1599cb1e041c5f28462f4d96266444905e5fa86c
[deliverable/linux.git] / drivers / iommu / intel-iommu.c
1 /*
2 * Copyright © 2006-2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * Authors: David Woodhouse <dwmw2@infradead.org>,
14 * Ashok Raj <ashok.raj@intel.com>,
15 * Shaohua Li <shaohua.li@intel.com>,
16 * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
17 * Fenghua Yu <fenghua.yu@intel.com>
18 */
19
20 #include <linux/init.h>
21 #include <linux/bitmap.h>
22 #include <linux/debugfs.h>
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/irq.h>
26 #include <linux/interrupt.h>
27 #include <linux/spinlock.h>
28 #include <linux/pci.h>
29 #include <linux/dmar.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/mempool.h>
32 #include <linux/memory.h>
33 #include <linux/timer.h>
34 #include <linux/iova.h>
35 #include <linux/iommu.h>
36 #include <linux/intel-iommu.h>
37 #include <linux/syscore_ops.h>
38 #include <linux/tboot.h>
39 #include <linux/dmi.h>
40 #include <linux/pci-ats.h>
41 #include <linux/memblock.h>
42 #include <asm/irq_remapping.h>
43 #include <asm/cacheflush.h>
44 #include <asm/iommu.h>
45
46 #include "irq_remapping.h"
47 #include "pci.h"
48
49 #define ROOT_SIZE VTD_PAGE_SIZE
50 #define CONTEXT_SIZE VTD_PAGE_SIZE
51
52 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
53 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
54 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
55
56 #define IOAPIC_RANGE_START (0xfee00000)
57 #define IOAPIC_RANGE_END (0xfeefffff)
58 #define IOVA_START_ADDR (0x1000)
59
60 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
61
62 #define MAX_AGAW_WIDTH 64
63 #define MAX_AGAW_PFN_WIDTH (MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
64
65 #define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
66 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
67
68 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
69 to match. That way, we can use 'unsigned long' for PFNs with impunity. */
70 #define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \
71 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
72 #define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
73
74 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
75 #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
76 #define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
77
78 /* page table handling */
79 #define LEVEL_STRIDE (9)
80 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
81
82 /*
83 * This bitmap is used to advertise the page sizes our hardware support
84 * to the IOMMU core, which will then use this information to split
85 * physically contiguous memory regions it is mapping into page sizes
86 * that we support.
87 *
88 * Traditionally the IOMMU core just handed us the mappings directly,
89 * after making sure the size is an order of a 4KiB page and that the
90 * mapping has natural alignment.
91 *
92 * To retain this behavior, we currently advertise that we support
93 * all page sizes that are an order of 4KiB.
94 *
95 * If at some point we'd like to utilize the IOMMU core's new behavior,
96 * we could change this to advertise the real page sizes we support.
97 */
98 #define INTEL_IOMMU_PGSIZES (~0xFFFUL)
99
100 static inline int agaw_to_level(int agaw)
101 {
102 return agaw + 2;
103 }
104
105 static inline int agaw_to_width(int agaw)
106 {
107 return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
108 }
109
110 static inline int width_to_agaw(int width)
111 {
112 return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
113 }
114
115 static inline unsigned int level_to_offset_bits(int level)
116 {
117 return (level - 1) * LEVEL_STRIDE;
118 }
119
120 static inline int pfn_level_offset(unsigned long pfn, int level)
121 {
122 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
123 }
124
125 static inline unsigned long level_mask(int level)
126 {
127 return -1UL << level_to_offset_bits(level);
128 }
129
130 static inline unsigned long level_size(int level)
131 {
132 return 1UL << level_to_offset_bits(level);
133 }
134
135 static inline unsigned long align_to_level(unsigned long pfn, int level)
136 {
137 return (pfn + level_size(level) - 1) & level_mask(level);
138 }
139
140 static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
141 {
142 return 1 << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
143 }
144
145 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
146 are never going to work. */
147 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
148 {
149 return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
150 }
151
152 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
153 {
154 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
155 }
156 static inline unsigned long page_to_dma_pfn(struct page *pg)
157 {
158 return mm_to_dma_pfn(page_to_pfn(pg));
159 }
160 static inline unsigned long virt_to_dma_pfn(void *p)
161 {
162 return page_to_dma_pfn(virt_to_page(p));
163 }
164
165 /* global iommu list, set NULL for ignored DMAR units */
166 static struct intel_iommu **g_iommus;
167
168 static void __init check_tylersburg_isoch(void);
169 static int rwbf_quirk;
170
171 /*
172 * set to 1 to panic kernel if can't successfully enable VT-d
173 * (used when kernel is launched w/ TXT)
174 */
175 static int force_on = 0;
176
177 /*
178 * 0: Present
179 * 1-11: Reserved
180 * 12-63: Context Ptr (12 - (haw-1))
181 * 64-127: Reserved
182 */
183 struct root_entry {
184 u64 val;
185 u64 rsvd1;
186 };
187 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
188 static inline bool root_present(struct root_entry *root)
189 {
190 return (root->val & 1);
191 }
192 static inline void set_root_present(struct root_entry *root)
193 {
194 root->val |= 1;
195 }
196 static inline void set_root_value(struct root_entry *root, unsigned long value)
197 {
198 root->val |= value & VTD_PAGE_MASK;
199 }
200
201 static inline struct context_entry *
202 get_context_addr_from_root(struct root_entry *root)
203 {
204 return (struct context_entry *)
205 (root_present(root)?phys_to_virt(
206 root->val & VTD_PAGE_MASK) :
207 NULL);
208 }
209
210 /*
211 * low 64 bits:
212 * 0: present
213 * 1: fault processing disable
214 * 2-3: translation type
215 * 12-63: address space root
216 * high 64 bits:
217 * 0-2: address width
218 * 3-6: aval
219 * 8-23: domain id
220 */
221 struct context_entry {
222 u64 lo;
223 u64 hi;
224 };
225
226 static inline bool context_present(struct context_entry *context)
227 {
228 return (context->lo & 1);
229 }
230 static inline void context_set_present(struct context_entry *context)
231 {
232 context->lo |= 1;
233 }
234
235 static inline void context_set_fault_enable(struct context_entry *context)
236 {
237 context->lo &= (((u64)-1) << 2) | 1;
238 }
239
240 static inline void context_set_translation_type(struct context_entry *context,
241 unsigned long value)
242 {
243 context->lo &= (((u64)-1) << 4) | 3;
244 context->lo |= (value & 3) << 2;
245 }
246
247 static inline void context_set_address_root(struct context_entry *context,
248 unsigned long value)
249 {
250 context->lo |= value & VTD_PAGE_MASK;
251 }
252
253 static inline void context_set_address_width(struct context_entry *context,
254 unsigned long value)
255 {
256 context->hi |= value & 7;
257 }
258
259 static inline void context_set_domain_id(struct context_entry *context,
260 unsigned long value)
261 {
262 context->hi |= (value & ((1 << 16) - 1)) << 8;
263 }
264
265 static inline void context_clear_entry(struct context_entry *context)
266 {
267 context->lo = 0;
268 context->hi = 0;
269 }
270
271 /*
272 * 0: readable
273 * 1: writable
274 * 2-6: reserved
275 * 7: super page
276 * 8-10: available
277 * 11: snoop behavior
278 * 12-63: Host physcial address
279 */
280 struct dma_pte {
281 u64 val;
282 };
283
284 static inline void dma_clear_pte(struct dma_pte *pte)
285 {
286 pte->val = 0;
287 }
288
289 static inline u64 dma_pte_addr(struct dma_pte *pte)
290 {
291 #ifdef CONFIG_64BIT
292 return pte->val & VTD_PAGE_MASK;
293 #else
294 /* Must have a full atomic 64-bit read */
295 return __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
296 #endif
297 }
298
299 static inline bool dma_pte_present(struct dma_pte *pte)
300 {
301 return (pte->val & 3) != 0;
302 }
303
304 static inline bool dma_pte_superpage(struct dma_pte *pte)
305 {
306 return (pte->val & (1 << 7));
307 }
308
309 static inline int first_pte_in_page(struct dma_pte *pte)
310 {
311 return !((unsigned long)pte & ~VTD_PAGE_MASK);
312 }
313
314 /*
315 * This domain is a statically identity mapping domain.
316 * 1. This domain creats a static 1:1 mapping to all usable memory.
317 * 2. It maps to each iommu if successful.
318 * 3. Each iommu mapps to this domain if successful.
319 */
320 static struct dmar_domain *si_domain;
321 static int hw_pass_through = 1;
322
323 /* devices under the same p2p bridge are owned in one domain */
324 #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
325
326 /* domain represents a virtual machine, more than one devices
327 * across iommus may be owned in one domain, e.g. kvm guest.
328 */
329 #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 1)
330
331 /* si_domain contains mulitple devices */
332 #define DOMAIN_FLAG_STATIC_IDENTITY (1 << 2)
333
334 /* define the limit of IOMMUs supported in each domain */
335 #ifdef CONFIG_X86
336 # define IOMMU_UNITS_SUPPORTED MAX_IO_APICS
337 #else
338 # define IOMMU_UNITS_SUPPORTED 64
339 #endif
340
341 struct dmar_domain {
342 int id; /* domain id */
343 int nid; /* node id */
344 DECLARE_BITMAP(iommu_bmp, IOMMU_UNITS_SUPPORTED);
345 /* bitmap of iommus this domain uses*/
346
347 struct list_head devices; /* all devices' list */
348 struct iova_domain iovad; /* iova's that belong to this domain */
349
350 struct dma_pte *pgd; /* virtual address */
351 int gaw; /* max guest address width */
352
353 /* adjusted guest address width, 0 is level 2 30-bit */
354 int agaw;
355
356 int flags; /* flags to find out type of domain */
357
358 int iommu_coherency;/* indicate coherency of iommu access */
359 int iommu_snooping; /* indicate snooping control feature*/
360 int iommu_count; /* reference count of iommu */
361 int iommu_superpage;/* Level of superpages supported:
362 0 == 4KiB (no superpages), 1 == 2MiB,
363 2 == 1GiB, 3 == 512GiB, 4 == 1TiB */
364 spinlock_t iommu_lock; /* protect iommu set in domain */
365 u64 max_addr; /* maximum mapped address */
366 };
367
368 /* PCI domain-device relationship */
369 struct device_domain_info {
370 struct list_head link; /* link to domain siblings */
371 struct list_head global; /* link to global list */
372 int segment; /* PCI domain */
373 u8 bus; /* PCI bus number */
374 u8 devfn; /* PCI devfn number */
375 struct pci_dev *dev; /* it's NULL for PCIe-to-PCI bridge */
376 struct intel_iommu *iommu; /* IOMMU used by this device */
377 struct dmar_domain *domain; /* pointer to domain */
378 };
379
380 struct dmar_rmrr_unit {
381 struct list_head list; /* list of rmrr units */
382 struct acpi_dmar_header *hdr; /* ACPI header */
383 u64 base_address; /* reserved base address*/
384 u64 end_address; /* reserved end address */
385 struct pci_dev __rcu **devices; /* target devices */
386 int devices_cnt; /* target device count */
387 };
388
389 struct dmar_atsr_unit {
390 struct list_head list; /* list of ATSR units */
391 struct acpi_dmar_header *hdr; /* ACPI header */
392 struct pci_dev __rcu **devices; /* target devices */
393 int devices_cnt; /* target device count */
394 u8 include_all:1; /* include all ports */
395 };
396
397 static LIST_HEAD(dmar_atsr_units);
398 static LIST_HEAD(dmar_rmrr_units);
399
400 #define for_each_rmrr_units(rmrr) \
401 list_for_each_entry(rmrr, &dmar_rmrr_units, list)
402
403 static void flush_unmaps_timeout(unsigned long data);
404
405 static DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0);
406
407 #define HIGH_WATER_MARK 250
408 struct deferred_flush_tables {
409 int next;
410 struct iova *iova[HIGH_WATER_MARK];
411 struct dmar_domain *domain[HIGH_WATER_MARK];
412 struct page *freelist[HIGH_WATER_MARK];
413 };
414
415 static struct deferred_flush_tables *deferred_flush;
416
417 /* bitmap for indexing intel_iommus */
418 static int g_num_of_iommus;
419
420 static DEFINE_SPINLOCK(async_umap_flush_lock);
421 static LIST_HEAD(unmaps_to_do);
422
423 static int timer_on;
424 static long list_size;
425
426 static void domain_exit(struct dmar_domain *domain);
427 static void domain_remove_dev_info(struct dmar_domain *domain);
428 static void domain_remove_one_dev_info(struct dmar_domain *domain,
429 struct pci_dev *pdev);
430 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
431 struct pci_dev *pdev);
432
433 #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
434 int dmar_disabled = 0;
435 #else
436 int dmar_disabled = 1;
437 #endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
438
439 int intel_iommu_enabled = 0;
440 EXPORT_SYMBOL_GPL(intel_iommu_enabled);
441
442 static int dmar_map_gfx = 1;
443 static int dmar_forcedac;
444 static int intel_iommu_strict;
445 static int intel_iommu_superpage = 1;
446
447 int intel_iommu_gfx_mapped;
448 EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
449
450 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
451 static DEFINE_SPINLOCK(device_domain_lock);
452 static LIST_HEAD(device_domain_list);
453
454 static struct iommu_ops intel_iommu_ops;
455
456 static int __init intel_iommu_setup(char *str)
457 {
458 if (!str)
459 return -EINVAL;
460 while (*str) {
461 if (!strncmp(str, "on", 2)) {
462 dmar_disabled = 0;
463 printk(KERN_INFO "Intel-IOMMU: enabled\n");
464 } else if (!strncmp(str, "off", 3)) {
465 dmar_disabled = 1;
466 printk(KERN_INFO "Intel-IOMMU: disabled\n");
467 } else if (!strncmp(str, "igfx_off", 8)) {
468 dmar_map_gfx = 0;
469 printk(KERN_INFO
470 "Intel-IOMMU: disable GFX device mapping\n");
471 } else if (!strncmp(str, "forcedac", 8)) {
472 printk(KERN_INFO
473 "Intel-IOMMU: Forcing DAC for PCI devices\n");
474 dmar_forcedac = 1;
475 } else if (!strncmp(str, "strict", 6)) {
476 printk(KERN_INFO
477 "Intel-IOMMU: disable batched IOTLB flush\n");
478 intel_iommu_strict = 1;
479 } else if (!strncmp(str, "sp_off", 6)) {
480 printk(KERN_INFO
481 "Intel-IOMMU: disable supported super page\n");
482 intel_iommu_superpage = 0;
483 }
484
485 str += strcspn(str, ",");
486 while (*str == ',')
487 str++;
488 }
489 return 0;
490 }
491 __setup("intel_iommu=", intel_iommu_setup);
492
493 static struct kmem_cache *iommu_domain_cache;
494 static struct kmem_cache *iommu_devinfo_cache;
495 static struct kmem_cache *iommu_iova_cache;
496
497 static inline void *alloc_pgtable_page(int node)
498 {
499 struct page *page;
500 void *vaddr = NULL;
501
502 page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
503 if (page)
504 vaddr = page_address(page);
505 return vaddr;
506 }
507
508 static inline void free_pgtable_page(void *vaddr)
509 {
510 free_page((unsigned long)vaddr);
511 }
512
513 static inline void *alloc_domain_mem(void)
514 {
515 return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
516 }
517
518 static void free_domain_mem(void *vaddr)
519 {
520 kmem_cache_free(iommu_domain_cache, vaddr);
521 }
522
523 static inline void * alloc_devinfo_mem(void)
524 {
525 return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
526 }
527
528 static inline void free_devinfo_mem(void *vaddr)
529 {
530 kmem_cache_free(iommu_devinfo_cache, vaddr);
531 }
532
533 struct iova *alloc_iova_mem(void)
534 {
535 return kmem_cache_alloc(iommu_iova_cache, GFP_ATOMIC);
536 }
537
538 void free_iova_mem(struct iova *iova)
539 {
540 kmem_cache_free(iommu_iova_cache, iova);
541 }
542
543
544 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
545 {
546 unsigned long sagaw;
547 int agaw = -1;
548
549 sagaw = cap_sagaw(iommu->cap);
550 for (agaw = width_to_agaw(max_gaw);
551 agaw >= 0; agaw--) {
552 if (test_bit(agaw, &sagaw))
553 break;
554 }
555
556 return agaw;
557 }
558
559 /*
560 * Calculate max SAGAW for each iommu.
561 */
562 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
563 {
564 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
565 }
566
567 /*
568 * calculate agaw for each iommu.
569 * "SAGAW" may be different across iommus, use a default agaw, and
570 * get a supported less agaw for iommus that don't support the default agaw.
571 */
572 int iommu_calculate_agaw(struct intel_iommu *iommu)
573 {
574 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
575 }
576
577 /* This functionin only returns single iommu in a domain */
578 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
579 {
580 int iommu_id;
581
582 /* si_domain and vm domain should not get here. */
583 BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
584 BUG_ON(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY);
585
586 iommu_id = find_first_bit(domain->iommu_bmp, g_num_of_iommus);
587 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
588 return NULL;
589
590 return g_iommus[iommu_id];
591 }
592
593 static void domain_update_iommu_coherency(struct dmar_domain *domain)
594 {
595 struct dmar_drhd_unit *drhd;
596 struct intel_iommu *iommu;
597 int i, found = 0;
598
599 domain->iommu_coherency = 1;
600
601 for_each_set_bit(i, domain->iommu_bmp, g_num_of_iommus) {
602 found = 1;
603 if (!ecap_coherent(g_iommus[i]->ecap)) {
604 domain->iommu_coherency = 0;
605 break;
606 }
607 }
608 if (found)
609 return;
610
611 /* No hardware attached; use lowest common denominator */
612 rcu_read_lock();
613 for_each_active_iommu(iommu, drhd) {
614 if (!ecap_coherent(iommu->ecap)) {
615 domain->iommu_coherency = 0;
616 break;
617 }
618 }
619 rcu_read_unlock();
620 }
621
622 static void domain_update_iommu_snooping(struct dmar_domain *domain)
623 {
624 int i;
625
626 domain->iommu_snooping = 1;
627
628 for_each_set_bit(i, domain->iommu_bmp, g_num_of_iommus) {
629 if (!ecap_sc_support(g_iommus[i]->ecap)) {
630 domain->iommu_snooping = 0;
631 break;
632 }
633 }
634 }
635
636 static void domain_update_iommu_superpage(struct dmar_domain *domain)
637 {
638 struct dmar_drhd_unit *drhd;
639 struct intel_iommu *iommu = NULL;
640 int mask = 0xf;
641
642 if (!intel_iommu_superpage) {
643 domain->iommu_superpage = 0;
644 return;
645 }
646
647 /* set iommu_superpage to the smallest common denominator */
648 rcu_read_lock();
649 for_each_active_iommu(iommu, drhd) {
650 mask &= cap_super_page_val(iommu->cap);
651 if (!mask) {
652 break;
653 }
654 }
655 rcu_read_unlock();
656
657 domain->iommu_superpage = fls(mask);
658 }
659
660 /* Some capabilities may be different across iommus */
661 static void domain_update_iommu_cap(struct dmar_domain *domain)
662 {
663 domain_update_iommu_coherency(domain);
664 domain_update_iommu_snooping(domain);
665 domain_update_iommu_superpage(domain);
666 }
667
668 static struct intel_iommu *device_to_iommu(int segment, u8 bus, u8 devfn)
669 {
670 struct dmar_drhd_unit *drhd = NULL;
671 struct intel_iommu *iommu;
672 struct pci_dev *dev;
673 int i;
674
675 rcu_read_lock();
676 for_each_active_iommu(iommu, drhd) {
677 if (segment != drhd->segment)
678 continue;
679
680 for_each_active_dev_scope(drhd->devices,
681 drhd->devices_cnt, i, dev) {
682 if (dev->bus->number == bus && dev->devfn == devfn)
683 goto out;
684 if (dev->subordinate &&
685 dev->subordinate->number <= bus &&
686 dev->subordinate->busn_res.end >= bus)
687 goto out;
688 }
689
690 if (drhd->include_all)
691 goto out;
692 }
693 iommu = NULL;
694 out:
695 rcu_read_unlock();
696
697 return iommu;
698 }
699
700 static void domain_flush_cache(struct dmar_domain *domain,
701 void *addr, int size)
702 {
703 if (!domain->iommu_coherency)
704 clflush_cache_range(addr, size);
705 }
706
707 /* Gets context entry for a given bus and devfn */
708 static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
709 u8 bus, u8 devfn)
710 {
711 struct root_entry *root;
712 struct context_entry *context;
713 unsigned long phy_addr;
714 unsigned long flags;
715
716 spin_lock_irqsave(&iommu->lock, flags);
717 root = &iommu->root_entry[bus];
718 context = get_context_addr_from_root(root);
719 if (!context) {
720 context = (struct context_entry *)
721 alloc_pgtable_page(iommu->node);
722 if (!context) {
723 spin_unlock_irqrestore(&iommu->lock, flags);
724 return NULL;
725 }
726 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
727 phy_addr = virt_to_phys((void *)context);
728 set_root_value(root, phy_addr);
729 set_root_present(root);
730 __iommu_flush_cache(iommu, root, sizeof(*root));
731 }
732 spin_unlock_irqrestore(&iommu->lock, flags);
733 return &context[devfn];
734 }
735
736 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
737 {
738 struct root_entry *root;
739 struct context_entry *context;
740 int ret;
741 unsigned long flags;
742
743 spin_lock_irqsave(&iommu->lock, flags);
744 root = &iommu->root_entry[bus];
745 context = get_context_addr_from_root(root);
746 if (!context) {
747 ret = 0;
748 goto out;
749 }
750 ret = context_present(&context[devfn]);
751 out:
752 spin_unlock_irqrestore(&iommu->lock, flags);
753 return ret;
754 }
755
756 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
757 {
758 struct root_entry *root;
759 struct context_entry *context;
760 unsigned long flags;
761
762 spin_lock_irqsave(&iommu->lock, flags);
763 root = &iommu->root_entry[bus];
764 context = get_context_addr_from_root(root);
765 if (context) {
766 context_clear_entry(&context[devfn]);
767 __iommu_flush_cache(iommu, &context[devfn], \
768 sizeof(*context));
769 }
770 spin_unlock_irqrestore(&iommu->lock, flags);
771 }
772
773 static void free_context_table(struct intel_iommu *iommu)
774 {
775 struct root_entry *root;
776 int i;
777 unsigned long flags;
778 struct context_entry *context;
779
780 spin_lock_irqsave(&iommu->lock, flags);
781 if (!iommu->root_entry) {
782 goto out;
783 }
784 for (i = 0; i < ROOT_ENTRY_NR; i++) {
785 root = &iommu->root_entry[i];
786 context = get_context_addr_from_root(root);
787 if (context)
788 free_pgtable_page(context);
789 }
790 free_pgtable_page(iommu->root_entry);
791 iommu->root_entry = NULL;
792 out:
793 spin_unlock_irqrestore(&iommu->lock, flags);
794 }
795
796 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
797 unsigned long pfn, int *target_level)
798 {
799 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
800 struct dma_pte *parent, *pte = NULL;
801 int level = agaw_to_level(domain->agaw);
802 int offset;
803
804 BUG_ON(!domain->pgd);
805
806 if (addr_width < BITS_PER_LONG && pfn >> addr_width)
807 /* Address beyond IOMMU's addressing capabilities. */
808 return NULL;
809
810 parent = domain->pgd;
811
812 while (1) {
813 void *tmp_page;
814
815 offset = pfn_level_offset(pfn, level);
816 pte = &parent[offset];
817 if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
818 break;
819 if (level == *target_level)
820 break;
821
822 if (!dma_pte_present(pte)) {
823 uint64_t pteval;
824
825 tmp_page = alloc_pgtable_page(domain->nid);
826
827 if (!tmp_page)
828 return NULL;
829
830 domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
831 pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
832 if (cmpxchg64(&pte->val, 0ULL, pteval)) {
833 /* Someone else set it while we were thinking; use theirs. */
834 free_pgtable_page(tmp_page);
835 } else {
836 dma_pte_addr(pte);
837 domain_flush_cache(domain, pte, sizeof(*pte));
838 }
839 }
840 if (level == 1)
841 break;
842
843 parent = phys_to_virt(dma_pte_addr(pte));
844 level--;
845 }
846
847 if (!*target_level)
848 *target_level = level;
849
850 return pte;
851 }
852
853
854 /* return address's pte at specific level */
855 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
856 unsigned long pfn,
857 int level, int *large_page)
858 {
859 struct dma_pte *parent, *pte = NULL;
860 int total = agaw_to_level(domain->agaw);
861 int offset;
862
863 parent = domain->pgd;
864 while (level <= total) {
865 offset = pfn_level_offset(pfn, total);
866 pte = &parent[offset];
867 if (level == total)
868 return pte;
869
870 if (!dma_pte_present(pte)) {
871 *large_page = total;
872 break;
873 }
874
875 if (pte->val & DMA_PTE_LARGE_PAGE) {
876 *large_page = total;
877 return pte;
878 }
879
880 parent = phys_to_virt(dma_pte_addr(pte));
881 total--;
882 }
883 return NULL;
884 }
885
886 /* clear last level pte, a tlb flush should be followed */
887 static void dma_pte_clear_range(struct dmar_domain *domain,
888 unsigned long start_pfn,
889 unsigned long last_pfn)
890 {
891 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
892 unsigned int large_page = 1;
893 struct dma_pte *first_pte, *pte;
894
895 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
896 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
897 BUG_ON(start_pfn > last_pfn);
898
899 /* we don't need lock here; nobody else touches the iova range */
900 do {
901 large_page = 1;
902 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
903 if (!pte) {
904 start_pfn = align_to_level(start_pfn + 1, large_page + 1);
905 continue;
906 }
907 do {
908 dma_clear_pte(pte);
909 start_pfn += lvl_to_nr_pages(large_page);
910 pte++;
911 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
912
913 domain_flush_cache(domain, first_pte,
914 (void *)pte - (void *)first_pte);
915
916 } while (start_pfn && start_pfn <= last_pfn);
917 }
918
919 static void dma_pte_free_level(struct dmar_domain *domain, int level,
920 struct dma_pte *pte, unsigned long pfn,
921 unsigned long start_pfn, unsigned long last_pfn)
922 {
923 pfn = max(start_pfn, pfn);
924 pte = &pte[pfn_level_offset(pfn, level)];
925
926 do {
927 unsigned long level_pfn;
928 struct dma_pte *level_pte;
929
930 if (!dma_pte_present(pte) || dma_pte_superpage(pte))
931 goto next;
932
933 level_pfn = pfn & level_mask(level - 1);
934 level_pte = phys_to_virt(dma_pte_addr(pte));
935
936 if (level > 2)
937 dma_pte_free_level(domain, level - 1, level_pte,
938 level_pfn, start_pfn, last_pfn);
939
940 /* If range covers entire pagetable, free it */
941 if (!(start_pfn > level_pfn ||
942 last_pfn < level_pfn + level_size(level) - 1)) {
943 dma_clear_pte(pte);
944 domain_flush_cache(domain, pte, sizeof(*pte));
945 free_pgtable_page(level_pte);
946 }
947 next:
948 pfn += level_size(level);
949 } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
950 }
951
952 /* free page table pages. last level pte should already be cleared */
953 static void dma_pte_free_pagetable(struct dmar_domain *domain,
954 unsigned long start_pfn,
955 unsigned long last_pfn)
956 {
957 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
958
959 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
960 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
961 BUG_ON(start_pfn > last_pfn);
962
963 /* We don't need lock here; nobody else touches the iova range */
964 dma_pte_free_level(domain, agaw_to_level(domain->agaw),
965 domain->pgd, 0, start_pfn, last_pfn);
966
967 /* free pgd */
968 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
969 free_pgtable_page(domain->pgd);
970 domain->pgd = NULL;
971 }
972 }
973
974 /* When a page at a given level is being unlinked from its parent, we don't
975 need to *modify* it at all. All we need to do is make a list of all the
976 pages which can be freed just as soon as we've flushed the IOTLB and we
977 know the hardware page-walk will no longer touch them.
978 The 'pte' argument is the *parent* PTE, pointing to the page that is to
979 be freed. */
980 static struct page *dma_pte_list_pagetables(struct dmar_domain *domain,
981 int level, struct dma_pte *pte,
982 struct page *freelist)
983 {
984 struct page *pg;
985
986 pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
987 pg->freelist = freelist;
988 freelist = pg;
989
990 if (level == 1)
991 return freelist;
992
993 for (pte = page_address(pg); !first_pte_in_page(pte); pte++) {
994 if (dma_pte_present(pte) && !dma_pte_superpage(pte))
995 freelist = dma_pte_list_pagetables(domain, level - 1,
996 pte, freelist);
997 }
998
999 return freelist;
1000 }
1001
1002 static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level,
1003 struct dma_pte *pte, unsigned long pfn,
1004 unsigned long start_pfn,
1005 unsigned long last_pfn,
1006 struct page *freelist)
1007 {
1008 struct dma_pte *first_pte = NULL, *last_pte = NULL;
1009
1010 pfn = max(start_pfn, pfn);
1011 pte = &pte[pfn_level_offset(pfn, level)];
1012
1013 do {
1014 unsigned long level_pfn;
1015
1016 if (!dma_pte_present(pte))
1017 goto next;
1018
1019 level_pfn = pfn & level_mask(level);
1020
1021 /* If range covers entire pagetable, free it */
1022 if (start_pfn <= level_pfn &&
1023 last_pfn >= level_pfn + level_size(level) - 1) {
1024 /* These suborbinate page tables are going away entirely. Don't
1025 bother to clear them; we're just going to *free* them. */
1026 if (level > 1 && !dma_pte_superpage(pte))
1027 freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist);
1028
1029 dma_clear_pte(pte);
1030 if (!first_pte)
1031 first_pte = pte;
1032 last_pte = pte;
1033 } else if (level > 1) {
1034 /* Recurse down into a level that isn't *entirely* obsolete */
1035 freelist = dma_pte_clear_level(domain, level - 1,
1036 phys_to_virt(dma_pte_addr(pte)),
1037 level_pfn, start_pfn, last_pfn,
1038 freelist);
1039 }
1040 next:
1041 pfn += level_size(level);
1042 } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1043
1044 if (first_pte)
1045 domain_flush_cache(domain, first_pte,
1046 (void *)++last_pte - (void *)first_pte);
1047
1048 return freelist;
1049 }
1050
1051 /* We can't just free the pages because the IOMMU may still be walking
1052 the page tables, and may have cached the intermediate levels. The
1053 pages can only be freed after the IOTLB flush has been done. */
1054 struct page *domain_unmap(struct dmar_domain *domain,
1055 unsigned long start_pfn,
1056 unsigned long last_pfn)
1057 {
1058 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
1059 struct page *freelist = NULL;
1060
1061 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
1062 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
1063 BUG_ON(start_pfn > last_pfn);
1064
1065 /* we don't need lock here; nobody else touches the iova range */
1066 freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
1067 domain->pgd, 0, start_pfn, last_pfn, NULL);
1068
1069 /* free pgd */
1070 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1071 struct page *pgd_page = virt_to_page(domain->pgd);
1072 pgd_page->freelist = freelist;
1073 freelist = pgd_page;
1074
1075 domain->pgd = NULL;
1076 }
1077
1078 return freelist;
1079 }
1080
1081 void dma_free_pagelist(struct page *freelist)
1082 {
1083 struct page *pg;
1084
1085 while ((pg = freelist)) {
1086 freelist = pg->freelist;
1087 free_pgtable_page(page_address(pg));
1088 }
1089 }
1090
1091 /* iommu handling */
1092 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
1093 {
1094 struct root_entry *root;
1095 unsigned long flags;
1096
1097 root = (struct root_entry *)alloc_pgtable_page(iommu->node);
1098 if (!root)
1099 return -ENOMEM;
1100
1101 __iommu_flush_cache(iommu, root, ROOT_SIZE);
1102
1103 spin_lock_irqsave(&iommu->lock, flags);
1104 iommu->root_entry = root;
1105 spin_unlock_irqrestore(&iommu->lock, flags);
1106
1107 return 0;
1108 }
1109
1110 static void iommu_set_root_entry(struct intel_iommu *iommu)
1111 {
1112 void *addr;
1113 u32 sts;
1114 unsigned long flag;
1115
1116 addr = iommu->root_entry;
1117
1118 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1119 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
1120
1121 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
1122
1123 /* Make sure hardware complete it */
1124 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1125 readl, (sts & DMA_GSTS_RTPS), sts);
1126
1127 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1128 }
1129
1130 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
1131 {
1132 u32 val;
1133 unsigned long flag;
1134
1135 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
1136 return;
1137
1138 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1139 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
1140
1141 /* Make sure hardware complete it */
1142 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1143 readl, (!(val & DMA_GSTS_WBFS)), val);
1144
1145 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1146 }
1147
1148 /* return value determine if we need a write buffer flush */
1149 static void __iommu_flush_context(struct intel_iommu *iommu,
1150 u16 did, u16 source_id, u8 function_mask,
1151 u64 type)
1152 {
1153 u64 val = 0;
1154 unsigned long flag;
1155
1156 switch (type) {
1157 case DMA_CCMD_GLOBAL_INVL:
1158 val = DMA_CCMD_GLOBAL_INVL;
1159 break;
1160 case DMA_CCMD_DOMAIN_INVL:
1161 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
1162 break;
1163 case DMA_CCMD_DEVICE_INVL:
1164 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
1165 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
1166 break;
1167 default:
1168 BUG();
1169 }
1170 val |= DMA_CCMD_ICC;
1171
1172 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1173 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1174
1175 /* Make sure hardware complete it */
1176 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1177 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1178
1179 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1180 }
1181
1182 /* return value determine if we need a write buffer flush */
1183 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1184 u64 addr, unsigned int size_order, u64 type)
1185 {
1186 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1187 u64 val = 0, val_iva = 0;
1188 unsigned long flag;
1189
1190 switch (type) {
1191 case DMA_TLB_GLOBAL_FLUSH:
1192 /* global flush doesn't need set IVA_REG */
1193 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1194 break;
1195 case DMA_TLB_DSI_FLUSH:
1196 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1197 break;
1198 case DMA_TLB_PSI_FLUSH:
1199 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1200 /* IH bit is passed in as part of address */
1201 val_iva = size_order | addr;
1202 break;
1203 default:
1204 BUG();
1205 }
1206 /* Note: set drain read/write */
1207 #if 0
1208 /*
1209 * This is probably to be super secure.. Looks like we can
1210 * ignore it without any impact.
1211 */
1212 if (cap_read_drain(iommu->cap))
1213 val |= DMA_TLB_READ_DRAIN;
1214 #endif
1215 if (cap_write_drain(iommu->cap))
1216 val |= DMA_TLB_WRITE_DRAIN;
1217
1218 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1219 /* Note: Only uses first TLB reg currently */
1220 if (val_iva)
1221 dmar_writeq(iommu->reg + tlb_offset, val_iva);
1222 dmar_writeq(iommu->reg + tlb_offset + 8, val);
1223
1224 /* Make sure hardware complete it */
1225 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1226 dmar_readq, (!(val & DMA_TLB_IVT)), val);
1227
1228 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1229
1230 /* check IOTLB invalidation granularity */
1231 if (DMA_TLB_IAIG(val) == 0)
1232 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
1233 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1234 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
1235 (unsigned long long)DMA_TLB_IIRG(type),
1236 (unsigned long long)DMA_TLB_IAIG(val));
1237 }
1238
1239 static struct device_domain_info *iommu_support_dev_iotlb(
1240 struct dmar_domain *domain, int segment, u8 bus, u8 devfn)
1241 {
1242 int found = 0;
1243 unsigned long flags;
1244 struct device_domain_info *info;
1245 struct intel_iommu *iommu = device_to_iommu(segment, bus, devfn);
1246
1247 if (!ecap_dev_iotlb_support(iommu->ecap))
1248 return NULL;
1249
1250 if (!iommu->qi)
1251 return NULL;
1252
1253 spin_lock_irqsave(&device_domain_lock, flags);
1254 list_for_each_entry(info, &domain->devices, link)
1255 if (info->bus == bus && info->devfn == devfn) {
1256 found = 1;
1257 break;
1258 }
1259 spin_unlock_irqrestore(&device_domain_lock, flags);
1260
1261 if (!found || !info->dev)
1262 return NULL;
1263
1264 if (!pci_find_ext_capability(info->dev, PCI_EXT_CAP_ID_ATS))
1265 return NULL;
1266
1267 if (!dmar_find_matched_atsr_unit(info->dev))
1268 return NULL;
1269
1270 info->iommu = iommu;
1271
1272 return info;
1273 }
1274
1275 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1276 {
1277 if (!info)
1278 return;
1279
1280 pci_enable_ats(info->dev, VTD_PAGE_SHIFT);
1281 }
1282
1283 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1284 {
1285 if (!info->dev || !pci_ats_enabled(info->dev))
1286 return;
1287
1288 pci_disable_ats(info->dev);
1289 }
1290
1291 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1292 u64 addr, unsigned mask)
1293 {
1294 u16 sid, qdep;
1295 unsigned long flags;
1296 struct device_domain_info *info;
1297
1298 spin_lock_irqsave(&device_domain_lock, flags);
1299 list_for_each_entry(info, &domain->devices, link) {
1300 if (!info->dev || !pci_ats_enabled(info->dev))
1301 continue;
1302
1303 sid = info->bus << 8 | info->devfn;
1304 qdep = pci_ats_queue_depth(info->dev);
1305 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1306 }
1307 spin_unlock_irqrestore(&device_domain_lock, flags);
1308 }
1309
1310 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
1311 unsigned long pfn, unsigned int pages, int ih, int map)
1312 {
1313 unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1314 uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1315
1316 BUG_ON(pages == 0);
1317
1318 if (ih)
1319 ih = 1 << 6;
1320 /*
1321 * Fallback to domain selective flush if no PSI support or the size is
1322 * too big.
1323 * PSI requires page size to be 2 ^ x, and the base address is naturally
1324 * aligned to the size
1325 */
1326 if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1327 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1328 DMA_TLB_DSI_FLUSH);
1329 else
1330 iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
1331 DMA_TLB_PSI_FLUSH);
1332
1333 /*
1334 * In caching mode, changes of pages from non-present to present require
1335 * flush. However, device IOTLB doesn't need to be flushed in this case.
1336 */
1337 if (!cap_caching_mode(iommu->cap) || !map)
1338 iommu_flush_dev_iotlb(iommu->domains[did], addr, mask);
1339 }
1340
1341 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1342 {
1343 u32 pmen;
1344 unsigned long flags;
1345
1346 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1347 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1348 pmen &= ~DMA_PMEN_EPM;
1349 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1350
1351 /* wait for the protected region status bit to clear */
1352 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1353 readl, !(pmen & DMA_PMEN_PRS), pmen);
1354
1355 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1356 }
1357
1358 static int iommu_enable_translation(struct intel_iommu *iommu)
1359 {
1360 u32 sts;
1361 unsigned long flags;
1362
1363 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1364 iommu->gcmd |= DMA_GCMD_TE;
1365 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1366
1367 /* Make sure hardware complete it */
1368 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1369 readl, (sts & DMA_GSTS_TES), sts);
1370
1371 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1372 return 0;
1373 }
1374
1375 static int iommu_disable_translation(struct intel_iommu *iommu)
1376 {
1377 u32 sts;
1378 unsigned long flag;
1379
1380 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1381 iommu->gcmd &= ~DMA_GCMD_TE;
1382 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1383
1384 /* Make sure hardware complete it */
1385 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1386 readl, (!(sts & DMA_GSTS_TES)), sts);
1387
1388 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1389 return 0;
1390 }
1391
1392
1393 static int iommu_init_domains(struct intel_iommu *iommu)
1394 {
1395 unsigned long ndomains;
1396 unsigned long nlongs;
1397
1398 ndomains = cap_ndoms(iommu->cap);
1399 pr_debug("IOMMU%d: Number of Domains supported <%ld>\n",
1400 iommu->seq_id, ndomains);
1401 nlongs = BITS_TO_LONGS(ndomains);
1402
1403 spin_lock_init(&iommu->lock);
1404
1405 /* TBD: there might be 64K domains,
1406 * consider other allocation for future chip
1407 */
1408 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1409 if (!iommu->domain_ids) {
1410 pr_err("IOMMU%d: allocating domain id array failed\n",
1411 iommu->seq_id);
1412 return -ENOMEM;
1413 }
1414 iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1415 GFP_KERNEL);
1416 if (!iommu->domains) {
1417 pr_err("IOMMU%d: allocating domain array failed\n",
1418 iommu->seq_id);
1419 kfree(iommu->domain_ids);
1420 iommu->domain_ids = NULL;
1421 return -ENOMEM;
1422 }
1423
1424 /*
1425 * if Caching mode is set, then invalid translations are tagged
1426 * with domainid 0. Hence we need to pre-allocate it.
1427 */
1428 if (cap_caching_mode(iommu->cap))
1429 set_bit(0, iommu->domain_ids);
1430 return 0;
1431 }
1432
1433 static void free_dmar_iommu(struct intel_iommu *iommu)
1434 {
1435 struct dmar_domain *domain;
1436 int i, count;
1437 unsigned long flags;
1438
1439 if ((iommu->domains) && (iommu->domain_ids)) {
1440 for_each_set_bit(i, iommu->domain_ids, cap_ndoms(iommu->cap)) {
1441 /*
1442 * Domain id 0 is reserved for invalid translation
1443 * if hardware supports caching mode.
1444 */
1445 if (cap_caching_mode(iommu->cap) && i == 0)
1446 continue;
1447
1448 domain = iommu->domains[i];
1449 clear_bit(i, iommu->domain_ids);
1450
1451 spin_lock_irqsave(&domain->iommu_lock, flags);
1452 count = --domain->iommu_count;
1453 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1454 if (count == 0)
1455 domain_exit(domain);
1456 }
1457 }
1458
1459 if (iommu->gcmd & DMA_GCMD_TE)
1460 iommu_disable_translation(iommu);
1461
1462 kfree(iommu->domains);
1463 kfree(iommu->domain_ids);
1464 iommu->domains = NULL;
1465 iommu->domain_ids = NULL;
1466
1467 g_iommus[iommu->seq_id] = NULL;
1468
1469 /* free context mapping */
1470 free_context_table(iommu);
1471 }
1472
1473 static struct dmar_domain *alloc_domain(bool vm)
1474 {
1475 /* domain id for virtual machine, it won't be set in context */
1476 static atomic_t vm_domid = ATOMIC_INIT(0);
1477 struct dmar_domain *domain;
1478
1479 domain = alloc_domain_mem();
1480 if (!domain)
1481 return NULL;
1482
1483 domain->nid = -1;
1484 domain->iommu_count = 0;
1485 memset(domain->iommu_bmp, 0, sizeof(domain->iommu_bmp));
1486 domain->flags = 0;
1487 spin_lock_init(&domain->iommu_lock);
1488 INIT_LIST_HEAD(&domain->devices);
1489 if (vm) {
1490 domain->id = atomic_inc_return(&vm_domid);
1491 domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE;
1492 }
1493
1494 return domain;
1495 }
1496
1497 static int iommu_attach_domain(struct dmar_domain *domain,
1498 struct intel_iommu *iommu)
1499 {
1500 int num;
1501 unsigned long ndomains;
1502 unsigned long flags;
1503
1504 ndomains = cap_ndoms(iommu->cap);
1505
1506 spin_lock_irqsave(&iommu->lock, flags);
1507
1508 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1509 if (num >= ndomains) {
1510 spin_unlock_irqrestore(&iommu->lock, flags);
1511 printk(KERN_ERR "IOMMU: no free domain ids\n");
1512 return -ENOMEM;
1513 }
1514
1515 domain->id = num;
1516 domain->iommu_count++;
1517 set_bit(num, iommu->domain_ids);
1518 set_bit(iommu->seq_id, domain->iommu_bmp);
1519 iommu->domains[num] = domain;
1520 spin_unlock_irqrestore(&iommu->lock, flags);
1521
1522 return 0;
1523 }
1524
1525 static void iommu_detach_domain(struct dmar_domain *domain,
1526 struct intel_iommu *iommu)
1527 {
1528 unsigned long flags;
1529 int num, ndomains;
1530
1531 spin_lock_irqsave(&iommu->lock, flags);
1532 ndomains = cap_ndoms(iommu->cap);
1533 for_each_set_bit(num, iommu->domain_ids, ndomains) {
1534 if (iommu->domains[num] == domain) {
1535 clear_bit(num, iommu->domain_ids);
1536 iommu->domains[num] = NULL;
1537 break;
1538 }
1539 }
1540 spin_unlock_irqrestore(&iommu->lock, flags);
1541 }
1542
1543 static struct iova_domain reserved_iova_list;
1544 static struct lock_class_key reserved_rbtree_key;
1545
1546 static int dmar_init_reserved_ranges(void)
1547 {
1548 struct pci_dev *pdev = NULL;
1549 struct iova *iova;
1550 int i;
1551
1552 init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
1553
1554 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1555 &reserved_rbtree_key);
1556
1557 /* IOAPIC ranges shouldn't be accessed by DMA */
1558 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1559 IOVA_PFN(IOAPIC_RANGE_END));
1560 if (!iova) {
1561 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1562 return -ENODEV;
1563 }
1564
1565 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1566 for_each_pci_dev(pdev) {
1567 struct resource *r;
1568
1569 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1570 r = &pdev->resource[i];
1571 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1572 continue;
1573 iova = reserve_iova(&reserved_iova_list,
1574 IOVA_PFN(r->start),
1575 IOVA_PFN(r->end));
1576 if (!iova) {
1577 printk(KERN_ERR "Reserve iova failed\n");
1578 return -ENODEV;
1579 }
1580 }
1581 }
1582 return 0;
1583 }
1584
1585 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1586 {
1587 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1588 }
1589
1590 static inline int guestwidth_to_adjustwidth(int gaw)
1591 {
1592 int agaw;
1593 int r = (gaw - 12) % 9;
1594
1595 if (r == 0)
1596 agaw = gaw;
1597 else
1598 agaw = gaw + 9 - r;
1599 if (agaw > 64)
1600 agaw = 64;
1601 return agaw;
1602 }
1603
1604 static int domain_init(struct dmar_domain *domain, int guest_width)
1605 {
1606 struct intel_iommu *iommu;
1607 int adjust_width, agaw;
1608 unsigned long sagaw;
1609
1610 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
1611 domain_reserve_special_ranges(domain);
1612
1613 /* calculate AGAW */
1614 iommu = domain_get_iommu(domain);
1615 if (guest_width > cap_mgaw(iommu->cap))
1616 guest_width = cap_mgaw(iommu->cap);
1617 domain->gaw = guest_width;
1618 adjust_width = guestwidth_to_adjustwidth(guest_width);
1619 agaw = width_to_agaw(adjust_width);
1620 sagaw = cap_sagaw(iommu->cap);
1621 if (!test_bit(agaw, &sagaw)) {
1622 /* hardware doesn't support it, choose a bigger one */
1623 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1624 agaw = find_next_bit(&sagaw, 5, agaw);
1625 if (agaw >= 5)
1626 return -ENODEV;
1627 }
1628 domain->agaw = agaw;
1629
1630 if (ecap_coherent(iommu->ecap))
1631 domain->iommu_coherency = 1;
1632 else
1633 domain->iommu_coherency = 0;
1634
1635 if (ecap_sc_support(iommu->ecap))
1636 domain->iommu_snooping = 1;
1637 else
1638 domain->iommu_snooping = 0;
1639
1640 if (intel_iommu_superpage)
1641 domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
1642 else
1643 domain->iommu_superpage = 0;
1644
1645 domain->nid = iommu->node;
1646
1647 /* always allocate the top pgd */
1648 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1649 if (!domain->pgd)
1650 return -ENOMEM;
1651 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1652 return 0;
1653 }
1654
1655 static void domain_exit(struct dmar_domain *domain)
1656 {
1657 struct dmar_drhd_unit *drhd;
1658 struct intel_iommu *iommu;
1659 struct page *freelist = NULL;
1660
1661 /* Domain 0 is reserved, so dont process it */
1662 if (!domain)
1663 return;
1664
1665 /* Flush any lazy unmaps that may reference this domain */
1666 if (!intel_iommu_strict)
1667 flush_unmaps_timeout(0);
1668
1669 /* remove associated devices */
1670 domain_remove_dev_info(domain);
1671
1672 /* destroy iovas */
1673 put_iova_domain(&domain->iovad);
1674
1675 freelist = domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1676
1677 /* clear attached or cached domains */
1678 rcu_read_lock();
1679 for_each_active_iommu(iommu, drhd)
1680 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
1681 test_bit(iommu->seq_id, domain->iommu_bmp))
1682 iommu_detach_domain(domain, iommu);
1683 rcu_read_unlock();
1684
1685 dma_free_pagelist(freelist);
1686
1687 free_domain_mem(domain);
1688 }
1689
1690 static int domain_context_mapping_one(struct dmar_domain *domain, int segment,
1691 u8 bus, u8 devfn, int translation)
1692 {
1693 struct context_entry *context;
1694 unsigned long flags;
1695 struct intel_iommu *iommu;
1696 struct dma_pte *pgd;
1697 unsigned long num;
1698 unsigned long ndomains;
1699 int id;
1700 int agaw;
1701 struct device_domain_info *info = NULL;
1702
1703 pr_debug("Set context mapping for %02x:%02x.%d\n",
1704 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1705
1706 BUG_ON(!domain->pgd);
1707 BUG_ON(translation != CONTEXT_TT_PASS_THROUGH &&
1708 translation != CONTEXT_TT_MULTI_LEVEL);
1709
1710 iommu = device_to_iommu(segment, bus, devfn);
1711 if (!iommu)
1712 return -ENODEV;
1713
1714 context = device_to_context_entry(iommu, bus, devfn);
1715 if (!context)
1716 return -ENOMEM;
1717 spin_lock_irqsave(&iommu->lock, flags);
1718 if (context_present(context)) {
1719 spin_unlock_irqrestore(&iommu->lock, flags);
1720 return 0;
1721 }
1722
1723 id = domain->id;
1724 pgd = domain->pgd;
1725
1726 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
1727 domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) {
1728 int found = 0;
1729
1730 /* find an available domain id for this device in iommu */
1731 ndomains = cap_ndoms(iommu->cap);
1732 for_each_set_bit(num, iommu->domain_ids, ndomains) {
1733 if (iommu->domains[num] == domain) {
1734 id = num;
1735 found = 1;
1736 break;
1737 }
1738 }
1739
1740 if (found == 0) {
1741 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1742 if (num >= ndomains) {
1743 spin_unlock_irqrestore(&iommu->lock, flags);
1744 printk(KERN_ERR "IOMMU: no free domain ids\n");
1745 return -EFAULT;
1746 }
1747
1748 set_bit(num, iommu->domain_ids);
1749 iommu->domains[num] = domain;
1750 id = num;
1751 }
1752
1753 /* Skip top levels of page tables for
1754 * iommu which has less agaw than default.
1755 * Unnecessary for PT mode.
1756 */
1757 if (translation != CONTEXT_TT_PASS_THROUGH) {
1758 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1759 pgd = phys_to_virt(dma_pte_addr(pgd));
1760 if (!dma_pte_present(pgd)) {
1761 spin_unlock_irqrestore(&iommu->lock, flags);
1762 return -ENOMEM;
1763 }
1764 }
1765 }
1766 }
1767
1768 context_set_domain_id(context, id);
1769
1770 if (translation != CONTEXT_TT_PASS_THROUGH) {
1771 info = iommu_support_dev_iotlb(domain, segment, bus, devfn);
1772 translation = info ? CONTEXT_TT_DEV_IOTLB :
1773 CONTEXT_TT_MULTI_LEVEL;
1774 }
1775 /*
1776 * In pass through mode, AW must be programmed to indicate the largest
1777 * AGAW value supported by hardware. And ASR is ignored by hardware.
1778 */
1779 if (unlikely(translation == CONTEXT_TT_PASS_THROUGH))
1780 context_set_address_width(context, iommu->msagaw);
1781 else {
1782 context_set_address_root(context, virt_to_phys(pgd));
1783 context_set_address_width(context, iommu->agaw);
1784 }
1785
1786 context_set_translation_type(context, translation);
1787 context_set_fault_enable(context);
1788 context_set_present(context);
1789 domain_flush_cache(domain, context, sizeof(*context));
1790
1791 /*
1792 * It's a non-present to present mapping. If hardware doesn't cache
1793 * non-present entry we only need to flush the write-buffer. If the
1794 * _does_ cache non-present entries, then it does so in the special
1795 * domain #0, which we have to flush:
1796 */
1797 if (cap_caching_mode(iommu->cap)) {
1798 iommu->flush.flush_context(iommu, 0,
1799 (((u16)bus) << 8) | devfn,
1800 DMA_CCMD_MASK_NOBIT,
1801 DMA_CCMD_DEVICE_INVL);
1802 iommu->flush.flush_iotlb(iommu, domain->id, 0, 0, DMA_TLB_DSI_FLUSH);
1803 } else {
1804 iommu_flush_write_buffer(iommu);
1805 }
1806 iommu_enable_dev_iotlb(info);
1807 spin_unlock_irqrestore(&iommu->lock, flags);
1808
1809 spin_lock_irqsave(&domain->iommu_lock, flags);
1810 if (!test_and_set_bit(iommu->seq_id, domain->iommu_bmp)) {
1811 domain->iommu_count++;
1812 if (domain->iommu_count == 1)
1813 domain->nid = iommu->node;
1814 domain_update_iommu_cap(domain);
1815 }
1816 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1817 return 0;
1818 }
1819
1820 static int
1821 domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev,
1822 int translation)
1823 {
1824 int ret;
1825 struct pci_dev *tmp, *parent;
1826
1827 ret = domain_context_mapping_one(domain, pci_domain_nr(pdev->bus),
1828 pdev->bus->number, pdev->devfn,
1829 translation);
1830 if (ret)
1831 return ret;
1832
1833 /* dependent device mapping */
1834 tmp = pci_find_upstream_pcie_bridge(pdev);
1835 if (!tmp)
1836 return 0;
1837 /* Secondary interface's bus number and devfn 0 */
1838 parent = pdev->bus->self;
1839 while (parent != tmp) {
1840 ret = domain_context_mapping_one(domain,
1841 pci_domain_nr(parent->bus),
1842 parent->bus->number,
1843 parent->devfn, translation);
1844 if (ret)
1845 return ret;
1846 parent = parent->bus->self;
1847 }
1848 if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */
1849 return domain_context_mapping_one(domain,
1850 pci_domain_nr(tmp->subordinate),
1851 tmp->subordinate->number, 0,
1852 translation);
1853 else /* this is a legacy PCI bridge */
1854 return domain_context_mapping_one(domain,
1855 pci_domain_nr(tmp->bus),
1856 tmp->bus->number,
1857 tmp->devfn,
1858 translation);
1859 }
1860
1861 static int domain_context_mapped(struct pci_dev *pdev)
1862 {
1863 int ret;
1864 struct pci_dev *tmp, *parent;
1865 struct intel_iommu *iommu;
1866
1867 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
1868 pdev->devfn);
1869 if (!iommu)
1870 return -ENODEV;
1871
1872 ret = device_context_mapped(iommu, pdev->bus->number, pdev->devfn);
1873 if (!ret)
1874 return ret;
1875 /* dependent device mapping */
1876 tmp = pci_find_upstream_pcie_bridge(pdev);
1877 if (!tmp)
1878 return ret;
1879 /* Secondary interface's bus number and devfn 0 */
1880 parent = pdev->bus->self;
1881 while (parent != tmp) {
1882 ret = device_context_mapped(iommu, parent->bus->number,
1883 parent->devfn);
1884 if (!ret)
1885 return ret;
1886 parent = parent->bus->self;
1887 }
1888 if (pci_is_pcie(tmp))
1889 return device_context_mapped(iommu, tmp->subordinate->number,
1890 0);
1891 else
1892 return device_context_mapped(iommu, tmp->bus->number,
1893 tmp->devfn);
1894 }
1895
1896 /* Returns a number of VTD pages, but aligned to MM page size */
1897 static inline unsigned long aligned_nrpages(unsigned long host_addr,
1898 size_t size)
1899 {
1900 host_addr &= ~PAGE_MASK;
1901 return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
1902 }
1903
1904 /* Return largest possible superpage level for a given mapping */
1905 static inline int hardware_largepage_caps(struct dmar_domain *domain,
1906 unsigned long iov_pfn,
1907 unsigned long phy_pfn,
1908 unsigned long pages)
1909 {
1910 int support, level = 1;
1911 unsigned long pfnmerge;
1912
1913 support = domain->iommu_superpage;
1914
1915 /* To use a large page, the virtual *and* physical addresses
1916 must be aligned to 2MiB/1GiB/etc. Lower bits set in either
1917 of them will mean we have to use smaller pages. So just
1918 merge them and check both at once. */
1919 pfnmerge = iov_pfn | phy_pfn;
1920
1921 while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
1922 pages >>= VTD_STRIDE_SHIFT;
1923 if (!pages)
1924 break;
1925 pfnmerge >>= VTD_STRIDE_SHIFT;
1926 level++;
1927 support--;
1928 }
1929 return level;
1930 }
1931
1932 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1933 struct scatterlist *sg, unsigned long phys_pfn,
1934 unsigned long nr_pages, int prot)
1935 {
1936 struct dma_pte *first_pte = NULL, *pte = NULL;
1937 phys_addr_t uninitialized_var(pteval);
1938 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
1939 unsigned long sg_res;
1940 unsigned int largepage_lvl = 0;
1941 unsigned long lvl_pages = 0;
1942
1943 BUG_ON(addr_width < BITS_PER_LONG && (iov_pfn + nr_pages - 1) >> addr_width);
1944
1945 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1946 return -EINVAL;
1947
1948 prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
1949
1950 if (sg)
1951 sg_res = 0;
1952 else {
1953 sg_res = nr_pages + 1;
1954 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
1955 }
1956
1957 while (nr_pages > 0) {
1958 uint64_t tmp;
1959
1960 if (!sg_res) {
1961 sg_res = aligned_nrpages(sg->offset, sg->length);
1962 sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
1963 sg->dma_length = sg->length;
1964 pteval = page_to_phys(sg_page(sg)) | prot;
1965 phys_pfn = pteval >> VTD_PAGE_SHIFT;
1966 }
1967
1968 if (!pte) {
1969 largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
1970
1971 first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl);
1972 if (!pte)
1973 return -ENOMEM;
1974 /* It is large page*/
1975 if (largepage_lvl > 1) {
1976 pteval |= DMA_PTE_LARGE_PAGE;
1977 /* Ensure that old small page tables are removed to make room
1978 for superpage, if they exist. */
1979 dma_pte_clear_range(domain, iov_pfn,
1980 iov_pfn + lvl_to_nr_pages(largepage_lvl) - 1);
1981 dma_pte_free_pagetable(domain, iov_pfn,
1982 iov_pfn + lvl_to_nr_pages(largepage_lvl) - 1);
1983 } else {
1984 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
1985 }
1986
1987 }
1988 /* We don't need lock here, nobody else
1989 * touches the iova range
1990 */
1991 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
1992 if (tmp) {
1993 static int dumps = 5;
1994 printk(KERN_CRIT "ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
1995 iov_pfn, tmp, (unsigned long long)pteval);
1996 if (dumps) {
1997 dumps--;
1998 debug_dma_dump_mappings(NULL);
1999 }
2000 WARN_ON(1);
2001 }
2002
2003 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2004
2005 BUG_ON(nr_pages < lvl_pages);
2006 BUG_ON(sg_res < lvl_pages);
2007
2008 nr_pages -= lvl_pages;
2009 iov_pfn += lvl_pages;
2010 phys_pfn += lvl_pages;
2011 pteval += lvl_pages * VTD_PAGE_SIZE;
2012 sg_res -= lvl_pages;
2013
2014 /* If the next PTE would be the first in a new page, then we
2015 need to flush the cache on the entries we've just written.
2016 And then we'll need to recalculate 'pte', so clear it and
2017 let it get set again in the if (!pte) block above.
2018
2019 If we're done (!nr_pages) we need to flush the cache too.
2020
2021 Also if we've been setting superpages, we may need to
2022 recalculate 'pte' and switch back to smaller pages for the
2023 end of the mapping, if the trailing size is not enough to
2024 use another superpage (i.e. sg_res < lvl_pages). */
2025 pte++;
2026 if (!nr_pages || first_pte_in_page(pte) ||
2027 (largepage_lvl > 1 && sg_res < lvl_pages)) {
2028 domain_flush_cache(domain, first_pte,
2029 (void *)pte - (void *)first_pte);
2030 pte = NULL;
2031 }
2032
2033 if (!sg_res && nr_pages)
2034 sg = sg_next(sg);
2035 }
2036 return 0;
2037 }
2038
2039 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2040 struct scatterlist *sg, unsigned long nr_pages,
2041 int prot)
2042 {
2043 return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
2044 }
2045
2046 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2047 unsigned long phys_pfn, unsigned long nr_pages,
2048 int prot)
2049 {
2050 return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
2051 }
2052
2053 static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
2054 {
2055 if (!iommu)
2056 return;
2057
2058 clear_context_table(iommu, bus, devfn);
2059 iommu->flush.flush_context(iommu, 0, 0, 0,
2060 DMA_CCMD_GLOBAL_INVL);
2061 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2062 }
2063
2064 static inline void unlink_domain_info(struct device_domain_info *info)
2065 {
2066 assert_spin_locked(&device_domain_lock);
2067 list_del(&info->link);
2068 list_del(&info->global);
2069 if (info->dev)
2070 info->dev->dev.archdata.iommu = NULL;
2071 }
2072
2073 static void domain_remove_dev_info(struct dmar_domain *domain)
2074 {
2075 struct device_domain_info *info;
2076 unsigned long flags, flags2;
2077 struct intel_iommu *iommu;
2078
2079 spin_lock_irqsave(&device_domain_lock, flags);
2080 while (!list_empty(&domain->devices)) {
2081 info = list_entry(domain->devices.next,
2082 struct device_domain_info, link);
2083 unlink_domain_info(info);
2084 spin_unlock_irqrestore(&device_domain_lock, flags);
2085
2086 iommu_disable_dev_iotlb(info);
2087 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
2088 iommu_detach_dev(iommu, info->bus, info->devfn);
2089
2090 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) {
2091 iommu_detach_dependent_devices(iommu, info->dev);
2092 /* clear this iommu in iommu_bmp, update iommu count
2093 * and capabilities
2094 */
2095 spin_lock_irqsave(&domain->iommu_lock, flags2);
2096 if (test_and_clear_bit(iommu->seq_id,
2097 domain->iommu_bmp)) {
2098 domain->iommu_count--;
2099 domain_update_iommu_cap(domain);
2100 }
2101 spin_unlock_irqrestore(&domain->iommu_lock, flags2);
2102 }
2103
2104 free_devinfo_mem(info);
2105 spin_lock_irqsave(&device_domain_lock, flags);
2106 }
2107 spin_unlock_irqrestore(&device_domain_lock, flags);
2108 }
2109
2110 /*
2111 * find_domain
2112 * Note: we use struct pci_dev->dev.archdata.iommu stores the info
2113 */
2114 static struct dmar_domain *
2115 find_domain(struct pci_dev *pdev)
2116 {
2117 struct device_domain_info *info;
2118
2119 /* No lock here, assumes no domain exit in normal case */
2120 info = pdev->dev.archdata.iommu;
2121 if (info)
2122 return info->domain;
2123 return NULL;
2124 }
2125
2126 static inline struct dmar_domain *
2127 dmar_search_domain_by_dev_info(int segment, int bus, int devfn)
2128 {
2129 struct device_domain_info *info;
2130
2131 list_for_each_entry(info, &device_domain_list, global)
2132 if (info->segment == segment && info->bus == bus &&
2133 info->devfn == devfn)
2134 return info->domain;
2135
2136 return NULL;
2137 }
2138
2139 static int dmar_insert_dev_info(int segment, int bus, int devfn,
2140 struct pci_dev *dev, struct dmar_domain **domp)
2141 {
2142 struct dmar_domain *found, *domain = *domp;
2143 struct device_domain_info *info;
2144 unsigned long flags;
2145
2146 info = alloc_devinfo_mem();
2147 if (!info)
2148 return -ENOMEM;
2149
2150 info->segment = segment;
2151 info->bus = bus;
2152 info->devfn = devfn;
2153 info->dev = dev;
2154 info->domain = domain;
2155 if (!dev)
2156 domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
2157
2158 spin_lock_irqsave(&device_domain_lock, flags);
2159 if (dev)
2160 found = find_domain(dev);
2161 else
2162 found = dmar_search_domain_by_dev_info(segment, bus, devfn);
2163 if (found) {
2164 spin_unlock_irqrestore(&device_domain_lock, flags);
2165 free_devinfo_mem(info);
2166 if (found != domain) {
2167 domain_exit(domain);
2168 *domp = found;
2169 }
2170 } else {
2171 list_add(&info->link, &domain->devices);
2172 list_add(&info->global, &device_domain_list);
2173 if (dev)
2174 dev->dev.archdata.iommu = info;
2175 spin_unlock_irqrestore(&device_domain_lock, flags);
2176 }
2177
2178 return 0;
2179 }
2180
2181 /* domain is initialized */
2182 static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
2183 {
2184 struct dmar_domain *domain, *free = NULL;
2185 struct intel_iommu *iommu;
2186 struct dmar_drhd_unit *drhd;
2187 struct pci_dev *dev_tmp;
2188 unsigned long flags;
2189 int bus = 0, devfn = 0;
2190 int segment;
2191
2192 domain = find_domain(pdev);
2193 if (domain)
2194 return domain;
2195
2196 segment = pci_domain_nr(pdev->bus);
2197
2198 dev_tmp = pci_find_upstream_pcie_bridge(pdev);
2199 if (dev_tmp) {
2200 if (pci_is_pcie(dev_tmp)) {
2201 bus = dev_tmp->subordinate->number;
2202 devfn = 0;
2203 } else {
2204 bus = dev_tmp->bus->number;
2205 devfn = dev_tmp->devfn;
2206 }
2207 spin_lock_irqsave(&device_domain_lock, flags);
2208 domain = dmar_search_domain_by_dev_info(segment, bus, devfn);
2209 spin_unlock_irqrestore(&device_domain_lock, flags);
2210 /* pcie-pci bridge already has a domain, uses it */
2211 if (domain)
2212 goto found_domain;
2213 }
2214
2215 drhd = dmar_find_matched_drhd_unit(pdev);
2216 if (!drhd) {
2217 printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
2218 pci_name(pdev));
2219 return NULL;
2220 }
2221 iommu = drhd->iommu;
2222
2223 /* Allocate and intialize new domain for the device */
2224 domain = alloc_domain(false);
2225 if (!domain)
2226 goto error;
2227 if (iommu_attach_domain(domain, iommu)) {
2228 free_domain_mem(domain);
2229 goto error;
2230 }
2231 free = domain;
2232 if (domain_init(domain, gaw))
2233 goto error;
2234
2235 /* register pcie-to-pci device */
2236 if (dev_tmp) {
2237 if (dmar_insert_dev_info(segment, bus, devfn, NULL, &domain))
2238 goto error;
2239 else
2240 free = NULL;
2241 }
2242
2243 found_domain:
2244 if (dmar_insert_dev_info(segment, pdev->bus->number, pdev->devfn,
2245 pdev, &domain) == 0)
2246 return domain;
2247 error:
2248 if (free)
2249 domain_exit(free);
2250 /* recheck it here, maybe others set it */
2251 return find_domain(pdev);
2252 }
2253
2254 static int iommu_identity_mapping;
2255 #define IDENTMAP_ALL 1
2256 #define IDENTMAP_GFX 2
2257 #define IDENTMAP_AZALIA 4
2258
2259 static int iommu_domain_identity_map(struct dmar_domain *domain,
2260 unsigned long long start,
2261 unsigned long long end)
2262 {
2263 unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
2264 unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
2265
2266 if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
2267 dma_to_mm_pfn(last_vpfn))) {
2268 printk(KERN_ERR "IOMMU: reserve iova failed\n");
2269 return -ENOMEM;
2270 }
2271
2272 pr_debug("Mapping reserved region %llx-%llx for domain %d\n",
2273 start, end, domain->id);
2274 /*
2275 * RMRR range might have overlap with physical memory range,
2276 * clear it first
2277 */
2278 dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2279
2280 return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
2281 last_vpfn - first_vpfn + 1,
2282 DMA_PTE_READ|DMA_PTE_WRITE);
2283 }
2284
2285 static int iommu_prepare_identity_map(struct pci_dev *pdev,
2286 unsigned long long start,
2287 unsigned long long end)
2288 {
2289 struct dmar_domain *domain;
2290 int ret;
2291
2292 domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2293 if (!domain)
2294 return -ENOMEM;
2295
2296 /* For _hardware_ passthrough, don't bother. But for software
2297 passthrough, we do it anyway -- it may indicate a memory
2298 range which is reserved in E820, so which didn't get set
2299 up to start with in si_domain */
2300 if (domain == si_domain && hw_pass_through) {
2301 printk("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
2302 pci_name(pdev), start, end);
2303 return 0;
2304 }
2305
2306 printk(KERN_INFO
2307 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
2308 pci_name(pdev), start, end);
2309
2310 if (end < start) {
2311 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2312 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2313 dmi_get_system_info(DMI_BIOS_VENDOR),
2314 dmi_get_system_info(DMI_BIOS_VERSION),
2315 dmi_get_system_info(DMI_PRODUCT_VERSION));
2316 ret = -EIO;
2317 goto error;
2318 }
2319
2320 if (end >> agaw_to_width(domain->agaw)) {
2321 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2322 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2323 agaw_to_width(domain->agaw),
2324 dmi_get_system_info(DMI_BIOS_VENDOR),
2325 dmi_get_system_info(DMI_BIOS_VERSION),
2326 dmi_get_system_info(DMI_PRODUCT_VERSION));
2327 ret = -EIO;
2328 goto error;
2329 }
2330
2331 ret = iommu_domain_identity_map(domain, start, end);
2332 if (ret)
2333 goto error;
2334
2335 /* context entry init */
2336 ret = domain_context_mapping(domain, pdev, CONTEXT_TT_MULTI_LEVEL);
2337 if (ret)
2338 goto error;
2339
2340 return 0;
2341
2342 error:
2343 domain_exit(domain);
2344 return ret;
2345 }
2346
2347 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2348 struct pci_dev *pdev)
2349 {
2350 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2351 return 0;
2352 return iommu_prepare_identity_map(pdev, rmrr->base_address,
2353 rmrr->end_address);
2354 }
2355
2356 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
2357 static inline void iommu_prepare_isa(void)
2358 {
2359 struct pci_dev *pdev;
2360 int ret;
2361
2362 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2363 if (!pdev)
2364 return;
2365
2366 printk(KERN_INFO "IOMMU: Prepare 0-16MiB unity mapping for LPC\n");
2367 ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024 - 1);
2368
2369 if (ret)
2370 printk(KERN_ERR "IOMMU: Failed to create 0-16MiB identity map; "
2371 "floppy might not work\n");
2372
2373 }
2374 #else
2375 static inline void iommu_prepare_isa(void)
2376 {
2377 return;
2378 }
2379 #endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */
2380
2381 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2382
2383 static int __init si_domain_init(int hw)
2384 {
2385 struct dmar_drhd_unit *drhd;
2386 struct intel_iommu *iommu;
2387 int nid, ret = 0;
2388
2389 si_domain = alloc_domain(false);
2390 if (!si_domain)
2391 return -EFAULT;
2392
2393 si_domain->flags = DOMAIN_FLAG_STATIC_IDENTITY;
2394
2395 for_each_active_iommu(iommu, drhd) {
2396 ret = iommu_attach_domain(si_domain, iommu);
2397 if (ret) {
2398 domain_exit(si_domain);
2399 return -EFAULT;
2400 }
2401 }
2402
2403 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2404 domain_exit(si_domain);
2405 return -EFAULT;
2406 }
2407
2408 pr_debug("IOMMU: identity mapping domain is domain %d\n",
2409 si_domain->id);
2410
2411 if (hw)
2412 return 0;
2413
2414 for_each_online_node(nid) {
2415 unsigned long start_pfn, end_pfn;
2416 int i;
2417
2418 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2419 ret = iommu_domain_identity_map(si_domain,
2420 PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
2421 if (ret)
2422 return ret;
2423 }
2424 }
2425
2426 return 0;
2427 }
2428
2429 static int identity_mapping(struct pci_dev *pdev)
2430 {
2431 struct device_domain_info *info;
2432
2433 if (likely(!iommu_identity_mapping))
2434 return 0;
2435
2436 info = pdev->dev.archdata.iommu;
2437 if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
2438 return (info->domain == si_domain);
2439
2440 return 0;
2441 }
2442
2443 static int domain_add_dev_info(struct dmar_domain *domain,
2444 struct pci_dev *pdev,
2445 int translation)
2446 {
2447 struct device_domain_info *info;
2448 unsigned long flags;
2449 int ret;
2450
2451 info = alloc_devinfo_mem();
2452 if (!info)
2453 return -ENOMEM;
2454
2455 info->segment = pci_domain_nr(pdev->bus);
2456 info->bus = pdev->bus->number;
2457 info->devfn = pdev->devfn;
2458 info->dev = pdev;
2459 info->domain = domain;
2460
2461 spin_lock_irqsave(&device_domain_lock, flags);
2462 list_add(&info->link, &domain->devices);
2463 list_add(&info->global, &device_domain_list);
2464 pdev->dev.archdata.iommu = info;
2465 spin_unlock_irqrestore(&device_domain_lock, flags);
2466
2467 ret = domain_context_mapping(domain, pdev, translation);
2468 if (ret) {
2469 spin_lock_irqsave(&device_domain_lock, flags);
2470 unlink_domain_info(info);
2471 spin_unlock_irqrestore(&device_domain_lock, flags);
2472 free_devinfo_mem(info);
2473 return ret;
2474 }
2475
2476 return 0;
2477 }
2478
2479 static bool device_has_rmrr(struct pci_dev *dev)
2480 {
2481 struct dmar_rmrr_unit *rmrr;
2482 struct pci_dev *tmp;
2483 int i;
2484
2485 rcu_read_lock();
2486 for_each_rmrr_units(rmrr) {
2487 /*
2488 * Return TRUE if this RMRR contains the device that
2489 * is passed in.
2490 */
2491 for_each_active_dev_scope(rmrr->devices,
2492 rmrr->devices_cnt, i, tmp)
2493 if (tmp == dev) {
2494 rcu_read_unlock();
2495 return true;
2496 }
2497 }
2498 rcu_read_unlock();
2499 return false;
2500 }
2501
2502 static int iommu_should_identity_map(struct pci_dev *pdev, int startup)
2503 {
2504
2505 /*
2506 * We want to prevent any device associated with an RMRR from
2507 * getting placed into the SI Domain. This is done because
2508 * problems exist when devices are moved in and out of domains
2509 * and their respective RMRR info is lost. We exempt USB devices
2510 * from this process due to their usage of RMRRs that are known
2511 * to not be needed after BIOS hand-off to OS.
2512 */
2513 if (device_has_rmrr(pdev) &&
2514 (pdev->class >> 8) != PCI_CLASS_SERIAL_USB)
2515 return 0;
2516
2517 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2518 return 1;
2519
2520 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2521 return 1;
2522
2523 if (!(iommu_identity_mapping & IDENTMAP_ALL))
2524 return 0;
2525
2526 /*
2527 * We want to start off with all devices in the 1:1 domain, and
2528 * take them out later if we find they can't access all of memory.
2529 *
2530 * However, we can't do this for PCI devices behind bridges,
2531 * because all PCI devices behind the same bridge will end up
2532 * with the same source-id on their transactions.
2533 *
2534 * Practically speaking, we can't change things around for these
2535 * devices at run-time, because we can't be sure there'll be no
2536 * DMA transactions in flight for any of their siblings.
2537 *
2538 * So PCI devices (unless they're on the root bus) as well as
2539 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2540 * the 1:1 domain, just in _case_ one of their siblings turns out
2541 * not to be able to map all of memory.
2542 */
2543 if (!pci_is_pcie(pdev)) {
2544 if (!pci_is_root_bus(pdev->bus))
2545 return 0;
2546 if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2547 return 0;
2548 } else if (pci_pcie_type(pdev) == PCI_EXP_TYPE_PCI_BRIDGE)
2549 return 0;
2550
2551 /*
2552 * At boot time, we don't yet know if devices will be 64-bit capable.
2553 * Assume that they will -- if they turn out not to be, then we can
2554 * take them out of the 1:1 domain later.
2555 */
2556 if (!startup) {
2557 /*
2558 * If the device's dma_mask is less than the system's memory
2559 * size then this is not a candidate for identity mapping.
2560 */
2561 u64 dma_mask = pdev->dma_mask;
2562
2563 if (pdev->dev.coherent_dma_mask &&
2564 pdev->dev.coherent_dma_mask < dma_mask)
2565 dma_mask = pdev->dev.coherent_dma_mask;
2566
2567 return dma_mask >= dma_get_required_mask(&pdev->dev);
2568 }
2569
2570 return 1;
2571 }
2572
2573 static int __init iommu_prepare_static_identity_mapping(int hw)
2574 {
2575 struct pci_dev *pdev = NULL;
2576 int ret;
2577
2578 ret = si_domain_init(hw);
2579 if (ret)
2580 return -EFAULT;
2581
2582 for_each_pci_dev(pdev) {
2583 if (iommu_should_identity_map(pdev, 1)) {
2584 ret = domain_add_dev_info(si_domain, pdev,
2585 hw ? CONTEXT_TT_PASS_THROUGH :
2586 CONTEXT_TT_MULTI_LEVEL);
2587 if (ret) {
2588 /* device not associated with an iommu */
2589 if (ret == -ENODEV)
2590 continue;
2591 return ret;
2592 }
2593 pr_info("IOMMU: %s identity mapping for device %s\n",
2594 hw ? "hardware" : "software", pci_name(pdev));
2595 }
2596 }
2597
2598 return 0;
2599 }
2600
2601 static int __init init_dmars(void)
2602 {
2603 struct dmar_drhd_unit *drhd;
2604 struct dmar_rmrr_unit *rmrr;
2605 struct pci_dev *pdev;
2606 struct intel_iommu *iommu;
2607 int i, ret;
2608
2609 /*
2610 * for each drhd
2611 * allocate root
2612 * initialize and program root entry to not present
2613 * endfor
2614 */
2615 for_each_drhd_unit(drhd) {
2616 /*
2617 * lock not needed as this is only incremented in the single
2618 * threaded kernel __init code path all other access are read
2619 * only
2620 */
2621 if (g_num_of_iommus < IOMMU_UNITS_SUPPORTED) {
2622 g_num_of_iommus++;
2623 continue;
2624 }
2625 printk_once(KERN_ERR "intel-iommu: exceeded %d IOMMUs\n",
2626 IOMMU_UNITS_SUPPORTED);
2627 }
2628
2629 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
2630 GFP_KERNEL);
2631 if (!g_iommus) {
2632 printk(KERN_ERR "Allocating global iommu array failed\n");
2633 ret = -ENOMEM;
2634 goto error;
2635 }
2636
2637 deferred_flush = kzalloc(g_num_of_iommus *
2638 sizeof(struct deferred_flush_tables), GFP_KERNEL);
2639 if (!deferred_flush) {
2640 ret = -ENOMEM;
2641 goto free_g_iommus;
2642 }
2643
2644 for_each_active_iommu(iommu, drhd) {
2645 g_iommus[iommu->seq_id] = iommu;
2646
2647 ret = iommu_init_domains(iommu);
2648 if (ret)
2649 goto free_iommu;
2650
2651 /*
2652 * TBD:
2653 * we could share the same root & context tables
2654 * among all IOMMU's. Need to Split it later.
2655 */
2656 ret = iommu_alloc_root_entry(iommu);
2657 if (ret) {
2658 printk(KERN_ERR "IOMMU: allocate root entry failed\n");
2659 goto free_iommu;
2660 }
2661 if (!ecap_pass_through(iommu->ecap))
2662 hw_pass_through = 0;
2663 }
2664
2665 /*
2666 * Start from the sane iommu hardware state.
2667 */
2668 for_each_active_iommu(iommu, drhd) {
2669 /*
2670 * If the queued invalidation is already initialized by us
2671 * (for example, while enabling interrupt-remapping) then
2672 * we got the things already rolling from a sane state.
2673 */
2674 if (iommu->qi)
2675 continue;
2676
2677 /*
2678 * Clear any previous faults.
2679 */
2680 dmar_fault(-1, iommu);
2681 /*
2682 * Disable queued invalidation if supported and already enabled
2683 * before OS handover.
2684 */
2685 dmar_disable_qi(iommu);
2686 }
2687
2688 for_each_active_iommu(iommu, drhd) {
2689 if (dmar_enable_qi(iommu)) {
2690 /*
2691 * Queued Invalidate not enabled, use Register Based
2692 * Invalidate
2693 */
2694 iommu->flush.flush_context = __iommu_flush_context;
2695 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2696 printk(KERN_INFO "IOMMU %d 0x%Lx: using Register based "
2697 "invalidation\n",
2698 iommu->seq_id,
2699 (unsigned long long)drhd->reg_base_addr);
2700 } else {
2701 iommu->flush.flush_context = qi_flush_context;
2702 iommu->flush.flush_iotlb = qi_flush_iotlb;
2703 printk(KERN_INFO "IOMMU %d 0x%Lx: using Queued "
2704 "invalidation\n",
2705 iommu->seq_id,
2706 (unsigned long long)drhd->reg_base_addr);
2707 }
2708 }
2709
2710 if (iommu_pass_through)
2711 iommu_identity_mapping |= IDENTMAP_ALL;
2712
2713 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
2714 iommu_identity_mapping |= IDENTMAP_GFX;
2715 #endif
2716
2717 check_tylersburg_isoch();
2718
2719 /*
2720 * If pass through is not set or not enabled, setup context entries for
2721 * identity mappings for rmrr, gfx, and isa and may fall back to static
2722 * identity mapping if iommu_identity_mapping is set.
2723 */
2724 if (iommu_identity_mapping) {
2725 ret = iommu_prepare_static_identity_mapping(hw_pass_through);
2726 if (ret) {
2727 printk(KERN_CRIT "Failed to setup IOMMU pass-through\n");
2728 goto free_iommu;
2729 }
2730 }
2731 /*
2732 * For each rmrr
2733 * for each dev attached to rmrr
2734 * do
2735 * locate drhd for dev, alloc domain for dev
2736 * allocate free domain
2737 * allocate page table entries for rmrr
2738 * if context not allocated for bus
2739 * allocate and init context
2740 * set present in root table for this bus
2741 * init context with domain, translation etc
2742 * endfor
2743 * endfor
2744 */
2745 printk(KERN_INFO "IOMMU: Setting RMRR:\n");
2746 for_each_rmrr_units(rmrr) {
2747 /* some BIOS lists non-exist devices in DMAR table. */
2748 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
2749 i, pdev) {
2750 ret = iommu_prepare_rmrr_dev(rmrr, pdev);
2751 if (ret)
2752 printk(KERN_ERR
2753 "IOMMU: mapping reserved region failed\n");
2754 }
2755 }
2756
2757 iommu_prepare_isa();
2758
2759 /*
2760 * for each drhd
2761 * enable fault log
2762 * global invalidate context cache
2763 * global invalidate iotlb
2764 * enable translation
2765 */
2766 for_each_iommu(iommu, drhd) {
2767 if (drhd->ignored) {
2768 /*
2769 * we always have to disable PMRs or DMA may fail on
2770 * this device
2771 */
2772 if (force_on)
2773 iommu_disable_protect_mem_regions(iommu);
2774 continue;
2775 }
2776
2777 iommu_flush_write_buffer(iommu);
2778
2779 ret = dmar_set_interrupt(iommu);
2780 if (ret)
2781 goto free_iommu;
2782
2783 iommu_set_root_entry(iommu);
2784
2785 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
2786 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2787
2788 ret = iommu_enable_translation(iommu);
2789 if (ret)
2790 goto free_iommu;
2791
2792 iommu_disable_protect_mem_regions(iommu);
2793 }
2794
2795 return 0;
2796
2797 free_iommu:
2798 for_each_active_iommu(iommu, drhd)
2799 free_dmar_iommu(iommu);
2800 kfree(deferred_flush);
2801 free_g_iommus:
2802 kfree(g_iommus);
2803 error:
2804 return ret;
2805 }
2806
2807 /* This takes a number of _MM_ pages, not VTD pages */
2808 static struct iova *intel_alloc_iova(struct device *dev,
2809 struct dmar_domain *domain,
2810 unsigned long nrpages, uint64_t dma_mask)
2811 {
2812 struct pci_dev *pdev = to_pci_dev(dev);
2813 struct iova *iova = NULL;
2814
2815 /* Restrict dma_mask to the width that the iommu can handle */
2816 dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
2817
2818 if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
2819 /*
2820 * First try to allocate an io virtual address in
2821 * DMA_BIT_MASK(32) and if that fails then try allocating
2822 * from higher range
2823 */
2824 iova = alloc_iova(&domain->iovad, nrpages,
2825 IOVA_PFN(DMA_BIT_MASK(32)), 1);
2826 if (iova)
2827 return iova;
2828 }
2829 iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(dma_mask), 1);
2830 if (unlikely(!iova)) {
2831 printk(KERN_ERR "Allocating %ld-page iova for %s failed",
2832 nrpages, pci_name(pdev));
2833 return NULL;
2834 }
2835
2836 return iova;
2837 }
2838
2839 static struct dmar_domain *__get_valid_domain_for_dev(struct pci_dev *pdev)
2840 {
2841 struct dmar_domain *domain;
2842 int ret;
2843
2844 domain = get_domain_for_dev(pdev,
2845 DEFAULT_DOMAIN_ADDRESS_WIDTH);
2846 if (!domain) {
2847 printk(KERN_ERR
2848 "Allocating domain for %s failed", pci_name(pdev));
2849 return NULL;
2850 }
2851
2852 /* make sure context mapping is ok */
2853 if (unlikely(!domain_context_mapped(pdev))) {
2854 ret = domain_context_mapping(domain, pdev,
2855 CONTEXT_TT_MULTI_LEVEL);
2856 if (ret) {
2857 printk(KERN_ERR
2858 "Domain context map for %s failed",
2859 pci_name(pdev));
2860 return NULL;
2861 }
2862 }
2863
2864 return domain;
2865 }
2866
2867 static inline struct dmar_domain *get_valid_domain_for_dev(struct pci_dev *dev)
2868 {
2869 struct device_domain_info *info;
2870
2871 /* No lock here, assumes no domain exit in normal case */
2872 info = dev->dev.archdata.iommu;
2873 if (likely(info))
2874 return info->domain;
2875
2876 return __get_valid_domain_for_dev(dev);
2877 }
2878
2879 static int iommu_dummy(struct pci_dev *pdev)
2880 {
2881 return pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
2882 }
2883
2884 /* Check if the pdev needs to go through non-identity map and unmap process.*/
2885 static int iommu_no_mapping(struct device *dev)
2886 {
2887 struct pci_dev *pdev;
2888 int found;
2889
2890 if (unlikely(!dev_is_pci(dev)))
2891 return 1;
2892
2893 pdev = to_pci_dev(dev);
2894 if (iommu_dummy(pdev))
2895 return 1;
2896
2897 if (!iommu_identity_mapping)
2898 return 0;
2899
2900 found = identity_mapping(pdev);
2901 if (found) {
2902 if (iommu_should_identity_map(pdev, 0))
2903 return 1;
2904 else {
2905 /*
2906 * 32 bit DMA is removed from si_domain and fall back
2907 * to non-identity mapping.
2908 */
2909 domain_remove_one_dev_info(si_domain, pdev);
2910 printk(KERN_INFO "32bit %s uses non-identity mapping\n",
2911 pci_name(pdev));
2912 return 0;
2913 }
2914 } else {
2915 /*
2916 * In case of a detached 64 bit DMA device from vm, the device
2917 * is put into si_domain for identity mapping.
2918 */
2919 if (iommu_should_identity_map(pdev, 0)) {
2920 int ret;
2921 ret = domain_add_dev_info(si_domain, pdev,
2922 hw_pass_through ?
2923 CONTEXT_TT_PASS_THROUGH :
2924 CONTEXT_TT_MULTI_LEVEL);
2925 if (!ret) {
2926 printk(KERN_INFO "64bit %s uses identity mapping\n",
2927 pci_name(pdev));
2928 return 1;
2929 }
2930 }
2931 }
2932
2933 return 0;
2934 }
2935
2936 static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr,
2937 size_t size, int dir, u64 dma_mask)
2938 {
2939 struct pci_dev *pdev = to_pci_dev(hwdev);
2940 struct dmar_domain *domain;
2941 phys_addr_t start_paddr;
2942 struct iova *iova;
2943 int prot = 0;
2944 int ret;
2945 struct intel_iommu *iommu;
2946 unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
2947
2948 BUG_ON(dir == DMA_NONE);
2949
2950 if (iommu_no_mapping(hwdev))
2951 return paddr;
2952
2953 domain = get_valid_domain_for_dev(pdev);
2954 if (!domain)
2955 return 0;
2956
2957 iommu = domain_get_iommu(domain);
2958 size = aligned_nrpages(paddr, size);
2959
2960 iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size), dma_mask);
2961 if (!iova)
2962 goto error;
2963
2964 /*
2965 * Check if DMAR supports zero-length reads on write only
2966 * mappings..
2967 */
2968 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2969 !cap_zlr(iommu->cap))
2970 prot |= DMA_PTE_READ;
2971 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2972 prot |= DMA_PTE_WRITE;
2973 /*
2974 * paddr - (paddr + size) might be partial page, we should map the whole
2975 * page. Note: if two part of one page are separately mapped, we
2976 * might have two guest_addr mapping to the same host paddr, but this
2977 * is not a big problem
2978 */
2979 ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo),
2980 mm_to_dma_pfn(paddr_pfn), size, prot);
2981 if (ret)
2982 goto error;
2983
2984 /* it's a non-present to present mapping. Only flush if caching mode */
2985 if (cap_caching_mode(iommu->cap))
2986 iommu_flush_iotlb_psi(iommu, domain->id, mm_to_dma_pfn(iova->pfn_lo), size, 0, 1);
2987 else
2988 iommu_flush_write_buffer(iommu);
2989
2990 start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
2991 start_paddr += paddr & ~PAGE_MASK;
2992 return start_paddr;
2993
2994 error:
2995 if (iova)
2996 __free_iova(&domain->iovad, iova);
2997 printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n",
2998 pci_name(pdev), size, (unsigned long long)paddr, dir);
2999 return 0;
3000 }
3001
3002 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
3003 unsigned long offset, size_t size,
3004 enum dma_data_direction dir,
3005 struct dma_attrs *attrs)
3006 {
3007 return __intel_map_single(dev, page_to_phys(page) + offset, size,
3008 dir, to_pci_dev(dev)->dma_mask);
3009 }
3010
3011 static void flush_unmaps(void)
3012 {
3013 int i, j;
3014
3015 timer_on = 0;
3016
3017 /* just flush them all */
3018 for (i = 0; i < g_num_of_iommus; i++) {
3019 struct intel_iommu *iommu = g_iommus[i];
3020 if (!iommu)
3021 continue;
3022
3023 if (!deferred_flush[i].next)
3024 continue;
3025
3026 /* In caching mode, global flushes turn emulation expensive */
3027 if (!cap_caching_mode(iommu->cap))
3028 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3029 DMA_TLB_GLOBAL_FLUSH);
3030 for (j = 0; j < deferred_flush[i].next; j++) {
3031 unsigned long mask;
3032 struct iova *iova = deferred_flush[i].iova[j];
3033 struct dmar_domain *domain = deferred_flush[i].domain[j];
3034
3035 /* On real hardware multiple invalidations are expensive */
3036 if (cap_caching_mode(iommu->cap))
3037 iommu_flush_iotlb_psi(iommu, domain->id,
3038 iova->pfn_lo, iova->pfn_hi - iova->pfn_lo + 1,
3039 !deferred_flush[i].freelist[j], 0);
3040 else {
3041 mask = ilog2(mm_to_dma_pfn(iova->pfn_hi - iova->pfn_lo + 1));
3042 iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
3043 (uint64_t)iova->pfn_lo << PAGE_SHIFT, mask);
3044 }
3045 __free_iova(&deferred_flush[i].domain[j]->iovad, iova);
3046 if (deferred_flush[i].freelist[j])
3047 dma_free_pagelist(deferred_flush[i].freelist[j]);
3048 }
3049 deferred_flush[i].next = 0;
3050 }
3051
3052 list_size = 0;
3053 }
3054
3055 static void flush_unmaps_timeout(unsigned long data)
3056 {
3057 unsigned long flags;
3058
3059 spin_lock_irqsave(&async_umap_flush_lock, flags);
3060 flush_unmaps();
3061 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
3062 }
3063
3064 static void add_unmap(struct dmar_domain *dom, struct iova *iova, struct page *freelist)
3065 {
3066 unsigned long flags;
3067 int next, iommu_id;
3068 struct intel_iommu *iommu;
3069
3070 spin_lock_irqsave(&async_umap_flush_lock, flags);
3071 if (list_size == HIGH_WATER_MARK)
3072 flush_unmaps();
3073
3074 iommu = domain_get_iommu(dom);
3075 iommu_id = iommu->seq_id;
3076
3077 next = deferred_flush[iommu_id].next;
3078 deferred_flush[iommu_id].domain[next] = dom;
3079 deferred_flush[iommu_id].iova[next] = iova;
3080 deferred_flush[iommu_id].freelist[next] = freelist;
3081 deferred_flush[iommu_id].next++;
3082
3083 if (!timer_on) {
3084 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
3085 timer_on = 1;
3086 }
3087 list_size++;
3088 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
3089 }
3090
3091 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
3092 size_t size, enum dma_data_direction dir,
3093 struct dma_attrs *attrs)
3094 {
3095 struct pci_dev *pdev = to_pci_dev(dev);
3096 struct dmar_domain *domain;
3097 unsigned long start_pfn, last_pfn;
3098 struct iova *iova;
3099 struct intel_iommu *iommu;
3100 struct page *freelist;
3101
3102 if (iommu_no_mapping(dev))
3103 return;
3104
3105 domain = find_domain(pdev);
3106 BUG_ON(!domain);
3107
3108 iommu = domain_get_iommu(domain);
3109
3110 iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
3111 if (WARN_ONCE(!iova, "Driver unmaps unmatched page at PFN %llx\n",
3112 (unsigned long long)dev_addr))
3113 return;
3114
3115 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
3116 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
3117
3118 pr_debug("Device %s unmapping: pfn %lx-%lx\n",
3119 pci_name(pdev), start_pfn, last_pfn);
3120
3121 freelist = domain_unmap(domain, start_pfn, last_pfn);
3122
3123 if (intel_iommu_strict) {
3124 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
3125 last_pfn - start_pfn + 1, !freelist, 0);
3126 /* free iova */
3127 __free_iova(&domain->iovad, iova);
3128 dma_free_pagelist(freelist);
3129 } else {
3130 add_unmap(domain, iova, freelist);
3131 /*
3132 * queue up the release of the unmap to save the 1/6th of the
3133 * cpu used up by the iotlb flush operation...
3134 */
3135 }
3136 }
3137
3138 static void *intel_alloc_coherent(struct device *hwdev, size_t size,
3139 dma_addr_t *dma_handle, gfp_t flags,
3140 struct dma_attrs *attrs)
3141 {
3142 void *vaddr;
3143 int order;
3144
3145 size = PAGE_ALIGN(size);
3146 order = get_order(size);
3147
3148 if (!iommu_no_mapping(hwdev))
3149 flags &= ~(GFP_DMA | GFP_DMA32);
3150 else if (hwdev->coherent_dma_mask < dma_get_required_mask(hwdev)) {
3151 if (hwdev->coherent_dma_mask < DMA_BIT_MASK(32))
3152 flags |= GFP_DMA;
3153 else
3154 flags |= GFP_DMA32;
3155 }
3156
3157 vaddr = (void *)__get_free_pages(flags, order);
3158 if (!vaddr)
3159 return NULL;
3160 memset(vaddr, 0, size);
3161
3162 *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size,
3163 DMA_BIDIRECTIONAL,
3164 hwdev->coherent_dma_mask);
3165 if (*dma_handle)
3166 return vaddr;
3167 free_pages((unsigned long)vaddr, order);
3168 return NULL;
3169 }
3170
3171 static void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr,
3172 dma_addr_t dma_handle, struct dma_attrs *attrs)
3173 {
3174 int order;
3175
3176 size = PAGE_ALIGN(size);
3177 order = get_order(size);
3178
3179 intel_unmap_page(hwdev, dma_handle, size, DMA_BIDIRECTIONAL, NULL);
3180 free_pages((unsigned long)vaddr, order);
3181 }
3182
3183 static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
3184 int nelems, enum dma_data_direction dir,
3185 struct dma_attrs *attrs)
3186 {
3187 struct pci_dev *pdev = to_pci_dev(hwdev);
3188 struct dmar_domain *domain;
3189 unsigned long start_pfn, last_pfn;
3190 struct iova *iova;
3191 struct intel_iommu *iommu;
3192 struct page *freelist;
3193
3194 if (iommu_no_mapping(hwdev))
3195 return;
3196
3197 domain = find_domain(pdev);
3198 BUG_ON(!domain);
3199
3200 iommu = domain_get_iommu(domain);
3201
3202 iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
3203 if (WARN_ONCE(!iova, "Driver unmaps unmatched sglist at PFN %llx\n",
3204 (unsigned long long)sglist[0].dma_address))
3205 return;
3206
3207 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
3208 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
3209
3210 freelist = domain_unmap(domain, start_pfn, last_pfn);
3211
3212 if (intel_iommu_strict) {
3213 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
3214 last_pfn - start_pfn + 1, !freelist, 0);
3215 /* free iova */
3216 __free_iova(&domain->iovad, iova);
3217 dma_free_pagelist(freelist);
3218 } else {
3219 add_unmap(domain, iova, freelist);
3220 /*
3221 * queue up the release of the unmap to save the 1/6th of the
3222 * cpu used up by the iotlb flush operation...
3223 */
3224 }
3225 }
3226
3227 static int intel_nontranslate_map_sg(struct device *hddev,
3228 struct scatterlist *sglist, int nelems, int dir)
3229 {
3230 int i;
3231 struct scatterlist *sg;
3232
3233 for_each_sg(sglist, sg, nelems, i) {
3234 BUG_ON(!sg_page(sg));
3235 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
3236 sg->dma_length = sg->length;
3237 }
3238 return nelems;
3239 }
3240
3241 static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems,
3242 enum dma_data_direction dir, struct dma_attrs *attrs)
3243 {
3244 int i;
3245 struct pci_dev *pdev = to_pci_dev(hwdev);
3246 struct dmar_domain *domain;
3247 size_t size = 0;
3248 int prot = 0;
3249 struct iova *iova = NULL;
3250 int ret;
3251 struct scatterlist *sg;
3252 unsigned long start_vpfn;
3253 struct intel_iommu *iommu;
3254
3255 BUG_ON(dir == DMA_NONE);
3256 if (iommu_no_mapping(hwdev))
3257 return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
3258
3259 domain = get_valid_domain_for_dev(pdev);
3260 if (!domain)
3261 return 0;
3262
3263 iommu = domain_get_iommu(domain);
3264
3265 for_each_sg(sglist, sg, nelems, i)
3266 size += aligned_nrpages(sg->offset, sg->length);
3267
3268 iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size),
3269 pdev->dma_mask);
3270 if (!iova) {
3271 sglist->dma_length = 0;
3272 return 0;
3273 }
3274
3275 /*
3276 * Check if DMAR supports zero-length reads on write only
3277 * mappings..
3278 */
3279 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3280 !cap_zlr(iommu->cap))
3281 prot |= DMA_PTE_READ;
3282 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3283 prot |= DMA_PTE_WRITE;
3284
3285 start_vpfn = mm_to_dma_pfn(iova->pfn_lo);
3286
3287 ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3288 if (unlikely(ret)) {
3289 /* clear the page */
3290 dma_pte_clear_range(domain, start_vpfn,
3291 start_vpfn + size - 1);
3292 /* free page tables */
3293 dma_pte_free_pagetable(domain, start_vpfn,
3294 start_vpfn + size - 1);
3295 /* free iova */
3296 __free_iova(&domain->iovad, iova);
3297 return 0;
3298 }
3299
3300 /* it's a non-present to present mapping. Only flush if caching mode */
3301 if (cap_caching_mode(iommu->cap))
3302 iommu_flush_iotlb_psi(iommu, domain->id, start_vpfn, size, 0, 1);
3303 else
3304 iommu_flush_write_buffer(iommu);
3305
3306 return nelems;
3307 }
3308
3309 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
3310 {
3311 return !dma_addr;
3312 }
3313
3314 struct dma_map_ops intel_dma_ops = {
3315 .alloc = intel_alloc_coherent,
3316 .free = intel_free_coherent,
3317 .map_sg = intel_map_sg,
3318 .unmap_sg = intel_unmap_sg,
3319 .map_page = intel_map_page,
3320 .unmap_page = intel_unmap_page,
3321 .mapping_error = intel_mapping_error,
3322 };
3323
3324 static inline int iommu_domain_cache_init(void)
3325 {
3326 int ret = 0;
3327
3328 iommu_domain_cache = kmem_cache_create("iommu_domain",
3329 sizeof(struct dmar_domain),
3330 0,
3331 SLAB_HWCACHE_ALIGN,
3332
3333 NULL);
3334 if (!iommu_domain_cache) {
3335 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
3336 ret = -ENOMEM;
3337 }
3338
3339 return ret;
3340 }
3341
3342 static inline int iommu_devinfo_cache_init(void)
3343 {
3344 int ret = 0;
3345
3346 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
3347 sizeof(struct device_domain_info),
3348 0,
3349 SLAB_HWCACHE_ALIGN,
3350 NULL);
3351 if (!iommu_devinfo_cache) {
3352 printk(KERN_ERR "Couldn't create devinfo cache\n");
3353 ret = -ENOMEM;
3354 }
3355
3356 return ret;
3357 }
3358
3359 static inline int iommu_iova_cache_init(void)
3360 {
3361 int ret = 0;
3362
3363 iommu_iova_cache = kmem_cache_create("iommu_iova",
3364 sizeof(struct iova),
3365 0,
3366 SLAB_HWCACHE_ALIGN,
3367 NULL);
3368 if (!iommu_iova_cache) {
3369 printk(KERN_ERR "Couldn't create iova cache\n");
3370 ret = -ENOMEM;
3371 }
3372
3373 return ret;
3374 }
3375
3376 static int __init iommu_init_mempool(void)
3377 {
3378 int ret;
3379 ret = iommu_iova_cache_init();
3380 if (ret)
3381 return ret;
3382
3383 ret = iommu_domain_cache_init();
3384 if (ret)
3385 goto domain_error;
3386
3387 ret = iommu_devinfo_cache_init();
3388 if (!ret)
3389 return ret;
3390
3391 kmem_cache_destroy(iommu_domain_cache);
3392 domain_error:
3393 kmem_cache_destroy(iommu_iova_cache);
3394
3395 return -ENOMEM;
3396 }
3397
3398 static void __init iommu_exit_mempool(void)
3399 {
3400 kmem_cache_destroy(iommu_devinfo_cache);
3401 kmem_cache_destroy(iommu_domain_cache);
3402 kmem_cache_destroy(iommu_iova_cache);
3403
3404 }
3405
3406 static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
3407 {
3408 struct dmar_drhd_unit *drhd;
3409 u32 vtbar;
3410 int rc;
3411
3412 /* We know that this device on this chipset has its own IOMMU.
3413 * If we find it under a different IOMMU, then the BIOS is lying
3414 * to us. Hope that the IOMMU for this device is actually
3415 * disabled, and it needs no translation...
3416 */
3417 rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
3418 if (rc) {
3419 /* "can't" happen */
3420 dev_info(&pdev->dev, "failed to run vt-d quirk\n");
3421 return;
3422 }
3423 vtbar &= 0xffff0000;
3424
3425 /* we know that the this iommu should be at offset 0xa000 from vtbar */
3426 drhd = dmar_find_matched_drhd_unit(pdev);
3427 if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
3428 TAINT_FIRMWARE_WORKAROUND,
3429 "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
3430 pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3431 }
3432 DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
3433
3434 static void __init init_no_remapping_devices(void)
3435 {
3436 struct dmar_drhd_unit *drhd;
3437 struct pci_dev *dev;
3438 int i;
3439
3440 for_each_drhd_unit(drhd) {
3441 if (!drhd->include_all) {
3442 for_each_active_dev_scope(drhd->devices,
3443 drhd->devices_cnt, i, dev)
3444 break;
3445 /* ignore DMAR unit if no pci devices exist */
3446 if (i == drhd->devices_cnt)
3447 drhd->ignored = 1;
3448 }
3449 }
3450
3451 for_each_active_drhd_unit(drhd) {
3452 if (drhd->include_all)
3453 continue;
3454
3455 for_each_active_dev_scope(drhd->devices,
3456 drhd->devices_cnt, i, dev)
3457 if (!IS_GFX_DEVICE(dev))
3458 break;
3459 if (i < drhd->devices_cnt)
3460 continue;
3461
3462 /* This IOMMU has *only* gfx devices. Either bypass it or
3463 set the gfx_mapped flag, as appropriate */
3464 if (dmar_map_gfx) {
3465 intel_iommu_gfx_mapped = 1;
3466 } else {
3467 drhd->ignored = 1;
3468 for_each_active_dev_scope(drhd->devices,
3469 drhd->devices_cnt, i, dev)
3470 dev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3471 }
3472 }
3473 }
3474
3475 #ifdef CONFIG_SUSPEND
3476 static int init_iommu_hw(void)
3477 {
3478 struct dmar_drhd_unit *drhd;
3479 struct intel_iommu *iommu = NULL;
3480
3481 for_each_active_iommu(iommu, drhd)
3482 if (iommu->qi)
3483 dmar_reenable_qi(iommu);
3484
3485 for_each_iommu(iommu, drhd) {
3486 if (drhd->ignored) {
3487 /*
3488 * we always have to disable PMRs or DMA may fail on
3489 * this device
3490 */
3491 if (force_on)
3492 iommu_disable_protect_mem_regions(iommu);
3493 continue;
3494 }
3495
3496 iommu_flush_write_buffer(iommu);
3497
3498 iommu_set_root_entry(iommu);
3499
3500 iommu->flush.flush_context(iommu, 0, 0, 0,
3501 DMA_CCMD_GLOBAL_INVL);
3502 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3503 DMA_TLB_GLOBAL_FLUSH);
3504 if (iommu_enable_translation(iommu))
3505 return 1;
3506 iommu_disable_protect_mem_regions(iommu);
3507 }
3508
3509 return 0;
3510 }
3511
3512 static void iommu_flush_all(void)
3513 {
3514 struct dmar_drhd_unit *drhd;
3515 struct intel_iommu *iommu;
3516
3517 for_each_active_iommu(iommu, drhd) {
3518 iommu->flush.flush_context(iommu, 0, 0, 0,
3519 DMA_CCMD_GLOBAL_INVL);
3520 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3521 DMA_TLB_GLOBAL_FLUSH);
3522 }
3523 }
3524
3525 static int iommu_suspend(void)
3526 {
3527 struct dmar_drhd_unit *drhd;
3528 struct intel_iommu *iommu = NULL;
3529 unsigned long flag;
3530
3531 for_each_active_iommu(iommu, drhd) {
3532 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
3533 GFP_ATOMIC);
3534 if (!iommu->iommu_state)
3535 goto nomem;
3536 }
3537
3538 iommu_flush_all();
3539
3540 for_each_active_iommu(iommu, drhd) {
3541 iommu_disable_translation(iommu);
3542
3543 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3544
3545 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3546 readl(iommu->reg + DMAR_FECTL_REG);
3547 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3548 readl(iommu->reg + DMAR_FEDATA_REG);
3549 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3550 readl(iommu->reg + DMAR_FEADDR_REG);
3551 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3552 readl(iommu->reg + DMAR_FEUADDR_REG);
3553
3554 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3555 }
3556 return 0;
3557
3558 nomem:
3559 for_each_active_iommu(iommu, drhd)
3560 kfree(iommu->iommu_state);
3561
3562 return -ENOMEM;
3563 }
3564
3565 static void iommu_resume(void)
3566 {
3567 struct dmar_drhd_unit *drhd;
3568 struct intel_iommu *iommu = NULL;
3569 unsigned long flag;
3570
3571 if (init_iommu_hw()) {
3572 if (force_on)
3573 panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
3574 else
3575 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3576 return;
3577 }
3578
3579 for_each_active_iommu(iommu, drhd) {
3580
3581 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3582
3583 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3584 iommu->reg + DMAR_FECTL_REG);
3585 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3586 iommu->reg + DMAR_FEDATA_REG);
3587 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3588 iommu->reg + DMAR_FEADDR_REG);
3589 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3590 iommu->reg + DMAR_FEUADDR_REG);
3591
3592 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3593 }
3594
3595 for_each_active_iommu(iommu, drhd)
3596 kfree(iommu->iommu_state);
3597 }
3598
3599 static struct syscore_ops iommu_syscore_ops = {
3600 .resume = iommu_resume,
3601 .suspend = iommu_suspend,
3602 };
3603
3604 static void __init init_iommu_pm_ops(void)
3605 {
3606 register_syscore_ops(&iommu_syscore_ops);
3607 }
3608
3609 #else
3610 static inline void init_iommu_pm_ops(void) {}
3611 #endif /* CONFIG_PM */
3612
3613
3614 int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header)
3615 {
3616 struct acpi_dmar_reserved_memory *rmrr;
3617 struct dmar_rmrr_unit *rmrru;
3618
3619 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
3620 if (!rmrru)
3621 return -ENOMEM;
3622
3623 rmrru->hdr = header;
3624 rmrr = (struct acpi_dmar_reserved_memory *)header;
3625 rmrru->base_address = rmrr->base_address;
3626 rmrru->end_address = rmrr->end_address;
3627 rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
3628 ((void *)rmrr) + rmrr->header.length,
3629 &rmrru->devices_cnt);
3630 if (rmrru->devices_cnt && rmrru->devices == NULL) {
3631 kfree(rmrru);
3632 return -ENOMEM;
3633 }
3634
3635 list_add(&rmrru->list, &dmar_rmrr_units);
3636
3637 return 0;
3638 }
3639
3640 int __init dmar_parse_one_atsr(struct acpi_dmar_header *hdr)
3641 {
3642 struct acpi_dmar_atsr *atsr;
3643 struct dmar_atsr_unit *atsru;
3644
3645 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
3646 atsru = kzalloc(sizeof(*atsru), GFP_KERNEL);
3647 if (!atsru)
3648 return -ENOMEM;
3649
3650 atsru->hdr = hdr;
3651 atsru->include_all = atsr->flags & 0x1;
3652 if (!atsru->include_all) {
3653 atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
3654 (void *)atsr + atsr->header.length,
3655 &atsru->devices_cnt);
3656 if (atsru->devices_cnt && atsru->devices == NULL) {
3657 kfree(atsru);
3658 return -ENOMEM;
3659 }
3660 }
3661
3662 list_add_rcu(&atsru->list, &dmar_atsr_units);
3663
3664 return 0;
3665 }
3666
3667 static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
3668 {
3669 dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
3670 kfree(atsru);
3671 }
3672
3673 static void intel_iommu_free_dmars(void)
3674 {
3675 struct dmar_rmrr_unit *rmrru, *rmrr_n;
3676 struct dmar_atsr_unit *atsru, *atsr_n;
3677
3678 list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
3679 list_del(&rmrru->list);
3680 dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
3681 kfree(rmrru);
3682 }
3683
3684 list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
3685 list_del(&atsru->list);
3686 intel_iommu_free_atsr(atsru);
3687 }
3688 }
3689
3690 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
3691 {
3692 int i, ret = 1;
3693 struct pci_bus *bus;
3694 struct pci_dev *bridge = NULL, *tmp;
3695 struct acpi_dmar_atsr *atsr;
3696 struct dmar_atsr_unit *atsru;
3697
3698 dev = pci_physfn(dev);
3699 for (bus = dev->bus; bus; bus = bus->parent) {
3700 bridge = bus->self;
3701 if (!bridge || !pci_is_pcie(bridge) ||
3702 pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
3703 return 0;
3704 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
3705 break;
3706 }
3707 if (!bridge)
3708 return 0;
3709
3710 rcu_read_lock();
3711 list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
3712 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
3713 if (atsr->segment != pci_domain_nr(dev->bus))
3714 continue;
3715
3716 for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
3717 if (tmp == bridge)
3718 goto out;
3719
3720 if (atsru->include_all)
3721 goto out;
3722 }
3723 ret = 0;
3724 out:
3725 rcu_read_unlock();
3726
3727 return ret;
3728 }
3729
3730 int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
3731 {
3732 int ret = 0;
3733 struct dmar_rmrr_unit *rmrru;
3734 struct dmar_atsr_unit *atsru;
3735 struct acpi_dmar_atsr *atsr;
3736 struct acpi_dmar_reserved_memory *rmrr;
3737
3738 if (!intel_iommu_enabled && system_state != SYSTEM_BOOTING)
3739 return 0;
3740
3741 list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
3742 rmrr = container_of(rmrru->hdr,
3743 struct acpi_dmar_reserved_memory, header);
3744 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
3745 ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
3746 ((void *)rmrr) + rmrr->header.length,
3747 rmrr->segment, rmrru->devices,
3748 rmrru->devices_cnt);
3749 if (ret > 0)
3750 break;
3751 else if(ret < 0)
3752 return ret;
3753 } else if (info->event == BUS_NOTIFY_DEL_DEVICE) {
3754 if (dmar_remove_dev_scope(info, rmrr->segment,
3755 rmrru->devices, rmrru->devices_cnt))
3756 break;
3757 }
3758 }
3759
3760 list_for_each_entry(atsru, &dmar_atsr_units, list) {
3761 if (atsru->include_all)
3762 continue;
3763
3764 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
3765 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
3766 ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
3767 (void *)atsr + atsr->header.length,
3768 atsr->segment, atsru->devices,
3769 atsru->devices_cnt);
3770 if (ret > 0)
3771 break;
3772 else if(ret < 0)
3773 return ret;
3774 } else if (info->event == BUS_NOTIFY_DEL_DEVICE) {
3775 if (dmar_remove_dev_scope(info, atsr->segment,
3776 atsru->devices, atsru->devices_cnt))
3777 break;
3778 }
3779 }
3780
3781 return 0;
3782 }
3783
3784 /*
3785 * Here we only respond to action of unbound device from driver.
3786 *
3787 * Added device is not attached to its DMAR domain here yet. That will happen
3788 * when mapping the device to iova.
3789 */
3790 static int device_notifier(struct notifier_block *nb,
3791 unsigned long action, void *data)
3792 {
3793 struct device *dev = data;
3794 struct pci_dev *pdev = to_pci_dev(dev);
3795 struct dmar_domain *domain;
3796
3797 if (iommu_dummy(pdev))
3798 return 0;
3799
3800 if (action != BUS_NOTIFY_UNBOUND_DRIVER &&
3801 action != BUS_NOTIFY_DEL_DEVICE)
3802 return 0;
3803
3804 domain = find_domain(pdev);
3805 if (!domain)
3806 return 0;
3807
3808 down_read(&dmar_global_lock);
3809 domain_remove_one_dev_info(domain, pdev);
3810 if (!(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) &&
3811 !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) &&
3812 list_empty(&domain->devices))
3813 domain_exit(domain);
3814 up_read(&dmar_global_lock);
3815
3816 return 0;
3817 }
3818
3819 static struct notifier_block device_nb = {
3820 .notifier_call = device_notifier,
3821 };
3822
3823 static int intel_iommu_memory_notifier(struct notifier_block *nb,
3824 unsigned long val, void *v)
3825 {
3826 struct memory_notify *mhp = v;
3827 unsigned long long start, end;
3828 unsigned long start_vpfn, last_vpfn;
3829
3830 switch (val) {
3831 case MEM_GOING_ONLINE:
3832 start = mhp->start_pfn << PAGE_SHIFT;
3833 end = ((mhp->start_pfn + mhp->nr_pages) << PAGE_SHIFT) - 1;
3834 if (iommu_domain_identity_map(si_domain, start, end)) {
3835 pr_warn("dmar: failed to build identity map for [%llx-%llx]\n",
3836 start, end);
3837 return NOTIFY_BAD;
3838 }
3839 break;
3840
3841 case MEM_OFFLINE:
3842 case MEM_CANCEL_ONLINE:
3843 start_vpfn = mm_to_dma_pfn(mhp->start_pfn);
3844 last_vpfn = mm_to_dma_pfn(mhp->start_pfn + mhp->nr_pages - 1);
3845 while (start_vpfn <= last_vpfn) {
3846 struct iova *iova;
3847 struct dmar_drhd_unit *drhd;
3848 struct intel_iommu *iommu;
3849 struct page *freelist;
3850
3851 iova = find_iova(&si_domain->iovad, start_vpfn);
3852 if (iova == NULL) {
3853 pr_debug("dmar: failed get IOVA for PFN %lx\n",
3854 start_vpfn);
3855 break;
3856 }
3857
3858 iova = split_and_remove_iova(&si_domain->iovad, iova,
3859 start_vpfn, last_vpfn);
3860 if (iova == NULL) {
3861 pr_warn("dmar: failed to split IOVA PFN [%lx-%lx]\n",
3862 start_vpfn, last_vpfn);
3863 return NOTIFY_BAD;
3864 }
3865
3866 freelist = domain_unmap(si_domain, iova->pfn_lo,
3867 iova->pfn_hi);
3868
3869 rcu_read_lock();
3870 for_each_active_iommu(iommu, drhd)
3871 iommu_flush_iotlb_psi(iommu, si_domain->id,
3872 iova->pfn_lo,
3873 iova->pfn_hi - iova->pfn_lo + 1,
3874 !freelist, 0);
3875 rcu_read_unlock();
3876 dma_free_pagelist(freelist);
3877
3878 start_vpfn = iova->pfn_hi + 1;
3879 free_iova_mem(iova);
3880 }
3881 break;
3882 }
3883
3884 return NOTIFY_OK;
3885 }
3886
3887 static struct notifier_block intel_iommu_memory_nb = {
3888 .notifier_call = intel_iommu_memory_notifier,
3889 .priority = 0
3890 };
3891
3892 int __init intel_iommu_init(void)
3893 {
3894 int ret = -ENODEV;
3895 struct dmar_drhd_unit *drhd;
3896 struct intel_iommu *iommu;
3897
3898 /* VT-d is required for a TXT/tboot launch, so enforce that */
3899 force_on = tboot_force_iommu();
3900
3901 if (iommu_init_mempool()) {
3902 if (force_on)
3903 panic("tboot: Failed to initialize iommu memory\n");
3904 return -ENOMEM;
3905 }
3906
3907 down_write(&dmar_global_lock);
3908 if (dmar_table_init()) {
3909 if (force_on)
3910 panic("tboot: Failed to initialize DMAR table\n");
3911 goto out_free_dmar;
3912 }
3913
3914 /*
3915 * Disable translation if already enabled prior to OS handover.
3916 */
3917 for_each_active_iommu(iommu, drhd)
3918 if (iommu->gcmd & DMA_GCMD_TE)
3919 iommu_disable_translation(iommu);
3920
3921 if (dmar_dev_scope_init() < 0) {
3922 if (force_on)
3923 panic("tboot: Failed to initialize DMAR device scope\n");
3924 goto out_free_dmar;
3925 }
3926
3927 if (no_iommu || dmar_disabled)
3928 goto out_free_dmar;
3929
3930 if (list_empty(&dmar_rmrr_units))
3931 printk(KERN_INFO "DMAR: No RMRR found\n");
3932
3933 if (list_empty(&dmar_atsr_units))
3934 printk(KERN_INFO "DMAR: No ATSR found\n");
3935
3936 if (dmar_init_reserved_ranges()) {
3937 if (force_on)
3938 panic("tboot: Failed to reserve iommu ranges\n");
3939 goto out_free_reserved_range;
3940 }
3941
3942 init_no_remapping_devices();
3943
3944 ret = init_dmars();
3945 if (ret) {
3946 if (force_on)
3947 panic("tboot: Failed to initialize DMARs\n");
3948 printk(KERN_ERR "IOMMU: dmar init failed\n");
3949 goto out_free_reserved_range;
3950 }
3951 up_write(&dmar_global_lock);
3952 printk(KERN_INFO
3953 "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
3954
3955 init_timer(&unmap_timer);
3956 #ifdef CONFIG_SWIOTLB
3957 swiotlb = 0;
3958 #endif
3959 dma_ops = &intel_dma_ops;
3960
3961 init_iommu_pm_ops();
3962
3963 bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
3964 bus_register_notifier(&pci_bus_type, &device_nb);
3965 if (si_domain && !hw_pass_through)
3966 register_memory_notifier(&intel_iommu_memory_nb);
3967
3968 intel_iommu_enabled = 1;
3969
3970 return 0;
3971
3972 out_free_reserved_range:
3973 put_iova_domain(&reserved_iova_list);
3974 out_free_dmar:
3975 intel_iommu_free_dmars();
3976 up_write(&dmar_global_lock);
3977 iommu_exit_mempool();
3978 return ret;
3979 }
3980
3981 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
3982 struct pci_dev *pdev)
3983 {
3984 struct pci_dev *tmp, *parent;
3985
3986 if (!iommu || !pdev)
3987 return;
3988
3989 /* dependent device detach */
3990 tmp = pci_find_upstream_pcie_bridge(pdev);
3991 /* Secondary interface's bus number and devfn 0 */
3992 if (tmp) {
3993 parent = pdev->bus->self;
3994 while (parent != tmp) {
3995 iommu_detach_dev(iommu, parent->bus->number,
3996 parent->devfn);
3997 parent = parent->bus->self;
3998 }
3999 if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */
4000 iommu_detach_dev(iommu,
4001 tmp->subordinate->number, 0);
4002 else /* this is a legacy PCI bridge */
4003 iommu_detach_dev(iommu, tmp->bus->number,
4004 tmp->devfn);
4005 }
4006 }
4007
4008 static void domain_remove_one_dev_info(struct dmar_domain *domain,
4009 struct pci_dev *pdev)
4010 {
4011 struct device_domain_info *info, *tmp;
4012 struct intel_iommu *iommu;
4013 unsigned long flags;
4014 int found = 0;
4015
4016 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
4017 pdev->devfn);
4018 if (!iommu)
4019 return;
4020
4021 spin_lock_irqsave(&device_domain_lock, flags);
4022 list_for_each_entry_safe(info, tmp, &domain->devices, link) {
4023 if (info->segment == pci_domain_nr(pdev->bus) &&
4024 info->bus == pdev->bus->number &&
4025 info->devfn == pdev->devfn) {
4026 unlink_domain_info(info);
4027 spin_unlock_irqrestore(&device_domain_lock, flags);
4028
4029 iommu_disable_dev_iotlb(info);
4030 iommu_detach_dev(iommu, info->bus, info->devfn);
4031 iommu_detach_dependent_devices(iommu, pdev);
4032 free_devinfo_mem(info);
4033
4034 spin_lock_irqsave(&device_domain_lock, flags);
4035
4036 if (found)
4037 break;
4038 else
4039 continue;
4040 }
4041
4042 /* if there is no other devices under the same iommu
4043 * owned by this domain, clear this iommu in iommu_bmp
4044 * update iommu count and coherency
4045 */
4046 if (iommu == device_to_iommu(info->segment, info->bus,
4047 info->devfn))
4048 found = 1;
4049 }
4050
4051 spin_unlock_irqrestore(&device_domain_lock, flags);
4052
4053 if (found == 0) {
4054 unsigned long tmp_flags;
4055 spin_lock_irqsave(&domain->iommu_lock, tmp_flags);
4056 clear_bit(iommu->seq_id, domain->iommu_bmp);
4057 domain->iommu_count--;
4058 domain_update_iommu_cap(domain);
4059 spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags);
4060
4061 if (!(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) &&
4062 !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)) {
4063 spin_lock_irqsave(&iommu->lock, tmp_flags);
4064 clear_bit(domain->id, iommu->domain_ids);
4065 iommu->domains[domain->id] = NULL;
4066 spin_unlock_irqrestore(&iommu->lock, tmp_flags);
4067 }
4068 }
4069 }
4070
4071 static int md_domain_init(struct dmar_domain *domain, int guest_width)
4072 {
4073 int adjust_width;
4074
4075 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
4076 domain_reserve_special_ranges(domain);
4077
4078 /* calculate AGAW */
4079 domain->gaw = guest_width;
4080 adjust_width = guestwidth_to_adjustwidth(guest_width);
4081 domain->agaw = width_to_agaw(adjust_width);
4082
4083 domain->iommu_coherency = 0;
4084 domain->iommu_snooping = 0;
4085 domain->iommu_superpage = 0;
4086 domain->max_addr = 0;
4087 domain->nid = -1;
4088
4089 /* always allocate the top pgd */
4090 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
4091 if (!domain->pgd)
4092 return -ENOMEM;
4093 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
4094 return 0;
4095 }
4096
4097 static int intel_iommu_domain_init(struct iommu_domain *domain)
4098 {
4099 struct dmar_domain *dmar_domain;
4100
4101 dmar_domain = alloc_domain(true);
4102 if (!dmar_domain) {
4103 printk(KERN_ERR
4104 "intel_iommu_domain_init: dmar_domain == NULL\n");
4105 return -ENOMEM;
4106 }
4107 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
4108 printk(KERN_ERR
4109 "intel_iommu_domain_init() failed\n");
4110 domain_exit(dmar_domain);
4111 return -ENOMEM;
4112 }
4113 domain_update_iommu_cap(dmar_domain);
4114 domain->priv = dmar_domain;
4115
4116 domain->geometry.aperture_start = 0;
4117 domain->geometry.aperture_end = __DOMAIN_MAX_ADDR(dmar_domain->gaw);
4118 domain->geometry.force_aperture = true;
4119
4120 return 0;
4121 }
4122
4123 static void intel_iommu_domain_destroy(struct iommu_domain *domain)
4124 {
4125 struct dmar_domain *dmar_domain = domain->priv;
4126
4127 domain->priv = NULL;
4128 domain_exit(dmar_domain);
4129 }
4130
4131 static int intel_iommu_attach_device(struct iommu_domain *domain,
4132 struct device *dev)
4133 {
4134 struct dmar_domain *dmar_domain = domain->priv;
4135 struct pci_dev *pdev = to_pci_dev(dev);
4136 struct intel_iommu *iommu;
4137 int addr_width;
4138
4139 /* normally pdev is not mapped */
4140 if (unlikely(domain_context_mapped(pdev))) {
4141 struct dmar_domain *old_domain;
4142
4143 old_domain = find_domain(pdev);
4144 if (old_domain) {
4145 if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
4146 dmar_domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)
4147 domain_remove_one_dev_info(old_domain, pdev);
4148 else
4149 domain_remove_dev_info(old_domain);
4150 }
4151 }
4152
4153 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
4154 pdev->devfn);
4155 if (!iommu)
4156 return -ENODEV;
4157
4158 /* check if this iommu agaw is sufficient for max mapped address */
4159 addr_width = agaw_to_width(iommu->agaw);
4160 if (addr_width > cap_mgaw(iommu->cap))
4161 addr_width = cap_mgaw(iommu->cap);
4162
4163 if (dmar_domain->max_addr > (1LL << addr_width)) {
4164 printk(KERN_ERR "%s: iommu width (%d) is not "
4165 "sufficient for the mapped address (%llx)\n",
4166 __func__, addr_width, dmar_domain->max_addr);
4167 return -EFAULT;
4168 }
4169 dmar_domain->gaw = addr_width;
4170
4171 /*
4172 * Knock out extra levels of page tables if necessary
4173 */
4174 while (iommu->agaw < dmar_domain->agaw) {
4175 struct dma_pte *pte;
4176
4177 pte = dmar_domain->pgd;
4178 if (dma_pte_present(pte)) {
4179 dmar_domain->pgd = (struct dma_pte *)
4180 phys_to_virt(dma_pte_addr(pte));
4181 free_pgtable_page(pte);
4182 }
4183 dmar_domain->agaw--;
4184 }
4185
4186 return domain_add_dev_info(dmar_domain, pdev, CONTEXT_TT_MULTI_LEVEL);
4187 }
4188
4189 static void intel_iommu_detach_device(struct iommu_domain *domain,
4190 struct device *dev)
4191 {
4192 struct dmar_domain *dmar_domain = domain->priv;
4193 struct pci_dev *pdev = to_pci_dev(dev);
4194
4195 domain_remove_one_dev_info(dmar_domain, pdev);
4196 }
4197
4198 static int intel_iommu_map(struct iommu_domain *domain,
4199 unsigned long iova, phys_addr_t hpa,
4200 size_t size, int iommu_prot)
4201 {
4202 struct dmar_domain *dmar_domain = domain->priv;
4203 u64 max_addr;
4204 int prot = 0;
4205 int ret;
4206
4207 if (iommu_prot & IOMMU_READ)
4208 prot |= DMA_PTE_READ;
4209 if (iommu_prot & IOMMU_WRITE)
4210 prot |= DMA_PTE_WRITE;
4211 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
4212 prot |= DMA_PTE_SNP;
4213
4214 max_addr = iova + size;
4215 if (dmar_domain->max_addr < max_addr) {
4216 u64 end;
4217
4218 /* check if minimum agaw is sufficient for mapped address */
4219 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
4220 if (end < max_addr) {
4221 printk(KERN_ERR "%s: iommu width (%d) is not "
4222 "sufficient for the mapped address (%llx)\n",
4223 __func__, dmar_domain->gaw, max_addr);
4224 return -EFAULT;
4225 }
4226 dmar_domain->max_addr = max_addr;
4227 }
4228 /* Round up size to next multiple of PAGE_SIZE, if it and
4229 the low bits of hpa would take us onto the next page */
4230 size = aligned_nrpages(hpa, size);
4231 ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
4232 hpa >> VTD_PAGE_SHIFT, size, prot);
4233 return ret;
4234 }
4235
4236 static size_t intel_iommu_unmap(struct iommu_domain *domain,
4237 unsigned long iova, size_t size)
4238 {
4239 struct dmar_domain *dmar_domain = domain->priv;
4240 struct page *freelist = NULL;
4241 struct intel_iommu *iommu;
4242 unsigned long start_pfn, last_pfn;
4243 unsigned int npages;
4244 int iommu_id, num, ndomains, level = 0;
4245
4246 /* Cope with horrid API which requires us to unmap more than the
4247 size argument if it happens to be a large-page mapping. */
4248 if (!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level))
4249 BUG();
4250
4251 if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
4252 size = VTD_PAGE_SIZE << level_to_offset_bits(level);
4253
4254 start_pfn = iova >> VTD_PAGE_SHIFT;
4255 last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;
4256
4257 freelist = domain_unmap(dmar_domain, start_pfn, last_pfn);
4258
4259 npages = last_pfn - start_pfn + 1;
4260
4261 for_each_set_bit(iommu_id, dmar_domain->iommu_bmp, g_num_of_iommus) {
4262 iommu = g_iommus[iommu_id];
4263
4264 /*
4265 * find bit position of dmar_domain
4266 */
4267 ndomains = cap_ndoms(iommu->cap);
4268 for_each_set_bit(num, iommu->domain_ids, ndomains) {
4269 if (iommu->domains[num] == dmar_domain)
4270 iommu_flush_iotlb_psi(iommu, num, start_pfn,
4271 npages, !freelist, 0);
4272 }
4273
4274 }
4275
4276 dma_free_pagelist(freelist);
4277
4278 if (dmar_domain->max_addr == iova + size)
4279 dmar_domain->max_addr = iova;
4280
4281 return size;
4282 }
4283
4284 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
4285 dma_addr_t iova)
4286 {
4287 struct dmar_domain *dmar_domain = domain->priv;
4288 struct dma_pte *pte;
4289 int level = 0;
4290 u64 phys = 0;
4291
4292 pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level);
4293 if (pte)
4294 phys = dma_pte_addr(pte);
4295
4296 return phys;
4297 }
4298
4299 static int intel_iommu_domain_has_cap(struct iommu_domain *domain,
4300 unsigned long cap)
4301 {
4302 struct dmar_domain *dmar_domain = domain->priv;
4303
4304 if (cap == IOMMU_CAP_CACHE_COHERENCY)
4305 return dmar_domain->iommu_snooping;
4306 if (cap == IOMMU_CAP_INTR_REMAP)
4307 return irq_remapping_enabled;
4308
4309 return 0;
4310 }
4311
4312 #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
4313
4314 static int intel_iommu_add_device(struct device *dev)
4315 {
4316 struct pci_dev *pdev = to_pci_dev(dev);
4317 struct pci_dev *bridge, *dma_pdev = NULL;
4318 struct iommu_group *group;
4319 int ret;
4320
4321 if (!device_to_iommu(pci_domain_nr(pdev->bus),
4322 pdev->bus->number, pdev->devfn))
4323 return -ENODEV;
4324
4325 bridge = pci_find_upstream_pcie_bridge(pdev);
4326 if (bridge) {
4327 if (pci_is_pcie(bridge))
4328 dma_pdev = pci_get_domain_bus_and_slot(
4329 pci_domain_nr(pdev->bus),
4330 bridge->subordinate->number, 0);
4331 if (!dma_pdev)
4332 dma_pdev = pci_dev_get(bridge);
4333 } else
4334 dma_pdev = pci_dev_get(pdev);
4335
4336 /* Account for quirked devices */
4337 swap_pci_ref(&dma_pdev, pci_get_dma_source(dma_pdev));
4338
4339 /*
4340 * If it's a multifunction device that does not support our
4341 * required ACS flags, add to the same group as lowest numbered
4342 * function that also does not suport the required ACS flags.
4343 */
4344 if (dma_pdev->multifunction &&
4345 !pci_acs_enabled(dma_pdev, REQ_ACS_FLAGS)) {
4346 u8 i, slot = PCI_SLOT(dma_pdev->devfn);
4347
4348 for (i = 0; i < 8; i++) {
4349 struct pci_dev *tmp;
4350
4351 tmp = pci_get_slot(dma_pdev->bus, PCI_DEVFN(slot, i));
4352 if (!tmp)
4353 continue;
4354
4355 if (!pci_acs_enabled(tmp, REQ_ACS_FLAGS)) {
4356 swap_pci_ref(&dma_pdev, tmp);
4357 break;
4358 }
4359 pci_dev_put(tmp);
4360 }
4361 }
4362
4363 /*
4364 * Devices on the root bus go through the iommu. If that's not us,
4365 * find the next upstream device and test ACS up to the root bus.
4366 * Finding the next device may require skipping virtual buses.
4367 */
4368 while (!pci_is_root_bus(dma_pdev->bus)) {
4369 struct pci_bus *bus = dma_pdev->bus;
4370
4371 while (!bus->self) {
4372 if (!pci_is_root_bus(bus))
4373 bus = bus->parent;
4374 else
4375 goto root_bus;
4376 }
4377
4378 if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
4379 break;
4380
4381 swap_pci_ref(&dma_pdev, pci_dev_get(bus->self));
4382 }
4383
4384 root_bus:
4385 group = iommu_group_get(&dma_pdev->dev);
4386 pci_dev_put(dma_pdev);
4387 if (!group) {
4388 group = iommu_group_alloc();
4389 if (IS_ERR(group))
4390 return PTR_ERR(group);
4391 }
4392
4393 ret = iommu_group_add_device(group, dev);
4394
4395 iommu_group_put(group);
4396 return ret;
4397 }
4398
4399 static void intel_iommu_remove_device(struct device *dev)
4400 {
4401 iommu_group_remove_device(dev);
4402 }
4403
4404 static struct iommu_ops intel_iommu_ops = {
4405 .domain_init = intel_iommu_domain_init,
4406 .domain_destroy = intel_iommu_domain_destroy,
4407 .attach_dev = intel_iommu_attach_device,
4408 .detach_dev = intel_iommu_detach_device,
4409 .map = intel_iommu_map,
4410 .unmap = intel_iommu_unmap,
4411 .iova_to_phys = intel_iommu_iova_to_phys,
4412 .domain_has_cap = intel_iommu_domain_has_cap,
4413 .add_device = intel_iommu_add_device,
4414 .remove_device = intel_iommu_remove_device,
4415 .pgsize_bitmap = INTEL_IOMMU_PGSIZES,
4416 };
4417
4418 static void quirk_iommu_g4x_gfx(struct pci_dev *dev)
4419 {
4420 /* G4x/GM45 integrated gfx dmar support is totally busted. */
4421 printk(KERN_INFO "DMAR: Disabling IOMMU for graphics on this chipset\n");
4422 dmar_map_gfx = 0;
4423 }
4424
4425 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_g4x_gfx);
4426 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_g4x_gfx);
4427 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_g4x_gfx);
4428 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_g4x_gfx);
4429 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_g4x_gfx);
4430 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_g4x_gfx);
4431 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_g4x_gfx);
4432
4433 static void quirk_iommu_rwbf(struct pci_dev *dev)
4434 {
4435 /*
4436 * Mobile 4 Series Chipset neglects to set RWBF capability,
4437 * but needs it. Same seems to hold for the desktop versions.
4438 */
4439 printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n");
4440 rwbf_quirk = 1;
4441 }
4442
4443 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
4444 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
4445 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
4446 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
4447 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
4448 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
4449 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
4450
4451 #define GGC 0x52
4452 #define GGC_MEMORY_SIZE_MASK (0xf << 8)
4453 #define GGC_MEMORY_SIZE_NONE (0x0 << 8)
4454 #define GGC_MEMORY_SIZE_1M (0x1 << 8)
4455 #define GGC_MEMORY_SIZE_2M (0x3 << 8)
4456 #define GGC_MEMORY_VT_ENABLED (0x8 << 8)
4457 #define GGC_MEMORY_SIZE_2M_VT (0x9 << 8)
4458 #define GGC_MEMORY_SIZE_3M_VT (0xa << 8)
4459 #define GGC_MEMORY_SIZE_4M_VT (0xb << 8)
4460
4461 static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
4462 {
4463 unsigned short ggc;
4464
4465 if (pci_read_config_word(dev, GGC, &ggc))
4466 return;
4467
4468 if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
4469 printk(KERN_INFO "DMAR: BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
4470 dmar_map_gfx = 0;
4471 } else if (dmar_map_gfx) {
4472 /* we have to ensure the gfx device is idle before we flush */
4473 printk(KERN_INFO "DMAR: Disabling batched IOTLB flush on Ironlake\n");
4474 intel_iommu_strict = 1;
4475 }
4476 }
4477 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
4478 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
4479 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
4480 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
4481
4482 /* On Tylersburg chipsets, some BIOSes have been known to enable the
4483 ISOCH DMAR unit for the Azalia sound device, but not give it any
4484 TLB entries, which causes it to deadlock. Check for that. We do
4485 this in a function called from init_dmars(), instead of in a PCI
4486 quirk, because we don't want to print the obnoxious "BIOS broken"
4487 message if VT-d is actually disabled.
4488 */
4489 static void __init check_tylersburg_isoch(void)
4490 {
4491 struct pci_dev *pdev;
4492 uint32_t vtisochctrl;
4493
4494 /* If there's no Azalia in the system anyway, forget it. */
4495 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
4496 if (!pdev)
4497 return;
4498 pci_dev_put(pdev);
4499
4500 /* System Management Registers. Might be hidden, in which case
4501 we can't do the sanity check. But that's OK, because the
4502 known-broken BIOSes _don't_ actually hide it, so far. */
4503 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
4504 if (!pdev)
4505 return;
4506
4507 if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
4508 pci_dev_put(pdev);
4509 return;
4510 }
4511
4512 pci_dev_put(pdev);
4513
4514 /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
4515 if (vtisochctrl & 1)
4516 return;
4517
4518 /* Drop all bits other than the number of TLB entries */
4519 vtisochctrl &= 0x1c;
4520
4521 /* If we have the recommended number of TLB entries (16), fine. */
4522 if (vtisochctrl == 0x10)
4523 return;
4524
4525 /* Zero TLB entries? You get to ride the short bus to school. */
4526 if (!vtisochctrl) {
4527 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
4528 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
4529 dmi_get_system_info(DMI_BIOS_VENDOR),
4530 dmi_get_system_info(DMI_BIOS_VERSION),
4531 dmi_get_system_info(DMI_PRODUCT_VERSION));
4532 iommu_identity_mapping |= IDENTMAP_AZALIA;
4533 return;
4534 }
4535
4536 printk(KERN_WARNING "DMAR: Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
4537 vtisochctrl);
4538 }
This page took 0.116131 seconds and 4 git commands to generate.