Merge branch 'drm-fixes' of git://people.freedesktop.org/~airlied/linux
[deliverable/linux.git] / drivers / iommu / intel-iommu.c
1 /*
2 * Copyright (c) 2006, Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
16 *
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21 * Author: Fenghua Yu <fenghua.yu@intel.com>
22 */
23
24 #include <linux/init.h>
25 #include <linux/bitmap.h>
26 #include <linux/debugfs.h>
27 #include <linux/export.h>
28 #include <linux/slab.h>
29 #include <linux/irq.h>
30 #include <linux/interrupt.h>
31 #include <linux/spinlock.h>
32 #include <linux/pci.h>
33 #include <linux/dmar.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/mempool.h>
36 #include <linux/timer.h>
37 #include <linux/iova.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/syscore_ops.h>
41 #include <linux/tboot.h>
42 #include <linux/dmi.h>
43 #include <linux/pci-ats.h>
44 #include <linux/memblock.h>
45 #include <asm/irq_remapping.h>
46 #include <asm/cacheflush.h>
47 #include <asm/iommu.h>
48
49 #include "irq_remapping.h"
50 #include "pci.h"
51
52 #define ROOT_SIZE VTD_PAGE_SIZE
53 #define CONTEXT_SIZE VTD_PAGE_SIZE
54
55 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
56 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
57 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
58
59 #define IOAPIC_RANGE_START (0xfee00000)
60 #define IOAPIC_RANGE_END (0xfeefffff)
61 #define IOVA_START_ADDR (0x1000)
62
63 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
64
65 #define MAX_AGAW_WIDTH 64
66
67 #define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
68 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
69
70 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
71 to match. That way, we can use 'unsigned long' for PFNs with impunity. */
72 #define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \
73 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
74 #define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
75
76 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
77 #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
78 #define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
79
80 /* page table handling */
81 #define LEVEL_STRIDE (9)
82 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
83
84 /*
85 * This bitmap is used to advertise the page sizes our hardware support
86 * to the IOMMU core, which will then use this information to split
87 * physically contiguous memory regions it is mapping into page sizes
88 * that we support.
89 *
90 * Traditionally the IOMMU core just handed us the mappings directly,
91 * after making sure the size is an order of a 4KiB page and that the
92 * mapping has natural alignment.
93 *
94 * To retain this behavior, we currently advertise that we support
95 * all page sizes that are an order of 4KiB.
96 *
97 * If at some point we'd like to utilize the IOMMU core's new behavior,
98 * we could change this to advertise the real page sizes we support.
99 */
100 #define INTEL_IOMMU_PGSIZES (~0xFFFUL)
101
102 static inline int agaw_to_level(int agaw)
103 {
104 return agaw + 2;
105 }
106
107 static inline int agaw_to_width(int agaw)
108 {
109 return 30 + agaw * LEVEL_STRIDE;
110 }
111
112 static inline int width_to_agaw(int width)
113 {
114 return (width - 30) / LEVEL_STRIDE;
115 }
116
117 static inline unsigned int level_to_offset_bits(int level)
118 {
119 return (level - 1) * LEVEL_STRIDE;
120 }
121
122 static inline int pfn_level_offset(unsigned long pfn, int level)
123 {
124 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
125 }
126
127 static inline unsigned long level_mask(int level)
128 {
129 return -1UL << level_to_offset_bits(level);
130 }
131
132 static inline unsigned long level_size(int level)
133 {
134 return 1UL << level_to_offset_bits(level);
135 }
136
137 static inline unsigned long align_to_level(unsigned long pfn, int level)
138 {
139 return (pfn + level_size(level) - 1) & level_mask(level);
140 }
141
142 static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
143 {
144 return 1 << ((lvl - 1) * LEVEL_STRIDE);
145 }
146
147 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
148 are never going to work. */
149 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
150 {
151 return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
152 }
153
154 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
155 {
156 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
157 }
158 static inline unsigned long page_to_dma_pfn(struct page *pg)
159 {
160 return mm_to_dma_pfn(page_to_pfn(pg));
161 }
162 static inline unsigned long virt_to_dma_pfn(void *p)
163 {
164 return page_to_dma_pfn(virt_to_page(p));
165 }
166
167 /* global iommu list, set NULL for ignored DMAR units */
168 static struct intel_iommu **g_iommus;
169
170 static void __init check_tylersburg_isoch(void);
171 static int rwbf_quirk;
172
173 /*
174 * set to 1 to panic kernel if can't successfully enable VT-d
175 * (used when kernel is launched w/ TXT)
176 */
177 static int force_on = 0;
178
179 /*
180 * 0: Present
181 * 1-11: Reserved
182 * 12-63: Context Ptr (12 - (haw-1))
183 * 64-127: Reserved
184 */
185 struct root_entry {
186 u64 val;
187 u64 rsvd1;
188 };
189 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
190 static inline bool root_present(struct root_entry *root)
191 {
192 return (root->val & 1);
193 }
194 static inline void set_root_present(struct root_entry *root)
195 {
196 root->val |= 1;
197 }
198 static inline void set_root_value(struct root_entry *root, unsigned long value)
199 {
200 root->val |= value & VTD_PAGE_MASK;
201 }
202
203 static inline struct context_entry *
204 get_context_addr_from_root(struct root_entry *root)
205 {
206 return (struct context_entry *)
207 (root_present(root)?phys_to_virt(
208 root->val & VTD_PAGE_MASK) :
209 NULL);
210 }
211
212 /*
213 * low 64 bits:
214 * 0: present
215 * 1: fault processing disable
216 * 2-3: translation type
217 * 12-63: address space root
218 * high 64 bits:
219 * 0-2: address width
220 * 3-6: aval
221 * 8-23: domain id
222 */
223 struct context_entry {
224 u64 lo;
225 u64 hi;
226 };
227
228 static inline bool context_present(struct context_entry *context)
229 {
230 return (context->lo & 1);
231 }
232 static inline void context_set_present(struct context_entry *context)
233 {
234 context->lo |= 1;
235 }
236
237 static inline void context_set_fault_enable(struct context_entry *context)
238 {
239 context->lo &= (((u64)-1) << 2) | 1;
240 }
241
242 static inline void context_set_translation_type(struct context_entry *context,
243 unsigned long value)
244 {
245 context->lo &= (((u64)-1) << 4) | 3;
246 context->lo |= (value & 3) << 2;
247 }
248
249 static inline void context_set_address_root(struct context_entry *context,
250 unsigned long value)
251 {
252 context->lo |= value & VTD_PAGE_MASK;
253 }
254
255 static inline void context_set_address_width(struct context_entry *context,
256 unsigned long value)
257 {
258 context->hi |= value & 7;
259 }
260
261 static inline void context_set_domain_id(struct context_entry *context,
262 unsigned long value)
263 {
264 context->hi |= (value & ((1 << 16) - 1)) << 8;
265 }
266
267 static inline void context_clear_entry(struct context_entry *context)
268 {
269 context->lo = 0;
270 context->hi = 0;
271 }
272
273 /*
274 * 0: readable
275 * 1: writable
276 * 2-6: reserved
277 * 7: super page
278 * 8-10: available
279 * 11: snoop behavior
280 * 12-63: Host physcial address
281 */
282 struct dma_pte {
283 u64 val;
284 };
285
286 static inline void dma_clear_pte(struct dma_pte *pte)
287 {
288 pte->val = 0;
289 }
290
291 static inline void dma_set_pte_readable(struct dma_pte *pte)
292 {
293 pte->val |= DMA_PTE_READ;
294 }
295
296 static inline void dma_set_pte_writable(struct dma_pte *pte)
297 {
298 pte->val |= DMA_PTE_WRITE;
299 }
300
301 static inline void dma_set_pte_snp(struct dma_pte *pte)
302 {
303 pte->val |= DMA_PTE_SNP;
304 }
305
306 static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot)
307 {
308 pte->val = (pte->val & ~3) | (prot & 3);
309 }
310
311 static inline u64 dma_pte_addr(struct dma_pte *pte)
312 {
313 #ifdef CONFIG_64BIT
314 return pte->val & VTD_PAGE_MASK;
315 #else
316 /* Must have a full atomic 64-bit read */
317 return __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
318 #endif
319 }
320
321 static inline void dma_set_pte_pfn(struct dma_pte *pte, unsigned long pfn)
322 {
323 pte->val |= (uint64_t)pfn << VTD_PAGE_SHIFT;
324 }
325
326 static inline bool dma_pte_present(struct dma_pte *pte)
327 {
328 return (pte->val & 3) != 0;
329 }
330
331 static inline bool dma_pte_superpage(struct dma_pte *pte)
332 {
333 return (pte->val & (1 << 7));
334 }
335
336 static inline int first_pte_in_page(struct dma_pte *pte)
337 {
338 return !((unsigned long)pte & ~VTD_PAGE_MASK);
339 }
340
341 /*
342 * This domain is a statically identity mapping domain.
343 * 1. This domain creats a static 1:1 mapping to all usable memory.
344 * 2. It maps to each iommu if successful.
345 * 3. Each iommu mapps to this domain if successful.
346 */
347 static struct dmar_domain *si_domain;
348 static int hw_pass_through = 1;
349
350 /* devices under the same p2p bridge are owned in one domain */
351 #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
352
353 /* domain represents a virtual machine, more than one devices
354 * across iommus may be owned in one domain, e.g. kvm guest.
355 */
356 #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 1)
357
358 /* si_domain contains mulitple devices */
359 #define DOMAIN_FLAG_STATIC_IDENTITY (1 << 2)
360
361 /* define the limit of IOMMUs supported in each domain */
362 #ifdef CONFIG_X86
363 # define IOMMU_UNITS_SUPPORTED MAX_IO_APICS
364 #else
365 # define IOMMU_UNITS_SUPPORTED 64
366 #endif
367
368 struct dmar_domain {
369 int id; /* domain id */
370 int nid; /* node id */
371 DECLARE_BITMAP(iommu_bmp, IOMMU_UNITS_SUPPORTED);
372 /* bitmap of iommus this domain uses*/
373
374 struct list_head devices; /* all devices' list */
375 struct iova_domain iovad; /* iova's that belong to this domain */
376
377 struct dma_pte *pgd; /* virtual address */
378 int gaw; /* max guest address width */
379
380 /* adjusted guest address width, 0 is level 2 30-bit */
381 int agaw;
382
383 int flags; /* flags to find out type of domain */
384
385 int iommu_coherency;/* indicate coherency of iommu access */
386 int iommu_snooping; /* indicate snooping control feature*/
387 int iommu_count; /* reference count of iommu */
388 int iommu_superpage;/* Level of superpages supported:
389 0 == 4KiB (no superpages), 1 == 2MiB,
390 2 == 1GiB, 3 == 512GiB, 4 == 1TiB */
391 spinlock_t iommu_lock; /* protect iommu set in domain */
392 u64 max_addr; /* maximum mapped address */
393 };
394
395 /* PCI domain-device relationship */
396 struct device_domain_info {
397 struct list_head link; /* link to domain siblings */
398 struct list_head global; /* link to global list */
399 int segment; /* PCI domain */
400 u8 bus; /* PCI bus number */
401 u8 devfn; /* PCI devfn number */
402 struct pci_dev *dev; /* it's NULL for PCIe-to-PCI bridge */
403 struct intel_iommu *iommu; /* IOMMU used by this device */
404 struct dmar_domain *domain; /* pointer to domain */
405 };
406
407 static void flush_unmaps_timeout(unsigned long data);
408
409 DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0);
410
411 #define HIGH_WATER_MARK 250
412 struct deferred_flush_tables {
413 int next;
414 struct iova *iova[HIGH_WATER_MARK];
415 struct dmar_domain *domain[HIGH_WATER_MARK];
416 };
417
418 static struct deferred_flush_tables *deferred_flush;
419
420 /* bitmap for indexing intel_iommus */
421 static int g_num_of_iommus;
422
423 static DEFINE_SPINLOCK(async_umap_flush_lock);
424 static LIST_HEAD(unmaps_to_do);
425
426 static int timer_on;
427 static long list_size;
428
429 static void domain_remove_dev_info(struct dmar_domain *domain);
430
431 #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
432 int dmar_disabled = 0;
433 #else
434 int dmar_disabled = 1;
435 #endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
436
437 int intel_iommu_enabled = 0;
438 EXPORT_SYMBOL_GPL(intel_iommu_enabled);
439
440 static int dmar_map_gfx = 1;
441 static int dmar_forcedac;
442 static int intel_iommu_strict;
443 static int intel_iommu_superpage = 1;
444
445 int intel_iommu_gfx_mapped;
446 EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
447
448 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
449 static DEFINE_SPINLOCK(device_domain_lock);
450 static LIST_HEAD(device_domain_list);
451
452 static struct iommu_ops intel_iommu_ops;
453
454 static int __init intel_iommu_setup(char *str)
455 {
456 if (!str)
457 return -EINVAL;
458 while (*str) {
459 if (!strncmp(str, "on", 2)) {
460 dmar_disabled = 0;
461 printk(KERN_INFO "Intel-IOMMU: enabled\n");
462 } else if (!strncmp(str, "off", 3)) {
463 dmar_disabled = 1;
464 printk(KERN_INFO "Intel-IOMMU: disabled\n");
465 } else if (!strncmp(str, "igfx_off", 8)) {
466 dmar_map_gfx = 0;
467 printk(KERN_INFO
468 "Intel-IOMMU: disable GFX device mapping\n");
469 } else if (!strncmp(str, "forcedac", 8)) {
470 printk(KERN_INFO
471 "Intel-IOMMU: Forcing DAC for PCI devices\n");
472 dmar_forcedac = 1;
473 } else if (!strncmp(str, "strict", 6)) {
474 printk(KERN_INFO
475 "Intel-IOMMU: disable batched IOTLB flush\n");
476 intel_iommu_strict = 1;
477 } else if (!strncmp(str, "sp_off", 6)) {
478 printk(KERN_INFO
479 "Intel-IOMMU: disable supported super page\n");
480 intel_iommu_superpage = 0;
481 }
482
483 str += strcspn(str, ",");
484 while (*str == ',')
485 str++;
486 }
487 return 0;
488 }
489 __setup("intel_iommu=", intel_iommu_setup);
490
491 static struct kmem_cache *iommu_domain_cache;
492 static struct kmem_cache *iommu_devinfo_cache;
493 static struct kmem_cache *iommu_iova_cache;
494
495 static inline void *alloc_pgtable_page(int node)
496 {
497 struct page *page;
498 void *vaddr = NULL;
499
500 page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
501 if (page)
502 vaddr = page_address(page);
503 return vaddr;
504 }
505
506 static inline void free_pgtable_page(void *vaddr)
507 {
508 free_page((unsigned long)vaddr);
509 }
510
511 static inline void *alloc_domain_mem(void)
512 {
513 return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
514 }
515
516 static void free_domain_mem(void *vaddr)
517 {
518 kmem_cache_free(iommu_domain_cache, vaddr);
519 }
520
521 static inline void * alloc_devinfo_mem(void)
522 {
523 return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
524 }
525
526 static inline void free_devinfo_mem(void *vaddr)
527 {
528 kmem_cache_free(iommu_devinfo_cache, vaddr);
529 }
530
531 struct iova *alloc_iova_mem(void)
532 {
533 return kmem_cache_alloc(iommu_iova_cache, GFP_ATOMIC);
534 }
535
536 void free_iova_mem(struct iova *iova)
537 {
538 kmem_cache_free(iommu_iova_cache, iova);
539 }
540
541
542 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
543 {
544 unsigned long sagaw;
545 int agaw = -1;
546
547 sagaw = cap_sagaw(iommu->cap);
548 for (agaw = width_to_agaw(max_gaw);
549 agaw >= 0; agaw--) {
550 if (test_bit(agaw, &sagaw))
551 break;
552 }
553
554 return agaw;
555 }
556
557 /*
558 * Calculate max SAGAW for each iommu.
559 */
560 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
561 {
562 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
563 }
564
565 /*
566 * calculate agaw for each iommu.
567 * "SAGAW" may be different across iommus, use a default agaw, and
568 * get a supported less agaw for iommus that don't support the default agaw.
569 */
570 int iommu_calculate_agaw(struct intel_iommu *iommu)
571 {
572 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
573 }
574
575 /* This functionin only returns single iommu in a domain */
576 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
577 {
578 int iommu_id;
579
580 /* si_domain and vm domain should not get here. */
581 BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
582 BUG_ON(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY);
583
584 iommu_id = find_first_bit(domain->iommu_bmp, g_num_of_iommus);
585 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
586 return NULL;
587
588 return g_iommus[iommu_id];
589 }
590
591 static void domain_update_iommu_coherency(struct dmar_domain *domain)
592 {
593 int i;
594
595 i = find_first_bit(domain->iommu_bmp, g_num_of_iommus);
596
597 domain->iommu_coherency = i < g_num_of_iommus ? 1 : 0;
598
599 for_each_set_bit(i, domain->iommu_bmp, g_num_of_iommus) {
600 if (!ecap_coherent(g_iommus[i]->ecap)) {
601 domain->iommu_coherency = 0;
602 break;
603 }
604 }
605 }
606
607 static void domain_update_iommu_snooping(struct dmar_domain *domain)
608 {
609 int i;
610
611 domain->iommu_snooping = 1;
612
613 for_each_set_bit(i, domain->iommu_bmp, g_num_of_iommus) {
614 if (!ecap_sc_support(g_iommus[i]->ecap)) {
615 domain->iommu_snooping = 0;
616 break;
617 }
618 }
619 }
620
621 static void domain_update_iommu_superpage(struct dmar_domain *domain)
622 {
623 struct dmar_drhd_unit *drhd;
624 struct intel_iommu *iommu = NULL;
625 int mask = 0xf;
626
627 if (!intel_iommu_superpage) {
628 domain->iommu_superpage = 0;
629 return;
630 }
631
632 /* set iommu_superpage to the smallest common denominator */
633 for_each_active_iommu(iommu, drhd) {
634 mask &= cap_super_page_val(iommu->cap);
635 if (!mask) {
636 break;
637 }
638 }
639 domain->iommu_superpage = fls(mask);
640 }
641
642 /* Some capabilities may be different across iommus */
643 static void domain_update_iommu_cap(struct dmar_domain *domain)
644 {
645 domain_update_iommu_coherency(domain);
646 domain_update_iommu_snooping(domain);
647 domain_update_iommu_superpage(domain);
648 }
649
650 static struct intel_iommu *device_to_iommu(int segment, u8 bus, u8 devfn)
651 {
652 struct dmar_drhd_unit *drhd = NULL;
653 int i;
654
655 for_each_drhd_unit(drhd) {
656 if (drhd->ignored)
657 continue;
658 if (segment != drhd->segment)
659 continue;
660
661 for (i = 0; i < drhd->devices_cnt; i++) {
662 if (drhd->devices[i] &&
663 drhd->devices[i]->bus->number == bus &&
664 drhd->devices[i]->devfn == devfn)
665 return drhd->iommu;
666 if (drhd->devices[i] &&
667 drhd->devices[i]->subordinate &&
668 drhd->devices[i]->subordinate->number <= bus &&
669 drhd->devices[i]->subordinate->busn_res.end >= bus)
670 return drhd->iommu;
671 }
672
673 if (drhd->include_all)
674 return drhd->iommu;
675 }
676
677 return NULL;
678 }
679
680 static void domain_flush_cache(struct dmar_domain *domain,
681 void *addr, int size)
682 {
683 if (!domain->iommu_coherency)
684 clflush_cache_range(addr, size);
685 }
686
687 /* Gets context entry for a given bus and devfn */
688 static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
689 u8 bus, u8 devfn)
690 {
691 struct root_entry *root;
692 struct context_entry *context;
693 unsigned long phy_addr;
694 unsigned long flags;
695
696 spin_lock_irqsave(&iommu->lock, flags);
697 root = &iommu->root_entry[bus];
698 context = get_context_addr_from_root(root);
699 if (!context) {
700 context = (struct context_entry *)
701 alloc_pgtable_page(iommu->node);
702 if (!context) {
703 spin_unlock_irqrestore(&iommu->lock, flags);
704 return NULL;
705 }
706 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
707 phy_addr = virt_to_phys((void *)context);
708 set_root_value(root, phy_addr);
709 set_root_present(root);
710 __iommu_flush_cache(iommu, root, sizeof(*root));
711 }
712 spin_unlock_irqrestore(&iommu->lock, flags);
713 return &context[devfn];
714 }
715
716 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
717 {
718 struct root_entry *root;
719 struct context_entry *context;
720 int ret;
721 unsigned long flags;
722
723 spin_lock_irqsave(&iommu->lock, flags);
724 root = &iommu->root_entry[bus];
725 context = get_context_addr_from_root(root);
726 if (!context) {
727 ret = 0;
728 goto out;
729 }
730 ret = context_present(&context[devfn]);
731 out:
732 spin_unlock_irqrestore(&iommu->lock, flags);
733 return ret;
734 }
735
736 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
737 {
738 struct root_entry *root;
739 struct context_entry *context;
740 unsigned long flags;
741
742 spin_lock_irqsave(&iommu->lock, flags);
743 root = &iommu->root_entry[bus];
744 context = get_context_addr_from_root(root);
745 if (context) {
746 context_clear_entry(&context[devfn]);
747 __iommu_flush_cache(iommu, &context[devfn], \
748 sizeof(*context));
749 }
750 spin_unlock_irqrestore(&iommu->lock, flags);
751 }
752
753 static void free_context_table(struct intel_iommu *iommu)
754 {
755 struct root_entry *root;
756 int i;
757 unsigned long flags;
758 struct context_entry *context;
759
760 spin_lock_irqsave(&iommu->lock, flags);
761 if (!iommu->root_entry) {
762 goto out;
763 }
764 for (i = 0; i < ROOT_ENTRY_NR; i++) {
765 root = &iommu->root_entry[i];
766 context = get_context_addr_from_root(root);
767 if (context)
768 free_pgtable_page(context);
769 }
770 free_pgtable_page(iommu->root_entry);
771 iommu->root_entry = NULL;
772 out:
773 spin_unlock_irqrestore(&iommu->lock, flags);
774 }
775
776 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
777 unsigned long pfn, int target_level)
778 {
779 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
780 struct dma_pte *parent, *pte = NULL;
781 int level = agaw_to_level(domain->agaw);
782 int offset;
783
784 BUG_ON(!domain->pgd);
785 BUG_ON(addr_width < BITS_PER_LONG && pfn >> addr_width);
786 parent = domain->pgd;
787
788 while (level > 0) {
789 void *tmp_page;
790
791 offset = pfn_level_offset(pfn, level);
792 pte = &parent[offset];
793 if (!target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
794 break;
795 if (level == target_level)
796 break;
797
798 if (!dma_pte_present(pte)) {
799 uint64_t pteval;
800
801 tmp_page = alloc_pgtable_page(domain->nid);
802
803 if (!tmp_page)
804 return NULL;
805
806 domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
807 pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
808 if (cmpxchg64(&pte->val, 0ULL, pteval)) {
809 /* Someone else set it while we were thinking; use theirs. */
810 free_pgtable_page(tmp_page);
811 } else {
812 dma_pte_addr(pte);
813 domain_flush_cache(domain, pte, sizeof(*pte));
814 }
815 }
816 parent = phys_to_virt(dma_pte_addr(pte));
817 level--;
818 }
819
820 return pte;
821 }
822
823
824 /* return address's pte at specific level */
825 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
826 unsigned long pfn,
827 int level, int *large_page)
828 {
829 struct dma_pte *parent, *pte = NULL;
830 int total = agaw_to_level(domain->agaw);
831 int offset;
832
833 parent = domain->pgd;
834 while (level <= total) {
835 offset = pfn_level_offset(pfn, total);
836 pte = &parent[offset];
837 if (level == total)
838 return pte;
839
840 if (!dma_pte_present(pte)) {
841 *large_page = total;
842 break;
843 }
844
845 if (pte->val & DMA_PTE_LARGE_PAGE) {
846 *large_page = total;
847 return pte;
848 }
849
850 parent = phys_to_virt(dma_pte_addr(pte));
851 total--;
852 }
853 return NULL;
854 }
855
856 /* clear last level pte, a tlb flush should be followed */
857 static int dma_pte_clear_range(struct dmar_domain *domain,
858 unsigned long start_pfn,
859 unsigned long last_pfn)
860 {
861 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
862 unsigned int large_page = 1;
863 struct dma_pte *first_pte, *pte;
864 int order;
865
866 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
867 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
868 BUG_ON(start_pfn > last_pfn);
869
870 /* we don't need lock here; nobody else touches the iova range */
871 do {
872 large_page = 1;
873 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
874 if (!pte) {
875 start_pfn = align_to_level(start_pfn + 1, large_page + 1);
876 continue;
877 }
878 do {
879 dma_clear_pte(pte);
880 start_pfn += lvl_to_nr_pages(large_page);
881 pte++;
882 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
883
884 domain_flush_cache(domain, first_pte,
885 (void *)pte - (void *)first_pte);
886
887 } while (start_pfn && start_pfn <= last_pfn);
888
889 order = (large_page - 1) * 9;
890 return order;
891 }
892
893 static void dma_pte_free_level(struct dmar_domain *domain, int level,
894 struct dma_pte *pte, unsigned long pfn,
895 unsigned long start_pfn, unsigned long last_pfn)
896 {
897 pfn = max(start_pfn, pfn);
898 pte = &pte[pfn_level_offset(pfn, level)];
899
900 do {
901 unsigned long level_pfn;
902 struct dma_pte *level_pte;
903
904 if (!dma_pte_present(pte) || dma_pte_superpage(pte))
905 goto next;
906
907 level_pfn = pfn & level_mask(level - 1);
908 level_pte = phys_to_virt(dma_pte_addr(pte));
909
910 if (level > 2)
911 dma_pte_free_level(domain, level - 1, level_pte,
912 level_pfn, start_pfn, last_pfn);
913
914 /* If range covers entire pagetable, free it */
915 if (!(start_pfn > level_pfn ||
916 last_pfn < level_pfn + level_size(level))) {
917 dma_clear_pte(pte);
918 domain_flush_cache(domain, pte, sizeof(*pte));
919 free_pgtable_page(level_pte);
920 }
921 next:
922 pfn += level_size(level);
923 } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
924 }
925
926 /* free page table pages. last level pte should already be cleared */
927 static void dma_pte_free_pagetable(struct dmar_domain *domain,
928 unsigned long start_pfn,
929 unsigned long last_pfn)
930 {
931 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
932
933 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
934 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
935 BUG_ON(start_pfn > last_pfn);
936
937 /* We don't need lock here; nobody else touches the iova range */
938 dma_pte_free_level(domain, agaw_to_level(domain->agaw),
939 domain->pgd, 0, start_pfn, last_pfn);
940
941 /* free pgd */
942 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
943 free_pgtable_page(domain->pgd);
944 domain->pgd = NULL;
945 }
946 }
947
948 /* iommu handling */
949 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
950 {
951 struct root_entry *root;
952 unsigned long flags;
953
954 root = (struct root_entry *)alloc_pgtable_page(iommu->node);
955 if (!root)
956 return -ENOMEM;
957
958 __iommu_flush_cache(iommu, root, ROOT_SIZE);
959
960 spin_lock_irqsave(&iommu->lock, flags);
961 iommu->root_entry = root;
962 spin_unlock_irqrestore(&iommu->lock, flags);
963
964 return 0;
965 }
966
967 static void iommu_set_root_entry(struct intel_iommu *iommu)
968 {
969 void *addr;
970 u32 sts;
971 unsigned long flag;
972
973 addr = iommu->root_entry;
974
975 raw_spin_lock_irqsave(&iommu->register_lock, flag);
976 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
977
978 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
979
980 /* Make sure hardware complete it */
981 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
982 readl, (sts & DMA_GSTS_RTPS), sts);
983
984 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
985 }
986
987 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
988 {
989 u32 val;
990 unsigned long flag;
991
992 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
993 return;
994
995 raw_spin_lock_irqsave(&iommu->register_lock, flag);
996 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
997
998 /* Make sure hardware complete it */
999 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1000 readl, (!(val & DMA_GSTS_WBFS)), val);
1001
1002 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1003 }
1004
1005 /* return value determine if we need a write buffer flush */
1006 static void __iommu_flush_context(struct intel_iommu *iommu,
1007 u16 did, u16 source_id, u8 function_mask,
1008 u64 type)
1009 {
1010 u64 val = 0;
1011 unsigned long flag;
1012
1013 switch (type) {
1014 case DMA_CCMD_GLOBAL_INVL:
1015 val = DMA_CCMD_GLOBAL_INVL;
1016 break;
1017 case DMA_CCMD_DOMAIN_INVL:
1018 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
1019 break;
1020 case DMA_CCMD_DEVICE_INVL:
1021 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
1022 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
1023 break;
1024 default:
1025 BUG();
1026 }
1027 val |= DMA_CCMD_ICC;
1028
1029 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1030 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1031
1032 /* Make sure hardware complete it */
1033 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1034 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1035
1036 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1037 }
1038
1039 /* return value determine if we need a write buffer flush */
1040 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1041 u64 addr, unsigned int size_order, u64 type)
1042 {
1043 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1044 u64 val = 0, val_iva = 0;
1045 unsigned long flag;
1046
1047 switch (type) {
1048 case DMA_TLB_GLOBAL_FLUSH:
1049 /* global flush doesn't need set IVA_REG */
1050 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1051 break;
1052 case DMA_TLB_DSI_FLUSH:
1053 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1054 break;
1055 case DMA_TLB_PSI_FLUSH:
1056 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1057 /* Note: always flush non-leaf currently */
1058 val_iva = size_order | addr;
1059 break;
1060 default:
1061 BUG();
1062 }
1063 /* Note: set drain read/write */
1064 #if 0
1065 /*
1066 * This is probably to be super secure.. Looks like we can
1067 * ignore it without any impact.
1068 */
1069 if (cap_read_drain(iommu->cap))
1070 val |= DMA_TLB_READ_DRAIN;
1071 #endif
1072 if (cap_write_drain(iommu->cap))
1073 val |= DMA_TLB_WRITE_DRAIN;
1074
1075 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1076 /* Note: Only uses first TLB reg currently */
1077 if (val_iva)
1078 dmar_writeq(iommu->reg + tlb_offset, val_iva);
1079 dmar_writeq(iommu->reg + tlb_offset + 8, val);
1080
1081 /* Make sure hardware complete it */
1082 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1083 dmar_readq, (!(val & DMA_TLB_IVT)), val);
1084
1085 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1086
1087 /* check IOTLB invalidation granularity */
1088 if (DMA_TLB_IAIG(val) == 0)
1089 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
1090 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1091 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
1092 (unsigned long long)DMA_TLB_IIRG(type),
1093 (unsigned long long)DMA_TLB_IAIG(val));
1094 }
1095
1096 static struct device_domain_info *iommu_support_dev_iotlb(
1097 struct dmar_domain *domain, int segment, u8 bus, u8 devfn)
1098 {
1099 int found = 0;
1100 unsigned long flags;
1101 struct device_domain_info *info;
1102 struct intel_iommu *iommu = device_to_iommu(segment, bus, devfn);
1103
1104 if (!ecap_dev_iotlb_support(iommu->ecap))
1105 return NULL;
1106
1107 if (!iommu->qi)
1108 return NULL;
1109
1110 spin_lock_irqsave(&device_domain_lock, flags);
1111 list_for_each_entry(info, &domain->devices, link)
1112 if (info->bus == bus && info->devfn == devfn) {
1113 found = 1;
1114 break;
1115 }
1116 spin_unlock_irqrestore(&device_domain_lock, flags);
1117
1118 if (!found || !info->dev)
1119 return NULL;
1120
1121 if (!pci_find_ext_capability(info->dev, PCI_EXT_CAP_ID_ATS))
1122 return NULL;
1123
1124 if (!dmar_find_matched_atsr_unit(info->dev))
1125 return NULL;
1126
1127 info->iommu = iommu;
1128
1129 return info;
1130 }
1131
1132 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1133 {
1134 if (!info)
1135 return;
1136
1137 pci_enable_ats(info->dev, VTD_PAGE_SHIFT);
1138 }
1139
1140 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1141 {
1142 if (!info->dev || !pci_ats_enabled(info->dev))
1143 return;
1144
1145 pci_disable_ats(info->dev);
1146 }
1147
1148 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1149 u64 addr, unsigned mask)
1150 {
1151 u16 sid, qdep;
1152 unsigned long flags;
1153 struct device_domain_info *info;
1154
1155 spin_lock_irqsave(&device_domain_lock, flags);
1156 list_for_each_entry(info, &domain->devices, link) {
1157 if (!info->dev || !pci_ats_enabled(info->dev))
1158 continue;
1159
1160 sid = info->bus << 8 | info->devfn;
1161 qdep = pci_ats_queue_depth(info->dev);
1162 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1163 }
1164 spin_unlock_irqrestore(&device_domain_lock, flags);
1165 }
1166
1167 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
1168 unsigned long pfn, unsigned int pages, int map)
1169 {
1170 unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1171 uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1172
1173 BUG_ON(pages == 0);
1174
1175 /*
1176 * Fallback to domain selective flush if no PSI support or the size is
1177 * too big.
1178 * PSI requires page size to be 2 ^ x, and the base address is naturally
1179 * aligned to the size
1180 */
1181 if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1182 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1183 DMA_TLB_DSI_FLUSH);
1184 else
1185 iommu->flush.flush_iotlb(iommu, did, addr, mask,
1186 DMA_TLB_PSI_FLUSH);
1187
1188 /*
1189 * In caching mode, changes of pages from non-present to present require
1190 * flush. However, device IOTLB doesn't need to be flushed in this case.
1191 */
1192 if (!cap_caching_mode(iommu->cap) || !map)
1193 iommu_flush_dev_iotlb(iommu->domains[did], addr, mask);
1194 }
1195
1196 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1197 {
1198 u32 pmen;
1199 unsigned long flags;
1200
1201 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1202 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1203 pmen &= ~DMA_PMEN_EPM;
1204 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1205
1206 /* wait for the protected region status bit to clear */
1207 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1208 readl, !(pmen & DMA_PMEN_PRS), pmen);
1209
1210 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1211 }
1212
1213 static int iommu_enable_translation(struct intel_iommu *iommu)
1214 {
1215 u32 sts;
1216 unsigned long flags;
1217
1218 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1219 iommu->gcmd |= DMA_GCMD_TE;
1220 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1221
1222 /* Make sure hardware complete it */
1223 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1224 readl, (sts & DMA_GSTS_TES), sts);
1225
1226 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1227 return 0;
1228 }
1229
1230 static int iommu_disable_translation(struct intel_iommu *iommu)
1231 {
1232 u32 sts;
1233 unsigned long flag;
1234
1235 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1236 iommu->gcmd &= ~DMA_GCMD_TE;
1237 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1238
1239 /* Make sure hardware complete it */
1240 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1241 readl, (!(sts & DMA_GSTS_TES)), sts);
1242
1243 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1244 return 0;
1245 }
1246
1247
1248 static int iommu_init_domains(struct intel_iommu *iommu)
1249 {
1250 unsigned long ndomains;
1251 unsigned long nlongs;
1252
1253 ndomains = cap_ndoms(iommu->cap);
1254 pr_debug("IOMMU %d: Number of Domains supported <%ld>\n", iommu->seq_id,
1255 ndomains);
1256 nlongs = BITS_TO_LONGS(ndomains);
1257
1258 spin_lock_init(&iommu->lock);
1259
1260 /* TBD: there might be 64K domains,
1261 * consider other allocation for future chip
1262 */
1263 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1264 if (!iommu->domain_ids) {
1265 printk(KERN_ERR "Allocating domain id array failed\n");
1266 return -ENOMEM;
1267 }
1268 iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1269 GFP_KERNEL);
1270 if (!iommu->domains) {
1271 printk(KERN_ERR "Allocating domain array failed\n");
1272 return -ENOMEM;
1273 }
1274
1275 /*
1276 * if Caching mode is set, then invalid translations are tagged
1277 * with domainid 0. Hence we need to pre-allocate it.
1278 */
1279 if (cap_caching_mode(iommu->cap))
1280 set_bit(0, iommu->domain_ids);
1281 return 0;
1282 }
1283
1284
1285 static void domain_exit(struct dmar_domain *domain);
1286 static void vm_domain_exit(struct dmar_domain *domain);
1287
1288 void free_dmar_iommu(struct intel_iommu *iommu)
1289 {
1290 struct dmar_domain *domain;
1291 int i;
1292 unsigned long flags;
1293
1294 if ((iommu->domains) && (iommu->domain_ids)) {
1295 for_each_set_bit(i, iommu->domain_ids, cap_ndoms(iommu->cap)) {
1296 domain = iommu->domains[i];
1297 clear_bit(i, iommu->domain_ids);
1298
1299 spin_lock_irqsave(&domain->iommu_lock, flags);
1300 if (--domain->iommu_count == 0) {
1301 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
1302 vm_domain_exit(domain);
1303 else
1304 domain_exit(domain);
1305 }
1306 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1307 }
1308 }
1309
1310 if (iommu->gcmd & DMA_GCMD_TE)
1311 iommu_disable_translation(iommu);
1312
1313 if (iommu->irq) {
1314 irq_set_handler_data(iommu->irq, NULL);
1315 /* This will mask the irq */
1316 free_irq(iommu->irq, iommu);
1317 destroy_irq(iommu->irq);
1318 }
1319
1320 kfree(iommu->domains);
1321 kfree(iommu->domain_ids);
1322
1323 g_iommus[iommu->seq_id] = NULL;
1324
1325 /* if all iommus are freed, free g_iommus */
1326 for (i = 0; i < g_num_of_iommus; i++) {
1327 if (g_iommus[i])
1328 break;
1329 }
1330
1331 if (i == g_num_of_iommus)
1332 kfree(g_iommus);
1333
1334 /* free context mapping */
1335 free_context_table(iommu);
1336 }
1337
1338 static struct dmar_domain *alloc_domain(void)
1339 {
1340 struct dmar_domain *domain;
1341
1342 domain = alloc_domain_mem();
1343 if (!domain)
1344 return NULL;
1345
1346 domain->nid = -1;
1347 memset(domain->iommu_bmp, 0, sizeof(domain->iommu_bmp));
1348 domain->flags = 0;
1349
1350 return domain;
1351 }
1352
1353 static int iommu_attach_domain(struct dmar_domain *domain,
1354 struct intel_iommu *iommu)
1355 {
1356 int num;
1357 unsigned long ndomains;
1358 unsigned long flags;
1359
1360 ndomains = cap_ndoms(iommu->cap);
1361
1362 spin_lock_irqsave(&iommu->lock, flags);
1363
1364 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1365 if (num >= ndomains) {
1366 spin_unlock_irqrestore(&iommu->lock, flags);
1367 printk(KERN_ERR "IOMMU: no free domain ids\n");
1368 return -ENOMEM;
1369 }
1370
1371 domain->id = num;
1372 set_bit(num, iommu->domain_ids);
1373 set_bit(iommu->seq_id, domain->iommu_bmp);
1374 iommu->domains[num] = domain;
1375 spin_unlock_irqrestore(&iommu->lock, flags);
1376
1377 return 0;
1378 }
1379
1380 static void iommu_detach_domain(struct dmar_domain *domain,
1381 struct intel_iommu *iommu)
1382 {
1383 unsigned long flags;
1384 int num, ndomains;
1385 int found = 0;
1386
1387 spin_lock_irqsave(&iommu->lock, flags);
1388 ndomains = cap_ndoms(iommu->cap);
1389 for_each_set_bit(num, iommu->domain_ids, ndomains) {
1390 if (iommu->domains[num] == domain) {
1391 found = 1;
1392 break;
1393 }
1394 }
1395
1396 if (found) {
1397 clear_bit(num, iommu->domain_ids);
1398 clear_bit(iommu->seq_id, domain->iommu_bmp);
1399 iommu->domains[num] = NULL;
1400 }
1401 spin_unlock_irqrestore(&iommu->lock, flags);
1402 }
1403
1404 static struct iova_domain reserved_iova_list;
1405 static struct lock_class_key reserved_rbtree_key;
1406
1407 static int dmar_init_reserved_ranges(void)
1408 {
1409 struct pci_dev *pdev = NULL;
1410 struct iova *iova;
1411 int i;
1412
1413 init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
1414
1415 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1416 &reserved_rbtree_key);
1417
1418 /* IOAPIC ranges shouldn't be accessed by DMA */
1419 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1420 IOVA_PFN(IOAPIC_RANGE_END));
1421 if (!iova) {
1422 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1423 return -ENODEV;
1424 }
1425
1426 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1427 for_each_pci_dev(pdev) {
1428 struct resource *r;
1429
1430 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1431 r = &pdev->resource[i];
1432 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1433 continue;
1434 iova = reserve_iova(&reserved_iova_list,
1435 IOVA_PFN(r->start),
1436 IOVA_PFN(r->end));
1437 if (!iova) {
1438 printk(KERN_ERR "Reserve iova failed\n");
1439 return -ENODEV;
1440 }
1441 }
1442 }
1443 return 0;
1444 }
1445
1446 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1447 {
1448 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1449 }
1450
1451 static inline int guestwidth_to_adjustwidth(int gaw)
1452 {
1453 int agaw;
1454 int r = (gaw - 12) % 9;
1455
1456 if (r == 0)
1457 agaw = gaw;
1458 else
1459 agaw = gaw + 9 - r;
1460 if (agaw > 64)
1461 agaw = 64;
1462 return agaw;
1463 }
1464
1465 static int domain_init(struct dmar_domain *domain, int guest_width)
1466 {
1467 struct intel_iommu *iommu;
1468 int adjust_width, agaw;
1469 unsigned long sagaw;
1470
1471 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
1472 spin_lock_init(&domain->iommu_lock);
1473
1474 domain_reserve_special_ranges(domain);
1475
1476 /* calculate AGAW */
1477 iommu = domain_get_iommu(domain);
1478 if (guest_width > cap_mgaw(iommu->cap))
1479 guest_width = cap_mgaw(iommu->cap);
1480 domain->gaw = guest_width;
1481 adjust_width = guestwidth_to_adjustwidth(guest_width);
1482 agaw = width_to_agaw(adjust_width);
1483 sagaw = cap_sagaw(iommu->cap);
1484 if (!test_bit(agaw, &sagaw)) {
1485 /* hardware doesn't support it, choose a bigger one */
1486 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1487 agaw = find_next_bit(&sagaw, 5, agaw);
1488 if (agaw >= 5)
1489 return -ENODEV;
1490 }
1491 domain->agaw = agaw;
1492 INIT_LIST_HEAD(&domain->devices);
1493
1494 if (ecap_coherent(iommu->ecap))
1495 domain->iommu_coherency = 1;
1496 else
1497 domain->iommu_coherency = 0;
1498
1499 if (ecap_sc_support(iommu->ecap))
1500 domain->iommu_snooping = 1;
1501 else
1502 domain->iommu_snooping = 0;
1503
1504 domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
1505 domain->iommu_count = 1;
1506 domain->nid = iommu->node;
1507
1508 /* always allocate the top pgd */
1509 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1510 if (!domain->pgd)
1511 return -ENOMEM;
1512 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1513 return 0;
1514 }
1515
1516 static void domain_exit(struct dmar_domain *domain)
1517 {
1518 struct dmar_drhd_unit *drhd;
1519 struct intel_iommu *iommu;
1520
1521 /* Domain 0 is reserved, so dont process it */
1522 if (!domain)
1523 return;
1524
1525 /* Flush any lazy unmaps that may reference this domain */
1526 if (!intel_iommu_strict)
1527 flush_unmaps_timeout(0);
1528
1529 domain_remove_dev_info(domain);
1530 /* destroy iovas */
1531 put_iova_domain(&domain->iovad);
1532
1533 /* clear ptes */
1534 dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1535
1536 /* free page tables */
1537 dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1538
1539 for_each_active_iommu(iommu, drhd)
1540 if (test_bit(iommu->seq_id, domain->iommu_bmp))
1541 iommu_detach_domain(domain, iommu);
1542
1543 free_domain_mem(domain);
1544 }
1545
1546 static int domain_context_mapping_one(struct dmar_domain *domain, int segment,
1547 u8 bus, u8 devfn, int translation)
1548 {
1549 struct context_entry *context;
1550 unsigned long flags;
1551 struct intel_iommu *iommu;
1552 struct dma_pte *pgd;
1553 unsigned long num;
1554 unsigned long ndomains;
1555 int id;
1556 int agaw;
1557 struct device_domain_info *info = NULL;
1558
1559 pr_debug("Set context mapping for %02x:%02x.%d\n",
1560 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1561
1562 BUG_ON(!domain->pgd);
1563 BUG_ON(translation != CONTEXT_TT_PASS_THROUGH &&
1564 translation != CONTEXT_TT_MULTI_LEVEL);
1565
1566 iommu = device_to_iommu(segment, bus, devfn);
1567 if (!iommu)
1568 return -ENODEV;
1569
1570 context = device_to_context_entry(iommu, bus, devfn);
1571 if (!context)
1572 return -ENOMEM;
1573 spin_lock_irqsave(&iommu->lock, flags);
1574 if (context_present(context)) {
1575 spin_unlock_irqrestore(&iommu->lock, flags);
1576 return 0;
1577 }
1578
1579 id = domain->id;
1580 pgd = domain->pgd;
1581
1582 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
1583 domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) {
1584 int found = 0;
1585
1586 /* find an available domain id for this device in iommu */
1587 ndomains = cap_ndoms(iommu->cap);
1588 for_each_set_bit(num, iommu->domain_ids, ndomains) {
1589 if (iommu->domains[num] == domain) {
1590 id = num;
1591 found = 1;
1592 break;
1593 }
1594 }
1595
1596 if (found == 0) {
1597 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1598 if (num >= ndomains) {
1599 spin_unlock_irqrestore(&iommu->lock, flags);
1600 printk(KERN_ERR "IOMMU: no free domain ids\n");
1601 return -EFAULT;
1602 }
1603
1604 set_bit(num, iommu->domain_ids);
1605 iommu->domains[num] = domain;
1606 id = num;
1607 }
1608
1609 /* Skip top levels of page tables for
1610 * iommu which has less agaw than default.
1611 * Unnecessary for PT mode.
1612 */
1613 if (translation != CONTEXT_TT_PASS_THROUGH) {
1614 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1615 pgd = phys_to_virt(dma_pte_addr(pgd));
1616 if (!dma_pte_present(pgd)) {
1617 spin_unlock_irqrestore(&iommu->lock, flags);
1618 return -ENOMEM;
1619 }
1620 }
1621 }
1622 }
1623
1624 context_set_domain_id(context, id);
1625
1626 if (translation != CONTEXT_TT_PASS_THROUGH) {
1627 info = iommu_support_dev_iotlb(domain, segment, bus, devfn);
1628 translation = info ? CONTEXT_TT_DEV_IOTLB :
1629 CONTEXT_TT_MULTI_LEVEL;
1630 }
1631 /*
1632 * In pass through mode, AW must be programmed to indicate the largest
1633 * AGAW value supported by hardware. And ASR is ignored by hardware.
1634 */
1635 if (unlikely(translation == CONTEXT_TT_PASS_THROUGH))
1636 context_set_address_width(context, iommu->msagaw);
1637 else {
1638 context_set_address_root(context, virt_to_phys(pgd));
1639 context_set_address_width(context, iommu->agaw);
1640 }
1641
1642 context_set_translation_type(context, translation);
1643 context_set_fault_enable(context);
1644 context_set_present(context);
1645 domain_flush_cache(domain, context, sizeof(*context));
1646
1647 /*
1648 * It's a non-present to present mapping. If hardware doesn't cache
1649 * non-present entry we only need to flush the write-buffer. If the
1650 * _does_ cache non-present entries, then it does so in the special
1651 * domain #0, which we have to flush:
1652 */
1653 if (cap_caching_mode(iommu->cap)) {
1654 iommu->flush.flush_context(iommu, 0,
1655 (((u16)bus) << 8) | devfn,
1656 DMA_CCMD_MASK_NOBIT,
1657 DMA_CCMD_DEVICE_INVL);
1658 iommu->flush.flush_iotlb(iommu, domain->id, 0, 0, DMA_TLB_DSI_FLUSH);
1659 } else {
1660 iommu_flush_write_buffer(iommu);
1661 }
1662 iommu_enable_dev_iotlb(info);
1663 spin_unlock_irqrestore(&iommu->lock, flags);
1664
1665 spin_lock_irqsave(&domain->iommu_lock, flags);
1666 if (!test_and_set_bit(iommu->seq_id, domain->iommu_bmp)) {
1667 domain->iommu_count++;
1668 if (domain->iommu_count == 1)
1669 domain->nid = iommu->node;
1670 domain_update_iommu_cap(domain);
1671 }
1672 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1673 return 0;
1674 }
1675
1676 static int
1677 domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev,
1678 int translation)
1679 {
1680 int ret;
1681 struct pci_dev *tmp, *parent;
1682
1683 ret = domain_context_mapping_one(domain, pci_domain_nr(pdev->bus),
1684 pdev->bus->number, pdev->devfn,
1685 translation);
1686 if (ret)
1687 return ret;
1688
1689 /* dependent device mapping */
1690 tmp = pci_find_upstream_pcie_bridge(pdev);
1691 if (!tmp)
1692 return 0;
1693 /* Secondary interface's bus number and devfn 0 */
1694 parent = pdev->bus->self;
1695 while (parent != tmp) {
1696 ret = domain_context_mapping_one(domain,
1697 pci_domain_nr(parent->bus),
1698 parent->bus->number,
1699 parent->devfn, translation);
1700 if (ret)
1701 return ret;
1702 parent = parent->bus->self;
1703 }
1704 if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */
1705 return domain_context_mapping_one(domain,
1706 pci_domain_nr(tmp->subordinate),
1707 tmp->subordinate->number, 0,
1708 translation);
1709 else /* this is a legacy PCI bridge */
1710 return domain_context_mapping_one(domain,
1711 pci_domain_nr(tmp->bus),
1712 tmp->bus->number,
1713 tmp->devfn,
1714 translation);
1715 }
1716
1717 static int domain_context_mapped(struct pci_dev *pdev)
1718 {
1719 int ret;
1720 struct pci_dev *tmp, *parent;
1721 struct intel_iommu *iommu;
1722
1723 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
1724 pdev->devfn);
1725 if (!iommu)
1726 return -ENODEV;
1727
1728 ret = device_context_mapped(iommu, pdev->bus->number, pdev->devfn);
1729 if (!ret)
1730 return ret;
1731 /* dependent device mapping */
1732 tmp = pci_find_upstream_pcie_bridge(pdev);
1733 if (!tmp)
1734 return ret;
1735 /* Secondary interface's bus number and devfn 0 */
1736 parent = pdev->bus->self;
1737 while (parent != tmp) {
1738 ret = device_context_mapped(iommu, parent->bus->number,
1739 parent->devfn);
1740 if (!ret)
1741 return ret;
1742 parent = parent->bus->self;
1743 }
1744 if (pci_is_pcie(tmp))
1745 return device_context_mapped(iommu, tmp->subordinate->number,
1746 0);
1747 else
1748 return device_context_mapped(iommu, tmp->bus->number,
1749 tmp->devfn);
1750 }
1751
1752 /* Returns a number of VTD pages, but aligned to MM page size */
1753 static inline unsigned long aligned_nrpages(unsigned long host_addr,
1754 size_t size)
1755 {
1756 host_addr &= ~PAGE_MASK;
1757 return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
1758 }
1759
1760 /* Return largest possible superpage level for a given mapping */
1761 static inline int hardware_largepage_caps(struct dmar_domain *domain,
1762 unsigned long iov_pfn,
1763 unsigned long phy_pfn,
1764 unsigned long pages)
1765 {
1766 int support, level = 1;
1767 unsigned long pfnmerge;
1768
1769 support = domain->iommu_superpage;
1770
1771 /* To use a large page, the virtual *and* physical addresses
1772 must be aligned to 2MiB/1GiB/etc. Lower bits set in either
1773 of them will mean we have to use smaller pages. So just
1774 merge them and check both at once. */
1775 pfnmerge = iov_pfn | phy_pfn;
1776
1777 while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
1778 pages >>= VTD_STRIDE_SHIFT;
1779 if (!pages)
1780 break;
1781 pfnmerge >>= VTD_STRIDE_SHIFT;
1782 level++;
1783 support--;
1784 }
1785 return level;
1786 }
1787
1788 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1789 struct scatterlist *sg, unsigned long phys_pfn,
1790 unsigned long nr_pages, int prot)
1791 {
1792 struct dma_pte *first_pte = NULL, *pte = NULL;
1793 phys_addr_t uninitialized_var(pteval);
1794 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
1795 unsigned long sg_res;
1796 unsigned int largepage_lvl = 0;
1797 unsigned long lvl_pages = 0;
1798
1799 BUG_ON(addr_width < BITS_PER_LONG && (iov_pfn + nr_pages - 1) >> addr_width);
1800
1801 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1802 return -EINVAL;
1803
1804 prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
1805
1806 if (sg)
1807 sg_res = 0;
1808 else {
1809 sg_res = nr_pages + 1;
1810 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
1811 }
1812
1813 while (nr_pages > 0) {
1814 uint64_t tmp;
1815
1816 if (!sg_res) {
1817 sg_res = aligned_nrpages(sg->offset, sg->length);
1818 sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
1819 sg->dma_length = sg->length;
1820 pteval = page_to_phys(sg_page(sg)) | prot;
1821 phys_pfn = pteval >> VTD_PAGE_SHIFT;
1822 }
1823
1824 if (!pte) {
1825 largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
1826
1827 first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, largepage_lvl);
1828 if (!pte)
1829 return -ENOMEM;
1830 /* It is large page*/
1831 if (largepage_lvl > 1) {
1832 pteval |= DMA_PTE_LARGE_PAGE;
1833 /* Ensure that old small page tables are removed to make room
1834 for superpage, if they exist. */
1835 dma_pte_clear_range(domain, iov_pfn,
1836 iov_pfn + lvl_to_nr_pages(largepage_lvl) - 1);
1837 dma_pte_free_pagetable(domain, iov_pfn,
1838 iov_pfn + lvl_to_nr_pages(largepage_lvl) - 1);
1839 } else {
1840 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
1841 }
1842
1843 }
1844 /* We don't need lock here, nobody else
1845 * touches the iova range
1846 */
1847 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
1848 if (tmp) {
1849 static int dumps = 5;
1850 printk(KERN_CRIT "ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
1851 iov_pfn, tmp, (unsigned long long)pteval);
1852 if (dumps) {
1853 dumps--;
1854 debug_dma_dump_mappings(NULL);
1855 }
1856 WARN_ON(1);
1857 }
1858
1859 lvl_pages = lvl_to_nr_pages(largepage_lvl);
1860
1861 BUG_ON(nr_pages < lvl_pages);
1862 BUG_ON(sg_res < lvl_pages);
1863
1864 nr_pages -= lvl_pages;
1865 iov_pfn += lvl_pages;
1866 phys_pfn += lvl_pages;
1867 pteval += lvl_pages * VTD_PAGE_SIZE;
1868 sg_res -= lvl_pages;
1869
1870 /* If the next PTE would be the first in a new page, then we
1871 need to flush the cache on the entries we've just written.
1872 And then we'll need to recalculate 'pte', so clear it and
1873 let it get set again in the if (!pte) block above.
1874
1875 If we're done (!nr_pages) we need to flush the cache too.
1876
1877 Also if we've been setting superpages, we may need to
1878 recalculate 'pte' and switch back to smaller pages for the
1879 end of the mapping, if the trailing size is not enough to
1880 use another superpage (i.e. sg_res < lvl_pages). */
1881 pte++;
1882 if (!nr_pages || first_pte_in_page(pte) ||
1883 (largepage_lvl > 1 && sg_res < lvl_pages)) {
1884 domain_flush_cache(domain, first_pte,
1885 (void *)pte - (void *)first_pte);
1886 pte = NULL;
1887 }
1888
1889 if (!sg_res && nr_pages)
1890 sg = sg_next(sg);
1891 }
1892 return 0;
1893 }
1894
1895 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1896 struct scatterlist *sg, unsigned long nr_pages,
1897 int prot)
1898 {
1899 return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
1900 }
1901
1902 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1903 unsigned long phys_pfn, unsigned long nr_pages,
1904 int prot)
1905 {
1906 return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
1907 }
1908
1909 static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
1910 {
1911 if (!iommu)
1912 return;
1913
1914 clear_context_table(iommu, bus, devfn);
1915 iommu->flush.flush_context(iommu, 0, 0, 0,
1916 DMA_CCMD_GLOBAL_INVL);
1917 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
1918 }
1919
1920 static inline void unlink_domain_info(struct device_domain_info *info)
1921 {
1922 assert_spin_locked(&device_domain_lock);
1923 list_del(&info->link);
1924 list_del(&info->global);
1925 if (info->dev)
1926 info->dev->dev.archdata.iommu = NULL;
1927 }
1928
1929 static void domain_remove_dev_info(struct dmar_domain *domain)
1930 {
1931 struct device_domain_info *info;
1932 unsigned long flags;
1933 struct intel_iommu *iommu;
1934
1935 spin_lock_irqsave(&device_domain_lock, flags);
1936 while (!list_empty(&domain->devices)) {
1937 info = list_entry(domain->devices.next,
1938 struct device_domain_info, link);
1939 unlink_domain_info(info);
1940 spin_unlock_irqrestore(&device_domain_lock, flags);
1941
1942 iommu_disable_dev_iotlb(info);
1943 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
1944 iommu_detach_dev(iommu, info->bus, info->devfn);
1945 free_devinfo_mem(info);
1946
1947 spin_lock_irqsave(&device_domain_lock, flags);
1948 }
1949 spin_unlock_irqrestore(&device_domain_lock, flags);
1950 }
1951
1952 /*
1953 * find_domain
1954 * Note: we use struct pci_dev->dev.archdata.iommu stores the info
1955 */
1956 static struct dmar_domain *
1957 find_domain(struct pci_dev *pdev)
1958 {
1959 struct device_domain_info *info;
1960
1961 /* No lock here, assumes no domain exit in normal case */
1962 info = pdev->dev.archdata.iommu;
1963 if (info)
1964 return info->domain;
1965 return NULL;
1966 }
1967
1968 /* domain is initialized */
1969 static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
1970 {
1971 struct dmar_domain *domain, *found = NULL;
1972 struct intel_iommu *iommu;
1973 struct dmar_drhd_unit *drhd;
1974 struct device_domain_info *info, *tmp;
1975 struct pci_dev *dev_tmp;
1976 unsigned long flags;
1977 int bus = 0, devfn = 0;
1978 int segment;
1979 int ret;
1980
1981 domain = find_domain(pdev);
1982 if (domain)
1983 return domain;
1984
1985 segment = pci_domain_nr(pdev->bus);
1986
1987 dev_tmp = pci_find_upstream_pcie_bridge(pdev);
1988 if (dev_tmp) {
1989 if (pci_is_pcie(dev_tmp)) {
1990 bus = dev_tmp->subordinate->number;
1991 devfn = 0;
1992 } else {
1993 bus = dev_tmp->bus->number;
1994 devfn = dev_tmp->devfn;
1995 }
1996 spin_lock_irqsave(&device_domain_lock, flags);
1997 list_for_each_entry(info, &device_domain_list, global) {
1998 if (info->segment == segment &&
1999 info->bus == bus && info->devfn == devfn) {
2000 found = info->domain;
2001 break;
2002 }
2003 }
2004 spin_unlock_irqrestore(&device_domain_lock, flags);
2005 /* pcie-pci bridge already has a domain, uses it */
2006 if (found) {
2007 domain = found;
2008 goto found_domain;
2009 }
2010 }
2011
2012 domain = alloc_domain();
2013 if (!domain)
2014 goto error;
2015
2016 /* Allocate new domain for the device */
2017 drhd = dmar_find_matched_drhd_unit(pdev);
2018 if (!drhd) {
2019 printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
2020 pci_name(pdev));
2021 free_domain_mem(domain);
2022 return NULL;
2023 }
2024 iommu = drhd->iommu;
2025
2026 ret = iommu_attach_domain(domain, iommu);
2027 if (ret) {
2028 free_domain_mem(domain);
2029 goto error;
2030 }
2031
2032 if (domain_init(domain, gaw)) {
2033 domain_exit(domain);
2034 goto error;
2035 }
2036
2037 /* register pcie-to-pci device */
2038 if (dev_tmp) {
2039 info = alloc_devinfo_mem();
2040 if (!info) {
2041 domain_exit(domain);
2042 goto error;
2043 }
2044 info->segment = segment;
2045 info->bus = bus;
2046 info->devfn = devfn;
2047 info->dev = NULL;
2048 info->domain = domain;
2049 /* This domain is shared by devices under p2p bridge */
2050 domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
2051
2052 /* pcie-to-pci bridge already has a domain, uses it */
2053 found = NULL;
2054 spin_lock_irqsave(&device_domain_lock, flags);
2055 list_for_each_entry(tmp, &device_domain_list, global) {
2056 if (tmp->segment == segment &&
2057 tmp->bus == bus && tmp->devfn == devfn) {
2058 found = tmp->domain;
2059 break;
2060 }
2061 }
2062 if (found) {
2063 spin_unlock_irqrestore(&device_domain_lock, flags);
2064 free_devinfo_mem(info);
2065 domain_exit(domain);
2066 domain = found;
2067 } else {
2068 list_add(&info->link, &domain->devices);
2069 list_add(&info->global, &device_domain_list);
2070 spin_unlock_irqrestore(&device_domain_lock, flags);
2071 }
2072 }
2073
2074 found_domain:
2075 info = alloc_devinfo_mem();
2076 if (!info)
2077 goto error;
2078 info->segment = segment;
2079 info->bus = pdev->bus->number;
2080 info->devfn = pdev->devfn;
2081 info->dev = pdev;
2082 info->domain = domain;
2083 spin_lock_irqsave(&device_domain_lock, flags);
2084 /* somebody is fast */
2085 found = find_domain(pdev);
2086 if (found != NULL) {
2087 spin_unlock_irqrestore(&device_domain_lock, flags);
2088 if (found != domain) {
2089 domain_exit(domain);
2090 domain = found;
2091 }
2092 free_devinfo_mem(info);
2093 return domain;
2094 }
2095 list_add(&info->link, &domain->devices);
2096 list_add(&info->global, &device_domain_list);
2097 pdev->dev.archdata.iommu = info;
2098 spin_unlock_irqrestore(&device_domain_lock, flags);
2099 return domain;
2100 error:
2101 /* recheck it here, maybe others set it */
2102 return find_domain(pdev);
2103 }
2104
2105 static int iommu_identity_mapping;
2106 #define IDENTMAP_ALL 1
2107 #define IDENTMAP_GFX 2
2108 #define IDENTMAP_AZALIA 4
2109
2110 static int iommu_domain_identity_map(struct dmar_domain *domain,
2111 unsigned long long start,
2112 unsigned long long end)
2113 {
2114 unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
2115 unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
2116
2117 if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
2118 dma_to_mm_pfn(last_vpfn))) {
2119 printk(KERN_ERR "IOMMU: reserve iova failed\n");
2120 return -ENOMEM;
2121 }
2122
2123 pr_debug("Mapping reserved region %llx-%llx for domain %d\n",
2124 start, end, domain->id);
2125 /*
2126 * RMRR range might have overlap with physical memory range,
2127 * clear it first
2128 */
2129 dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2130
2131 return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
2132 last_vpfn - first_vpfn + 1,
2133 DMA_PTE_READ|DMA_PTE_WRITE);
2134 }
2135
2136 static int iommu_prepare_identity_map(struct pci_dev *pdev,
2137 unsigned long long start,
2138 unsigned long long end)
2139 {
2140 struct dmar_domain *domain;
2141 int ret;
2142
2143 domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2144 if (!domain)
2145 return -ENOMEM;
2146
2147 /* For _hardware_ passthrough, don't bother. But for software
2148 passthrough, we do it anyway -- it may indicate a memory
2149 range which is reserved in E820, so which didn't get set
2150 up to start with in si_domain */
2151 if (domain == si_domain && hw_pass_through) {
2152 printk("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
2153 pci_name(pdev), start, end);
2154 return 0;
2155 }
2156
2157 printk(KERN_INFO
2158 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
2159 pci_name(pdev), start, end);
2160
2161 if (end < start) {
2162 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2163 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2164 dmi_get_system_info(DMI_BIOS_VENDOR),
2165 dmi_get_system_info(DMI_BIOS_VERSION),
2166 dmi_get_system_info(DMI_PRODUCT_VERSION));
2167 ret = -EIO;
2168 goto error;
2169 }
2170
2171 if (end >> agaw_to_width(domain->agaw)) {
2172 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2173 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2174 agaw_to_width(domain->agaw),
2175 dmi_get_system_info(DMI_BIOS_VENDOR),
2176 dmi_get_system_info(DMI_BIOS_VERSION),
2177 dmi_get_system_info(DMI_PRODUCT_VERSION));
2178 ret = -EIO;
2179 goto error;
2180 }
2181
2182 ret = iommu_domain_identity_map(domain, start, end);
2183 if (ret)
2184 goto error;
2185
2186 /* context entry init */
2187 ret = domain_context_mapping(domain, pdev, CONTEXT_TT_MULTI_LEVEL);
2188 if (ret)
2189 goto error;
2190
2191 return 0;
2192
2193 error:
2194 domain_exit(domain);
2195 return ret;
2196 }
2197
2198 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2199 struct pci_dev *pdev)
2200 {
2201 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2202 return 0;
2203 return iommu_prepare_identity_map(pdev, rmrr->base_address,
2204 rmrr->end_address);
2205 }
2206
2207 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
2208 static inline void iommu_prepare_isa(void)
2209 {
2210 struct pci_dev *pdev;
2211 int ret;
2212
2213 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2214 if (!pdev)
2215 return;
2216
2217 printk(KERN_INFO "IOMMU: Prepare 0-16MiB unity mapping for LPC\n");
2218 ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024 - 1);
2219
2220 if (ret)
2221 printk(KERN_ERR "IOMMU: Failed to create 0-16MiB identity map; "
2222 "floppy might not work\n");
2223
2224 }
2225 #else
2226 static inline void iommu_prepare_isa(void)
2227 {
2228 return;
2229 }
2230 #endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */
2231
2232 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2233
2234 static int __init si_domain_init(int hw)
2235 {
2236 struct dmar_drhd_unit *drhd;
2237 struct intel_iommu *iommu;
2238 int nid, ret = 0;
2239
2240 si_domain = alloc_domain();
2241 if (!si_domain)
2242 return -EFAULT;
2243
2244 pr_debug("Identity mapping domain is domain %d\n", si_domain->id);
2245
2246 for_each_active_iommu(iommu, drhd) {
2247 ret = iommu_attach_domain(si_domain, iommu);
2248 if (ret) {
2249 domain_exit(si_domain);
2250 return -EFAULT;
2251 }
2252 }
2253
2254 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2255 domain_exit(si_domain);
2256 return -EFAULT;
2257 }
2258
2259 si_domain->flags = DOMAIN_FLAG_STATIC_IDENTITY;
2260
2261 if (hw)
2262 return 0;
2263
2264 for_each_online_node(nid) {
2265 unsigned long start_pfn, end_pfn;
2266 int i;
2267
2268 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2269 ret = iommu_domain_identity_map(si_domain,
2270 PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
2271 if (ret)
2272 return ret;
2273 }
2274 }
2275
2276 return 0;
2277 }
2278
2279 static void domain_remove_one_dev_info(struct dmar_domain *domain,
2280 struct pci_dev *pdev);
2281 static int identity_mapping(struct pci_dev *pdev)
2282 {
2283 struct device_domain_info *info;
2284
2285 if (likely(!iommu_identity_mapping))
2286 return 0;
2287
2288 info = pdev->dev.archdata.iommu;
2289 if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
2290 return (info->domain == si_domain);
2291
2292 return 0;
2293 }
2294
2295 static int domain_add_dev_info(struct dmar_domain *domain,
2296 struct pci_dev *pdev,
2297 int translation)
2298 {
2299 struct device_domain_info *info;
2300 unsigned long flags;
2301 int ret;
2302
2303 info = alloc_devinfo_mem();
2304 if (!info)
2305 return -ENOMEM;
2306
2307 info->segment = pci_domain_nr(pdev->bus);
2308 info->bus = pdev->bus->number;
2309 info->devfn = pdev->devfn;
2310 info->dev = pdev;
2311 info->domain = domain;
2312
2313 spin_lock_irqsave(&device_domain_lock, flags);
2314 list_add(&info->link, &domain->devices);
2315 list_add(&info->global, &device_domain_list);
2316 pdev->dev.archdata.iommu = info;
2317 spin_unlock_irqrestore(&device_domain_lock, flags);
2318
2319 ret = domain_context_mapping(domain, pdev, translation);
2320 if (ret) {
2321 spin_lock_irqsave(&device_domain_lock, flags);
2322 unlink_domain_info(info);
2323 spin_unlock_irqrestore(&device_domain_lock, flags);
2324 free_devinfo_mem(info);
2325 return ret;
2326 }
2327
2328 return 0;
2329 }
2330
2331 static bool device_has_rmrr(struct pci_dev *dev)
2332 {
2333 struct dmar_rmrr_unit *rmrr;
2334 int i;
2335
2336 for_each_rmrr_units(rmrr) {
2337 for (i = 0; i < rmrr->devices_cnt; i++) {
2338 /*
2339 * Return TRUE if this RMRR contains the device that
2340 * is passed in.
2341 */
2342 if (rmrr->devices[i] == dev)
2343 return true;
2344 }
2345 }
2346 return false;
2347 }
2348
2349 static int iommu_should_identity_map(struct pci_dev *pdev, int startup)
2350 {
2351
2352 /*
2353 * We want to prevent any device associated with an RMRR from
2354 * getting placed into the SI Domain. This is done because
2355 * problems exist when devices are moved in and out of domains
2356 * and their respective RMRR info is lost. We exempt USB devices
2357 * from this process due to their usage of RMRRs that are known
2358 * to not be needed after BIOS hand-off to OS.
2359 */
2360 if (device_has_rmrr(pdev) &&
2361 (pdev->class >> 8) != PCI_CLASS_SERIAL_USB)
2362 return 0;
2363
2364 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2365 return 1;
2366
2367 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2368 return 1;
2369
2370 if (!(iommu_identity_mapping & IDENTMAP_ALL))
2371 return 0;
2372
2373 /*
2374 * We want to start off with all devices in the 1:1 domain, and
2375 * take them out later if we find they can't access all of memory.
2376 *
2377 * However, we can't do this for PCI devices behind bridges,
2378 * because all PCI devices behind the same bridge will end up
2379 * with the same source-id on their transactions.
2380 *
2381 * Practically speaking, we can't change things around for these
2382 * devices at run-time, because we can't be sure there'll be no
2383 * DMA transactions in flight for any of their siblings.
2384 *
2385 * So PCI devices (unless they're on the root bus) as well as
2386 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2387 * the 1:1 domain, just in _case_ one of their siblings turns out
2388 * not to be able to map all of memory.
2389 */
2390 if (!pci_is_pcie(pdev)) {
2391 if (!pci_is_root_bus(pdev->bus))
2392 return 0;
2393 if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2394 return 0;
2395 } else if (pci_pcie_type(pdev) == PCI_EXP_TYPE_PCI_BRIDGE)
2396 return 0;
2397
2398 /*
2399 * At boot time, we don't yet know if devices will be 64-bit capable.
2400 * Assume that they will -- if they turn out not to be, then we can
2401 * take them out of the 1:1 domain later.
2402 */
2403 if (!startup) {
2404 /*
2405 * If the device's dma_mask is less than the system's memory
2406 * size then this is not a candidate for identity mapping.
2407 */
2408 u64 dma_mask = pdev->dma_mask;
2409
2410 if (pdev->dev.coherent_dma_mask &&
2411 pdev->dev.coherent_dma_mask < dma_mask)
2412 dma_mask = pdev->dev.coherent_dma_mask;
2413
2414 return dma_mask >= dma_get_required_mask(&pdev->dev);
2415 }
2416
2417 return 1;
2418 }
2419
2420 static int __init iommu_prepare_static_identity_mapping(int hw)
2421 {
2422 struct pci_dev *pdev = NULL;
2423 int ret;
2424
2425 ret = si_domain_init(hw);
2426 if (ret)
2427 return -EFAULT;
2428
2429 for_each_pci_dev(pdev) {
2430 if (iommu_should_identity_map(pdev, 1)) {
2431 ret = domain_add_dev_info(si_domain, pdev,
2432 hw ? CONTEXT_TT_PASS_THROUGH :
2433 CONTEXT_TT_MULTI_LEVEL);
2434 if (ret) {
2435 /* device not associated with an iommu */
2436 if (ret == -ENODEV)
2437 continue;
2438 return ret;
2439 }
2440 pr_info("IOMMU: %s identity mapping for device %s\n",
2441 hw ? "hardware" : "software", pci_name(pdev));
2442 }
2443 }
2444
2445 return 0;
2446 }
2447
2448 static int __init init_dmars(void)
2449 {
2450 struct dmar_drhd_unit *drhd;
2451 struct dmar_rmrr_unit *rmrr;
2452 struct pci_dev *pdev;
2453 struct intel_iommu *iommu;
2454 int i, ret;
2455
2456 /*
2457 * for each drhd
2458 * allocate root
2459 * initialize and program root entry to not present
2460 * endfor
2461 */
2462 for_each_drhd_unit(drhd) {
2463 /*
2464 * lock not needed as this is only incremented in the single
2465 * threaded kernel __init code path all other access are read
2466 * only
2467 */
2468 if (g_num_of_iommus < IOMMU_UNITS_SUPPORTED) {
2469 g_num_of_iommus++;
2470 continue;
2471 }
2472 printk_once(KERN_ERR "intel-iommu: exceeded %d IOMMUs\n",
2473 IOMMU_UNITS_SUPPORTED);
2474 }
2475
2476 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
2477 GFP_KERNEL);
2478 if (!g_iommus) {
2479 printk(KERN_ERR "Allocating global iommu array failed\n");
2480 ret = -ENOMEM;
2481 goto error;
2482 }
2483
2484 deferred_flush = kzalloc(g_num_of_iommus *
2485 sizeof(struct deferred_flush_tables), GFP_KERNEL);
2486 if (!deferred_flush) {
2487 ret = -ENOMEM;
2488 goto error;
2489 }
2490
2491 for_each_drhd_unit(drhd) {
2492 if (drhd->ignored)
2493 continue;
2494
2495 iommu = drhd->iommu;
2496 g_iommus[iommu->seq_id] = iommu;
2497
2498 ret = iommu_init_domains(iommu);
2499 if (ret)
2500 goto error;
2501
2502 /*
2503 * TBD:
2504 * we could share the same root & context tables
2505 * among all IOMMU's. Need to Split it later.
2506 */
2507 ret = iommu_alloc_root_entry(iommu);
2508 if (ret) {
2509 printk(KERN_ERR "IOMMU: allocate root entry failed\n");
2510 goto error;
2511 }
2512 if (!ecap_pass_through(iommu->ecap))
2513 hw_pass_through = 0;
2514 }
2515
2516 /*
2517 * Start from the sane iommu hardware state.
2518 */
2519 for_each_drhd_unit(drhd) {
2520 if (drhd->ignored)
2521 continue;
2522
2523 iommu = drhd->iommu;
2524
2525 /*
2526 * If the queued invalidation is already initialized by us
2527 * (for example, while enabling interrupt-remapping) then
2528 * we got the things already rolling from a sane state.
2529 */
2530 if (iommu->qi)
2531 continue;
2532
2533 /*
2534 * Clear any previous faults.
2535 */
2536 dmar_fault(-1, iommu);
2537 /*
2538 * Disable queued invalidation if supported and already enabled
2539 * before OS handover.
2540 */
2541 dmar_disable_qi(iommu);
2542 }
2543
2544 for_each_drhd_unit(drhd) {
2545 if (drhd->ignored)
2546 continue;
2547
2548 iommu = drhd->iommu;
2549
2550 if (dmar_enable_qi(iommu)) {
2551 /*
2552 * Queued Invalidate not enabled, use Register Based
2553 * Invalidate
2554 */
2555 iommu->flush.flush_context = __iommu_flush_context;
2556 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2557 printk(KERN_INFO "IOMMU %d 0x%Lx: using Register based "
2558 "invalidation\n",
2559 iommu->seq_id,
2560 (unsigned long long)drhd->reg_base_addr);
2561 } else {
2562 iommu->flush.flush_context = qi_flush_context;
2563 iommu->flush.flush_iotlb = qi_flush_iotlb;
2564 printk(KERN_INFO "IOMMU %d 0x%Lx: using Queued "
2565 "invalidation\n",
2566 iommu->seq_id,
2567 (unsigned long long)drhd->reg_base_addr);
2568 }
2569 }
2570
2571 if (iommu_pass_through)
2572 iommu_identity_mapping |= IDENTMAP_ALL;
2573
2574 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
2575 iommu_identity_mapping |= IDENTMAP_GFX;
2576 #endif
2577
2578 check_tylersburg_isoch();
2579
2580 /*
2581 * If pass through is not set or not enabled, setup context entries for
2582 * identity mappings for rmrr, gfx, and isa and may fall back to static
2583 * identity mapping if iommu_identity_mapping is set.
2584 */
2585 if (iommu_identity_mapping) {
2586 ret = iommu_prepare_static_identity_mapping(hw_pass_through);
2587 if (ret) {
2588 printk(KERN_CRIT "Failed to setup IOMMU pass-through\n");
2589 goto error;
2590 }
2591 }
2592 /*
2593 * For each rmrr
2594 * for each dev attached to rmrr
2595 * do
2596 * locate drhd for dev, alloc domain for dev
2597 * allocate free domain
2598 * allocate page table entries for rmrr
2599 * if context not allocated for bus
2600 * allocate and init context
2601 * set present in root table for this bus
2602 * init context with domain, translation etc
2603 * endfor
2604 * endfor
2605 */
2606 printk(KERN_INFO "IOMMU: Setting RMRR:\n");
2607 for_each_rmrr_units(rmrr) {
2608 for (i = 0; i < rmrr->devices_cnt; i++) {
2609 pdev = rmrr->devices[i];
2610 /*
2611 * some BIOS lists non-exist devices in DMAR
2612 * table.
2613 */
2614 if (!pdev)
2615 continue;
2616 ret = iommu_prepare_rmrr_dev(rmrr, pdev);
2617 if (ret)
2618 printk(KERN_ERR
2619 "IOMMU: mapping reserved region failed\n");
2620 }
2621 }
2622
2623 iommu_prepare_isa();
2624
2625 /*
2626 * for each drhd
2627 * enable fault log
2628 * global invalidate context cache
2629 * global invalidate iotlb
2630 * enable translation
2631 */
2632 for_each_drhd_unit(drhd) {
2633 if (drhd->ignored) {
2634 /*
2635 * we always have to disable PMRs or DMA may fail on
2636 * this device
2637 */
2638 if (force_on)
2639 iommu_disable_protect_mem_regions(drhd->iommu);
2640 continue;
2641 }
2642 iommu = drhd->iommu;
2643
2644 iommu_flush_write_buffer(iommu);
2645
2646 ret = dmar_set_interrupt(iommu);
2647 if (ret)
2648 goto error;
2649
2650 iommu_set_root_entry(iommu);
2651
2652 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
2653 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2654
2655 ret = iommu_enable_translation(iommu);
2656 if (ret)
2657 goto error;
2658
2659 iommu_disable_protect_mem_regions(iommu);
2660 }
2661
2662 return 0;
2663 error:
2664 for_each_drhd_unit(drhd) {
2665 if (drhd->ignored)
2666 continue;
2667 iommu = drhd->iommu;
2668 free_iommu(iommu);
2669 }
2670 kfree(g_iommus);
2671 return ret;
2672 }
2673
2674 /* This takes a number of _MM_ pages, not VTD pages */
2675 static struct iova *intel_alloc_iova(struct device *dev,
2676 struct dmar_domain *domain,
2677 unsigned long nrpages, uint64_t dma_mask)
2678 {
2679 struct pci_dev *pdev = to_pci_dev(dev);
2680 struct iova *iova = NULL;
2681
2682 /* Restrict dma_mask to the width that the iommu can handle */
2683 dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
2684
2685 if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
2686 /*
2687 * First try to allocate an io virtual address in
2688 * DMA_BIT_MASK(32) and if that fails then try allocating
2689 * from higher range
2690 */
2691 iova = alloc_iova(&domain->iovad, nrpages,
2692 IOVA_PFN(DMA_BIT_MASK(32)), 1);
2693 if (iova)
2694 return iova;
2695 }
2696 iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(dma_mask), 1);
2697 if (unlikely(!iova)) {
2698 printk(KERN_ERR "Allocating %ld-page iova for %s failed",
2699 nrpages, pci_name(pdev));
2700 return NULL;
2701 }
2702
2703 return iova;
2704 }
2705
2706 static struct dmar_domain *__get_valid_domain_for_dev(struct pci_dev *pdev)
2707 {
2708 struct dmar_domain *domain;
2709 int ret;
2710
2711 domain = get_domain_for_dev(pdev,
2712 DEFAULT_DOMAIN_ADDRESS_WIDTH);
2713 if (!domain) {
2714 printk(KERN_ERR
2715 "Allocating domain for %s failed", pci_name(pdev));
2716 return NULL;
2717 }
2718
2719 /* make sure context mapping is ok */
2720 if (unlikely(!domain_context_mapped(pdev))) {
2721 ret = domain_context_mapping(domain, pdev,
2722 CONTEXT_TT_MULTI_LEVEL);
2723 if (ret) {
2724 printk(KERN_ERR
2725 "Domain context map for %s failed",
2726 pci_name(pdev));
2727 return NULL;
2728 }
2729 }
2730
2731 return domain;
2732 }
2733
2734 static inline struct dmar_domain *get_valid_domain_for_dev(struct pci_dev *dev)
2735 {
2736 struct device_domain_info *info;
2737
2738 /* No lock here, assumes no domain exit in normal case */
2739 info = dev->dev.archdata.iommu;
2740 if (likely(info))
2741 return info->domain;
2742
2743 return __get_valid_domain_for_dev(dev);
2744 }
2745
2746 static int iommu_dummy(struct pci_dev *pdev)
2747 {
2748 return pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
2749 }
2750
2751 /* Check if the pdev needs to go through non-identity map and unmap process.*/
2752 static int iommu_no_mapping(struct device *dev)
2753 {
2754 struct pci_dev *pdev;
2755 int found;
2756
2757 if (unlikely(dev->bus != &pci_bus_type))
2758 return 1;
2759
2760 pdev = to_pci_dev(dev);
2761 if (iommu_dummy(pdev))
2762 return 1;
2763
2764 if (!iommu_identity_mapping)
2765 return 0;
2766
2767 found = identity_mapping(pdev);
2768 if (found) {
2769 if (iommu_should_identity_map(pdev, 0))
2770 return 1;
2771 else {
2772 /*
2773 * 32 bit DMA is removed from si_domain and fall back
2774 * to non-identity mapping.
2775 */
2776 domain_remove_one_dev_info(si_domain, pdev);
2777 printk(KERN_INFO "32bit %s uses non-identity mapping\n",
2778 pci_name(pdev));
2779 return 0;
2780 }
2781 } else {
2782 /*
2783 * In case of a detached 64 bit DMA device from vm, the device
2784 * is put into si_domain for identity mapping.
2785 */
2786 if (iommu_should_identity_map(pdev, 0)) {
2787 int ret;
2788 ret = domain_add_dev_info(si_domain, pdev,
2789 hw_pass_through ?
2790 CONTEXT_TT_PASS_THROUGH :
2791 CONTEXT_TT_MULTI_LEVEL);
2792 if (!ret) {
2793 printk(KERN_INFO "64bit %s uses identity mapping\n",
2794 pci_name(pdev));
2795 return 1;
2796 }
2797 }
2798 }
2799
2800 return 0;
2801 }
2802
2803 static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr,
2804 size_t size, int dir, u64 dma_mask)
2805 {
2806 struct pci_dev *pdev = to_pci_dev(hwdev);
2807 struct dmar_domain *domain;
2808 phys_addr_t start_paddr;
2809 struct iova *iova;
2810 int prot = 0;
2811 int ret;
2812 struct intel_iommu *iommu;
2813 unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
2814
2815 BUG_ON(dir == DMA_NONE);
2816
2817 if (iommu_no_mapping(hwdev))
2818 return paddr;
2819
2820 domain = get_valid_domain_for_dev(pdev);
2821 if (!domain)
2822 return 0;
2823
2824 iommu = domain_get_iommu(domain);
2825 size = aligned_nrpages(paddr, size);
2826
2827 iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size), dma_mask);
2828 if (!iova)
2829 goto error;
2830
2831 /*
2832 * Check if DMAR supports zero-length reads on write only
2833 * mappings..
2834 */
2835 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2836 !cap_zlr(iommu->cap))
2837 prot |= DMA_PTE_READ;
2838 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2839 prot |= DMA_PTE_WRITE;
2840 /*
2841 * paddr - (paddr + size) might be partial page, we should map the whole
2842 * page. Note: if two part of one page are separately mapped, we
2843 * might have two guest_addr mapping to the same host paddr, but this
2844 * is not a big problem
2845 */
2846 ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo),
2847 mm_to_dma_pfn(paddr_pfn), size, prot);
2848 if (ret)
2849 goto error;
2850
2851 /* it's a non-present to present mapping. Only flush if caching mode */
2852 if (cap_caching_mode(iommu->cap))
2853 iommu_flush_iotlb_psi(iommu, domain->id, mm_to_dma_pfn(iova->pfn_lo), size, 1);
2854 else
2855 iommu_flush_write_buffer(iommu);
2856
2857 start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
2858 start_paddr += paddr & ~PAGE_MASK;
2859 return start_paddr;
2860
2861 error:
2862 if (iova)
2863 __free_iova(&domain->iovad, iova);
2864 printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n",
2865 pci_name(pdev), size, (unsigned long long)paddr, dir);
2866 return 0;
2867 }
2868
2869 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
2870 unsigned long offset, size_t size,
2871 enum dma_data_direction dir,
2872 struct dma_attrs *attrs)
2873 {
2874 return __intel_map_single(dev, page_to_phys(page) + offset, size,
2875 dir, to_pci_dev(dev)->dma_mask);
2876 }
2877
2878 static void flush_unmaps(void)
2879 {
2880 int i, j;
2881
2882 timer_on = 0;
2883
2884 /* just flush them all */
2885 for (i = 0; i < g_num_of_iommus; i++) {
2886 struct intel_iommu *iommu = g_iommus[i];
2887 if (!iommu)
2888 continue;
2889
2890 if (!deferred_flush[i].next)
2891 continue;
2892
2893 /* In caching mode, global flushes turn emulation expensive */
2894 if (!cap_caching_mode(iommu->cap))
2895 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2896 DMA_TLB_GLOBAL_FLUSH);
2897 for (j = 0; j < deferred_flush[i].next; j++) {
2898 unsigned long mask;
2899 struct iova *iova = deferred_flush[i].iova[j];
2900 struct dmar_domain *domain = deferred_flush[i].domain[j];
2901
2902 /* On real hardware multiple invalidations are expensive */
2903 if (cap_caching_mode(iommu->cap))
2904 iommu_flush_iotlb_psi(iommu, domain->id,
2905 iova->pfn_lo, iova->pfn_hi - iova->pfn_lo + 1, 0);
2906 else {
2907 mask = ilog2(mm_to_dma_pfn(iova->pfn_hi - iova->pfn_lo + 1));
2908 iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
2909 (uint64_t)iova->pfn_lo << PAGE_SHIFT, mask);
2910 }
2911 __free_iova(&deferred_flush[i].domain[j]->iovad, iova);
2912 }
2913 deferred_flush[i].next = 0;
2914 }
2915
2916 list_size = 0;
2917 }
2918
2919 static void flush_unmaps_timeout(unsigned long data)
2920 {
2921 unsigned long flags;
2922
2923 spin_lock_irqsave(&async_umap_flush_lock, flags);
2924 flush_unmaps();
2925 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2926 }
2927
2928 static void add_unmap(struct dmar_domain *dom, struct iova *iova)
2929 {
2930 unsigned long flags;
2931 int next, iommu_id;
2932 struct intel_iommu *iommu;
2933
2934 spin_lock_irqsave(&async_umap_flush_lock, flags);
2935 if (list_size == HIGH_WATER_MARK)
2936 flush_unmaps();
2937
2938 iommu = domain_get_iommu(dom);
2939 iommu_id = iommu->seq_id;
2940
2941 next = deferred_flush[iommu_id].next;
2942 deferred_flush[iommu_id].domain[next] = dom;
2943 deferred_flush[iommu_id].iova[next] = iova;
2944 deferred_flush[iommu_id].next++;
2945
2946 if (!timer_on) {
2947 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
2948 timer_on = 1;
2949 }
2950 list_size++;
2951 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2952 }
2953
2954 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
2955 size_t size, enum dma_data_direction dir,
2956 struct dma_attrs *attrs)
2957 {
2958 struct pci_dev *pdev = to_pci_dev(dev);
2959 struct dmar_domain *domain;
2960 unsigned long start_pfn, last_pfn;
2961 struct iova *iova;
2962 struct intel_iommu *iommu;
2963
2964 if (iommu_no_mapping(dev))
2965 return;
2966
2967 domain = find_domain(pdev);
2968 BUG_ON(!domain);
2969
2970 iommu = domain_get_iommu(domain);
2971
2972 iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
2973 if (WARN_ONCE(!iova, "Driver unmaps unmatched page at PFN %llx\n",
2974 (unsigned long long)dev_addr))
2975 return;
2976
2977 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2978 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
2979
2980 pr_debug("Device %s unmapping: pfn %lx-%lx\n",
2981 pci_name(pdev), start_pfn, last_pfn);
2982
2983 /* clear the whole page */
2984 dma_pte_clear_range(domain, start_pfn, last_pfn);
2985
2986 /* free page tables */
2987 dma_pte_free_pagetable(domain, start_pfn, last_pfn);
2988
2989 if (intel_iommu_strict) {
2990 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
2991 last_pfn - start_pfn + 1, 0);
2992 /* free iova */
2993 __free_iova(&domain->iovad, iova);
2994 } else {
2995 add_unmap(domain, iova);
2996 /*
2997 * queue up the release of the unmap to save the 1/6th of the
2998 * cpu used up by the iotlb flush operation...
2999 */
3000 }
3001 }
3002
3003 static void *intel_alloc_coherent(struct device *hwdev, size_t size,
3004 dma_addr_t *dma_handle, gfp_t flags,
3005 struct dma_attrs *attrs)
3006 {
3007 void *vaddr;
3008 int order;
3009
3010 size = PAGE_ALIGN(size);
3011 order = get_order(size);
3012
3013 if (!iommu_no_mapping(hwdev))
3014 flags &= ~(GFP_DMA | GFP_DMA32);
3015 else if (hwdev->coherent_dma_mask < dma_get_required_mask(hwdev)) {
3016 if (hwdev->coherent_dma_mask < DMA_BIT_MASK(32))
3017 flags |= GFP_DMA;
3018 else
3019 flags |= GFP_DMA32;
3020 }
3021
3022 vaddr = (void *)__get_free_pages(flags, order);
3023 if (!vaddr)
3024 return NULL;
3025 memset(vaddr, 0, size);
3026
3027 *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size,
3028 DMA_BIDIRECTIONAL,
3029 hwdev->coherent_dma_mask);
3030 if (*dma_handle)
3031 return vaddr;
3032 free_pages((unsigned long)vaddr, order);
3033 return NULL;
3034 }
3035
3036 static void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr,
3037 dma_addr_t dma_handle, struct dma_attrs *attrs)
3038 {
3039 int order;
3040
3041 size = PAGE_ALIGN(size);
3042 order = get_order(size);
3043
3044 intel_unmap_page(hwdev, dma_handle, size, DMA_BIDIRECTIONAL, NULL);
3045 free_pages((unsigned long)vaddr, order);
3046 }
3047
3048 static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
3049 int nelems, enum dma_data_direction dir,
3050 struct dma_attrs *attrs)
3051 {
3052 struct pci_dev *pdev = to_pci_dev(hwdev);
3053 struct dmar_domain *domain;
3054 unsigned long start_pfn, last_pfn;
3055 struct iova *iova;
3056 struct intel_iommu *iommu;
3057
3058 if (iommu_no_mapping(hwdev))
3059 return;
3060
3061 domain = find_domain(pdev);
3062 BUG_ON(!domain);
3063
3064 iommu = domain_get_iommu(domain);
3065
3066 iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
3067 if (WARN_ONCE(!iova, "Driver unmaps unmatched sglist at PFN %llx\n",
3068 (unsigned long long)sglist[0].dma_address))
3069 return;
3070
3071 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
3072 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
3073
3074 /* clear the whole page */
3075 dma_pte_clear_range(domain, start_pfn, last_pfn);
3076
3077 /* free page tables */
3078 dma_pte_free_pagetable(domain, start_pfn, last_pfn);
3079
3080 if (intel_iommu_strict) {
3081 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
3082 last_pfn - start_pfn + 1, 0);
3083 /* free iova */
3084 __free_iova(&domain->iovad, iova);
3085 } else {
3086 add_unmap(domain, iova);
3087 /*
3088 * queue up the release of the unmap to save the 1/6th of the
3089 * cpu used up by the iotlb flush operation...
3090 */
3091 }
3092 }
3093
3094 static int intel_nontranslate_map_sg(struct device *hddev,
3095 struct scatterlist *sglist, int nelems, int dir)
3096 {
3097 int i;
3098 struct scatterlist *sg;
3099
3100 for_each_sg(sglist, sg, nelems, i) {
3101 BUG_ON(!sg_page(sg));
3102 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
3103 sg->dma_length = sg->length;
3104 }
3105 return nelems;
3106 }
3107
3108 static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems,
3109 enum dma_data_direction dir, struct dma_attrs *attrs)
3110 {
3111 int i;
3112 struct pci_dev *pdev = to_pci_dev(hwdev);
3113 struct dmar_domain *domain;
3114 size_t size = 0;
3115 int prot = 0;
3116 struct iova *iova = NULL;
3117 int ret;
3118 struct scatterlist *sg;
3119 unsigned long start_vpfn;
3120 struct intel_iommu *iommu;
3121
3122 BUG_ON(dir == DMA_NONE);
3123 if (iommu_no_mapping(hwdev))
3124 return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
3125
3126 domain = get_valid_domain_for_dev(pdev);
3127 if (!domain)
3128 return 0;
3129
3130 iommu = domain_get_iommu(domain);
3131
3132 for_each_sg(sglist, sg, nelems, i)
3133 size += aligned_nrpages(sg->offset, sg->length);
3134
3135 iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size),
3136 pdev->dma_mask);
3137 if (!iova) {
3138 sglist->dma_length = 0;
3139 return 0;
3140 }
3141
3142 /*
3143 * Check if DMAR supports zero-length reads on write only
3144 * mappings..
3145 */
3146 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3147 !cap_zlr(iommu->cap))
3148 prot |= DMA_PTE_READ;
3149 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3150 prot |= DMA_PTE_WRITE;
3151
3152 start_vpfn = mm_to_dma_pfn(iova->pfn_lo);
3153
3154 ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3155 if (unlikely(ret)) {
3156 /* clear the page */
3157 dma_pte_clear_range(domain, start_vpfn,
3158 start_vpfn + size - 1);
3159 /* free page tables */
3160 dma_pte_free_pagetable(domain, start_vpfn,
3161 start_vpfn + size - 1);
3162 /* free iova */
3163 __free_iova(&domain->iovad, iova);
3164 return 0;
3165 }
3166
3167 /* it's a non-present to present mapping. Only flush if caching mode */
3168 if (cap_caching_mode(iommu->cap))
3169 iommu_flush_iotlb_psi(iommu, domain->id, start_vpfn, size, 1);
3170 else
3171 iommu_flush_write_buffer(iommu);
3172
3173 return nelems;
3174 }
3175
3176 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
3177 {
3178 return !dma_addr;
3179 }
3180
3181 struct dma_map_ops intel_dma_ops = {
3182 .alloc = intel_alloc_coherent,
3183 .free = intel_free_coherent,
3184 .map_sg = intel_map_sg,
3185 .unmap_sg = intel_unmap_sg,
3186 .map_page = intel_map_page,
3187 .unmap_page = intel_unmap_page,
3188 .mapping_error = intel_mapping_error,
3189 };
3190
3191 static inline int iommu_domain_cache_init(void)
3192 {
3193 int ret = 0;
3194
3195 iommu_domain_cache = kmem_cache_create("iommu_domain",
3196 sizeof(struct dmar_domain),
3197 0,
3198 SLAB_HWCACHE_ALIGN,
3199
3200 NULL);
3201 if (!iommu_domain_cache) {
3202 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
3203 ret = -ENOMEM;
3204 }
3205
3206 return ret;
3207 }
3208
3209 static inline int iommu_devinfo_cache_init(void)
3210 {
3211 int ret = 0;
3212
3213 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
3214 sizeof(struct device_domain_info),
3215 0,
3216 SLAB_HWCACHE_ALIGN,
3217 NULL);
3218 if (!iommu_devinfo_cache) {
3219 printk(KERN_ERR "Couldn't create devinfo cache\n");
3220 ret = -ENOMEM;
3221 }
3222
3223 return ret;
3224 }
3225
3226 static inline int iommu_iova_cache_init(void)
3227 {
3228 int ret = 0;
3229
3230 iommu_iova_cache = kmem_cache_create("iommu_iova",
3231 sizeof(struct iova),
3232 0,
3233 SLAB_HWCACHE_ALIGN,
3234 NULL);
3235 if (!iommu_iova_cache) {
3236 printk(KERN_ERR "Couldn't create iova cache\n");
3237 ret = -ENOMEM;
3238 }
3239
3240 return ret;
3241 }
3242
3243 static int __init iommu_init_mempool(void)
3244 {
3245 int ret;
3246 ret = iommu_iova_cache_init();
3247 if (ret)
3248 return ret;
3249
3250 ret = iommu_domain_cache_init();
3251 if (ret)
3252 goto domain_error;
3253
3254 ret = iommu_devinfo_cache_init();
3255 if (!ret)
3256 return ret;
3257
3258 kmem_cache_destroy(iommu_domain_cache);
3259 domain_error:
3260 kmem_cache_destroy(iommu_iova_cache);
3261
3262 return -ENOMEM;
3263 }
3264
3265 static void __init iommu_exit_mempool(void)
3266 {
3267 kmem_cache_destroy(iommu_devinfo_cache);
3268 kmem_cache_destroy(iommu_domain_cache);
3269 kmem_cache_destroy(iommu_iova_cache);
3270
3271 }
3272
3273 static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
3274 {
3275 struct dmar_drhd_unit *drhd;
3276 u32 vtbar;
3277 int rc;
3278
3279 /* We know that this device on this chipset has its own IOMMU.
3280 * If we find it under a different IOMMU, then the BIOS is lying
3281 * to us. Hope that the IOMMU for this device is actually
3282 * disabled, and it needs no translation...
3283 */
3284 rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
3285 if (rc) {
3286 /* "can't" happen */
3287 dev_info(&pdev->dev, "failed to run vt-d quirk\n");
3288 return;
3289 }
3290 vtbar &= 0xffff0000;
3291
3292 /* we know that the this iommu should be at offset 0xa000 from vtbar */
3293 drhd = dmar_find_matched_drhd_unit(pdev);
3294 if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
3295 TAINT_FIRMWARE_WORKAROUND,
3296 "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
3297 pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3298 }
3299 DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
3300
3301 static void __init init_no_remapping_devices(void)
3302 {
3303 struct dmar_drhd_unit *drhd;
3304
3305 for_each_drhd_unit(drhd) {
3306 if (!drhd->include_all) {
3307 int i;
3308 for (i = 0; i < drhd->devices_cnt; i++)
3309 if (drhd->devices[i] != NULL)
3310 break;
3311 /* ignore DMAR unit if no pci devices exist */
3312 if (i == drhd->devices_cnt)
3313 drhd->ignored = 1;
3314 }
3315 }
3316
3317 for_each_drhd_unit(drhd) {
3318 int i;
3319 if (drhd->ignored || drhd->include_all)
3320 continue;
3321
3322 for (i = 0; i < drhd->devices_cnt; i++)
3323 if (drhd->devices[i] &&
3324 !IS_GFX_DEVICE(drhd->devices[i]))
3325 break;
3326
3327 if (i < drhd->devices_cnt)
3328 continue;
3329
3330 /* This IOMMU has *only* gfx devices. Either bypass it or
3331 set the gfx_mapped flag, as appropriate */
3332 if (dmar_map_gfx) {
3333 intel_iommu_gfx_mapped = 1;
3334 } else {
3335 drhd->ignored = 1;
3336 for (i = 0; i < drhd->devices_cnt; i++) {
3337 if (!drhd->devices[i])
3338 continue;
3339 drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3340 }
3341 }
3342 }
3343 }
3344
3345 #ifdef CONFIG_SUSPEND
3346 static int init_iommu_hw(void)
3347 {
3348 struct dmar_drhd_unit *drhd;
3349 struct intel_iommu *iommu = NULL;
3350
3351 for_each_active_iommu(iommu, drhd)
3352 if (iommu->qi)
3353 dmar_reenable_qi(iommu);
3354
3355 for_each_iommu(iommu, drhd) {
3356 if (drhd->ignored) {
3357 /*
3358 * we always have to disable PMRs or DMA may fail on
3359 * this device
3360 */
3361 if (force_on)
3362 iommu_disable_protect_mem_regions(iommu);
3363 continue;
3364 }
3365
3366 iommu_flush_write_buffer(iommu);
3367
3368 iommu_set_root_entry(iommu);
3369
3370 iommu->flush.flush_context(iommu, 0, 0, 0,
3371 DMA_CCMD_GLOBAL_INVL);
3372 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3373 DMA_TLB_GLOBAL_FLUSH);
3374 if (iommu_enable_translation(iommu))
3375 return 1;
3376 iommu_disable_protect_mem_regions(iommu);
3377 }
3378
3379 return 0;
3380 }
3381
3382 static void iommu_flush_all(void)
3383 {
3384 struct dmar_drhd_unit *drhd;
3385 struct intel_iommu *iommu;
3386
3387 for_each_active_iommu(iommu, drhd) {
3388 iommu->flush.flush_context(iommu, 0, 0, 0,
3389 DMA_CCMD_GLOBAL_INVL);
3390 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3391 DMA_TLB_GLOBAL_FLUSH);
3392 }
3393 }
3394
3395 static int iommu_suspend(void)
3396 {
3397 struct dmar_drhd_unit *drhd;
3398 struct intel_iommu *iommu = NULL;
3399 unsigned long flag;
3400
3401 for_each_active_iommu(iommu, drhd) {
3402 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
3403 GFP_ATOMIC);
3404 if (!iommu->iommu_state)
3405 goto nomem;
3406 }
3407
3408 iommu_flush_all();
3409
3410 for_each_active_iommu(iommu, drhd) {
3411 iommu_disable_translation(iommu);
3412
3413 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3414
3415 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3416 readl(iommu->reg + DMAR_FECTL_REG);
3417 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3418 readl(iommu->reg + DMAR_FEDATA_REG);
3419 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3420 readl(iommu->reg + DMAR_FEADDR_REG);
3421 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3422 readl(iommu->reg + DMAR_FEUADDR_REG);
3423
3424 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3425 }
3426 return 0;
3427
3428 nomem:
3429 for_each_active_iommu(iommu, drhd)
3430 kfree(iommu->iommu_state);
3431
3432 return -ENOMEM;
3433 }
3434
3435 static void iommu_resume(void)
3436 {
3437 struct dmar_drhd_unit *drhd;
3438 struct intel_iommu *iommu = NULL;
3439 unsigned long flag;
3440
3441 if (init_iommu_hw()) {
3442 if (force_on)
3443 panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
3444 else
3445 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3446 return;
3447 }
3448
3449 for_each_active_iommu(iommu, drhd) {
3450
3451 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3452
3453 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3454 iommu->reg + DMAR_FECTL_REG);
3455 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3456 iommu->reg + DMAR_FEDATA_REG);
3457 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3458 iommu->reg + DMAR_FEADDR_REG);
3459 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3460 iommu->reg + DMAR_FEUADDR_REG);
3461
3462 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3463 }
3464
3465 for_each_active_iommu(iommu, drhd)
3466 kfree(iommu->iommu_state);
3467 }
3468
3469 static struct syscore_ops iommu_syscore_ops = {
3470 .resume = iommu_resume,
3471 .suspend = iommu_suspend,
3472 };
3473
3474 static void __init init_iommu_pm_ops(void)
3475 {
3476 register_syscore_ops(&iommu_syscore_ops);
3477 }
3478
3479 #else
3480 static inline void init_iommu_pm_ops(void) {}
3481 #endif /* CONFIG_PM */
3482
3483 LIST_HEAD(dmar_rmrr_units);
3484
3485 static void __init dmar_register_rmrr_unit(struct dmar_rmrr_unit *rmrr)
3486 {
3487 list_add(&rmrr->list, &dmar_rmrr_units);
3488 }
3489
3490
3491 int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header)
3492 {
3493 struct acpi_dmar_reserved_memory *rmrr;
3494 struct dmar_rmrr_unit *rmrru;
3495
3496 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
3497 if (!rmrru)
3498 return -ENOMEM;
3499
3500 rmrru->hdr = header;
3501 rmrr = (struct acpi_dmar_reserved_memory *)header;
3502 rmrru->base_address = rmrr->base_address;
3503 rmrru->end_address = rmrr->end_address;
3504
3505 dmar_register_rmrr_unit(rmrru);
3506 return 0;
3507 }
3508
3509 static int __init
3510 rmrr_parse_dev(struct dmar_rmrr_unit *rmrru)
3511 {
3512 struct acpi_dmar_reserved_memory *rmrr;
3513 int ret;
3514
3515 rmrr = (struct acpi_dmar_reserved_memory *) rmrru->hdr;
3516 ret = dmar_parse_dev_scope((void *)(rmrr + 1),
3517 ((void *)rmrr) + rmrr->header.length,
3518 &rmrru->devices_cnt, &rmrru->devices, rmrr->segment);
3519
3520 if (ret || (rmrru->devices_cnt == 0)) {
3521 list_del(&rmrru->list);
3522 kfree(rmrru);
3523 }
3524 return ret;
3525 }
3526
3527 static LIST_HEAD(dmar_atsr_units);
3528
3529 int __init dmar_parse_one_atsr(struct acpi_dmar_header *hdr)
3530 {
3531 struct acpi_dmar_atsr *atsr;
3532 struct dmar_atsr_unit *atsru;
3533
3534 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
3535 atsru = kzalloc(sizeof(*atsru), GFP_KERNEL);
3536 if (!atsru)
3537 return -ENOMEM;
3538
3539 atsru->hdr = hdr;
3540 atsru->include_all = atsr->flags & 0x1;
3541
3542 list_add(&atsru->list, &dmar_atsr_units);
3543
3544 return 0;
3545 }
3546
3547 static int __init atsr_parse_dev(struct dmar_atsr_unit *atsru)
3548 {
3549 int rc;
3550 struct acpi_dmar_atsr *atsr;
3551
3552 if (atsru->include_all)
3553 return 0;
3554
3555 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
3556 rc = dmar_parse_dev_scope((void *)(atsr + 1),
3557 (void *)atsr + atsr->header.length,
3558 &atsru->devices_cnt, &atsru->devices,
3559 atsr->segment);
3560 if (rc || !atsru->devices_cnt) {
3561 list_del(&atsru->list);
3562 kfree(atsru);
3563 }
3564
3565 return rc;
3566 }
3567
3568 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
3569 {
3570 int i;
3571 struct pci_bus *bus;
3572 struct acpi_dmar_atsr *atsr;
3573 struct dmar_atsr_unit *atsru;
3574
3575 dev = pci_physfn(dev);
3576
3577 list_for_each_entry(atsru, &dmar_atsr_units, list) {
3578 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
3579 if (atsr->segment == pci_domain_nr(dev->bus))
3580 goto found;
3581 }
3582
3583 return 0;
3584
3585 found:
3586 for (bus = dev->bus; bus; bus = bus->parent) {
3587 struct pci_dev *bridge = bus->self;
3588
3589 if (!bridge || !pci_is_pcie(bridge) ||
3590 pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
3591 return 0;
3592
3593 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT) {
3594 for (i = 0; i < atsru->devices_cnt; i++)
3595 if (atsru->devices[i] == bridge)
3596 return 1;
3597 break;
3598 }
3599 }
3600
3601 if (atsru->include_all)
3602 return 1;
3603
3604 return 0;
3605 }
3606
3607 int __init dmar_parse_rmrr_atsr_dev(void)
3608 {
3609 struct dmar_rmrr_unit *rmrr, *rmrr_n;
3610 struct dmar_atsr_unit *atsr, *atsr_n;
3611 int ret = 0;
3612
3613 list_for_each_entry_safe(rmrr, rmrr_n, &dmar_rmrr_units, list) {
3614 ret = rmrr_parse_dev(rmrr);
3615 if (ret)
3616 return ret;
3617 }
3618
3619 list_for_each_entry_safe(atsr, atsr_n, &dmar_atsr_units, list) {
3620 ret = atsr_parse_dev(atsr);
3621 if (ret)
3622 return ret;
3623 }
3624
3625 return ret;
3626 }
3627
3628 /*
3629 * Here we only respond to action of unbound device from driver.
3630 *
3631 * Added device is not attached to its DMAR domain here yet. That will happen
3632 * when mapping the device to iova.
3633 */
3634 static int device_notifier(struct notifier_block *nb,
3635 unsigned long action, void *data)
3636 {
3637 struct device *dev = data;
3638 struct pci_dev *pdev = to_pci_dev(dev);
3639 struct dmar_domain *domain;
3640
3641 if (iommu_no_mapping(dev))
3642 return 0;
3643
3644 domain = find_domain(pdev);
3645 if (!domain)
3646 return 0;
3647
3648 if (action == BUS_NOTIFY_UNBOUND_DRIVER && !iommu_pass_through) {
3649 domain_remove_one_dev_info(domain, pdev);
3650
3651 if (!(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) &&
3652 !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) &&
3653 list_empty(&domain->devices))
3654 domain_exit(domain);
3655 }
3656
3657 return 0;
3658 }
3659
3660 static struct notifier_block device_nb = {
3661 .notifier_call = device_notifier,
3662 };
3663
3664 int __init intel_iommu_init(void)
3665 {
3666 int ret = 0;
3667 struct dmar_drhd_unit *drhd;
3668
3669 /* VT-d is required for a TXT/tboot launch, so enforce that */
3670 force_on = tboot_force_iommu();
3671
3672 if (dmar_table_init()) {
3673 if (force_on)
3674 panic("tboot: Failed to initialize DMAR table\n");
3675 return -ENODEV;
3676 }
3677
3678 /*
3679 * Disable translation if already enabled prior to OS handover.
3680 */
3681 for_each_drhd_unit(drhd) {
3682 struct intel_iommu *iommu;
3683
3684 if (drhd->ignored)
3685 continue;
3686
3687 iommu = drhd->iommu;
3688 if (iommu->gcmd & DMA_GCMD_TE)
3689 iommu_disable_translation(iommu);
3690 }
3691
3692 if (dmar_dev_scope_init() < 0) {
3693 if (force_on)
3694 panic("tboot: Failed to initialize DMAR device scope\n");
3695 return -ENODEV;
3696 }
3697
3698 if (no_iommu || dmar_disabled)
3699 return -ENODEV;
3700
3701 if (iommu_init_mempool()) {
3702 if (force_on)
3703 panic("tboot: Failed to initialize iommu memory\n");
3704 return -ENODEV;
3705 }
3706
3707 if (list_empty(&dmar_rmrr_units))
3708 printk(KERN_INFO "DMAR: No RMRR found\n");
3709
3710 if (list_empty(&dmar_atsr_units))
3711 printk(KERN_INFO "DMAR: No ATSR found\n");
3712
3713 if (dmar_init_reserved_ranges()) {
3714 if (force_on)
3715 panic("tboot: Failed to reserve iommu ranges\n");
3716 return -ENODEV;
3717 }
3718
3719 init_no_remapping_devices();
3720
3721 ret = init_dmars();
3722 if (ret) {
3723 if (force_on)
3724 panic("tboot: Failed to initialize DMARs\n");
3725 printk(KERN_ERR "IOMMU: dmar init failed\n");
3726 put_iova_domain(&reserved_iova_list);
3727 iommu_exit_mempool();
3728 return ret;
3729 }
3730 printk(KERN_INFO
3731 "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
3732
3733 init_timer(&unmap_timer);
3734 #ifdef CONFIG_SWIOTLB
3735 swiotlb = 0;
3736 #endif
3737 dma_ops = &intel_dma_ops;
3738
3739 init_iommu_pm_ops();
3740
3741 bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
3742
3743 bus_register_notifier(&pci_bus_type, &device_nb);
3744
3745 intel_iommu_enabled = 1;
3746
3747 return 0;
3748 }
3749
3750 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
3751 struct pci_dev *pdev)
3752 {
3753 struct pci_dev *tmp, *parent;
3754
3755 if (!iommu || !pdev)
3756 return;
3757
3758 /* dependent device detach */
3759 tmp = pci_find_upstream_pcie_bridge(pdev);
3760 /* Secondary interface's bus number and devfn 0 */
3761 if (tmp) {
3762 parent = pdev->bus->self;
3763 while (parent != tmp) {
3764 iommu_detach_dev(iommu, parent->bus->number,
3765 parent->devfn);
3766 parent = parent->bus->self;
3767 }
3768 if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */
3769 iommu_detach_dev(iommu,
3770 tmp->subordinate->number, 0);
3771 else /* this is a legacy PCI bridge */
3772 iommu_detach_dev(iommu, tmp->bus->number,
3773 tmp->devfn);
3774 }
3775 }
3776
3777 static void domain_remove_one_dev_info(struct dmar_domain *domain,
3778 struct pci_dev *pdev)
3779 {
3780 struct device_domain_info *info;
3781 struct intel_iommu *iommu;
3782 unsigned long flags;
3783 int found = 0;
3784 struct list_head *entry, *tmp;
3785
3786 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3787 pdev->devfn);
3788 if (!iommu)
3789 return;
3790
3791 spin_lock_irqsave(&device_domain_lock, flags);
3792 list_for_each_safe(entry, tmp, &domain->devices) {
3793 info = list_entry(entry, struct device_domain_info, link);
3794 if (info->segment == pci_domain_nr(pdev->bus) &&
3795 info->bus == pdev->bus->number &&
3796 info->devfn == pdev->devfn) {
3797 unlink_domain_info(info);
3798 spin_unlock_irqrestore(&device_domain_lock, flags);
3799
3800 iommu_disable_dev_iotlb(info);
3801 iommu_detach_dev(iommu, info->bus, info->devfn);
3802 iommu_detach_dependent_devices(iommu, pdev);
3803 free_devinfo_mem(info);
3804
3805 spin_lock_irqsave(&device_domain_lock, flags);
3806
3807 if (found)
3808 break;
3809 else
3810 continue;
3811 }
3812
3813 /* if there is no other devices under the same iommu
3814 * owned by this domain, clear this iommu in iommu_bmp
3815 * update iommu count and coherency
3816 */
3817 if (iommu == device_to_iommu(info->segment, info->bus,
3818 info->devfn))
3819 found = 1;
3820 }
3821
3822 spin_unlock_irqrestore(&device_domain_lock, flags);
3823
3824 if (found == 0) {
3825 unsigned long tmp_flags;
3826 spin_lock_irqsave(&domain->iommu_lock, tmp_flags);
3827 clear_bit(iommu->seq_id, domain->iommu_bmp);
3828 domain->iommu_count--;
3829 domain_update_iommu_cap(domain);
3830 spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags);
3831
3832 if (!(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) &&
3833 !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)) {
3834 spin_lock_irqsave(&iommu->lock, tmp_flags);
3835 clear_bit(domain->id, iommu->domain_ids);
3836 iommu->domains[domain->id] = NULL;
3837 spin_unlock_irqrestore(&iommu->lock, tmp_flags);
3838 }
3839 }
3840 }
3841
3842 static void vm_domain_remove_all_dev_info(struct dmar_domain *domain)
3843 {
3844 struct device_domain_info *info;
3845 struct intel_iommu *iommu;
3846 unsigned long flags1, flags2;
3847
3848 spin_lock_irqsave(&device_domain_lock, flags1);
3849 while (!list_empty(&domain->devices)) {
3850 info = list_entry(domain->devices.next,
3851 struct device_domain_info, link);
3852 unlink_domain_info(info);
3853 spin_unlock_irqrestore(&device_domain_lock, flags1);
3854
3855 iommu_disable_dev_iotlb(info);
3856 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
3857 iommu_detach_dev(iommu, info->bus, info->devfn);
3858 iommu_detach_dependent_devices(iommu, info->dev);
3859
3860 /* clear this iommu in iommu_bmp, update iommu count
3861 * and capabilities
3862 */
3863 spin_lock_irqsave(&domain->iommu_lock, flags2);
3864 if (test_and_clear_bit(iommu->seq_id,
3865 domain->iommu_bmp)) {
3866 domain->iommu_count--;
3867 domain_update_iommu_cap(domain);
3868 }
3869 spin_unlock_irqrestore(&domain->iommu_lock, flags2);
3870
3871 free_devinfo_mem(info);
3872 spin_lock_irqsave(&device_domain_lock, flags1);
3873 }
3874 spin_unlock_irqrestore(&device_domain_lock, flags1);
3875 }
3876
3877 /* domain id for virtual machine, it won't be set in context */
3878 static unsigned long vm_domid;
3879
3880 static struct dmar_domain *iommu_alloc_vm_domain(void)
3881 {
3882 struct dmar_domain *domain;
3883
3884 domain = alloc_domain_mem();
3885 if (!domain)
3886 return NULL;
3887
3888 domain->id = vm_domid++;
3889 domain->nid = -1;
3890 memset(domain->iommu_bmp, 0, sizeof(domain->iommu_bmp));
3891 domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE;
3892
3893 return domain;
3894 }
3895
3896 static int md_domain_init(struct dmar_domain *domain, int guest_width)
3897 {
3898 int adjust_width;
3899
3900 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
3901 spin_lock_init(&domain->iommu_lock);
3902
3903 domain_reserve_special_ranges(domain);
3904
3905 /* calculate AGAW */
3906 domain->gaw = guest_width;
3907 adjust_width = guestwidth_to_adjustwidth(guest_width);
3908 domain->agaw = width_to_agaw(adjust_width);
3909
3910 INIT_LIST_HEAD(&domain->devices);
3911
3912 domain->iommu_count = 0;
3913 domain->iommu_coherency = 0;
3914 domain->iommu_snooping = 0;
3915 domain->iommu_superpage = 0;
3916 domain->max_addr = 0;
3917 domain->nid = -1;
3918
3919 /* always allocate the top pgd */
3920 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
3921 if (!domain->pgd)
3922 return -ENOMEM;
3923 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
3924 return 0;
3925 }
3926
3927 static void iommu_free_vm_domain(struct dmar_domain *domain)
3928 {
3929 unsigned long flags;
3930 struct dmar_drhd_unit *drhd;
3931 struct intel_iommu *iommu;
3932 unsigned long i;
3933 unsigned long ndomains;
3934
3935 for_each_drhd_unit(drhd) {
3936 if (drhd->ignored)
3937 continue;
3938 iommu = drhd->iommu;
3939
3940 ndomains = cap_ndoms(iommu->cap);
3941 for_each_set_bit(i, iommu->domain_ids, ndomains) {
3942 if (iommu->domains[i] == domain) {
3943 spin_lock_irqsave(&iommu->lock, flags);
3944 clear_bit(i, iommu->domain_ids);
3945 iommu->domains[i] = NULL;
3946 spin_unlock_irqrestore(&iommu->lock, flags);
3947 break;
3948 }
3949 }
3950 }
3951 }
3952
3953 static void vm_domain_exit(struct dmar_domain *domain)
3954 {
3955 /* Domain 0 is reserved, so dont process it */
3956 if (!domain)
3957 return;
3958
3959 vm_domain_remove_all_dev_info(domain);
3960 /* destroy iovas */
3961 put_iova_domain(&domain->iovad);
3962
3963 /* clear ptes */
3964 dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3965
3966 /* free page tables */
3967 dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3968
3969 iommu_free_vm_domain(domain);
3970 free_domain_mem(domain);
3971 }
3972
3973 static int intel_iommu_domain_init(struct iommu_domain *domain)
3974 {
3975 struct dmar_domain *dmar_domain;
3976
3977 dmar_domain = iommu_alloc_vm_domain();
3978 if (!dmar_domain) {
3979 printk(KERN_ERR
3980 "intel_iommu_domain_init: dmar_domain == NULL\n");
3981 return -ENOMEM;
3982 }
3983 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
3984 printk(KERN_ERR
3985 "intel_iommu_domain_init() failed\n");
3986 vm_domain_exit(dmar_domain);
3987 return -ENOMEM;
3988 }
3989 domain_update_iommu_cap(dmar_domain);
3990 domain->priv = dmar_domain;
3991
3992 domain->geometry.aperture_start = 0;
3993 domain->geometry.aperture_end = __DOMAIN_MAX_ADDR(dmar_domain->gaw);
3994 domain->geometry.force_aperture = true;
3995
3996 return 0;
3997 }
3998
3999 static void intel_iommu_domain_destroy(struct iommu_domain *domain)
4000 {
4001 struct dmar_domain *dmar_domain = domain->priv;
4002
4003 domain->priv = NULL;
4004 vm_domain_exit(dmar_domain);
4005 }
4006
4007 static int intel_iommu_attach_device(struct iommu_domain *domain,
4008 struct device *dev)
4009 {
4010 struct dmar_domain *dmar_domain = domain->priv;
4011 struct pci_dev *pdev = to_pci_dev(dev);
4012 struct intel_iommu *iommu;
4013 int addr_width;
4014
4015 /* normally pdev is not mapped */
4016 if (unlikely(domain_context_mapped(pdev))) {
4017 struct dmar_domain *old_domain;
4018
4019 old_domain = find_domain(pdev);
4020 if (old_domain) {
4021 if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
4022 dmar_domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)
4023 domain_remove_one_dev_info(old_domain, pdev);
4024 else
4025 domain_remove_dev_info(old_domain);
4026 }
4027 }
4028
4029 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
4030 pdev->devfn);
4031 if (!iommu)
4032 return -ENODEV;
4033
4034 /* check if this iommu agaw is sufficient for max mapped address */
4035 addr_width = agaw_to_width(iommu->agaw);
4036 if (addr_width > cap_mgaw(iommu->cap))
4037 addr_width = cap_mgaw(iommu->cap);
4038
4039 if (dmar_domain->max_addr > (1LL << addr_width)) {
4040 printk(KERN_ERR "%s: iommu width (%d) is not "
4041 "sufficient for the mapped address (%llx)\n",
4042 __func__, addr_width, dmar_domain->max_addr);
4043 return -EFAULT;
4044 }
4045 dmar_domain->gaw = addr_width;
4046
4047 /*
4048 * Knock out extra levels of page tables if necessary
4049 */
4050 while (iommu->agaw < dmar_domain->agaw) {
4051 struct dma_pte *pte;
4052
4053 pte = dmar_domain->pgd;
4054 if (dma_pte_present(pte)) {
4055 dmar_domain->pgd = (struct dma_pte *)
4056 phys_to_virt(dma_pte_addr(pte));
4057 free_pgtable_page(pte);
4058 }
4059 dmar_domain->agaw--;
4060 }
4061
4062 return domain_add_dev_info(dmar_domain, pdev, CONTEXT_TT_MULTI_LEVEL);
4063 }
4064
4065 static void intel_iommu_detach_device(struct iommu_domain *domain,
4066 struct device *dev)
4067 {
4068 struct dmar_domain *dmar_domain = domain->priv;
4069 struct pci_dev *pdev = to_pci_dev(dev);
4070
4071 domain_remove_one_dev_info(dmar_domain, pdev);
4072 }
4073
4074 static int intel_iommu_map(struct iommu_domain *domain,
4075 unsigned long iova, phys_addr_t hpa,
4076 size_t size, int iommu_prot)
4077 {
4078 struct dmar_domain *dmar_domain = domain->priv;
4079 u64 max_addr;
4080 int prot = 0;
4081 int ret;
4082
4083 if (iommu_prot & IOMMU_READ)
4084 prot |= DMA_PTE_READ;
4085 if (iommu_prot & IOMMU_WRITE)
4086 prot |= DMA_PTE_WRITE;
4087 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
4088 prot |= DMA_PTE_SNP;
4089
4090 max_addr = iova + size;
4091 if (dmar_domain->max_addr < max_addr) {
4092 u64 end;
4093
4094 /* check if minimum agaw is sufficient for mapped address */
4095 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
4096 if (end < max_addr) {
4097 printk(KERN_ERR "%s: iommu width (%d) is not "
4098 "sufficient for the mapped address (%llx)\n",
4099 __func__, dmar_domain->gaw, max_addr);
4100 return -EFAULT;
4101 }
4102 dmar_domain->max_addr = max_addr;
4103 }
4104 /* Round up size to next multiple of PAGE_SIZE, if it and
4105 the low bits of hpa would take us onto the next page */
4106 size = aligned_nrpages(hpa, size);
4107 ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
4108 hpa >> VTD_PAGE_SHIFT, size, prot);
4109 return ret;
4110 }
4111
4112 static size_t intel_iommu_unmap(struct iommu_domain *domain,
4113 unsigned long iova, size_t size)
4114 {
4115 struct dmar_domain *dmar_domain = domain->priv;
4116 int order;
4117
4118 order = dma_pte_clear_range(dmar_domain, iova >> VTD_PAGE_SHIFT,
4119 (iova + size - 1) >> VTD_PAGE_SHIFT);
4120
4121 if (dmar_domain->max_addr == iova + size)
4122 dmar_domain->max_addr = iova;
4123
4124 return PAGE_SIZE << order;
4125 }
4126
4127 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
4128 dma_addr_t iova)
4129 {
4130 struct dmar_domain *dmar_domain = domain->priv;
4131 struct dma_pte *pte;
4132 u64 phys = 0;
4133
4134 pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, 0);
4135 if (pte)
4136 phys = dma_pte_addr(pte);
4137
4138 return phys;
4139 }
4140
4141 static int intel_iommu_domain_has_cap(struct iommu_domain *domain,
4142 unsigned long cap)
4143 {
4144 struct dmar_domain *dmar_domain = domain->priv;
4145
4146 if (cap == IOMMU_CAP_CACHE_COHERENCY)
4147 return dmar_domain->iommu_snooping;
4148 if (cap == IOMMU_CAP_INTR_REMAP)
4149 return irq_remapping_enabled;
4150
4151 return 0;
4152 }
4153
4154 #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
4155
4156 static int intel_iommu_add_device(struct device *dev)
4157 {
4158 struct pci_dev *pdev = to_pci_dev(dev);
4159 struct pci_dev *bridge, *dma_pdev = NULL;
4160 struct iommu_group *group;
4161 int ret;
4162
4163 if (!device_to_iommu(pci_domain_nr(pdev->bus),
4164 pdev->bus->number, pdev->devfn))
4165 return -ENODEV;
4166
4167 bridge = pci_find_upstream_pcie_bridge(pdev);
4168 if (bridge) {
4169 if (pci_is_pcie(bridge))
4170 dma_pdev = pci_get_domain_bus_and_slot(
4171 pci_domain_nr(pdev->bus),
4172 bridge->subordinate->number, 0);
4173 if (!dma_pdev)
4174 dma_pdev = pci_dev_get(bridge);
4175 } else
4176 dma_pdev = pci_dev_get(pdev);
4177
4178 /* Account for quirked devices */
4179 swap_pci_ref(&dma_pdev, pci_get_dma_source(dma_pdev));
4180
4181 /*
4182 * If it's a multifunction device that does not support our
4183 * required ACS flags, add to the same group as lowest numbered
4184 * function that also does not suport the required ACS flags.
4185 */
4186 if (dma_pdev->multifunction &&
4187 !pci_acs_enabled(dma_pdev, REQ_ACS_FLAGS)) {
4188 u8 i, slot = PCI_SLOT(dma_pdev->devfn);
4189
4190 for (i = 0; i < 8; i++) {
4191 struct pci_dev *tmp;
4192
4193 tmp = pci_get_slot(dma_pdev->bus, PCI_DEVFN(slot, i));
4194 if (!tmp)
4195 continue;
4196
4197 if (!pci_acs_enabled(tmp, REQ_ACS_FLAGS)) {
4198 swap_pci_ref(&dma_pdev, tmp);
4199 break;
4200 }
4201 pci_dev_put(tmp);
4202 }
4203 }
4204
4205 /*
4206 * Devices on the root bus go through the iommu. If that's not us,
4207 * find the next upstream device and test ACS up to the root bus.
4208 * Finding the next device may require skipping virtual buses.
4209 */
4210 while (!pci_is_root_bus(dma_pdev->bus)) {
4211 struct pci_bus *bus = dma_pdev->bus;
4212
4213 while (!bus->self) {
4214 if (!pci_is_root_bus(bus))
4215 bus = bus->parent;
4216 else
4217 goto root_bus;
4218 }
4219
4220 if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
4221 break;
4222
4223 swap_pci_ref(&dma_pdev, pci_dev_get(bus->self));
4224 }
4225
4226 root_bus:
4227 group = iommu_group_get(&dma_pdev->dev);
4228 pci_dev_put(dma_pdev);
4229 if (!group) {
4230 group = iommu_group_alloc();
4231 if (IS_ERR(group))
4232 return PTR_ERR(group);
4233 }
4234
4235 ret = iommu_group_add_device(group, dev);
4236
4237 iommu_group_put(group);
4238 return ret;
4239 }
4240
4241 static void intel_iommu_remove_device(struct device *dev)
4242 {
4243 iommu_group_remove_device(dev);
4244 }
4245
4246 static struct iommu_ops intel_iommu_ops = {
4247 .domain_init = intel_iommu_domain_init,
4248 .domain_destroy = intel_iommu_domain_destroy,
4249 .attach_dev = intel_iommu_attach_device,
4250 .detach_dev = intel_iommu_detach_device,
4251 .map = intel_iommu_map,
4252 .unmap = intel_iommu_unmap,
4253 .iova_to_phys = intel_iommu_iova_to_phys,
4254 .domain_has_cap = intel_iommu_domain_has_cap,
4255 .add_device = intel_iommu_add_device,
4256 .remove_device = intel_iommu_remove_device,
4257 .pgsize_bitmap = INTEL_IOMMU_PGSIZES,
4258 };
4259
4260 static void quirk_iommu_g4x_gfx(struct pci_dev *dev)
4261 {
4262 /* G4x/GM45 integrated gfx dmar support is totally busted. */
4263 printk(KERN_INFO "DMAR: Disabling IOMMU for graphics on this chipset\n");
4264 dmar_map_gfx = 0;
4265 }
4266
4267 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_g4x_gfx);
4268 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_g4x_gfx);
4269 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_g4x_gfx);
4270 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_g4x_gfx);
4271 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_g4x_gfx);
4272 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_g4x_gfx);
4273 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_g4x_gfx);
4274
4275 static void quirk_iommu_rwbf(struct pci_dev *dev)
4276 {
4277 /*
4278 * Mobile 4 Series Chipset neglects to set RWBF capability,
4279 * but needs it. Same seems to hold for the desktop versions.
4280 */
4281 printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n");
4282 rwbf_quirk = 1;
4283 }
4284
4285 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
4286 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
4287 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
4288 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
4289 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
4290 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
4291 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
4292
4293 #define GGC 0x52
4294 #define GGC_MEMORY_SIZE_MASK (0xf << 8)
4295 #define GGC_MEMORY_SIZE_NONE (0x0 << 8)
4296 #define GGC_MEMORY_SIZE_1M (0x1 << 8)
4297 #define GGC_MEMORY_SIZE_2M (0x3 << 8)
4298 #define GGC_MEMORY_VT_ENABLED (0x8 << 8)
4299 #define GGC_MEMORY_SIZE_2M_VT (0x9 << 8)
4300 #define GGC_MEMORY_SIZE_3M_VT (0xa << 8)
4301 #define GGC_MEMORY_SIZE_4M_VT (0xb << 8)
4302
4303 static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
4304 {
4305 unsigned short ggc;
4306
4307 if (pci_read_config_word(dev, GGC, &ggc))
4308 return;
4309
4310 if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
4311 printk(KERN_INFO "DMAR: BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
4312 dmar_map_gfx = 0;
4313 } else if (dmar_map_gfx) {
4314 /* we have to ensure the gfx device is idle before we flush */
4315 printk(KERN_INFO "DMAR: Disabling batched IOTLB flush on Ironlake\n");
4316 intel_iommu_strict = 1;
4317 }
4318 }
4319 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
4320 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
4321 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
4322 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
4323
4324 /* On Tylersburg chipsets, some BIOSes have been known to enable the
4325 ISOCH DMAR unit for the Azalia sound device, but not give it any
4326 TLB entries, which causes it to deadlock. Check for that. We do
4327 this in a function called from init_dmars(), instead of in a PCI
4328 quirk, because we don't want to print the obnoxious "BIOS broken"
4329 message if VT-d is actually disabled.
4330 */
4331 static void __init check_tylersburg_isoch(void)
4332 {
4333 struct pci_dev *pdev;
4334 uint32_t vtisochctrl;
4335
4336 /* If there's no Azalia in the system anyway, forget it. */
4337 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
4338 if (!pdev)
4339 return;
4340 pci_dev_put(pdev);
4341
4342 /* System Management Registers. Might be hidden, in which case
4343 we can't do the sanity check. But that's OK, because the
4344 known-broken BIOSes _don't_ actually hide it, so far. */
4345 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
4346 if (!pdev)
4347 return;
4348
4349 if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
4350 pci_dev_put(pdev);
4351 return;
4352 }
4353
4354 pci_dev_put(pdev);
4355
4356 /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
4357 if (vtisochctrl & 1)
4358 return;
4359
4360 /* Drop all bits other than the number of TLB entries */
4361 vtisochctrl &= 0x1c;
4362
4363 /* If we have the recommended number of TLB entries (16), fine. */
4364 if (vtisochctrl == 0x10)
4365 return;
4366
4367 /* Zero TLB entries? You get to ride the short bus to school. */
4368 if (!vtisochctrl) {
4369 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
4370 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
4371 dmi_get_system_info(DMI_BIOS_VENDOR),
4372 dmi_get_system_info(DMI_BIOS_VERSION),
4373 dmi_get_system_info(DMI_PRODUCT_VERSION));
4374 iommu_identity_mapping |= IDENTMAP_AZALIA;
4375 return;
4376 }
4377
4378 printk(KERN_WARNING "DMAR: Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
4379 vtisochctrl);
4380 }
This page took 0.219464 seconds and 5 git commands to generate.