iommu/vt-d: Include ACPI devices in iommu=pt
[deliverable/linux.git] / drivers / iommu / dmar.c
1 /*
2 * Copyright (c) 2006, Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
16 *
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21 *
22 * This file implements early detection/parsing of Remapping Devices
23 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
24 * tables.
25 *
26 * These routines are used by both DMA-remapping and Interrupt-remapping
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt /* has to precede printk.h */
30
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/iova.h>
34 #include <linux/intel-iommu.h>
35 #include <linux/timer.h>
36 #include <linux/irq.h>
37 #include <linux/interrupt.h>
38 #include <linux/tboot.h>
39 #include <linux/dmi.h>
40 #include <linux/slab.h>
41 #include <asm/irq_remapping.h>
42 #include <asm/iommu_table.h>
43
44 #include "irq_remapping.h"
45
46 /*
47 * Assumptions:
48 * 1) The hotplug framework guarentees that DMAR unit will be hot-added
49 * before IO devices managed by that unit.
50 * 2) The hotplug framework guarantees that DMAR unit will be hot-removed
51 * after IO devices managed by that unit.
52 * 3) Hotplug events are rare.
53 *
54 * Locking rules for DMA and interrupt remapping related global data structures:
55 * 1) Use dmar_global_lock in process context
56 * 2) Use RCU in interrupt context
57 */
58 DECLARE_RWSEM(dmar_global_lock);
59 LIST_HEAD(dmar_drhd_units);
60
61 struct acpi_table_header * __initdata dmar_tbl;
62 static acpi_size dmar_tbl_size;
63 static int dmar_dev_scope_status = 1;
64
65 static int alloc_iommu(struct dmar_drhd_unit *drhd);
66 static void free_iommu(struct intel_iommu *iommu);
67
68 static void __init dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
69 {
70 /*
71 * add INCLUDE_ALL at the tail, so scan the list will find it at
72 * the very end.
73 */
74 if (drhd->include_all)
75 list_add_tail_rcu(&drhd->list, &dmar_drhd_units);
76 else
77 list_add_rcu(&drhd->list, &dmar_drhd_units);
78 }
79
80 void *dmar_alloc_dev_scope(void *start, void *end, int *cnt)
81 {
82 struct acpi_dmar_device_scope *scope;
83
84 *cnt = 0;
85 while (start < end) {
86 scope = start;
87 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ACPI ||
88 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
89 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
90 (*cnt)++;
91 else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC &&
92 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) {
93 pr_warn("Unsupported device scope\n");
94 }
95 start += scope->length;
96 }
97 if (*cnt == 0)
98 return NULL;
99
100 return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL);
101 }
102
103 void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt)
104 {
105 int i;
106 struct device *tmp_dev;
107
108 if (*devices && *cnt) {
109 for_each_active_dev_scope(*devices, *cnt, i, tmp_dev)
110 put_device(tmp_dev);
111 kfree(*devices);
112 }
113
114 *devices = NULL;
115 *cnt = 0;
116 }
117
118 /* Optimize out kzalloc()/kfree() for normal cases */
119 static char dmar_pci_notify_info_buf[64];
120
121 static struct dmar_pci_notify_info *
122 dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event)
123 {
124 int level = 0;
125 size_t size;
126 struct pci_dev *tmp;
127 struct dmar_pci_notify_info *info;
128
129 BUG_ON(dev->is_virtfn);
130
131 /* Only generate path[] for device addition event */
132 if (event == BUS_NOTIFY_ADD_DEVICE)
133 for (tmp = dev; tmp; tmp = tmp->bus->self)
134 level++;
135
136 size = sizeof(*info) + level * sizeof(struct acpi_dmar_pci_path);
137 if (size <= sizeof(dmar_pci_notify_info_buf)) {
138 info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf;
139 } else {
140 info = kzalloc(size, GFP_KERNEL);
141 if (!info) {
142 pr_warn("Out of memory when allocating notify_info "
143 "for %s.\n", pci_name(dev));
144 if (dmar_dev_scope_status == 0)
145 dmar_dev_scope_status = -ENOMEM;
146 return NULL;
147 }
148 }
149
150 info->event = event;
151 info->dev = dev;
152 info->seg = pci_domain_nr(dev->bus);
153 info->level = level;
154 if (event == BUS_NOTIFY_ADD_DEVICE) {
155 for (tmp = dev, level--; tmp; tmp = tmp->bus->self) {
156 info->path[level].device = PCI_SLOT(tmp->devfn);
157 info->path[level].function = PCI_FUNC(tmp->devfn);
158 if (pci_is_root_bus(tmp->bus))
159 info->bus = tmp->bus->number;
160 }
161 }
162
163 return info;
164 }
165
166 static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info)
167 {
168 if ((void *)info != dmar_pci_notify_info_buf)
169 kfree(info);
170 }
171
172 static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus,
173 struct acpi_dmar_pci_path *path, int count)
174 {
175 int i;
176
177 if (info->bus != bus)
178 return false;
179 if (info->level != count)
180 return false;
181
182 for (i = 0; i < count; i++) {
183 if (path[i].device != info->path[i].device ||
184 path[i].function != info->path[i].function)
185 return false;
186 }
187
188 return true;
189 }
190
191 /* Return: > 0 if match found, 0 if no match found, < 0 if error happens */
192 int dmar_insert_dev_scope(struct dmar_pci_notify_info *info,
193 void *start, void*end, u16 segment,
194 struct dmar_dev_scope *devices,
195 int devices_cnt)
196 {
197 int i, level;
198 struct device *tmp, *dev = &info->dev->dev;
199 struct acpi_dmar_device_scope *scope;
200 struct acpi_dmar_pci_path *path;
201
202 if (segment != info->seg)
203 return 0;
204
205 for (; start < end; start += scope->length) {
206 scope = start;
207 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
208 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE)
209 continue;
210
211 path = (struct acpi_dmar_pci_path *)(scope + 1);
212 level = (scope->length - sizeof(*scope)) / sizeof(*path);
213 if (!dmar_match_pci_path(info, scope->bus, path, level))
214 continue;
215
216 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT) ^
217 (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL)) {
218 pr_warn("Device scope type does not match for %s\n",
219 pci_name(info->dev));
220 return -EINVAL;
221 }
222
223 for_each_dev_scope(devices, devices_cnt, i, tmp)
224 if (tmp == NULL) {
225 devices[i].bus = info->dev->bus->number;
226 devices[i].devfn = info->dev->devfn;
227 rcu_assign_pointer(devices[i].dev,
228 get_device(dev));
229 return 1;
230 }
231 BUG_ON(i >= devices_cnt);
232 }
233
234 return 0;
235 }
236
237 int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment,
238 struct dmar_dev_scope *devices, int count)
239 {
240 int index;
241 struct device *tmp;
242
243 if (info->seg != segment)
244 return 0;
245
246 for_each_active_dev_scope(devices, count, index, tmp)
247 if (tmp == &info->dev->dev) {
248 rcu_assign_pointer(devices[index].dev, NULL);
249 synchronize_rcu();
250 put_device(tmp);
251 return 1;
252 }
253
254 return 0;
255 }
256
257 static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info)
258 {
259 int ret = 0;
260 struct dmar_drhd_unit *dmaru;
261 struct acpi_dmar_hardware_unit *drhd;
262
263 for_each_drhd_unit(dmaru) {
264 if (dmaru->include_all)
265 continue;
266
267 drhd = container_of(dmaru->hdr,
268 struct acpi_dmar_hardware_unit, header);
269 ret = dmar_insert_dev_scope(info, (void *)(drhd + 1),
270 ((void *)drhd) + drhd->header.length,
271 dmaru->segment,
272 dmaru->devices, dmaru->devices_cnt);
273 if (ret != 0)
274 break;
275 }
276 if (ret >= 0)
277 ret = dmar_iommu_notify_scope_dev(info);
278 if (ret < 0 && dmar_dev_scope_status == 0)
279 dmar_dev_scope_status = ret;
280
281 return ret;
282 }
283
284 static void dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info)
285 {
286 struct dmar_drhd_unit *dmaru;
287
288 for_each_drhd_unit(dmaru)
289 if (dmar_remove_dev_scope(info, dmaru->segment,
290 dmaru->devices, dmaru->devices_cnt))
291 break;
292 dmar_iommu_notify_scope_dev(info);
293 }
294
295 static int dmar_pci_bus_notifier(struct notifier_block *nb,
296 unsigned long action, void *data)
297 {
298 struct pci_dev *pdev = to_pci_dev(data);
299 struct dmar_pci_notify_info *info;
300
301 /* Only care about add/remove events for physical functions */
302 if (pdev->is_virtfn)
303 return NOTIFY_DONE;
304 if (action != BUS_NOTIFY_ADD_DEVICE && action != BUS_NOTIFY_DEL_DEVICE)
305 return NOTIFY_DONE;
306
307 info = dmar_alloc_pci_notify_info(pdev, action);
308 if (!info)
309 return NOTIFY_DONE;
310
311 down_write(&dmar_global_lock);
312 if (action == BUS_NOTIFY_ADD_DEVICE)
313 dmar_pci_bus_add_dev(info);
314 else if (action == BUS_NOTIFY_DEL_DEVICE)
315 dmar_pci_bus_del_dev(info);
316 up_write(&dmar_global_lock);
317
318 dmar_free_pci_notify_info(info);
319
320 return NOTIFY_OK;
321 }
322
323 static struct notifier_block dmar_pci_bus_nb = {
324 .notifier_call = dmar_pci_bus_notifier,
325 .priority = INT_MIN,
326 };
327
328 /**
329 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
330 * structure which uniquely represent one DMA remapping hardware unit
331 * present in the platform
332 */
333 static int __init
334 dmar_parse_one_drhd(struct acpi_dmar_header *header)
335 {
336 struct acpi_dmar_hardware_unit *drhd;
337 struct dmar_drhd_unit *dmaru;
338 int ret = 0;
339
340 drhd = (struct acpi_dmar_hardware_unit *)header;
341 dmaru = kzalloc(sizeof(*dmaru), GFP_KERNEL);
342 if (!dmaru)
343 return -ENOMEM;
344
345 dmaru->hdr = header;
346 dmaru->reg_base_addr = drhd->address;
347 dmaru->segment = drhd->segment;
348 dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
349 dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1),
350 ((void *)drhd) + drhd->header.length,
351 &dmaru->devices_cnt);
352 if (dmaru->devices_cnt && dmaru->devices == NULL) {
353 kfree(dmaru);
354 return -ENOMEM;
355 }
356
357 ret = alloc_iommu(dmaru);
358 if (ret) {
359 dmar_free_dev_scope(&dmaru->devices,
360 &dmaru->devices_cnt);
361 kfree(dmaru);
362 return ret;
363 }
364 dmar_register_drhd_unit(dmaru);
365 return 0;
366 }
367
368 static void dmar_free_drhd(struct dmar_drhd_unit *dmaru)
369 {
370 if (dmaru->devices && dmaru->devices_cnt)
371 dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt);
372 if (dmaru->iommu)
373 free_iommu(dmaru->iommu);
374 kfree(dmaru);
375 }
376
377 static int __init dmar_parse_one_andd(struct acpi_dmar_header *header)
378 {
379 struct acpi_dmar_andd *andd = (void *)header;
380
381 /* Check for NUL termination within the designated length */
382 if (strnlen(andd->object_name, header->length - 8) == header->length - 8) {
383 WARN_TAINT(1, TAINT_FIRMWARE_WORKAROUND,
384 "Your BIOS is broken; ANDD object name is not NUL-terminated\n"
385 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
386 dmi_get_system_info(DMI_BIOS_VENDOR),
387 dmi_get_system_info(DMI_BIOS_VERSION),
388 dmi_get_system_info(DMI_PRODUCT_VERSION));
389 return -EINVAL;
390 }
391 pr_info("ANDD device: %x name: %s\n", andd->device_number,
392 andd->object_name);
393
394 return 0;
395 }
396
397 #ifdef CONFIG_ACPI_NUMA
398 static int __init
399 dmar_parse_one_rhsa(struct acpi_dmar_header *header)
400 {
401 struct acpi_dmar_rhsa *rhsa;
402 struct dmar_drhd_unit *drhd;
403
404 rhsa = (struct acpi_dmar_rhsa *)header;
405 for_each_drhd_unit(drhd) {
406 if (drhd->reg_base_addr == rhsa->base_address) {
407 int node = acpi_map_pxm_to_node(rhsa->proximity_domain);
408
409 if (!node_online(node))
410 node = -1;
411 drhd->iommu->node = node;
412 return 0;
413 }
414 }
415 WARN_TAINT(
416 1, TAINT_FIRMWARE_WORKAROUND,
417 "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
418 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
419 drhd->reg_base_addr,
420 dmi_get_system_info(DMI_BIOS_VENDOR),
421 dmi_get_system_info(DMI_BIOS_VERSION),
422 dmi_get_system_info(DMI_PRODUCT_VERSION));
423
424 return 0;
425 }
426 #endif
427
428 static void __init
429 dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
430 {
431 struct acpi_dmar_hardware_unit *drhd;
432 struct acpi_dmar_reserved_memory *rmrr;
433 struct acpi_dmar_atsr *atsr;
434 struct acpi_dmar_rhsa *rhsa;
435
436 switch (header->type) {
437 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
438 drhd = container_of(header, struct acpi_dmar_hardware_unit,
439 header);
440 pr_info("DRHD base: %#016Lx flags: %#x\n",
441 (unsigned long long)drhd->address, drhd->flags);
442 break;
443 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
444 rmrr = container_of(header, struct acpi_dmar_reserved_memory,
445 header);
446 pr_info("RMRR base: %#016Lx end: %#016Lx\n",
447 (unsigned long long)rmrr->base_address,
448 (unsigned long long)rmrr->end_address);
449 break;
450 case ACPI_DMAR_TYPE_ATSR:
451 atsr = container_of(header, struct acpi_dmar_atsr, header);
452 pr_info("ATSR flags: %#x\n", atsr->flags);
453 break;
454 case ACPI_DMAR_HARDWARE_AFFINITY:
455 rhsa = container_of(header, struct acpi_dmar_rhsa, header);
456 pr_info("RHSA base: %#016Lx proximity domain: %#x\n",
457 (unsigned long long)rhsa->base_address,
458 rhsa->proximity_domain);
459 break;
460 case ACPI_DMAR_TYPE_ANDD:
461 /* We don't print this here because we need to sanity-check
462 it first. So print it in dmar_parse_one_andd() instead. */
463 break;
464 }
465 }
466
467 /**
468 * dmar_table_detect - checks to see if the platform supports DMAR devices
469 */
470 static int __init dmar_table_detect(void)
471 {
472 acpi_status status = AE_OK;
473
474 /* if we could find DMAR table, then there are DMAR devices */
475 status = acpi_get_table_with_size(ACPI_SIG_DMAR, 0,
476 (struct acpi_table_header **)&dmar_tbl,
477 &dmar_tbl_size);
478
479 if (ACPI_SUCCESS(status) && !dmar_tbl) {
480 pr_warn("Unable to map DMAR\n");
481 status = AE_NOT_FOUND;
482 }
483
484 return (ACPI_SUCCESS(status) ? 1 : 0);
485 }
486
487 /**
488 * parse_dmar_table - parses the DMA reporting table
489 */
490 static int __init
491 parse_dmar_table(void)
492 {
493 struct acpi_table_dmar *dmar;
494 struct acpi_dmar_header *entry_header;
495 int ret = 0;
496 int drhd_count = 0;
497
498 /*
499 * Do it again, earlier dmar_tbl mapping could be mapped with
500 * fixed map.
501 */
502 dmar_table_detect();
503
504 /*
505 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
506 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
507 */
508 dmar_tbl = tboot_get_dmar_table(dmar_tbl);
509
510 dmar = (struct acpi_table_dmar *)dmar_tbl;
511 if (!dmar)
512 return -ENODEV;
513
514 if (dmar->width < PAGE_SHIFT - 1) {
515 pr_warn("Invalid DMAR haw\n");
516 return -EINVAL;
517 }
518
519 pr_info("Host address width %d\n", dmar->width + 1);
520
521 entry_header = (struct acpi_dmar_header *)(dmar + 1);
522 while (((unsigned long)entry_header) <
523 (((unsigned long)dmar) + dmar_tbl->length)) {
524 /* Avoid looping forever on bad ACPI tables */
525 if (entry_header->length == 0) {
526 pr_warn("Invalid 0-length structure\n");
527 ret = -EINVAL;
528 break;
529 }
530
531 dmar_table_print_dmar_entry(entry_header);
532
533 switch (entry_header->type) {
534 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
535 drhd_count++;
536 ret = dmar_parse_one_drhd(entry_header);
537 break;
538 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
539 ret = dmar_parse_one_rmrr(entry_header);
540 break;
541 case ACPI_DMAR_TYPE_ATSR:
542 ret = dmar_parse_one_atsr(entry_header);
543 break;
544 case ACPI_DMAR_HARDWARE_AFFINITY:
545 #ifdef CONFIG_ACPI_NUMA
546 ret = dmar_parse_one_rhsa(entry_header);
547 #endif
548 break;
549 case ACPI_DMAR_TYPE_ANDD:
550 ret = dmar_parse_one_andd(entry_header);
551 break;
552 default:
553 pr_warn("Unknown DMAR structure type %d\n",
554 entry_header->type);
555 ret = 0; /* for forward compatibility */
556 break;
557 }
558 if (ret)
559 break;
560
561 entry_header = ((void *)entry_header + entry_header->length);
562 }
563 if (drhd_count == 0)
564 pr_warn(FW_BUG "No DRHD structure found in DMAR table\n");
565 return ret;
566 }
567
568 static int dmar_pci_device_match(struct dmar_dev_scope devices[],
569 int cnt, struct pci_dev *dev)
570 {
571 int index;
572 struct device *tmp;
573
574 while (dev) {
575 for_each_active_dev_scope(devices, cnt, index, tmp)
576 if (dev_is_pci(tmp) && dev == to_pci_dev(tmp))
577 return 1;
578
579 /* Check our parent */
580 dev = dev->bus->self;
581 }
582
583 return 0;
584 }
585
586 struct dmar_drhd_unit *
587 dmar_find_matched_drhd_unit(struct pci_dev *dev)
588 {
589 struct dmar_drhd_unit *dmaru;
590 struct acpi_dmar_hardware_unit *drhd;
591
592 dev = pci_physfn(dev);
593
594 rcu_read_lock();
595 for_each_drhd_unit(dmaru) {
596 drhd = container_of(dmaru->hdr,
597 struct acpi_dmar_hardware_unit,
598 header);
599
600 if (dmaru->include_all &&
601 drhd->segment == pci_domain_nr(dev->bus))
602 goto out;
603
604 if (dmar_pci_device_match(dmaru->devices,
605 dmaru->devices_cnt, dev))
606 goto out;
607 }
608 dmaru = NULL;
609 out:
610 rcu_read_unlock();
611
612 return dmaru;
613 }
614
615 static void __init dmar_acpi_insert_dev_scope(u8 device_number,
616 struct acpi_device *adev)
617 {
618 struct dmar_drhd_unit *dmaru;
619 struct acpi_dmar_hardware_unit *drhd;
620 struct acpi_dmar_device_scope *scope;
621 struct device *tmp;
622 int i;
623 struct acpi_dmar_pci_path *path;
624
625 for_each_drhd_unit(dmaru) {
626 drhd = container_of(dmaru->hdr,
627 struct acpi_dmar_hardware_unit,
628 header);
629
630 for (scope = (void *)(drhd + 1);
631 (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length;
632 scope = ((void *)scope) + scope->length) {
633 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ACPI)
634 continue;
635 if (scope->enumeration_id != device_number)
636 continue;
637
638 path = (void *)(scope + 1);
639 pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n",
640 dev_name(&adev->dev), dmaru->reg_base_addr,
641 scope->bus, path->device, path->function);
642 for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp)
643 if (tmp == NULL) {
644 dmaru->devices[i].bus = scope->bus;
645 dmaru->devices[i].devfn = PCI_DEVFN(path->device,
646 path->function);
647 rcu_assign_pointer(dmaru->devices[i].dev,
648 get_device(&adev->dev));
649 return;
650 }
651 BUG_ON(i >= dmaru->devices_cnt);
652 }
653 }
654 pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n",
655 device_number, dev_name(&adev->dev));
656 }
657
658 static int __init dmar_acpi_dev_scope_init(void)
659 {
660 struct acpi_dmar_andd *andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar);
661
662 while (((unsigned long)andd) <
663 ((unsigned long)dmar_tbl) + dmar_tbl->length) {
664 if (andd->header.type == ACPI_DMAR_TYPE_ANDD) {
665 acpi_handle h;
666 struct acpi_device *adev;
667
668 if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT,
669 andd->object_name,
670 &h))) {
671 pr_err("Failed to find handle for ACPI object %s\n",
672 andd->object_name);
673 continue;
674 }
675 acpi_bus_get_device(h, &adev);
676 if (!adev) {
677 pr_err("Failed to get device for ACPI object %s\n",
678 andd->object_name);
679 continue;
680 }
681 dmar_acpi_insert_dev_scope(andd->device_number, adev);
682 }
683 andd = ((void *)andd) + andd->header.length;
684 }
685 return 0;
686 }
687
688 int __init dmar_dev_scope_init(void)
689 {
690 struct pci_dev *dev = NULL;
691 struct dmar_pci_notify_info *info;
692
693 if (dmar_dev_scope_status != 1)
694 return dmar_dev_scope_status;
695
696 dmar_acpi_dev_scope_init();
697
698 if (list_empty(&dmar_drhd_units)) {
699 dmar_dev_scope_status = -ENODEV;
700 } else {
701 dmar_dev_scope_status = 0;
702
703 for_each_pci_dev(dev) {
704 if (dev->is_virtfn)
705 continue;
706
707 info = dmar_alloc_pci_notify_info(dev,
708 BUS_NOTIFY_ADD_DEVICE);
709 if (!info) {
710 return dmar_dev_scope_status;
711 } else {
712 dmar_pci_bus_add_dev(info);
713 dmar_free_pci_notify_info(info);
714 }
715 }
716
717 bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb);
718 }
719
720 return dmar_dev_scope_status;
721 }
722
723
724 int __init dmar_table_init(void)
725 {
726 static int dmar_table_initialized;
727 int ret;
728
729 if (dmar_table_initialized == 0) {
730 ret = parse_dmar_table();
731 if (ret < 0) {
732 if (ret != -ENODEV)
733 pr_info("parse DMAR table failure.\n");
734 } else if (list_empty(&dmar_drhd_units)) {
735 pr_info("No DMAR devices found\n");
736 ret = -ENODEV;
737 }
738
739 if (ret < 0)
740 dmar_table_initialized = ret;
741 else
742 dmar_table_initialized = 1;
743 }
744
745 return dmar_table_initialized < 0 ? dmar_table_initialized : 0;
746 }
747
748 static void warn_invalid_dmar(u64 addr, const char *message)
749 {
750 WARN_TAINT_ONCE(
751 1, TAINT_FIRMWARE_WORKAROUND,
752 "Your BIOS is broken; DMAR reported at address %llx%s!\n"
753 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
754 addr, message,
755 dmi_get_system_info(DMI_BIOS_VENDOR),
756 dmi_get_system_info(DMI_BIOS_VERSION),
757 dmi_get_system_info(DMI_PRODUCT_VERSION));
758 }
759
760 static int __init check_zero_address(void)
761 {
762 struct acpi_table_dmar *dmar;
763 struct acpi_dmar_header *entry_header;
764 struct acpi_dmar_hardware_unit *drhd;
765
766 dmar = (struct acpi_table_dmar *)dmar_tbl;
767 entry_header = (struct acpi_dmar_header *)(dmar + 1);
768
769 while (((unsigned long)entry_header) <
770 (((unsigned long)dmar) + dmar_tbl->length)) {
771 /* Avoid looping forever on bad ACPI tables */
772 if (entry_header->length == 0) {
773 pr_warn("Invalid 0-length structure\n");
774 return 0;
775 }
776
777 if (entry_header->type == ACPI_DMAR_TYPE_HARDWARE_UNIT) {
778 void __iomem *addr;
779 u64 cap, ecap;
780
781 drhd = (void *)entry_header;
782 if (!drhd->address) {
783 warn_invalid_dmar(0, "");
784 goto failed;
785 }
786
787 addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
788 if (!addr ) {
789 printk("IOMMU: can't validate: %llx\n", drhd->address);
790 goto failed;
791 }
792 cap = dmar_readq(addr + DMAR_CAP_REG);
793 ecap = dmar_readq(addr + DMAR_ECAP_REG);
794 early_iounmap(addr, VTD_PAGE_SIZE);
795 if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
796 warn_invalid_dmar(drhd->address,
797 " returns all ones");
798 goto failed;
799 }
800 }
801
802 entry_header = ((void *)entry_header + entry_header->length);
803 }
804 return 1;
805
806 failed:
807 return 0;
808 }
809
810 int __init detect_intel_iommu(void)
811 {
812 int ret;
813
814 down_write(&dmar_global_lock);
815 ret = dmar_table_detect();
816 if (ret)
817 ret = check_zero_address();
818 {
819 if (ret && !no_iommu && !iommu_detected && !dmar_disabled) {
820 iommu_detected = 1;
821 /* Make sure ACS will be enabled */
822 pci_request_acs();
823 }
824
825 #ifdef CONFIG_X86
826 if (ret)
827 x86_init.iommu.iommu_init = intel_iommu_init;
828 #endif
829 }
830 early_acpi_os_unmap_memory((void __iomem *)dmar_tbl, dmar_tbl_size);
831 dmar_tbl = NULL;
832 up_write(&dmar_global_lock);
833
834 return ret ? 1 : -ENODEV;
835 }
836
837
838 static void unmap_iommu(struct intel_iommu *iommu)
839 {
840 iounmap(iommu->reg);
841 release_mem_region(iommu->reg_phys, iommu->reg_size);
842 }
843
844 /**
845 * map_iommu: map the iommu's registers
846 * @iommu: the iommu to map
847 * @phys_addr: the physical address of the base resgister
848 *
849 * Memory map the iommu's registers. Start w/ a single page, and
850 * possibly expand if that turns out to be insufficent.
851 */
852 static int map_iommu(struct intel_iommu *iommu, u64 phys_addr)
853 {
854 int map_size, err=0;
855
856 iommu->reg_phys = phys_addr;
857 iommu->reg_size = VTD_PAGE_SIZE;
858
859 if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) {
860 pr_err("IOMMU: can't reserve memory\n");
861 err = -EBUSY;
862 goto out;
863 }
864
865 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
866 if (!iommu->reg) {
867 pr_err("IOMMU: can't map the region\n");
868 err = -ENOMEM;
869 goto release;
870 }
871
872 iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
873 iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
874
875 if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
876 err = -EINVAL;
877 warn_invalid_dmar(phys_addr, " returns all ones");
878 goto unmap;
879 }
880
881 /* the registers might be more than one page */
882 map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
883 cap_max_fault_reg_offset(iommu->cap));
884 map_size = VTD_PAGE_ALIGN(map_size);
885 if (map_size > iommu->reg_size) {
886 iounmap(iommu->reg);
887 release_mem_region(iommu->reg_phys, iommu->reg_size);
888 iommu->reg_size = map_size;
889 if (!request_mem_region(iommu->reg_phys, iommu->reg_size,
890 iommu->name)) {
891 pr_err("IOMMU: can't reserve memory\n");
892 err = -EBUSY;
893 goto out;
894 }
895 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
896 if (!iommu->reg) {
897 pr_err("IOMMU: can't map the region\n");
898 err = -ENOMEM;
899 goto release;
900 }
901 }
902 err = 0;
903 goto out;
904
905 unmap:
906 iounmap(iommu->reg);
907 release:
908 release_mem_region(iommu->reg_phys, iommu->reg_size);
909 out:
910 return err;
911 }
912
913 static int alloc_iommu(struct dmar_drhd_unit *drhd)
914 {
915 struct intel_iommu *iommu;
916 u32 ver, sts;
917 static int iommu_allocated = 0;
918 int agaw = 0;
919 int msagaw = 0;
920 int err;
921
922 if (!drhd->reg_base_addr) {
923 warn_invalid_dmar(0, "");
924 return -EINVAL;
925 }
926
927 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
928 if (!iommu)
929 return -ENOMEM;
930
931 iommu->seq_id = iommu_allocated++;
932 sprintf (iommu->name, "dmar%d", iommu->seq_id);
933
934 err = map_iommu(iommu, drhd->reg_base_addr);
935 if (err) {
936 pr_err("IOMMU: failed to map %s\n", iommu->name);
937 goto error;
938 }
939
940 err = -EINVAL;
941 agaw = iommu_calculate_agaw(iommu);
942 if (agaw < 0) {
943 pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n",
944 iommu->seq_id);
945 goto err_unmap;
946 }
947 msagaw = iommu_calculate_max_sagaw(iommu);
948 if (msagaw < 0) {
949 pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n",
950 iommu->seq_id);
951 goto err_unmap;
952 }
953 iommu->agaw = agaw;
954 iommu->msagaw = msagaw;
955 iommu->segment = drhd->segment;
956
957 iommu->node = -1;
958
959 ver = readl(iommu->reg + DMAR_VER_REG);
960 pr_info("IOMMU %d: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
961 iommu->seq_id,
962 (unsigned long long)drhd->reg_base_addr,
963 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
964 (unsigned long long)iommu->cap,
965 (unsigned long long)iommu->ecap);
966
967 /* Reflect status in gcmd */
968 sts = readl(iommu->reg + DMAR_GSTS_REG);
969 if (sts & DMA_GSTS_IRES)
970 iommu->gcmd |= DMA_GCMD_IRE;
971 if (sts & DMA_GSTS_TES)
972 iommu->gcmd |= DMA_GCMD_TE;
973 if (sts & DMA_GSTS_QIES)
974 iommu->gcmd |= DMA_GCMD_QIE;
975
976 raw_spin_lock_init(&iommu->register_lock);
977
978 drhd->iommu = iommu;
979 return 0;
980
981 err_unmap:
982 unmap_iommu(iommu);
983 error:
984 kfree(iommu);
985 return err;
986 }
987
988 static void free_iommu(struct intel_iommu *iommu)
989 {
990 if (iommu->irq) {
991 free_irq(iommu->irq, iommu);
992 irq_set_handler_data(iommu->irq, NULL);
993 destroy_irq(iommu->irq);
994 }
995
996 if (iommu->qi) {
997 free_page((unsigned long)iommu->qi->desc);
998 kfree(iommu->qi->desc_status);
999 kfree(iommu->qi);
1000 }
1001
1002 if (iommu->reg)
1003 unmap_iommu(iommu);
1004
1005 kfree(iommu);
1006 }
1007
1008 /*
1009 * Reclaim all the submitted descriptors which have completed its work.
1010 */
1011 static inline void reclaim_free_desc(struct q_inval *qi)
1012 {
1013 while (qi->desc_status[qi->free_tail] == QI_DONE ||
1014 qi->desc_status[qi->free_tail] == QI_ABORT) {
1015 qi->desc_status[qi->free_tail] = QI_FREE;
1016 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
1017 qi->free_cnt++;
1018 }
1019 }
1020
1021 static int qi_check_fault(struct intel_iommu *iommu, int index)
1022 {
1023 u32 fault;
1024 int head, tail;
1025 struct q_inval *qi = iommu->qi;
1026 int wait_index = (index + 1) % QI_LENGTH;
1027
1028 if (qi->desc_status[wait_index] == QI_ABORT)
1029 return -EAGAIN;
1030
1031 fault = readl(iommu->reg + DMAR_FSTS_REG);
1032
1033 /*
1034 * If IQE happens, the head points to the descriptor associated
1035 * with the error. No new descriptors are fetched until the IQE
1036 * is cleared.
1037 */
1038 if (fault & DMA_FSTS_IQE) {
1039 head = readl(iommu->reg + DMAR_IQH_REG);
1040 if ((head >> DMAR_IQ_SHIFT) == index) {
1041 pr_err("VT-d detected invalid descriptor: "
1042 "low=%llx, high=%llx\n",
1043 (unsigned long long)qi->desc[index].low,
1044 (unsigned long long)qi->desc[index].high);
1045 memcpy(&qi->desc[index], &qi->desc[wait_index],
1046 sizeof(struct qi_desc));
1047 __iommu_flush_cache(iommu, &qi->desc[index],
1048 sizeof(struct qi_desc));
1049 writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
1050 return -EINVAL;
1051 }
1052 }
1053
1054 /*
1055 * If ITE happens, all pending wait_desc commands are aborted.
1056 * No new descriptors are fetched until the ITE is cleared.
1057 */
1058 if (fault & DMA_FSTS_ITE) {
1059 head = readl(iommu->reg + DMAR_IQH_REG);
1060 head = ((head >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
1061 head |= 1;
1062 tail = readl(iommu->reg + DMAR_IQT_REG);
1063 tail = ((tail >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
1064
1065 writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
1066
1067 do {
1068 if (qi->desc_status[head] == QI_IN_USE)
1069 qi->desc_status[head] = QI_ABORT;
1070 head = (head - 2 + QI_LENGTH) % QI_LENGTH;
1071 } while (head != tail);
1072
1073 if (qi->desc_status[wait_index] == QI_ABORT)
1074 return -EAGAIN;
1075 }
1076
1077 if (fault & DMA_FSTS_ICE)
1078 writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
1079
1080 return 0;
1081 }
1082
1083 /*
1084 * Submit the queued invalidation descriptor to the remapping
1085 * hardware unit and wait for its completion.
1086 */
1087 int qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
1088 {
1089 int rc;
1090 struct q_inval *qi = iommu->qi;
1091 struct qi_desc *hw, wait_desc;
1092 int wait_index, index;
1093 unsigned long flags;
1094
1095 if (!qi)
1096 return 0;
1097
1098 hw = qi->desc;
1099
1100 restart:
1101 rc = 0;
1102
1103 raw_spin_lock_irqsave(&qi->q_lock, flags);
1104 while (qi->free_cnt < 3) {
1105 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1106 cpu_relax();
1107 raw_spin_lock_irqsave(&qi->q_lock, flags);
1108 }
1109
1110 index = qi->free_head;
1111 wait_index = (index + 1) % QI_LENGTH;
1112
1113 qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;
1114
1115 hw[index] = *desc;
1116
1117 wait_desc.low = QI_IWD_STATUS_DATA(QI_DONE) |
1118 QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
1119 wait_desc.high = virt_to_phys(&qi->desc_status[wait_index]);
1120
1121 hw[wait_index] = wait_desc;
1122
1123 __iommu_flush_cache(iommu, &hw[index], sizeof(struct qi_desc));
1124 __iommu_flush_cache(iommu, &hw[wait_index], sizeof(struct qi_desc));
1125
1126 qi->free_head = (qi->free_head + 2) % QI_LENGTH;
1127 qi->free_cnt -= 2;
1128
1129 /*
1130 * update the HW tail register indicating the presence of
1131 * new descriptors.
1132 */
1133 writel(qi->free_head << DMAR_IQ_SHIFT, iommu->reg + DMAR_IQT_REG);
1134
1135 while (qi->desc_status[wait_index] != QI_DONE) {
1136 /*
1137 * We will leave the interrupts disabled, to prevent interrupt
1138 * context to queue another cmd while a cmd is already submitted
1139 * and waiting for completion on this cpu. This is to avoid
1140 * a deadlock where the interrupt context can wait indefinitely
1141 * for free slots in the queue.
1142 */
1143 rc = qi_check_fault(iommu, index);
1144 if (rc)
1145 break;
1146
1147 raw_spin_unlock(&qi->q_lock);
1148 cpu_relax();
1149 raw_spin_lock(&qi->q_lock);
1150 }
1151
1152 qi->desc_status[index] = QI_DONE;
1153
1154 reclaim_free_desc(qi);
1155 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1156
1157 if (rc == -EAGAIN)
1158 goto restart;
1159
1160 return rc;
1161 }
1162
1163 /*
1164 * Flush the global interrupt entry cache.
1165 */
1166 void qi_global_iec(struct intel_iommu *iommu)
1167 {
1168 struct qi_desc desc;
1169
1170 desc.low = QI_IEC_TYPE;
1171 desc.high = 0;
1172
1173 /* should never fail */
1174 qi_submit_sync(&desc, iommu);
1175 }
1176
1177 void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
1178 u64 type)
1179 {
1180 struct qi_desc desc;
1181
1182 desc.low = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
1183 | QI_CC_GRAN(type) | QI_CC_TYPE;
1184 desc.high = 0;
1185
1186 qi_submit_sync(&desc, iommu);
1187 }
1188
1189 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1190 unsigned int size_order, u64 type)
1191 {
1192 u8 dw = 0, dr = 0;
1193
1194 struct qi_desc desc;
1195 int ih = 0;
1196
1197 if (cap_write_drain(iommu->cap))
1198 dw = 1;
1199
1200 if (cap_read_drain(iommu->cap))
1201 dr = 1;
1202
1203 desc.low = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
1204 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
1205 desc.high = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
1206 | QI_IOTLB_AM(size_order);
1207
1208 qi_submit_sync(&desc, iommu);
1209 }
1210
1211 void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 qdep,
1212 u64 addr, unsigned mask)
1213 {
1214 struct qi_desc desc;
1215
1216 if (mask) {
1217 BUG_ON(addr & ((1 << (VTD_PAGE_SHIFT + mask)) - 1));
1218 addr |= (1 << (VTD_PAGE_SHIFT + mask - 1)) - 1;
1219 desc.high = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
1220 } else
1221 desc.high = QI_DEV_IOTLB_ADDR(addr);
1222
1223 if (qdep >= QI_DEV_IOTLB_MAX_INVS)
1224 qdep = 0;
1225
1226 desc.low = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
1227 QI_DIOTLB_TYPE;
1228
1229 qi_submit_sync(&desc, iommu);
1230 }
1231
1232 /*
1233 * Disable Queued Invalidation interface.
1234 */
1235 void dmar_disable_qi(struct intel_iommu *iommu)
1236 {
1237 unsigned long flags;
1238 u32 sts;
1239 cycles_t start_time = get_cycles();
1240
1241 if (!ecap_qis(iommu->ecap))
1242 return;
1243
1244 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1245
1246 sts = dmar_readq(iommu->reg + DMAR_GSTS_REG);
1247 if (!(sts & DMA_GSTS_QIES))
1248 goto end;
1249
1250 /*
1251 * Give a chance to HW to complete the pending invalidation requests.
1252 */
1253 while ((readl(iommu->reg + DMAR_IQT_REG) !=
1254 readl(iommu->reg + DMAR_IQH_REG)) &&
1255 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
1256 cpu_relax();
1257
1258 iommu->gcmd &= ~DMA_GCMD_QIE;
1259 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1260
1261 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
1262 !(sts & DMA_GSTS_QIES), sts);
1263 end:
1264 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1265 }
1266
1267 /*
1268 * Enable queued invalidation.
1269 */
1270 static void __dmar_enable_qi(struct intel_iommu *iommu)
1271 {
1272 u32 sts;
1273 unsigned long flags;
1274 struct q_inval *qi = iommu->qi;
1275
1276 qi->free_head = qi->free_tail = 0;
1277 qi->free_cnt = QI_LENGTH;
1278
1279 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1280
1281 /* write zero to the tail reg */
1282 writel(0, iommu->reg + DMAR_IQT_REG);
1283
1284 dmar_writeq(iommu->reg + DMAR_IQA_REG, virt_to_phys(qi->desc));
1285
1286 iommu->gcmd |= DMA_GCMD_QIE;
1287 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1288
1289 /* Make sure hardware complete it */
1290 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1291
1292 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1293 }
1294
1295 /*
1296 * Enable Queued Invalidation interface. This is a must to support
1297 * interrupt-remapping. Also used by DMA-remapping, which replaces
1298 * register based IOTLB invalidation.
1299 */
1300 int dmar_enable_qi(struct intel_iommu *iommu)
1301 {
1302 struct q_inval *qi;
1303 struct page *desc_page;
1304
1305 if (!ecap_qis(iommu->ecap))
1306 return -ENOENT;
1307
1308 /*
1309 * queued invalidation is already setup and enabled.
1310 */
1311 if (iommu->qi)
1312 return 0;
1313
1314 iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1315 if (!iommu->qi)
1316 return -ENOMEM;
1317
1318 qi = iommu->qi;
1319
1320
1321 desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO, 0);
1322 if (!desc_page) {
1323 kfree(qi);
1324 iommu->qi = NULL;
1325 return -ENOMEM;
1326 }
1327
1328 qi->desc = page_address(desc_page);
1329
1330 qi->desc_status = kzalloc(QI_LENGTH * sizeof(int), GFP_ATOMIC);
1331 if (!qi->desc_status) {
1332 free_page((unsigned long) qi->desc);
1333 kfree(qi);
1334 iommu->qi = NULL;
1335 return -ENOMEM;
1336 }
1337
1338 qi->free_head = qi->free_tail = 0;
1339 qi->free_cnt = QI_LENGTH;
1340
1341 raw_spin_lock_init(&qi->q_lock);
1342
1343 __dmar_enable_qi(iommu);
1344
1345 return 0;
1346 }
1347
1348 /* iommu interrupt handling. Most stuff are MSI-like. */
1349
1350 enum faulttype {
1351 DMA_REMAP,
1352 INTR_REMAP,
1353 UNKNOWN,
1354 };
1355
1356 static const char *dma_remap_fault_reasons[] =
1357 {
1358 "Software",
1359 "Present bit in root entry is clear",
1360 "Present bit in context entry is clear",
1361 "Invalid context entry",
1362 "Access beyond MGAW",
1363 "PTE Write access is not set",
1364 "PTE Read access is not set",
1365 "Next page table ptr is invalid",
1366 "Root table address invalid",
1367 "Context table ptr is invalid",
1368 "non-zero reserved fields in RTP",
1369 "non-zero reserved fields in CTP",
1370 "non-zero reserved fields in PTE",
1371 "PCE for translation request specifies blocking",
1372 };
1373
1374 static const char *irq_remap_fault_reasons[] =
1375 {
1376 "Detected reserved fields in the decoded interrupt-remapped request",
1377 "Interrupt index exceeded the interrupt-remapping table size",
1378 "Present field in the IRTE entry is clear",
1379 "Error accessing interrupt-remapping table pointed by IRTA_REG",
1380 "Detected reserved fields in the IRTE entry",
1381 "Blocked a compatibility format interrupt request",
1382 "Blocked an interrupt request due to source-id verification failure",
1383 };
1384
1385 static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1386 {
1387 if (fault_reason >= 0x20 && (fault_reason - 0x20 <
1388 ARRAY_SIZE(irq_remap_fault_reasons))) {
1389 *fault_type = INTR_REMAP;
1390 return irq_remap_fault_reasons[fault_reason - 0x20];
1391 } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1392 *fault_type = DMA_REMAP;
1393 return dma_remap_fault_reasons[fault_reason];
1394 } else {
1395 *fault_type = UNKNOWN;
1396 return "Unknown";
1397 }
1398 }
1399
1400 void dmar_msi_unmask(struct irq_data *data)
1401 {
1402 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1403 unsigned long flag;
1404
1405 /* unmask it */
1406 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1407 writel(0, iommu->reg + DMAR_FECTL_REG);
1408 /* Read a reg to force flush the post write */
1409 readl(iommu->reg + DMAR_FECTL_REG);
1410 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1411 }
1412
1413 void dmar_msi_mask(struct irq_data *data)
1414 {
1415 unsigned long flag;
1416 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1417
1418 /* mask it */
1419 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1420 writel(DMA_FECTL_IM, iommu->reg + DMAR_FECTL_REG);
1421 /* Read a reg to force flush the post write */
1422 readl(iommu->reg + DMAR_FECTL_REG);
1423 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1424 }
1425
1426 void dmar_msi_write(int irq, struct msi_msg *msg)
1427 {
1428 struct intel_iommu *iommu = irq_get_handler_data(irq);
1429 unsigned long flag;
1430
1431 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1432 writel(msg->data, iommu->reg + DMAR_FEDATA_REG);
1433 writel(msg->address_lo, iommu->reg + DMAR_FEADDR_REG);
1434 writel(msg->address_hi, iommu->reg + DMAR_FEUADDR_REG);
1435 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1436 }
1437
1438 void dmar_msi_read(int irq, struct msi_msg *msg)
1439 {
1440 struct intel_iommu *iommu = irq_get_handler_data(irq);
1441 unsigned long flag;
1442
1443 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1444 msg->data = readl(iommu->reg + DMAR_FEDATA_REG);
1445 msg->address_lo = readl(iommu->reg + DMAR_FEADDR_REG);
1446 msg->address_hi = readl(iommu->reg + DMAR_FEUADDR_REG);
1447 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1448 }
1449
1450 static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1451 u8 fault_reason, u16 source_id, unsigned long long addr)
1452 {
1453 const char *reason;
1454 int fault_type;
1455
1456 reason = dmar_get_fault_reason(fault_reason, &fault_type);
1457
1458 if (fault_type == INTR_REMAP)
1459 pr_err("INTR-REMAP: Request device [[%02x:%02x.%d] "
1460 "fault index %llx\n"
1461 "INTR-REMAP:[fault reason %02d] %s\n",
1462 (source_id >> 8), PCI_SLOT(source_id & 0xFF),
1463 PCI_FUNC(source_id & 0xFF), addr >> 48,
1464 fault_reason, reason);
1465 else
1466 pr_err("DMAR:[%s] Request device [%02x:%02x.%d] "
1467 "fault addr %llx \n"
1468 "DMAR:[fault reason %02d] %s\n",
1469 (type ? "DMA Read" : "DMA Write"),
1470 (source_id >> 8), PCI_SLOT(source_id & 0xFF),
1471 PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason);
1472 return 0;
1473 }
1474
1475 #define PRIMARY_FAULT_REG_LEN (16)
1476 irqreturn_t dmar_fault(int irq, void *dev_id)
1477 {
1478 struct intel_iommu *iommu = dev_id;
1479 int reg, fault_index;
1480 u32 fault_status;
1481 unsigned long flag;
1482
1483 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1484 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1485 if (fault_status)
1486 pr_err("DRHD: handling fault status reg %x\n", fault_status);
1487
1488 /* TBD: ignore advanced fault log currently */
1489 if (!(fault_status & DMA_FSTS_PPF))
1490 goto unlock_exit;
1491
1492 fault_index = dma_fsts_fault_record_index(fault_status);
1493 reg = cap_fault_reg_offset(iommu->cap);
1494 while (1) {
1495 u8 fault_reason;
1496 u16 source_id;
1497 u64 guest_addr;
1498 int type;
1499 u32 data;
1500
1501 /* highest 32 bits */
1502 data = readl(iommu->reg + reg +
1503 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1504 if (!(data & DMA_FRCD_F))
1505 break;
1506
1507 fault_reason = dma_frcd_fault_reason(data);
1508 type = dma_frcd_type(data);
1509
1510 data = readl(iommu->reg + reg +
1511 fault_index * PRIMARY_FAULT_REG_LEN + 8);
1512 source_id = dma_frcd_source_id(data);
1513
1514 guest_addr = dmar_readq(iommu->reg + reg +
1515 fault_index * PRIMARY_FAULT_REG_LEN);
1516 guest_addr = dma_frcd_page_addr(guest_addr);
1517 /* clear the fault */
1518 writel(DMA_FRCD_F, iommu->reg + reg +
1519 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1520
1521 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1522
1523 dmar_fault_do_one(iommu, type, fault_reason,
1524 source_id, guest_addr);
1525
1526 fault_index++;
1527 if (fault_index >= cap_num_fault_regs(iommu->cap))
1528 fault_index = 0;
1529 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1530 }
1531
1532 writel(DMA_FSTS_PFO | DMA_FSTS_PPF, iommu->reg + DMAR_FSTS_REG);
1533
1534 unlock_exit:
1535 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1536 return IRQ_HANDLED;
1537 }
1538
1539 int dmar_set_interrupt(struct intel_iommu *iommu)
1540 {
1541 int irq, ret;
1542
1543 /*
1544 * Check if the fault interrupt is already initialized.
1545 */
1546 if (iommu->irq)
1547 return 0;
1548
1549 irq = create_irq();
1550 if (!irq) {
1551 pr_err("IOMMU: no free vectors\n");
1552 return -EINVAL;
1553 }
1554
1555 irq_set_handler_data(irq, iommu);
1556 iommu->irq = irq;
1557
1558 ret = arch_setup_dmar_msi(irq);
1559 if (ret) {
1560 irq_set_handler_data(irq, NULL);
1561 iommu->irq = 0;
1562 destroy_irq(irq);
1563 return ret;
1564 }
1565
1566 ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
1567 if (ret)
1568 pr_err("IOMMU: can't request irq\n");
1569 return ret;
1570 }
1571
1572 int __init enable_drhd_fault_handling(void)
1573 {
1574 struct dmar_drhd_unit *drhd;
1575 struct intel_iommu *iommu;
1576
1577 /*
1578 * Enable fault control interrupt.
1579 */
1580 for_each_iommu(iommu, drhd) {
1581 u32 fault_status;
1582 int ret = dmar_set_interrupt(iommu);
1583
1584 if (ret) {
1585 pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n",
1586 (unsigned long long)drhd->reg_base_addr, ret);
1587 return -1;
1588 }
1589
1590 /*
1591 * Clear any previous faults.
1592 */
1593 dmar_fault(iommu->irq, iommu);
1594 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1595 writel(fault_status, iommu->reg + DMAR_FSTS_REG);
1596 }
1597
1598 return 0;
1599 }
1600
1601 /*
1602 * Re-enable Queued Invalidation interface.
1603 */
1604 int dmar_reenable_qi(struct intel_iommu *iommu)
1605 {
1606 if (!ecap_qis(iommu->ecap))
1607 return -ENOENT;
1608
1609 if (!iommu->qi)
1610 return -ENOENT;
1611
1612 /*
1613 * First disable queued invalidation.
1614 */
1615 dmar_disable_qi(iommu);
1616 /*
1617 * Then enable queued invalidation again. Since there is no pending
1618 * invalidation requests now, it's safe to re-enable queued
1619 * invalidation.
1620 */
1621 __dmar_enable_qi(iommu);
1622
1623 return 0;
1624 }
1625
1626 /*
1627 * Check interrupt remapping support in DMAR table description.
1628 */
1629 int __init dmar_ir_support(void)
1630 {
1631 struct acpi_table_dmar *dmar;
1632 dmar = (struct acpi_table_dmar *)dmar_tbl;
1633 if (!dmar)
1634 return 0;
1635 return dmar->flags & 0x1;
1636 }
1637
1638 static int __init dmar_free_unused_resources(void)
1639 {
1640 struct dmar_drhd_unit *dmaru, *dmaru_n;
1641
1642 /* DMAR units are in use */
1643 if (irq_remapping_enabled || intel_iommu_enabled)
1644 return 0;
1645
1646 if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units))
1647 bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb);
1648
1649 down_write(&dmar_global_lock);
1650 list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) {
1651 list_del(&dmaru->list);
1652 dmar_free_drhd(dmaru);
1653 }
1654 up_write(&dmar_global_lock);
1655
1656 return 0;
1657 }
1658
1659 late_initcall(dmar_free_unused_resources);
1660 IOMMU_INIT_POST(detect_intel_iommu);
This page took 0.067031 seconds and 6 git commands to generate.