iommu/vt-d: fix resource leakage on error recovery path in iommu_init_domains()
[deliverable/linux.git] / drivers / iommu / intel-iommu.c
1 /*
2 * Copyright (c) 2006, Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
16 *
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21 * Author: Fenghua Yu <fenghua.yu@intel.com>
22 */
23
24 #include <linux/init.h>
25 #include <linux/bitmap.h>
26 #include <linux/debugfs.h>
27 #include <linux/export.h>
28 #include <linux/slab.h>
29 #include <linux/irq.h>
30 #include <linux/interrupt.h>
31 #include <linux/spinlock.h>
32 #include <linux/pci.h>
33 #include <linux/dmar.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/mempool.h>
36 #include <linux/timer.h>
37 #include <linux/iova.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/syscore_ops.h>
41 #include <linux/tboot.h>
42 #include <linux/dmi.h>
43 #include <linux/pci-ats.h>
44 #include <linux/memblock.h>
45 #include <asm/irq_remapping.h>
46 #include <asm/cacheflush.h>
47 #include <asm/iommu.h>
48
49 #include "irq_remapping.h"
50 #include "pci.h"
51
52 #define ROOT_SIZE VTD_PAGE_SIZE
53 #define CONTEXT_SIZE VTD_PAGE_SIZE
54
55 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
56 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
57 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
58
59 #define IOAPIC_RANGE_START (0xfee00000)
60 #define IOAPIC_RANGE_END (0xfeefffff)
61 #define IOVA_START_ADDR (0x1000)
62
63 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
64
65 #define MAX_AGAW_WIDTH 64
66
67 #define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
68 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
69
70 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
71 to match. That way, we can use 'unsigned long' for PFNs with impunity. */
72 #define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \
73 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
74 #define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
75
76 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
77 #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
78 #define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
79
80 /* page table handling */
81 #define LEVEL_STRIDE (9)
82 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
83
84 /*
85 * This bitmap is used to advertise the page sizes our hardware support
86 * to the IOMMU core, which will then use this information to split
87 * physically contiguous memory regions it is mapping into page sizes
88 * that we support.
89 *
90 * Traditionally the IOMMU core just handed us the mappings directly,
91 * after making sure the size is an order of a 4KiB page and that the
92 * mapping has natural alignment.
93 *
94 * To retain this behavior, we currently advertise that we support
95 * all page sizes that are an order of 4KiB.
96 *
97 * If at some point we'd like to utilize the IOMMU core's new behavior,
98 * we could change this to advertise the real page sizes we support.
99 */
100 #define INTEL_IOMMU_PGSIZES (~0xFFFUL)
101
102 static inline int agaw_to_level(int agaw)
103 {
104 return agaw + 2;
105 }
106
107 static inline int agaw_to_width(int agaw)
108 {
109 return 30 + agaw * LEVEL_STRIDE;
110 }
111
112 static inline int width_to_agaw(int width)
113 {
114 return (width - 30) / LEVEL_STRIDE;
115 }
116
117 static inline unsigned int level_to_offset_bits(int level)
118 {
119 return (level - 1) * LEVEL_STRIDE;
120 }
121
122 static inline int pfn_level_offset(unsigned long pfn, int level)
123 {
124 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
125 }
126
127 static inline unsigned long level_mask(int level)
128 {
129 return -1UL << level_to_offset_bits(level);
130 }
131
132 static inline unsigned long level_size(int level)
133 {
134 return 1UL << level_to_offset_bits(level);
135 }
136
137 static inline unsigned long align_to_level(unsigned long pfn, int level)
138 {
139 return (pfn + level_size(level) - 1) & level_mask(level);
140 }
141
142 static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
143 {
144 return 1 << ((lvl - 1) * LEVEL_STRIDE);
145 }
146
147 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
148 are never going to work. */
149 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
150 {
151 return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
152 }
153
154 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
155 {
156 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
157 }
158 static inline unsigned long page_to_dma_pfn(struct page *pg)
159 {
160 return mm_to_dma_pfn(page_to_pfn(pg));
161 }
162 static inline unsigned long virt_to_dma_pfn(void *p)
163 {
164 return page_to_dma_pfn(virt_to_page(p));
165 }
166
167 /* global iommu list, set NULL for ignored DMAR units */
168 static struct intel_iommu **g_iommus;
169
170 static void __init check_tylersburg_isoch(void);
171 static int rwbf_quirk;
172
173 /*
174 * set to 1 to panic kernel if can't successfully enable VT-d
175 * (used when kernel is launched w/ TXT)
176 */
177 static int force_on = 0;
178
179 /*
180 * 0: Present
181 * 1-11: Reserved
182 * 12-63: Context Ptr (12 - (haw-1))
183 * 64-127: Reserved
184 */
185 struct root_entry {
186 u64 val;
187 u64 rsvd1;
188 };
189 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
190 static inline bool root_present(struct root_entry *root)
191 {
192 return (root->val & 1);
193 }
194 static inline void set_root_present(struct root_entry *root)
195 {
196 root->val |= 1;
197 }
198 static inline void set_root_value(struct root_entry *root, unsigned long value)
199 {
200 root->val |= value & VTD_PAGE_MASK;
201 }
202
203 static inline struct context_entry *
204 get_context_addr_from_root(struct root_entry *root)
205 {
206 return (struct context_entry *)
207 (root_present(root)?phys_to_virt(
208 root->val & VTD_PAGE_MASK) :
209 NULL);
210 }
211
212 /*
213 * low 64 bits:
214 * 0: present
215 * 1: fault processing disable
216 * 2-3: translation type
217 * 12-63: address space root
218 * high 64 bits:
219 * 0-2: address width
220 * 3-6: aval
221 * 8-23: domain id
222 */
223 struct context_entry {
224 u64 lo;
225 u64 hi;
226 };
227
228 static inline bool context_present(struct context_entry *context)
229 {
230 return (context->lo & 1);
231 }
232 static inline void context_set_present(struct context_entry *context)
233 {
234 context->lo |= 1;
235 }
236
237 static inline void context_set_fault_enable(struct context_entry *context)
238 {
239 context->lo &= (((u64)-1) << 2) | 1;
240 }
241
242 static inline void context_set_translation_type(struct context_entry *context,
243 unsigned long value)
244 {
245 context->lo &= (((u64)-1) << 4) | 3;
246 context->lo |= (value & 3) << 2;
247 }
248
249 static inline void context_set_address_root(struct context_entry *context,
250 unsigned long value)
251 {
252 context->lo |= value & VTD_PAGE_MASK;
253 }
254
255 static inline void context_set_address_width(struct context_entry *context,
256 unsigned long value)
257 {
258 context->hi |= value & 7;
259 }
260
261 static inline void context_set_domain_id(struct context_entry *context,
262 unsigned long value)
263 {
264 context->hi |= (value & ((1 << 16) - 1)) << 8;
265 }
266
267 static inline void context_clear_entry(struct context_entry *context)
268 {
269 context->lo = 0;
270 context->hi = 0;
271 }
272
273 /*
274 * 0: readable
275 * 1: writable
276 * 2-6: reserved
277 * 7: super page
278 * 8-10: available
279 * 11: snoop behavior
280 * 12-63: Host physcial address
281 */
282 struct dma_pte {
283 u64 val;
284 };
285
286 static inline void dma_clear_pte(struct dma_pte *pte)
287 {
288 pte->val = 0;
289 }
290
291 static inline void dma_set_pte_readable(struct dma_pte *pte)
292 {
293 pte->val |= DMA_PTE_READ;
294 }
295
296 static inline void dma_set_pte_writable(struct dma_pte *pte)
297 {
298 pte->val |= DMA_PTE_WRITE;
299 }
300
301 static inline void dma_set_pte_snp(struct dma_pte *pte)
302 {
303 pte->val |= DMA_PTE_SNP;
304 }
305
306 static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot)
307 {
308 pte->val = (pte->val & ~3) | (prot & 3);
309 }
310
311 static inline u64 dma_pte_addr(struct dma_pte *pte)
312 {
313 #ifdef CONFIG_64BIT
314 return pte->val & VTD_PAGE_MASK;
315 #else
316 /* Must have a full atomic 64-bit read */
317 return __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
318 #endif
319 }
320
321 static inline void dma_set_pte_pfn(struct dma_pte *pte, unsigned long pfn)
322 {
323 pte->val |= (uint64_t)pfn << VTD_PAGE_SHIFT;
324 }
325
326 static inline bool dma_pte_present(struct dma_pte *pte)
327 {
328 return (pte->val & 3) != 0;
329 }
330
331 static inline bool dma_pte_superpage(struct dma_pte *pte)
332 {
333 return (pte->val & (1 << 7));
334 }
335
336 static inline int first_pte_in_page(struct dma_pte *pte)
337 {
338 return !((unsigned long)pte & ~VTD_PAGE_MASK);
339 }
340
341 /*
342 * This domain is a statically identity mapping domain.
343 * 1. This domain creats a static 1:1 mapping to all usable memory.
344 * 2. It maps to each iommu if successful.
345 * 3. Each iommu mapps to this domain if successful.
346 */
347 static struct dmar_domain *si_domain;
348 static int hw_pass_through = 1;
349
350 /* devices under the same p2p bridge are owned in one domain */
351 #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
352
353 /* domain represents a virtual machine, more than one devices
354 * across iommus may be owned in one domain, e.g. kvm guest.
355 */
356 #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 1)
357
358 /* si_domain contains mulitple devices */
359 #define DOMAIN_FLAG_STATIC_IDENTITY (1 << 2)
360
361 /* define the limit of IOMMUs supported in each domain */
362 #ifdef CONFIG_X86
363 # define IOMMU_UNITS_SUPPORTED MAX_IO_APICS
364 #else
365 # define IOMMU_UNITS_SUPPORTED 64
366 #endif
367
368 struct dmar_domain {
369 int id; /* domain id */
370 int nid; /* node id */
371 DECLARE_BITMAP(iommu_bmp, IOMMU_UNITS_SUPPORTED);
372 /* bitmap of iommus this domain uses*/
373
374 struct list_head devices; /* all devices' list */
375 struct iova_domain iovad; /* iova's that belong to this domain */
376
377 struct dma_pte *pgd; /* virtual address */
378 int gaw; /* max guest address width */
379
380 /* adjusted guest address width, 0 is level 2 30-bit */
381 int agaw;
382
383 int flags; /* flags to find out type of domain */
384
385 int iommu_coherency;/* indicate coherency of iommu access */
386 int iommu_snooping; /* indicate snooping control feature*/
387 int iommu_count; /* reference count of iommu */
388 int iommu_superpage;/* Level of superpages supported:
389 0 == 4KiB (no superpages), 1 == 2MiB,
390 2 == 1GiB, 3 == 512GiB, 4 == 1TiB */
391 spinlock_t iommu_lock; /* protect iommu set in domain */
392 u64 max_addr; /* maximum mapped address */
393 };
394
395 /* PCI domain-device relationship */
396 struct device_domain_info {
397 struct list_head link; /* link to domain siblings */
398 struct list_head global; /* link to global list */
399 int segment; /* PCI domain */
400 u8 bus; /* PCI bus number */
401 u8 devfn; /* PCI devfn number */
402 struct pci_dev *dev; /* it's NULL for PCIe-to-PCI bridge */
403 struct intel_iommu *iommu; /* IOMMU used by this device */
404 struct dmar_domain *domain; /* pointer to domain */
405 };
406
407 static void flush_unmaps_timeout(unsigned long data);
408
409 DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0);
410
411 #define HIGH_WATER_MARK 250
412 struct deferred_flush_tables {
413 int next;
414 struct iova *iova[HIGH_WATER_MARK];
415 struct dmar_domain *domain[HIGH_WATER_MARK];
416 };
417
418 static struct deferred_flush_tables *deferred_flush;
419
420 /* bitmap for indexing intel_iommus */
421 static int g_num_of_iommus;
422
423 static DEFINE_SPINLOCK(async_umap_flush_lock);
424 static LIST_HEAD(unmaps_to_do);
425
426 static int timer_on;
427 static long list_size;
428
429 static void domain_remove_dev_info(struct dmar_domain *domain);
430
431 #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
432 int dmar_disabled = 0;
433 #else
434 int dmar_disabled = 1;
435 #endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
436
437 int intel_iommu_enabled = 0;
438 EXPORT_SYMBOL_GPL(intel_iommu_enabled);
439
440 static int dmar_map_gfx = 1;
441 static int dmar_forcedac;
442 static int intel_iommu_strict;
443 static int intel_iommu_superpage = 1;
444
445 int intel_iommu_gfx_mapped;
446 EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
447
448 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
449 static DEFINE_SPINLOCK(device_domain_lock);
450 static LIST_HEAD(device_domain_list);
451
452 static struct iommu_ops intel_iommu_ops;
453
454 static int __init intel_iommu_setup(char *str)
455 {
456 if (!str)
457 return -EINVAL;
458 while (*str) {
459 if (!strncmp(str, "on", 2)) {
460 dmar_disabled = 0;
461 printk(KERN_INFO "Intel-IOMMU: enabled\n");
462 } else if (!strncmp(str, "off", 3)) {
463 dmar_disabled = 1;
464 printk(KERN_INFO "Intel-IOMMU: disabled\n");
465 } else if (!strncmp(str, "igfx_off", 8)) {
466 dmar_map_gfx = 0;
467 printk(KERN_INFO
468 "Intel-IOMMU: disable GFX device mapping\n");
469 } else if (!strncmp(str, "forcedac", 8)) {
470 printk(KERN_INFO
471 "Intel-IOMMU: Forcing DAC for PCI devices\n");
472 dmar_forcedac = 1;
473 } else if (!strncmp(str, "strict", 6)) {
474 printk(KERN_INFO
475 "Intel-IOMMU: disable batched IOTLB flush\n");
476 intel_iommu_strict = 1;
477 } else if (!strncmp(str, "sp_off", 6)) {
478 printk(KERN_INFO
479 "Intel-IOMMU: disable supported super page\n");
480 intel_iommu_superpage = 0;
481 }
482
483 str += strcspn(str, ",");
484 while (*str == ',')
485 str++;
486 }
487 return 0;
488 }
489 __setup("intel_iommu=", intel_iommu_setup);
490
491 static struct kmem_cache *iommu_domain_cache;
492 static struct kmem_cache *iommu_devinfo_cache;
493 static struct kmem_cache *iommu_iova_cache;
494
495 static inline void *alloc_pgtable_page(int node)
496 {
497 struct page *page;
498 void *vaddr = NULL;
499
500 page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
501 if (page)
502 vaddr = page_address(page);
503 return vaddr;
504 }
505
506 static inline void free_pgtable_page(void *vaddr)
507 {
508 free_page((unsigned long)vaddr);
509 }
510
511 static inline void *alloc_domain_mem(void)
512 {
513 return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
514 }
515
516 static void free_domain_mem(void *vaddr)
517 {
518 kmem_cache_free(iommu_domain_cache, vaddr);
519 }
520
521 static inline void * alloc_devinfo_mem(void)
522 {
523 return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
524 }
525
526 static inline void free_devinfo_mem(void *vaddr)
527 {
528 kmem_cache_free(iommu_devinfo_cache, vaddr);
529 }
530
531 struct iova *alloc_iova_mem(void)
532 {
533 return kmem_cache_alloc(iommu_iova_cache, GFP_ATOMIC);
534 }
535
536 void free_iova_mem(struct iova *iova)
537 {
538 kmem_cache_free(iommu_iova_cache, iova);
539 }
540
541
542 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
543 {
544 unsigned long sagaw;
545 int agaw = -1;
546
547 sagaw = cap_sagaw(iommu->cap);
548 for (agaw = width_to_agaw(max_gaw);
549 agaw >= 0; agaw--) {
550 if (test_bit(agaw, &sagaw))
551 break;
552 }
553
554 return agaw;
555 }
556
557 /*
558 * Calculate max SAGAW for each iommu.
559 */
560 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
561 {
562 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
563 }
564
565 /*
566 * calculate agaw for each iommu.
567 * "SAGAW" may be different across iommus, use a default agaw, and
568 * get a supported less agaw for iommus that don't support the default agaw.
569 */
570 int iommu_calculate_agaw(struct intel_iommu *iommu)
571 {
572 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
573 }
574
575 /* This functionin only returns single iommu in a domain */
576 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
577 {
578 int iommu_id;
579
580 /* si_domain and vm domain should not get here. */
581 BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
582 BUG_ON(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY);
583
584 iommu_id = find_first_bit(domain->iommu_bmp, g_num_of_iommus);
585 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
586 return NULL;
587
588 return g_iommus[iommu_id];
589 }
590
591 static void domain_update_iommu_coherency(struct dmar_domain *domain)
592 {
593 int i;
594
595 i = find_first_bit(domain->iommu_bmp, g_num_of_iommus);
596
597 domain->iommu_coherency = i < g_num_of_iommus ? 1 : 0;
598
599 for_each_set_bit(i, domain->iommu_bmp, g_num_of_iommus) {
600 if (!ecap_coherent(g_iommus[i]->ecap)) {
601 domain->iommu_coherency = 0;
602 break;
603 }
604 }
605 }
606
607 static void domain_update_iommu_snooping(struct dmar_domain *domain)
608 {
609 int i;
610
611 domain->iommu_snooping = 1;
612
613 for_each_set_bit(i, domain->iommu_bmp, g_num_of_iommus) {
614 if (!ecap_sc_support(g_iommus[i]->ecap)) {
615 domain->iommu_snooping = 0;
616 break;
617 }
618 }
619 }
620
621 static void domain_update_iommu_superpage(struct dmar_domain *domain)
622 {
623 struct dmar_drhd_unit *drhd;
624 struct intel_iommu *iommu = NULL;
625 int mask = 0xf;
626
627 if (!intel_iommu_superpage) {
628 domain->iommu_superpage = 0;
629 return;
630 }
631
632 /* set iommu_superpage to the smallest common denominator */
633 for_each_active_iommu(iommu, drhd) {
634 mask &= cap_super_page_val(iommu->cap);
635 if (!mask) {
636 break;
637 }
638 }
639 domain->iommu_superpage = fls(mask);
640 }
641
642 /* Some capabilities may be different across iommus */
643 static void domain_update_iommu_cap(struct dmar_domain *domain)
644 {
645 domain_update_iommu_coherency(domain);
646 domain_update_iommu_snooping(domain);
647 domain_update_iommu_superpage(domain);
648 }
649
650 static struct intel_iommu *device_to_iommu(int segment, u8 bus, u8 devfn)
651 {
652 struct dmar_drhd_unit *drhd = NULL;
653 int i;
654
655 for_each_drhd_unit(drhd) {
656 if (drhd->ignored)
657 continue;
658 if (segment != drhd->segment)
659 continue;
660
661 for (i = 0; i < drhd->devices_cnt; i++) {
662 if (drhd->devices[i] &&
663 drhd->devices[i]->bus->number == bus &&
664 drhd->devices[i]->devfn == devfn)
665 return drhd->iommu;
666 if (drhd->devices[i] &&
667 drhd->devices[i]->subordinate &&
668 drhd->devices[i]->subordinate->number <= bus &&
669 drhd->devices[i]->subordinate->busn_res.end >= bus)
670 return drhd->iommu;
671 }
672
673 if (drhd->include_all)
674 return drhd->iommu;
675 }
676
677 return NULL;
678 }
679
680 static void domain_flush_cache(struct dmar_domain *domain,
681 void *addr, int size)
682 {
683 if (!domain->iommu_coherency)
684 clflush_cache_range(addr, size);
685 }
686
687 /* Gets context entry for a given bus and devfn */
688 static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
689 u8 bus, u8 devfn)
690 {
691 struct root_entry *root;
692 struct context_entry *context;
693 unsigned long phy_addr;
694 unsigned long flags;
695
696 spin_lock_irqsave(&iommu->lock, flags);
697 root = &iommu->root_entry[bus];
698 context = get_context_addr_from_root(root);
699 if (!context) {
700 context = (struct context_entry *)
701 alloc_pgtable_page(iommu->node);
702 if (!context) {
703 spin_unlock_irqrestore(&iommu->lock, flags);
704 return NULL;
705 }
706 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
707 phy_addr = virt_to_phys((void *)context);
708 set_root_value(root, phy_addr);
709 set_root_present(root);
710 __iommu_flush_cache(iommu, root, sizeof(*root));
711 }
712 spin_unlock_irqrestore(&iommu->lock, flags);
713 return &context[devfn];
714 }
715
716 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
717 {
718 struct root_entry *root;
719 struct context_entry *context;
720 int ret;
721 unsigned long flags;
722
723 spin_lock_irqsave(&iommu->lock, flags);
724 root = &iommu->root_entry[bus];
725 context = get_context_addr_from_root(root);
726 if (!context) {
727 ret = 0;
728 goto out;
729 }
730 ret = context_present(&context[devfn]);
731 out:
732 spin_unlock_irqrestore(&iommu->lock, flags);
733 return ret;
734 }
735
736 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
737 {
738 struct root_entry *root;
739 struct context_entry *context;
740 unsigned long flags;
741
742 spin_lock_irqsave(&iommu->lock, flags);
743 root = &iommu->root_entry[bus];
744 context = get_context_addr_from_root(root);
745 if (context) {
746 context_clear_entry(&context[devfn]);
747 __iommu_flush_cache(iommu, &context[devfn], \
748 sizeof(*context));
749 }
750 spin_unlock_irqrestore(&iommu->lock, flags);
751 }
752
753 static void free_context_table(struct intel_iommu *iommu)
754 {
755 struct root_entry *root;
756 int i;
757 unsigned long flags;
758 struct context_entry *context;
759
760 spin_lock_irqsave(&iommu->lock, flags);
761 if (!iommu->root_entry) {
762 goto out;
763 }
764 for (i = 0; i < ROOT_ENTRY_NR; i++) {
765 root = &iommu->root_entry[i];
766 context = get_context_addr_from_root(root);
767 if (context)
768 free_pgtable_page(context);
769 }
770 free_pgtable_page(iommu->root_entry);
771 iommu->root_entry = NULL;
772 out:
773 spin_unlock_irqrestore(&iommu->lock, flags);
774 }
775
776 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
777 unsigned long pfn, int target_level)
778 {
779 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
780 struct dma_pte *parent, *pte = NULL;
781 int level = agaw_to_level(domain->agaw);
782 int offset;
783
784 BUG_ON(!domain->pgd);
785
786 if (addr_width < BITS_PER_LONG && pfn >> addr_width)
787 /* Address beyond IOMMU's addressing capabilities. */
788 return NULL;
789
790 parent = domain->pgd;
791
792 while (level > 0) {
793 void *tmp_page;
794
795 offset = pfn_level_offset(pfn, level);
796 pte = &parent[offset];
797 if (!target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
798 break;
799 if (level == target_level)
800 break;
801
802 if (!dma_pte_present(pte)) {
803 uint64_t pteval;
804
805 tmp_page = alloc_pgtable_page(domain->nid);
806
807 if (!tmp_page)
808 return NULL;
809
810 domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
811 pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
812 if (cmpxchg64(&pte->val, 0ULL, pteval)) {
813 /* Someone else set it while we were thinking; use theirs. */
814 free_pgtable_page(tmp_page);
815 } else {
816 dma_pte_addr(pte);
817 domain_flush_cache(domain, pte, sizeof(*pte));
818 }
819 }
820 parent = phys_to_virt(dma_pte_addr(pte));
821 level--;
822 }
823
824 return pte;
825 }
826
827
828 /* return address's pte at specific level */
829 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
830 unsigned long pfn,
831 int level, int *large_page)
832 {
833 struct dma_pte *parent, *pte = NULL;
834 int total = agaw_to_level(domain->agaw);
835 int offset;
836
837 parent = domain->pgd;
838 while (level <= total) {
839 offset = pfn_level_offset(pfn, total);
840 pte = &parent[offset];
841 if (level == total)
842 return pte;
843
844 if (!dma_pte_present(pte)) {
845 *large_page = total;
846 break;
847 }
848
849 if (pte->val & DMA_PTE_LARGE_PAGE) {
850 *large_page = total;
851 return pte;
852 }
853
854 parent = phys_to_virt(dma_pte_addr(pte));
855 total--;
856 }
857 return NULL;
858 }
859
860 /* clear last level pte, a tlb flush should be followed */
861 static int dma_pte_clear_range(struct dmar_domain *domain,
862 unsigned long start_pfn,
863 unsigned long last_pfn)
864 {
865 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
866 unsigned int large_page = 1;
867 struct dma_pte *first_pte, *pte;
868 int order;
869
870 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
871 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
872 BUG_ON(start_pfn > last_pfn);
873
874 /* we don't need lock here; nobody else touches the iova range */
875 do {
876 large_page = 1;
877 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
878 if (!pte) {
879 start_pfn = align_to_level(start_pfn + 1, large_page + 1);
880 continue;
881 }
882 do {
883 dma_clear_pte(pte);
884 start_pfn += lvl_to_nr_pages(large_page);
885 pte++;
886 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
887
888 domain_flush_cache(domain, first_pte,
889 (void *)pte - (void *)first_pte);
890
891 } while (start_pfn && start_pfn <= last_pfn);
892
893 order = (large_page - 1) * 9;
894 return order;
895 }
896
897 static void dma_pte_free_level(struct dmar_domain *domain, int level,
898 struct dma_pte *pte, unsigned long pfn,
899 unsigned long start_pfn, unsigned long last_pfn)
900 {
901 pfn = max(start_pfn, pfn);
902 pte = &pte[pfn_level_offset(pfn, level)];
903
904 do {
905 unsigned long level_pfn;
906 struct dma_pte *level_pte;
907
908 if (!dma_pte_present(pte) || dma_pte_superpage(pte))
909 goto next;
910
911 level_pfn = pfn & level_mask(level - 1);
912 level_pte = phys_to_virt(dma_pte_addr(pte));
913
914 if (level > 2)
915 dma_pte_free_level(domain, level - 1, level_pte,
916 level_pfn, start_pfn, last_pfn);
917
918 /* If range covers entire pagetable, free it */
919 if (!(start_pfn > level_pfn ||
920 last_pfn < level_pfn + level_size(level))) {
921 dma_clear_pte(pte);
922 domain_flush_cache(domain, pte, sizeof(*pte));
923 free_pgtable_page(level_pte);
924 }
925 next:
926 pfn += level_size(level);
927 } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
928 }
929
930 /* free page table pages. last level pte should already be cleared */
931 static void dma_pte_free_pagetable(struct dmar_domain *domain,
932 unsigned long start_pfn,
933 unsigned long last_pfn)
934 {
935 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
936
937 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
938 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
939 BUG_ON(start_pfn > last_pfn);
940
941 /* We don't need lock here; nobody else touches the iova range */
942 dma_pte_free_level(domain, agaw_to_level(domain->agaw),
943 domain->pgd, 0, start_pfn, last_pfn);
944
945 /* free pgd */
946 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
947 free_pgtable_page(domain->pgd);
948 domain->pgd = NULL;
949 }
950 }
951
952 /* iommu handling */
953 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
954 {
955 struct root_entry *root;
956 unsigned long flags;
957
958 root = (struct root_entry *)alloc_pgtable_page(iommu->node);
959 if (!root)
960 return -ENOMEM;
961
962 __iommu_flush_cache(iommu, root, ROOT_SIZE);
963
964 spin_lock_irqsave(&iommu->lock, flags);
965 iommu->root_entry = root;
966 spin_unlock_irqrestore(&iommu->lock, flags);
967
968 return 0;
969 }
970
971 static void iommu_set_root_entry(struct intel_iommu *iommu)
972 {
973 void *addr;
974 u32 sts;
975 unsigned long flag;
976
977 addr = iommu->root_entry;
978
979 raw_spin_lock_irqsave(&iommu->register_lock, flag);
980 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
981
982 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
983
984 /* Make sure hardware complete it */
985 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
986 readl, (sts & DMA_GSTS_RTPS), sts);
987
988 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
989 }
990
991 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
992 {
993 u32 val;
994 unsigned long flag;
995
996 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
997 return;
998
999 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1000 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
1001
1002 /* Make sure hardware complete it */
1003 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1004 readl, (!(val & DMA_GSTS_WBFS)), val);
1005
1006 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1007 }
1008
1009 /* return value determine if we need a write buffer flush */
1010 static void __iommu_flush_context(struct intel_iommu *iommu,
1011 u16 did, u16 source_id, u8 function_mask,
1012 u64 type)
1013 {
1014 u64 val = 0;
1015 unsigned long flag;
1016
1017 switch (type) {
1018 case DMA_CCMD_GLOBAL_INVL:
1019 val = DMA_CCMD_GLOBAL_INVL;
1020 break;
1021 case DMA_CCMD_DOMAIN_INVL:
1022 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
1023 break;
1024 case DMA_CCMD_DEVICE_INVL:
1025 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
1026 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
1027 break;
1028 default:
1029 BUG();
1030 }
1031 val |= DMA_CCMD_ICC;
1032
1033 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1034 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1035
1036 /* Make sure hardware complete it */
1037 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1038 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1039
1040 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1041 }
1042
1043 /* return value determine if we need a write buffer flush */
1044 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1045 u64 addr, unsigned int size_order, u64 type)
1046 {
1047 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1048 u64 val = 0, val_iva = 0;
1049 unsigned long flag;
1050
1051 switch (type) {
1052 case DMA_TLB_GLOBAL_FLUSH:
1053 /* global flush doesn't need set IVA_REG */
1054 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1055 break;
1056 case DMA_TLB_DSI_FLUSH:
1057 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1058 break;
1059 case DMA_TLB_PSI_FLUSH:
1060 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1061 /* Note: always flush non-leaf currently */
1062 val_iva = size_order | addr;
1063 break;
1064 default:
1065 BUG();
1066 }
1067 /* Note: set drain read/write */
1068 #if 0
1069 /*
1070 * This is probably to be super secure.. Looks like we can
1071 * ignore it without any impact.
1072 */
1073 if (cap_read_drain(iommu->cap))
1074 val |= DMA_TLB_READ_DRAIN;
1075 #endif
1076 if (cap_write_drain(iommu->cap))
1077 val |= DMA_TLB_WRITE_DRAIN;
1078
1079 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1080 /* Note: Only uses first TLB reg currently */
1081 if (val_iva)
1082 dmar_writeq(iommu->reg + tlb_offset, val_iva);
1083 dmar_writeq(iommu->reg + tlb_offset + 8, val);
1084
1085 /* Make sure hardware complete it */
1086 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1087 dmar_readq, (!(val & DMA_TLB_IVT)), val);
1088
1089 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1090
1091 /* check IOTLB invalidation granularity */
1092 if (DMA_TLB_IAIG(val) == 0)
1093 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
1094 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1095 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
1096 (unsigned long long)DMA_TLB_IIRG(type),
1097 (unsigned long long)DMA_TLB_IAIG(val));
1098 }
1099
1100 static struct device_domain_info *iommu_support_dev_iotlb(
1101 struct dmar_domain *domain, int segment, u8 bus, u8 devfn)
1102 {
1103 int found = 0;
1104 unsigned long flags;
1105 struct device_domain_info *info;
1106 struct intel_iommu *iommu = device_to_iommu(segment, bus, devfn);
1107
1108 if (!ecap_dev_iotlb_support(iommu->ecap))
1109 return NULL;
1110
1111 if (!iommu->qi)
1112 return NULL;
1113
1114 spin_lock_irqsave(&device_domain_lock, flags);
1115 list_for_each_entry(info, &domain->devices, link)
1116 if (info->bus == bus && info->devfn == devfn) {
1117 found = 1;
1118 break;
1119 }
1120 spin_unlock_irqrestore(&device_domain_lock, flags);
1121
1122 if (!found || !info->dev)
1123 return NULL;
1124
1125 if (!pci_find_ext_capability(info->dev, PCI_EXT_CAP_ID_ATS))
1126 return NULL;
1127
1128 if (!dmar_find_matched_atsr_unit(info->dev))
1129 return NULL;
1130
1131 info->iommu = iommu;
1132
1133 return info;
1134 }
1135
1136 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1137 {
1138 if (!info)
1139 return;
1140
1141 pci_enable_ats(info->dev, VTD_PAGE_SHIFT);
1142 }
1143
1144 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1145 {
1146 if (!info->dev || !pci_ats_enabled(info->dev))
1147 return;
1148
1149 pci_disable_ats(info->dev);
1150 }
1151
1152 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1153 u64 addr, unsigned mask)
1154 {
1155 u16 sid, qdep;
1156 unsigned long flags;
1157 struct device_domain_info *info;
1158
1159 spin_lock_irqsave(&device_domain_lock, flags);
1160 list_for_each_entry(info, &domain->devices, link) {
1161 if (!info->dev || !pci_ats_enabled(info->dev))
1162 continue;
1163
1164 sid = info->bus << 8 | info->devfn;
1165 qdep = pci_ats_queue_depth(info->dev);
1166 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1167 }
1168 spin_unlock_irqrestore(&device_domain_lock, flags);
1169 }
1170
1171 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
1172 unsigned long pfn, unsigned int pages, int map)
1173 {
1174 unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1175 uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1176
1177 BUG_ON(pages == 0);
1178
1179 /*
1180 * Fallback to domain selective flush if no PSI support or the size is
1181 * too big.
1182 * PSI requires page size to be 2 ^ x, and the base address is naturally
1183 * aligned to the size
1184 */
1185 if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1186 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1187 DMA_TLB_DSI_FLUSH);
1188 else
1189 iommu->flush.flush_iotlb(iommu, did, addr, mask,
1190 DMA_TLB_PSI_FLUSH);
1191
1192 /*
1193 * In caching mode, changes of pages from non-present to present require
1194 * flush. However, device IOTLB doesn't need to be flushed in this case.
1195 */
1196 if (!cap_caching_mode(iommu->cap) || !map)
1197 iommu_flush_dev_iotlb(iommu->domains[did], addr, mask);
1198 }
1199
1200 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1201 {
1202 u32 pmen;
1203 unsigned long flags;
1204
1205 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1206 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1207 pmen &= ~DMA_PMEN_EPM;
1208 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1209
1210 /* wait for the protected region status bit to clear */
1211 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1212 readl, !(pmen & DMA_PMEN_PRS), pmen);
1213
1214 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1215 }
1216
1217 static int iommu_enable_translation(struct intel_iommu *iommu)
1218 {
1219 u32 sts;
1220 unsigned long flags;
1221
1222 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1223 iommu->gcmd |= DMA_GCMD_TE;
1224 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1225
1226 /* Make sure hardware complete it */
1227 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1228 readl, (sts & DMA_GSTS_TES), sts);
1229
1230 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1231 return 0;
1232 }
1233
1234 static int iommu_disable_translation(struct intel_iommu *iommu)
1235 {
1236 u32 sts;
1237 unsigned long flag;
1238
1239 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1240 iommu->gcmd &= ~DMA_GCMD_TE;
1241 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1242
1243 /* Make sure hardware complete it */
1244 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1245 readl, (!(sts & DMA_GSTS_TES)), sts);
1246
1247 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1248 return 0;
1249 }
1250
1251
1252 static int iommu_init_domains(struct intel_iommu *iommu)
1253 {
1254 unsigned long ndomains;
1255 unsigned long nlongs;
1256
1257 ndomains = cap_ndoms(iommu->cap);
1258 pr_debug("IOMMU%d: Number of Domains supported <%ld>\n",
1259 iommu->seq_id, ndomains);
1260 nlongs = BITS_TO_LONGS(ndomains);
1261
1262 spin_lock_init(&iommu->lock);
1263
1264 /* TBD: there might be 64K domains,
1265 * consider other allocation for future chip
1266 */
1267 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1268 if (!iommu->domain_ids) {
1269 pr_err("IOMMU%d: allocating domain id array failed\n",
1270 iommu->seq_id);
1271 return -ENOMEM;
1272 }
1273 iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1274 GFP_KERNEL);
1275 if (!iommu->domains) {
1276 pr_err("IOMMU%d: allocating domain array failed\n",
1277 iommu->seq_id);
1278 kfree(iommu->domain_ids);
1279 iommu->domain_ids = NULL;
1280 return -ENOMEM;
1281 }
1282
1283 /*
1284 * if Caching mode is set, then invalid translations are tagged
1285 * with domainid 0. Hence we need to pre-allocate it.
1286 */
1287 if (cap_caching_mode(iommu->cap))
1288 set_bit(0, iommu->domain_ids);
1289 return 0;
1290 }
1291
1292
1293 static void domain_exit(struct dmar_domain *domain);
1294 static void vm_domain_exit(struct dmar_domain *domain);
1295
1296 void free_dmar_iommu(struct intel_iommu *iommu)
1297 {
1298 struct dmar_domain *domain;
1299 int i;
1300 unsigned long flags;
1301
1302 if ((iommu->domains) && (iommu->domain_ids)) {
1303 for_each_set_bit(i, iommu->domain_ids, cap_ndoms(iommu->cap)) {
1304 domain = iommu->domains[i];
1305 clear_bit(i, iommu->domain_ids);
1306
1307 spin_lock_irqsave(&domain->iommu_lock, flags);
1308 if (--domain->iommu_count == 0) {
1309 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
1310 vm_domain_exit(domain);
1311 else
1312 domain_exit(domain);
1313 }
1314 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1315 }
1316 }
1317
1318 if (iommu->gcmd & DMA_GCMD_TE)
1319 iommu_disable_translation(iommu);
1320
1321 if (iommu->irq) {
1322 irq_set_handler_data(iommu->irq, NULL);
1323 /* This will mask the irq */
1324 free_irq(iommu->irq, iommu);
1325 destroy_irq(iommu->irq);
1326 }
1327
1328 kfree(iommu->domains);
1329 kfree(iommu->domain_ids);
1330
1331 g_iommus[iommu->seq_id] = NULL;
1332
1333 /* if all iommus are freed, free g_iommus */
1334 for (i = 0; i < g_num_of_iommus; i++) {
1335 if (g_iommus[i])
1336 break;
1337 }
1338
1339 if (i == g_num_of_iommus)
1340 kfree(g_iommus);
1341
1342 /* free context mapping */
1343 free_context_table(iommu);
1344 }
1345
1346 static struct dmar_domain *alloc_domain(void)
1347 {
1348 struct dmar_domain *domain;
1349
1350 domain = alloc_domain_mem();
1351 if (!domain)
1352 return NULL;
1353
1354 domain->nid = -1;
1355 memset(domain->iommu_bmp, 0, sizeof(domain->iommu_bmp));
1356 domain->flags = 0;
1357
1358 return domain;
1359 }
1360
1361 static int iommu_attach_domain(struct dmar_domain *domain,
1362 struct intel_iommu *iommu)
1363 {
1364 int num;
1365 unsigned long ndomains;
1366 unsigned long flags;
1367
1368 ndomains = cap_ndoms(iommu->cap);
1369
1370 spin_lock_irqsave(&iommu->lock, flags);
1371
1372 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1373 if (num >= ndomains) {
1374 spin_unlock_irqrestore(&iommu->lock, flags);
1375 printk(KERN_ERR "IOMMU: no free domain ids\n");
1376 return -ENOMEM;
1377 }
1378
1379 domain->id = num;
1380 set_bit(num, iommu->domain_ids);
1381 set_bit(iommu->seq_id, domain->iommu_bmp);
1382 iommu->domains[num] = domain;
1383 spin_unlock_irqrestore(&iommu->lock, flags);
1384
1385 return 0;
1386 }
1387
1388 static void iommu_detach_domain(struct dmar_domain *domain,
1389 struct intel_iommu *iommu)
1390 {
1391 unsigned long flags;
1392 int num, ndomains;
1393 int found = 0;
1394
1395 spin_lock_irqsave(&iommu->lock, flags);
1396 ndomains = cap_ndoms(iommu->cap);
1397 for_each_set_bit(num, iommu->domain_ids, ndomains) {
1398 if (iommu->domains[num] == domain) {
1399 found = 1;
1400 break;
1401 }
1402 }
1403
1404 if (found) {
1405 clear_bit(num, iommu->domain_ids);
1406 clear_bit(iommu->seq_id, domain->iommu_bmp);
1407 iommu->domains[num] = NULL;
1408 }
1409 spin_unlock_irqrestore(&iommu->lock, flags);
1410 }
1411
1412 static struct iova_domain reserved_iova_list;
1413 static struct lock_class_key reserved_rbtree_key;
1414
1415 static int dmar_init_reserved_ranges(void)
1416 {
1417 struct pci_dev *pdev = NULL;
1418 struct iova *iova;
1419 int i;
1420
1421 init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
1422
1423 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1424 &reserved_rbtree_key);
1425
1426 /* IOAPIC ranges shouldn't be accessed by DMA */
1427 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1428 IOVA_PFN(IOAPIC_RANGE_END));
1429 if (!iova) {
1430 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1431 return -ENODEV;
1432 }
1433
1434 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1435 for_each_pci_dev(pdev) {
1436 struct resource *r;
1437
1438 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1439 r = &pdev->resource[i];
1440 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1441 continue;
1442 iova = reserve_iova(&reserved_iova_list,
1443 IOVA_PFN(r->start),
1444 IOVA_PFN(r->end));
1445 if (!iova) {
1446 printk(KERN_ERR "Reserve iova failed\n");
1447 return -ENODEV;
1448 }
1449 }
1450 }
1451 return 0;
1452 }
1453
1454 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1455 {
1456 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1457 }
1458
1459 static inline int guestwidth_to_adjustwidth(int gaw)
1460 {
1461 int agaw;
1462 int r = (gaw - 12) % 9;
1463
1464 if (r == 0)
1465 agaw = gaw;
1466 else
1467 agaw = gaw + 9 - r;
1468 if (agaw > 64)
1469 agaw = 64;
1470 return agaw;
1471 }
1472
1473 static int domain_init(struct dmar_domain *domain, int guest_width)
1474 {
1475 struct intel_iommu *iommu;
1476 int adjust_width, agaw;
1477 unsigned long sagaw;
1478
1479 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
1480 spin_lock_init(&domain->iommu_lock);
1481
1482 domain_reserve_special_ranges(domain);
1483
1484 /* calculate AGAW */
1485 iommu = domain_get_iommu(domain);
1486 if (guest_width > cap_mgaw(iommu->cap))
1487 guest_width = cap_mgaw(iommu->cap);
1488 domain->gaw = guest_width;
1489 adjust_width = guestwidth_to_adjustwidth(guest_width);
1490 agaw = width_to_agaw(adjust_width);
1491 sagaw = cap_sagaw(iommu->cap);
1492 if (!test_bit(agaw, &sagaw)) {
1493 /* hardware doesn't support it, choose a bigger one */
1494 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1495 agaw = find_next_bit(&sagaw, 5, agaw);
1496 if (agaw >= 5)
1497 return -ENODEV;
1498 }
1499 domain->agaw = agaw;
1500 INIT_LIST_HEAD(&domain->devices);
1501
1502 if (ecap_coherent(iommu->ecap))
1503 domain->iommu_coherency = 1;
1504 else
1505 domain->iommu_coherency = 0;
1506
1507 if (ecap_sc_support(iommu->ecap))
1508 domain->iommu_snooping = 1;
1509 else
1510 domain->iommu_snooping = 0;
1511
1512 domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
1513 domain->iommu_count = 1;
1514 domain->nid = iommu->node;
1515
1516 /* always allocate the top pgd */
1517 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1518 if (!domain->pgd)
1519 return -ENOMEM;
1520 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1521 return 0;
1522 }
1523
1524 static void domain_exit(struct dmar_domain *domain)
1525 {
1526 struct dmar_drhd_unit *drhd;
1527 struct intel_iommu *iommu;
1528
1529 /* Domain 0 is reserved, so dont process it */
1530 if (!domain)
1531 return;
1532
1533 /* Flush any lazy unmaps that may reference this domain */
1534 if (!intel_iommu_strict)
1535 flush_unmaps_timeout(0);
1536
1537 domain_remove_dev_info(domain);
1538 /* destroy iovas */
1539 put_iova_domain(&domain->iovad);
1540
1541 /* clear ptes */
1542 dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1543
1544 /* free page tables */
1545 dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1546
1547 for_each_active_iommu(iommu, drhd)
1548 if (test_bit(iommu->seq_id, domain->iommu_bmp))
1549 iommu_detach_domain(domain, iommu);
1550
1551 free_domain_mem(domain);
1552 }
1553
1554 static int domain_context_mapping_one(struct dmar_domain *domain, int segment,
1555 u8 bus, u8 devfn, int translation)
1556 {
1557 struct context_entry *context;
1558 unsigned long flags;
1559 struct intel_iommu *iommu;
1560 struct dma_pte *pgd;
1561 unsigned long num;
1562 unsigned long ndomains;
1563 int id;
1564 int agaw;
1565 struct device_domain_info *info = NULL;
1566
1567 pr_debug("Set context mapping for %02x:%02x.%d\n",
1568 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1569
1570 BUG_ON(!domain->pgd);
1571 BUG_ON(translation != CONTEXT_TT_PASS_THROUGH &&
1572 translation != CONTEXT_TT_MULTI_LEVEL);
1573
1574 iommu = device_to_iommu(segment, bus, devfn);
1575 if (!iommu)
1576 return -ENODEV;
1577
1578 context = device_to_context_entry(iommu, bus, devfn);
1579 if (!context)
1580 return -ENOMEM;
1581 spin_lock_irqsave(&iommu->lock, flags);
1582 if (context_present(context)) {
1583 spin_unlock_irqrestore(&iommu->lock, flags);
1584 return 0;
1585 }
1586
1587 id = domain->id;
1588 pgd = domain->pgd;
1589
1590 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
1591 domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) {
1592 int found = 0;
1593
1594 /* find an available domain id for this device in iommu */
1595 ndomains = cap_ndoms(iommu->cap);
1596 for_each_set_bit(num, iommu->domain_ids, ndomains) {
1597 if (iommu->domains[num] == domain) {
1598 id = num;
1599 found = 1;
1600 break;
1601 }
1602 }
1603
1604 if (found == 0) {
1605 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1606 if (num >= ndomains) {
1607 spin_unlock_irqrestore(&iommu->lock, flags);
1608 printk(KERN_ERR "IOMMU: no free domain ids\n");
1609 return -EFAULT;
1610 }
1611
1612 set_bit(num, iommu->domain_ids);
1613 iommu->domains[num] = domain;
1614 id = num;
1615 }
1616
1617 /* Skip top levels of page tables for
1618 * iommu which has less agaw than default.
1619 * Unnecessary for PT mode.
1620 */
1621 if (translation != CONTEXT_TT_PASS_THROUGH) {
1622 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1623 pgd = phys_to_virt(dma_pte_addr(pgd));
1624 if (!dma_pte_present(pgd)) {
1625 spin_unlock_irqrestore(&iommu->lock, flags);
1626 return -ENOMEM;
1627 }
1628 }
1629 }
1630 }
1631
1632 context_set_domain_id(context, id);
1633
1634 if (translation != CONTEXT_TT_PASS_THROUGH) {
1635 info = iommu_support_dev_iotlb(domain, segment, bus, devfn);
1636 translation = info ? CONTEXT_TT_DEV_IOTLB :
1637 CONTEXT_TT_MULTI_LEVEL;
1638 }
1639 /*
1640 * In pass through mode, AW must be programmed to indicate the largest
1641 * AGAW value supported by hardware. And ASR is ignored by hardware.
1642 */
1643 if (unlikely(translation == CONTEXT_TT_PASS_THROUGH))
1644 context_set_address_width(context, iommu->msagaw);
1645 else {
1646 context_set_address_root(context, virt_to_phys(pgd));
1647 context_set_address_width(context, iommu->agaw);
1648 }
1649
1650 context_set_translation_type(context, translation);
1651 context_set_fault_enable(context);
1652 context_set_present(context);
1653 domain_flush_cache(domain, context, sizeof(*context));
1654
1655 /*
1656 * It's a non-present to present mapping. If hardware doesn't cache
1657 * non-present entry we only need to flush the write-buffer. If the
1658 * _does_ cache non-present entries, then it does so in the special
1659 * domain #0, which we have to flush:
1660 */
1661 if (cap_caching_mode(iommu->cap)) {
1662 iommu->flush.flush_context(iommu, 0,
1663 (((u16)bus) << 8) | devfn,
1664 DMA_CCMD_MASK_NOBIT,
1665 DMA_CCMD_DEVICE_INVL);
1666 iommu->flush.flush_iotlb(iommu, domain->id, 0, 0, DMA_TLB_DSI_FLUSH);
1667 } else {
1668 iommu_flush_write_buffer(iommu);
1669 }
1670 iommu_enable_dev_iotlb(info);
1671 spin_unlock_irqrestore(&iommu->lock, flags);
1672
1673 spin_lock_irqsave(&domain->iommu_lock, flags);
1674 if (!test_and_set_bit(iommu->seq_id, domain->iommu_bmp)) {
1675 domain->iommu_count++;
1676 if (domain->iommu_count == 1)
1677 domain->nid = iommu->node;
1678 domain_update_iommu_cap(domain);
1679 }
1680 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1681 return 0;
1682 }
1683
1684 static int
1685 domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev,
1686 int translation)
1687 {
1688 int ret;
1689 struct pci_dev *tmp, *parent;
1690
1691 ret = domain_context_mapping_one(domain, pci_domain_nr(pdev->bus),
1692 pdev->bus->number, pdev->devfn,
1693 translation);
1694 if (ret)
1695 return ret;
1696
1697 /* dependent device mapping */
1698 tmp = pci_find_upstream_pcie_bridge(pdev);
1699 if (!tmp)
1700 return 0;
1701 /* Secondary interface's bus number and devfn 0 */
1702 parent = pdev->bus->self;
1703 while (parent != tmp) {
1704 ret = domain_context_mapping_one(domain,
1705 pci_domain_nr(parent->bus),
1706 parent->bus->number,
1707 parent->devfn, translation);
1708 if (ret)
1709 return ret;
1710 parent = parent->bus->self;
1711 }
1712 if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */
1713 return domain_context_mapping_one(domain,
1714 pci_domain_nr(tmp->subordinate),
1715 tmp->subordinate->number, 0,
1716 translation);
1717 else /* this is a legacy PCI bridge */
1718 return domain_context_mapping_one(domain,
1719 pci_domain_nr(tmp->bus),
1720 tmp->bus->number,
1721 tmp->devfn,
1722 translation);
1723 }
1724
1725 static int domain_context_mapped(struct pci_dev *pdev)
1726 {
1727 int ret;
1728 struct pci_dev *tmp, *parent;
1729 struct intel_iommu *iommu;
1730
1731 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
1732 pdev->devfn);
1733 if (!iommu)
1734 return -ENODEV;
1735
1736 ret = device_context_mapped(iommu, pdev->bus->number, pdev->devfn);
1737 if (!ret)
1738 return ret;
1739 /* dependent device mapping */
1740 tmp = pci_find_upstream_pcie_bridge(pdev);
1741 if (!tmp)
1742 return ret;
1743 /* Secondary interface's bus number and devfn 0 */
1744 parent = pdev->bus->self;
1745 while (parent != tmp) {
1746 ret = device_context_mapped(iommu, parent->bus->number,
1747 parent->devfn);
1748 if (!ret)
1749 return ret;
1750 parent = parent->bus->self;
1751 }
1752 if (pci_is_pcie(tmp))
1753 return device_context_mapped(iommu, tmp->subordinate->number,
1754 0);
1755 else
1756 return device_context_mapped(iommu, tmp->bus->number,
1757 tmp->devfn);
1758 }
1759
1760 /* Returns a number of VTD pages, but aligned to MM page size */
1761 static inline unsigned long aligned_nrpages(unsigned long host_addr,
1762 size_t size)
1763 {
1764 host_addr &= ~PAGE_MASK;
1765 return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
1766 }
1767
1768 /* Return largest possible superpage level for a given mapping */
1769 static inline int hardware_largepage_caps(struct dmar_domain *domain,
1770 unsigned long iov_pfn,
1771 unsigned long phy_pfn,
1772 unsigned long pages)
1773 {
1774 int support, level = 1;
1775 unsigned long pfnmerge;
1776
1777 support = domain->iommu_superpage;
1778
1779 /* To use a large page, the virtual *and* physical addresses
1780 must be aligned to 2MiB/1GiB/etc. Lower bits set in either
1781 of them will mean we have to use smaller pages. So just
1782 merge them and check both at once. */
1783 pfnmerge = iov_pfn | phy_pfn;
1784
1785 while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
1786 pages >>= VTD_STRIDE_SHIFT;
1787 if (!pages)
1788 break;
1789 pfnmerge >>= VTD_STRIDE_SHIFT;
1790 level++;
1791 support--;
1792 }
1793 return level;
1794 }
1795
1796 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1797 struct scatterlist *sg, unsigned long phys_pfn,
1798 unsigned long nr_pages, int prot)
1799 {
1800 struct dma_pte *first_pte = NULL, *pte = NULL;
1801 phys_addr_t uninitialized_var(pteval);
1802 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
1803 unsigned long sg_res;
1804 unsigned int largepage_lvl = 0;
1805 unsigned long lvl_pages = 0;
1806
1807 BUG_ON(addr_width < BITS_PER_LONG && (iov_pfn + nr_pages - 1) >> addr_width);
1808
1809 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1810 return -EINVAL;
1811
1812 prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
1813
1814 if (sg)
1815 sg_res = 0;
1816 else {
1817 sg_res = nr_pages + 1;
1818 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
1819 }
1820
1821 while (nr_pages > 0) {
1822 uint64_t tmp;
1823
1824 if (!sg_res) {
1825 sg_res = aligned_nrpages(sg->offset, sg->length);
1826 sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
1827 sg->dma_length = sg->length;
1828 pteval = page_to_phys(sg_page(sg)) | prot;
1829 phys_pfn = pteval >> VTD_PAGE_SHIFT;
1830 }
1831
1832 if (!pte) {
1833 largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
1834
1835 first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, largepage_lvl);
1836 if (!pte)
1837 return -ENOMEM;
1838 /* It is large page*/
1839 if (largepage_lvl > 1) {
1840 pteval |= DMA_PTE_LARGE_PAGE;
1841 /* Ensure that old small page tables are removed to make room
1842 for superpage, if they exist. */
1843 dma_pte_clear_range(domain, iov_pfn,
1844 iov_pfn + lvl_to_nr_pages(largepage_lvl) - 1);
1845 dma_pte_free_pagetable(domain, iov_pfn,
1846 iov_pfn + lvl_to_nr_pages(largepage_lvl) - 1);
1847 } else {
1848 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
1849 }
1850
1851 }
1852 /* We don't need lock here, nobody else
1853 * touches the iova range
1854 */
1855 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
1856 if (tmp) {
1857 static int dumps = 5;
1858 printk(KERN_CRIT "ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
1859 iov_pfn, tmp, (unsigned long long)pteval);
1860 if (dumps) {
1861 dumps--;
1862 debug_dma_dump_mappings(NULL);
1863 }
1864 WARN_ON(1);
1865 }
1866
1867 lvl_pages = lvl_to_nr_pages(largepage_lvl);
1868
1869 BUG_ON(nr_pages < lvl_pages);
1870 BUG_ON(sg_res < lvl_pages);
1871
1872 nr_pages -= lvl_pages;
1873 iov_pfn += lvl_pages;
1874 phys_pfn += lvl_pages;
1875 pteval += lvl_pages * VTD_PAGE_SIZE;
1876 sg_res -= lvl_pages;
1877
1878 /* If the next PTE would be the first in a new page, then we
1879 need to flush the cache on the entries we've just written.
1880 And then we'll need to recalculate 'pte', so clear it and
1881 let it get set again in the if (!pte) block above.
1882
1883 If we're done (!nr_pages) we need to flush the cache too.
1884
1885 Also if we've been setting superpages, we may need to
1886 recalculate 'pte' and switch back to smaller pages for the
1887 end of the mapping, if the trailing size is not enough to
1888 use another superpage (i.e. sg_res < lvl_pages). */
1889 pte++;
1890 if (!nr_pages || first_pte_in_page(pte) ||
1891 (largepage_lvl > 1 && sg_res < lvl_pages)) {
1892 domain_flush_cache(domain, first_pte,
1893 (void *)pte - (void *)first_pte);
1894 pte = NULL;
1895 }
1896
1897 if (!sg_res && nr_pages)
1898 sg = sg_next(sg);
1899 }
1900 return 0;
1901 }
1902
1903 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1904 struct scatterlist *sg, unsigned long nr_pages,
1905 int prot)
1906 {
1907 return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
1908 }
1909
1910 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1911 unsigned long phys_pfn, unsigned long nr_pages,
1912 int prot)
1913 {
1914 return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
1915 }
1916
1917 static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
1918 {
1919 if (!iommu)
1920 return;
1921
1922 clear_context_table(iommu, bus, devfn);
1923 iommu->flush.flush_context(iommu, 0, 0, 0,
1924 DMA_CCMD_GLOBAL_INVL);
1925 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
1926 }
1927
1928 static inline void unlink_domain_info(struct device_domain_info *info)
1929 {
1930 assert_spin_locked(&device_domain_lock);
1931 list_del(&info->link);
1932 list_del(&info->global);
1933 if (info->dev)
1934 info->dev->dev.archdata.iommu = NULL;
1935 }
1936
1937 static void domain_remove_dev_info(struct dmar_domain *domain)
1938 {
1939 struct device_domain_info *info;
1940 unsigned long flags;
1941 struct intel_iommu *iommu;
1942
1943 spin_lock_irqsave(&device_domain_lock, flags);
1944 while (!list_empty(&domain->devices)) {
1945 info = list_entry(domain->devices.next,
1946 struct device_domain_info, link);
1947 unlink_domain_info(info);
1948 spin_unlock_irqrestore(&device_domain_lock, flags);
1949
1950 iommu_disable_dev_iotlb(info);
1951 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
1952 iommu_detach_dev(iommu, info->bus, info->devfn);
1953 free_devinfo_mem(info);
1954
1955 spin_lock_irqsave(&device_domain_lock, flags);
1956 }
1957 spin_unlock_irqrestore(&device_domain_lock, flags);
1958 }
1959
1960 /*
1961 * find_domain
1962 * Note: we use struct pci_dev->dev.archdata.iommu stores the info
1963 */
1964 static struct dmar_domain *
1965 find_domain(struct pci_dev *pdev)
1966 {
1967 struct device_domain_info *info;
1968
1969 /* No lock here, assumes no domain exit in normal case */
1970 info = pdev->dev.archdata.iommu;
1971 if (info)
1972 return info->domain;
1973 return NULL;
1974 }
1975
1976 /* domain is initialized */
1977 static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
1978 {
1979 struct dmar_domain *domain, *found = NULL;
1980 struct intel_iommu *iommu;
1981 struct dmar_drhd_unit *drhd;
1982 struct device_domain_info *info, *tmp;
1983 struct pci_dev *dev_tmp;
1984 unsigned long flags;
1985 int bus = 0, devfn = 0;
1986 int segment;
1987 int ret;
1988
1989 domain = find_domain(pdev);
1990 if (domain)
1991 return domain;
1992
1993 segment = pci_domain_nr(pdev->bus);
1994
1995 dev_tmp = pci_find_upstream_pcie_bridge(pdev);
1996 if (dev_tmp) {
1997 if (pci_is_pcie(dev_tmp)) {
1998 bus = dev_tmp->subordinate->number;
1999 devfn = 0;
2000 } else {
2001 bus = dev_tmp->bus->number;
2002 devfn = dev_tmp->devfn;
2003 }
2004 spin_lock_irqsave(&device_domain_lock, flags);
2005 list_for_each_entry(info, &device_domain_list, global) {
2006 if (info->segment == segment &&
2007 info->bus == bus && info->devfn == devfn) {
2008 found = info->domain;
2009 break;
2010 }
2011 }
2012 spin_unlock_irqrestore(&device_domain_lock, flags);
2013 /* pcie-pci bridge already has a domain, uses it */
2014 if (found) {
2015 domain = found;
2016 goto found_domain;
2017 }
2018 }
2019
2020 domain = alloc_domain();
2021 if (!domain)
2022 goto error;
2023
2024 /* Allocate new domain for the device */
2025 drhd = dmar_find_matched_drhd_unit(pdev);
2026 if (!drhd) {
2027 printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
2028 pci_name(pdev));
2029 free_domain_mem(domain);
2030 return NULL;
2031 }
2032 iommu = drhd->iommu;
2033
2034 ret = iommu_attach_domain(domain, iommu);
2035 if (ret) {
2036 free_domain_mem(domain);
2037 goto error;
2038 }
2039
2040 if (domain_init(domain, gaw)) {
2041 domain_exit(domain);
2042 goto error;
2043 }
2044
2045 /* register pcie-to-pci device */
2046 if (dev_tmp) {
2047 info = alloc_devinfo_mem();
2048 if (!info) {
2049 domain_exit(domain);
2050 goto error;
2051 }
2052 info->segment = segment;
2053 info->bus = bus;
2054 info->devfn = devfn;
2055 info->dev = NULL;
2056 info->domain = domain;
2057 /* This domain is shared by devices under p2p bridge */
2058 domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
2059
2060 /* pcie-to-pci bridge already has a domain, uses it */
2061 found = NULL;
2062 spin_lock_irqsave(&device_domain_lock, flags);
2063 list_for_each_entry(tmp, &device_domain_list, global) {
2064 if (tmp->segment == segment &&
2065 tmp->bus == bus && tmp->devfn == devfn) {
2066 found = tmp->domain;
2067 break;
2068 }
2069 }
2070 if (found) {
2071 spin_unlock_irqrestore(&device_domain_lock, flags);
2072 free_devinfo_mem(info);
2073 domain_exit(domain);
2074 domain = found;
2075 } else {
2076 list_add(&info->link, &domain->devices);
2077 list_add(&info->global, &device_domain_list);
2078 spin_unlock_irqrestore(&device_domain_lock, flags);
2079 }
2080 }
2081
2082 found_domain:
2083 info = alloc_devinfo_mem();
2084 if (!info)
2085 goto error;
2086 info->segment = segment;
2087 info->bus = pdev->bus->number;
2088 info->devfn = pdev->devfn;
2089 info->dev = pdev;
2090 info->domain = domain;
2091 spin_lock_irqsave(&device_domain_lock, flags);
2092 /* somebody is fast */
2093 found = find_domain(pdev);
2094 if (found != NULL) {
2095 spin_unlock_irqrestore(&device_domain_lock, flags);
2096 if (found != domain) {
2097 domain_exit(domain);
2098 domain = found;
2099 }
2100 free_devinfo_mem(info);
2101 return domain;
2102 }
2103 list_add(&info->link, &domain->devices);
2104 list_add(&info->global, &device_domain_list);
2105 pdev->dev.archdata.iommu = info;
2106 spin_unlock_irqrestore(&device_domain_lock, flags);
2107 return domain;
2108 error:
2109 /* recheck it here, maybe others set it */
2110 return find_domain(pdev);
2111 }
2112
2113 static int iommu_identity_mapping;
2114 #define IDENTMAP_ALL 1
2115 #define IDENTMAP_GFX 2
2116 #define IDENTMAP_AZALIA 4
2117
2118 static int iommu_domain_identity_map(struct dmar_domain *domain,
2119 unsigned long long start,
2120 unsigned long long end)
2121 {
2122 unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
2123 unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
2124
2125 if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
2126 dma_to_mm_pfn(last_vpfn))) {
2127 printk(KERN_ERR "IOMMU: reserve iova failed\n");
2128 return -ENOMEM;
2129 }
2130
2131 pr_debug("Mapping reserved region %llx-%llx for domain %d\n",
2132 start, end, domain->id);
2133 /*
2134 * RMRR range might have overlap with physical memory range,
2135 * clear it first
2136 */
2137 dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2138
2139 return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
2140 last_vpfn - first_vpfn + 1,
2141 DMA_PTE_READ|DMA_PTE_WRITE);
2142 }
2143
2144 static int iommu_prepare_identity_map(struct pci_dev *pdev,
2145 unsigned long long start,
2146 unsigned long long end)
2147 {
2148 struct dmar_domain *domain;
2149 int ret;
2150
2151 domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2152 if (!domain)
2153 return -ENOMEM;
2154
2155 /* For _hardware_ passthrough, don't bother. But for software
2156 passthrough, we do it anyway -- it may indicate a memory
2157 range which is reserved in E820, so which didn't get set
2158 up to start with in si_domain */
2159 if (domain == si_domain && hw_pass_through) {
2160 printk("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
2161 pci_name(pdev), start, end);
2162 return 0;
2163 }
2164
2165 printk(KERN_INFO
2166 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
2167 pci_name(pdev), start, end);
2168
2169 if (end < start) {
2170 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2171 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2172 dmi_get_system_info(DMI_BIOS_VENDOR),
2173 dmi_get_system_info(DMI_BIOS_VERSION),
2174 dmi_get_system_info(DMI_PRODUCT_VERSION));
2175 ret = -EIO;
2176 goto error;
2177 }
2178
2179 if (end >> agaw_to_width(domain->agaw)) {
2180 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2181 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2182 agaw_to_width(domain->agaw),
2183 dmi_get_system_info(DMI_BIOS_VENDOR),
2184 dmi_get_system_info(DMI_BIOS_VERSION),
2185 dmi_get_system_info(DMI_PRODUCT_VERSION));
2186 ret = -EIO;
2187 goto error;
2188 }
2189
2190 ret = iommu_domain_identity_map(domain, start, end);
2191 if (ret)
2192 goto error;
2193
2194 /* context entry init */
2195 ret = domain_context_mapping(domain, pdev, CONTEXT_TT_MULTI_LEVEL);
2196 if (ret)
2197 goto error;
2198
2199 return 0;
2200
2201 error:
2202 domain_exit(domain);
2203 return ret;
2204 }
2205
2206 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2207 struct pci_dev *pdev)
2208 {
2209 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2210 return 0;
2211 return iommu_prepare_identity_map(pdev, rmrr->base_address,
2212 rmrr->end_address);
2213 }
2214
2215 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
2216 static inline void iommu_prepare_isa(void)
2217 {
2218 struct pci_dev *pdev;
2219 int ret;
2220
2221 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2222 if (!pdev)
2223 return;
2224
2225 printk(KERN_INFO "IOMMU: Prepare 0-16MiB unity mapping for LPC\n");
2226 ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024 - 1);
2227
2228 if (ret)
2229 printk(KERN_ERR "IOMMU: Failed to create 0-16MiB identity map; "
2230 "floppy might not work\n");
2231
2232 }
2233 #else
2234 static inline void iommu_prepare_isa(void)
2235 {
2236 return;
2237 }
2238 #endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */
2239
2240 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2241
2242 static int __init si_domain_init(int hw)
2243 {
2244 struct dmar_drhd_unit *drhd;
2245 struct intel_iommu *iommu;
2246 int nid, ret = 0;
2247
2248 si_domain = alloc_domain();
2249 if (!si_domain)
2250 return -EFAULT;
2251
2252 pr_debug("Identity mapping domain is domain %d\n", si_domain->id);
2253
2254 for_each_active_iommu(iommu, drhd) {
2255 ret = iommu_attach_domain(si_domain, iommu);
2256 if (ret) {
2257 domain_exit(si_domain);
2258 return -EFAULT;
2259 }
2260 }
2261
2262 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2263 domain_exit(si_domain);
2264 return -EFAULT;
2265 }
2266
2267 si_domain->flags = DOMAIN_FLAG_STATIC_IDENTITY;
2268
2269 if (hw)
2270 return 0;
2271
2272 for_each_online_node(nid) {
2273 unsigned long start_pfn, end_pfn;
2274 int i;
2275
2276 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2277 ret = iommu_domain_identity_map(si_domain,
2278 PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
2279 if (ret)
2280 return ret;
2281 }
2282 }
2283
2284 return 0;
2285 }
2286
2287 static void domain_remove_one_dev_info(struct dmar_domain *domain,
2288 struct pci_dev *pdev);
2289 static int identity_mapping(struct pci_dev *pdev)
2290 {
2291 struct device_domain_info *info;
2292
2293 if (likely(!iommu_identity_mapping))
2294 return 0;
2295
2296 info = pdev->dev.archdata.iommu;
2297 if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
2298 return (info->domain == si_domain);
2299
2300 return 0;
2301 }
2302
2303 static int domain_add_dev_info(struct dmar_domain *domain,
2304 struct pci_dev *pdev,
2305 int translation)
2306 {
2307 struct device_domain_info *info;
2308 unsigned long flags;
2309 int ret;
2310
2311 info = alloc_devinfo_mem();
2312 if (!info)
2313 return -ENOMEM;
2314
2315 info->segment = pci_domain_nr(pdev->bus);
2316 info->bus = pdev->bus->number;
2317 info->devfn = pdev->devfn;
2318 info->dev = pdev;
2319 info->domain = domain;
2320
2321 spin_lock_irqsave(&device_domain_lock, flags);
2322 list_add(&info->link, &domain->devices);
2323 list_add(&info->global, &device_domain_list);
2324 pdev->dev.archdata.iommu = info;
2325 spin_unlock_irqrestore(&device_domain_lock, flags);
2326
2327 ret = domain_context_mapping(domain, pdev, translation);
2328 if (ret) {
2329 spin_lock_irqsave(&device_domain_lock, flags);
2330 unlink_domain_info(info);
2331 spin_unlock_irqrestore(&device_domain_lock, flags);
2332 free_devinfo_mem(info);
2333 return ret;
2334 }
2335
2336 return 0;
2337 }
2338
2339 static bool device_has_rmrr(struct pci_dev *dev)
2340 {
2341 struct dmar_rmrr_unit *rmrr;
2342 int i;
2343
2344 for_each_rmrr_units(rmrr) {
2345 for (i = 0; i < rmrr->devices_cnt; i++) {
2346 /*
2347 * Return TRUE if this RMRR contains the device that
2348 * is passed in.
2349 */
2350 if (rmrr->devices[i] == dev)
2351 return true;
2352 }
2353 }
2354 return false;
2355 }
2356
2357 static int iommu_should_identity_map(struct pci_dev *pdev, int startup)
2358 {
2359
2360 /*
2361 * We want to prevent any device associated with an RMRR from
2362 * getting placed into the SI Domain. This is done because
2363 * problems exist when devices are moved in and out of domains
2364 * and their respective RMRR info is lost. We exempt USB devices
2365 * from this process due to their usage of RMRRs that are known
2366 * to not be needed after BIOS hand-off to OS.
2367 */
2368 if (device_has_rmrr(pdev) &&
2369 (pdev->class >> 8) != PCI_CLASS_SERIAL_USB)
2370 return 0;
2371
2372 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2373 return 1;
2374
2375 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2376 return 1;
2377
2378 if (!(iommu_identity_mapping & IDENTMAP_ALL))
2379 return 0;
2380
2381 /*
2382 * We want to start off with all devices in the 1:1 domain, and
2383 * take them out later if we find they can't access all of memory.
2384 *
2385 * However, we can't do this for PCI devices behind bridges,
2386 * because all PCI devices behind the same bridge will end up
2387 * with the same source-id on their transactions.
2388 *
2389 * Practically speaking, we can't change things around for these
2390 * devices at run-time, because we can't be sure there'll be no
2391 * DMA transactions in flight for any of their siblings.
2392 *
2393 * So PCI devices (unless they're on the root bus) as well as
2394 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2395 * the 1:1 domain, just in _case_ one of their siblings turns out
2396 * not to be able to map all of memory.
2397 */
2398 if (!pci_is_pcie(pdev)) {
2399 if (!pci_is_root_bus(pdev->bus))
2400 return 0;
2401 if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2402 return 0;
2403 } else if (pci_pcie_type(pdev) == PCI_EXP_TYPE_PCI_BRIDGE)
2404 return 0;
2405
2406 /*
2407 * At boot time, we don't yet know if devices will be 64-bit capable.
2408 * Assume that they will -- if they turn out not to be, then we can
2409 * take them out of the 1:1 domain later.
2410 */
2411 if (!startup) {
2412 /*
2413 * If the device's dma_mask is less than the system's memory
2414 * size then this is not a candidate for identity mapping.
2415 */
2416 u64 dma_mask = pdev->dma_mask;
2417
2418 if (pdev->dev.coherent_dma_mask &&
2419 pdev->dev.coherent_dma_mask < dma_mask)
2420 dma_mask = pdev->dev.coherent_dma_mask;
2421
2422 return dma_mask >= dma_get_required_mask(&pdev->dev);
2423 }
2424
2425 return 1;
2426 }
2427
2428 static int __init iommu_prepare_static_identity_mapping(int hw)
2429 {
2430 struct pci_dev *pdev = NULL;
2431 int ret;
2432
2433 ret = si_domain_init(hw);
2434 if (ret)
2435 return -EFAULT;
2436
2437 for_each_pci_dev(pdev) {
2438 if (iommu_should_identity_map(pdev, 1)) {
2439 ret = domain_add_dev_info(si_domain, pdev,
2440 hw ? CONTEXT_TT_PASS_THROUGH :
2441 CONTEXT_TT_MULTI_LEVEL);
2442 if (ret) {
2443 /* device not associated with an iommu */
2444 if (ret == -ENODEV)
2445 continue;
2446 return ret;
2447 }
2448 pr_info("IOMMU: %s identity mapping for device %s\n",
2449 hw ? "hardware" : "software", pci_name(pdev));
2450 }
2451 }
2452
2453 return 0;
2454 }
2455
2456 static int __init init_dmars(void)
2457 {
2458 struct dmar_drhd_unit *drhd;
2459 struct dmar_rmrr_unit *rmrr;
2460 struct pci_dev *pdev;
2461 struct intel_iommu *iommu;
2462 int i, ret;
2463
2464 /*
2465 * for each drhd
2466 * allocate root
2467 * initialize and program root entry to not present
2468 * endfor
2469 */
2470 for_each_drhd_unit(drhd) {
2471 /*
2472 * lock not needed as this is only incremented in the single
2473 * threaded kernel __init code path all other access are read
2474 * only
2475 */
2476 if (g_num_of_iommus < IOMMU_UNITS_SUPPORTED) {
2477 g_num_of_iommus++;
2478 continue;
2479 }
2480 printk_once(KERN_ERR "intel-iommu: exceeded %d IOMMUs\n",
2481 IOMMU_UNITS_SUPPORTED);
2482 }
2483
2484 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
2485 GFP_KERNEL);
2486 if (!g_iommus) {
2487 printk(KERN_ERR "Allocating global iommu array failed\n");
2488 ret = -ENOMEM;
2489 goto error;
2490 }
2491
2492 deferred_flush = kzalloc(g_num_of_iommus *
2493 sizeof(struct deferred_flush_tables), GFP_KERNEL);
2494 if (!deferred_flush) {
2495 ret = -ENOMEM;
2496 goto error;
2497 }
2498
2499 for_each_drhd_unit(drhd) {
2500 if (drhd->ignored)
2501 continue;
2502
2503 iommu = drhd->iommu;
2504 g_iommus[iommu->seq_id] = iommu;
2505
2506 ret = iommu_init_domains(iommu);
2507 if (ret)
2508 goto error;
2509
2510 /*
2511 * TBD:
2512 * we could share the same root & context tables
2513 * among all IOMMU's. Need to Split it later.
2514 */
2515 ret = iommu_alloc_root_entry(iommu);
2516 if (ret) {
2517 printk(KERN_ERR "IOMMU: allocate root entry failed\n");
2518 goto error;
2519 }
2520 if (!ecap_pass_through(iommu->ecap))
2521 hw_pass_through = 0;
2522 }
2523
2524 /*
2525 * Start from the sane iommu hardware state.
2526 */
2527 for_each_drhd_unit(drhd) {
2528 if (drhd->ignored)
2529 continue;
2530
2531 iommu = drhd->iommu;
2532
2533 /*
2534 * If the queued invalidation is already initialized by us
2535 * (for example, while enabling interrupt-remapping) then
2536 * we got the things already rolling from a sane state.
2537 */
2538 if (iommu->qi)
2539 continue;
2540
2541 /*
2542 * Clear any previous faults.
2543 */
2544 dmar_fault(-1, iommu);
2545 /*
2546 * Disable queued invalidation if supported and already enabled
2547 * before OS handover.
2548 */
2549 dmar_disable_qi(iommu);
2550 }
2551
2552 for_each_drhd_unit(drhd) {
2553 if (drhd->ignored)
2554 continue;
2555
2556 iommu = drhd->iommu;
2557
2558 if (dmar_enable_qi(iommu)) {
2559 /*
2560 * Queued Invalidate not enabled, use Register Based
2561 * Invalidate
2562 */
2563 iommu->flush.flush_context = __iommu_flush_context;
2564 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2565 printk(KERN_INFO "IOMMU %d 0x%Lx: using Register based "
2566 "invalidation\n",
2567 iommu->seq_id,
2568 (unsigned long long)drhd->reg_base_addr);
2569 } else {
2570 iommu->flush.flush_context = qi_flush_context;
2571 iommu->flush.flush_iotlb = qi_flush_iotlb;
2572 printk(KERN_INFO "IOMMU %d 0x%Lx: using Queued "
2573 "invalidation\n",
2574 iommu->seq_id,
2575 (unsigned long long)drhd->reg_base_addr);
2576 }
2577 }
2578
2579 if (iommu_pass_through)
2580 iommu_identity_mapping |= IDENTMAP_ALL;
2581
2582 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
2583 iommu_identity_mapping |= IDENTMAP_GFX;
2584 #endif
2585
2586 check_tylersburg_isoch();
2587
2588 /*
2589 * If pass through is not set or not enabled, setup context entries for
2590 * identity mappings for rmrr, gfx, and isa and may fall back to static
2591 * identity mapping if iommu_identity_mapping is set.
2592 */
2593 if (iommu_identity_mapping) {
2594 ret = iommu_prepare_static_identity_mapping(hw_pass_through);
2595 if (ret) {
2596 printk(KERN_CRIT "Failed to setup IOMMU pass-through\n");
2597 goto error;
2598 }
2599 }
2600 /*
2601 * For each rmrr
2602 * for each dev attached to rmrr
2603 * do
2604 * locate drhd for dev, alloc domain for dev
2605 * allocate free domain
2606 * allocate page table entries for rmrr
2607 * if context not allocated for bus
2608 * allocate and init context
2609 * set present in root table for this bus
2610 * init context with domain, translation etc
2611 * endfor
2612 * endfor
2613 */
2614 printk(KERN_INFO "IOMMU: Setting RMRR:\n");
2615 for_each_rmrr_units(rmrr) {
2616 for (i = 0; i < rmrr->devices_cnt; i++) {
2617 pdev = rmrr->devices[i];
2618 /*
2619 * some BIOS lists non-exist devices in DMAR
2620 * table.
2621 */
2622 if (!pdev)
2623 continue;
2624 ret = iommu_prepare_rmrr_dev(rmrr, pdev);
2625 if (ret)
2626 printk(KERN_ERR
2627 "IOMMU: mapping reserved region failed\n");
2628 }
2629 }
2630
2631 iommu_prepare_isa();
2632
2633 /*
2634 * for each drhd
2635 * enable fault log
2636 * global invalidate context cache
2637 * global invalidate iotlb
2638 * enable translation
2639 */
2640 for_each_drhd_unit(drhd) {
2641 if (drhd->ignored) {
2642 /*
2643 * we always have to disable PMRs or DMA may fail on
2644 * this device
2645 */
2646 if (force_on)
2647 iommu_disable_protect_mem_regions(drhd->iommu);
2648 continue;
2649 }
2650 iommu = drhd->iommu;
2651
2652 iommu_flush_write_buffer(iommu);
2653
2654 ret = dmar_set_interrupt(iommu);
2655 if (ret)
2656 goto error;
2657
2658 iommu_set_root_entry(iommu);
2659
2660 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
2661 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2662
2663 ret = iommu_enable_translation(iommu);
2664 if (ret)
2665 goto error;
2666
2667 iommu_disable_protect_mem_regions(iommu);
2668 }
2669
2670 return 0;
2671 error:
2672 for_each_drhd_unit(drhd) {
2673 if (drhd->ignored)
2674 continue;
2675 iommu = drhd->iommu;
2676 free_iommu(iommu);
2677 }
2678 kfree(g_iommus);
2679 return ret;
2680 }
2681
2682 /* This takes a number of _MM_ pages, not VTD pages */
2683 static struct iova *intel_alloc_iova(struct device *dev,
2684 struct dmar_domain *domain,
2685 unsigned long nrpages, uint64_t dma_mask)
2686 {
2687 struct pci_dev *pdev = to_pci_dev(dev);
2688 struct iova *iova = NULL;
2689
2690 /* Restrict dma_mask to the width that the iommu can handle */
2691 dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
2692
2693 if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
2694 /*
2695 * First try to allocate an io virtual address in
2696 * DMA_BIT_MASK(32) and if that fails then try allocating
2697 * from higher range
2698 */
2699 iova = alloc_iova(&domain->iovad, nrpages,
2700 IOVA_PFN(DMA_BIT_MASK(32)), 1);
2701 if (iova)
2702 return iova;
2703 }
2704 iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(dma_mask), 1);
2705 if (unlikely(!iova)) {
2706 printk(KERN_ERR "Allocating %ld-page iova for %s failed",
2707 nrpages, pci_name(pdev));
2708 return NULL;
2709 }
2710
2711 return iova;
2712 }
2713
2714 static struct dmar_domain *__get_valid_domain_for_dev(struct pci_dev *pdev)
2715 {
2716 struct dmar_domain *domain;
2717 int ret;
2718
2719 domain = get_domain_for_dev(pdev,
2720 DEFAULT_DOMAIN_ADDRESS_WIDTH);
2721 if (!domain) {
2722 printk(KERN_ERR
2723 "Allocating domain for %s failed", pci_name(pdev));
2724 return NULL;
2725 }
2726
2727 /* make sure context mapping is ok */
2728 if (unlikely(!domain_context_mapped(pdev))) {
2729 ret = domain_context_mapping(domain, pdev,
2730 CONTEXT_TT_MULTI_LEVEL);
2731 if (ret) {
2732 printk(KERN_ERR
2733 "Domain context map for %s failed",
2734 pci_name(pdev));
2735 return NULL;
2736 }
2737 }
2738
2739 return domain;
2740 }
2741
2742 static inline struct dmar_domain *get_valid_domain_for_dev(struct pci_dev *dev)
2743 {
2744 struct device_domain_info *info;
2745
2746 /* No lock here, assumes no domain exit in normal case */
2747 info = dev->dev.archdata.iommu;
2748 if (likely(info))
2749 return info->domain;
2750
2751 return __get_valid_domain_for_dev(dev);
2752 }
2753
2754 static int iommu_dummy(struct pci_dev *pdev)
2755 {
2756 return pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
2757 }
2758
2759 /* Check if the pdev needs to go through non-identity map and unmap process.*/
2760 static int iommu_no_mapping(struct device *dev)
2761 {
2762 struct pci_dev *pdev;
2763 int found;
2764
2765 if (unlikely(!dev_is_pci(dev)))
2766 return 1;
2767
2768 pdev = to_pci_dev(dev);
2769 if (iommu_dummy(pdev))
2770 return 1;
2771
2772 if (!iommu_identity_mapping)
2773 return 0;
2774
2775 found = identity_mapping(pdev);
2776 if (found) {
2777 if (iommu_should_identity_map(pdev, 0))
2778 return 1;
2779 else {
2780 /*
2781 * 32 bit DMA is removed from si_domain and fall back
2782 * to non-identity mapping.
2783 */
2784 domain_remove_one_dev_info(si_domain, pdev);
2785 printk(KERN_INFO "32bit %s uses non-identity mapping\n",
2786 pci_name(pdev));
2787 return 0;
2788 }
2789 } else {
2790 /*
2791 * In case of a detached 64 bit DMA device from vm, the device
2792 * is put into si_domain for identity mapping.
2793 */
2794 if (iommu_should_identity_map(pdev, 0)) {
2795 int ret;
2796 ret = domain_add_dev_info(si_domain, pdev,
2797 hw_pass_through ?
2798 CONTEXT_TT_PASS_THROUGH :
2799 CONTEXT_TT_MULTI_LEVEL);
2800 if (!ret) {
2801 printk(KERN_INFO "64bit %s uses identity mapping\n",
2802 pci_name(pdev));
2803 return 1;
2804 }
2805 }
2806 }
2807
2808 return 0;
2809 }
2810
2811 static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr,
2812 size_t size, int dir, u64 dma_mask)
2813 {
2814 struct pci_dev *pdev = to_pci_dev(hwdev);
2815 struct dmar_domain *domain;
2816 phys_addr_t start_paddr;
2817 struct iova *iova;
2818 int prot = 0;
2819 int ret;
2820 struct intel_iommu *iommu;
2821 unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
2822
2823 BUG_ON(dir == DMA_NONE);
2824
2825 if (iommu_no_mapping(hwdev))
2826 return paddr;
2827
2828 domain = get_valid_domain_for_dev(pdev);
2829 if (!domain)
2830 return 0;
2831
2832 iommu = domain_get_iommu(domain);
2833 size = aligned_nrpages(paddr, size);
2834
2835 iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size), dma_mask);
2836 if (!iova)
2837 goto error;
2838
2839 /*
2840 * Check if DMAR supports zero-length reads on write only
2841 * mappings..
2842 */
2843 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2844 !cap_zlr(iommu->cap))
2845 prot |= DMA_PTE_READ;
2846 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2847 prot |= DMA_PTE_WRITE;
2848 /*
2849 * paddr - (paddr + size) might be partial page, we should map the whole
2850 * page. Note: if two part of one page are separately mapped, we
2851 * might have two guest_addr mapping to the same host paddr, but this
2852 * is not a big problem
2853 */
2854 ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo),
2855 mm_to_dma_pfn(paddr_pfn), size, prot);
2856 if (ret)
2857 goto error;
2858
2859 /* it's a non-present to present mapping. Only flush if caching mode */
2860 if (cap_caching_mode(iommu->cap))
2861 iommu_flush_iotlb_psi(iommu, domain->id, mm_to_dma_pfn(iova->pfn_lo), size, 1);
2862 else
2863 iommu_flush_write_buffer(iommu);
2864
2865 start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
2866 start_paddr += paddr & ~PAGE_MASK;
2867 return start_paddr;
2868
2869 error:
2870 if (iova)
2871 __free_iova(&domain->iovad, iova);
2872 printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n",
2873 pci_name(pdev), size, (unsigned long long)paddr, dir);
2874 return 0;
2875 }
2876
2877 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
2878 unsigned long offset, size_t size,
2879 enum dma_data_direction dir,
2880 struct dma_attrs *attrs)
2881 {
2882 return __intel_map_single(dev, page_to_phys(page) + offset, size,
2883 dir, to_pci_dev(dev)->dma_mask);
2884 }
2885
2886 static void flush_unmaps(void)
2887 {
2888 int i, j;
2889
2890 timer_on = 0;
2891
2892 /* just flush them all */
2893 for (i = 0; i < g_num_of_iommus; i++) {
2894 struct intel_iommu *iommu = g_iommus[i];
2895 if (!iommu)
2896 continue;
2897
2898 if (!deferred_flush[i].next)
2899 continue;
2900
2901 /* In caching mode, global flushes turn emulation expensive */
2902 if (!cap_caching_mode(iommu->cap))
2903 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2904 DMA_TLB_GLOBAL_FLUSH);
2905 for (j = 0; j < deferred_flush[i].next; j++) {
2906 unsigned long mask;
2907 struct iova *iova = deferred_flush[i].iova[j];
2908 struct dmar_domain *domain = deferred_flush[i].domain[j];
2909
2910 /* On real hardware multiple invalidations are expensive */
2911 if (cap_caching_mode(iommu->cap))
2912 iommu_flush_iotlb_psi(iommu, domain->id,
2913 iova->pfn_lo, iova->pfn_hi - iova->pfn_lo + 1, 0);
2914 else {
2915 mask = ilog2(mm_to_dma_pfn(iova->pfn_hi - iova->pfn_lo + 1));
2916 iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
2917 (uint64_t)iova->pfn_lo << PAGE_SHIFT, mask);
2918 }
2919 __free_iova(&deferred_flush[i].domain[j]->iovad, iova);
2920 }
2921 deferred_flush[i].next = 0;
2922 }
2923
2924 list_size = 0;
2925 }
2926
2927 static void flush_unmaps_timeout(unsigned long data)
2928 {
2929 unsigned long flags;
2930
2931 spin_lock_irqsave(&async_umap_flush_lock, flags);
2932 flush_unmaps();
2933 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2934 }
2935
2936 static void add_unmap(struct dmar_domain *dom, struct iova *iova)
2937 {
2938 unsigned long flags;
2939 int next, iommu_id;
2940 struct intel_iommu *iommu;
2941
2942 spin_lock_irqsave(&async_umap_flush_lock, flags);
2943 if (list_size == HIGH_WATER_MARK)
2944 flush_unmaps();
2945
2946 iommu = domain_get_iommu(dom);
2947 iommu_id = iommu->seq_id;
2948
2949 next = deferred_flush[iommu_id].next;
2950 deferred_flush[iommu_id].domain[next] = dom;
2951 deferred_flush[iommu_id].iova[next] = iova;
2952 deferred_flush[iommu_id].next++;
2953
2954 if (!timer_on) {
2955 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
2956 timer_on = 1;
2957 }
2958 list_size++;
2959 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2960 }
2961
2962 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
2963 size_t size, enum dma_data_direction dir,
2964 struct dma_attrs *attrs)
2965 {
2966 struct pci_dev *pdev = to_pci_dev(dev);
2967 struct dmar_domain *domain;
2968 unsigned long start_pfn, last_pfn;
2969 struct iova *iova;
2970 struct intel_iommu *iommu;
2971
2972 if (iommu_no_mapping(dev))
2973 return;
2974
2975 domain = find_domain(pdev);
2976 BUG_ON(!domain);
2977
2978 iommu = domain_get_iommu(domain);
2979
2980 iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
2981 if (WARN_ONCE(!iova, "Driver unmaps unmatched page at PFN %llx\n",
2982 (unsigned long long)dev_addr))
2983 return;
2984
2985 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2986 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
2987
2988 pr_debug("Device %s unmapping: pfn %lx-%lx\n",
2989 pci_name(pdev), start_pfn, last_pfn);
2990
2991 /* clear the whole page */
2992 dma_pte_clear_range(domain, start_pfn, last_pfn);
2993
2994 /* free page tables */
2995 dma_pte_free_pagetable(domain, start_pfn, last_pfn);
2996
2997 if (intel_iommu_strict) {
2998 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
2999 last_pfn - start_pfn + 1, 0);
3000 /* free iova */
3001 __free_iova(&domain->iovad, iova);
3002 } else {
3003 add_unmap(domain, iova);
3004 /*
3005 * queue up the release of the unmap to save the 1/6th of the
3006 * cpu used up by the iotlb flush operation...
3007 */
3008 }
3009 }
3010
3011 static void *intel_alloc_coherent(struct device *hwdev, size_t size,
3012 dma_addr_t *dma_handle, gfp_t flags,
3013 struct dma_attrs *attrs)
3014 {
3015 void *vaddr;
3016 int order;
3017
3018 size = PAGE_ALIGN(size);
3019 order = get_order(size);
3020
3021 if (!iommu_no_mapping(hwdev))
3022 flags &= ~(GFP_DMA | GFP_DMA32);
3023 else if (hwdev->coherent_dma_mask < dma_get_required_mask(hwdev)) {
3024 if (hwdev->coherent_dma_mask < DMA_BIT_MASK(32))
3025 flags |= GFP_DMA;
3026 else
3027 flags |= GFP_DMA32;
3028 }
3029
3030 vaddr = (void *)__get_free_pages(flags, order);
3031 if (!vaddr)
3032 return NULL;
3033 memset(vaddr, 0, size);
3034
3035 *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size,
3036 DMA_BIDIRECTIONAL,
3037 hwdev->coherent_dma_mask);
3038 if (*dma_handle)
3039 return vaddr;
3040 free_pages((unsigned long)vaddr, order);
3041 return NULL;
3042 }
3043
3044 static void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr,
3045 dma_addr_t dma_handle, struct dma_attrs *attrs)
3046 {
3047 int order;
3048
3049 size = PAGE_ALIGN(size);
3050 order = get_order(size);
3051
3052 intel_unmap_page(hwdev, dma_handle, size, DMA_BIDIRECTIONAL, NULL);
3053 free_pages((unsigned long)vaddr, order);
3054 }
3055
3056 static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
3057 int nelems, enum dma_data_direction dir,
3058 struct dma_attrs *attrs)
3059 {
3060 struct pci_dev *pdev = to_pci_dev(hwdev);
3061 struct dmar_domain *domain;
3062 unsigned long start_pfn, last_pfn;
3063 struct iova *iova;
3064 struct intel_iommu *iommu;
3065
3066 if (iommu_no_mapping(hwdev))
3067 return;
3068
3069 domain = find_domain(pdev);
3070 BUG_ON(!domain);
3071
3072 iommu = domain_get_iommu(domain);
3073
3074 iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
3075 if (WARN_ONCE(!iova, "Driver unmaps unmatched sglist at PFN %llx\n",
3076 (unsigned long long)sglist[0].dma_address))
3077 return;
3078
3079 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
3080 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
3081
3082 /* clear the whole page */
3083 dma_pte_clear_range(domain, start_pfn, last_pfn);
3084
3085 /* free page tables */
3086 dma_pte_free_pagetable(domain, start_pfn, last_pfn);
3087
3088 if (intel_iommu_strict) {
3089 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
3090 last_pfn - start_pfn + 1, 0);
3091 /* free iova */
3092 __free_iova(&domain->iovad, iova);
3093 } else {
3094 add_unmap(domain, iova);
3095 /*
3096 * queue up the release of the unmap to save the 1/6th of the
3097 * cpu used up by the iotlb flush operation...
3098 */
3099 }
3100 }
3101
3102 static int intel_nontranslate_map_sg(struct device *hddev,
3103 struct scatterlist *sglist, int nelems, int dir)
3104 {
3105 int i;
3106 struct scatterlist *sg;
3107
3108 for_each_sg(sglist, sg, nelems, i) {
3109 BUG_ON(!sg_page(sg));
3110 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
3111 sg->dma_length = sg->length;
3112 }
3113 return nelems;
3114 }
3115
3116 static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems,
3117 enum dma_data_direction dir, struct dma_attrs *attrs)
3118 {
3119 int i;
3120 struct pci_dev *pdev = to_pci_dev(hwdev);
3121 struct dmar_domain *domain;
3122 size_t size = 0;
3123 int prot = 0;
3124 struct iova *iova = NULL;
3125 int ret;
3126 struct scatterlist *sg;
3127 unsigned long start_vpfn;
3128 struct intel_iommu *iommu;
3129
3130 BUG_ON(dir == DMA_NONE);
3131 if (iommu_no_mapping(hwdev))
3132 return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
3133
3134 domain = get_valid_domain_for_dev(pdev);
3135 if (!domain)
3136 return 0;
3137
3138 iommu = domain_get_iommu(domain);
3139
3140 for_each_sg(sglist, sg, nelems, i)
3141 size += aligned_nrpages(sg->offset, sg->length);
3142
3143 iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size),
3144 pdev->dma_mask);
3145 if (!iova) {
3146 sglist->dma_length = 0;
3147 return 0;
3148 }
3149
3150 /*
3151 * Check if DMAR supports zero-length reads on write only
3152 * mappings..
3153 */
3154 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3155 !cap_zlr(iommu->cap))
3156 prot |= DMA_PTE_READ;
3157 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3158 prot |= DMA_PTE_WRITE;
3159
3160 start_vpfn = mm_to_dma_pfn(iova->pfn_lo);
3161
3162 ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3163 if (unlikely(ret)) {
3164 /* clear the page */
3165 dma_pte_clear_range(domain, start_vpfn,
3166 start_vpfn + size - 1);
3167 /* free page tables */
3168 dma_pte_free_pagetable(domain, start_vpfn,
3169 start_vpfn + size - 1);
3170 /* free iova */
3171 __free_iova(&domain->iovad, iova);
3172 return 0;
3173 }
3174
3175 /* it's a non-present to present mapping. Only flush if caching mode */
3176 if (cap_caching_mode(iommu->cap))
3177 iommu_flush_iotlb_psi(iommu, domain->id, start_vpfn, size, 1);
3178 else
3179 iommu_flush_write_buffer(iommu);
3180
3181 return nelems;
3182 }
3183
3184 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
3185 {
3186 return !dma_addr;
3187 }
3188
3189 struct dma_map_ops intel_dma_ops = {
3190 .alloc = intel_alloc_coherent,
3191 .free = intel_free_coherent,
3192 .map_sg = intel_map_sg,
3193 .unmap_sg = intel_unmap_sg,
3194 .map_page = intel_map_page,
3195 .unmap_page = intel_unmap_page,
3196 .mapping_error = intel_mapping_error,
3197 };
3198
3199 static inline int iommu_domain_cache_init(void)
3200 {
3201 int ret = 0;
3202
3203 iommu_domain_cache = kmem_cache_create("iommu_domain",
3204 sizeof(struct dmar_domain),
3205 0,
3206 SLAB_HWCACHE_ALIGN,
3207
3208 NULL);
3209 if (!iommu_domain_cache) {
3210 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
3211 ret = -ENOMEM;
3212 }
3213
3214 return ret;
3215 }
3216
3217 static inline int iommu_devinfo_cache_init(void)
3218 {
3219 int ret = 0;
3220
3221 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
3222 sizeof(struct device_domain_info),
3223 0,
3224 SLAB_HWCACHE_ALIGN,
3225 NULL);
3226 if (!iommu_devinfo_cache) {
3227 printk(KERN_ERR "Couldn't create devinfo cache\n");
3228 ret = -ENOMEM;
3229 }
3230
3231 return ret;
3232 }
3233
3234 static inline int iommu_iova_cache_init(void)
3235 {
3236 int ret = 0;
3237
3238 iommu_iova_cache = kmem_cache_create("iommu_iova",
3239 sizeof(struct iova),
3240 0,
3241 SLAB_HWCACHE_ALIGN,
3242 NULL);
3243 if (!iommu_iova_cache) {
3244 printk(KERN_ERR "Couldn't create iova cache\n");
3245 ret = -ENOMEM;
3246 }
3247
3248 return ret;
3249 }
3250
3251 static int __init iommu_init_mempool(void)
3252 {
3253 int ret;
3254 ret = iommu_iova_cache_init();
3255 if (ret)
3256 return ret;
3257
3258 ret = iommu_domain_cache_init();
3259 if (ret)
3260 goto domain_error;
3261
3262 ret = iommu_devinfo_cache_init();
3263 if (!ret)
3264 return ret;
3265
3266 kmem_cache_destroy(iommu_domain_cache);
3267 domain_error:
3268 kmem_cache_destroy(iommu_iova_cache);
3269
3270 return -ENOMEM;
3271 }
3272
3273 static void __init iommu_exit_mempool(void)
3274 {
3275 kmem_cache_destroy(iommu_devinfo_cache);
3276 kmem_cache_destroy(iommu_domain_cache);
3277 kmem_cache_destroy(iommu_iova_cache);
3278
3279 }
3280
3281 static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
3282 {
3283 struct dmar_drhd_unit *drhd;
3284 u32 vtbar;
3285 int rc;
3286
3287 /* We know that this device on this chipset has its own IOMMU.
3288 * If we find it under a different IOMMU, then the BIOS is lying
3289 * to us. Hope that the IOMMU for this device is actually
3290 * disabled, and it needs no translation...
3291 */
3292 rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
3293 if (rc) {
3294 /* "can't" happen */
3295 dev_info(&pdev->dev, "failed to run vt-d quirk\n");
3296 return;
3297 }
3298 vtbar &= 0xffff0000;
3299
3300 /* we know that the this iommu should be at offset 0xa000 from vtbar */
3301 drhd = dmar_find_matched_drhd_unit(pdev);
3302 if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
3303 TAINT_FIRMWARE_WORKAROUND,
3304 "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
3305 pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3306 }
3307 DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
3308
3309 static void __init init_no_remapping_devices(void)
3310 {
3311 struct dmar_drhd_unit *drhd;
3312
3313 for_each_drhd_unit(drhd) {
3314 if (!drhd->include_all) {
3315 int i;
3316 for (i = 0; i < drhd->devices_cnt; i++)
3317 if (drhd->devices[i] != NULL)
3318 break;
3319 /* ignore DMAR unit if no pci devices exist */
3320 if (i == drhd->devices_cnt)
3321 drhd->ignored = 1;
3322 }
3323 }
3324
3325 for_each_drhd_unit(drhd) {
3326 int i;
3327 if (drhd->ignored || drhd->include_all)
3328 continue;
3329
3330 for (i = 0; i < drhd->devices_cnt; i++)
3331 if (drhd->devices[i] &&
3332 !IS_GFX_DEVICE(drhd->devices[i]))
3333 break;
3334
3335 if (i < drhd->devices_cnt)
3336 continue;
3337
3338 /* This IOMMU has *only* gfx devices. Either bypass it or
3339 set the gfx_mapped flag, as appropriate */
3340 if (dmar_map_gfx) {
3341 intel_iommu_gfx_mapped = 1;
3342 } else {
3343 drhd->ignored = 1;
3344 for (i = 0; i < drhd->devices_cnt; i++) {
3345 if (!drhd->devices[i])
3346 continue;
3347 drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3348 }
3349 }
3350 }
3351 }
3352
3353 #ifdef CONFIG_SUSPEND
3354 static int init_iommu_hw(void)
3355 {
3356 struct dmar_drhd_unit *drhd;
3357 struct intel_iommu *iommu = NULL;
3358
3359 for_each_active_iommu(iommu, drhd)
3360 if (iommu->qi)
3361 dmar_reenable_qi(iommu);
3362
3363 for_each_iommu(iommu, drhd) {
3364 if (drhd->ignored) {
3365 /*
3366 * we always have to disable PMRs or DMA may fail on
3367 * this device
3368 */
3369 if (force_on)
3370 iommu_disable_protect_mem_regions(iommu);
3371 continue;
3372 }
3373
3374 iommu_flush_write_buffer(iommu);
3375
3376 iommu_set_root_entry(iommu);
3377
3378 iommu->flush.flush_context(iommu, 0, 0, 0,
3379 DMA_CCMD_GLOBAL_INVL);
3380 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3381 DMA_TLB_GLOBAL_FLUSH);
3382 if (iommu_enable_translation(iommu))
3383 return 1;
3384 iommu_disable_protect_mem_regions(iommu);
3385 }
3386
3387 return 0;
3388 }
3389
3390 static void iommu_flush_all(void)
3391 {
3392 struct dmar_drhd_unit *drhd;
3393 struct intel_iommu *iommu;
3394
3395 for_each_active_iommu(iommu, drhd) {
3396 iommu->flush.flush_context(iommu, 0, 0, 0,
3397 DMA_CCMD_GLOBAL_INVL);
3398 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3399 DMA_TLB_GLOBAL_FLUSH);
3400 }
3401 }
3402
3403 static int iommu_suspend(void)
3404 {
3405 struct dmar_drhd_unit *drhd;
3406 struct intel_iommu *iommu = NULL;
3407 unsigned long flag;
3408
3409 for_each_active_iommu(iommu, drhd) {
3410 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
3411 GFP_ATOMIC);
3412 if (!iommu->iommu_state)
3413 goto nomem;
3414 }
3415
3416 iommu_flush_all();
3417
3418 for_each_active_iommu(iommu, drhd) {
3419 iommu_disable_translation(iommu);
3420
3421 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3422
3423 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3424 readl(iommu->reg + DMAR_FECTL_REG);
3425 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3426 readl(iommu->reg + DMAR_FEDATA_REG);
3427 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3428 readl(iommu->reg + DMAR_FEADDR_REG);
3429 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3430 readl(iommu->reg + DMAR_FEUADDR_REG);
3431
3432 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3433 }
3434 return 0;
3435
3436 nomem:
3437 for_each_active_iommu(iommu, drhd)
3438 kfree(iommu->iommu_state);
3439
3440 return -ENOMEM;
3441 }
3442
3443 static void iommu_resume(void)
3444 {
3445 struct dmar_drhd_unit *drhd;
3446 struct intel_iommu *iommu = NULL;
3447 unsigned long flag;
3448
3449 if (init_iommu_hw()) {
3450 if (force_on)
3451 panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
3452 else
3453 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3454 return;
3455 }
3456
3457 for_each_active_iommu(iommu, drhd) {
3458
3459 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3460
3461 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3462 iommu->reg + DMAR_FECTL_REG);
3463 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3464 iommu->reg + DMAR_FEDATA_REG);
3465 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3466 iommu->reg + DMAR_FEADDR_REG);
3467 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3468 iommu->reg + DMAR_FEUADDR_REG);
3469
3470 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3471 }
3472
3473 for_each_active_iommu(iommu, drhd)
3474 kfree(iommu->iommu_state);
3475 }
3476
3477 static struct syscore_ops iommu_syscore_ops = {
3478 .resume = iommu_resume,
3479 .suspend = iommu_suspend,
3480 };
3481
3482 static void __init init_iommu_pm_ops(void)
3483 {
3484 register_syscore_ops(&iommu_syscore_ops);
3485 }
3486
3487 #else
3488 static inline void init_iommu_pm_ops(void) {}
3489 #endif /* CONFIG_PM */
3490
3491 LIST_HEAD(dmar_rmrr_units);
3492
3493 static void __init dmar_register_rmrr_unit(struct dmar_rmrr_unit *rmrr)
3494 {
3495 list_add(&rmrr->list, &dmar_rmrr_units);
3496 }
3497
3498
3499 int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header)
3500 {
3501 struct acpi_dmar_reserved_memory *rmrr;
3502 struct dmar_rmrr_unit *rmrru;
3503
3504 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
3505 if (!rmrru)
3506 return -ENOMEM;
3507
3508 rmrru->hdr = header;
3509 rmrr = (struct acpi_dmar_reserved_memory *)header;
3510 rmrru->base_address = rmrr->base_address;
3511 rmrru->end_address = rmrr->end_address;
3512
3513 dmar_register_rmrr_unit(rmrru);
3514 return 0;
3515 }
3516
3517 static int __init
3518 rmrr_parse_dev(struct dmar_rmrr_unit *rmrru)
3519 {
3520 struct acpi_dmar_reserved_memory *rmrr;
3521 int ret;
3522
3523 rmrr = (struct acpi_dmar_reserved_memory *) rmrru->hdr;
3524 ret = dmar_parse_dev_scope((void *)(rmrr + 1),
3525 ((void *)rmrr) + rmrr->header.length,
3526 &rmrru->devices_cnt, &rmrru->devices, rmrr->segment);
3527
3528 if (ret || (rmrru->devices_cnt == 0)) {
3529 list_del(&rmrru->list);
3530 kfree(rmrru);
3531 }
3532 return ret;
3533 }
3534
3535 static LIST_HEAD(dmar_atsr_units);
3536
3537 int __init dmar_parse_one_atsr(struct acpi_dmar_header *hdr)
3538 {
3539 struct acpi_dmar_atsr *atsr;
3540 struct dmar_atsr_unit *atsru;
3541
3542 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
3543 atsru = kzalloc(sizeof(*atsru), GFP_KERNEL);
3544 if (!atsru)
3545 return -ENOMEM;
3546
3547 atsru->hdr = hdr;
3548 atsru->include_all = atsr->flags & 0x1;
3549
3550 list_add(&atsru->list, &dmar_atsr_units);
3551
3552 return 0;
3553 }
3554
3555 static int __init atsr_parse_dev(struct dmar_atsr_unit *atsru)
3556 {
3557 int rc;
3558 struct acpi_dmar_atsr *atsr;
3559
3560 if (atsru->include_all)
3561 return 0;
3562
3563 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
3564 rc = dmar_parse_dev_scope((void *)(atsr + 1),
3565 (void *)atsr + atsr->header.length,
3566 &atsru->devices_cnt, &atsru->devices,
3567 atsr->segment);
3568 if (rc || !atsru->devices_cnt) {
3569 list_del(&atsru->list);
3570 kfree(atsru);
3571 }
3572
3573 return rc;
3574 }
3575
3576 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
3577 {
3578 int i;
3579 struct pci_bus *bus;
3580 struct acpi_dmar_atsr *atsr;
3581 struct dmar_atsr_unit *atsru;
3582
3583 dev = pci_physfn(dev);
3584
3585 list_for_each_entry(atsru, &dmar_atsr_units, list) {
3586 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
3587 if (atsr->segment == pci_domain_nr(dev->bus))
3588 goto found;
3589 }
3590
3591 return 0;
3592
3593 found:
3594 for (bus = dev->bus; bus; bus = bus->parent) {
3595 struct pci_dev *bridge = bus->self;
3596
3597 if (!bridge || !pci_is_pcie(bridge) ||
3598 pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
3599 return 0;
3600
3601 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT) {
3602 for (i = 0; i < atsru->devices_cnt; i++)
3603 if (atsru->devices[i] == bridge)
3604 return 1;
3605 break;
3606 }
3607 }
3608
3609 if (atsru->include_all)
3610 return 1;
3611
3612 return 0;
3613 }
3614
3615 int __init dmar_parse_rmrr_atsr_dev(void)
3616 {
3617 struct dmar_rmrr_unit *rmrr, *rmrr_n;
3618 struct dmar_atsr_unit *atsr, *atsr_n;
3619 int ret = 0;
3620
3621 list_for_each_entry_safe(rmrr, rmrr_n, &dmar_rmrr_units, list) {
3622 ret = rmrr_parse_dev(rmrr);
3623 if (ret)
3624 return ret;
3625 }
3626
3627 list_for_each_entry_safe(atsr, atsr_n, &dmar_atsr_units, list) {
3628 ret = atsr_parse_dev(atsr);
3629 if (ret)
3630 return ret;
3631 }
3632
3633 return ret;
3634 }
3635
3636 /*
3637 * Here we only respond to action of unbound device from driver.
3638 *
3639 * Added device is not attached to its DMAR domain here yet. That will happen
3640 * when mapping the device to iova.
3641 */
3642 static int device_notifier(struct notifier_block *nb,
3643 unsigned long action, void *data)
3644 {
3645 struct device *dev = data;
3646 struct pci_dev *pdev = to_pci_dev(dev);
3647 struct dmar_domain *domain;
3648
3649 if (iommu_no_mapping(dev))
3650 return 0;
3651
3652 domain = find_domain(pdev);
3653 if (!domain)
3654 return 0;
3655
3656 if (action == BUS_NOTIFY_UNBOUND_DRIVER && !iommu_pass_through) {
3657 domain_remove_one_dev_info(domain, pdev);
3658
3659 if (!(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) &&
3660 !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) &&
3661 list_empty(&domain->devices))
3662 domain_exit(domain);
3663 }
3664
3665 return 0;
3666 }
3667
3668 static struct notifier_block device_nb = {
3669 .notifier_call = device_notifier,
3670 };
3671
3672 int __init intel_iommu_init(void)
3673 {
3674 int ret = 0;
3675 struct dmar_drhd_unit *drhd;
3676
3677 /* VT-d is required for a TXT/tboot launch, so enforce that */
3678 force_on = tboot_force_iommu();
3679
3680 if (dmar_table_init()) {
3681 if (force_on)
3682 panic("tboot: Failed to initialize DMAR table\n");
3683 return -ENODEV;
3684 }
3685
3686 /*
3687 * Disable translation if already enabled prior to OS handover.
3688 */
3689 for_each_drhd_unit(drhd) {
3690 struct intel_iommu *iommu;
3691
3692 if (drhd->ignored)
3693 continue;
3694
3695 iommu = drhd->iommu;
3696 if (iommu->gcmd & DMA_GCMD_TE)
3697 iommu_disable_translation(iommu);
3698 }
3699
3700 if (dmar_dev_scope_init() < 0) {
3701 if (force_on)
3702 panic("tboot: Failed to initialize DMAR device scope\n");
3703 return -ENODEV;
3704 }
3705
3706 if (no_iommu || dmar_disabled)
3707 return -ENODEV;
3708
3709 if (iommu_init_mempool()) {
3710 if (force_on)
3711 panic("tboot: Failed to initialize iommu memory\n");
3712 return -ENODEV;
3713 }
3714
3715 if (list_empty(&dmar_rmrr_units))
3716 printk(KERN_INFO "DMAR: No RMRR found\n");
3717
3718 if (list_empty(&dmar_atsr_units))
3719 printk(KERN_INFO "DMAR: No ATSR found\n");
3720
3721 if (dmar_init_reserved_ranges()) {
3722 if (force_on)
3723 panic("tboot: Failed to reserve iommu ranges\n");
3724 return -ENODEV;
3725 }
3726
3727 init_no_remapping_devices();
3728
3729 ret = init_dmars();
3730 if (ret) {
3731 if (force_on)
3732 panic("tboot: Failed to initialize DMARs\n");
3733 printk(KERN_ERR "IOMMU: dmar init failed\n");
3734 put_iova_domain(&reserved_iova_list);
3735 iommu_exit_mempool();
3736 return ret;
3737 }
3738 printk(KERN_INFO
3739 "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
3740
3741 init_timer(&unmap_timer);
3742 #ifdef CONFIG_SWIOTLB
3743 swiotlb = 0;
3744 #endif
3745 dma_ops = &intel_dma_ops;
3746
3747 init_iommu_pm_ops();
3748
3749 bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
3750
3751 bus_register_notifier(&pci_bus_type, &device_nb);
3752
3753 intel_iommu_enabled = 1;
3754
3755 return 0;
3756 }
3757
3758 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
3759 struct pci_dev *pdev)
3760 {
3761 struct pci_dev *tmp, *parent;
3762
3763 if (!iommu || !pdev)
3764 return;
3765
3766 /* dependent device detach */
3767 tmp = pci_find_upstream_pcie_bridge(pdev);
3768 /* Secondary interface's bus number and devfn 0 */
3769 if (tmp) {
3770 parent = pdev->bus->self;
3771 while (parent != tmp) {
3772 iommu_detach_dev(iommu, parent->bus->number,
3773 parent->devfn);
3774 parent = parent->bus->self;
3775 }
3776 if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */
3777 iommu_detach_dev(iommu,
3778 tmp->subordinate->number, 0);
3779 else /* this is a legacy PCI bridge */
3780 iommu_detach_dev(iommu, tmp->bus->number,
3781 tmp->devfn);
3782 }
3783 }
3784
3785 static void domain_remove_one_dev_info(struct dmar_domain *domain,
3786 struct pci_dev *pdev)
3787 {
3788 struct device_domain_info *info, *tmp;
3789 struct intel_iommu *iommu;
3790 unsigned long flags;
3791 int found = 0;
3792
3793 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3794 pdev->devfn);
3795 if (!iommu)
3796 return;
3797
3798 spin_lock_irqsave(&device_domain_lock, flags);
3799 list_for_each_entry_safe(info, tmp, &domain->devices, link) {
3800 if (info->segment == pci_domain_nr(pdev->bus) &&
3801 info->bus == pdev->bus->number &&
3802 info->devfn == pdev->devfn) {
3803 unlink_domain_info(info);
3804 spin_unlock_irqrestore(&device_domain_lock, flags);
3805
3806 iommu_disable_dev_iotlb(info);
3807 iommu_detach_dev(iommu, info->bus, info->devfn);
3808 iommu_detach_dependent_devices(iommu, pdev);
3809 free_devinfo_mem(info);
3810
3811 spin_lock_irqsave(&device_domain_lock, flags);
3812
3813 if (found)
3814 break;
3815 else
3816 continue;
3817 }
3818
3819 /* if there is no other devices under the same iommu
3820 * owned by this domain, clear this iommu in iommu_bmp
3821 * update iommu count and coherency
3822 */
3823 if (iommu == device_to_iommu(info->segment, info->bus,
3824 info->devfn))
3825 found = 1;
3826 }
3827
3828 spin_unlock_irqrestore(&device_domain_lock, flags);
3829
3830 if (found == 0) {
3831 unsigned long tmp_flags;
3832 spin_lock_irqsave(&domain->iommu_lock, tmp_flags);
3833 clear_bit(iommu->seq_id, domain->iommu_bmp);
3834 domain->iommu_count--;
3835 domain_update_iommu_cap(domain);
3836 spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags);
3837
3838 if (!(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) &&
3839 !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)) {
3840 spin_lock_irqsave(&iommu->lock, tmp_flags);
3841 clear_bit(domain->id, iommu->domain_ids);
3842 iommu->domains[domain->id] = NULL;
3843 spin_unlock_irqrestore(&iommu->lock, tmp_flags);
3844 }
3845 }
3846 }
3847
3848 static void vm_domain_remove_all_dev_info(struct dmar_domain *domain)
3849 {
3850 struct device_domain_info *info;
3851 struct intel_iommu *iommu;
3852 unsigned long flags1, flags2;
3853
3854 spin_lock_irqsave(&device_domain_lock, flags1);
3855 while (!list_empty(&domain->devices)) {
3856 info = list_entry(domain->devices.next,
3857 struct device_domain_info, link);
3858 unlink_domain_info(info);
3859 spin_unlock_irqrestore(&device_domain_lock, flags1);
3860
3861 iommu_disable_dev_iotlb(info);
3862 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
3863 iommu_detach_dev(iommu, info->bus, info->devfn);
3864 iommu_detach_dependent_devices(iommu, info->dev);
3865
3866 /* clear this iommu in iommu_bmp, update iommu count
3867 * and capabilities
3868 */
3869 spin_lock_irqsave(&domain->iommu_lock, flags2);
3870 if (test_and_clear_bit(iommu->seq_id,
3871 domain->iommu_bmp)) {
3872 domain->iommu_count--;
3873 domain_update_iommu_cap(domain);
3874 }
3875 spin_unlock_irqrestore(&domain->iommu_lock, flags2);
3876
3877 free_devinfo_mem(info);
3878 spin_lock_irqsave(&device_domain_lock, flags1);
3879 }
3880 spin_unlock_irqrestore(&device_domain_lock, flags1);
3881 }
3882
3883 /* domain id for virtual machine, it won't be set in context */
3884 static atomic_t vm_domid = ATOMIC_INIT(0);
3885
3886 static struct dmar_domain *iommu_alloc_vm_domain(void)
3887 {
3888 struct dmar_domain *domain;
3889
3890 domain = alloc_domain_mem();
3891 if (!domain)
3892 return NULL;
3893
3894 domain->id = atomic_inc_return(&vm_domid);
3895 domain->nid = -1;
3896 memset(domain->iommu_bmp, 0, sizeof(domain->iommu_bmp));
3897 domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE;
3898
3899 return domain;
3900 }
3901
3902 static int md_domain_init(struct dmar_domain *domain, int guest_width)
3903 {
3904 int adjust_width;
3905
3906 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
3907 spin_lock_init(&domain->iommu_lock);
3908
3909 domain_reserve_special_ranges(domain);
3910
3911 /* calculate AGAW */
3912 domain->gaw = guest_width;
3913 adjust_width = guestwidth_to_adjustwidth(guest_width);
3914 domain->agaw = width_to_agaw(adjust_width);
3915
3916 INIT_LIST_HEAD(&domain->devices);
3917
3918 domain->iommu_count = 0;
3919 domain->iommu_coherency = 0;
3920 domain->iommu_snooping = 0;
3921 domain->iommu_superpage = 0;
3922 domain->max_addr = 0;
3923 domain->nid = -1;
3924
3925 /* always allocate the top pgd */
3926 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
3927 if (!domain->pgd)
3928 return -ENOMEM;
3929 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
3930 return 0;
3931 }
3932
3933 static void iommu_free_vm_domain(struct dmar_domain *domain)
3934 {
3935 unsigned long flags;
3936 struct dmar_drhd_unit *drhd;
3937 struct intel_iommu *iommu;
3938 unsigned long i;
3939 unsigned long ndomains;
3940
3941 for_each_drhd_unit(drhd) {
3942 if (drhd->ignored)
3943 continue;
3944 iommu = drhd->iommu;
3945
3946 ndomains = cap_ndoms(iommu->cap);
3947 for_each_set_bit(i, iommu->domain_ids, ndomains) {
3948 if (iommu->domains[i] == domain) {
3949 spin_lock_irqsave(&iommu->lock, flags);
3950 clear_bit(i, iommu->domain_ids);
3951 iommu->domains[i] = NULL;
3952 spin_unlock_irqrestore(&iommu->lock, flags);
3953 break;
3954 }
3955 }
3956 }
3957 }
3958
3959 static void vm_domain_exit(struct dmar_domain *domain)
3960 {
3961 /* Domain 0 is reserved, so dont process it */
3962 if (!domain)
3963 return;
3964
3965 vm_domain_remove_all_dev_info(domain);
3966 /* destroy iovas */
3967 put_iova_domain(&domain->iovad);
3968
3969 /* clear ptes */
3970 dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3971
3972 /* free page tables */
3973 dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3974
3975 iommu_free_vm_domain(domain);
3976 free_domain_mem(domain);
3977 }
3978
3979 static int intel_iommu_domain_init(struct iommu_domain *domain)
3980 {
3981 struct dmar_domain *dmar_domain;
3982
3983 dmar_domain = iommu_alloc_vm_domain();
3984 if (!dmar_domain) {
3985 printk(KERN_ERR
3986 "intel_iommu_domain_init: dmar_domain == NULL\n");
3987 return -ENOMEM;
3988 }
3989 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
3990 printk(KERN_ERR
3991 "intel_iommu_domain_init() failed\n");
3992 vm_domain_exit(dmar_domain);
3993 return -ENOMEM;
3994 }
3995 domain_update_iommu_cap(dmar_domain);
3996 domain->priv = dmar_domain;
3997
3998 domain->geometry.aperture_start = 0;
3999 domain->geometry.aperture_end = __DOMAIN_MAX_ADDR(dmar_domain->gaw);
4000 domain->geometry.force_aperture = true;
4001
4002 return 0;
4003 }
4004
4005 static void intel_iommu_domain_destroy(struct iommu_domain *domain)
4006 {
4007 struct dmar_domain *dmar_domain = domain->priv;
4008
4009 domain->priv = NULL;
4010 vm_domain_exit(dmar_domain);
4011 }
4012
4013 static int intel_iommu_attach_device(struct iommu_domain *domain,
4014 struct device *dev)
4015 {
4016 struct dmar_domain *dmar_domain = domain->priv;
4017 struct pci_dev *pdev = to_pci_dev(dev);
4018 struct intel_iommu *iommu;
4019 int addr_width;
4020
4021 /* normally pdev is not mapped */
4022 if (unlikely(domain_context_mapped(pdev))) {
4023 struct dmar_domain *old_domain;
4024
4025 old_domain = find_domain(pdev);
4026 if (old_domain) {
4027 if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
4028 dmar_domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)
4029 domain_remove_one_dev_info(old_domain, pdev);
4030 else
4031 domain_remove_dev_info(old_domain);
4032 }
4033 }
4034
4035 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
4036 pdev->devfn);
4037 if (!iommu)
4038 return -ENODEV;
4039
4040 /* check if this iommu agaw is sufficient for max mapped address */
4041 addr_width = agaw_to_width(iommu->agaw);
4042 if (addr_width > cap_mgaw(iommu->cap))
4043 addr_width = cap_mgaw(iommu->cap);
4044
4045 if (dmar_domain->max_addr > (1LL << addr_width)) {
4046 printk(KERN_ERR "%s: iommu width (%d) is not "
4047 "sufficient for the mapped address (%llx)\n",
4048 __func__, addr_width, dmar_domain->max_addr);
4049 return -EFAULT;
4050 }
4051 dmar_domain->gaw = addr_width;
4052
4053 /*
4054 * Knock out extra levels of page tables if necessary
4055 */
4056 while (iommu->agaw < dmar_domain->agaw) {
4057 struct dma_pte *pte;
4058
4059 pte = dmar_domain->pgd;
4060 if (dma_pte_present(pte)) {
4061 dmar_domain->pgd = (struct dma_pte *)
4062 phys_to_virt(dma_pte_addr(pte));
4063 free_pgtable_page(pte);
4064 }
4065 dmar_domain->agaw--;
4066 }
4067
4068 return domain_add_dev_info(dmar_domain, pdev, CONTEXT_TT_MULTI_LEVEL);
4069 }
4070
4071 static void intel_iommu_detach_device(struct iommu_domain *domain,
4072 struct device *dev)
4073 {
4074 struct dmar_domain *dmar_domain = domain->priv;
4075 struct pci_dev *pdev = to_pci_dev(dev);
4076
4077 domain_remove_one_dev_info(dmar_domain, pdev);
4078 }
4079
4080 static int intel_iommu_map(struct iommu_domain *domain,
4081 unsigned long iova, phys_addr_t hpa,
4082 size_t size, int iommu_prot)
4083 {
4084 struct dmar_domain *dmar_domain = domain->priv;
4085 u64 max_addr;
4086 int prot = 0;
4087 int ret;
4088
4089 if (iommu_prot & IOMMU_READ)
4090 prot |= DMA_PTE_READ;
4091 if (iommu_prot & IOMMU_WRITE)
4092 prot |= DMA_PTE_WRITE;
4093 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
4094 prot |= DMA_PTE_SNP;
4095
4096 max_addr = iova + size;
4097 if (dmar_domain->max_addr < max_addr) {
4098 u64 end;
4099
4100 /* check if minimum agaw is sufficient for mapped address */
4101 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
4102 if (end < max_addr) {
4103 printk(KERN_ERR "%s: iommu width (%d) is not "
4104 "sufficient for the mapped address (%llx)\n",
4105 __func__, dmar_domain->gaw, max_addr);
4106 return -EFAULT;
4107 }
4108 dmar_domain->max_addr = max_addr;
4109 }
4110 /* Round up size to next multiple of PAGE_SIZE, if it and
4111 the low bits of hpa would take us onto the next page */
4112 size = aligned_nrpages(hpa, size);
4113 ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
4114 hpa >> VTD_PAGE_SHIFT, size, prot);
4115 return ret;
4116 }
4117
4118 static size_t intel_iommu_unmap(struct iommu_domain *domain,
4119 unsigned long iova, size_t size)
4120 {
4121 struct dmar_domain *dmar_domain = domain->priv;
4122 int order;
4123
4124 order = dma_pte_clear_range(dmar_domain, iova >> VTD_PAGE_SHIFT,
4125 (iova + size - 1) >> VTD_PAGE_SHIFT);
4126
4127 if (dmar_domain->max_addr == iova + size)
4128 dmar_domain->max_addr = iova;
4129
4130 return PAGE_SIZE << order;
4131 }
4132
4133 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
4134 dma_addr_t iova)
4135 {
4136 struct dmar_domain *dmar_domain = domain->priv;
4137 struct dma_pte *pte;
4138 u64 phys = 0;
4139
4140 pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, 0);
4141 if (pte)
4142 phys = dma_pte_addr(pte);
4143
4144 return phys;
4145 }
4146
4147 static int intel_iommu_domain_has_cap(struct iommu_domain *domain,
4148 unsigned long cap)
4149 {
4150 struct dmar_domain *dmar_domain = domain->priv;
4151
4152 if (cap == IOMMU_CAP_CACHE_COHERENCY)
4153 return dmar_domain->iommu_snooping;
4154 if (cap == IOMMU_CAP_INTR_REMAP)
4155 return irq_remapping_enabled;
4156
4157 return 0;
4158 }
4159
4160 #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
4161
4162 static int intel_iommu_add_device(struct device *dev)
4163 {
4164 struct pci_dev *pdev = to_pci_dev(dev);
4165 struct pci_dev *bridge, *dma_pdev = NULL;
4166 struct iommu_group *group;
4167 int ret;
4168
4169 if (!device_to_iommu(pci_domain_nr(pdev->bus),
4170 pdev->bus->number, pdev->devfn))
4171 return -ENODEV;
4172
4173 bridge = pci_find_upstream_pcie_bridge(pdev);
4174 if (bridge) {
4175 if (pci_is_pcie(bridge))
4176 dma_pdev = pci_get_domain_bus_and_slot(
4177 pci_domain_nr(pdev->bus),
4178 bridge->subordinate->number, 0);
4179 if (!dma_pdev)
4180 dma_pdev = pci_dev_get(bridge);
4181 } else
4182 dma_pdev = pci_dev_get(pdev);
4183
4184 /* Account for quirked devices */
4185 swap_pci_ref(&dma_pdev, pci_get_dma_source(dma_pdev));
4186
4187 /*
4188 * If it's a multifunction device that does not support our
4189 * required ACS flags, add to the same group as lowest numbered
4190 * function that also does not suport the required ACS flags.
4191 */
4192 if (dma_pdev->multifunction &&
4193 !pci_acs_enabled(dma_pdev, REQ_ACS_FLAGS)) {
4194 u8 i, slot = PCI_SLOT(dma_pdev->devfn);
4195
4196 for (i = 0; i < 8; i++) {
4197 struct pci_dev *tmp;
4198
4199 tmp = pci_get_slot(dma_pdev->bus, PCI_DEVFN(slot, i));
4200 if (!tmp)
4201 continue;
4202
4203 if (!pci_acs_enabled(tmp, REQ_ACS_FLAGS)) {
4204 swap_pci_ref(&dma_pdev, tmp);
4205 break;
4206 }
4207 pci_dev_put(tmp);
4208 }
4209 }
4210
4211 /*
4212 * Devices on the root bus go through the iommu. If that's not us,
4213 * find the next upstream device and test ACS up to the root bus.
4214 * Finding the next device may require skipping virtual buses.
4215 */
4216 while (!pci_is_root_bus(dma_pdev->bus)) {
4217 struct pci_bus *bus = dma_pdev->bus;
4218
4219 while (!bus->self) {
4220 if (!pci_is_root_bus(bus))
4221 bus = bus->parent;
4222 else
4223 goto root_bus;
4224 }
4225
4226 if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
4227 break;
4228
4229 swap_pci_ref(&dma_pdev, pci_dev_get(bus->self));
4230 }
4231
4232 root_bus:
4233 group = iommu_group_get(&dma_pdev->dev);
4234 pci_dev_put(dma_pdev);
4235 if (!group) {
4236 group = iommu_group_alloc();
4237 if (IS_ERR(group))
4238 return PTR_ERR(group);
4239 }
4240
4241 ret = iommu_group_add_device(group, dev);
4242
4243 iommu_group_put(group);
4244 return ret;
4245 }
4246
4247 static void intel_iommu_remove_device(struct device *dev)
4248 {
4249 iommu_group_remove_device(dev);
4250 }
4251
4252 static struct iommu_ops intel_iommu_ops = {
4253 .domain_init = intel_iommu_domain_init,
4254 .domain_destroy = intel_iommu_domain_destroy,
4255 .attach_dev = intel_iommu_attach_device,
4256 .detach_dev = intel_iommu_detach_device,
4257 .map = intel_iommu_map,
4258 .unmap = intel_iommu_unmap,
4259 .iova_to_phys = intel_iommu_iova_to_phys,
4260 .domain_has_cap = intel_iommu_domain_has_cap,
4261 .add_device = intel_iommu_add_device,
4262 .remove_device = intel_iommu_remove_device,
4263 .pgsize_bitmap = INTEL_IOMMU_PGSIZES,
4264 };
4265
4266 static void quirk_iommu_g4x_gfx(struct pci_dev *dev)
4267 {
4268 /* G4x/GM45 integrated gfx dmar support is totally busted. */
4269 printk(KERN_INFO "DMAR: Disabling IOMMU for graphics on this chipset\n");
4270 dmar_map_gfx = 0;
4271 }
4272
4273 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_g4x_gfx);
4274 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_g4x_gfx);
4275 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_g4x_gfx);
4276 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_g4x_gfx);
4277 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_g4x_gfx);
4278 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_g4x_gfx);
4279 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_g4x_gfx);
4280
4281 static void quirk_iommu_rwbf(struct pci_dev *dev)
4282 {
4283 /*
4284 * Mobile 4 Series Chipset neglects to set RWBF capability,
4285 * but needs it. Same seems to hold for the desktop versions.
4286 */
4287 printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n");
4288 rwbf_quirk = 1;
4289 }
4290
4291 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
4292 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
4293 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
4294 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
4295 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
4296 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
4297 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
4298
4299 #define GGC 0x52
4300 #define GGC_MEMORY_SIZE_MASK (0xf << 8)
4301 #define GGC_MEMORY_SIZE_NONE (0x0 << 8)
4302 #define GGC_MEMORY_SIZE_1M (0x1 << 8)
4303 #define GGC_MEMORY_SIZE_2M (0x3 << 8)
4304 #define GGC_MEMORY_VT_ENABLED (0x8 << 8)
4305 #define GGC_MEMORY_SIZE_2M_VT (0x9 << 8)
4306 #define GGC_MEMORY_SIZE_3M_VT (0xa << 8)
4307 #define GGC_MEMORY_SIZE_4M_VT (0xb << 8)
4308
4309 static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
4310 {
4311 unsigned short ggc;
4312
4313 if (pci_read_config_word(dev, GGC, &ggc))
4314 return;
4315
4316 if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
4317 printk(KERN_INFO "DMAR: BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
4318 dmar_map_gfx = 0;
4319 } else if (dmar_map_gfx) {
4320 /* we have to ensure the gfx device is idle before we flush */
4321 printk(KERN_INFO "DMAR: Disabling batched IOTLB flush on Ironlake\n");
4322 intel_iommu_strict = 1;
4323 }
4324 }
4325 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
4326 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
4327 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
4328 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
4329
4330 /* On Tylersburg chipsets, some BIOSes have been known to enable the
4331 ISOCH DMAR unit for the Azalia sound device, but not give it any
4332 TLB entries, which causes it to deadlock. Check for that. We do
4333 this in a function called from init_dmars(), instead of in a PCI
4334 quirk, because we don't want to print the obnoxious "BIOS broken"
4335 message if VT-d is actually disabled.
4336 */
4337 static void __init check_tylersburg_isoch(void)
4338 {
4339 struct pci_dev *pdev;
4340 uint32_t vtisochctrl;
4341
4342 /* If there's no Azalia in the system anyway, forget it. */
4343 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
4344 if (!pdev)
4345 return;
4346 pci_dev_put(pdev);
4347
4348 /* System Management Registers. Might be hidden, in which case
4349 we can't do the sanity check. But that's OK, because the
4350 known-broken BIOSes _don't_ actually hide it, so far. */
4351 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
4352 if (!pdev)
4353 return;
4354
4355 if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
4356 pci_dev_put(pdev);
4357 return;
4358 }
4359
4360 pci_dev_put(pdev);
4361
4362 /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
4363 if (vtisochctrl & 1)
4364 return;
4365
4366 /* Drop all bits other than the number of TLB entries */
4367 vtisochctrl &= 0x1c;
4368
4369 /* If we have the recommended number of TLB entries (16), fine. */
4370 if (vtisochctrl == 0x10)
4371 return;
4372
4373 /* Zero TLB entries? You get to ride the short bus to school. */
4374 if (!vtisochctrl) {
4375 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
4376 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
4377 dmi_get_system_info(DMI_BIOS_VENDOR),
4378 dmi_get_system_info(DMI_BIOS_VERSION),
4379 dmi_get_system_info(DMI_PRODUCT_VERSION));
4380 iommu_identity_mapping |= IDENTMAP_AZALIA;
4381 return;
4382 }
4383
4384 printk(KERN_WARNING "DMAR: Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
4385 vtisochctrl);
4386 }
This page took 0.219293 seconds and 5 git commands to generate.