they are
757 * overridden by the ttbcr/pte.
758 */
759 if (stage1) {
760 reg |= (CBAR_S1_BPSHCFG_NSH << CBAR_S1_BPSHCFG_SHIFT) |
761 (CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
762 } else {
763 reg |= ARM_SMMU_CB_VMID(cfg) << CBAR_VMID_SHIFT;
764 }
765 writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(cfg->cbndx));
766
767 if (smmu->version > ARM_SMMU_V1) {
768 /* CBA2R */
769 #ifdef CONFIG_64BIT
770 reg = CBA2R_RW64_64BIT;
771 #else
772 reg = CBA2R_RW64_32BIT;
773 #endif
774 writel_relaxed(reg,
775 gr1_base + ARM_SMMU_GR1_CBA2R(cfg->cbndx));
776
777 /* TTBCR2 */
778 switch (smmu->s1_input_size) {
779 case 32:
780 reg = (TTBCR2_ADDR_32 << TTBCR2_SEP_SHIFT);
781 break;
782 case 36:
783 reg = (TTBCR2_ADDR_36 << TTBCR2_SEP_SHIFT);
784 break;
785 case 39:
786 case 40:
787 reg = (TTBCR2_ADDR_40 << TTBCR2_SEP_SHIFT);
788 break;
789 case 42:
790 reg = (TTBCR2_ADDR_42 << TTBCR2_SEP_SHIFT);
791 break;
792 case 44:
793 reg = (TTBCR2_ADDR_44 << TTBCR2_SEP_SHIFT);
794 break;
795 case 48:
796 reg = (TTBCR2_ADDR_48 << TTBCR2_SEP_SHIFT);
797 break;
798 }
799
800 switch (smmu->s1_output_size) {
801 case 32:
802 reg |= (TTBCR2_ADDR_32 << TTBCR2_PASIZE_SHIFT);
803 break;
804 case 36:
805 reg |= (TTBCR2_ADDR_36 << TTBCR2_PASIZE_SHIFT);
806 break;
807 case 39:
808 case 40:
809 reg |= (TTBCR2_ADDR_40 << TTBCR2_PASIZE_SHIFT);
810 break;
811 case 42:
812 reg |= (TTBCR2_ADDR_42 << TTBCR2_PASIZE_SHIFT);
813 break;
814 case 44:
815 reg |= (TTBCR2_ADDR_44 << TTBCR2_PASIZE_SHIFT);
816 break;
817 case 48:
818 reg |= (TTBCR2_ADDR_48 << TTBCR2_PASIZE_SHIFT);
819 break;
820 }
821
822 if (stage1)
823 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR2);
824 }
825
826 /* TTBR0 */
827 arm_smmu_flush_pgtable(smmu, cfg->pgd,
828 PTRS_PER_PGD * sizeof(pgd_t));
829 reg = __pa(cfg->pgd);
830 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_LO);
831 reg = (phys_addr_t)__pa(cfg->pgd) >> 32;
832 if (stage1)
833 reg |= ARM_SMMU_CB_ASID(cfg) << TTBRn_HI_ASID_SHIFT;
834 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_HI);
835
836 /*
837 * TTBCR
838 * We use long descriptor, with inner-shareable WBWA tables in TTBR0.
839 */
840 if (smmu->version > ARM_SMMU_V1) {
841 if (PAGE_SIZE == SZ_4K)
842 reg = TTBCR_TG0_4K;
843 else
844 reg = TTBCR_TG0_64K;
845
846 if (!stage1) {
847 reg |= (64 - smmu->s2_input_size) << TTBCR_T0SZ_SHIFT;
848
849 switch (smmu->s2_output_size) {
850 case 32:
851 reg |= (TTBCR2_ADDR_32 << TTBCR_PASIZE_SHIFT);
852 break;
853 case 36:
854 reg |= (TTBCR2_ADDR_36 << TTBCR_PASIZE_SHIFT);
855 break;
856 case 40:
857 reg |= (TTBCR2_ADDR_40 << TTBCR_PASIZE_SHIFT);
858 break;
859 case 42:
860 reg |= (TTBCR2_ADDR_42 << TTBCR_PASIZE_SHIFT);
861 break;
862 case 44:
863 reg |= (TTBCR2_ADDR_44 << TTBCR_PASIZE_SHIFT);
864 break;
865 case 48:
866 reg |= (TTBCR2_ADDR_48 << TTBCR_PASIZE_SHIFT);
867 break;
868 }
869 } else {
870 reg |= (64 - smmu->s1_input_size) << TTBCR_T0SZ_SHIFT;
871 }
872 } else {
873 reg = 0;
874 }
875
876 reg |= TTBCR_EAE |
877 (TTBCR_SH_IS << TTBCR_SH0_SHIFT) |
878 (TTBCR_RGN_WBWA << TTBCR_ORGN0_SHIFT) |
879 (TTBCR_RGN_WBWA << TTBCR_IRGN0_SHIFT);
880
881 if (!stage1)
882 reg |= (TTBCR_SL0_LVL_1 << TTBCR_SL0_SHIFT);
883
884 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
885
886 /* MAIR0 (stage-1 only) */
887 if (stage1) {
888 reg = (MAIR_ATTR_NC << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_NC)) |
889 (MAIR_ATTR_WBRWA << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_CACHE)) |
890 (MAIR_ATTR_DEVICE << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_DEV));
891 writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
892 }
893
894 /* SCTLR */
895 reg = SCTLR_CFCFG | SCTLR_CFIE | SCTLR_CFRE | SCTLR_M | SCTLR_EAE_SBOP;
896 if (stage1)
897 reg |= SCTLR_S1_ASIDPNE;
898 #ifdef __BIG_ENDIAN
899 reg |= SCTLR_E;
900 #endif
901 writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
902 }
903
904 static int arm_smmu_init_domain_context(struct iommu_domain *domain,
905 struct arm_smmu_device *smmu)
906 {
907 int irq, start, ret = 0;
908 unsigned long flags;
909 struct arm_smmu_domain *smmu_domain = domain->priv;
910 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
911
912 spin_lock_irqsave(&smmu_domain->lock, flags);
913 if (smmu_domain->smmu)
914 goto out_unlock;
915
916 /*
917 * Mapping the requested stage onto what we support is surprisingly
918 * complicated, mainly because the spec allows S1+S2 SMMUs without
919 * support for nested translation. That means we end up with the
920 * following table:
921 *
922 * Requested Supported Actual
923 * S1 N S1
924 * S1 S1+S2 S1
925 * S1 S2 S2
926 * S1 S1 S1
927 * N N N
928 * N S1+S2 S2
929 * N S2 S2
930 * N S1 S1
931 *
932 * Note that you can't actually request stage-2 mappings.
933 */
934 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
935 smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
936 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
937 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
938
939 switch (smmu_domain->stage) {
940 case ARM_SMMU_DOMAIN_S1:
941 cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
942 start = smmu->num_s2_context_banks;
943 break;
944 case ARM_SMMU_DOMAIN_NESTED:
945 /*
946 * We will likely want to change this if/when KVM gets
947 * involved.
948 */
949 case ARM_SMMU_DOMAIN_S2:
950 cfg->cbar = CBAR_TYPE_S2_TRANS;
951 start = 0;
952 break;
953 default:
954 ret = -EINVAL;
955 goto out_unlock;
956 }
957
958 ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
959 smmu->num_context_banks);
960 if (IS_ERR_VALUE(ret))
961 goto out_unlock;
962
963 cfg->cbndx = ret;
964 if (smmu->version == ARM_SMMU_V1) {
965 cfg->irptndx = atomic_inc_return(&smmu->irptndx);
966 cfg->irptndx %= smmu->num_context_irqs;
967 } else {
968 cfg->irptndx = cfg->cbndx;
969 }
970
971 ACCESS_ONCE(smmu_domain->smmu) = smmu;
972 arm_smmu_init_context_bank(smmu_domain);
973 spin_unlock_irqrestore(&smmu_domain->lock, flags);
974
975 irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
976 ret = request_irq(irq, arm_smmu_context_fault, IRQF_SHARED,
977 "arm-smmu-context-fault", domain);
978 if (IS_ERR_VALUE(ret)) {
979 dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
980 cfg->irptndx, irq);
981 cfg->irptndx = INVALID_IRPTNDX;
982 }
983
984 return 0;
985
986 out_unlock:
987 spin_unlock_irqrestore(&smmu_domain->lock, flags);
988 return ret;
989 }
990
991 static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
992 {
993 struct arm_smmu_domain *smmu_domain = domain->priv;
994 struct arm_smmu_device *smmu = smmu_domain->smmu;
995 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
996 void __iomem *cb_base;
997 int irq;
998
999 if (!smmu)
1000 return;
1001
1002 /* Disable the context bank and nuke the TLB before freeing it. */
1003 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
1004 writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
1005 arm_smmu_tlb_inv_context(smmu_domain);
1006
1007 if (cfg->irptndx != INVALID_IRPTNDX) {
1008 irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
1009 free_irq(irq, domain);
1010 }
1011
1012 __arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx);
1013 }
1014
1015 static int arm_smmu_domain_init(struct iommu_domain *domain)
1016 {
1017 struct arm_smmu_domain *smmu_domain;
1018 pgd_t *pgd;
1019
1020 /*
1021 * Allocate the domain and initialise some of its data structures.
1022 * We can't really do anything meaningful until we've added a
1023 * master.
1024 */
1025 smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
1026 if (!smmu_domain)
1027 return -ENOMEM;
1028
1029 pgd = kcalloc(PTRS_PER_PGD, sizeof(pgd_t), GFP_KERNEL);
1030 if (!pgd)
1031 goto out_free_domain;
1032 smmu_domain->cfg.pgd = pgd;
1033
1034 spin_lock_init(&smmu_domain->lock);
1035 domain->priv = smmu_domain;
1036 return 0;
1037
1038 out_free_domain:
1039 kfree(smmu_domain);
1040 return -ENOMEM;
1041 }
1042
1043 static void arm_smmu_free_ptes(pmd_t *pmd)
1044 {
1045 pgtable_t table = pmd_pgtable(*pmd);
1046
1047 __free_page(table);
1048 }
1049
1050 static void arm_smmu_free_pmds(pud_t *pud)
1051 {
1052 int i;
1053 pmd_t *pmd, *pmd_base = pmd_offset(pud, 0);
1054
1055 pmd = pmd_base;
1056 for (i = 0; i < PTRS_PER_PMD; ++i) {
1057 if (pmd_none(*pmd))
1058 continue;
1059
1060 arm_smmu_free_ptes(pmd);
1061 pmd++;
1062 }
1063
1064 pmd_free(NULL, pmd_base);
1065 }
1066
1067 static void arm_smmu_free_puds(pgd_t *pgd)
1068 {
1069 int i;
1070 pud_t *pud, *pud_base = pud_offset(pgd, 0);
1071
1072 pud = pud_base;
1073 for (i = 0; i < PTRS_PER_PUD; ++i) {
1074 if (pud_none(*pud))
1075 continue;
1076
1077 arm_smmu_free_pmds(pud);
1078 pud++;
1079 }
1080
1081 pud_free(NULL, pud_base);
1082 }
1083
1084 static void arm_smmu_free_pgtables(struct arm_smmu_domain *smmu_domain)
1085 {
1086 int i;
1087 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
1088 pgd_t *pgd, *pgd_base = cfg->pgd;
1089
1090 /*
1091 * Recursively free the page tables for this domain. We don't
1092 * care about speculative TLB filling because the tables should
1093 * not be active in any context bank at this point (SCTLR.M is 0).
1094 */
1095 pgd = pgd_base;
1096 for (i = 0; i < PTRS_PER_PGD; ++i) {
1097 if (pgd_none(*pgd))
1098 continue;
1099 arm_smmu_free_puds(pgd);
1100 pgd++;
1101 }
1102
1103 kfree(pgd_base);
1104 }
1105
1106 static void arm_smmu_domain_destroy(struct iommu_domain *domain)
1107 {
1108 struct arm_smmu_domain *smmu_domain = domain->priv;
1109
1110 /*
1111 * Free the domain resources. We assume that all devices have
1112 * already been detached.
1113 */
1114 arm_smmu_destroy_domain_context(domain);
1115 arm_smmu_free_pgtables(smmu_domain);
1116 kfree(smmu_domain);
1117 }
1118
1119 static int arm_smmu_master_configure_smrs(struct arm_smmu_device *smmu,
1120 struct arm_smmu_master_cfg *cfg)
1121 {
1122 int i;
1123 struct arm_smmu_smr *smrs;
1124 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1125
1126 if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH))
1127 return 0;
1128
1129 if (cfg->smrs)
1130 return -EEXIST;
1131
1132 smrs = kmalloc_array(cfg->num_streamids, sizeof(*smrs), GFP_KERNEL);
1133 if (!smrs) {
1134 dev_err(smmu->dev, "failed to allocate %d SMRs\n",
1135 cfg->num_streamids);
1136 return -ENOMEM;
1137 }
1138
1139 /* Allocate the SMRs on the SMMU */
1140 for (i = 0; i < cfg->num_streamids; ++i) {
1141 int idx = __arm_smmu_alloc_bitmap(smmu->smr_map, 0,
1142 smmu->num_mapping_groups);
1143 if (IS_ERR_VALUE(idx)) {
1144 dev_err(smmu->dev, "failed to allocate free SMR\n");
1145 goto err_free_smrs;
1146 }
1147
1148 smrs[i] = (struct arm_smmu_smr) {
1149 .idx = idx,
1150 .mask = 0, /* We don't currently share SMRs */
1151 .id = cfg->streamids[i],
1152 };
1153 }
1154
1155 /* It worked! Now, poke the actual hardware */
1156 for (i = 0; i < cfg->num_streamids; ++i) {
1157 u32 reg = SMR_VALID | smrs[i].id << SMR_ID_SHIFT |
1158 smrs[i].mask << SMR_MASK_SHIFT;
1159 writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_SMR(smrs[i].idx));
1160 }
1161
1162 cfg->smrs = smrs;
1163 return 0;
1164
1165 err_free_smrs:
1166 while (--i >= 0)
1167 __arm_smmu_free_bitmap(smmu->smr_map, smrs[i].idx);
1168 kfree(smrs);
1169 return -ENOSPC;
1170 }
1171
1172 static void arm_smmu_master_free_smrs(struct arm_smmu_device *smmu,
1173 struct arm_smmu_master_cfg *cfg)
1174 {
1175 int i;
1176 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1177 struct arm_smmu_smr *smrs = cfg->smrs;
1178
1179 if (!smrs)
1180 return;
1181
1182 /* Invalidate the SMRs before freeing back to the allocator */
1183 for (i = 0; i < cfg->num_streamids; ++i) {
1184 u8 idx = smrs[i].idx;
1185
1186 writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(idx));
1187 __arm_smmu_free_bitmap(smmu->smr_map, idx);
1188 }
1189
1190 cfg->smrs = NULL;
1191 kfree(smrs);
1192 }
1193
1194 static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
1195 struct arm_smmu_master_cfg *cfg)
1196 {
1197 int i, ret;
1198 struct arm_smmu_device *smmu = smmu_domain->smmu;
1199 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1200
1201 /* Devices in an IOMMU group may already be configured */
1202 ret = arm_smmu_master_configure_smrs(smmu, cfg);
1203 if (ret)
1204 return ret == -EEXIST ? 0 : ret;
1205
1206 for (i = 0; i < cfg->num_streamids; ++i) {
1207 u32 idx, s2cr;
1208
1209 idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1210 s2cr = S2CR_TYPE_TRANS |
1211 (smmu_domain->cfg.cbndx << S2CR_CBNDX_SHIFT);
1212 writel_relaxed(s2cr, gr0_base + ARM_SMMU_GR0_S2CR(idx));
1213 }
1214
1215 return 0;
1216 }
1217
1218 static void arm_smmu_domain_remove_master(struct arm_smmu_domain *smmu_domain,
1219 struct arm_smmu_master_cfg *cfg)
1220 {
1221 int i;
1222 struct arm_smmu_device *smmu = smmu_domain->smmu;
1223 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1224
1225 /* An IOMMU group is torn down by the first device to be removed */
1226 if ((smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) && !cfg->smrs)
1227 return;
1228
1229 /*
1230 * We *must* clear the S2CR first, because freeing the SMR means
1231 * that it can be re-allocated immediately.
1232 */
1233 for (i = 0; i < cfg->num_streamids; ++i) {
1234 u32 idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1235
1236 writel_relaxed(S2CR_TYPE_BYPASS,
1237 gr0_base + ARM_SMMU_GR0_S2CR(idx));
1238 }
1239
1240 arm_smmu_master_free_smrs(smmu, cfg);
1241 }
1242
1243 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1244 {
1245 int ret;
1246 struct arm_smmu_domain *smmu_domain = domain->priv;
1247 struct arm_smmu_device *smmu, *dom_smmu;
1248 struct arm_smmu_master_cfg *cfg;
1249
1250 smmu = find_smmu_for_device(dev);
1251 if (!smmu) {
1252 dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
1253 return -ENXIO;
1254 }
1255
1256 if (dev->archdata.iommu) {
1257 dev_err(dev, "already attached to IOMMU domain\n");
1258 return -EEXIST;
1259 }
1260
1261 /*
1262 * Sanity check the domain. We don't support domains across
1263 * different SMMUs.
1264 */
1265 dom_smmu = ACCESS_ONCE(smmu_domain->smmu);
1266 if (!dom_smmu) {
1267 /* Now that we have a master, we can finalise the domain */
1268 ret = arm_smmu_init_domain_context(domain, smmu);
1269 if (IS_ERR_VALUE(ret))
1270 return ret;
1271
1272 dom_smmu = smmu_domain->smmu;
1273 }
1274
1275 if (dom_smmu != smmu) {
1276 dev_err(dev,
1277 "cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1278 dev_name(smmu_domain->smmu->dev), dev_name(smmu->dev));
1279 return -EINVAL;
1280 }
1281
1282 /* Looks ok, so add the device to the domain */
1283 cfg = find_smmu_master_cfg(dev);
1284 if (!cfg)
1285 return -ENODEV;
1286
1287 ret = arm_smmu_domain_add_master(smmu_domain, cfg);
1288 if (!ret)
1289 dev->archdata.iommu = domain;
1290 return ret;
1291 }
1292
1293 static void arm_smmu_detach_dev(struct iommu_domain *domain, struct device *dev)
1294 {
1295 struct arm_smmu_domain *smmu_domain = domain->priv;
1296 struct arm_smmu_master_cfg *cfg;
1297
1298 cfg = find_smmu_master_cfg(dev);
1299 if (!cfg)
1300 return;
1301
1302 dev->archdata.iommu = NULL;
1303 arm_smmu_domain_remove_master(smmu_domain, cfg);
1304 }
1305
1306 static bool arm_smmu_pte_is_contiguous_range(unsigned long addr,
1307 unsigned long end)
1308 {
1309 return !(addr & ~ARM_SMMU_PTE_CONT_MASK) &&
1310 (addr + ARM_SMMU_PTE_CONT_SIZE <= end);
1311 }
1312
1313 static int arm_smmu_alloc_init_pte(struct arm_smmu_device *smmu, pmd_t *pmd,
1314 unsigned long addr, unsigned long end,
1315 unsigned long pfn, int prot, int stage)
1316 {
1317 pte_t *pte, *start;
1318 pteval_t pteval = ARM_SMMU_PTE_PAGE | ARM_SMMU_PTE_AF;
1319
1320 if (pmd_none(*pmd)) {
1321 /* Allocate a new set of tables */
1322 pgtable_t table = alloc_page(GFP_ATOMIC|__GFP_ZERO);
1323
1324 if (!table)
1325 return -ENOMEM;
1326
1327 arm_smmu_flush_pgtable(smmu, page_address(table), PAGE_SIZE);
1328 pmd_populate(NULL, pmd, table);
1329 arm_smmu_flush_pgtable(smmu, pmd, sizeof(*pmd));
1330 }
1331
1332 if (stage == 1) {
1333 pteval |= ARM_SMMU_PTE_AP_UNPRIV | ARM_SMMU_PTE_nG;
1334 if (!(prot & IOMMU_WRITE) && (prot & IOMMU_READ))
1335 pteval |= ARM_SMMU_PTE_AP_RDONLY;
1336
1337 if (prot & IOMMU_CACHE)
1338 pteval |= (MAIR_ATTR_IDX_CACHE <<
1339 ARM_SMMU_PTE_ATTRINDX_SHIFT);
1340 } else {
1341 pteval |= ARM_SMMU_PTE_HAP_FAULT;
1342 if (prot & IOMMU_READ)
1343 pteval |= ARM_SMMU_PTE_HAP_READ;
1344 if (prot & IOMMU_WRITE)
1345 pteval |= ARM_SMMU_PTE_HAP_WRITE;
1346 if (prot & IOMMU_CACHE)
1347 pteval |= ARM_SMMU_PTE_MEMATTR_OIWB;
1348 else
1349 pteval |= ARM_SMMU_PTE_MEMATTR_NC;
1350 }
1351
1352 if (prot & IOMMU_NOEXEC)
1353 pteval |= ARM_SMMU_PTE_XN;
1354
1355 /* If no access, create a faulting entry to avoid TLB fills */
1356 if (!(prot & (IOMMU_READ | IOMMU_WRITE)))
1357 pteval &= ~ARM_SMMU_PTE_PAGE;
1358
1359 pteval |= ARM_SMMU_PTE_SH_IS;
1360 start = pmd_page_vaddr(*pmd) + pte_index(addr);
1361 pte = start;
1362
1363 /*
1364 * Install the page table entries. This is fairly complicated
1365 * since we attempt to make use of the contiguous hint in the
1366 * ptes where possible. The contiguous hint indicates a series
1367 * of ARM_SMMU_PTE_CONT_ENTRIES ptes mapping a physically
1368 * contiguous region with the following constraints:
1369 *
1370 * - The region start is aligned to ARM_SMMU_PTE_CONT_SIZE
1371 * - Each pte in the region has the contiguous hint bit set
1372 *
1373 * This complicates unmapping (also handled by this code, when
1374 * neither IOMMU_READ or IOMMU_WRITE are set) because it is
1375 * possible, yet highly unlikely, that a client may unmap only
1376 * part of a contiguous range. This requires clearing of the
1377 * contiguous hint bits in the range before installing the new
1378 * faulting entries.
1379 *
1380 * Note that re-mapping an address range without first unmapping
1381 * it is not supported, so TLB invalidation is not required here
1382 * and is instead performed at unmap and domain-init time.
1383 */
1384 do {
1385 int i = 1;
1386
1387 pteval &= ~ARM_SMMU_PTE_CONT;
1388
1389 if (arm_smmu_pte_is_contiguous_range(addr, end)) {
1390 i = ARM_SMMU_PTE_CONT_ENTRIES;
1391 pteval |= ARM_SMMU_PTE_CONT;
1392 } else if (pte_val(*pte) &
1393 (ARM_SMMU_PTE_CONT | ARM_SMMU_PTE_PAGE)) {
1394 int j;
1395 pte_t *cont_start;
1396 unsigned long idx = pte_index(addr);
1397
1398 idx &= ~(ARM_SMMU_PTE_CONT_ENTRIES - 1);
1399 cont_start = pmd_page_vaddr(*pmd) + idx;
1400 for (j = 0; j < ARM_SMMU_PTE_CONT_ENTRIES; ++j)
1401 pte_val(*(cont_start + j)) &=
1402 ~ARM_SMMU_PTE_CONT;
1403
1404 arm_smmu_flush_pgtable(smmu, cont_start,
1405 sizeof(*pte) *
1406 ARM_SMMU_PTE_CONT_ENTRIES);
1407 }
1408
1409 do {
1410 *pte = pfn_pte(pfn, __pgprot(pteval));
1411 } while (pte++, pfn++, addr += PAGE_SIZE, --i);
1412 } while (addr != end);
1413
1414 arm_smmu_flush_pgtable(smmu, start, sizeof(*pte) * (pte - start));
1415 return 0;
1416 }
1417
1418 static int arm_smmu_alloc_init_pmd(struct arm_smmu_device *smmu, pud_t *pud,
1419 unsigned long addr, unsigned long end,
1420 phys_addr_t phys, int prot, int stage)
1421 {
1422 int ret;
1423 pmd_t *pmd;
1424 unsigned long next, pfn = __phys_to_pfn(phys);
1425
1426 #ifndef __PAGETABLE_PMD_FOLDED
1427 if (pud_none(*pud)) {
1428 pmd = (pmd_t *)get_zeroed_page(GFP_ATOMIC);
1429 if (!pmd)
1430 return -ENOMEM;
1431
1432 arm_smmu_flush_pgtable(smmu, pmd, PAGE_SIZE);
1433 pud_populate(NULL, pud, pmd);
1434 arm_smmu_flush_pgtable(smmu, pud, sizeof(*pud));
1435
1436 pmd += pmd_index(addr);
1437 } else
1438 #endif
1439 pmd = pmd_offset(pud, addr);
1440
1441 do {
1442 next = pmd_addr_end(addr, end);
1443 ret = arm_smmu_alloc_init_pte(smmu, pmd, addr, next, pfn,
1444 prot, stage);
1445 phys += next - addr;
1446 pfn = __phys_to_pfn(phys);
1447 } while (pmd++, addr = next, addr < end);
1448
1449 return ret;
1450 }
1451
1452 static int arm_smmu_alloc_init_pud(struct arm_smmu_device *smmu, pgd_t *pgd,
1453 unsigned long addr, unsigned long end,
1454 phys_addr_t phys, int prot, int stage)
1455 {
1456 int ret = 0;
1457 pud_t *pud;
1458 unsigned long next;
1459
1460 #ifndef __PAGETABLE_PUD_FOLDED
1461 if (pgd_none(*pgd)) {
1462 pud = (pud_t *)get_zeroed_page(GFP_ATOMIC);
1463 if (!pud)
1464 return -ENOMEM;
1465
1466 arm_smmu_flush_pgtable(smmu, pud, PAGE_SIZE);
1467 pgd_populate(NULL, pgd, pud);
1468 arm_smmu_flush_pgtable(smmu, pgd, sizeof(*pgd));
1469
1470 pud += pud_index(addr);
1471 } else
1472 #endif
1473 pud = pud_offset(pgd, addr);
1474
1475 do {
1476 next = pud_addr_end(addr, end);
1477 ret = arm_smmu_alloc_init_pmd(smmu, pud, addr, next, phys,
1478 prot, stage);
1479 phys += next - addr;
1480 } while (pud++, addr = next, addr < end);
1481
1482 return ret;
1483 }
1484
1485 static int arm_smmu_handle_mapping(struct arm_smmu_domain *smmu_domain,
1486 unsigned long iova, phys_addr_t paddr,
1487 size_t size, int prot)
1488 {
1489 int ret, stage;
1490 unsigned long end;
1491 phys_addr_t input_mask, output_mask;
1492 struct arm_smmu_device *smmu = smmu_domain->smmu;
1493 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
1494 pgd_t *pgd = cfg->pgd;
1495 unsigned long flags;
1496
1497 if (cfg->cbar == CBAR_TYPE_S2_TRANS) {
1498 stage = 2;
1499 input_mask = (1ULL << smmu->s2_input_size) - 1;
1500 output_mask = (1ULL << smmu->s2_output_size) - 1;
1501 } else {
1502 stage = 1;
1503 input_mask = (1ULL << smmu->s1_input_size) - 1;
1504 output_mask = (1ULL << smmu->s1_output_size) - 1;
1505 }
1506
1507 if (!pgd)
1508 return -EINVAL;
1509
1510 if (size & ~PAGE_MASK)
1511 return -EINVAL;
1512
1513 if ((phys_addr_t)iova & ~input_mask)
1514 return -ERANGE;
1515
1516 if (paddr & ~output_mask)
1517 return -ERANGE;
1518
1519 spin_lock_irqsave(&smmu_domain->lock, flags);
1520 pgd += pgd_index(iova);
1521 end = iova + size;
1522 do {
1523 unsigned long next = pgd_addr_end(iova, end);
1524
1525 ret = arm_smmu_alloc_init_pud(smmu, pgd, iova, next, paddr,
1526 prot, stage);
1527 if (ret)
1528 goto out_unlock;
1529
1530 paddr += next - iova;
1531 iova = next;
1532 } while (pgd++, iova != end);
1533
1534 out_unlock:
1535 spin_unlock_irqrestore(&smmu_domain->lock, flags);
1536
1537 return ret;
1538 }
1539
1540 static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1541 phys_addr_t paddr, size_t size, int prot)
1542 {
1543 struct arm_smmu_domain *smmu_domain = domain->priv;
1544
1545 if (!smmu_domain)
1546 return -ENODEV;
1547
1548 return arm_smmu_handle_mapping(smmu_domain, iova, paddr, size, prot);
1549 }
1550
1551 static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
1552 size_t size)
1553 {
1554 int ret;
1555 struct arm_smmu_domain *smmu_domain = domain->priv;
1556
1557 ret = arm_smmu_handle_mapping(smmu_domain, iova, 0, size, 0);
1558 arm_smmu_tlb_inv_context(smmu_domain);
1559 return ret ? 0 : size;
1560 }
1561
1562 static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
1563 dma_addr_t iova)
1564 {
1565 pgd_t *pgdp, pgd;
1566 pud_t pud;
1567 pmd_t pmd;
1568 pte_t pte;
1569 struct arm_smmu_domain *smmu_domain = domain->priv;
1570 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
1571
1572 pgdp = cfg->pgd;
1573 if (!pgdp)
1574 return 0;
1575
1576 pgd = *(pgdp + pgd_index(iova));
1577 if (pgd_none(pgd))
1578 return 0;
1579
1580 pud = *pud_offset(&pgd, iova);
1581 if (pud_none(pud))
1582 return 0;
1583
1584 pmd = *pmd_offset(&pud, iova);
1585 if (pmd_none(pmd))
1586 return 0;
1587
1588 pte = *(pmd_page_vaddr(pmd) + pte_index(iova));
1589 if (pte_none(pte))
1590 return 0;
1591
1592 return __pfn_to_phys(pte_pfn(pte)) | (iova & ~PAGE_MASK);
1593 }
1594
1595 static bool arm_smmu_capable(enum iommu_cap cap)
1596 {
1597 switch (cap) {
1598 case IOMMU_CAP_CACHE_COHERENCY:
1599 /*
1600 * Return true here as the SMMU can always send out coherent
1601 * requests.
1602 */
1603 return true;
1604 case IOMMU_CAP_INTR_REMAP:
1605 return true; /* MSIs are just memory writes */
1606 case IOMMU_CAP_NOEXEC:
1607 return true;
1608 default:
1609 return false;
1610 }
1611 }
1612
1613 static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *data)
1614 {
1615 *((u16 *)data) = alias;
1616 return 0; /* Continue walking */
1617 }
1618
1619 static void __arm_smmu_release_pci_iommudata(void *data)
1620 {
1621 kfree(data);
1622 }
1623
1624 static int arm_smmu_add_device(struct device *dev)
1625 {
1626 struct arm_smmu_device *smmu;
1627 struct arm_smmu_master_cfg *cfg;
1628 struct iommu_group *group;
1629 void (*releasefn)(void *) = NULL;
1630 int ret;
1631
1632 smmu = find_smmu_for_device(dev);
1633 if (!smmu)
1634 return -ENODEV;
1635
1636 group = iommu_group_alloc();
1637 if (IS_ERR(group)) {
1638 dev_err(dev, "Failed to allocate IOMMU group\n");
1639 return PTR_ERR(group);
1640 }
1641
1642 if (dev_is_pci(dev)) {
1643 struct pci_dev *pdev = to_pci_dev(dev);
1644
1645 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
1646 if (!cfg) {
1647 ret = -ENOMEM;
1648 goto out_put_group;
1649 }
1650
1651 cfg->num_streamids = 1;
1652 /*
1653 * Assume Stream ID == Requester ID for now.
1654 * We need a way to describe the ID mappings in FDT.
1655 */
1656 pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid,
1657 &cfg->streamids[0]);
1658 releasefn = __arm_smmu_release_pci_iommudata;
1659 } else {
1660 struct arm_smmu_master *master;
1661
1662 master = find_smmu_master(smmu, dev->of_node);
1663 if (!master) {
1664 ret = -ENODEV;
1665 goto out_put_group;
1666 }
1667
1668 cfg = &master->cfg;
1669 }
1670
1671 iommu_group_set_iommudata(group, cfg, releasefn);
1672 ret = iommu_group_add_device(group, dev);
1673
1674 out_put_group:
1675 iommu_group_put(group);
1676 return ret;
1677 }
1678
1679 static void arm_smmu_remove_device(struct device *dev)
1680 {
1681 iommu_group_remove_device(dev);
1682 }
1683
1684 static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
1685 enum iommu_attr attr, void *data)
1686 {
1687 struct arm_smmu_domain *smmu_domain = domain->priv;
1688
1689 switch (attr) {
1690 case DOMAIN_ATTR_NESTING:
1691 *(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
1692 return 0;
1693 default:
1694 return -ENODEV;
1695 }
1696 }
1697
1698 static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
1699 enum iommu_attr attr, void *data)
1700 {
1701 struct arm_smmu_domain *smmu_domain = domain->priv;
1702
1703 switch (attr) {
1704 case DOMAIN_ATTR_NESTING:
1705 if (smmu_domain->smmu)
1706 return -EPERM;
1707 if (*(int *)data)
1708 smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
1709 else
1710 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1711
1712 return 0;
1713 default:
1714 return -ENODEV;
1715 }
1716 }
1717
1718 static const struct iommu_ops arm_smmu_ops = {
1719 .capable = arm_smmu_capable,
1720 .domain_init = arm_smmu_domain_init,
1721 .domain_destroy = arm_smmu_domain_destroy,
1722 .attach_dev = arm_smmu_attach_dev,
1723 .detach_dev = arm_smmu_detach_dev,
1724 .map = arm_smmu_map,
1725 .unmap = arm_smmu_unmap,
1726 .map_sg = default_iommu_map_sg,
1727 .iova_to_phys = arm_smmu_iova_to_phys,
1728 .add_device = arm_smmu_add_device,
1729 .remove_device = arm_smmu_remove_device,
1730 .domain_get_attr = arm_smmu_domain_get_attr,
1731 .domain_set_attr = arm_smmu_domain_set_attr,
1732 .pgsize_bitmap = (SECTION_SIZE |
1733 ARM_SMMU_PTE_CONT_SIZE |
1734 PAGE_SIZE),
1735 };
1736
1737 static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
1738 {
1739 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1740 void __iomem *cb_base;
1741 int i = 0;
1742 u32 reg;
1743
1744 /* clear global FSR */
1745 reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1746 writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1747
1748 /* Mark all SMRn as invalid and all S2CRn as bypass */
1749 for (i = 0; i < smmu->num_mapping_groups; ++i) {
1750 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_SMR(i));
1751 writel_relaxed(S2CR_TYPE_BYPASS,
1752 gr0_base + ARM_SMMU_GR0_S2CR(i));
1753 }
1754
1755 /* Make sure all context banks are disabled and clear CB_FSR */
1756 for (i = 0; i < smmu->num_context_banks; ++i) {
1757 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, i);
1758 writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
1759 writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR);
1760 }
1761
1762 /* Invalidate the TLB, just in case */
1763 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_STLBIALL);
1764 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
1765 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);
1766
1767 reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1768
1769 /* Enable fault reporting */
1770 reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
1771
1772 /* Disable TLB broadcasting. */
1773 reg |= (sCR0_VMIDPNE | sCR0_PTM);
1774
1775 /* Enable client access, but bypass when no mapping is found */
1776 reg &= ~(sCR0_CLIENTPD | sCR0_USFCFG);
1777
1778 /* Disable forced broadcasting */
1779 reg &= ~sCR0_FB;
1780
1781 /* Don't upgrade barriers */
1782 reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
1783
1784 /* Push the button */
1785 arm_smmu_tlb_sync(smmu);
1786 writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1787 }
1788
1789 static int arm_smmu_id_size_to_bits(int size)
1790 {
1791 switch (size) {
1792 case 0:
1793 return 32;
1794 case 1:
1795 return 36;
1796 case 2:
1797 return 40;
1798 case 3:
1799 return 42;
1800 case 4:
1801 return 44;
1802 case 5:
1803 default:
1804 return 48;
1805 }
1806 }
1807
1808 static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
1809 {
1810 unsigned long size;
1811 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1812 u32 id;
1813
1814 dev_notice(smmu->dev, "probing hardware configuration...\n");
1815 dev_notice(smmu->dev, "SMMUv%d with:\n", smmu->version);
1816
1817 /* ID0 */
1818 id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
1819 #ifndef CONFIG_64BIT
1820 if (((id >> ID0_PTFS_SHIFT) & ID0_PTFS_MASK) == ID0_PTFS_V8_ONLY) {
1821 dev_err(smmu->dev, "\tno v7 descriptor support!\n");
1822 return -ENODEV;
1823 }
1824 #endif
1825
1826 /* Restrict available stages based on module parameter */
1827 if (force_stage == 1)
1828 id &= ~(ID0_S2TS | ID0_NTS);
1829 else if (force_stage == 2)
1830 id &= ~(ID0_S1TS | ID0_NTS);
1831
1832 if (id & ID0_S1TS) {
1833 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
1834 dev_notice(smmu->dev, "\tstage 1 translation\n");
1835 }
1836
1837 if (id & ID0_S2TS) {
1838 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
1839 dev_notice(smmu->dev, "\tstage 2 translation\n");
1840 }
1841
1842 if (id & ID0_NTS) {
1843 smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
1844 dev_notice(smmu->dev, "\tnested translation\n");
1845 }
1846
1847 if (!(smmu->features &
1848 (ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2))) {
1849 dev_err(smmu->dev, "\tno translation support!\n");
1850 return -ENODEV;
1851 }
1852
1853 if (id & ID0_CTTW) {
1854 smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
1855 dev_notice(smmu->dev, "\tcoherent table walk\n");
1856 }
1857
1858 if (id & ID0_SMS) {
1859 u32 smr, sid, mask;
1860
1861 smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
1862 smmu->num_mapping_groups = (id >> ID0_NUMSMRG_SHIFT) &
1863 ID0_NUMSMRG_MASK;
1864 if (smmu->num_mapping_groups == 0) {
1865 dev_err(smmu->dev,
1866 "stream-matching supported, but no SMRs present!\n");
1867 return -ENODEV;
1868 }
1869
1870 smr = SMR_MASK_MASK << SMR_MASK_SHIFT;
1871 smr |= (SMR_ID_MASK << SMR_ID_SHIFT);
1872 writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
1873 smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));
1874
1875 mask = (smr >> SMR_MASK_SHIFT) & SMR_MASK_MASK;
1876 sid = (smr >> SMR_ID_SHIFT) & SMR_ID_MASK;
1877 if ((mask & sid) != sid) {
1878 dev_err(smmu->dev,
1879 "SMR mask bits (0x%x) insufficient for ID field (0x%x)\n",
1880 mask, sid);
1881 return -ENODEV;
1882 }
1883
1884 dev_notice(smmu->dev,
1885 "\tstream matching with %u register groups, mask 0x%x",
1886 smmu->num_mapping_groups, mask);
1887 } else {
1888 smmu->num_mapping_groups = (id >> ID0_NUMSIDB_SHIFT) &
1889 ID0_NUMSIDB_MASK;
1890 }
1891
1892 /* ID1 */
1893 id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
1894 smmu->pgshift = (id & ID1_PAGESIZE) ? 16 : 12;
1895
1896 /* Check for size mismatch of SMMU address space from mapped region */
1897 size = 1 <<
1898 (((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
1899 size *= 2 << smmu->pgshift;
1900 if (smmu->size != size)
1901 dev_warn(smmu->dev,
1902 "SMMU address space size (0x%lx) differs from mapped region size (0x%lx)!\n",
1903 size, smmu->size);
1904
1905 smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) &
1906 ID1_NUMS2CB_MASK;
1907 smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
1908 if (smmu->num_s2_context_banks > smmu->num_context_banks) {
1909 dev_err(smmu->dev, "impossible number of S2 context banks!\n");
1910 return -ENODEV;
1911 }
1912 dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
1913 smmu->num_context_banks, smmu->num_s2_context_banks);
1914
1915 /* ID2 */
1916 id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
1917 size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);
1918 smmu->s1_output_size = min_t(unsigned long, PHYS_MASK_SHIFT, size);
1919
1920 /* Stage-2 input size limited due to pgd allocation (PTRS_PER_PGD) */
1921 #ifdef CONFIG_64BIT
1922 smmu->s2_input_size = min_t(unsigned long, VA_BITS, size);
1923 #else
1924 smmu->s2_input_size = min(32UL, size);
1925 #endif
1926
1927 /* The stage-2 output mask is also applied for bypass */
1928 size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
1929 smmu->s2_output_size = min_t(unsigned long, PHYS_MASK_SHIFT, size);
1930
1931 if (smmu->version == ARM_SMMU_V1) {
1932 smmu->s1_input_size = 32;
1933 } else {
1934 #ifdef CONFIG_64BIT
1935 size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
1936 size = min(VA_BITS, arm_smmu_id_size_to_bits(size));
1937 #else
1938 size = 32;
1939 #endif
1940 smmu->s1_input_size = size;
1941
1942 if ((PAGE_SIZE == SZ_4K && !(id & ID2_PTFS_4K)) ||
1943 (PAGE_SIZE == SZ_64K && !(id & ID2_PTFS_64K)) ||
1944 (PAGE_SIZE != SZ_4K && PAGE_SIZE != SZ_64K)) {
1945 dev_err(smmu->dev, "CPU page size 0x%lx unsupported\n",
1946 PAGE_SIZE);
1947 return -ENODEV;
1948 }
1949 }
1950
1951 if (smmu->features & ARM_SMMU_FEAT_TRANS_S1)
1952 dev_notice(smmu->dev, "\tStage-1: %lu-bit VA -> %lu-bit IPA\n",
1953 smmu->s1_input_size, smmu->s1_output_size);
1954
1955 if (smmu->features & ARM_SMMU_FEAT_TRANS_S2)
1956 dev_notice(smmu->dev, "\tStage-2: %lu-bit IPA -> %lu-bit PA\n",
1957 smmu->s2_input_size, smmu->s2_output_size);
1958
1959 return 0;
1960 }
1961
1962 static const struct of_device_id arm_smmu_of_match[] = {
1963 { .compatible = "arm,smmu-v1", .data = (void *)ARM_SMMU_V1 },
1964 { .compatible = "arm,smmu-v2", .data = (void *)ARM_SMMU_V2 },
1965 { .compatible = "arm,mmu-400", .data = (void *)ARM_SMMU_V1 },
1966 { .compatible = "arm,mmu-401", .data = (void *)ARM_SMMU_V1 },
1967 { .compatible = "arm,mmu-500", .data = (void *)ARM_SMMU_V2 },
1968 { },
1969 };
1970 MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
1971
1972 static int arm_smmu_device_dt_probe(struct platform_device *pdev)
1973 {
1974 const struct of_device_id *of_id;
1975 struct resource *res;
1976 struct arm_smmu_device *smmu;
1977 struct device *dev = &pdev->dev;
1978 struct rb_node *node;
1979 struct of_phandle_args masterspec;
1980 int num_irqs, i, err;
1981
1982 smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
1983 if (!smmu) {
1984 dev_err(dev, "failed to allocate arm_smmu_device\n");
1985 return -ENOMEM;
1986 }
1987 smmu->dev = dev;
1988
1989 of_id = of_match_node(arm_smmu_of_match, dev->of_node);
1990 smmu->version = (enum arm_smmu_arch_version)of_id->data;
1991
1992 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1993 smmu->base = devm_ioremap_resource(dev, res);
1994 if (IS_ERR(smmu->base))
1995 return PTR_ERR(smmu->base);
1996 smmu->size = resource_size(res);
1997
1998 if (of_property_read_u32(dev->of_node, "#global-interrupts",
1999 &smmu->num_global_irqs)) {
2000 dev_err(dev, "missing #global-interrupts property\n");
2001 return -ENODEV;
2002 }
2003
2004 num_irqs = 0;
2005 while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
2006 num_irqs++;
2007 if (num_irqs > smmu->num_global_irqs)
2008 smmu->num_context_irqs++;
2009 }
2010
2011 if (!smmu->num_context_irqs) {
2012 dev_err(dev, "found %d interrupts but expected at least %d\n",
2013 num_irqs, smmu->num_global_irqs + 1);
2014 return -ENODEV;
2015 }
2016
2017 smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
2018 GFP_KERNEL);
2019 if (!smmu->irqs) {
2020 dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
2021 return -ENOMEM;
2022 }
2023
2024 for (i = 0; i < num_irqs; ++i) {
2025 int irq = platform_get_irq(pdev, i);
2026
2027 if (irq < 0) {
2028 dev_err(dev, "failed to get irq index %d\n", i);
2029 return -ENODEV;
2030 }
2031 smmu->irqs[i] = irq;
2032 }
2033
2034 err = arm_smmu_device_cfg_probe(smmu);
2035 if (err)
2036 return err;
2037
2038 i = 0;
2039 smmu->masters = RB_ROOT;
2040 while (!of_parse_phandle_with_args(dev->of_node, "mmu-masters",
2041 "#stream-id-cells", i,
2042 &masterspec)) {
2043 err = register_smmu_master(smmu, dev, &masterspec);
2044 if (err) {
2045 dev_err(dev, "failed to add master %s\n",
2046 masterspec.np->name);
2047 goto out_put_masters;
2048 }
2049
2050 i++;
2051 }
2052 dev_notice(dev, "registered %d master devices\n", i);
2053
2054 parse_driver_options(smmu);
2055
2056 if (smmu->version > ARM_SMMU_V1 &&
2057 smmu->num_context_banks != smmu->num_context_irqs) {
2058 dev_err(dev,
2059 "found only %d context interrupt(s) but %d required\n",
2060 smmu->num_context_irqs, smmu->num_context_banks);
2061 err = -ENODEV;
2062 goto out_put_masters;
2063 }
2064
2065 for (i = 0; i < smmu->num_global_irqs; ++i) {
2066 err = request_irq(smmu->irqs[i],
2067 arm_smmu_global_fault,
2068 IRQF_SHARED,
2069 "arm-smmu global fault",
2070 smmu);
2071 if (err) {
2072 dev_err(dev, "failed to request global IRQ %d (%u)\n",
2073 i, smmu->irqs[i]);
2074 goto out_free_irqs;
2075 }
2076 }
2077
2078 INIT_LIST_HEAD(&smmu->list);
2079 spin_lock(&arm_smmu_devices_lock);
2080 list_add(&smmu->list, &arm_smmu_devices);
2081 spin_unlock(&arm_smmu_devices_lock);
2082
2083 arm_smmu_device_reset(smmu);
2084 return 0;
2085
2086 out_free_irqs:
2087 while (i--)
2088 free_irq(smmu->irqs[i], smmu);
2089
2090 out_put_masters:
2091 for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
2092 struct arm_smmu_master *master
2093 = container_of(node, struct arm_smmu_master, node);
2094 of_node_put(master->of_node);
2095 }
2096
2097 return err;
2098 }
2099
2100 static int arm_smmu_device_remove(struct platform_device *pdev)
2101 {
2102 int i;
2103 struct device *dev = &pdev->dev;
2104 struct arm_smmu_device *curr, *smmu = NULL;
2105 struct rb_node *node;
2106
2107 spin_lock(&arm_smmu_devices_lock);
2108 list_for_each_entry(curr, &arm_smmu_devices, list) {
2109 if (curr->dev == dev) {
2110 smmu = curr;
2111 list_del(&smmu->list);
2112 break;
2113 }
2114 }
2115 spin_unlock(&arm_smmu_devices_lock);
2116
2117 if (!smmu)
2118 return -ENODEV;
2119
2120 for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
2121 struct arm_smmu_master *master
2122 = container_of(node, struct arm_smmu_master, node);
2123 of_node_put(master->of_node);
2124 }
2125
2126 if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
2127 dev_err(dev, "removing device with active domains!\n");
2128
2129 for (i = 0; i < smmu->num_global_irqs; ++i)
2130 free_irq(smmu->irqs[i], smmu);
2131
2132 /* Turn the thing off */
2133 writel(sCR0_CLIENTPD, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
2134 return 0;
2135 }
2136
2137 static struct platform_driver arm_smmu_driver = {
2138 .driver = {
2139 .name = "arm-smmu",
2140 .of_match_table = of_match_ptr(arm_smmu_of_match),
2141 },
2142 .probe = arm_smmu_device_dt_probe,
2143 .remove = arm_smmu_device_remove,
2144 };
2145
2146 static int __init arm_smmu_init(void)
2147 {
2148 struct device_node *np;
2149 int ret;
2150
2151 /*
2152 * Play nice with systems that don't have an ARM SMMU by checking that
2153 * an ARM SMMU exists in the system before proceeding with the driver
2154 * and IOMMU bus operation registration.
2155 */
2156 np = of_find_matching_node(NULL, arm_smmu_of_match);
2157 if (!np)
2158 return 0;
2159
2160 of_node_put(np);
2161
2162 ret = platform_driver_register(&arm_smmu_driver);
2163 if (ret)
2164 return ret;
2165
2166 /* Oh, for a proper bus abstraction */
2167 if (!iommu_present(&platform_bus_type))
2168 bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
2169
2170 #ifdef CONFIG_ARM_AMBA
2171 if (!iommu_present(&amba_bustype))
2172 bus_set_iommu(&amba_bustype, &arm_smmu_ops);
2173 #endif
2174
2175 #ifdef CONFIG_PCI
2176 if (!iommu_present(&pci_bus_type))
2177 bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
2178 #endif
2179
2180 return 0;
2181 }
2182
2183 static void __exit arm_smmu_exit(void)
2184 {
2185 return platform_driver_unregister(&arm_smmu_driver);
2186 }
2187
2188 subsys_initcall(arm_smmu_init);
2189 module_exit(arm_smmu_exit);
2190
2191 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
2192 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
2193 MODULE_LICENSE("GPL v2");
This page took 0.110325 seconds and 5 git commands to generate.