iommu/vt-d: Remove pdev from iommu_no_mapping()
[deliverable/linux.git] / drivers / iommu / intel-iommu.c
1 /*
2 * Copyright © 2006-2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * Authors: David Woodhouse <dwmw2@infradead.org>,
14 * Ashok Raj <ashok.raj@intel.com>,
15 * Shaohua Li <shaohua.li@intel.com>,
16 * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
17 * Fenghua Yu <fenghua.yu@intel.com>
18 */
19
20 #include <linux/init.h>
21 #include <linux/bitmap.h>
22 #include <linux/debugfs.h>
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/irq.h>
26 #include <linux/interrupt.h>
27 #include <linux/spinlock.h>
28 #include <linux/pci.h>
29 #include <linux/dmar.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/mempool.h>
32 #include <linux/memory.h>
33 #include <linux/timer.h>
34 #include <linux/iova.h>
35 #include <linux/iommu.h>
36 #include <linux/intel-iommu.h>
37 #include <linux/syscore_ops.h>
38 #include <linux/tboot.h>
39 #include <linux/dmi.h>
40 #include <linux/pci-ats.h>
41 #include <linux/memblock.h>
42 #include <asm/irq_remapping.h>
43 #include <asm/cacheflush.h>
44 #include <asm/iommu.h>
45
46 #include "irq_remapping.h"
47 #include "pci.h"
48
49 #define ROOT_SIZE VTD_PAGE_SIZE
50 #define CONTEXT_SIZE VTD_PAGE_SIZE
51
52 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
53 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
54 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
55
56 #define IOAPIC_RANGE_START (0xfee00000)
57 #define IOAPIC_RANGE_END (0xfeefffff)
58 #define IOVA_START_ADDR (0x1000)
59
60 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
61
62 #define MAX_AGAW_WIDTH 64
63 #define MAX_AGAW_PFN_WIDTH (MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
64
65 #define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
66 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
67
68 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
69 to match. That way, we can use 'unsigned long' for PFNs with impunity. */
70 #define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \
71 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
72 #define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
73
74 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
75 #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
76 #define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
77
78 /* page table handling */
79 #define LEVEL_STRIDE (9)
80 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
81
82 /*
83 * This bitmap is used to advertise the page sizes our hardware support
84 * to the IOMMU core, which will then use this information to split
85 * physically contiguous memory regions it is mapping into page sizes
86 * that we support.
87 *
88 * Traditionally the IOMMU core just handed us the mappings directly,
89 * after making sure the size is an order of a 4KiB page and that the
90 * mapping has natural alignment.
91 *
92 * To retain this behavior, we currently advertise that we support
93 * all page sizes that are an order of 4KiB.
94 *
95 * If at some point we'd like to utilize the IOMMU core's new behavior,
96 * we could change this to advertise the real page sizes we support.
97 */
98 #define INTEL_IOMMU_PGSIZES (~0xFFFUL)
99
100 static inline int agaw_to_level(int agaw)
101 {
102 return agaw + 2;
103 }
104
105 static inline int agaw_to_width(int agaw)
106 {
107 return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
108 }
109
110 static inline int width_to_agaw(int width)
111 {
112 return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
113 }
114
115 static inline unsigned int level_to_offset_bits(int level)
116 {
117 return (level - 1) * LEVEL_STRIDE;
118 }
119
120 static inline int pfn_level_offset(unsigned long pfn, int level)
121 {
122 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
123 }
124
125 static inline unsigned long level_mask(int level)
126 {
127 return -1UL << level_to_offset_bits(level);
128 }
129
130 static inline unsigned long level_size(int level)
131 {
132 return 1UL << level_to_offset_bits(level);
133 }
134
135 static inline unsigned long align_to_level(unsigned long pfn, int level)
136 {
137 return (pfn + level_size(level) - 1) & level_mask(level);
138 }
139
140 static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
141 {
142 return 1 << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
143 }
144
145 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
146 are never going to work. */
147 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
148 {
149 return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
150 }
151
152 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
153 {
154 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
155 }
156 static inline unsigned long page_to_dma_pfn(struct page *pg)
157 {
158 return mm_to_dma_pfn(page_to_pfn(pg));
159 }
160 static inline unsigned long virt_to_dma_pfn(void *p)
161 {
162 return page_to_dma_pfn(virt_to_page(p));
163 }
164
165 /* global iommu list, set NULL for ignored DMAR units */
166 static struct intel_iommu **g_iommus;
167
168 static void __init check_tylersburg_isoch(void);
169 static int rwbf_quirk;
170
171 /*
172 * set to 1 to panic kernel if can't successfully enable VT-d
173 * (used when kernel is launched w/ TXT)
174 */
175 static int force_on = 0;
176
177 /*
178 * 0: Present
179 * 1-11: Reserved
180 * 12-63: Context Ptr (12 - (haw-1))
181 * 64-127: Reserved
182 */
183 struct root_entry {
184 u64 val;
185 u64 rsvd1;
186 };
187 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
188 static inline bool root_present(struct root_entry *root)
189 {
190 return (root->val & 1);
191 }
192 static inline void set_root_present(struct root_entry *root)
193 {
194 root->val |= 1;
195 }
196 static inline void set_root_value(struct root_entry *root, unsigned long value)
197 {
198 root->val |= value & VTD_PAGE_MASK;
199 }
200
201 static inline struct context_entry *
202 get_context_addr_from_root(struct root_entry *root)
203 {
204 return (struct context_entry *)
205 (root_present(root)?phys_to_virt(
206 root->val & VTD_PAGE_MASK) :
207 NULL);
208 }
209
210 /*
211 * low 64 bits:
212 * 0: present
213 * 1: fault processing disable
214 * 2-3: translation type
215 * 12-63: address space root
216 * high 64 bits:
217 * 0-2: address width
218 * 3-6: aval
219 * 8-23: domain id
220 */
221 struct context_entry {
222 u64 lo;
223 u64 hi;
224 };
225
226 static inline bool context_present(struct context_entry *context)
227 {
228 return (context->lo & 1);
229 }
230 static inline void context_set_present(struct context_entry *context)
231 {
232 context->lo |= 1;
233 }
234
235 static inline void context_set_fault_enable(struct context_entry *context)
236 {
237 context->lo &= (((u64)-1) << 2) | 1;
238 }
239
240 static inline void context_set_translation_type(struct context_entry *context,
241 unsigned long value)
242 {
243 context->lo &= (((u64)-1) << 4) | 3;
244 context->lo |= (value & 3) << 2;
245 }
246
247 static inline void context_set_address_root(struct context_entry *context,
248 unsigned long value)
249 {
250 context->lo |= value & VTD_PAGE_MASK;
251 }
252
253 static inline void context_set_address_width(struct context_entry *context,
254 unsigned long value)
255 {
256 context->hi |= value & 7;
257 }
258
259 static inline void context_set_domain_id(struct context_entry *context,
260 unsigned long value)
261 {
262 context->hi |= (value & ((1 << 16) - 1)) << 8;
263 }
264
265 static inline void context_clear_entry(struct context_entry *context)
266 {
267 context->lo = 0;
268 context->hi = 0;
269 }
270
271 /*
272 * 0: readable
273 * 1: writable
274 * 2-6: reserved
275 * 7: super page
276 * 8-10: available
277 * 11: snoop behavior
278 * 12-63: Host physcial address
279 */
280 struct dma_pte {
281 u64 val;
282 };
283
284 static inline void dma_clear_pte(struct dma_pte *pte)
285 {
286 pte->val = 0;
287 }
288
289 static inline u64 dma_pte_addr(struct dma_pte *pte)
290 {
291 #ifdef CONFIG_64BIT
292 return pte->val & VTD_PAGE_MASK;
293 #else
294 /* Must have a full atomic 64-bit read */
295 return __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
296 #endif
297 }
298
299 static inline bool dma_pte_present(struct dma_pte *pte)
300 {
301 return (pte->val & 3) != 0;
302 }
303
304 static inline bool dma_pte_superpage(struct dma_pte *pte)
305 {
306 return (pte->val & (1 << 7));
307 }
308
309 static inline int first_pte_in_page(struct dma_pte *pte)
310 {
311 return !((unsigned long)pte & ~VTD_PAGE_MASK);
312 }
313
314 /*
315 * This domain is a statically identity mapping domain.
316 * 1. This domain creats a static 1:1 mapping to all usable memory.
317 * 2. It maps to each iommu if successful.
318 * 3. Each iommu mapps to this domain if successful.
319 */
320 static struct dmar_domain *si_domain;
321 static int hw_pass_through = 1;
322
323 /* devices under the same p2p bridge are owned in one domain */
324 #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
325
326 /* domain represents a virtual machine, more than one devices
327 * across iommus may be owned in one domain, e.g. kvm guest.
328 */
329 #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 1)
330
331 /* si_domain contains mulitple devices */
332 #define DOMAIN_FLAG_STATIC_IDENTITY (1 << 2)
333
334 /* define the limit of IOMMUs supported in each domain */
335 #ifdef CONFIG_X86
336 # define IOMMU_UNITS_SUPPORTED MAX_IO_APICS
337 #else
338 # define IOMMU_UNITS_SUPPORTED 64
339 #endif
340
341 struct dmar_domain {
342 int id; /* domain id */
343 int nid; /* node id */
344 DECLARE_BITMAP(iommu_bmp, IOMMU_UNITS_SUPPORTED);
345 /* bitmap of iommus this domain uses*/
346
347 struct list_head devices; /* all devices' list */
348 struct iova_domain iovad; /* iova's that belong to this domain */
349
350 struct dma_pte *pgd; /* virtual address */
351 int gaw; /* max guest address width */
352
353 /* adjusted guest address width, 0 is level 2 30-bit */
354 int agaw;
355
356 int flags; /* flags to find out type of domain */
357
358 int iommu_coherency;/* indicate coherency of iommu access */
359 int iommu_snooping; /* indicate snooping control feature*/
360 int iommu_count; /* reference count of iommu */
361 int iommu_superpage;/* Level of superpages supported:
362 0 == 4KiB (no superpages), 1 == 2MiB,
363 2 == 1GiB, 3 == 512GiB, 4 == 1TiB */
364 spinlock_t iommu_lock; /* protect iommu set in domain */
365 u64 max_addr; /* maximum mapped address */
366 };
367
368 /* PCI domain-device relationship */
369 struct device_domain_info {
370 struct list_head link; /* link to domain siblings */
371 struct list_head global; /* link to global list */
372 u8 bus; /* PCI bus number */
373 u8 devfn; /* PCI devfn number */
374 struct device *dev; /* it's NULL for PCIe-to-PCI bridge */
375 struct intel_iommu *iommu; /* IOMMU used by this device */
376 struct dmar_domain *domain; /* pointer to domain */
377 };
378
379 struct dmar_rmrr_unit {
380 struct list_head list; /* list of rmrr units */
381 struct acpi_dmar_header *hdr; /* ACPI header */
382 u64 base_address; /* reserved base address*/
383 u64 end_address; /* reserved end address */
384 struct dmar_dev_scope *devices; /* target devices */
385 int devices_cnt; /* target device count */
386 };
387
388 struct dmar_atsr_unit {
389 struct list_head list; /* list of ATSR units */
390 struct acpi_dmar_header *hdr; /* ACPI header */
391 struct dmar_dev_scope *devices; /* target devices */
392 int devices_cnt; /* target device count */
393 u8 include_all:1; /* include all ports */
394 };
395
396 static LIST_HEAD(dmar_atsr_units);
397 static LIST_HEAD(dmar_rmrr_units);
398
399 #define for_each_rmrr_units(rmrr) \
400 list_for_each_entry(rmrr, &dmar_rmrr_units, list)
401
402 static void flush_unmaps_timeout(unsigned long data);
403
404 static DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0);
405
406 #define HIGH_WATER_MARK 250
407 struct deferred_flush_tables {
408 int next;
409 struct iova *iova[HIGH_WATER_MARK];
410 struct dmar_domain *domain[HIGH_WATER_MARK];
411 struct page *freelist[HIGH_WATER_MARK];
412 };
413
414 static struct deferred_flush_tables *deferred_flush;
415
416 /* bitmap for indexing intel_iommus */
417 static int g_num_of_iommus;
418
419 static DEFINE_SPINLOCK(async_umap_flush_lock);
420 static LIST_HEAD(unmaps_to_do);
421
422 static int timer_on;
423 static long list_size;
424
425 static void domain_exit(struct dmar_domain *domain);
426 static void domain_remove_dev_info(struct dmar_domain *domain);
427 static void domain_remove_one_dev_info(struct dmar_domain *domain,
428 struct device *dev);
429 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
430 struct device *dev);
431
432 #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
433 int dmar_disabled = 0;
434 #else
435 int dmar_disabled = 1;
436 #endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
437
438 int intel_iommu_enabled = 0;
439 EXPORT_SYMBOL_GPL(intel_iommu_enabled);
440
441 static int dmar_map_gfx = 1;
442 static int dmar_forcedac;
443 static int intel_iommu_strict;
444 static int intel_iommu_superpage = 1;
445
446 int intel_iommu_gfx_mapped;
447 EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
448
449 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
450 static DEFINE_SPINLOCK(device_domain_lock);
451 static LIST_HEAD(device_domain_list);
452
453 static struct iommu_ops intel_iommu_ops;
454
455 static int __init intel_iommu_setup(char *str)
456 {
457 if (!str)
458 return -EINVAL;
459 while (*str) {
460 if (!strncmp(str, "on", 2)) {
461 dmar_disabled = 0;
462 printk(KERN_INFO "Intel-IOMMU: enabled\n");
463 } else if (!strncmp(str, "off", 3)) {
464 dmar_disabled = 1;
465 printk(KERN_INFO "Intel-IOMMU: disabled\n");
466 } else if (!strncmp(str, "igfx_off", 8)) {
467 dmar_map_gfx = 0;
468 printk(KERN_INFO
469 "Intel-IOMMU: disable GFX device mapping\n");
470 } else if (!strncmp(str, "forcedac", 8)) {
471 printk(KERN_INFO
472 "Intel-IOMMU: Forcing DAC for PCI devices\n");
473 dmar_forcedac = 1;
474 } else if (!strncmp(str, "strict", 6)) {
475 printk(KERN_INFO
476 "Intel-IOMMU: disable batched IOTLB flush\n");
477 intel_iommu_strict = 1;
478 } else if (!strncmp(str, "sp_off", 6)) {
479 printk(KERN_INFO
480 "Intel-IOMMU: disable supported super page\n");
481 intel_iommu_superpage = 0;
482 }
483
484 str += strcspn(str, ",");
485 while (*str == ',')
486 str++;
487 }
488 return 0;
489 }
490 __setup("intel_iommu=", intel_iommu_setup);
491
492 static struct kmem_cache *iommu_domain_cache;
493 static struct kmem_cache *iommu_devinfo_cache;
494 static struct kmem_cache *iommu_iova_cache;
495
496 static inline void *alloc_pgtable_page(int node)
497 {
498 struct page *page;
499 void *vaddr = NULL;
500
501 page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
502 if (page)
503 vaddr = page_address(page);
504 return vaddr;
505 }
506
507 static inline void free_pgtable_page(void *vaddr)
508 {
509 free_page((unsigned long)vaddr);
510 }
511
512 static inline void *alloc_domain_mem(void)
513 {
514 return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
515 }
516
517 static void free_domain_mem(void *vaddr)
518 {
519 kmem_cache_free(iommu_domain_cache, vaddr);
520 }
521
522 static inline void * alloc_devinfo_mem(void)
523 {
524 return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
525 }
526
527 static inline void free_devinfo_mem(void *vaddr)
528 {
529 kmem_cache_free(iommu_devinfo_cache, vaddr);
530 }
531
532 struct iova *alloc_iova_mem(void)
533 {
534 return kmem_cache_alloc(iommu_iova_cache, GFP_ATOMIC);
535 }
536
537 void free_iova_mem(struct iova *iova)
538 {
539 kmem_cache_free(iommu_iova_cache, iova);
540 }
541
542
543 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
544 {
545 unsigned long sagaw;
546 int agaw = -1;
547
548 sagaw = cap_sagaw(iommu->cap);
549 for (agaw = width_to_agaw(max_gaw);
550 agaw >= 0; agaw--) {
551 if (test_bit(agaw, &sagaw))
552 break;
553 }
554
555 return agaw;
556 }
557
558 /*
559 * Calculate max SAGAW for each iommu.
560 */
561 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
562 {
563 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
564 }
565
566 /*
567 * calculate agaw for each iommu.
568 * "SAGAW" may be different across iommus, use a default agaw, and
569 * get a supported less agaw for iommus that don't support the default agaw.
570 */
571 int iommu_calculate_agaw(struct intel_iommu *iommu)
572 {
573 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
574 }
575
576 /* This functionin only returns single iommu in a domain */
577 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
578 {
579 int iommu_id;
580
581 /* si_domain and vm domain should not get here. */
582 BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
583 BUG_ON(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY);
584
585 iommu_id = find_first_bit(domain->iommu_bmp, g_num_of_iommus);
586 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
587 return NULL;
588
589 return g_iommus[iommu_id];
590 }
591
592 static void domain_update_iommu_coherency(struct dmar_domain *domain)
593 {
594 struct dmar_drhd_unit *drhd;
595 struct intel_iommu *iommu;
596 int i, found = 0;
597
598 domain->iommu_coherency = 1;
599
600 for_each_set_bit(i, domain->iommu_bmp, g_num_of_iommus) {
601 found = 1;
602 if (!ecap_coherent(g_iommus[i]->ecap)) {
603 domain->iommu_coherency = 0;
604 break;
605 }
606 }
607 if (found)
608 return;
609
610 /* No hardware attached; use lowest common denominator */
611 rcu_read_lock();
612 for_each_active_iommu(iommu, drhd) {
613 if (!ecap_coherent(iommu->ecap)) {
614 domain->iommu_coherency = 0;
615 break;
616 }
617 }
618 rcu_read_unlock();
619 }
620
621 static void domain_update_iommu_snooping(struct dmar_domain *domain)
622 {
623 int i;
624
625 domain->iommu_snooping = 1;
626
627 for_each_set_bit(i, domain->iommu_bmp, g_num_of_iommus) {
628 if (!ecap_sc_support(g_iommus[i]->ecap)) {
629 domain->iommu_snooping = 0;
630 break;
631 }
632 }
633 }
634
635 static void domain_update_iommu_superpage(struct dmar_domain *domain)
636 {
637 struct dmar_drhd_unit *drhd;
638 struct intel_iommu *iommu = NULL;
639 int mask = 0xf;
640
641 if (!intel_iommu_superpage) {
642 domain->iommu_superpage = 0;
643 return;
644 }
645
646 /* set iommu_superpage to the smallest common denominator */
647 rcu_read_lock();
648 for_each_active_iommu(iommu, drhd) {
649 mask &= cap_super_page_val(iommu->cap);
650 if (!mask) {
651 break;
652 }
653 }
654 rcu_read_unlock();
655
656 domain->iommu_superpage = fls(mask);
657 }
658
659 /* Some capabilities may be different across iommus */
660 static void domain_update_iommu_cap(struct dmar_domain *domain)
661 {
662 domain_update_iommu_coherency(domain);
663 domain_update_iommu_snooping(domain);
664 domain_update_iommu_superpage(domain);
665 }
666
667 static struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn)
668 {
669 struct dmar_drhd_unit *drhd = NULL;
670 struct intel_iommu *iommu;
671 struct device *tmp;
672 struct pci_dev *ptmp, *pdev = NULL;
673 u16 segment;
674 int i;
675
676 if (dev_is_pci(dev)) {
677 pdev = to_pci_dev(dev);
678 segment = pci_domain_nr(pdev->bus);
679 } else if (ACPI_COMPANION(dev))
680 dev = &ACPI_COMPANION(dev)->dev;
681
682 rcu_read_lock();
683 for_each_active_iommu(iommu, drhd) {
684 if (pdev && segment != drhd->segment)
685 continue;
686
687 for_each_active_dev_scope(drhd->devices,
688 drhd->devices_cnt, i, tmp) {
689 if (tmp == dev) {
690 *bus = drhd->devices[i].bus;
691 *devfn = drhd->devices[i].devfn;
692 goto out;
693 }
694
695 if (!pdev || !dev_is_pci(tmp))
696 continue;
697
698 ptmp = to_pci_dev(tmp);
699 if (ptmp->subordinate &&
700 ptmp->subordinate->number <= pdev->bus->number &&
701 ptmp->subordinate->busn_res.end >= pdev->bus->number)
702 goto got_pdev;
703 }
704
705 if (pdev && drhd->include_all) {
706 got_pdev:
707 *bus = pdev->bus->number;
708 *devfn = pdev->devfn;
709 goto out;
710 }
711 }
712 iommu = NULL;
713 out:
714 rcu_read_unlock();
715
716 return iommu;
717 }
718
719 static void domain_flush_cache(struct dmar_domain *domain,
720 void *addr, int size)
721 {
722 if (!domain->iommu_coherency)
723 clflush_cache_range(addr, size);
724 }
725
726 /* Gets context entry for a given bus and devfn */
727 static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
728 u8 bus, u8 devfn)
729 {
730 struct root_entry *root;
731 struct context_entry *context;
732 unsigned long phy_addr;
733 unsigned long flags;
734
735 spin_lock_irqsave(&iommu->lock, flags);
736 root = &iommu->root_entry[bus];
737 context = get_context_addr_from_root(root);
738 if (!context) {
739 context = (struct context_entry *)
740 alloc_pgtable_page(iommu->node);
741 if (!context) {
742 spin_unlock_irqrestore(&iommu->lock, flags);
743 return NULL;
744 }
745 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
746 phy_addr = virt_to_phys((void *)context);
747 set_root_value(root, phy_addr);
748 set_root_present(root);
749 __iommu_flush_cache(iommu, root, sizeof(*root));
750 }
751 spin_unlock_irqrestore(&iommu->lock, flags);
752 return &context[devfn];
753 }
754
755 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
756 {
757 struct root_entry *root;
758 struct context_entry *context;
759 int ret;
760 unsigned long flags;
761
762 spin_lock_irqsave(&iommu->lock, flags);
763 root = &iommu->root_entry[bus];
764 context = get_context_addr_from_root(root);
765 if (!context) {
766 ret = 0;
767 goto out;
768 }
769 ret = context_present(&context[devfn]);
770 out:
771 spin_unlock_irqrestore(&iommu->lock, flags);
772 return ret;
773 }
774
775 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
776 {
777 struct root_entry *root;
778 struct context_entry *context;
779 unsigned long flags;
780
781 spin_lock_irqsave(&iommu->lock, flags);
782 root = &iommu->root_entry[bus];
783 context = get_context_addr_from_root(root);
784 if (context) {
785 context_clear_entry(&context[devfn]);
786 __iommu_flush_cache(iommu, &context[devfn], \
787 sizeof(*context));
788 }
789 spin_unlock_irqrestore(&iommu->lock, flags);
790 }
791
792 static void free_context_table(struct intel_iommu *iommu)
793 {
794 struct root_entry *root;
795 int i;
796 unsigned long flags;
797 struct context_entry *context;
798
799 spin_lock_irqsave(&iommu->lock, flags);
800 if (!iommu->root_entry) {
801 goto out;
802 }
803 for (i = 0; i < ROOT_ENTRY_NR; i++) {
804 root = &iommu->root_entry[i];
805 context = get_context_addr_from_root(root);
806 if (context)
807 free_pgtable_page(context);
808 }
809 free_pgtable_page(iommu->root_entry);
810 iommu->root_entry = NULL;
811 out:
812 spin_unlock_irqrestore(&iommu->lock, flags);
813 }
814
815 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
816 unsigned long pfn, int *target_level)
817 {
818 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
819 struct dma_pte *parent, *pte = NULL;
820 int level = agaw_to_level(domain->agaw);
821 int offset;
822
823 BUG_ON(!domain->pgd);
824
825 if (addr_width < BITS_PER_LONG && pfn >> addr_width)
826 /* Address beyond IOMMU's addressing capabilities. */
827 return NULL;
828
829 parent = domain->pgd;
830
831 while (1) {
832 void *tmp_page;
833
834 offset = pfn_level_offset(pfn, level);
835 pte = &parent[offset];
836 if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
837 break;
838 if (level == *target_level)
839 break;
840
841 if (!dma_pte_present(pte)) {
842 uint64_t pteval;
843
844 tmp_page = alloc_pgtable_page(domain->nid);
845
846 if (!tmp_page)
847 return NULL;
848
849 domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
850 pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
851 if (cmpxchg64(&pte->val, 0ULL, pteval)) {
852 /* Someone else set it while we were thinking; use theirs. */
853 free_pgtable_page(tmp_page);
854 } else {
855 dma_pte_addr(pte);
856 domain_flush_cache(domain, pte, sizeof(*pte));
857 }
858 }
859 if (level == 1)
860 break;
861
862 parent = phys_to_virt(dma_pte_addr(pte));
863 level--;
864 }
865
866 if (!*target_level)
867 *target_level = level;
868
869 return pte;
870 }
871
872
873 /* return address's pte at specific level */
874 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
875 unsigned long pfn,
876 int level, int *large_page)
877 {
878 struct dma_pte *parent, *pte = NULL;
879 int total = agaw_to_level(domain->agaw);
880 int offset;
881
882 parent = domain->pgd;
883 while (level <= total) {
884 offset = pfn_level_offset(pfn, total);
885 pte = &parent[offset];
886 if (level == total)
887 return pte;
888
889 if (!dma_pte_present(pte)) {
890 *large_page = total;
891 break;
892 }
893
894 if (pte->val & DMA_PTE_LARGE_PAGE) {
895 *large_page = total;
896 return pte;
897 }
898
899 parent = phys_to_virt(dma_pte_addr(pte));
900 total--;
901 }
902 return NULL;
903 }
904
905 /* clear last level pte, a tlb flush should be followed */
906 static void dma_pte_clear_range(struct dmar_domain *domain,
907 unsigned long start_pfn,
908 unsigned long last_pfn)
909 {
910 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
911 unsigned int large_page = 1;
912 struct dma_pte *first_pte, *pte;
913
914 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
915 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
916 BUG_ON(start_pfn > last_pfn);
917
918 /* we don't need lock here; nobody else touches the iova range */
919 do {
920 large_page = 1;
921 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
922 if (!pte) {
923 start_pfn = align_to_level(start_pfn + 1, large_page + 1);
924 continue;
925 }
926 do {
927 dma_clear_pte(pte);
928 start_pfn += lvl_to_nr_pages(large_page);
929 pte++;
930 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
931
932 domain_flush_cache(domain, first_pte,
933 (void *)pte - (void *)first_pte);
934
935 } while (start_pfn && start_pfn <= last_pfn);
936 }
937
938 static void dma_pte_free_level(struct dmar_domain *domain, int level,
939 struct dma_pte *pte, unsigned long pfn,
940 unsigned long start_pfn, unsigned long last_pfn)
941 {
942 pfn = max(start_pfn, pfn);
943 pte = &pte[pfn_level_offset(pfn, level)];
944
945 do {
946 unsigned long level_pfn;
947 struct dma_pte *level_pte;
948
949 if (!dma_pte_present(pte) || dma_pte_superpage(pte))
950 goto next;
951
952 level_pfn = pfn & level_mask(level - 1);
953 level_pte = phys_to_virt(dma_pte_addr(pte));
954
955 if (level > 2)
956 dma_pte_free_level(domain, level - 1, level_pte,
957 level_pfn, start_pfn, last_pfn);
958
959 /* If range covers entire pagetable, free it */
960 if (!(start_pfn > level_pfn ||
961 last_pfn < level_pfn + level_size(level) - 1)) {
962 dma_clear_pte(pte);
963 domain_flush_cache(domain, pte, sizeof(*pte));
964 free_pgtable_page(level_pte);
965 }
966 next:
967 pfn += level_size(level);
968 } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
969 }
970
971 /* free page table pages. last level pte should already be cleared */
972 static void dma_pte_free_pagetable(struct dmar_domain *domain,
973 unsigned long start_pfn,
974 unsigned long last_pfn)
975 {
976 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
977
978 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
979 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
980 BUG_ON(start_pfn > last_pfn);
981
982 /* We don't need lock here; nobody else touches the iova range */
983 dma_pte_free_level(domain, agaw_to_level(domain->agaw),
984 domain->pgd, 0, start_pfn, last_pfn);
985
986 /* free pgd */
987 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
988 free_pgtable_page(domain->pgd);
989 domain->pgd = NULL;
990 }
991 }
992
993 /* When a page at a given level is being unlinked from its parent, we don't
994 need to *modify* it at all. All we need to do is make a list of all the
995 pages which can be freed just as soon as we've flushed the IOTLB and we
996 know the hardware page-walk will no longer touch them.
997 The 'pte' argument is the *parent* PTE, pointing to the page that is to
998 be freed. */
999 static struct page *dma_pte_list_pagetables(struct dmar_domain *domain,
1000 int level, struct dma_pte *pte,
1001 struct page *freelist)
1002 {
1003 struct page *pg;
1004
1005 pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
1006 pg->freelist = freelist;
1007 freelist = pg;
1008
1009 if (level == 1)
1010 return freelist;
1011
1012 for (pte = page_address(pg); !first_pte_in_page(pte); pte++) {
1013 if (dma_pte_present(pte) && !dma_pte_superpage(pte))
1014 freelist = dma_pte_list_pagetables(domain, level - 1,
1015 pte, freelist);
1016 }
1017
1018 return freelist;
1019 }
1020
1021 static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level,
1022 struct dma_pte *pte, unsigned long pfn,
1023 unsigned long start_pfn,
1024 unsigned long last_pfn,
1025 struct page *freelist)
1026 {
1027 struct dma_pte *first_pte = NULL, *last_pte = NULL;
1028
1029 pfn = max(start_pfn, pfn);
1030 pte = &pte[pfn_level_offset(pfn, level)];
1031
1032 do {
1033 unsigned long level_pfn;
1034
1035 if (!dma_pte_present(pte))
1036 goto next;
1037
1038 level_pfn = pfn & level_mask(level);
1039
1040 /* If range covers entire pagetable, free it */
1041 if (start_pfn <= level_pfn &&
1042 last_pfn >= level_pfn + level_size(level) - 1) {
1043 /* These suborbinate page tables are going away entirely. Don't
1044 bother to clear them; we're just going to *free* them. */
1045 if (level > 1 && !dma_pte_superpage(pte))
1046 freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist);
1047
1048 dma_clear_pte(pte);
1049 if (!first_pte)
1050 first_pte = pte;
1051 last_pte = pte;
1052 } else if (level > 1) {
1053 /* Recurse down into a level that isn't *entirely* obsolete */
1054 freelist = dma_pte_clear_level(domain, level - 1,
1055 phys_to_virt(dma_pte_addr(pte)),
1056 level_pfn, start_pfn, last_pfn,
1057 freelist);
1058 }
1059 next:
1060 pfn += level_size(level);
1061 } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1062
1063 if (first_pte)
1064 domain_flush_cache(domain, first_pte,
1065 (void *)++last_pte - (void *)first_pte);
1066
1067 return freelist;
1068 }
1069
1070 /* We can't just free the pages because the IOMMU may still be walking
1071 the page tables, and may have cached the intermediate levels. The
1072 pages can only be freed after the IOTLB flush has been done. */
1073 struct page *domain_unmap(struct dmar_domain *domain,
1074 unsigned long start_pfn,
1075 unsigned long last_pfn)
1076 {
1077 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
1078 struct page *freelist = NULL;
1079
1080 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
1081 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
1082 BUG_ON(start_pfn > last_pfn);
1083
1084 /* we don't need lock here; nobody else touches the iova range */
1085 freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
1086 domain->pgd, 0, start_pfn, last_pfn, NULL);
1087
1088 /* free pgd */
1089 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1090 struct page *pgd_page = virt_to_page(domain->pgd);
1091 pgd_page->freelist = freelist;
1092 freelist = pgd_page;
1093
1094 domain->pgd = NULL;
1095 }
1096
1097 return freelist;
1098 }
1099
1100 void dma_free_pagelist(struct page *freelist)
1101 {
1102 struct page *pg;
1103
1104 while ((pg = freelist)) {
1105 freelist = pg->freelist;
1106 free_pgtable_page(page_address(pg));
1107 }
1108 }
1109
1110 /* iommu handling */
1111 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
1112 {
1113 struct root_entry *root;
1114 unsigned long flags;
1115
1116 root = (struct root_entry *)alloc_pgtable_page(iommu->node);
1117 if (!root)
1118 return -ENOMEM;
1119
1120 __iommu_flush_cache(iommu, root, ROOT_SIZE);
1121
1122 spin_lock_irqsave(&iommu->lock, flags);
1123 iommu->root_entry = root;
1124 spin_unlock_irqrestore(&iommu->lock, flags);
1125
1126 return 0;
1127 }
1128
1129 static void iommu_set_root_entry(struct intel_iommu *iommu)
1130 {
1131 void *addr;
1132 u32 sts;
1133 unsigned long flag;
1134
1135 addr = iommu->root_entry;
1136
1137 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1138 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
1139
1140 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
1141
1142 /* Make sure hardware complete it */
1143 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1144 readl, (sts & DMA_GSTS_RTPS), sts);
1145
1146 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1147 }
1148
1149 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
1150 {
1151 u32 val;
1152 unsigned long flag;
1153
1154 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
1155 return;
1156
1157 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1158 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
1159
1160 /* Make sure hardware complete it */
1161 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1162 readl, (!(val & DMA_GSTS_WBFS)), val);
1163
1164 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1165 }
1166
1167 /* return value determine if we need a write buffer flush */
1168 static void __iommu_flush_context(struct intel_iommu *iommu,
1169 u16 did, u16 source_id, u8 function_mask,
1170 u64 type)
1171 {
1172 u64 val = 0;
1173 unsigned long flag;
1174
1175 switch (type) {
1176 case DMA_CCMD_GLOBAL_INVL:
1177 val = DMA_CCMD_GLOBAL_INVL;
1178 break;
1179 case DMA_CCMD_DOMAIN_INVL:
1180 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
1181 break;
1182 case DMA_CCMD_DEVICE_INVL:
1183 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
1184 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
1185 break;
1186 default:
1187 BUG();
1188 }
1189 val |= DMA_CCMD_ICC;
1190
1191 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1192 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1193
1194 /* Make sure hardware complete it */
1195 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1196 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1197
1198 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1199 }
1200
1201 /* return value determine if we need a write buffer flush */
1202 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1203 u64 addr, unsigned int size_order, u64 type)
1204 {
1205 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1206 u64 val = 0, val_iva = 0;
1207 unsigned long flag;
1208
1209 switch (type) {
1210 case DMA_TLB_GLOBAL_FLUSH:
1211 /* global flush doesn't need set IVA_REG */
1212 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1213 break;
1214 case DMA_TLB_DSI_FLUSH:
1215 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1216 break;
1217 case DMA_TLB_PSI_FLUSH:
1218 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1219 /* IH bit is passed in as part of address */
1220 val_iva = size_order | addr;
1221 break;
1222 default:
1223 BUG();
1224 }
1225 /* Note: set drain read/write */
1226 #if 0
1227 /*
1228 * This is probably to be super secure.. Looks like we can
1229 * ignore it without any impact.
1230 */
1231 if (cap_read_drain(iommu->cap))
1232 val |= DMA_TLB_READ_DRAIN;
1233 #endif
1234 if (cap_write_drain(iommu->cap))
1235 val |= DMA_TLB_WRITE_DRAIN;
1236
1237 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1238 /* Note: Only uses first TLB reg currently */
1239 if (val_iva)
1240 dmar_writeq(iommu->reg + tlb_offset, val_iva);
1241 dmar_writeq(iommu->reg + tlb_offset + 8, val);
1242
1243 /* Make sure hardware complete it */
1244 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1245 dmar_readq, (!(val & DMA_TLB_IVT)), val);
1246
1247 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1248
1249 /* check IOTLB invalidation granularity */
1250 if (DMA_TLB_IAIG(val) == 0)
1251 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
1252 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1253 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
1254 (unsigned long long)DMA_TLB_IIRG(type),
1255 (unsigned long long)DMA_TLB_IAIG(val));
1256 }
1257
1258 static struct device_domain_info *
1259 iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu,
1260 u8 bus, u8 devfn)
1261 {
1262 int found = 0;
1263 unsigned long flags;
1264 struct device_domain_info *info;
1265 struct pci_dev *pdev;
1266
1267 if (!ecap_dev_iotlb_support(iommu->ecap))
1268 return NULL;
1269
1270 if (!iommu->qi)
1271 return NULL;
1272
1273 spin_lock_irqsave(&device_domain_lock, flags);
1274 list_for_each_entry(info, &domain->devices, link)
1275 if (info->bus == bus && info->devfn == devfn) {
1276 found = 1;
1277 break;
1278 }
1279 spin_unlock_irqrestore(&device_domain_lock, flags);
1280
1281 if (!found || !info->dev || !dev_is_pci(info->dev))
1282 return NULL;
1283
1284 pdev = to_pci_dev(info->dev);
1285
1286 if (!pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS))
1287 return NULL;
1288
1289 if (!dmar_find_matched_atsr_unit(pdev))
1290 return NULL;
1291
1292 return info;
1293 }
1294
1295 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1296 {
1297 if (!info || !dev_is_pci(info->dev))
1298 return;
1299
1300 pci_enable_ats(to_pci_dev(info->dev), VTD_PAGE_SHIFT);
1301 }
1302
1303 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1304 {
1305 if (!info->dev || !dev_is_pci(info->dev) ||
1306 !pci_ats_enabled(to_pci_dev(info->dev)))
1307 return;
1308
1309 pci_disable_ats(to_pci_dev(info->dev));
1310 }
1311
1312 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1313 u64 addr, unsigned mask)
1314 {
1315 u16 sid, qdep;
1316 unsigned long flags;
1317 struct device_domain_info *info;
1318
1319 spin_lock_irqsave(&device_domain_lock, flags);
1320 list_for_each_entry(info, &domain->devices, link) {
1321 struct pci_dev *pdev;
1322 if (!info->dev || !dev_is_pci(info->dev))
1323 continue;
1324
1325 pdev = to_pci_dev(info->dev);
1326 if (!pci_ats_enabled(pdev))
1327 continue;
1328
1329 sid = info->bus << 8 | info->devfn;
1330 qdep = pci_ats_queue_depth(pdev);
1331 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1332 }
1333 spin_unlock_irqrestore(&device_domain_lock, flags);
1334 }
1335
1336 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
1337 unsigned long pfn, unsigned int pages, int ih, int map)
1338 {
1339 unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1340 uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1341
1342 BUG_ON(pages == 0);
1343
1344 if (ih)
1345 ih = 1 << 6;
1346 /*
1347 * Fallback to domain selective flush if no PSI support or the size is
1348 * too big.
1349 * PSI requires page size to be 2 ^ x, and the base address is naturally
1350 * aligned to the size
1351 */
1352 if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1353 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1354 DMA_TLB_DSI_FLUSH);
1355 else
1356 iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
1357 DMA_TLB_PSI_FLUSH);
1358
1359 /*
1360 * In caching mode, changes of pages from non-present to present require
1361 * flush. However, device IOTLB doesn't need to be flushed in this case.
1362 */
1363 if (!cap_caching_mode(iommu->cap) || !map)
1364 iommu_flush_dev_iotlb(iommu->domains[did], addr, mask);
1365 }
1366
1367 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1368 {
1369 u32 pmen;
1370 unsigned long flags;
1371
1372 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1373 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1374 pmen &= ~DMA_PMEN_EPM;
1375 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1376
1377 /* wait for the protected region status bit to clear */
1378 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1379 readl, !(pmen & DMA_PMEN_PRS), pmen);
1380
1381 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1382 }
1383
1384 static int iommu_enable_translation(struct intel_iommu *iommu)
1385 {
1386 u32 sts;
1387 unsigned long flags;
1388
1389 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1390 iommu->gcmd |= DMA_GCMD_TE;
1391 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1392
1393 /* Make sure hardware complete it */
1394 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1395 readl, (sts & DMA_GSTS_TES), sts);
1396
1397 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1398 return 0;
1399 }
1400
1401 static int iommu_disable_translation(struct intel_iommu *iommu)
1402 {
1403 u32 sts;
1404 unsigned long flag;
1405
1406 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1407 iommu->gcmd &= ~DMA_GCMD_TE;
1408 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1409
1410 /* Make sure hardware complete it */
1411 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1412 readl, (!(sts & DMA_GSTS_TES)), sts);
1413
1414 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1415 return 0;
1416 }
1417
1418
1419 static int iommu_init_domains(struct intel_iommu *iommu)
1420 {
1421 unsigned long ndomains;
1422 unsigned long nlongs;
1423
1424 ndomains = cap_ndoms(iommu->cap);
1425 pr_debug("IOMMU%d: Number of Domains supported <%ld>\n",
1426 iommu->seq_id, ndomains);
1427 nlongs = BITS_TO_LONGS(ndomains);
1428
1429 spin_lock_init(&iommu->lock);
1430
1431 /* TBD: there might be 64K domains,
1432 * consider other allocation for future chip
1433 */
1434 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1435 if (!iommu->domain_ids) {
1436 pr_err("IOMMU%d: allocating domain id array failed\n",
1437 iommu->seq_id);
1438 return -ENOMEM;
1439 }
1440 iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1441 GFP_KERNEL);
1442 if (!iommu->domains) {
1443 pr_err("IOMMU%d: allocating domain array failed\n",
1444 iommu->seq_id);
1445 kfree(iommu->domain_ids);
1446 iommu->domain_ids = NULL;
1447 return -ENOMEM;
1448 }
1449
1450 /*
1451 * if Caching mode is set, then invalid translations are tagged
1452 * with domainid 0. Hence we need to pre-allocate it.
1453 */
1454 if (cap_caching_mode(iommu->cap))
1455 set_bit(0, iommu->domain_ids);
1456 return 0;
1457 }
1458
1459 static void free_dmar_iommu(struct intel_iommu *iommu)
1460 {
1461 struct dmar_domain *domain;
1462 int i, count;
1463 unsigned long flags;
1464
1465 if ((iommu->domains) && (iommu->domain_ids)) {
1466 for_each_set_bit(i, iommu->domain_ids, cap_ndoms(iommu->cap)) {
1467 /*
1468 * Domain id 0 is reserved for invalid translation
1469 * if hardware supports caching mode.
1470 */
1471 if (cap_caching_mode(iommu->cap) && i == 0)
1472 continue;
1473
1474 domain = iommu->domains[i];
1475 clear_bit(i, iommu->domain_ids);
1476
1477 spin_lock_irqsave(&domain->iommu_lock, flags);
1478 count = --domain->iommu_count;
1479 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1480 if (count == 0)
1481 domain_exit(domain);
1482 }
1483 }
1484
1485 if (iommu->gcmd & DMA_GCMD_TE)
1486 iommu_disable_translation(iommu);
1487
1488 kfree(iommu->domains);
1489 kfree(iommu->domain_ids);
1490 iommu->domains = NULL;
1491 iommu->domain_ids = NULL;
1492
1493 g_iommus[iommu->seq_id] = NULL;
1494
1495 /* free context mapping */
1496 free_context_table(iommu);
1497 }
1498
1499 static struct dmar_domain *alloc_domain(bool vm)
1500 {
1501 /* domain id for virtual machine, it won't be set in context */
1502 static atomic_t vm_domid = ATOMIC_INIT(0);
1503 struct dmar_domain *domain;
1504
1505 domain = alloc_domain_mem();
1506 if (!domain)
1507 return NULL;
1508
1509 domain->nid = -1;
1510 domain->iommu_count = 0;
1511 memset(domain->iommu_bmp, 0, sizeof(domain->iommu_bmp));
1512 domain->flags = 0;
1513 spin_lock_init(&domain->iommu_lock);
1514 INIT_LIST_HEAD(&domain->devices);
1515 if (vm) {
1516 domain->id = atomic_inc_return(&vm_domid);
1517 domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE;
1518 }
1519
1520 return domain;
1521 }
1522
1523 static int iommu_attach_domain(struct dmar_domain *domain,
1524 struct intel_iommu *iommu)
1525 {
1526 int num;
1527 unsigned long ndomains;
1528 unsigned long flags;
1529
1530 ndomains = cap_ndoms(iommu->cap);
1531
1532 spin_lock_irqsave(&iommu->lock, flags);
1533
1534 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1535 if (num >= ndomains) {
1536 spin_unlock_irqrestore(&iommu->lock, flags);
1537 printk(KERN_ERR "IOMMU: no free domain ids\n");
1538 return -ENOMEM;
1539 }
1540
1541 domain->id = num;
1542 domain->iommu_count++;
1543 set_bit(num, iommu->domain_ids);
1544 set_bit(iommu->seq_id, domain->iommu_bmp);
1545 iommu->domains[num] = domain;
1546 spin_unlock_irqrestore(&iommu->lock, flags);
1547
1548 return 0;
1549 }
1550
1551 static void iommu_detach_domain(struct dmar_domain *domain,
1552 struct intel_iommu *iommu)
1553 {
1554 unsigned long flags;
1555 int num, ndomains;
1556
1557 spin_lock_irqsave(&iommu->lock, flags);
1558 ndomains = cap_ndoms(iommu->cap);
1559 for_each_set_bit(num, iommu->domain_ids, ndomains) {
1560 if (iommu->domains[num] == domain) {
1561 clear_bit(num, iommu->domain_ids);
1562 iommu->domains[num] = NULL;
1563 break;
1564 }
1565 }
1566 spin_unlock_irqrestore(&iommu->lock, flags);
1567 }
1568
1569 static struct iova_domain reserved_iova_list;
1570 static struct lock_class_key reserved_rbtree_key;
1571
1572 static int dmar_init_reserved_ranges(void)
1573 {
1574 struct pci_dev *pdev = NULL;
1575 struct iova *iova;
1576 int i;
1577
1578 init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
1579
1580 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1581 &reserved_rbtree_key);
1582
1583 /* IOAPIC ranges shouldn't be accessed by DMA */
1584 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1585 IOVA_PFN(IOAPIC_RANGE_END));
1586 if (!iova) {
1587 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1588 return -ENODEV;
1589 }
1590
1591 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1592 for_each_pci_dev(pdev) {
1593 struct resource *r;
1594
1595 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1596 r = &pdev->resource[i];
1597 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1598 continue;
1599 iova = reserve_iova(&reserved_iova_list,
1600 IOVA_PFN(r->start),
1601 IOVA_PFN(r->end));
1602 if (!iova) {
1603 printk(KERN_ERR "Reserve iova failed\n");
1604 return -ENODEV;
1605 }
1606 }
1607 }
1608 return 0;
1609 }
1610
1611 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1612 {
1613 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1614 }
1615
1616 static inline int guestwidth_to_adjustwidth(int gaw)
1617 {
1618 int agaw;
1619 int r = (gaw - 12) % 9;
1620
1621 if (r == 0)
1622 agaw = gaw;
1623 else
1624 agaw = gaw + 9 - r;
1625 if (agaw > 64)
1626 agaw = 64;
1627 return agaw;
1628 }
1629
1630 static int domain_init(struct dmar_domain *domain, int guest_width)
1631 {
1632 struct intel_iommu *iommu;
1633 int adjust_width, agaw;
1634 unsigned long sagaw;
1635
1636 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
1637 domain_reserve_special_ranges(domain);
1638
1639 /* calculate AGAW */
1640 iommu = domain_get_iommu(domain);
1641 if (guest_width > cap_mgaw(iommu->cap))
1642 guest_width = cap_mgaw(iommu->cap);
1643 domain->gaw = guest_width;
1644 adjust_width = guestwidth_to_adjustwidth(guest_width);
1645 agaw = width_to_agaw(adjust_width);
1646 sagaw = cap_sagaw(iommu->cap);
1647 if (!test_bit(agaw, &sagaw)) {
1648 /* hardware doesn't support it, choose a bigger one */
1649 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1650 agaw = find_next_bit(&sagaw, 5, agaw);
1651 if (agaw >= 5)
1652 return -ENODEV;
1653 }
1654 domain->agaw = agaw;
1655
1656 if (ecap_coherent(iommu->ecap))
1657 domain->iommu_coherency = 1;
1658 else
1659 domain->iommu_coherency = 0;
1660
1661 if (ecap_sc_support(iommu->ecap))
1662 domain->iommu_snooping = 1;
1663 else
1664 domain->iommu_snooping = 0;
1665
1666 if (intel_iommu_superpage)
1667 domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
1668 else
1669 domain->iommu_superpage = 0;
1670
1671 domain->nid = iommu->node;
1672
1673 /* always allocate the top pgd */
1674 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1675 if (!domain->pgd)
1676 return -ENOMEM;
1677 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1678 return 0;
1679 }
1680
1681 static void domain_exit(struct dmar_domain *domain)
1682 {
1683 struct dmar_drhd_unit *drhd;
1684 struct intel_iommu *iommu;
1685 struct page *freelist = NULL;
1686
1687 /* Domain 0 is reserved, so dont process it */
1688 if (!domain)
1689 return;
1690
1691 /* Flush any lazy unmaps that may reference this domain */
1692 if (!intel_iommu_strict)
1693 flush_unmaps_timeout(0);
1694
1695 /* remove associated devices */
1696 domain_remove_dev_info(domain);
1697
1698 /* destroy iovas */
1699 put_iova_domain(&domain->iovad);
1700
1701 freelist = domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1702
1703 /* clear attached or cached domains */
1704 rcu_read_lock();
1705 for_each_active_iommu(iommu, drhd)
1706 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
1707 test_bit(iommu->seq_id, domain->iommu_bmp))
1708 iommu_detach_domain(domain, iommu);
1709 rcu_read_unlock();
1710
1711 dma_free_pagelist(freelist);
1712
1713 free_domain_mem(domain);
1714 }
1715
1716 static int domain_context_mapping_one(struct dmar_domain *domain,
1717 struct intel_iommu *iommu,
1718 u8 bus, u8 devfn, int translation)
1719 {
1720 struct context_entry *context;
1721 unsigned long flags;
1722 struct dma_pte *pgd;
1723 unsigned long num;
1724 unsigned long ndomains;
1725 int id;
1726 int agaw;
1727 struct device_domain_info *info = NULL;
1728
1729 pr_debug("Set context mapping for %02x:%02x.%d\n",
1730 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1731
1732 BUG_ON(!domain->pgd);
1733 BUG_ON(translation != CONTEXT_TT_PASS_THROUGH &&
1734 translation != CONTEXT_TT_MULTI_LEVEL);
1735
1736 context = device_to_context_entry(iommu, bus, devfn);
1737 if (!context)
1738 return -ENOMEM;
1739 spin_lock_irqsave(&iommu->lock, flags);
1740 if (context_present(context)) {
1741 spin_unlock_irqrestore(&iommu->lock, flags);
1742 return 0;
1743 }
1744
1745 id = domain->id;
1746 pgd = domain->pgd;
1747
1748 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
1749 domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) {
1750 int found = 0;
1751
1752 /* find an available domain id for this device in iommu */
1753 ndomains = cap_ndoms(iommu->cap);
1754 for_each_set_bit(num, iommu->domain_ids, ndomains) {
1755 if (iommu->domains[num] == domain) {
1756 id = num;
1757 found = 1;
1758 break;
1759 }
1760 }
1761
1762 if (found == 0) {
1763 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1764 if (num >= ndomains) {
1765 spin_unlock_irqrestore(&iommu->lock, flags);
1766 printk(KERN_ERR "IOMMU: no free domain ids\n");
1767 return -EFAULT;
1768 }
1769
1770 set_bit(num, iommu->domain_ids);
1771 iommu->domains[num] = domain;
1772 id = num;
1773 }
1774
1775 /* Skip top levels of page tables for
1776 * iommu which has less agaw than default.
1777 * Unnecessary for PT mode.
1778 */
1779 if (translation != CONTEXT_TT_PASS_THROUGH) {
1780 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1781 pgd = phys_to_virt(dma_pte_addr(pgd));
1782 if (!dma_pte_present(pgd)) {
1783 spin_unlock_irqrestore(&iommu->lock, flags);
1784 return -ENOMEM;
1785 }
1786 }
1787 }
1788 }
1789
1790 context_set_domain_id(context, id);
1791
1792 if (translation != CONTEXT_TT_PASS_THROUGH) {
1793 info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
1794 translation = info ? CONTEXT_TT_DEV_IOTLB :
1795 CONTEXT_TT_MULTI_LEVEL;
1796 }
1797 /*
1798 * In pass through mode, AW must be programmed to indicate the largest
1799 * AGAW value supported by hardware. And ASR is ignored by hardware.
1800 */
1801 if (unlikely(translation == CONTEXT_TT_PASS_THROUGH))
1802 context_set_address_width(context, iommu->msagaw);
1803 else {
1804 context_set_address_root(context, virt_to_phys(pgd));
1805 context_set_address_width(context, iommu->agaw);
1806 }
1807
1808 context_set_translation_type(context, translation);
1809 context_set_fault_enable(context);
1810 context_set_present(context);
1811 domain_flush_cache(domain, context, sizeof(*context));
1812
1813 /*
1814 * It's a non-present to present mapping. If hardware doesn't cache
1815 * non-present entry we only need to flush the write-buffer. If the
1816 * _does_ cache non-present entries, then it does so in the special
1817 * domain #0, which we have to flush:
1818 */
1819 if (cap_caching_mode(iommu->cap)) {
1820 iommu->flush.flush_context(iommu, 0,
1821 (((u16)bus) << 8) | devfn,
1822 DMA_CCMD_MASK_NOBIT,
1823 DMA_CCMD_DEVICE_INVL);
1824 iommu->flush.flush_iotlb(iommu, domain->id, 0, 0, DMA_TLB_DSI_FLUSH);
1825 } else {
1826 iommu_flush_write_buffer(iommu);
1827 }
1828 iommu_enable_dev_iotlb(info);
1829 spin_unlock_irqrestore(&iommu->lock, flags);
1830
1831 spin_lock_irqsave(&domain->iommu_lock, flags);
1832 if (!test_and_set_bit(iommu->seq_id, domain->iommu_bmp)) {
1833 domain->iommu_count++;
1834 if (domain->iommu_count == 1)
1835 domain->nid = iommu->node;
1836 domain_update_iommu_cap(domain);
1837 }
1838 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1839 return 0;
1840 }
1841
1842 static int
1843 domain_context_mapping(struct dmar_domain *domain, struct device *dev,
1844 int translation)
1845 {
1846 int ret;
1847 struct pci_dev *pdev, *tmp, *parent;
1848 struct intel_iommu *iommu;
1849 u8 bus, devfn;
1850
1851 iommu = device_to_iommu(dev, &bus, &devfn);
1852 if (!iommu)
1853 return -ENODEV;
1854
1855 ret = domain_context_mapping_one(domain, iommu, bus, devfn,
1856 translation);
1857 if (ret || !dev_is_pci(dev))
1858 return ret;
1859
1860 /* dependent device mapping */
1861 pdev = to_pci_dev(dev);
1862 tmp = pci_find_upstream_pcie_bridge(pdev);
1863 if (!tmp)
1864 return 0;
1865 /* Secondary interface's bus number and devfn 0 */
1866 parent = pdev->bus->self;
1867 while (parent != tmp) {
1868 ret = domain_context_mapping_one(domain, iommu,
1869 parent->bus->number,
1870 parent->devfn, translation);
1871 if (ret)
1872 return ret;
1873 parent = parent->bus->self;
1874 }
1875 if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */
1876 return domain_context_mapping_one(domain, iommu,
1877 tmp->subordinate->number, 0,
1878 translation);
1879 else /* this is a legacy PCI bridge */
1880 return domain_context_mapping_one(domain, iommu,
1881 tmp->bus->number,
1882 tmp->devfn,
1883 translation);
1884 }
1885
1886 static int domain_context_mapped(struct device *dev)
1887 {
1888 int ret;
1889 struct pci_dev *pdev, *tmp, *parent;
1890 struct intel_iommu *iommu;
1891 u8 bus, devfn;
1892
1893 iommu = device_to_iommu(dev, &bus, &devfn);
1894 if (!iommu)
1895 return -ENODEV;
1896
1897 ret = device_context_mapped(iommu, bus, devfn);
1898 if (!ret || !dev_is_pci(dev))
1899 return ret;
1900
1901 /* dependent device mapping */
1902 pdev = to_pci_dev(dev);
1903 tmp = pci_find_upstream_pcie_bridge(pdev);
1904 if (!tmp)
1905 return ret;
1906 /* Secondary interface's bus number and devfn 0 */
1907 parent = pdev->bus->self;
1908 while (parent != tmp) {
1909 ret = device_context_mapped(iommu, parent->bus->number,
1910 parent->devfn);
1911 if (!ret)
1912 return ret;
1913 parent = parent->bus->self;
1914 }
1915 if (pci_is_pcie(tmp))
1916 return device_context_mapped(iommu, tmp->subordinate->number,
1917 0);
1918 else
1919 return device_context_mapped(iommu, tmp->bus->number,
1920 tmp->devfn);
1921 }
1922
1923 /* Returns a number of VTD pages, but aligned to MM page size */
1924 static inline unsigned long aligned_nrpages(unsigned long host_addr,
1925 size_t size)
1926 {
1927 host_addr &= ~PAGE_MASK;
1928 return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
1929 }
1930
1931 /* Return largest possible superpage level for a given mapping */
1932 static inline int hardware_largepage_caps(struct dmar_domain *domain,
1933 unsigned long iov_pfn,
1934 unsigned long phy_pfn,
1935 unsigned long pages)
1936 {
1937 int support, level = 1;
1938 unsigned long pfnmerge;
1939
1940 support = domain->iommu_superpage;
1941
1942 /* To use a large page, the virtual *and* physical addresses
1943 must be aligned to 2MiB/1GiB/etc. Lower bits set in either
1944 of them will mean we have to use smaller pages. So just
1945 merge them and check both at once. */
1946 pfnmerge = iov_pfn | phy_pfn;
1947
1948 while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
1949 pages >>= VTD_STRIDE_SHIFT;
1950 if (!pages)
1951 break;
1952 pfnmerge >>= VTD_STRIDE_SHIFT;
1953 level++;
1954 support--;
1955 }
1956 return level;
1957 }
1958
1959 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1960 struct scatterlist *sg, unsigned long phys_pfn,
1961 unsigned long nr_pages, int prot)
1962 {
1963 struct dma_pte *first_pte = NULL, *pte = NULL;
1964 phys_addr_t uninitialized_var(pteval);
1965 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
1966 unsigned long sg_res;
1967 unsigned int largepage_lvl = 0;
1968 unsigned long lvl_pages = 0;
1969
1970 BUG_ON(addr_width < BITS_PER_LONG && (iov_pfn + nr_pages - 1) >> addr_width);
1971
1972 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1973 return -EINVAL;
1974
1975 prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
1976
1977 if (sg)
1978 sg_res = 0;
1979 else {
1980 sg_res = nr_pages + 1;
1981 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
1982 }
1983
1984 while (nr_pages > 0) {
1985 uint64_t tmp;
1986
1987 if (!sg_res) {
1988 sg_res = aligned_nrpages(sg->offset, sg->length);
1989 sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
1990 sg->dma_length = sg->length;
1991 pteval = page_to_phys(sg_page(sg)) | prot;
1992 phys_pfn = pteval >> VTD_PAGE_SHIFT;
1993 }
1994
1995 if (!pte) {
1996 largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
1997
1998 first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl);
1999 if (!pte)
2000 return -ENOMEM;
2001 /* It is large page*/
2002 if (largepage_lvl > 1) {
2003 pteval |= DMA_PTE_LARGE_PAGE;
2004 /* Ensure that old small page tables are removed to make room
2005 for superpage, if they exist. */
2006 dma_pte_clear_range(domain, iov_pfn,
2007 iov_pfn + lvl_to_nr_pages(largepage_lvl) - 1);
2008 dma_pte_free_pagetable(domain, iov_pfn,
2009 iov_pfn + lvl_to_nr_pages(largepage_lvl) - 1);
2010 } else {
2011 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
2012 }
2013
2014 }
2015 /* We don't need lock here, nobody else
2016 * touches the iova range
2017 */
2018 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
2019 if (tmp) {
2020 static int dumps = 5;
2021 printk(KERN_CRIT "ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
2022 iov_pfn, tmp, (unsigned long long)pteval);
2023 if (dumps) {
2024 dumps--;
2025 debug_dma_dump_mappings(NULL);
2026 }
2027 WARN_ON(1);
2028 }
2029
2030 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2031
2032 BUG_ON(nr_pages < lvl_pages);
2033 BUG_ON(sg_res < lvl_pages);
2034
2035 nr_pages -= lvl_pages;
2036 iov_pfn += lvl_pages;
2037 phys_pfn += lvl_pages;
2038 pteval += lvl_pages * VTD_PAGE_SIZE;
2039 sg_res -= lvl_pages;
2040
2041 /* If the next PTE would be the first in a new page, then we
2042 need to flush the cache on the entries we've just written.
2043 And then we'll need to recalculate 'pte', so clear it and
2044 let it get set again in the if (!pte) block above.
2045
2046 If we're done (!nr_pages) we need to flush the cache too.
2047
2048 Also if we've been setting superpages, we may need to
2049 recalculate 'pte' and switch back to smaller pages for the
2050 end of the mapping, if the trailing size is not enough to
2051 use another superpage (i.e. sg_res < lvl_pages). */
2052 pte++;
2053 if (!nr_pages || first_pte_in_page(pte) ||
2054 (largepage_lvl > 1 && sg_res < lvl_pages)) {
2055 domain_flush_cache(domain, first_pte,
2056 (void *)pte - (void *)first_pte);
2057 pte = NULL;
2058 }
2059
2060 if (!sg_res && nr_pages)
2061 sg = sg_next(sg);
2062 }
2063 return 0;
2064 }
2065
2066 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2067 struct scatterlist *sg, unsigned long nr_pages,
2068 int prot)
2069 {
2070 return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
2071 }
2072
2073 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2074 unsigned long phys_pfn, unsigned long nr_pages,
2075 int prot)
2076 {
2077 return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
2078 }
2079
2080 static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
2081 {
2082 if (!iommu)
2083 return;
2084
2085 clear_context_table(iommu, bus, devfn);
2086 iommu->flush.flush_context(iommu, 0, 0, 0,
2087 DMA_CCMD_GLOBAL_INVL);
2088 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2089 }
2090
2091 static inline void unlink_domain_info(struct device_domain_info *info)
2092 {
2093 assert_spin_locked(&device_domain_lock);
2094 list_del(&info->link);
2095 list_del(&info->global);
2096 if (info->dev)
2097 info->dev->archdata.iommu = NULL;
2098 }
2099
2100 static void domain_remove_dev_info(struct dmar_domain *domain)
2101 {
2102 struct device_domain_info *info;
2103 unsigned long flags, flags2;
2104
2105 spin_lock_irqsave(&device_domain_lock, flags);
2106 while (!list_empty(&domain->devices)) {
2107 info = list_entry(domain->devices.next,
2108 struct device_domain_info, link);
2109 unlink_domain_info(info);
2110 spin_unlock_irqrestore(&device_domain_lock, flags);
2111
2112 iommu_disable_dev_iotlb(info);
2113 iommu_detach_dev(info->iommu, info->bus, info->devfn);
2114
2115 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) {
2116 iommu_detach_dependent_devices(info->iommu, info->dev);
2117 /* clear this iommu in iommu_bmp, update iommu count
2118 * and capabilities
2119 */
2120 spin_lock_irqsave(&domain->iommu_lock, flags2);
2121 if (test_and_clear_bit(info->iommu->seq_id,
2122 domain->iommu_bmp)) {
2123 domain->iommu_count--;
2124 domain_update_iommu_cap(domain);
2125 }
2126 spin_unlock_irqrestore(&domain->iommu_lock, flags2);
2127 }
2128
2129 free_devinfo_mem(info);
2130 spin_lock_irqsave(&device_domain_lock, flags);
2131 }
2132 spin_unlock_irqrestore(&device_domain_lock, flags);
2133 }
2134
2135 /*
2136 * find_domain
2137 * Note: we use struct device->archdata.iommu stores the info
2138 */
2139 static struct dmar_domain *find_domain(struct device *dev)
2140 {
2141 struct device_domain_info *info;
2142
2143 /* No lock here, assumes no domain exit in normal case */
2144 info = dev->archdata.iommu;
2145 if (info)
2146 return info->domain;
2147 return NULL;
2148 }
2149
2150 static inline struct device_domain_info *
2151 dmar_search_domain_by_dev_info(int segment, int bus, int devfn)
2152 {
2153 struct device_domain_info *info;
2154
2155 list_for_each_entry(info, &device_domain_list, global)
2156 if (info->iommu->segment == segment && info->bus == bus &&
2157 info->devfn == devfn)
2158 return info;
2159
2160 return NULL;
2161 }
2162
2163 static struct dmar_domain *dmar_insert_dev_info(struct intel_iommu *iommu,
2164 int bus, int devfn,
2165 struct device *dev,
2166 struct dmar_domain *domain)
2167 {
2168 struct dmar_domain *found = NULL;
2169 struct device_domain_info *info;
2170 unsigned long flags;
2171
2172 info = alloc_devinfo_mem();
2173 if (!info)
2174 return NULL;
2175
2176 info->bus = bus;
2177 info->devfn = devfn;
2178 info->dev = dev;
2179 info->domain = domain;
2180 info->iommu = iommu;
2181 if (!dev)
2182 domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
2183
2184 spin_lock_irqsave(&device_domain_lock, flags);
2185 if (dev)
2186 found = find_domain(dev);
2187 else {
2188 struct device_domain_info *info2;
2189 info2 = dmar_search_domain_by_dev_info(iommu->segment, bus, devfn);
2190 if (info2)
2191 found = info2->domain;
2192 }
2193 if (found) {
2194 spin_unlock_irqrestore(&device_domain_lock, flags);
2195 free_devinfo_mem(info);
2196 /* Caller must free the original domain */
2197 return found;
2198 }
2199
2200 list_add(&info->link, &domain->devices);
2201 list_add(&info->global, &device_domain_list);
2202 if (dev)
2203 dev->archdata.iommu = info;
2204 spin_unlock_irqrestore(&device_domain_lock, flags);
2205
2206 return domain;
2207 }
2208
2209 /* domain is initialized */
2210 static struct dmar_domain *get_domain_for_dev(struct device *dev, int gaw)
2211 {
2212 struct dmar_domain *domain, *free = NULL;
2213 struct intel_iommu *iommu = NULL;
2214 struct device_domain_info *info;
2215 struct pci_dev *dev_tmp = NULL;
2216 unsigned long flags;
2217 u8 bus, devfn, bridge_bus, bridge_devfn;
2218
2219 domain = find_domain(dev);
2220 if (domain)
2221 return domain;
2222
2223 if (dev_is_pci(dev)) {
2224 struct pci_dev *pdev = to_pci_dev(dev);
2225 u16 segment;
2226
2227 segment = pci_domain_nr(pdev->bus);
2228 dev_tmp = pci_find_upstream_pcie_bridge(pdev);
2229 if (dev_tmp) {
2230 if (pci_is_pcie(dev_tmp)) {
2231 bridge_bus = dev_tmp->subordinate->number;
2232 bridge_devfn = 0;
2233 } else {
2234 bridge_bus = dev_tmp->bus->number;
2235 bridge_devfn = dev_tmp->devfn;
2236 }
2237 spin_lock_irqsave(&device_domain_lock, flags);
2238 info = dmar_search_domain_by_dev_info(segment, bus, devfn);
2239 if (info) {
2240 iommu = info->iommu;
2241 domain = info->domain;
2242 }
2243 spin_unlock_irqrestore(&device_domain_lock, flags);
2244 /* pcie-pci bridge already has a domain, uses it */
2245 if (info)
2246 goto found_domain;
2247 }
2248 }
2249
2250 iommu = device_to_iommu(dev, &bus, &devfn);
2251 if (!iommu)
2252 goto error;
2253
2254 /* Allocate and initialize new domain for the device */
2255 domain = alloc_domain(false);
2256 if (!domain)
2257 goto error;
2258 if (iommu_attach_domain(domain, iommu)) {
2259 free_domain_mem(domain);
2260 goto error;
2261 }
2262 free = domain;
2263 if (domain_init(domain, gaw))
2264 goto error;
2265
2266 /* register pcie-to-pci device */
2267 if (dev_tmp) {
2268 domain = dmar_insert_dev_info(iommu, bridge_bus, bridge_devfn,
2269 NULL, domain);
2270 if (!domain)
2271 goto error;
2272 }
2273
2274 found_domain:
2275 domain = dmar_insert_dev_info(iommu, bus, devfn, dev, domain);
2276 error:
2277 if (free != domain)
2278 domain_exit(free);
2279
2280 return domain;
2281 }
2282
2283 static int iommu_identity_mapping;
2284 #define IDENTMAP_ALL 1
2285 #define IDENTMAP_GFX 2
2286 #define IDENTMAP_AZALIA 4
2287
2288 static int iommu_domain_identity_map(struct dmar_domain *domain,
2289 unsigned long long start,
2290 unsigned long long end)
2291 {
2292 unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
2293 unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
2294
2295 if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
2296 dma_to_mm_pfn(last_vpfn))) {
2297 printk(KERN_ERR "IOMMU: reserve iova failed\n");
2298 return -ENOMEM;
2299 }
2300
2301 pr_debug("Mapping reserved region %llx-%llx for domain %d\n",
2302 start, end, domain->id);
2303 /*
2304 * RMRR range might have overlap with physical memory range,
2305 * clear it first
2306 */
2307 dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2308
2309 return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
2310 last_vpfn - first_vpfn + 1,
2311 DMA_PTE_READ|DMA_PTE_WRITE);
2312 }
2313
2314 static int iommu_prepare_identity_map(struct device *dev,
2315 unsigned long long start,
2316 unsigned long long end)
2317 {
2318 struct dmar_domain *domain;
2319 int ret;
2320
2321 domain = get_domain_for_dev(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2322 if (!domain)
2323 return -ENOMEM;
2324
2325 /* For _hardware_ passthrough, don't bother. But for software
2326 passthrough, we do it anyway -- it may indicate a memory
2327 range which is reserved in E820, so which didn't get set
2328 up to start with in si_domain */
2329 if (domain == si_domain && hw_pass_through) {
2330 printk("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
2331 dev_name(dev), start, end);
2332 return 0;
2333 }
2334
2335 printk(KERN_INFO
2336 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
2337 dev_name(dev), start, end);
2338
2339 if (end < start) {
2340 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2341 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2342 dmi_get_system_info(DMI_BIOS_VENDOR),
2343 dmi_get_system_info(DMI_BIOS_VERSION),
2344 dmi_get_system_info(DMI_PRODUCT_VERSION));
2345 ret = -EIO;
2346 goto error;
2347 }
2348
2349 if (end >> agaw_to_width(domain->agaw)) {
2350 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2351 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2352 agaw_to_width(domain->agaw),
2353 dmi_get_system_info(DMI_BIOS_VENDOR),
2354 dmi_get_system_info(DMI_BIOS_VERSION),
2355 dmi_get_system_info(DMI_PRODUCT_VERSION));
2356 ret = -EIO;
2357 goto error;
2358 }
2359
2360 ret = iommu_domain_identity_map(domain, start, end);
2361 if (ret)
2362 goto error;
2363
2364 /* context entry init */
2365 ret = domain_context_mapping(domain, dev, CONTEXT_TT_MULTI_LEVEL);
2366 if (ret)
2367 goto error;
2368
2369 return 0;
2370
2371 error:
2372 domain_exit(domain);
2373 return ret;
2374 }
2375
2376 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2377 struct device *dev)
2378 {
2379 if (dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2380 return 0;
2381 return iommu_prepare_identity_map(dev, rmrr->base_address,
2382 rmrr->end_address);
2383 }
2384
2385 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
2386 static inline void iommu_prepare_isa(void)
2387 {
2388 struct pci_dev *pdev;
2389 int ret;
2390
2391 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2392 if (!pdev)
2393 return;
2394
2395 printk(KERN_INFO "IOMMU: Prepare 0-16MiB unity mapping for LPC\n");
2396 ret = iommu_prepare_identity_map(&pdev->dev, 0, 16*1024*1024 - 1);
2397
2398 if (ret)
2399 printk(KERN_ERR "IOMMU: Failed to create 0-16MiB identity map; "
2400 "floppy might not work\n");
2401
2402 }
2403 #else
2404 static inline void iommu_prepare_isa(void)
2405 {
2406 return;
2407 }
2408 #endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */
2409
2410 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2411
2412 static int __init si_domain_init(int hw)
2413 {
2414 struct dmar_drhd_unit *drhd;
2415 struct intel_iommu *iommu;
2416 int nid, ret = 0;
2417
2418 si_domain = alloc_domain(false);
2419 if (!si_domain)
2420 return -EFAULT;
2421
2422 si_domain->flags = DOMAIN_FLAG_STATIC_IDENTITY;
2423
2424 for_each_active_iommu(iommu, drhd) {
2425 ret = iommu_attach_domain(si_domain, iommu);
2426 if (ret) {
2427 domain_exit(si_domain);
2428 return -EFAULT;
2429 }
2430 }
2431
2432 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2433 domain_exit(si_domain);
2434 return -EFAULT;
2435 }
2436
2437 pr_debug("IOMMU: identity mapping domain is domain %d\n",
2438 si_domain->id);
2439
2440 if (hw)
2441 return 0;
2442
2443 for_each_online_node(nid) {
2444 unsigned long start_pfn, end_pfn;
2445 int i;
2446
2447 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2448 ret = iommu_domain_identity_map(si_domain,
2449 PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
2450 if (ret)
2451 return ret;
2452 }
2453 }
2454
2455 return 0;
2456 }
2457
2458 static int identity_mapping(struct device *dev)
2459 {
2460 struct device_domain_info *info;
2461
2462 if (likely(!iommu_identity_mapping))
2463 return 0;
2464
2465 info = dev->archdata.iommu;
2466 if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
2467 return (info->domain == si_domain);
2468
2469 return 0;
2470 }
2471
2472 static int domain_add_dev_info(struct dmar_domain *domain,
2473 struct device *dev, int translation)
2474 {
2475 struct dmar_domain *ndomain;
2476 struct intel_iommu *iommu;
2477 u8 bus, devfn;
2478 int ret;
2479
2480 iommu = device_to_iommu(dev, &bus, &devfn);
2481 if (!iommu)
2482 return -ENODEV;
2483
2484 ndomain = dmar_insert_dev_info(iommu, bus, devfn, dev, domain);
2485 if (ndomain != domain)
2486 return -EBUSY;
2487
2488 ret = domain_context_mapping(domain, dev, translation);
2489 if (ret) {
2490 domain_remove_one_dev_info(domain, dev);
2491 return ret;
2492 }
2493
2494 return 0;
2495 }
2496
2497 static bool device_has_rmrr(struct device *dev)
2498 {
2499 struct dmar_rmrr_unit *rmrr;
2500 struct device *tmp;
2501 int i;
2502
2503 rcu_read_lock();
2504 for_each_rmrr_units(rmrr) {
2505 /*
2506 * Return TRUE if this RMRR contains the device that
2507 * is passed in.
2508 */
2509 for_each_active_dev_scope(rmrr->devices,
2510 rmrr->devices_cnt, i, tmp)
2511 if (tmp == dev) {
2512 rcu_read_unlock();
2513 return true;
2514 }
2515 }
2516 rcu_read_unlock();
2517 return false;
2518 }
2519
2520 static int iommu_should_identity_map(struct device *dev, int startup)
2521 {
2522
2523 if (dev_is_pci(dev)) {
2524 struct pci_dev *pdev = to_pci_dev(dev);
2525
2526 /*
2527 * We want to prevent any device associated with an RMRR from
2528 * getting placed into the SI Domain. This is done because
2529 * problems exist when devices are moved in and out of domains
2530 * and their respective RMRR info is lost. We exempt USB devices
2531 * from this process due to their usage of RMRRs that are known
2532 * to not be needed after BIOS hand-off to OS.
2533 */
2534 if (device_has_rmrr(dev) &&
2535 (pdev->class >> 8) != PCI_CLASS_SERIAL_USB)
2536 return 0;
2537
2538 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2539 return 1;
2540
2541 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2542 return 1;
2543
2544 if (!(iommu_identity_mapping & IDENTMAP_ALL))
2545 return 0;
2546
2547 /*
2548 * We want to start off with all devices in the 1:1 domain, and
2549 * take them out later if we find they can't access all of memory.
2550 *
2551 * However, we can't do this for PCI devices behind bridges,
2552 * because all PCI devices behind the same bridge will end up
2553 * with the same source-id on their transactions.
2554 *
2555 * Practically speaking, we can't change things around for these
2556 * devices at run-time, because we can't be sure there'll be no
2557 * DMA transactions in flight for any of their siblings.
2558 *
2559 * So PCI devices (unless they're on the root bus) as well as
2560 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2561 * the 1:1 domain, just in _case_ one of their siblings turns out
2562 * not to be able to map all of memory.
2563 */
2564 if (!pci_is_pcie(pdev)) {
2565 if (!pci_is_root_bus(pdev->bus))
2566 return 0;
2567 if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2568 return 0;
2569 } else if (pci_pcie_type(pdev) == PCI_EXP_TYPE_PCI_BRIDGE)
2570 return 0;
2571 } else {
2572 if (device_has_rmrr(dev))
2573 return 0;
2574 }
2575
2576 /*
2577 * At boot time, we don't yet know if devices will be 64-bit capable.
2578 * Assume that they will — if they turn out not to be, then we can
2579 * take them out of the 1:1 domain later.
2580 */
2581 if (!startup) {
2582 /*
2583 * If the device's dma_mask is less than the system's memory
2584 * size then this is not a candidate for identity mapping.
2585 */
2586 u64 dma_mask = *dev->dma_mask;
2587
2588 if (dev->coherent_dma_mask &&
2589 dev->coherent_dma_mask < dma_mask)
2590 dma_mask = dev->coherent_dma_mask;
2591
2592 return dma_mask >= dma_get_required_mask(dev);
2593 }
2594
2595 return 1;
2596 }
2597
2598 static int __init iommu_prepare_static_identity_mapping(int hw)
2599 {
2600 struct pci_dev *pdev = NULL;
2601 int ret;
2602
2603 ret = si_domain_init(hw);
2604 if (ret)
2605 return -EFAULT;
2606
2607 for_each_pci_dev(pdev) {
2608 if (iommu_should_identity_map(&pdev->dev, 1)) {
2609 ret = domain_add_dev_info(si_domain, &pdev->dev,
2610 hw ? CONTEXT_TT_PASS_THROUGH :
2611 CONTEXT_TT_MULTI_LEVEL);
2612 if (ret) {
2613 /* device not associated with an iommu */
2614 if (ret == -ENODEV)
2615 continue;
2616 return ret;
2617 }
2618 pr_info("IOMMU: %s identity mapping for device %s\n",
2619 hw ? "hardware" : "software", pci_name(pdev));
2620 }
2621 }
2622
2623 return 0;
2624 }
2625
2626 static int __init init_dmars(void)
2627 {
2628 struct dmar_drhd_unit *drhd;
2629 struct dmar_rmrr_unit *rmrr;
2630 struct device *dev;
2631 struct intel_iommu *iommu;
2632 int i, ret;
2633
2634 /*
2635 * for each drhd
2636 * allocate root
2637 * initialize and program root entry to not present
2638 * endfor
2639 */
2640 for_each_drhd_unit(drhd) {
2641 /*
2642 * lock not needed as this is only incremented in the single
2643 * threaded kernel __init code path all other access are read
2644 * only
2645 */
2646 if (g_num_of_iommus < IOMMU_UNITS_SUPPORTED) {
2647 g_num_of_iommus++;
2648 continue;
2649 }
2650 printk_once(KERN_ERR "intel-iommu: exceeded %d IOMMUs\n",
2651 IOMMU_UNITS_SUPPORTED);
2652 }
2653
2654 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
2655 GFP_KERNEL);
2656 if (!g_iommus) {
2657 printk(KERN_ERR "Allocating global iommu array failed\n");
2658 ret = -ENOMEM;
2659 goto error;
2660 }
2661
2662 deferred_flush = kzalloc(g_num_of_iommus *
2663 sizeof(struct deferred_flush_tables), GFP_KERNEL);
2664 if (!deferred_flush) {
2665 ret = -ENOMEM;
2666 goto free_g_iommus;
2667 }
2668
2669 for_each_active_iommu(iommu, drhd) {
2670 g_iommus[iommu->seq_id] = iommu;
2671
2672 ret = iommu_init_domains(iommu);
2673 if (ret)
2674 goto free_iommu;
2675
2676 /*
2677 * TBD:
2678 * we could share the same root & context tables
2679 * among all IOMMU's. Need to Split it later.
2680 */
2681 ret = iommu_alloc_root_entry(iommu);
2682 if (ret) {
2683 printk(KERN_ERR "IOMMU: allocate root entry failed\n");
2684 goto free_iommu;
2685 }
2686 if (!ecap_pass_through(iommu->ecap))
2687 hw_pass_through = 0;
2688 }
2689
2690 /*
2691 * Start from the sane iommu hardware state.
2692 */
2693 for_each_active_iommu(iommu, drhd) {
2694 /*
2695 * If the queued invalidation is already initialized by us
2696 * (for example, while enabling interrupt-remapping) then
2697 * we got the things already rolling from a sane state.
2698 */
2699 if (iommu->qi)
2700 continue;
2701
2702 /*
2703 * Clear any previous faults.
2704 */
2705 dmar_fault(-1, iommu);
2706 /*
2707 * Disable queued invalidation if supported and already enabled
2708 * before OS handover.
2709 */
2710 dmar_disable_qi(iommu);
2711 }
2712
2713 for_each_active_iommu(iommu, drhd) {
2714 if (dmar_enable_qi(iommu)) {
2715 /*
2716 * Queued Invalidate not enabled, use Register Based
2717 * Invalidate
2718 */
2719 iommu->flush.flush_context = __iommu_flush_context;
2720 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2721 printk(KERN_INFO "IOMMU %d 0x%Lx: using Register based "
2722 "invalidation\n",
2723 iommu->seq_id,
2724 (unsigned long long)drhd->reg_base_addr);
2725 } else {
2726 iommu->flush.flush_context = qi_flush_context;
2727 iommu->flush.flush_iotlb = qi_flush_iotlb;
2728 printk(KERN_INFO "IOMMU %d 0x%Lx: using Queued "
2729 "invalidation\n",
2730 iommu->seq_id,
2731 (unsigned long long)drhd->reg_base_addr);
2732 }
2733 }
2734
2735 if (iommu_pass_through)
2736 iommu_identity_mapping |= IDENTMAP_ALL;
2737
2738 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
2739 iommu_identity_mapping |= IDENTMAP_GFX;
2740 #endif
2741
2742 check_tylersburg_isoch();
2743
2744 /*
2745 * If pass through is not set or not enabled, setup context entries for
2746 * identity mappings for rmrr, gfx, and isa and may fall back to static
2747 * identity mapping if iommu_identity_mapping is set.
2748 */
2749 if (iommu_identity_mapping) {
2750 ret = iommu_prepare_static_identity_mapping(hw_pass_through);
2751 if (ret) {
2752 printk(KERN_CRIT "Failed to setup IOMMU pass-through\n");
2753 goto free_iommu;
2754 }
2755 }
2756 /*
2757 * For each rmrr
2758 * for each dev attached to rmrr
2759 * do
2760 * locate drhd for dev, alloc domain for dev
2761 * allocate free domain
2762 * allocate page table entries for rmrr
2763 * if context not allocated for bus
2764 * allocate and init context
2765 * set present in root table for this bus
2766 * init context with domain, translation etc
2767 * endfor
2768 * endfor
2769 */
2770 printk(KERN_INFO "IOMMU: Setting RMRR:\n");
2771 for_each_rmrr_units(rmrr) {
2772 /* some BIOS lists non-exist devices in DMAR table. */
2773 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
2774 i, dev) {
2775 ret = iommu_prepare_rmrr_dev(rmrr, dev);
2776 if (ret)
2777 printk(KERN_ERR
2778 "IOMMU: mapping reserved region failed\n");
2779 }
2780 }
2781
2782 iommu_prepare_isa();
2783
2784 /*
2785 * for each drhd
2786 * enable fault log
2787 * global invalidate context cache
2788 * global invalidate iotlb
2789 * enable translation
2790 */
2791 for_each_iommu(iommu, drhd) {
2792 if (drhd->ignored) {
2793 /*
2794 * we always have to disable PMRs or DMA may fail on
2795 * this device
2796 */
2797 if (force_on)
2798 iommu_disable_protect_mem_regions(iommu);
2799 continue;
2800 }
2801
2802 iommu_flush_write_buffer(iommu);
2803
2804 ret = dmar_set_interrupt(iommu);
2805 if (ret)
2806 goto free_iommu;
2807
2808 iommu_set_root_entry(iommu);
2809
2810 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
2811 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2812
2813 ret = iommu_enable_translation(iommu);
2814 if (ret)
2815 goto free_iommu;
2816
2817 iommu_disable_protect_mem_regions(iommu);
2818 }
2819
2820 return 0;
2821
2822 free_iommu:
2823 for_each_active_iommu(iommu, drhd)
2824 free_dmar_iommu(iommu);
2825 kfree(deferred_flush);
2826 free_g_iommus:
2827 kfree(g_iommus);
2828 error:
2829 return ret;
2830 }
2831
2832 /* This takes a number of _MM_ pages, not VTD pages */
2833 static struct iova *intel_alloc_iova(struct device *dev,
2834 struct dmar_domain *domain,
2835 unsigned long nrpages, uint64_t dma_mask)
2836 {
2837 struct iova *iova = NULL;
2838
2839 /* Restrict dma_mask to the width that the iommu can handle */
2840 dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
2841
2842 if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
2843 /*
2844 * First try to allocate an io virtual address in
2845 * DMA_BIT_MASK(32) and if that fails then try allocating
2846 * from higher range
2847 */
2848 iova = alloc_iova(&domain->iovad, nrpages,
2849 IOVA_PFN(DMA_BIT_MASK(32)), 1);
2850 if (iova)
2851 return iova;
2852 }
2853 iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(dma_mask), 1);
2854 if (unlikely(!iova)) {
2855 printk(KERN_ERR "Allocating %ld-page iova for %s failed",
2856 nrpages, dev_name(dev));
2857 return NULL;
2858 }
2859
2860 return iova;
2861 }
2862
2863 static struct dmar_domain *__get_valid_domain_for_dev(struct device *dev)
2864 {
2865 struct dmar_domain *domain;
2866 int ret;
2867
2868 domain = get_domain_for_dev(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2869 if (!domain) {
2870 printk(KERN_ERR "Allocating domain for %s failed",
2871 dev_name(dev));
2872 return NULL;
2873 }
2874
2875 /* make sure context mapping is ok */
2876 if (unlikely(!domain_context_mapped(dev))) {
2877 ret = domain_context_mapping(domain, dev, CONTEXT_TT_MULTI_LEVEL);
2878 if (ret) {
2879 printk(KERN_ERR "Domain context map for %s failed",
2880 dev_name(dev));
2881 return NULL;
2882 }
2883 }
2884
2885 return domain;
2886 }
2887
2888 static inline struct dmar_domain *get_valid_domain_for_dev(struct device *dev)
2889 {
2890 struct device_domain_info *info;
2891
2892 /* No lock here, assumes no domain exit in normal case */
2893 info = dev->archdata.iommu;
2894 if (likely(info))
2895 return info->domain;
2896
2897 return __get_valid_domain_for_dev(dev);
2898 }
2899
2900 static int iommu_dummy(struct device *dev)
2901 {
2902 return dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
2903 }
2904
2905 /* Check if the dev needs to go through non-identity map and unmap process.*/
2906 static int iommu_no_mapping(struct device *dev)
2907 {
2908 int found;
2909
2910 if (unlikely(!dev_is_pci(dev)))
2911 return 1;
2912
2913 if (iommu_dummy(dev))
2914 return 1;
2915
2916 if (!iommu_identity_mapping)
2917 return 0;
2918
2919 found = identity_mapping(dev);
2920 if (found) {
2921 if (iommu_should_identity_map(dev, 0))
2922 return 1;
2923 else {
2924 /*
2925 * 32 bit DMA is removed from si_domain and fall back
2926 * to non-identity mapping.
2927 */
2928 domain_remove_one_dev_info(si_domain, dev);
2929 printk(KERN_INFO "32bit %s uses non-identity mapping\n",
2930 dev_name(dev));
2931 return 0;
2932 }
2933 } else {
2934 /*
2935 * In case of a detached 64 bit DMA device from vm, the device
2936 * is put into si_domain for identity mapping.
2937 */
2938 if (iommu_should_identity_map(dev, 0)) {
2939 int ret;
2940 ret = domain_add_dev_info(si_domain, dev,
2941 hw_pass_through ?
2942 CONTEXT_TT_PASS_THROUGH :
2943 CONTEXT_TT_MULTI_LEVEL);
2944 if (!ret) {
2945 printk(KERN_INFO "64bit %s uses identity mapping\n",
2946 dev_name(dev));
2947 return 1;
2948 }
2949 }
2950 }
2951
2952 return 0;
2953 }
2954
2955 static dma_addr_t __intel_map_single(struct device *dev, phys_addr_t paddr,
2956 size_t size, int dir, u64 dma_mask)
2957 {
2958 struct dmar_domain *domain;
2959 phys_addr_t start_paddr;
2960 struct iova *iova;
2961 int prot = 0;
2962 int ret;
2963 struct intel_iommu *iommu;
2964 unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
2965
2966 BUG_ON(dir == DMA_NONE);
2967
2968 if (iommu_no_mapping(dev))
2969 return paddr;
2970
2971 domain = get_valid_domain_for_dev(dev);
2972 if (!domain)
2973 return 0;
2974
2975 iommu = domain_get_iommu(domain);
2976 size = aligned_nrpages(paddr, size);
2977
2978 iova = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), dma_mask);
2979 if (!iova)
2980 goto error;
2981
2982 /*
2983 * Check if DMAR supports zero-length reads on write only
2984 * mappings..
2985 */
2986 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2987 !cap_zlr(iommu->cap))
2988 prot |= DMA_PTE_READ;
2989 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2990 prot |= DMA_PTE_WRITE;
2991 /*
2992 * paddr - (paddr + size) might be partial page, we should map the whole
2993 * page. Note: if two part of one page are separately mapped, we
2994 * might have two guest_addr mapping to the same host paddr, but this
2995 * is not a big problem
2996 */
2997 ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo),
2998 mm_to_dma_pfn(paddr_pfn), size, prot);
2999 if (ret)
3000 goto error;
3001
3002 /* it's a non-present to present mapping. Only flush if caching mode */
3003 if (cap_caching_mode(iommu->cap))
3004 iommu_flush_iotlb_psi(iommu, domain->id, mm_to_dma_pfn(iova->pfn_lo), size, 0, 1);
3005 else
3006 iommu_flush_write_buffer(iommu);
3007
3008 start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
3009 start_paddr += paddr & ~PAGE_MASK;
3010 return start_paddr;
3011
3012 error:
3013 if (iova)
3014 __free_iova(&domain->iovad, iova);
3015 printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n",
3016 dev_name(dev), size, (unsigned long long)paddr, dir);
3017 return 0;
3018 }
3019
3020 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
3021 unsigned long offset, size_t size,
3022 enum dma_data_direction dir,
3023 struct dma_attrs *attrs)
3024 {
3025 return __intel_map_single(dev, page_to_phys(page) + offset, size,
3026 dir, to_pci_dev(dev)->dma_mask);
3027 }
3028
3029 static void flush_unmaps(void)
3030 {
3031 int i, j;
3032
3033 timer_on = 0;
3034
3035 /* just flush them all */
3036 for (i = 0; i < g_num_of_iommus; i++) {
3037 struct intel_iommu *iommu = g_iommus[i];
3038 if (!iommu)
3039 continue;
3040
3041 if (!deferred_flush[i].next)
3042 continue;
3043
3044 /* In caching mode, global flushes turn emulation expensive */
3045 if (!cap_caching_mode(iommu->cap))
3046 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3047 DMA_TLB_GLOBAL_FLUSH);
3048 for (j = 0; j < deferred_flush[i].next; j++) {
3049 unsigned long mask;
3050 struct iova *iova = deferred_flush[i].iova[j];
3051 struct dmar_domain *domain = deferred_flush[i].domain[j];
3052
3053 /* On real hardware multiple invalidations are expensive */
3054 if (cap_caching_mode(iommu->cap))
3055 iommu_flush_iotlb_psi(iommu, domain->id,
3056 iova->pfn_lo, iova->pfn_hi - iova->pfn_lo + 1,
3057 !deferred_flush[i].freelist[j], 0);
3058 else {
3059 mask = ilog2(mm_to_dma_pfn(iova->pfn_hi - iova->pfn_lo + 1));
3060 iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
3061 (uint64_t)iova->pfn_lo << PAGE_SHIFT, mask);
3062 }
3063 __free_iova(&deferred_flush[i].domain[j]->iovad, iova);
3064 if (deferred_flush[i].freelist[j])
3065 dma_free_pagelist(deferred_flush[i].freelist[j]);
3066 }
3067 deferred_flush[i].next = 0;
3068 }
3069
3070 list_size = 0;
3071 }
3072
3073 static void flush_unmaps_timeout(unsigned long data)
3074 {
3075 unsigned long flags;
3076
3077 spin_lock_irqsave(&async_umap_flush_lock, flags);
3078 flush_unmaps();
3079 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
3080 }
3081
3082 static void add_unmap(struct dmar_domain *dom, struct iova *iova, struct page *freelist)
3083 {
3084 unsigned long flags;
3085 int next, iommu_id;
3086 struct intel_iommu *iommu;
3087
3088 spin_lock_irqsave(&async_umap_flush_lock, flags);
3089 if (list_size == HIGH_WATER_MARK)
3090 flush_unmaps();
3091
3092 iommu = domain_get_iommu(dom);
3093 iommu_id = iommu->seq_id;
3094
3095 next = deferred_flush[iommu_id].next;
3096 deferred_flush[iommu_id].domain[next] = dom;
3097 deferred_flush[iommu_id].iova[next] = iova;
3098 deferred_flush[iommu_id].freelist[next] = freelist;
3099 deferred_flush[iommu_id].next++;
3100
3101 if (!timer_on) {
3102 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
3103 timer_on = 1;
3104 }
3105 list_size++;
3106 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
3107 }
3108
3109 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
3110 size_t size, enum dma_data_direction dir,
3111 struct dma_attrs *attrs)
3112 {
3113 struct dmar_domain *domain;
3114 unsigned long start_pfn, last_pfn;
3115 struct iova *iova;
3116 struct intel_iommu *iommu;
3117 struct page *freelist;
3118
3119 if (iommu_no_mapping(dev))
3120 return;
3121
3122 domain = find_domain(dev);
3123 BUG_ON(!domain);
3124
3125 iommu = domain_get_iommu(domain);
3126
3127 iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
3128 if (WARN_ONCE(!iova, "Driver unmaps unmatched page at PFN %llx\n",
3129 (unsigned long long)dev_addr))
3130 return;
3131
3132 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
3133 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
3134
3135 pr_debug("Device %s unmapping: pfn %lx-%lx\n",
3136 dev_name(dev), start_pfn, last_pfn);
3137
3138 freelist = domain_unmap(domain, start_pfn, last_pfn);
3139
3140 if (intel_iommu_strict) {
3141 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
3142 last_pfn - start_pfn + 1, !freelist, 0);
3143 /* free iova */
3144 __free_iova(&domain->iovad, iova);
3145 dma_free_pagelist(freelist);
3146 } else {
3147 add_unmap(domain, iova, freelist);
3148 /*
3149 * queue up the release of the unmap to save the 1/6th of the
3150 * cpu used up by the iotlb flush operation...
3151 */
3152 }
3153 }
3154
3155 static void *intel_alloc_coherent(struct device *dev, size_t size,
3156 dma_addr_t *dma_handle, gfp_t flags,
3157 struct dma_attrs *attrs)
3158 {
3159 void *vaddr;
3160 int order;
3161
3162 size = PAGE_ALIGN(size);
3163 order = get_order(size);
3164
3165 if (!iommu_no_mapping(dev))
3166 flags &= ~(GFP_DMA | GFP_DMA32);
3167 else if (dev->coherent_dma_mask < dma_get_required_mask(dev)) {
3168 if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
3169 flags |= GFP_DMA;
3170 else
3171 flags |= GFP_DMA32;
3172 }
3173
3174 vaddr = (void *)__get_free_pages(flags, order);
3175 if (!vaddr)
3176 return NULL;
3177 memset(vaddr, 0, size);
3178
3179 *dma_handle = __intel_map_single(dev, virt_to_bus(vaddr), size,
3180 DMA_BIDIRECTIONAL,
3181 dev->coherent_dma_mask);
3182 if (*dma_handle)
3183 return vaddr;
3184 free_pages((unsigned long)vaddr, order);
3185 return NULL;
3186 }
3187
3188 static void intel_free_coherent(struct device *dev, size_t size, void *vaddr,
3189 dma_addr_t dma_handle, struct dma_attrs *attrs)
3190 {
3191 int order;
3192
3193 size = PAGE_ALIGN(size);
3194 order = get_order(size);
3195
3196 intel_unmap_page(dev, dma_handle, size, DMA_BIDIRECTIONAL, NULL);
3197 free_pages((unsigned long)vaddr, order);
3198 }
3199
3200 static void intel_unmap_sg(struct device *dev, struct scatterlist *sglist,
3201 int nelems, enum dma_data_direction dir,
3202 struct dma_attrs *attrs)
3203 {
3204 struct dmar_domain *domain;
3205 unsigned long start_pfn, last_pfn;
3206 struct iova *iova;
3207 struct intel_iommu *iommu;
3208 struct page *freelist;
3209
3210 if (iommu_no_mapping(dev))
3211 return;
3212
3213 domain = find_domain(dev);
3214 BUG_ON(!domain);
3215
3216 iommu = domain_get_iommu(domain);
3217
3218 iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
3219 if (WARN_ONCE(!iova, "Driver unmaps unmatched sglist at PFN %llx\n",
3220 (unsigned long long)sglist[0].dma_address))
3221 return;
3222
3223 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
3224 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
3225
3226 freelist = domain_unmap(domain, start_pfn, last_pfn);
3227
3228 if (intel_iommu_strict) {
3229 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
3230 last_pfn - start_pfn + 1, !freelist, 0);
3231 /* free iova */
3232 __free_iova(&domain->iovad, iova);
3233 dma_free_pagelist(freelist);
3234 } else {
3235 add_unmap(domain, iova, freelist);
3236 /*
3237 * queue up the release of the unmap to save the 1/6th of the
3238 * cpu used up by the iotlb flush operation...
3239 */
3240 }
3241 }
3242
3243 static int intel_nontranslate_map_sg(struct device *hddev,
3244 struct scatterlist *sglist, int nelems, int dir)
3245 {
3246 int i;
3247 struct scatterlist *sg;
3248
3249 for_each_sg(sglist, sg, nelems, i) {
3250 BUG_ON(!sg_page(sg));
3251 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
3252 sg->dma_length = sg->length;
3253 }
3254 return nelems;
3255 }
3256
3257 static int intel_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
3258 enum dma_data_direction dir, struct dma_attrs *attrs)
3259 {
3260 int i;
3261 struct dmar_domain *domain;
3262 size_t size = 0;
3263 int prot = 0;
3264 struct iova *iova = NULL;
3265 int ret;
3266 struct scatterlist *sg;
3267 unsigned long start_vpfn;
3268 struct intel_iommu *iommu;
3269
3270 BUG_ON(dir == DMA_NONE);
3271 if (iommu_no_mapping(dev))
3272 return intel_nontranslate_map_sg(dev, sglist, nelems, dir);
3273
3274 domain = get_valid_domain_for_dev(dev);
3275 if (!domain)
3276 return 0;
3277
3278 iommu = domain_get_iommu(domain);
3279
3280 for_each_sg(sglist, sg, nelems, i)
3281 size += aligned_nrpages(sg->offset, sg->length);
3282
3283 iova = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size),
3284 *dev->dma_mask);
3285 if (!iova) {
3286 sglist->dma_length = 0;
3287 return 0;
3288 }
3289
3290 /*
3291 * Check if DMAR supports zero-length reads on write only
3292 * mappings..
3293 */
3294 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3295 !cap_zlr(iommu->cap))
3296 prot |= DMA_PTE_READ;
3297 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3298 prot |= DMA_PTE_WRITE;
3299
3300 start_vpfn = mm_to_dma_pfn(iova->pfn_lo);
3301
3302 ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3303 if (unlikely(ret)) {
3304 /* clear the page */
3305 dma_pte_clear_range(domain, start_vpfn,
3306 start_vpfn + size - 1);
3307 /* free page tables */
3308 dma_pte_free_pagetable(domain, start_vpfn,
3309 start_vpfn + size - 1);
3310 /* free iova */
3311 __free_iova(&domain->iovad, iova);
3312 return 0;
3313 }
3314
3315 /* it's a non-present to present mapping. Only flush if caching mode */
3316 if (cap_caching_mode(iommu->cap))
3317 iommu_flush_iotlb_psi(iommu, domain->id, start_vpfn, size, 0, 1);
3318 else
3319 iommu_flush_write_buffer(iommu);
3320
3321 return nelems;
3322 }
3323
3324 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
3325 {
3326 return !dma_addr;
3327 }
3328
3329 struct dma_map_ops intel_dma_ops = {
3330 .alloc = intel_alloc_coherent,
3331 .free = intel_free_coherent,
3332 .map_sg = intel_map_sg,
3333 .unmap_sg = intel_unmap_sg,
3334 .map_page = intel_map_page,
3335 .unmap_page = intel_unmap_page,
3336 .mapping_error = intel_mapping_error,
3337 };
3338
3339 static inline int iommu_domain_cache_init(void)
3340 {
3341 int ret = 0;
3342
3343 iommu_domain_cache = kmem_cache_create("iommu_domain",
3344 sizeof(struct dmar_domain),
3345 0,
3346 SLAB_HWCACHE_ALIGN,
3347
3348 NULL);
3349 if (!iommu_domain_cache) {
3350 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
3351 ret = -ENOMEM;
3352 }
3353
3354 return ret;
3355 }
3356
3357 static inline int iommu_devinfo_cache_init(void)
3358 {
3359 int ret = 0;
3360
3361 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
3362 sizeof(struct device_domain_info),
3363 0,
3364 SLAB_HWCACHE_ALIGN,
3365 NULL);
3366 if (!iommu_devinfo_cache) {
3367 printk(KERN_ERR "Couldn't create devinfo cache\n");
3368 ret = -ENOMEM;
3369 }
3370
3371 return ret;
3372 }
3373
3374 static inline int iommu_iova_cache_init(void)
3375 {
3376 int ret = 0;
3377
3378 iommu_iova_cache = kmem_cache_create("iommu_iova",
3379 sizeof(struct iova),
3380 0,
3381 SLAB_HWCACHE_ALIGN,
3382 NULL);
3383 if (!iommu_iova_cache) {
3384 printk(KERN_ERR "Couldn't create iova cache\n");
3385 ret = -ENOMEM;
3386 }
3387
3388 return ret;
3389 }
3390
3391 static int __init iommu_init_mempool(void)
3392 {
3393 int ret;
3394 ret = iommu_iova_cache_init();
3395 if (ret)
3396 return ret;
3397
3398 ret = iommu_domain_cache_init();
3399 if (ret)
3400 goto domain_error;
3401
3402 ret = iommu_devinfo_cache_init();
3403 if (!ret)
3404 return ret;
3405
3406 kmem_cache_destroy(iommu_domain_cache);
3407 domain_error:
3408 kmem_cache_destroy(iommu_iova_cache);
3409
3410 return -ENOMEM;
3411 }
3412
3413 static void __init iommu_exit_mempool(void)
3414 {
3415 kmem_cache_destroy(iommu_devinfo_cache);
3416 kmem_cache_destroy(iommu_domain_cache);
3417 kmem_cache_destroy(iommu_iova_cache);
3418
3419 }
3420
3421 static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
3422 {
3423 struct dmar_drhd_unit *drhd;
3424 u32 vtbar;
3425 int rc;
3426
3427 /* We know that this device on this chipset has its own IOMMU.
3428 * If we find it under a different IOMMU, then the BIOS is lying
3429 * to us. Hope that the IOMMU for this device is actually
3430 * disabled, and it needs no translation...
3431 */
3432 rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
3433 if (rc) {
3434 /* "can't" happen */
3435 dev_info(&pdev->dev, "failed to run vt-d quirk\n");
3436 return;
3437 }
3438 vtbar &= 0xffff0000;
3439
3440 /* we know that the this iommu should be at offset 0xa000 from vtbar */
3441 drhd = dmar_find_matched_drhd_unit(pdev);
3442 if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
3443 TAINT_FIRMWARE_WORKAROUND,
3444 "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
3445 pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3446 }
3447 DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
3448
3449 static void __init init_no_remapping_devices(void)
3450 {
3451 struct dmar_drhd_unit *drhd;
3452 struct device *dev;
3453 int i;
3454
3455 for_each_drhd_unit(drhd) {
3456 if (!drhd->include_all) {
3457 for_each_active_dev_scope(drhd->devices,
3458 drhd->devices_cnt, i, dev)
3459 break;
3460 /* ignore DMAR unit if no devices exist */
3461 if (i == drhd->devices_cnt)
3462 drhd->ignored = 1;
3463 }
3464 }
3465
3466 for_each_active_drhd_unit(drhd) {
3467 if (drhd->include_all)
3468 continue;
3469
3470 for_each_active_dev_scope(drhd->devices,
3471 drhd->devices_cnt, i, dev)
3472 if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
3473 break;
3474 if (i < drhd->devices_cnt)
3475 continue;
3476
3477 /* This IOMMU has *only* gfx devices. Either bypass it or
3478 set the gfx_mapped flag, as appropriate */
3479 if (dmar_map_gfx) {
3480 intel_iommu_gfx_mapped = 1;
3481 } else {
3482 drhd->ignored = 1;
3483 for_each_active_dev_scope(drhd->devices,
3484 drhd->devices_cnt, i, dev)
3485 dev->archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3486 }
3487 }
3488 }
3489
3490 #ifdef CONFIG_SUSPEND
3491 static int init_iommu_hw(void)
3492 {
3493 struct dmar_drhd_unit *drhd;
3494 struct intel_iommu *iommu = NULL;
3495
3496 for_each_active_iommu(iommu, drhd)
3497 if (iommu->qi)
3498 dmar_reenable_qi(iommu);
3499
3500 for_each_iommu(iommu, drhd) {
3501 if (drhd->ignored) {
3502 /*
3503 * we always have to disable PMRs or DMA may fail on
3504 * this device
3505 */
3506 if (force_on)
3507 iommu_disable_protect_mem_regions(iommu);
3508 continue;
3509 }
3510
3511 iommu_flush_write_buffer(iommu);
3512
3513 iommu_set_root_entry(iommu);
3514
3515 iommu->flush.flush_context(iommu, 0, 0, 0,
3516 DMA_CCMD_GLOBAL_INVL);
3517 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3518 DMA_TLB_GLOBAL_FLUSH);
3519 if (iommu_enable_translation(iommu))
3520 return 1;
3521 iommu_disable_protect_mem_regions(iommu);
3522 }
3523
3524 return 0;
3525 }
3526
3527 static void iommu_flush_all(void)
3528 {
3529 struct dmar_drhd_unit *drhd;
3530 struct intel_iommu *iommu;
3531
3532 for_each_active_iommu(iommu, drhd) {
3533 iommu->flush.flush_context(iommu, 0, 0, 0,
3534 DMA_CCMD_GLOBAL_INVL);
3535 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3536 DMA_TLB_GLOBAL_FLUSH);
3537 }
3538 }
3539
3540 static int iommu_suspend(void)
3541 {
3542 struct dmar_drhd_unit *drhd;
3543 struct intel_iommu *iommu = NULL;
3544 unsigned long flag;
3545
3546 for_each_active_iommu(iommu, drhd) {
3547 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
3548 GFP_ATOMIC);
3549 if (!iommu->iommu_state)
3550 goto nomem;
3551 }
3552
3553 iommu_flush_all();
3554
3555 for_each_active_iommu(iommu, drhd) {
3556 iommu_disable_translation(iommu);
3557
3558 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3559
3560 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3561 readl(iommu->reg + DMAR_FECTL_REG);
3562 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3563 readl(iommu->reg + DMAR_FEDATA_REG);
3564 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3565 readl(iommu->reg + DMAR_FEADDR_REG);
3566 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3567 readl(iommu->reg + DMAR_FEUADDR_REG);
3568
3569 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3570 }
3571 return 0;
3572
3573 nomem:
3574 for_each_active_iommu(iommu, drhd)
3575 kfree(iommu->iommu_state);
3576
3577 return -ENOMEM;
3578 }
3579
3580 static void iommu_resume(void)
3581 {
3582 struct dmar_drhd_unit *drhd;
3583 struct intel_iommu *iommu = NULL;
3584 unsigned long flag;
3585
3586 if (init_iommu_hw()) {
3587 if (force_on)
3588 panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
3589 else
3590 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3591 return;
3592 }
3593
3594 for_each_active_iommu(iommu, drhd) {
3595
3596 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3597
3598 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3599 iommu->reg + DMAR_FECTL_REG);
3600 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3601 iommu->reg + DMAR_FEDATA_REG);
3602 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3603 iommu->reg + DMAR_FEADDR_REG);
3604 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3605 iommu->reg + DMAR_FEUADDR_REG);
3606
3607 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3608 }
3609
3610 for_each_active_iommu(iommu, drhd)
3611 kfree(iommu->iommu_state);
3612 }
3613
3614 static struct syscore_ops iommu_syscore_ops = {
3615 .resume = iommu_resume,
3616 .suspend = iommu_suspend,
3617 };
3618
3619 static void __init init_iommu_pm_ops(void)
3620 {
3621 register_syscore_ops(&iommu_syscore_ops);
3622 }
3623
3624 #else
3625 static inline void init_iommu_pm_ops(void) {}
3626 #endif /* CONFIG_PM */
3627
3628
3629 int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header)
3630 {
3631 struct acpi_dmar_reserved_memory *rmrr;
3632 struct dmar_rmrr_unit *rmrru;
3633
3634 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
3635 if (!rmrru)
3636 return -ENOMEM;
3637
3638 rmrru->hdr = header;
3639 rmrr = (struct acpi_dmar_reserved_memory *)header;
3640 rmrru->base_address = rmrr->base_address;
3641 rmrru->end_address = rmrr->end_address;
3642 rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
3643 ((void *)rmrr) + rmrr->header.length,
3644 &rmrru->devices_cnt);
3645 if (rmrru->devices_cnt && rmrru->devices == NULL) {
3646 kfree(rmrru);
3647 return -ENOMEM;
3648 }
3649
3650 list_add(&rmrru->list, &dmar_rmrr_units);
3651
3652 return 0;
3653 }
3654
3655 int __init dmar_parse_one_atsr(struct acpi_dmar_header *hdr)
3656 {
3657 struct acpi_dmar_atsr *atsr;
3658 struct dmar_atsr_unit *atsru;
3659
3660 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
3661 atsru = kzalloc(sizeof(*atsru), GFP_KERNEL);
3662 if (!atsru)
3663 return -ENOMEM;
3664
3665 atsru->hdr = hdr;
3666 atsru->include_all = atsr->flags & 0x1;
3667 if (!atsru->include_all) {
3668 atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
3669 (void *)atsr + atsr->header.length,
3670 &atsru->devices_cnt);
3671 if (atsru->devices_cnt && atsru->devices == NULL) {
3672 kfree(atsru);
3673 return -ENOMEM;
3674 }
3675 }
3676
3677 list_add_rcu(&atsru->list, &dmar_atsr_units);
3678
3679 return 0;
3680 }
3681
3682 static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
3683 {
3684 dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
3685 kfree(atsru);
3686 }
3687
3688 static void intel_iommu_free_dmars(void)
3689 {
3690 struct dmar_rmrr_unit *rmrru, *rmrr_n;
3691 struct dmar_atsr_unit *atsru, *atsr_n;
3692
3693 list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
3694 list_del(&rmrru->list);
3695 dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
3696 kfree(rmrru);
3697 }
3698
3699 list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
3700 list_del(&atsru->list);
3701 intel_iommu_free_atsr(atsru);
3702 }
3703 }
3704
3705 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
3706 {
3707 int i, ret = 1;
3708 struct pci_bus *bus;
3709 struct pci_dev *bridge = NULL;
3710 struct device *tmp;
3711 struct acpi_dmar_atsr *atsr;
3712 struct dmar_atsr_unit *atsru;
3713
3714 dev = pci_physfn(dev);
3715 for (bus = dev->bus; bus; bus = bus->parent) {
3716 bridge = bus->self;
3717 if (!bridge || !pci_is_pcie(bridge) ||
3718 pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
3719 return 0;
3720 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
3721 break;
3722 }
3723 if (!bridge)
3724 return 0;
3725
3726 rcu_read_lock();
3727 list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
3728 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
3729 if (atsr->segment != pci_domain_nr(dev->bus))
3730 continue;
3731
3732 for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
3733 if (tmp == &bridge->dev)
3734 goto out;
3735
3736 if (atsru->include_all)
3737 goto out;
3738 }
3739 ret = 0;
3740 out:
3741 rcu_read_unlock();
3742
3743 return ret;
3744 }
3745
3746 int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
3747 {
3748 int ret = 0;
3749 struct dmar_rmrr_unit *rmrru;
3750 struct dmar_atsr_unit *atsru;
3751 struct acpi_dmar_atsr *atsr;
3752 struct acpi_dmar_reserved_memory *rmrr;
3753
3754 if (!intel_iommu_enabled && system_state != SYSTEM_BOOTING)
3755 return 0;
3756
3757 list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
3758 rmrr = container_of(rmrru->hdr,
3759 struct acpi_dmar_reserved_memory, header);
3760 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
3761 ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
3762 ((void *)rmrr) + rmrr->header.length,
3763 rmrr->segment, rmrru->devices,
3764 rmrru->devices_cnt);
3765 if (ret > 0)
3766 break;
3767 else if(ret < 0)
3768 return ret;
3769 } else if (info->event == BUS_NOTIFY_DEL_DEVICE) {
3770 if (dmar_remove_dev_scope(info, rmrr->segment,
3771 rmrru->devices, rmrru->devices_cnt))
3772 break;
3773 }
3774 }
3775
3776 list_for_each_entry(atsru, &dmar_atsr_units, list) {
3777 if (atsru->include_all)
3778 continue;
3779
3780 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
3781 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
3782 ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
3783 (void *)atsr + atsr->header.length,
3784 atsr->segment, atsru->devices,
3785 atsru->devices_cnt);
3786 if (ret > 0)
3787 break;
3788 else if(ret < 0)
3789 return ret;
3790 } else if (info->event == BUS_NOTIFY_DEL_DEVICE) {
3791 if (dmar_remove_dev_scope(info, atsr->segment,
3792 atsru->devices, atsru->devices_cnt))
3793 break;
3794 }
3795 }
3796
3797 return 0;
3798 }
3799
3800 /*
3801 * Here we only respond to action of unbound device from driver.
3802 *
3803 * Added device is not attached to its DMAR domain here yet. That will happen
3804 * when mapping the device to iova.
3805 */
3806 static int device_notifier(struct notifier_block *nb,
3807 unsigned long action, void *data)
3808 {
3809 struct device *dev = data;
3810 struct dmar_domain *domain;
3811
3812 if (iommu_dummy(dev))
3813 return 0;
3814
3815 if (action != BUS_NOTIFY_UNBOUND_DRIVER &&
3816 action != BUS_NOTIFY_DEL_DEVICE)
3817 return 0;
3818
3819 domain = find_domain(dev);
3820 if (!domain)
3821 return 0;
3822
3823 down_read(&dmar_global_lock);
3824 domain_remove_one_dev_info(domain, dev);
3825 if (!(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) &&
3826 !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) &&
3827 list_empty(&domain->devices))
3828 domain_exit(domain);
3829 up_read(&dmar_global_lock);
3830
3831 return 0;
3832 }
3833
3834 static struct notifier_block device_nb = {
3835 .notifier_call = device_notifier,
3836 };
3837
3838 static int intel_iommu_memory_notifier(struct notifier_block *nb,
3839 unsigned long val, void *v)
3840 {
3841 struct memory_notify *mhp = v;
3842 unsigned long long start, end;
3843 unsigned long start_vpfn, last_vpfn;
3844
3845 switch (val) {
3846 case MEM_GOING_ONLINE:
3847 start = mhp->start_pfn << PAGE_SHIFT;
3848 end = ((mhp->start_pfn + mhp->nr_pages) << PAGE_SHIFT) - 1;
3849 if (iommu_domain_identity_map(si_domain, start, end)) {
3850 pr_warn("dmar: failed to build identity map for [%llx-%llx]\n",
3851 start, end);
3852 return NOTIFY_BAD;
3853 }
3854 break;
3855
3856 case MEM_OFFLINE:
3857 case MEM_CANCEL_ONLINE:
3858 start_vpfn = mm_to_dma_pfn(mhp->start_pfn);
3859 last_vpfn = mm_to_dma_pfn(mhp->start_pfn + mhp->nr_pages - 1);
3860 while (start_vpfn <= last_vpfn) {
3861 struct iova *iova;
3862 struct dmar_drhd_unit *drhd;
3863 struct intel_iommu *iommu;
3864 struct page *freelist;
3865
3866 iova = find_iova(&si_domain->iovad, start_vpfn);
3867 if (iova == NULL) {
3868 pr_debug("dmar: failed get IOVA for PFN %lx\n",
3869 start_vpfn);
3870 break;
3871 }
3872
3873 iova = split_and_remove_iova(&si_domain->iovad, iova,
3874 start_vpfn, last_vpfn);
3875 if (iova == NULL) {
3876 pr_warn("dmar: failed to split IOVA PFN [%lx-%lx]\n",
3877 start_vpfn, last_vpfn);
3878 return NOTIFY_BAD;
3879 }
3880
3881 freelist = domain_unmap(si_domain, iova->pfn_lo,
3882 iova->pfn_hi);
3883
3884 rcu_read_lock();
3885 for_each_active_iommu(iommu, drhd)
3886 iommu_flush_iotlb_psi(iommu, si_domain->id,
3887 iova->pfn_lo,
3888 iova->pfn_hi - iova->pfn_lo + 1,
3889 !freelist, 0);
3890 rcu_read_unlock();
3891 dma_free_pagelist(freelist);
3892
3893 start_vpfn = iova->pfn_hi + 1;
3894 free_iova_mem(iova);
3895 }
3896 break;
3897 }
3898
3899 return NOTIFY_OK;
3900 }
3901
3902 static struct notifier_block intel_iommu_memory_nb = {
3903 .notifier_call = intel_iommu_memory_notifier,
3904 .priority = 0
3905 };
3906
3907 int __init intel_iommu_init(void)
3908 {
3909 int ret = -ENODEV;
3910 struct dmar_drhd_unit *drhd;
3911 struct intel_iommu *iommu;
3912
3913 /* VT-d is required for a TXT/tboot launch, so enforce that */
3914 force_on = tboot_force_iommu();
3915
3916 if (iommu_init_mempool()) {
3917 if (force_on)
3918 panic("tboot: Failed to initialize iommu memory\n");
3919 return -ENOMEM;
3920 }
3921
3922 down_write(&dmar_global_lock);
3923 if (dmar_table_init()) {
3924 if (force_on)
3925 panic("tboot: Failed to initialize DMAR table\n");
3926 goto out_free_dmar;
3927 }
3928
3929 /*
3930 * Disable translation if already enabled prior to OS handover.
3931 */
3932 for_each_active_iommu(iommu, drhd)
3933 if (iommu->gcmd & DMA_GCMD_TE)
3934 iommu_disable_translation(iommu);
3935
3936 if (dmar_dev_scope_init() < 0) {
3937 if (force_on)
3938 panic("tboot: Failed to initialize DMAR device scope\n");
3939 goto out_free_dmar;
3940 }
3941
3942 if (no_iommu || dmar_disabled)
3943 goto out_free_dmar;
3944
3945 if (list_empty(&dmar_rmrr_units))
3946 printk(KERN_INFO "DMAR: No RMRR found\n");
3947
3948 if (list_empty(&dmar_atsr_units))
3949 printk(KERN_INFO "DMAR: No ATSR found\n");
3950
3951 if (dmar_init_reserved_ranges()) {
3952 if (force_on)
3953 panic("tboot: Failed to reserve iommu ranges\n");
3954 goto out_free_reserved_range;
3955 }
3956
3957 init_no_remapping_devices();
3958
3959 ret = init_dmars();
3960 if (ret) {
3961 if (force_on)
3962 panic("tboot: Failed to initialize DMARs\n");
3963 printk(KERN_ERR "IOMMU: dmar init failed\n");
3964 goto out_free_reserved_range;
3965 }
3966 up_write(&dmar_global_lock);
3967 printk(KERN_INFO
3968 "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
3969
3970 init_timer(&unmap_timer);
3971 #ifdef CONFIG_SWIOTLB
3972 swiotlb = 0;
3973 #endif
3974 dma_ops = &intel_dma_ops;
3975
3976 init_iommu_pm_ops();
3977
3978 bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
3979 bus_register_notifier(&pci_bus_type, &device_nb);
3980 if (si_domain && !hw_pass_through)
3981 register_memory_notifier(&intel_iommu_memory_nb);
3982
3983 intel_iommu_enabled = 1;
3984
3985 return 0;
3986
3987 out_free_reserved_range:
3988 put_iova_domain(&reserved_iova_list);
3989 out_free_dmar:
3990 intel_iommu_free_dmars();
3991 up_write(&dmar_global_lock);
3992 iommu_exit_mempool();
3993 return ret;
3994 }
3995
3996 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
3997 struct device *dev)
3998 {
3999 struct pci_dev *tmp, *parent, *pdev;
4000
4001 if (!iommu || !dev || !dev_is_pci(dev))
4002 return;
4003
4004 pdev = to_pci_dev(dev);
4005
4006 /* dependent device detach */
4007 tmp = pci_find_upstream_pcie_bridge(pdev);
4008 /* Secondary interface's bus number and devfn 0 */
4009 if (tmp) {
4010 parent = pdev->bus->self;
4011 while (parent != tmp) {
4012 iommu_detach_dev(iommu, parent->bus->number,
4013 parent->devfn);
4014 parent = parent->bus->self;
4015 }
4016 if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */
4017 iommu_detach_dev(iommu,
4018 tmp->subordinate->number, 0);
4019 else /* this is a legacy PCI bridge */
4020 iommu_detach_dev(iommu, tmp->bus->number,
4021 tmp->devfn);
4022 }
4023 }
4024
4025 static void domain_remove_one_dev_info(struct dmar_domain *domain,
4026 struct device *dev)
4027 {
4028 struct device_domain_info *info, *tmp;
4029 struct intel_iommu *iommu;
4030 unsigned long flags;
4031 int found = 0;
4032 u8 bus, devfn;
4033
4034 iommu = device_to_iommu(dev, &bus, &devfn);
4035 if (!iommu)
4036 return;
4037
4038 spin_lock_irqsave(&device_domain_lock, flags);
4039 list_for_each_entry_safe(info, tmp, &domain->devices, link) {
4040 if (info->iommu == iommu && info->bus == bus &&
4041 info->devfn == devfn) {
4042 unlink_domain_info(info);
4043 spin_unlock_irqrestore(&device_domain_lock, flags);
4044
4045 iommu_disable_dev_iotlb(info);
4046 iommu_detach_dev(iommu, info->bus, info->devfn);
4047 iommu_detach_dependent_devices(iommu, dev);
4048 free_devinfo_mem(info);
4049
4050 spin_lock_irqsave(&device_domain_lock, flags);
4051
4052 if (found)
4053 break;
4054 else
4055 continue;
4056 }
4057
4058 /* if there is no other devices under the same iommu
4059 * owned by this domain, clear this iommu in iommu_bmp
4060 * update iommu count and coherency
4061 */
4062 if (info->iommu == iommu)
4063 found = 1;
4064 }
4065
4066 spin_unlock_irqrestore(&device_domain_lock, flags);
4067
4068 if (found == 0) {
4069 unsigned long tmp_flags;
4070 spin_lock_irqsave(&domain->iommu_lock, tmp_flags);
4071 clear_bit(iommu->seq_id, domain->iommu_bmp);
4072 domain->iommu_count--;
4073 domain_update_iommu_cap(domain);
4074 spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags);
4075
4076 if (!(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) &&
4077 !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)) {
4078 spin_lock_irqsave(&iommu->lock, tmp_flags);
4079 clear_bit(domain->id, iommu->domain_ids);
4080 iommu->domains[domain->id] = NULL;
4081 spin_unlock_irqrestore(&iommu->lock, tmp_flags);
4082 }
4083 }
4084 }
4085
4086 static int md_domain_init(struct dmar_domain *domain, int guest_width)
4087 {
4088 int adjust_width;
4089
4090 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
4091 domain_reserve_special_ranges(domain);
4092
4093 /* calculate AGAW */
4094 domain->gaw = guest_width;
4095 adjust_width = guestwidth_to_adjustwidth(guest_width);
4096 domain->agaw = width_to_agaw(adjust_width);
4097
4098 domain->iommu_coherency = 0;
4099 domain->iommu_snooping = 0;
4100 domain->iommu_superpage = 0;
4101 domain->max_addr = 0;
4102 domain->nid = -1;
4103
4104 /* always allocate the top pgd */
4105 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
4106 if (!domain->pgd)
4107 return -ENOMEM;
4108 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
4109 return 0;
4110 }
4111
4112 static int intel_iommu_domain_init(struct iommu_domain *domain)
4113 {
4114 struct dmar_domain *dmar_domain;
4115
4116 dmar_domain = alloc_domain(true);
4117 if (!dmar_domain) {
4118 printk(KERN_ERR
4119 "intel_iommu_domain_init: dmar_domain == NULL\n");
4120 return -ENOMEM;
4121 }
4122 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
4123 printk(KERN_ERR
4124 "intel_iommu_domain_init() failed\n");
4125 domain_exit(dmar_domain);
4126 return -ENOMEM;
4127 }
4128 domain_update_iommu_cap(dmar_domain);
4129 domain->priv = dmar_domain;
4130
4131 domain->geometry.aperture_start = 0;
4132 domain->geometry.aperture_end = __DOMAIN_MAX_ADDR(dmar_domain->gaw);
4133 domain->geometry.force_aperture = true;
4134
4135 return 0;
4136 }
4137
4138 static void intel_iommu_domain_destroy(struct iommu_domain *domain)
4139 {
4140 struct dmar_domain *dmar_domain = domain->priv;
4141
4142 domain->priv = NULL;
4143 domain_exit(dmar_domain);
4144 }
4145
4146 static int intel_iommu_attach_device(struct iommu_domain *domain,
4147 struct device *dev)
4148 {
4149 struct dmar_domain *dmar_domain = domain->priv;
4150 struct pci_dev *pdev = to_pci_dev(dev);
4151 struct intel_iommu *iommu;
4152 int addr_width;
4153 u8 bus, devfn;
4154
4155 /* normally pdev is not mapped */
4156 if (unlikely(domain_context_mapped(&pdev->dev))) {
4157 struct dmar_domain *old_domain;
4158
4159 old_domain = find_domain(dev);
4160 if (old_domain) {
4161 if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
4162 dmar_domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)
4163 domain_remove_one_dev_info(old_domain, dev);
4164 else
4165 domain_remove_dev_info(old_domain);
4166 }
4167 }
4168
4169 iommu = device_to_iommu(dev, &bus, &devfn);
4170 if (!iommu)
4171 return -ENODEV;
4172
4173 /* check if this iommu agaw is sufficient for max mapped address */
4174 addr_width = agaw_to_width(iommu->agaw);
4175 if (addr_width > cap_mgaw(iommu->cap))
4176 addr_width = cap_mgaw(iommu->cap);
4177
4178 if (dmar_domain->max_addr > (1LL << addr_width)) {
4179 printk(KERN_ERR "%s: iommu width (%d) is not "
4180 "sufficient for the mapped address (%llx)\n",
4181 __func__, addr_width, dmar_domain->max_addr);
4182 return -EFAULT;
4183 }
4184 dmar_domain->gaw = addr_width;
4185
4186 /*
4187 * Knock out extra levels of page tables if necessary
4188 */
4189 while (iommu->agaw < dmar_domain->agaw) {
4190 struct dma_pte *pte;
4191
4192 pte = dmar_domain->pgd;
4193 if (dma_pte_present(pte)) {
4194 dmar_domain->pgd = (struct dma_pte *)
4195 phys_to_virt(dma_pte_addr(pte));
4196 free_pgtable_page(pte);
4197 }
4198 dmar_domain->agaw--;
4199 }
4200
4201 return domain_add_dev_info(dmar_domain, dev, CONTEXT_TT_MULTI_LEVEL);
4202 }
4203
4204 static void intel_iommu_detach_device(struct iommu_domain *domain,
4205 struct device *dev)
4206 {
4207 struct dmar_domain *dmar_domain = domain->priv;
4208
4209 domain_remove_one_dev_info(dmar_domain, dev);
4210 }
4211
4212 static int intel_iommu_map(struct iommu_domain *domain,
4213 unsigned long iova, phys_addr_t hpa,
4214 size_t size, int iommu_prot)
4215 {
4216 struct dmar_domain *dmar_domain = domain->priv;
4217 u64 max_addr;
4218 int prot = 0;
4219 int ret;
4220
4221 if (iommu_prot & IOMMU_READ)
4222 prot |= DMA_PTE_READ;
4223 if (iommu_prot & IOMMU_WRITE)
4224 prot |= DMA_PTE_WRITE;
4225 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
4226 prot |= DMA_PTE_SNP;
4227
4228 max_addr = iova + size;
4229 if (dmar_domain->max_addr < max_addr) {
4230 u64 end;
4231
4232 /* check if minimum agaw is sufficient for mapped address */
4233 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
4234 if (end < max_addr) {
4235 printk(KERN_ERR "%s: iommu width (%d) is not "
4236 "sufficient for the mapped address (%llx)\n",
4237 __func__, dmar_domain->gaw, max_addr);
4238 return -EFAULT;
4239 }
4240 dmar_domain->max_addr = max_addr;
4241 }
4242 /* Round up size to next multiple of PAGE_SIZE, if it and
4243 the low bits of hpa would take us onto the next page */
4244 size = aligned_nrpages(hpa, size);
4245 ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
4246 hpa >> VTD_PAGE_SHIFT, size, prot);
4247 return ret;
4248 }
4249
4250 static size_t intel_iommu_unmap(struct iommu_domain *domain,
4251 unsigned long iova, size_t size)
4252 {
4253 struct dmar_domain *dmar_domain = domain->priv;
4254 struct page *freelist = NULL;
4255 struct intel_iommu *iommu;
4256 unsigned long start_pfn, last_pfn;
4257 unsigned int npages;
4258 int iommu_id, num, ndomains, level = 0;
4259
4260 /* Cope with horrid API which requires us to unmap more than the
4261 size argument if it happens to be a large-page mapping. */
4262 if (!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level))
4263 BUG();
4264
4265 if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
4266 size = VTD_PAGE_SIZE << level_to_offset_bits(level);
4267
4268 start_pfn = iova >> VTD_PAGE_SHIFT;
4269 last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;
4270
4271 freelist = domain_unmap(dmar_domain, start_pfn, last_pfn);
4272
4273 npages = last_pfn - start_pfn + 1;
4274
4275 for_each_set_bit(iommu_id, dmar_domain->iommu_bmp, g_num_of_iommus) {
4276 iommu = g_iommus[iommu_id];
4277
4278 /*
4279 * find bit position of dmar_domain
4280 */
4281 ndomains = cap_ndoms(iommu->cap);
4282 for_each_set_bit(num, iommu->domain_ids, ndomains) {
4283 if (iommu->domains[num] == dmar_domain)
4284 iommu_flush_iotlb_psi(iommu, num, start_pfn,
4285 npages, !freelist, 0);
4286 }
4287
4288 }
4289
4290 dma_free_pagelist(freelist);
4291
4292 if (dmar_domain->max_addr == iova + size)
4293 dmar_domain->max_addr = iova;
4294
4295 return size;
4296 }
4297
4298 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
4299 dma_addr_t iova)
4300 {
4301 struct dmar_domain *dmar_domain = domain->priv;
4302 struct dma_pte *pte;
4303 int level = 0;
4304 u64 phys = 0;
4305
4306 pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level);
4307 if (pte)
4308 phys = dma_pte_addr(pte);
4309
4310 return phys;
4311 }
4312
4313 static int intel_iommu_domain_has_cap(struct iommu_domain *domain,
4314 unsigned long cap)
4315 {
4316 struct dmar_domain *dmar_domain = domain->priv;
4317
4318 if (cap == IOMMU_CAP_CACHE_COHERENCY)
4319 return dmar_domain->iommu_snooping;
4320 if (cap == IOMMU_CAP_INTR_REMAP)
4321 return irq_remapping_enabled;
4322
4323 return 0;
4324 }
4325
4326 #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
4327
4328 static int intel_iommu_add_device(struct device *dev)
4329 {
4330 struct pci_dev *pdev = to_pci_dev(dev);
4331 struct pci_dev *bridge, *dma_pdev = NULL;
4332 struct iommu_group *group;
4333 int ret;
4334 u8 bus, devfn;
4335
4336 if (!device_to_iommu(dev, &bus, &devfn))
4337 return -ENODEV;
4338
4339 bridge = pci_find_upstream_pcie_bridge(pdev);
4340 if (bridge) {
4341 if (pci_is_pcie(bridge))
4342 dma_pdev = pci_get_domain_bus_and_slot(
4343 pci_domain_nr(pdev->bus),
4344 bridge->subordinate->number, 0);
4345 if (!dma_pdev)
4346 dma_pdev = pci_dev_get(bridge);
4347 } else
4348 dma_pdev = pci_dev_get(pdev);
4349
4350 /* Account for quirked devices */
4351 swap_pci_ref(&dma_pdev, pci_get_dma_source(dma_pdev));
4352
4353 /*
4354 * If it's a multifunction device that does not support our
4355 * required ACS flags, add to the same group as lowest numbered
4356 * function that also does not suport the required ACS flags.
4357 */
4358 if (dma_pdev->multifunction &&
4359 !pci_acs_enabled(dma_pdev, REQ_ACS_FLAGS)) {
4360 u8 i, slot = PCI_SLOT(dma_pdev->devfn);
4361
4362 for (i = 0; i < 8; i++) {
4363 struct pci_dev *tmp;
4364
4365 tmp = pci_get_slot(dma_pdev->bus, PCI_DEVFN(slot, i));
4366 if (!tmp)
4367 continue;
4368
4369 if (!pci_acs_enabled(tmp, REQ_ACS_FLAGS)) {
4370 swap_pci_ref(&dma_pdev, tmp);
4371 break;
4372 }
4373 pci_dev_put(tmp);
4374 }
4375 }
4376
4377 /*
4378 * Devices on the root bus go through the iommu. If that's not us,
4379 * find the next upstream device and test ACS up to the root bus.
4380 * Finding the next device may require skipping virtual buses.
4381 */
4382 while (!pci_is_root_bus(dma_pdev->bus)) {
4383 struct pci_bus *bus = dma_pdev->bus;
4384
4385 while (!bus->self) {
4386 if (!pci_is_root_bus(bus))
4387 bus = bus->parent;
4388 else
4389 goto root_bus;
4390 }
4391
4392 if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
4393 break;
4394
4395 swap_pci_ref(&dma_pdev, pci_dev_get(bus->self));
4396 }
4397
4398 root_bus:
4399 group = iommu_group_get(&dma_pdev->dev);
4400 pci_dev_put(dma_pdev);
4401 if (!group) {
4402 group = iommu_group_alloc();
4403 if (IS_ERR(group))
4404 return PTR_ERR(group);
4405 }
4406
4407 ret = iommu_group_add_device(group, dev);
4408
4409 iommu_group_put(group);
4410 return ret;
4411 }
4412
4413 static void intel_iommu_remove_device(struct device *dev)
4414 {
4415 iommu_group_remove_device(dev);
4416 }
4417
4418 static struct iommu_ops intel_iommu_ops = {
4419 .domain_init = intel_iommu_domain_init,
4420 .domain_destroy = intel_iommu_domain_destroy,
4421 .attach_dev = intel_iommu_attach_device,
4422 .detach_dev = intel_iommu_detach_device,
4423 .map = intel_iommu_map,
4424 .unmap = intel_iommu_unmap,
4425 .iova_to_phys = intel_iommu_iova_to_phys,
4426 .domain_has_cap = intel_iommu_domain_has_cap,
4427 .add_device = intel_iommu_add_device,
4428 .remove_device = intel_iommu_remove_device,
4429 .pgsize_bitmap = INTEL_IOMMU_PGSIZES,
4430 };
4431
4432 static void quirk_iommu_g4x_gfx(struct pci_dev *dev)
4433 {
4434 /* G4x/GM45 integrated gfx dmar support is totally busted. */
4435 printk(KERN_INFO "DMAR: Disabling IOMMU for graphics on this chipset\n");
4436 dmar_map_gfx = 0;
4437 }
4438
4439 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_g4x_gfx);
4440 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_g4x_gfx);
4441 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_g4x_gfx);
4442 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_g4x_gfx);
4443 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_g4x_gfx);
4444 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_g4x_gfx);
4445 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_g4x_gfx);
4446
4447 static void quirk_iommu_rwbf(struct pci_dev *dev)
4448 {
4449 /*
4450 * Mobile 4 Series Chipset neglects to set RWBF capability,
4451 * but needs it. Same seems to hold for the desktop versions.
4452 */
4453 printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n");
4454 rwbf_quirk = 1;
4455 }
4456
4457 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
4458 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
4459 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
4460 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
4461 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
4462 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
4463 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
4464
4465 #define GGC 0x52
4466 #define GGC_MEMORY_SIZE_MASK (0xf << 8)
4467 #define GGC_MEMORY_SIZE_NONE (0x0 << 8)
4468 #define GGC_MEMORY_SIZE_1M (0x1 << 8)
4469 #define GGC_MEMORY_SIZE_2M (0x3 << 8)
4470 #define GGC_MEMORY_VT_ENABLED (0x8 << 8)
4471 #define GGC_MEMORY_SIZE_2M_VT (0x9 << 8)
4472 #define GGC_MEMORY_SIZE_3M_VT (0xa << 8)
4473 #define GGC_MEMORY_SIZE_4M_VT (0xb << 8)
4474
4475 static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
4476 {
4477 unsigned short ggc;
4478
4479 if (pci_read_config_word(dev, GGC, &ggc))
4480 return;
4481
4482 if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
4483 printk(KERN_INFO "DMAR: BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
4484 dmar_map_gfx = 0;
4485 } else if (dmar_map_gfx) {
4486 /* we have to ensure the gfx device is idle before we flush */
4487 printk(KERN_INFO "DMAR: Disabling batched IOTLB flush on Ironlake\n");
4488 intel_iommu_strict = 1;
4489 }
4490 }
4491 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
4492 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
4493 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
4494 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
4495
4496 /* On Tylersburg chipsets, some BIOSes have been known to enable the
4497 ISOCH DMAR unit for the Azalia sound device, but not give it any
4498 TLB entries, which causes it to deadlock. Check for that. We do
4499 this in a function called from init_dmars(), instead of in a PCI
4500 quirk, because we don't want to print the obnoxious "BIOS broken"
4501 message if VT-d is actually disabled.
4502 */
4503 static void __init check_tylersburg_isoch(void)
4504 {
4505 struct pci_dev *pdev;
4506 uint32_t vtisochctrl;
4507
4508 /* If there's no Azalia in the system anyway, forget it. */
4509 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
4510 if (!pdev)
4511 return;
4512 pci_dev_put(pdev);
4513
4514 /* System Management Registers. Might be hidden, in which case
4515 we can't do the sanity check. But that's OK, because the
4516 known-broken BIOSes _don't_ actually hide it, so far. */
4517 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
4518 if (!pdev)
4519 return;
4520
4521 if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
4522 pci_dev_put(pdev);
4523 return;
4524 }
4525
4526 pci_dev_put(pdev);
4527
4528 /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
4529 if (vtisochctrl & 1)
4530 return;
4531
4532 /* Drop all bits other than the number of TLB entries */
4533 vtisochctrl &= 0x1c;
4534
4535 /* If we have the recommended number of TLB entries (16), fine. */
4536 if (vtisochctrl == 0x10)
4537 return;
4538
4539 /* Zero TLB entries? You get to ride the short bus to school. */
4540 if (!vtisochctrl) {
4541 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
4542 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
4543 dmi_get_system_info(DMI_BIOS_VENDOR),
4544 dmi_get_system_info(DMI_BIOS_VERSION),
4545 dmi_get_system_info(DMI_PRODUCT_VERSION));
4546 iommu_identity_mapping |= IDENTMAP_AZALIA;
4547 return;
4548 }
4549
4550 printk(KERN_WARNING "DMAR: Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
4551 vtisochctrl);
4552 }
This page took 0.170586 seconds and 5 git commands to generate.