Merge tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[deliverable/linux.git] / drivers / iommu / intel-iommu.c
1 /*
2 * Copyright © 2006-2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * Authors: David Woodhouse <dwmw2@infradead.org>,
14 * Ashok Raj <ashok.raj@intel.com>,
15 * Shaohua Li <shaohua.li@intel.com>,
16 * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
17 * Fenghua Yu <fenghua.yu@intel.com>
18 */
19
20 #include <linux/init.h>
21 #include <linux/bitmap.h>
22 #include <linux/debugfs.h>
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/irq.h>
26 #include <linux/interrupt.h>
27 #include <linux/spinlock.h>
28 #include <linux/pci.h>
29 #include <linux/dmar.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/mempool.h>
32 #include <linux/memory.h>
33 #include <linux/timer.h>
34 #include <linux/iova.h>
35 #include <linux/iommu.h>
36 #include <linux/intel-iommu.h>
37 #include <linux/syscore_ops.h>
38 #include <linux/tboot.h>
39 #include <linux/dmi.h>
40 #include <linux/pci-ats.h>
41 #include <linux/memblock.h>
42 #include <linux/dma-contiguous.h>
43 #include <asm/irq_remapping.h>
44 #include <asm/cacheflush.h>
45 #include <asm/iommu.h>
46
47 #include "irq_remapping.h"
48
49 #define ROOT_SIZE VTD_PAGE_SIZE
50 #define CONTEXT_SIZE VTD_PAGE_SIZE
51
52 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
53 #define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB)
54 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
55 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
56
57 #define IOAPIC_RANGE_START (0xfee00000)
58 #define IOAPIC_RANGE_END (0xfeefffff)
59 #define IOVA_START_ADDR (0x1000)
60
61 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
62
63 #define MAX_AGAW_WIDTH 64
64 #define MAX_AGAW_PFN_WIDTH (MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
65
66 #define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
67 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
68
69 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
70 to match. That way, we can use 'unsigned long' for PFNs with impunity. */
71 #define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \
72 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
73 #define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
74
75 /* IO virtual address start page frame number */
76 #define IOVA_START_PFN (1)
77
78 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
79 #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
80 #define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
81
82 /* page table handling */
83 #define LEVEL_STRIDE (9)
84 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
85
86 /*
87 * This bitmap is used to advertise the page sizes our hardware support
88 * to the IOMMU core, which will then use this information to split
89 * physically contiguous memory regions it is mapping into page sizes
90 * that we support.
91 *
92 * Traditionally the IOMMU core just handed us the mappings directly,
93 * after making sure the size is an order of a 4KiB page and that the
94 * mapping has natural alignment.
95 *
96 * To retain this behavior, we currently advertise that we support
97 * all page sizes that are an order of 4KiB.
98 *
99 * If at some point we'd like to utilize the IOMMU core's new behavior,
100 * we could change this to advertise the real page sizes we support.
101 */
102 #define INTEL_IOMMU_PGSIZES (~0xFFFUL)
103
104 static inline int agaw_to_level(int agaw)
105 {
106 return agaw + 2;
107 }
108
109 static inline int agaw_to_width(int agaw)
110 {
111 return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
112 }
113
114 static inline int width_to_agaw(int width)
115 {
116 return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
117 }
118
119 static inline unsigned int level_to_offset_bits(int level)
120 {
121 return (level - 1) * LEVEL_STRIDE;
122 }
123
124 static inline int pfn_level_offset(unsigned long pfn, int level)
125 {
126 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
127 }
128
129 static inline unsigned long level_mask(int level)
130 {
131 return -1UL << level_to_offset_bits(level);
132 }
133
134 static inline unsigned long level_size(int level)
135 {
136 return 1UL << level_to_offset_bits(level);
137 }
138
139 static inline unsigned long align_to_level(unsigned long pfn, int level)
140 {
141 return (pfn + level_size(level) - 1) & level_mask(level);
142 }
143
144 static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
145 {
146 return 1 << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
147 }
148
149 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
150 are never going to work. */
151 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
152 {
153 return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
154 }
155
156 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
157 {
158 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
159 }
160 static inline unsigned long page_to_dma_pfn(struct page *pg)
161 {
162 return mm_to_dma_pfn(page_to_pfn(pg));
163 }
164 static inline unsigned long virt_to_dma_pfn(void *p)
165 {
166 return page_to_dma_pfn(virt_to_page(p));
167 }
168
169 /* global iommu list, set NULL for ignored DMAR units */
170 static struct intel_iommu **g_iommus;
171
172 static void __init check_tylersburg_isoch(void);
173 static int rwbf_quirk;
174
175 /*
176 * set to 1 to panic kernel if can't successfully enable VT-d
177 * (used when kernel is launched w/ TXT)
178 */
179 static int force_on = 0;
180
181 /*
182 * 0: Present
183 * 1-11: Reserved
184 * 12-63: Context Ptr (12 - (haw-1))
185 * 64-127: Reserved
186 */
187 struct root_entry {
188 u64 lo;
189 u64 hi;
190 };
191 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
192
193
194 /*
195 * low 64 bits:
196 * 0: present
197 * 1: fault processing disable
198 * 2-3: translation type
199 * 12-63: address space root
200 * high 64 bits:
201 * 0-2: address width
202 * 3-6: aval
203 * 8-23: domain id
204 */
205 struct context_entry {
206 u64 lo;
207 u64 hi;
208 };
209
210 static inline bool context_present(struct context_entry *context)
211 {
212 return (context->lo & 1);
213 }
214 static inline void context_set_present(struct context_entry *context)
215 {
216 context->lo |= 1;
217 }
218
219 static inline void context_set_fault_enable(struct context_entry *context)
220 {
221 context->lo &= (((u64)-1) << 2) | 1;
222 }
223
224 static inline void context_set_translation_type(struct context_entry *context,
225 unsigned long value)
226 {
227 context->lo &= (((u64)-1) << 4) | 3;
228 context->lo |= (value & 3) << 2;
229 }
230
231 static inline void context_set_address_root(struct context_entry *context,
232 unsigned long value)
233 {
234 context->lo &= ~VTD_PAGE_MASK;
235 context->lo |= value & VTD_PAGE_MASK;
236 }
237
238 static inline void context_set_address_width(struct context_entry *context,
239 unsigned long value)
240 {
241 context->hi |= value & 7;
242 }
243
244 static inline void context_set_domain_id(struct context_entry *context,
245 unsigned long value)
246 {
247 context->hi |= (value & ((1 << 16) - 1)) << 8;
248 }
249
250 static inline void context_clear_entry(struct context_entry *context)
251 {
252 context->lo = 0;
253 context->hi = 0;
254 }
255
256 /*
257 * 0: readable
258 * 1: writable
259 * 2-6: reserved
260 * 7: super page
261 * 8-10: available
262 * 11: snoop behavior
263 * 12-63: Host physcial address
264 */
265 struct dma_pte {
266 u64 val;
267 };
268
269 static inline void dma_clear_pte(struct dma_pte *pte)
270 {
271 pte->val = 0;
272 }
273
274 static inline u64 dma_pte_addr(struct dma_pte *pte)
275 {
276 #ifdef CONFIG_64BIT
277 return pte->val & VTD_PAGE_MASK;
278 #else
279 /* Must have a full atomic 64-bit read */
280 return __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
281 #endif
282 }
283
284 static inline bool dma_pte_present(struct dma_pte *pte)
285 {
286 return (pte->val & 3) != 0;
287 }
288
289 static inline bool dma_pte_superpage(struct dma_pte *pte)
290 {
291 return (pte->val & DMA_PTE_LARGE_PAGE);
292 }
293
294 static inline int first_pte_in_page(struct dma_pte *pte)
295 {
296 return !((unsigned long)pte & ~VTD_PAGE_MASK);
297 }
298
299 /*
300 * This domain is a statically identity mapping domain.
301 * 1. This domain creats a static 1:1 mapping to all usable memory.
302 * 2. It maps to each iommu if successful.
303 * 3. Each iommu mapps to this domain if successful.
304 */
305 static struct dmar_domain *si_domain;
306 static int hw_pass_through = 1;
307
308 /* domain represents a virtual machine, more than one devices
309 * across iommus may be owned in one domain, e.g. kvm guest.
310 */
311 #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 0)
312
313 /* si_domain contains mulitple devices */
314 #define DOMAIN_FLAG_STATIC_IDENTITY (1 << 1)
315
316 struct dmar_domain {
317 int id; /* domain id */
318 int nid; /* node id */
319 DECLARE_BITMAP(iommu_bmp, DMAR_UNITS_SUPPORTED);
320 /* bitmap of iommus this domain uses*/
321
322 struct list_head devices; /* all devices' list */
323 struct iova_domain iovad; /* iova's that belong to this domain */
324
325 struct dma_pte *pgd; /* virtual address */
326 int gaw; /* max guest address width */
327
328 /* adjusted guest address width, 0 is level 2 30-bit */
329 int agaw;
330
331 int flags; /* flags to find out type of domain */
332
333 int iommu_coherency;/* indicate coherency of iommu access */
334 int iommu_snooping; /* indicate snooping control feature*/
335 int iommu_count; /* reference count of iommu */
336 int iommu_superpage;/* Level of superpages supported:
337 0 == 4KiB (no superpages), 1 == 2MiB,
338 2 == 1GiB, 3 == 512GiB, 4 == 1TiB */
339 spinlock_t iommu_lock; /* protect iommu set in domain */
340 u64 max_addr; /* maximum mapped address */
341
342 struct iommu_domain domain; /* generic domain data structure for
343 iommu core */
344 };
345
346 /* PCI domain-device relationship */
347 struct device_domain_info {
348 struct list_head link; /* link to domain siblings */
349 struct list_head global; /* link to global list */
350 u8 bus; /* PCI bus number */
351 u8 devfn; /* PCI devfn number */
352 struct device *dev; /* it's NULL for PCIe-to-PCI bridge */
353 struct intel_iommu *iommu; /* IOMMU used by this device */
354 struct dmar_domain *domain; /* pointer to domain */
355 };
356
357 struct dmar_rmrr_unit {
358 struct list_head list; /* list of rmrr units */
359 struct acpi_dmar_header *hdr; /* ACPI header */
360 u64 base_address; /* reserved base address*/
361 u64 end_address; /* reserved end address */
362 struct dmar_dev_scope *devices; /* target devices */
363 int devices_cnt; /* target device count */
364 };
365
366 struct dmar_atsr_unit {
367 struct list_head list; /* list of ATSR units */
368 struct acpi_dmar_header *hdr; /* ACPI header */
369 struct dmar_dev_scope *devices; /* target devices */
370 int devices_cnt; /* target device count */
371 u8 include_all:1; /* include all ports */
372 };
373
374 static LIST_HEAD(dmar_atsr_units);
375 static LIST_HEAD(dmar_rmrr_units);
376
377 #define for_each_rmrr_units(rmrr) \
378 list_for_each_entry(rmrr, &dmar_rmrr_units, list)
379
380 static void flush_unmaps_timeout(unsigned long data);
381
382 static DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0);
383
384 #define HIGH_WATER_MARK 250
385 struct deferred_flush_tables {
386 int next;
387 struct iova *iova[HIGH_WATER_MARK];
388 struct dmar_domain *domain[HIGH_WATER_MARK];
389 struct page *freelist[HIGH_WATER_MARK];
390 };
391
392 static struct deferred_flush_tables *deferred_flush;
393
394 /* bitmap for indexing intel_iommus */
395 static int g_num_of_iommus;
396
397 static DEFINE_SPINLOCK(async_umap_flush_lock);
398 static LIST_HEAD(unmaps_to_do);
399
400 static int timer_on;
401 static long list_size;
402
403 static void domain_exit(struct dmar_domain *domain);
404 static void domain_remove_dev_info(struct dmar_domain *domain);
405 static void domain_remove_one_dev_info(struct dmar_domain *domain,
406 struct device *dev);
407 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
408 struct device *dev);
409 static int domain_detach_iommu(struct dmar_domain *domain,
410 struct intel_iommu *iommu);
411
412 #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
413 int dmar_disabled = 0;
414 #else
415 int dmar_disabled = 1;
416 #endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
417
418 int intel_iommu_enabled = 0;
419 EXPORT_SYMBOL_GPL(intel_iommu_enabled);
420
421 static int dmar_map_gfx = 1;
422 static int dmar_forcedac;
423 static int intel_iommu_strict;
424 static int intel_iommu_superpage = 1;
425 static int intel_iommu_ecs = 1;
426
427 /* We only actually use ECS when PASID support (on the new bit 40)
428 * is also advertised. Some early implementations — the ones with
429 * PASID support on bit 28 — have issues even when we *only* use
430 * extended root/context tables. */
431 #define ecs_enabled(iommu) (intel_iommu_ecs && ecap_ecs(iommu->ecap) && \
432 ecap_pasid(iommu->ecap))
433
434 int intel_iommu_gfx_mapped;
435 EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
436
437 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
438 static DEFINE_SPINLOCK(device_domain_lock);
439 static LIST_HEAD(device_domain_list);
440
441 static const struct iommu_ops intel_iommu_ops;
442
443 /* Convert generic 'struct iommu_domain to private struct dmar_domain */
444 static struct dmar_domain *to_dmar_domain(struct iommu_domain *dom)
445 {
446 return container_of(dom, struct dmar_domain, domain);
447 }
448
449 static int __init intel_iommu_setup(char *str)
450 {
451 if (!str)
452 return -EINVAL;
453 while (*str) {
454 if (!strncmp(str, "on", 2)) {
455 dmar_disabled = 0;
456 printk(KERN_INFO "Intel-IOMMU: enabled\n");
457 } else if (!strncmp(str, "off", 3)) {
458 dmar_disabled = 1;
459 printk(KERN_INFO "Intel-IOMMU: disabled\n");
460 } else if (!strncmp(str, "igfx_off", 8)) {
461 dmar_map_gfx = 0;
462 printk(KERN_INFO
463 "Intel-IOMMU: disable GFX device mapping\n");
464 } else if (!strncmp(str, "forcedac", 8)) {
465 printk(KERN_INFO
466 "Intel-IOMMU: Forcing DAC for PCI devices\n");
467 dmar_forcedac = 1;
468 } else if (!strncmp(str, "strict", 6)) {
469 printk(KERN_INFO
470 "Intel-IOMMU: disable batched IOTLB flush\n");
471 intel_iommu_strict = 1;
472 } else if (!strncmp(str, "sp_off", 6)) {
473 printk(KERN_INFO
474 "Intel-IOMMU: disable supported super page\n");
475 intel_iommu_superpage = 0;
476 } else if (!strncmp(str, "ecs_off", 7)) {
477 printk(KERN_INFO
478 "Intel-IOMMU: disable extended context table support\n");
479 intel_iommu_ecs = 0;
480 }
481
482 str += strcspn(str, ",");
483 while (*str == ',')
484 str++;
485 }
486 return 0;
487 }
488 __setup("intel_iommu=", intel_iommu_setup);
489
490 static struct kmem_cache *iommu_domain_cache;
491 static struct kmem_cache *iommu_devinfo_cache;
492
493 static inline void *alloc_pgtable_page(int node)
494 {
495 struct page *page;
496 void *vaddr = NULL;
497
498 page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
499 if (page)
500 vaddr = page_address(page);
501 return vaddr;
502 }
503
504 static inline void free_pgtable_page(void *vaddr)
505 {
506 free_page((unsigned long)vaddr);
507 }
508
509 static inline void *alloc_domain_mem(void)
510 {
511 return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
512 }
513
514 static void free_domain_mem(void *vaddr)
515 {
516 kmem_cache_free(iommu_domain_cache, vaddr);
517 }
518
519 static inline void * alloc_devinfo_mem(void)
520 {
521 return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
522 }
523
524 static inline void free_devinfo_mem(void *vaddr)
525 {
526 kmem_cache_free(iommu_devinfo_cache, vaddr);
527 }
528
529 static inline int domain_type_is_vm(struct dmar_domain *domain)
530 {
531 return domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE;
532 }
533
534 static inline int domain_type_is_vm_or_si(struct dmar_domain *domain)
535 {
536 return domain->flags & (DOMAIN_FLAG_VIRTUAL_MACHINE |
537 DOMAIN_FLAG_STATIC_IDENTITY);
538 }
539
540 static inline int domain_pfn_supported(struct dmar_domain *domain,
541 unsigned long pfn)
542 {
543 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
544
545 return !(addr_width < BITS_PER_LONG && pfn >> addr_width);
546 }
547
548 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
549 {
550 unsigned long sagaw;
551 int agaw = -1;
552
553 sagaw = cap_sagaw(iommu->cap);
554 for (agaw = width_to_agaw(max_gaw);
555 agaw >= 0; agaw--) {
556 if (test_bit(agaw, &sagaw))
557 break;
558 }
559
560 return agaw;
561 }
562
563 /*
564 * Calculate max SAGAW for each iommu.
565 */
566 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
567 {
568 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
569 }
570
571 /*
572 * calculate agaw for each iommu.
573 * "SAGAW" may be different across iommus, use a default agaw, and
574 * get a supported less agaw for iommus that don't support the default agaw.
575 */
576 int iommu_calculate_agaw(struct intel_iommu *iommu)
577 {
578 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
579 }
580
581 /* This functionin only returns single iommu in a domain */
582 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
583 {
584 int iommu_id;
585
586 /* si_domain and vm domain should not get here. */
587 BUG_ON(domain_type_is_vm_or_si(domain));
588 iommu_id = find_first_bit(domain->iommu_bmp, g_num_of_iommus);
589 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
590 return NULL;
591
592 return g_iommus[iommu_id];
593 }
594
595 static void domain_update_iommu_coherency(struct dmar_domain *domain)
596 {
597 struct dmar_drhd_unit *drhd;
598 struct intel_iommu *iommu;
599 bool found = false;
600 int i;
601
602 domain->iommu_coherency = 1;
603
604 for_each_set_bit(i, domain->iommu_bmp, g_num_of_iommus) {
605 found = true;
606 if (!ecap_coherent(g_iommus[i]->ecap)) {
607 domain->iommu_coherency = 0;
608 break;
609 }
610 }
611 if (found)
612 return;
613
614 /* No hardware attached; use lowest common denominator */
615 rcu_read_lock();
616 for_each_active_iommu(iommu, drhd) {
617 if (!ecap_coherent(iommu->ecap)) {
618 domain->iommu_coherency = 0;
619 break;
620 }
621 }
622 rcu_read_unlock();
623 }
624
625 static int domain_update_iommu_snooping(struct intel_iommu *skip)
626 {
627 struct dmar_drhd_unit *drhd;
628 struct intel_iommu *iommu;
629 int ret = 1;
630
631 rcu_read_lock();
632 for_each_active_iommu(iommu, drhd) {
633 if (iommu != skip) {
634 if (!ecap_sc_support(iommu->ecap)) {
635 ret = 0;
636 break;
637 }
638 }
639 }
640 rcu_read_unlock();
641
642 return ret;
643 }
644
645 static int domain_update_iommu_superpage(struct intel_iommu *skip)
646 {
647 struct dmar_drhd_unit *drhd;
648 struct intel_iommu *iommu;
649 int mask = 0xf;
650
651 if (!intel_iommu_superpage) {
652 return 0;
653 }
654
655 /* set iommu_superpage to the smallest common denominator */
656 rcu_read_lock();
657 for_each_active_iommu(iommu, drhd) {
658 if (iommu != skip) {
659 mask &= cap_super_page_val(iommu->cap);
660 if (!mask)
661 break;
662 }
663 }
664 rcu_read_unlock();
665
666 return fls(mask);
667 }
668
669 /* Some capabilities may be different across iommus */
670 static void domain_update_iommu_cap(struct dmar_domain *domain)
671 {
672 domain_update_iommu_coherency(domain);
673 domain->iommu_snooping = domain_update_iommu_snooping(NULL);
674 domain->iommu_superpage = domain_update_iommu_superpage(NULL);
675 }
676
677 static inline struct context_entry *iommu_context_addr(struct intel_iommu *iommu,
678 u8 bus, u8 devfn, int alloc)
679 {
680 struct root_entry *root = &iommu->root_entry[bus];
681 struct context_entry *context;
682 u64 *entry;
683
684 if (ecs_enabled(iommu)) {
685 if (devfn >= 0x80) {
686 devfn -= 0x80;
687 entry = &root->hi;
688 }
689 devfn *= 2;
690 }
691 entry = &root->lo;
692 if (*entry & 1)
693 context = phys_to_virt(*entry & VTD_PAGE_MASK);
694 else {
695 unsigned long phy_addr;
696 if (!alloc)
697 return NULL;
698
699 context = alloc_pgtable_page(iommu->node);
700 if (!context)
701 return NULL;
702
703 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
704 phy_addr = virt_to_phys((void *)context);
705 *entry = phy_addr | 1;
706 __iommu_flush_cache(iommu, entry, sizeof(*entry));
707 }
708 return &context[devfn];
709 }
710
711 static int iommu_dummy(struct device *dev)
712 {
713 return dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
714 }
715
716 static struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn)
717 {
718 struct dmar_drhd_unit *drhd = NULL;
719 struct intel_iommu *iommu;
720 struct device *tmp;
721 struct pci_dev *ptmp, *pdev = NULL;
722 u16 segment = 0;
723 int i;
724
725 if (iommu_dummy(dev))
726 return NULL;
727
728 if (dev_is_pci(dev)) {
729 pdev = to_pci_dev(dev);
730 segment = pci_domain_nr(pdev->bus);
731 } else if (has_acpi_companion(dev))
732 dev = &ACPI_COMPANION(dev)->dev;
733
734 rcu_read_lock();
735 for_each_active_iommu(iommu, drhd) {
736 if (pdev && segment != drhd->segment)
737 continue;
738
739 for_each_active_dev_scope(drhd->devices,
740 drhd->devices_cnt, i, tmp) {
741 if (tmp == dev) {
742 *bus = drhd->devices[i].bus;
743 *devfn = drhd->devices[i].devfn;
744 goto out;
745 }
746
747 if (!pdev || !dev_is_pci(tmp))
748 continue;
749
750 ptmp = to_pci_dev(tmp);
751 if (ptmp->subordinate &&
752 ptmp->subordinate->number <= pdev->bus->number &&
753 ptmp->subordinate->busn_res.end >= pdev->bus->number)
754 goto got_pdev;
755 }
756
757 if (pdev && drhd->include_all) {
758 got_pdev:
759 *bus = pdev->bus->number;
760 *devfn = pdev->devfn;
761 goto out;
762 }
763 }
764 iommu = NULL;
765 out:
766 rcu_read_unlock();
767
768 return iommu;
769 }
770
771 static void domain_flush_cache(struct dmar_domain *domain,
772 void *addr, int size)
773 {
774 if (!domain->iommu_coherency)
775 clflush_cache_range(addr, size);
776 }
777
778 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
779 {
780 struct context_entry *context;
781 int ret = 0;
782 unsigned long flags;
783
784 spin_lock_irqsave(&iommu->lock, flags);
785 context = iommu_context_addr(iommu, bus, devfn, 0);
786 if (context)
787 ret = context_present(context);
788 spin_unlock_irqrestore(&iommu->lock, flags);
789 return ret;
790 }
791
792 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
793 {
794 struct context_entry *context;
795 unsigned long flags;
796
797 spin_lock_irqsave(&iommu->lock, flags);
798 context = iommu_context_addr(iommu, bus, devfn, 0);
799 if (context) {
800 context_clear_entry(context);
801 __iommu_flush_cache(iommu, context, sizeof(*context));
802 }
803 spin_unlock_irqrestore(&iommu->lock, flags);
804 }
805
806 static void free_context_table(struct intel_iommu *iommu)
807 {
808 int i;
809 unsigned long flags;
810 struct context_entry *context;
811
812 spin_lock_irqsave(&iommu->lock, flags);
813 if (!iommu->root_entry) {
814 goto out;
815 }
816 for (i = 0; i < ROOT_ENTRY_NR; i++) {
817 context = iommu_context_addr(iommu, i, 0, 0);
818 if (context)
819 free_pgtable_page(context);
820
821 if (!ecs_enabled(iommu))
822 continue;
823
824 context = iommu_context_addr(iommu, i, 0x80, 0);
825 if (context)
826 free_pgtable_page(context);
827
828 }
829 free_pgtable_page(iommu->root_entry);
830 iommu->root_entry = NULL;
831 out:
832 spin_unlock_irqrestore(&iommu->lock, flags);
833 }
834
835 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
836 unsigned long pfn, int *target_level)
837 {
838 struct dma_pte *parent, *pte = NULL;
839 int level = agaw_to_level(domain->agaw);
840 int offset;
841
842 BUG_ON(!domain->pgd);
843
844 if (!domain_pfn_supported(domain, pfn))
845 /* Address beyond IOMMU's addressing capabilities. */
846 return NULL;
847
848 parent = domain->pgd;
849
850 while (1) {
851 void *tmp_page;
852
853 offset = pfn_level_offset(pfn, level);
854 pte = &parent[offset];
855 if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
856 break;
857 if (level == *target_level)
858 break;
859
860 if (!dma_pte_present(pte)) {
861 uint64_t pteval;
862
863 tmp_page = alloc_pgtable_page(domain->nid);
864
865 if (!tmp_page)
866 return NULL;
867
868 domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
869 pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
870 if (cmpxchg64(&pte->val, 0ULL, pteval))
871 /* Someone else set it while we were thinking; use theirs. */
872 free_pgtable_page(tmp_page);
873 else
874 domain_flush_cache(domain, pte, sizeof(*pte));
875 }
876 if (level == 1)
877 break;
878
879 parent = phys_to_virt(dma_pte_addr(pte));
880 level--;
881 }
882
883 if (!*target_level)
884 *target_level = level;
885
886 return pte;
887 }
888
889
890 /* return address's pte at specific level */
891 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
892 unsigned long pfn,
893 int level, int *large_page)
894 {
895 struct dma_pte *parent, *pte = NULL;
896 int total = agaw_to_level(domain->agaw);
897 int offset;
898
899 parent = domain->pgd;
900 while (level <= total) {
901 offset = pfn_level_offset(pfn, total);
902 pte = &parent[offset];
903 if (level == total)
904 return pte;
905
906 if (!dma_pte_present(pte)) {
907 *large_page = total;
908 break;
909 }
910
911 if (dma_pte_superpage(pte)) {
912 *large_page = total;
913 return pte;
914 }
915
916 parent = phys_to_virt(dma_pte_addr(pte));
917 total--;
918 }
919 return NULL;
920 }
921
922 /* clear last level pte, a tlb flush should be followed */
923 static void dma_pte_clear_range(struct dmar_domain *domain,
924 unsigned long start_pfn,
925 unsigned long last_pfn)
926 {
927 unsigned int large_page = 1;
928 struct dma_pte *first_pte, *pte;
929
930 BUG_ON(!domain_pfn_supported(domain, start_pfn));
931 BUG_ON(!domain_pfn_supported(domain, last_pfn));
932 BUG_ON(start_pfn > last_pfn);
933
934 /* we don't need lock here; nobody else touches the iova range */
935 do {
936 large_page = 1;
937 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
938 if (!pte) {
939 start_pfn = align_to_level(start_pfn + 1, large_page + 1);
940 continue;
941 }
942 do {
943 dma_clear_pte(pte);
944 start_pfn += lvl_to_nr_pages(large_page);
945 pte++;
946 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
947
948 domain_flush_cache(domain, first_pte,
949 (void *)pte - (void *)first_pte);
950
951 } while (start_pfn && start_pfn <= last_pfn);
952 }
953
954 static void dma_pte_free_level(struct dmar_domain *domain, int level,
955 struct dma_pte *pte, unsigned long pfn,
956 unsigned long start_pfn, unsigned long last_pfn)
957 {
958 pfn = max(start_pfn, pfn);
959 pte = &pte[pfn_level_offset(pfn, level)];
960
961 do {
962 unsigned long level_pfn;
963 struct dma_pte *level_pte;
964
965 if (!dma_pte_present(pte) || dma_pte_superpage(pte))
966 goto next;
967
968 level_pfn = pfn & level_mask(level - 1);
969 level_pte = phys_to_virt(dma_pte_addr(pte));
970
971 if (level > 2)
972 dma_pte_free_level(domain, level - 1, level_pte,
973 level_pfn, start_pfn, last_pfn);
974
975 /* If range covers entire pagetable, free it */
976 if (!(start_pfn > level_pfn ||
977 last_pfn < level_pfn + level_size(level) - 1)) {
978 dma_clear_pte(pte);
979 domain_flush_cache(domain, pte, sizeof(*pte));
980 free_pgtable_page(level_pte);
981 }
982 next:
983 pfn += level_size(level);
984 } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
985 }
986
987 /* free page table pages. last level pte should already be cleared */
988 static void dma_pte_free_pagetable(struct dmar_domain *domain,
989 unsigned long start_pfn,
990 unsigned long last_pfn)
991 {
992 BUG_ON(!domain_pfn_supported(domain, start_pfn));
993 BUG_ON(!domain_pfn_supported(domain, last_pfn));
994 BUG_ON(start_pfn > last_pfn);
995
996 dma_pte_clear_range(domain, start_pfn, last_pfn);
997
998 /* We don't need lock here; nobody else touches the iova range */
999 dma_pte_free_level(domain, agaw_to_level(domain->agaw),
1000 domain->pgd, 0, start_pfn, last_pfn);
1001
1002 /* free pgd */
1003 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1004 free_pgtable_page(domain->pgd);
1005 domain->pgd = NULL;
1006 }
1007 }
1008
1009 /* When a page at a given level is being unlinked from its parent, we don't
1010 need to *modify* it at all. All we need to do is make a list of all the
1011 pages which can be freed just as soon as we've flushed the IOTLB and we
1012 know the hardware page-walk will no longer touch them.
1013 The 'pte' argument is the *parent* PTE, pointing to the page that is to
1014 be freed. */
1015 static struct page *dma_pte_list_pagetables(struct dmar_domain *domain,
1016 int level, struct dma_pte *pte,
1017 struct page *freelist)
1018 {
1019 struct page *pg;
1020
1021 pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
1022 pg->freelist = freelist;
1023 freelist = pg;
1024
1025 if (level == 1)
1026 return freelist;
1027
1028 pte = page_address(pg);
1029 do {
1030 if (dma_pte_present(pte) && !dma_pte_superpage(pte))
1031 freelist = dma_pte_list_pagetables(domain, level - 1,
1032 pte, freelist);
1033 pte++;
1034 } while (!first_pte_in_page(pte));
1035
1036 return freelist;
1037 }
1038
1039 static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level,
1040 struct dma_pte *pte, unsigned long pfn,
1041 unsigned long start_pfn,
1042 unsigned long last_pfn,
1043 struct page *freelist)
1044 {
1045 struct dma_pte *first_pte = NULL, *last_pte = NULL;
1046
1047 pfn = max(start_pfn, pfn);
1048 pte = &pte[pfn_level_offset(pfn, level)];
1049
1050 do {
1051 unsigned long level_pfn;
1052
1053 if (!dma_pte_present(pte))
1054 goto next;
1055
1056 level_pfn = pfn & level_mask(level);
1057
1058 /* If range covers entire pagetable, free it */
1059 if (start_pfn <= level_pfn &&
1060 last_pfn >= level_pfn + level_size(level) - 1) {
1061 /* These suborbinate page tables are going away entirely. Don't
1062 bother to clear them; we're just going to *free* them. */
1063 if (level > 1 && !dma_pte_superpage(pte))
1064 freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist);
1065
1066 dma_clear_pte(pte);
1067 if (!first_pte)
1068 first_pte = pte;
1069 last_pte = pte;
1070 } else if (level > 1) {
1071 /* Recurse down into a level that isn't *entirely* obsolete */
1072 freelist = dma_pte_clear_level(domain, level - 1,
1073 phys_to_virt(dma_pte_addr(pte)),
1074 level_pfn, start_pfn, last_pfn,
1075 freelist);
1076 }
1077 next:
1078 pfn += level_size(level);
1079 } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1080
1081 if (first_pte)
1082 domain_flush_cache(domain, first_pte,
1083 (void *)++last_pte - (void *)first_pte);
1084
1085 return freelist;
1086 }
1087
1088 /* We can't just free the pages because the IOMMU may still be walking
1089 the page tables, and may have cached the intermediate levels. The
1090 pages can only be freed after the IOTLB flush has been done. */
1091 struct page *domain_unmap(struct dmar_domain *domain,
1092 unsigned long start_pfn,
1093 unsigned long last_pfn)
1094 {
1095 struct page *freelist = NULL;
1096
1097 BUG_ON(!domain_pfn_supported(domain, start_pfn));
1098 BUG_ON(!domain_pfn_supported(domain, last_pfn));
1099 BUG_ON(start_pfn > last_pfn);
1100
1101 /* we don't need lock here; nobody else touches the iova range */
1102 freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
1103 domain->pgd, 0, start_pfn, last_pfn, NULL);
1104
1105 /* free pgd */
1106 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1107 struct page *pgd_page = virt_to_page(domain->pgd);
1108 pgd_page->freelist = freelist;
1109 freelist = pgd_page;
1110
1111 domain->pgd = NULL;
1112 }
1113
1114 return freelist;
1115 }
1116
1117 void dma_free_pagelist(struct page *freelist)
1118 {
1119 struct page *pg;
1120
1121 while ((pg = freelist)) {
1122 freelist = pg->freelist;
1123 free_pgtable_page(page_address(pg));
1124 }
1125 }
1126
1127 /* iommu handling */
1128 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
1129 {
1130 struct root_entry *root;
1131 unsigned long flags;
1132
1133 root = (struct root_entry *)alloc_pgtable_page(iommu->node);
1134 if (!root) {
1135 pr_err("IOMMU: allocating root entry for %s failed\n",
1136 iommu->name);
1137 return -ENOMEM;
1138 }
1139
1140 __iommu_flush_cache(iommu, root, ROOT_SIZE);
1141
1142 spin_lock_irqsave(&iommu->lock, flags);
1143 iommu->root_entry = root;
1144 spin_unlock_irqrestore(&iommu->lock, flags);
1145
1146 return 0;
1147 }
1148
1149 static void iommu_set_root_entry(struct intel_iommu *iommu)
1150 {
1151 u64 addr;
1152 u32 sts;
1153 unsigned long flag;
1154
1155 addr = virt_to_phys(iommu->root_entry);
1156 if (ecs_enabled(iommu))
1157 addr |= DMA_RTADDR_RTT;
1158
1159 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1160 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr);
1161
1162 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
1163
1164 /* Make sure hardware complete it */
1165 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1166 readl, (sts & DMA_GSTS_RTPS), sts);
1167
1168 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1169 }
1170
1171 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
1172 {
1173 u32 val;
1174 unsigned long flag;
1175
1176 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
1177 return;
1178
1179 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1180 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
1181
1182 /* Make sure hardware complete it */
1183 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1184 readl, (!(val & DMA_GSTS_WBFS)), val);
1185
1186 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1187 }
1188
1189 /* return value determine if we need a write buffer flush */
1190 static void __iommu_flush_context(struct intel_iommu *iommu,
1191 u16 did, u16 source_id, u8 function_mask,
1192 u64 type)
1193 {
1194 u64 val = 0;
1195 unsigned long flag;
1196
1197 switch (type) {
1198 case DMA_CCMD_GLOBAL_INVL:
1199 val = DMA_CCMD_GLOBAL_INVL;
1200 break;
1201 case DMA_CCMD_DOMAIN_INVL:
1202 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
1203 break;
1204 case DMA_CCMD_DEVICE_INVL:
1205 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
1206 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
1207 break;
1208 default:
1209 BUG();
1210 }
1211 val |= DMA_CCMD_ICC;
1212
1213 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1214 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1215
1216 /* Make sure hardware complete it */
1217 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1218 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1219
1220 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1221 }
1222
1223 /* return value determine if we need a write buffer flush */
1224 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1225 u64 addr, unsigned int size_order, u64 type)
1226 {
1227 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1228 u64 val = 0, val_iva = 0;
1229 unsigned long flag;
1230
1231 switch (type) {
1232 case DMA_TLB_GLOBAL_FLUSH:
1233 /* global flush doesn't need set IVA_REG */
1234 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1235 break;
1236 case DMA_TLB_DSI_FLUSH:
1237 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1238 break;
1239 case DMA_TLB_PSI_FLUSH:
1240 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1241 /* IH bit is passed in as part of address */
1242 val_iva = size_order | addr;
1243 break;
1244 default:
1245 BUG();
1246 }
1247 /* Note: set drain read/write */
1248 #if 0
1249 /*
1250 * This is probably to be super secure.. Looks like we can
1251 * ignore it without any impact.
1252 */
1253 if (cap_read_drain(iommu->cap))
1254 val |= DMA_TLB_READ_DRAIN;
1255 #endif
1256 if (cap_write_drain(iommu->cap))
1257 val |= DMA_TLB_WRITE_DRAIN;
1258
1259 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1260 /* Note: Only uses first TLB reg currently */
1261 if (val_iva)
1262 dmar_writeq(iommu->reg + tlb_offset, val_iva);
1263 dmar_writeq(iommu->reg + tlb_offset + 8, val);
1264
1265 /* Make sure hardware complete it */
1266 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1267 dmar_readq, (!(val & DMA_TLB_IVT)), val);
1268
1269 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1270
1271 /* check IOTLB invalidation granularity */
1272 if (DMA_TLB_IAIG(val) == 0)
1273 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
1274 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1275 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
1276 (unsigned long long)DMA_TLB_IIRG(type),
1277 (unsigned long long)DMA_TLB_IAIG(val));
1278 }
1279
1280 static struct device_domain_info *
1281 iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu,
1282 u8 bus, u8 devfn)
1283 {
1284 bool found = false;
1285 unsigned long flags;
1286 struct device_domain_info *info;
1287 struct pci_dev *pdev;
1288
1289 if (!ecap_dev_iotlb_support(iommu->ecap))
1290 return NULL;
1291
1292 if (!iommu->qi)
1293 return NULL;
1294
1295 spin_lock_irqsave(&device_domain_lock, flags);
1296 list_for_each_entry(info, &domain->devices, link)
1297 if (info->iommu == iommu && info->bus == bus &&
1298 info->devfn == devfn) {
1299 found = true;
1300 break;
1301 }
1302 spin_unlock_irqrestore(&device_domain_lock, flags);
1303
1304 if (!found || !info->dev || !dev_is_pci(info->dev))
1305 return NULL;
1306
1307 pdev = to_pci_dev(info->dev);
1308
1309 if (!pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS))
1310 return NULL;
1311
1312 if (!dmar_find_matched_atsr_unit(pdev))
1313 return NULL;
1314
1315 return info;
1316 }
1317
1318 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1319 {
1320 if (!info || !dev_is_pci(info->dev))
1321 return;
1322
1323 pci_enable_ats(to_pci_dev(info->dev), VTD_PAGE_SHIFT);
1324 }
1325
1326 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1327 {
1328 if (!info->dev || !dev_is_pci(info->dev) ||
1329 !pci_ats_enabled(to_pci_dev(info->dev)))
1330 return;
1331
1332 pci_disable_ats(to_pci_dev(info->dev));
1333 }
1334
1335 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1336 u64 addr, unsigned mask)
1337 {
1338 u16 sid, qdep;
1339 unsigned long flags;
1340 struct device_domain_info *info;
1341
1342 spin_lock_irqsave(&device_domain_lock, flags);
1343 list_for_each_entry(info, &domain->devices, link) {
1344 struct pci_dev *pdev;
1345 if (!info->dev || !dev_is_pci(info->dev))
1346 continue;
1347
1348 pdev = to_pci_dev(info->dev);
1349 if (!pci_ats_enabled(pdev))
1350 continue;
1351
1352 sid = info->bus << 8 | info->devfn;
1353 qdep = pci_ats_queue_depth(pdev);
1354 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1355 }
1356 spin_unlock_irqrestore(&device_domain_lock, flags);
1357 }
1358
1359 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
1360 unsigned long pfn, unsigned int pages, int ih, int map)
1361 {
1362 unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1363 uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1364
1365 BUG_ON(pages == 0);
1366
1367 if (ih)
1368 ih = 1 << 6;
1369 /*
1370 * Fallback to domain selective flush if no PSI support or the size is
1371 * too big.
1372 * PSI requires page size to be 2 ^ x, and the base address is naturally
1373 * aligned to the size
1374 */
1375 if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1376 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1377 DMA_TLB_DSI_FLUSH);
1378 else
1379 iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
1380 DMA_TLB_PSI_FLUSH);
1381
1382 /*
1383 * In caching mode, changes of pages from non-present to present require
1384 * flush. However, device IOTLB doesn't need to be flushed in this case.
1385 */
1386 if (!cap_caching_mode(iommu->cap) || !map)
1387 iommu_flush_dev_iotlb(iommu->domains[did], addr, mask);
1388 }
1389
1390 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1391 {
1392 u32 pmen;
1393 unsigned long flags;
1394
1395 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1396 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1397 pmen &= ~DMA_PMEN_EPM;
1398 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1399
1400 /* wait for the protected region status bit to clear */
1401 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1402 readl, !(pmen & DMA_PMEN_PRS), pmen);
1403
1404 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1405 }
1406
1407 static void iommu_enable_translation(struct intel_iommu *iommu)
1408 {
1409 u32 sts;
1410 unsigned long flags;
1411
1412 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1413 iommu->gcmd |= DMA_GCMD_TE;
1414 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1415
1416 /* Make sure hardware complete it */
1417 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1418 readl, (sts & DMA_GSTS_TES), sts);
1419
1420 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1421 }
1422
1423 static void iommu_disable_translation(struct intel_iommu *iommu)
1424 {
1425 u32 sts;
1426 unsigned long flag;
1427
1428 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1429 iommu->gcmd &= ~DMA_GCMD_TE;
1430 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1431
1432 /* Make sure hardware complete it */
1433 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1434 readl, (!(sts & DMA_GSTS_TES)), sts);
1435
1436 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1437 }
1438
1439
1440 static int iommu_init_domains(struct intel_iommu *iommu)
1441 {
1442 unsigned long ndomains;
1443 unsigned long nlongs;
1444
1445 ndomains = cap_ndoms(iommu->cap);
1446 pr_debug("IOMMU%d: Number of Domains supported <%ld>\n",
1447 iommu->seq_id, ndomains);
1448 nlongs = BITS_TO_LONGS(ndomains);
1449
1450 spin_lock_init(&iommu->lock);
1451
1452 /* TBD: there might be 64K domains,
1453 * consider other allocation for future chip
1454 */
1455 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1456 if (!iommu->domain_ids) {
1457 pr_err("IOMMU%d: allocating domain id array failed\n",
1458 iommu->seq_id);
1459 return -ENOMEM;
1460 }
1461 iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1462 GFP_KERNEL);
1463 if (!iommu->domains) {
1464 pr_err("IOMMU%d: allocating domain array failed\n",
1465 iommu->seq_id);
1466 kfree(iommu->domain_ids);
1467 iommu->domain_ids = NULL;
1468 return -ENOMEM;
1469 }
1470
1471 /*
1472 * if Caching mode is set, then invalid translations are tagged
1473 * with domainid 0. Hence we need to pre-allocate it.
1474 */
1475 if (cap_caching_mode(iommu->cap))
1476 set_bit(0, iommu->domain_ids);
1477 return 0;
1478 }
1479
1480 static void disable_dmar_iommu(struct intel_iommu *iommu)
1481 {
1482 struct dmar_domain *domain;
1483 int i;
1484
1485 if ((iommu->domains) && (iommu->domain_ids)) {
1486 for_each_set_bit(i, iommu->domain_ids, cap_ndoms(iommu->cap)) {
1487 /*
1488 * Domain id 0 is reserved for invalid translation
1489 * if hardware supports caching mode.
1490 */
1491 if (cap_caching_mode(iommu->cap) && i == 0)
1492 continue;
1493
1494 domain = iommu->domains[i];
1495 clear_bit(i, iommu->domain_ids);
1496 if (domain_detach_iommu(domain, iommu) == 0 &&
1497 !domain_type_is_vm(domain))
1498 domain_exit(domain);
1499 }
1500 }
1501
1502 if (iommu->gcmd & DMA_GCMD_TE)
1503 iommu_disable_translation(iommu);
1504 }
1505
1506 static void free_dmar_iommu(struct intel_iommu *iommu)
1507 {
1508 if ((iommu->domains) && (iommu->domain_ids)) {
1509 kfree(iommu->domains);
1510 kfree(iommu->domain_ids);
1511 iommu->domains = NULL;
1512 iommu->domain_ids = NULL;
1513 }
1514
1515 g_iommus[iommu->seq_id] = NULL;
1516
1517 /* free context mapping */
1518 free_context_table(iommu);
1519 }
1520
1521 static struct dmar_domain *alloc_domain(int flags)
1522 {
1523 /* domain id for virtual machine, it won't be set in context */
1524 static atomic_t vm_domid = ATOMIC_INIT(0);
1525 struct dmar_domain *domain;
1526
1527 domain = alloc_domain_mem();
1528 if (!domain)
1529 return NULL;
1530
1531 memset(domain, 0, sizeof(*domain));
1532 domain->nid = -1;
1533 domain->flags = flags;
1534 spin_lock_init(&domain->iommu_lock);
1535 INIT_LIST_HEAD(&domain->devices);
1536 if (flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
1537 domain->id = atomic_inc_return(&vm_domid);
1538
1539 return domain;
1540 }
1541
1542 static int __iommu_attach_domain(struct dmar_domain *domain,
1543 struct intel_iommu *iommu)
1544 {
1545 int num;
1546 unsigned long ndomains;
1547
1548 ndomains = cap_ndoms(iommu->cap);
1549 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1550 if (num < ndomains) {
1551 set_bit(num, iommu->domain_ids);
1552 iommu->domains[num] = domain;
1553 } else {
1554 num = -ENOSPC;
1555 }
1556
1557 return num;
1558 }
1559
1560 static int iommu_attach_domain(struct dmar_domain *domain,
1561 struct intel_iommu *iommu)
1562 {
1563 int num;
1564 unsigned long flags;
1565
1566 spin_lock_irqsave(&iommu->lock, flags);
1567 num = __iommu_attach_domain(domain, iommu);
1568 spin_unlock_irqrestore(&iommu->lock, flags);
1569 if (num < 0)
1570 pr_err("IOMMU: no free domain ids\n");
1571
1572 return num;
1573 }
1574
1575 static int iommu_attach_vm_domain(struct dmar_domain *domain,
1576 struct intel_iommu *iommu)
1577 {
1578 int num;
1579 unsigned long ndomains;
1580
1581 ndomains = cap_ndoms(iommu->cap);
1582 for_each_set_bit(num, iommu->domain_ids, ndomains)
1583 if (iommu->domains[num] == domain)
1584 return num;
1585
1586 return __iommu_attach_domain(domain, iommu);
1587 }
1588
1589 static void iommu_detach_domain(struct dmar_domain *domain,
1590 struct intel_iommu *iommu)
1591 {
1592 unsigned long flags;
1593 int num, ndomains;
1594
1595 spin_lock_irqsave(&iommu->lock, flags);
1596 if (domain_type_is_vm_or_si(domain)) {
1597 ndomains = cap_ndoms(iommu->cap);
1598 for_each_set_bit(num, iommu->domain_ids, ndomains) {
1599 if (iommu->domains[num] == domain) {
1600 clear_bit(num, iommu->domain_ids);
1601 iommu->domains[num] = NULL;
1602 break;
1603 }
1604 }
1605 } else {
1606 clear_bit(domain->id, iommu->domain_ids);
1607 iommu->domains[domain->id] = NULL;
1608 }
1609 spin_unlock_irqrestore(&iommu->lock, flags);
1610 }
1611
1612 static void domain_attach_iommu(struct dmar_domain *domain,
1613 struct intel_iommu *iommu)
1614 {
1615 unsigned long flags;
1616
1617 spin_lock_irqsave(&domain->iommu_lock, flags);
1618 if (!test_and_set_bit(iommu->seq_id, domain->iommu_bmp)) {
1619 domain->iommu_count++;
1620 if (domain->iommu_count == 1)
1621 domain->nid = iommu->node;
1622 domain_update_iommu_cap(domain);
1623 }
1624 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1625 }
1626
1627 static int domain_detach_iommu(struct dmar_domain *domain,
1628 struct intel_iommu *iommu)
1629 {
1630 unsigned long flags;
1631 int count = INT_MAX;
1632
1633 spin_lock_irqsave(&domain->iommu_lock, flags);
1634 if (test_and_clear_bit(iommu->seq_id, domain->iommu_bmp)) {
1635 count = --domain->iommu_count;
1636 domain_update_iommu_cap(domain);
1637 }
1638 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1639
1640 return count;
1641 }
1642
1643 static struct iova_domain reserved_iova_list;
1644 static struct lock_class_key reserved_rbtree_key;
1645
1646 static int dmar_init_reserved_ranges(void)
1647 {
1648 struct pci_dev *pdev = NULL;
1649 struct iova *iova;
1650 int i;
1651
1652 init_iova_domain(&reserved_iova_list, VTD_PAGE_SIZE, IOVA_START_PFN,
1653 DMA_32BIT_PFN);
1654
1655 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1656 &reserved_rbtree_key);
1657
1658 /* IOAPIC ranges shouldn't be accessed by DMA */
1659 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1660 IOVA_PFN(IOAPIC_RANGE_END));
1661 if (!iova) {
1662 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1663 return -ENODEV;
1664 }
1665
1666 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1667 for_each_pci_dev(pdev) {
1668 struct resource *r;
1669
1670 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1671 r = &pdev->resource[i];
1672 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1673 continue;
1674 iova = reserve_iova(&reserved_iova_list,
1675 IOVA_PFN(r->start),
1676 IOVA_PFN(r->end));
1677 if (!iova) {
1678 printk(KERN_ERR "Reserve iova failed\n");
1679 return -ENODEV;
1680 }
1681 }
1682 }
1683 return 0;
1684 }
1685
1686 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1687 {
1688 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1689 }
1690
1691 static inline int guestwidth_to_adjustwidth(int gaw)
1692 {
1693 int agaw;
1694 int r = (gaw - 12) % 9;
1695
1696 if (r == 0)
1697 agaw = gaw;
1698 else
1699 agaw = gaw + 9 - r;
1700 if (agaw > 64)
1701 agaw = 64;
1702 return agaw;
1703 }
1704
1705 static int domain_init(struct dmar_domain *domain, int guest_width)
1706 {
1707 struct intel_iommu *iommu;
1708 int adjust_width, agaw;
1709 unsigned long sagaw;
1710
1711 init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN,
1712 DMA_32BIT_PFN);
1713 domain_reserve_special_ranges(domain);
1714
1715 /* calculate AGAW */
1716 iommu = domain_get_iommu(domain);
1717 if (guest_width > cap_mgaw(iommu->cap))
1718 guest_width = cap_mgaw(iommu->cap);
1719 domain->gaw = guest_width;
1720 adjust_width = guestwidth_to_adjustwidth(guest_width);
1721 agaw = width_to_agaw(adjust_width);
1722 sagaw = cap_sagaw(iommu->cap);
1723 if (!test_bit(agaw, &sagaw)) {
1724 /* hardware doesn't support it, choose a bigger one */
1725 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1726 agaw = find_next_bit(&sagaw, 5, agaw);
1727 if (agaw >= 5)
1728 return -ENODEV;
1729 }
1730 domain->agaw = agaw;
1731
1732 if (ecap_coherent(iommu->ecap))
1733 domain->iommu_coherency = 1;
1734 else
1735 domain->iommu_coherency = 0;
1736
1737 if (ecap_sc_support(iommu->ecap))
1738 domain->iommu_snooping = 1;
1739 else
1740 domain->iommu_snooping = 0;
1741
1742 if (intel_iommu_superpage)
1743 domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
1744 else
1745 domain->iommu_superpage = 0;
1746
1747 domain->nid = iommu->node;
1748
1749 /* always allocate the top pgd */
1750 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1751 if (!domain->pgd)
1752 return -ENOMEM;
1753 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1754 return 0;
1755 }
1756
1757 static void domain_exit(struct dmar_domain *domain)
1758 {
1759 struct page *freelist = NULL;
1760 int i;
1761
1762 /* Domain 0 is reserved, so dont process it */
1763 if (!domain)
1764 return;
1765
1766 /* Flush any lazy unmaps that may reference this domain */
1767 if (!intel_iommu_strict)
1768 flush_unmaps_timeout(0);
1769
1770 /* remove associated devices */
1771 domain_remove_dev_info(domain);
1772
1773 /* destroy iovas */
1774 put_iova_domain(&domain->iovad);
1775
1776 freelist = domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1777
1778 /* clear attached or cached domains */
1779 rcu_read_lock();
1780 for_each_set_bit(i, domain->iommu_bmp, g_num_of_iommus)
1781 iommu_detach_domain(domain, g_iommus[i]);
1782 rcu_read_unlock();
1783
1784 dma_free_pagelist(freelist);
1785
1786 free_domain_mem(domain);
1787 }
1788
1789 static int domain_context_mapping_one(struct dmar_domain *domain,
1790 struct intel_iommu *iommu,
1791 u8 bus, u8 devfn, int translation)
1792 {
1793 struct context_entry *context;
1794 unsigned long flags;
1795 struct dma_pte *pgd;
1796 int id;
1797 int agaw;
1798 struct device_domain_info *info = NULL;
1799
1800 pr_debug("Set context mapping for %02x:%02x.%d\n",
1801 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1802
1803 BUG_ON(!domain->pgd);
1804 BUG_ON(translation != CONTEXT_TT_PASS_THROUGH &&
1805 translation != CONTEXT_TT_MULTI_LEVEL);
1806
1807 spin_lock_irqsave(&iommu->lock, flags);
1808 context = iommu_context_addr(iommu, bus, devfn, 1);
1809 spin_unlock_irqrestore(&iommu->lock, flags);
1810 if (!context)
1811 return -ENOMEM;
1812 spin_lock_irqsave(&iommu->lock, flags);
1813 if (context_present(context)) {
1814 spin_unlock_irqrestore(&iommu->lock, flags);
1815 return 0;
1816 }
1817
1818 id = domain->id;
1819 pgd = domain->pgd;
1820
1821 if (domain_type_is_vm_or_si(domain)) {
1822 if (domain_type_is_vm(domain)) {
1823 id = iommu_attach_vm_domain(domain, iommu);
1824 if (id < 0) {
1825 spin_unlock_irqrestore(&iommu->lock, flags);
1826 pr_err("IOMMU: no free domain ids\n");
1827 return -EFAULT;
1828 }
1829 }
1830
1831 /* Skip top levels of page tables for
1832 * iommu which has less agaw than default.
1833 * Unnecessary for PT mode.
1834 */
1835 if (translation != CONTEXT_TT_PASS_THROUGH) {
1836 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1837 pgd = phys_to_virt(dma_pte_addr(pgd));
1838 if (!dma_pte_present(pgd)) {
1839 spin_unlock_irqrestore(&iommu->lock, flags);
1840 return -ENOMEM;
1841 }
1842 }
1843 }
1844 }
1845
1846 context_set_domain_id(context, id);
1847
1848 if (translation != CONTEXT_TT_PASS_THROUGH) {
1849 info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
1850 translation = info ? CONTEXT_TT_DEV_IOTLB :
1851 CONTEXT_TT_MULTI_LEVEL;
1852 }
1853 /*
1854 * In pass through mode, AW must be programmed to indicate the largest
1855 * AGAW value supported by hardware. And ASR is ignored by hardware.
1856 */
1857 if (unlikely(translation == CONTEXT_TT_PASS_THROUGH))
1858 context_set_address_width(context, iommu->msagaw);
1859 else {
1860 context_set_address_root(context, virt_to_phys(pgd));
1861 context_set_address_width(context, iommu->agaw);
1862 }
1863
1864 context_set_translation_type(context, translation);
1865 context_set_fault_enable(context);
1866 context_set_present(context);
1867 domain_flush_cache(domain, context, sizeof(*context));
1868
1869 /*
1870 * It's a non-present to present mapping. If hardware doesn't cache
1871 * non-present entry we only need to flush the write-buffer. If the
1872 * _does_ cache non-present entries, then it does so in the special
1873 * domain #0, which we have to flush:
1874 */
1875 if (cap_caching_mode(iommu->cap)) {
1876 iommu->flush.flush_context(iommu, 0,
1877 (((u16)bus) << 8) | devfn,
1878 DMA_CCMD_MASK_NOBIT,
1879 DMA_CCMD_DEVICE_INVL);
1880 iommu->flush.flush_iotlb(iommu, id, 0, 0, DMA_TLB_DSI_FLUSH);
1881 } else {
1882 iommu_flush_write_buffer(iommu);
1883 }
1884 iommu_enable_dev_iotlb(info);
1885 spin_unlock_irqrestore(&iommu->lock, flags);
1886
1887 domain_attach_iommu(domain, iommu);
1888
1889 return 0;
1890 }
1891
1892 struct domain_context_mapping_data {
1893 struct dmar_domain *domain;
1894 struct intel_iommu *iommu;
1895 int translation;
1896 };
1897
1898 static int domain_context_mapping_cb(struct pci_dev *pdev,
1899 u16 alias, void *opaque)
1900 {
1901 struct domain_context_mapping_data *data = opaque;
1902
1903 return domain_context_mapping_one(data->domain, data->iommu,
1904 PCI_BUS_NUM(alias), alias & 0xff,
1905 data->translation);
1906 }
1907
1908 static int
1909 domain_context_mapping(struct dmar_domain *domain, struct device *dev,
1910 int translation)
1911 {
1912 struct intel_iommu *iommu;
1913 u8 bus, devfn;
1914 struct domain_context_mapping_data data;
1915
1916 iommu = device_to_iommu(dev, &bus, &devfn);
1917 if (!iommu)
1918 return -ENODEV;
1919
1920 if (!dev_is_pci(dev))
1921 return domain_context_mapping_one(domain, iommu, bus, devfn,
1922 translation);
1923
1924 data.domain = domain;
1925 data.iommu = iommu;
1926 data.translation = translation;
1927
1928 return pci_for_each_dma_alias(to_pci_dev(dev),
1929 &domain_context_mapping_cb, &data);
1930 }
1931
1932 static int domain_context_mapped_cb(struct pci_dev *pdev,
1933 u16 alias, void *opaque)
1934 {
1935 struct intel_iommu *iommu = opaque;
1936
1937 return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff);
1938 }
1939
1940 static int domain_context_mapped(struct device *dev)
1941 {
1942 struct intel_iommu *iommu;
1943 u8 bus, devfn;
1944
1945 iommu = device_to_iommu(dev, &bus, &devfn);
1946 if (!iommu)
1947 return -ENODEV;
1948
1949 if (!dev_is_pci(dev))
1950 return device_context_mapped(iommu, bus, devfn);
1951
1952 return !pci_for_each_dma_alias(to_pci_dev(dev),
1953 domain_context_mapped_cb, iommu);
1954 }
1955
1956 /* Returns a number of VTD pages, but aligned to MM page size */
1957 static inline unsigned long aligned_nrpages(unsigned long host_addr,
1958 size_t size)
1959 {
1960 host_addr &= ~PAGE_MASK;
1961 return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
1962 }
1963
1964 /* Return largest possible superpage level for a given mapping */
1965 static inline int hardware_largepage_caps(struct dmar_domain *domain,
1966 unsigned long iov_pfn,
1967 unsigned long phy_pfn,
1968 unsigned long pages)
1969 {
1970 int support, level = 1;
1971 unsigned long pfnmerge;
1972
1973 support = domain->iommu_superpage;
1974
1975 /* To use a large page, the virtual *and* physical addresses
1976 must be aligned to 2MiB/1GiB/etc. Lower bits set in either
1977 of them will mean we have to use smaller pages. So just
1978 merge them and check both at once. */
1979 pfnmerge = iov_pfn | phy_pfn;
1980
1981 while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
1982 pages >>= VTD_STRIDE_SHIFT;
1983 if (!pages)
1984 break;
1985 pfnmerge >>= VTD_STRIDE_SHIFT;
1986 level++;
1987 support--;
1988 }
1989 return level;
1990 }
1991
1992 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1993 struct scatterlist *sg, unsigned long phys_pfn,
1994 unsigned long nr_pages, int prot)
1995 {
1996 struct dma_pte *first_pte = NULL, *pte = NULL;
1997 phys_addr_t uninitialized_var(pteval);
1998 unsigned long sg_res = 0;
1999 unsigned int largepage_lvl = 0;
2000 unsigned long lvl_pages = 0;
2001
2002 BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1));
2003
2004 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
2005 return -EINVAL;
2006
2007 prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
2008
2009 if (!sg) {
2010 sg_res = nr_pages;
2011 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
2012 }
2013
2014 while (nr_pages > 0) {
2015 uint64_t tmp;
2016
2017 if (!sg_res) {
2018 sg_res = aligned_nrpages(sg->offset, sg->length);
2019 sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
2020 sg->dma_length = sg->length;
2021 pteval = page_to_phys(sg_page(sg)) | prot;
2022 phys_pfn = pteval >> VTD_PAGE_SHIFT;
2023 }
2024
2025 if (!pte) {
2026 largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
2027
2028 first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl);
2029 if (!pte)
2030 return -ENOMEM;
2031 /* It is large page*/
2032 if (largepage_lvl > 1) {
2033 pteval |= DMA_PTE_LARGE_PAGE;
2034 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2035 /*
2036 * Ensure that old small page tables are
2037 * removed to make room for superpage,
2038 * if they exist.
2039 */
2040 dma_pte_free_pagetable(domain, iov_pfn,
2041 iov_pfn + lvl_pages - 1);
2042 } else {
2043 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
2044 }
2045
2046 }
2047 /* We don't need lock here, nobody else
2048 * touches the iova range
2049 */
2050 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
2051 if (tmp) {
2052 static int dumps = 5;
2053 printk(KERN_CRIT "ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
2054 iov_pfn, tmp, (unsigned long long)pteval);
2055 if (dumps) {
2056 dumps--;
2057 debug_dma_dump_mappings(NULL);
2058 }
2059 WARN_ON(1);
2060 }
2061
2062 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2063
2064 BUG_ON(nr_pages < lvl_pages);
2065 BUG_ON(sg_res < lvl_pages);
2066
2067 nr_pages -= lvl_pages;
2068 iov_pfn += lvl_pages;
2069 phys_pfn += lvl_pages;
2070 pteval += lvl_pages * VTD_PAGE_SIZE;
2071 sg_res -= lvl_pages;
2072
2073 /* If the next PTE would be the first in a new page, then we
2074 need to flush the cache on the entries we've just written.
2075 And then we'll need to recalculate 'pte', so clear it and
2076 let it get set again in the if (!pte) block above.
2077
2078 If we're done (!nr_pages) we need to flush the cache too.
2079
2080 Also if we've been setting superpages, we may need to
2081 recalculate 'pte' and switch back to smaller pages for the
2082 end of the mapping, if the trailing size is not enough to
2083 use another superpage (i.e. sg_res < lvl_pages). */
2084 pte++;
2085 if (!nr_pages || first_pte_in_page(pte) ||
2086 (largepage_lvl > 1 && sg_res < lvl_pages)) {
2087 domain_flush_cache(domain, first_pte,
2088 (void *)pte - (void *)first_pte);
2089 pte = NULL;
2090 }
2091
2092 if (!sg_res && nr_pages)
2093 sg = sg_next(sg);
2094 }
2095 return 0;
2096 }
2097
2098 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2099 struct scatterlist *sg, unsigned long nr_pages,
2100 int prot)
2101 {
2102 return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
2103 }
2104
2105 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2106 unsigned long phys_pfn, unsigned long nr_pages,
2107 int prot)
2108 {
2109 return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
2110 }
2111
2112 static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
2113 {
2114 if (!iommu)
2115 return;
2116
2117 clear_context_table(iommu, bus, devfn);
2118 iommu->flush.flush_context(iommu, 0, 0, 0,
2119 DMA_CCMD_GLOBAL_INVL);
2120 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2121 }
2122
2123 static inline void unlink_domain_info(struct device_domain_info *info)
2124 {
2125 assert_spin_locked(&device_domain_lock);
2126 list_del(&info->link);
2127 list_del(&info->global);
2128 if (info->dev)
2129 info->dev->archdata.iommu = NULL;
2130 }
2131
2132 static void domain_remove_dev_info(struct dmar_domain *domain)
2133 {
2134 struct device_domain_info *info, *tmp;
2135 unsigned long flags;
2136
2137 spin_lock_irqsave(&device_domain_lock, flags);
2138 list_for_each_entry_safe(info, tmp, &domain->devices, link) {
2139 unlink_domain_info(info);
2140 spin_unlock_irqrestore(&device_domain_lock, flags);
2141
2142 iommu_disable_dev_iotlb(info);
2143 iommu_detach_dev(info->iommu, info->bus, info->devfn);
2144
2145 if (domain_type_is_vm(domain)) {
2146 iommu_detach_dependent_devices(info->iommu, info->dev);
2147 domain_detach_iommu(domain, info->iommu);
2148 }
2149
2150 free_devinfo_mem(info);
2151 spin_lock_irqsave(&device_domain_lock, flags);
2152 }
2153 spin_unlock_irqrestore(&device_domain_lock, flags);
2154 }
2155
2156 /*
2157 * find_domain
2158 * Note: we use struct device->archdata.iommu stores the info
2159 */
2160 static struct dmar_domain *find_domain(struct device *dev)
2161 {
2162 struct device_domain_info *info;
2163
2164 /* No lock here, assumes no domain exit in normal case */
2165 info = dev->archdata.iommu;
2166 if (info)
2167 return info->domain;
2168 return NULL;
2169 }
2170
2171 static inline struct device_domain_info *
2172 dmar_search_domain_by_dev_info(int segment, int bus, int devfn)
2173 {
2174 struct device_domain_info *info;
2175
2176 list_for_each_entry(info, &device_domain_list, global)
2177 if (info->iommu->segment == segment && info->bus == bus &&
2178 info->devfn == devfn)
2179 return info;
2180
2181 return NULL;
2182 }
2183
2184 static struct dmar_domain *dmar_insert_dev_info(struct intel_iommu *iommu,
2185 int bus, int devfn,
2186 struct device *dev,
2187 struct dmar_domain *domain)
2188 {
2189 struct dmar_domain *found = NULL;
2190 struct device_domain_info *info;
2191 unsigned long flags;
2192
2193 info = alloc_devinfo_mem();
2194 if (!info)
2195 return NULL;
2196
2197 info->bus = bus;
2198 info->devfn = devfn;
2199 info->dev = dev;
2200 info->domain = domain;
2201 info->iommu = iommu;
2202
2203 spin_lock_irqsave(&device_domain_lock, flags);
2204 if (dev)
2205 found = find_domain(dev);
2206 else {
2207 struct device_domain_info *info2;
2208 info2 = dmar_search_domain_by_dev_info(iommu->segment, bus, devfn);
2209 if (info2)
2210 found = info2->domain;
2211 }
2212 if (found) {
2213 spin_unlock_irqrestore(&device_domain_lock, flags);
2214 free_devinfo_mem(info);
2215 /* Caller must free the original domain */
2216 return found;
2217 }
2218
2219 list_add(&info->link, &domain->devices);
2220 list_add(&info->global, &device_domain_list);
2221 if (dev)
2222 dev->archdata.iommu = info;
2223 spin_unlock_irqrestore(&device_domain_lock, flags);
2224
2225 return domain;
2226 }
2227
2228 static int get_last_alias(struct pci_dev *pdev, u16 alias, void *opaque)
2229 {
2230 *(u16 *)opaque = alias;
2231 return 0;
2232 }
2233
2234 /* domain is initialized */
2235 static struct dmar_domain *get_domain_for_dev(struct device *dev, int gaw)
2236 {
2237 struct dmar_domain *domain, *tmp;
2238 struct intel_iommu *iommu;
2239 struct device_domain_info *info;
2240 u16 dma_alias;
2241 unsigned long flags;
2242 u8 bus, devfn;
2243
2244 domain = find_domain(dev);
2245 if (domain)
2246 return domain;
2247
2248 iommu = device_to_iommu(dev, &bus, &devfn);
2249 if (!iommu)
2250 return NULL;
2251
2252 if (dev_is_pci(dev)) {
2253 struct pci_dev *pdev = to_pci_dev(dev);
2254
2255 pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2256
2257 spin_lock_irqsave(&device_domain_lock, flags);
2258 info = dmar_search_domain_by_dev_info(pci_domain_nr(pdev->bus),
2259 PCI_BUS_NUM(dma_alias),
2260 dma_alias & 0xff);
2261 if (info) {
2262 iommu = info->iommu;
2263 domain = info->domain;
2264 }
2265 spin_unlock_irqrestore(&device_domain_lock, flags);
2266
2267 /* DMA alias already has a domain, uses it */
2268 if (info)
2269 goto found_domain;
2270 }
2271
2272 /* Allocate and initialize new domain for the device */
2273 domain = alloc_domain(0);
2274 if (!domain)
2275 return NULL;
2276 domain->id = iommu_attach_domain(domain, iommu);
2277 if (domain->id < 0) {
2278 free_domain_mem(domain);
2279 return NULL;
2280 }
2281 domain_attach_iommu(domain, iommu);
2282 if (domain_init(domain, gaw)) {
2283 domain_exit(domain);
2284 return NULL;
2285 }
2286
2287 /* register PCI DMA alias device */
2288 if (dev_is_pci(dev)) {
2289 tmp = dmar_insert_dev_info(iommu, PCI_BUS_NUM(dma_alias),
2290 dma_alias & 0xff, NULL, domain);
2291
2292 if (!tmp || tmp != domain) {
2293 domain_exit(domain);
2294 domain = tmp;
2295 }
2296
2297 if (!domain)
2298 return NULL;
2299 }
2300
2301 found_domain:
2302 tmp = dmar_insert_dev_info(iommu, bus, devfn, dev, domain);
2303
2304 if (!tmp || tmp != domain) {
2305 domain_exit(domain);
2306 domain = tmp;
2307 }
2308
2309 return domain;
2310 }
2311
2312 static int iommu_identity_mapping;
2313 #define IDENTMAP_ALL 1
2314 #define IDENTMAP_GFX 2
2315 #define IDENTMAP_AZALIA 4
2316
2317 static int iommu_domain_identity_map(struct dmar_domain *domain,
2318 unsigned long long start,
2319 unsigned long long end)
2320 {
2321 unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
2322 unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
2323
2324 if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
2325 dma_to_mm_pfn(last_vpfn))) {
2326 printk(KERN_ERR "IOMMU: reserve iova failed\n");
2327 return -ENOMEM;
2328 }
2329
2330 pr_debug("Mapping reserved region %llx-%llx for domain %d\n",
2331 start, end, domain->id);
2332 /*
2333 * RMRR range might have overlap with physical memory range,
2334 * clear it first
2335 */
2336 dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2337
2338 return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
2339 last_vpfn - first_vpfn + 1,
2340 DMA_PTE_READ|DMA_PTE_WRITE);
2341 }
2342
2343 static int iommu_prepare_identity_map(struct device *dev,
2344 unsigned long long start,
2345 unsigned long long end)
2346 {
2347 struct dmar_domain *domain;
2348 int ret;
2349
2350 domain = get_domain_for_dev(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2351 if (!domain)
2352 return -ENOMEM;
2353
2354 /* For _hardware_ passthrough, don't bother. But for software
2355 passthrough, we do it anyway -- it may indicate a memory
2356 range which is reserved in E820, so which didn't get set
2357 up to start with in si_domain */
2358 if (domain == si_domain && hw_pass_through) {
2359 printk("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
2360 dev_name(dev), start, end);
2361 return 0;
2362 }
2363
2364 printk(KERN_INFO
2365 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
2366 dev_name(dev), start, end);
2367
2368 if (end < start) {
2369 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2370 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2371 dmi_get_system_info(DMI_BIOS_VENDOR),
2372 dmi_get_system_info(DMI_BIOS_VERSION),
2373 dmi_get_system_info(DMI_PRODUCT_VERSION));
2374 ret = -EIO;
2375 goto error;
2376 }
2377
2378 if (end >> agaw_to_width(domain->agaw)) {
2379 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2380 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2381 agaw_to_width(domain->agaw),
2382 dmi_get_system_info(DMI_BIOS_VENDOR),
2383 dmi_get_system_info(DMI_BIOS_VERSION),
2384 dmi_get_system_info(DMI_PRODUCT_VERSION));
2385 ret = -EIO;
2386 goto error;
2387 }
2388
2389 ret = iommu_domain_identity_map(domain, start, end);
2390 if (ret)
2391 goto error;
2392
2393 /* context entry init */
2394 ret = domain_context_mapping(domain, dev, CONTEXT_TT_MULTI_LEVEL);
2395 if (ret)
2396 goto error;
2397
2398 return 0;
2399
2400 error:
2401 domain_exit(domain);
2402 return ret;
2403 }
2404
2405 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2406 struct device *dev)
2407 {
2408 if (dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2409 return 0;
2410 return iommu_prepare_identity_map(dev, rmrr->base_address,
2411 rmrr->end_address);
2412 }
2413
2414 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
2415 static inline void iommu_prepare_isa(void)
2416 {
2417 struct pci_dev *pdev;
2418 int ret;
2419
2420 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2421 if (!pdev)
2422 return;
2423
2424 printk(KERN_INFO "IOMMU: Prepare 0-16MiB unity mapping for LPC\n");
2425 ret = iommu_prepare_identity_map(&pdev->dev, 0, 16*1024*1024 - 1);
2426
2427 if (ret)
2428 printk(KERN_ERR "IOMMU: Failed to create 0-16MiB identity map; "
2429 "floppy might not work\n");
2430
2431 pci_dev_put(pdev);
2432 }
2433 #else
2434 static inline void iommu_prepare_isa(void)
2435 {
2436 return;
2437 }
2438 #endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */
2439
2440 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2441
2442 static int __init si_domain_init(int hw)
2443 {
2444 struct dmar_drhd_unit *drhd;
2445 struct intel_iommu *iommu;
2446 int nid, ret = 0;
2447 bool first = true;
2448
2449 si_domain = alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY);
2450 if (!si_domain)
2451 return -EFAULT;
2452
2453 for_each_active_iommu(iommu, drhd) {
2454 ret = iommu_attach_domain(si_domain, iommu);
2455 if (ret < 0) {
2456 domain_exit(si_domain);
2457 return -EFAULT;
2458 } else if (first) {
2459 si_domain->id = ret;
2460 first = false;
2461 } else if (si_domain->id != ret) {
2462 domain_exit(si_domain);
2463 return -EFAULT;
2464 }
2465 domain_attach_iommu(si_domain, iommu);
2466 }
2467
2468 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2469 domain_exit(si_domain);
2470 return -EFAULT;
2471 }
2472
2473 pr_debug("IOMMU: identity mapping domain is domain %d\n",
2474 si_domain->id);
2475
2476 if (hw)
2477 return 0;
2478
2479 for_each_online_node(nid) {
2480 unsigned long start_pfn, end_pfn;
2481 int i;
2482
2483 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2484 ret = iommu_domain_identity_map(si_domain,
2485 PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
2486 if (ret)
2487 return ret;
2488 }
2489 }
2490
2491 return 0;
2492 }
2493
2494 static int identity_mapping(struct device *dev)
2495 {
2496 struct device_domain_info *info;
2497
2498 if (likely(!iommu_identity_mapping))
2499 return 0;
2500
2501 info = dev->archdata.iommu;
2502 if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
2503 return (info->domain == si_domain);
2504
2505 return 0;
2506 }
2507
2508 static int domain_add_dev_info(struct dmar_domain *domain,
2509 struct device *dev, int translation)
2510 {
2511 struct dmar_domain *ndomain;
2512 struct intel_iommu *iommu;
2513 u8 bus, devfn;
2514 int ret;
2515
2516 iommu = device_to_iommu(dev, &bus, &devfn);
2517 if (!iommu)
2518 return -ENODEV;
2519
2520 ndomain = dmar_insert_dev_info(iommu, bus, devfn, dev, domain);
2521 if (ndomain != domain)
2522 return -EBUSY;
2523
2524 ret = domain_context_mapping(domain, dev, translation);
2525 if (ret) {
2526 domain_remove_one_dev_info(domain, dev);
2527 return ret;
2528 }
2529
2530 return 0;
2531 }
2532
2533 static bool device_has_rmrr(struct device *dev)
2534 {
2535 struct dmar_rmrr_unit *rmrr;
2536 struct device *tmp;
2537 int i;
2538
2539 rcu_read_lock();
2540 for_each_rmrr_units(rmrr) {
2541 /*
2542 * Return TRUE if this RMRR contains the device that
2543 * is passed in.
2544 */
2545 for_each_active_dev_scope(rmrr->devices,
2546 rmrr->devices_cnt, i, tmp)
2547 if (tmp == dev) {
2548 rcu_read_unlock();
2549 return true;
2550 }
2551 }
2552 rcu_read_unlock();
2553 return false;
2554 }
2555
2556 /*
2557 * There are a couple cases where we need to restrict the functionality of
2558 * devices associated with RMRRs. The first is when evaluating a device for
2559 * identity mapping because problems exist when devices are moved in and out
2560 * of domains and their respective RMRR information is lost. This means that
2561 * a device with associated RMRRs will never be in a "passthrough" domain.
2562 * The second is use of the device through the IOMMU API. This interface
2563 * expects to have full control of the IOVA space for the device. We cannot
2564 * satisfy both the requirement that RMRR access is maintained and have an
2565 * unencumbered IOVA space. We also have no ability to quiesce the device's
2566 * use of the RMRR space or even inform the IOMMU API user of the restriction.
2567 * We therefore prevent devices associated with an RMRR from participating in
2568 * the IOMMU API, which eliminates them from device assignment.
2569 *
2570 * In both cases we assume that PCI USB devices with RMRRs have them largely
2571 * for historical reasons and that the RMRR space is not actively used post
2572 * boot. This exclusion may change if vendors begin to abuse it.
2573 *
2574 * The same exception is made for graphics devices, with the requirement that
2575 * any use of the RMRR regions will be torn down before assigning the device
2576 * to a guest.
2577 */
2578 static bool device_is_rmrr_locked(struct device *dev)
2579 {
2580 if (!device_has_rmrr(dev))
2581 return false;
2582
2583 if (dev_is_pci(dev)) {
2584 struct pci_dev *pdev = to_pci_dev(dev);
2585
2586 if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev))
2587 return false;
2588 }
2589
2590 return true;
2591 }
2592
2593 static int iommu_should_identity_map(struct device *dev, int startup)
2594 {
2595
2596 if (dev_is_pci(dev)) {
2597 struct pci_dev *pdev = to_pci_dev(dev);
2598
2599 if (device_is_rmrr_locked(dev))
2600 return 0;
2601
2602 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2603 return 1;
2604
2605 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2606 return 1;
2607
2608 if (!(iommu_identity_mapping & IDENTMAP_ALL))
2609 return 0;
2610
2611 /*
2612 * We want to start off with all devices in the 1:1 domain, and
2613 * take them out later if we find they can't access all of memory.
2614 *
2615 * However, we can't do this for PCI devices behind bridges,
2616 * because all PCI devices behind the same bridge will end up
2617 * with the same source-id on their transactions.
2618 *
2619 * Practically speaking, we can't change things around for these
2620 * devices at run-time, because we can't be sure there'll be no
2621 * DMA transactions in flight for any of their siblings.
2622 *
2623 * So PCI devices (unless they're on the root bus) as well as
2624 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2625 * the 1:1 domain, just in _case_ one of their siblings turns out
2626 * not to be able to map all of memory.
2627 */
2628 if (!pci_is_pcie(pdev)) {
2629 if (!pci_is_root_bus(pdev->bus))
2630 return 0;
2631 if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2632 return 0;
2633 } else if (pci_pcie_type(pdev) == PCI_EXP_TYPE_PCI_BRIDGE)
2634 return 0;
2635 } else {
2636 if (device_has_rmrr(dev))
2637 return 0;
2638 }
2639
2640 /*
2641 * At boot time, we don't yet know if devices will be 64-bit capable.
2642 * Assume that they will — if they turn out not to be, then we can
2643 * take them out of the 1:1 domain later.
2644 */
2645 if (!startup) {
2646 /*
2647 * If the device's dma_mask is less than the system's memory
2648 * size then this is not a candidate for identity mapping.
2649 */
2650 u64 dma_mask = *dev->dma_mask;
2651
2652 if (dev->coherent_dma_mask &&
2653 dev->coherent_dma_mask < dma_mask)
2654 dma_mask = dev->coherent_dma_mask;
2655
2656 return dma_mask >= dma_get_required_mask(dev);
2657 }
2658
2659 return 1;
2660 }
2661
2662 static int __init dev_prepare_static_identity_mapping(struct device *dev, int hw)
2663 {
2664 int ret;
2665
2666 if (!iommu_should_identity_map(dev, 1))
2667 return 0;
2668
2669 ret = domain_add_dev_info(si_domain, dev,
2670 hw ? CONTEXT_TT_PASS_THROUGH :
2671 CONTEXT_TT_MULTI_LEVEL);
2672 if (!ret)
2673 pr_info("IOMMU: %s identity mapping for device %s\n",
2674 hw ? "hardware" : "software", dev_name(dev));
2675 else if (ret == -ENODEV)
2676 /* device not associated with an iommu */
2677 ret = 0;
2678
2679 return ret;
2680 }
2681
2682
2683 static int __init iommu_prepare_static_identity_mapping(int hw)
2684 {
2685 struct pci_dev *pdev = NULL;
2686 struct dmar_drhd_unit *drhd;
2687 struct intel_iommu *iommu;
2688 struct device *dev;
2689 int i;
2690 int ret = 0;
2691
2692 ret = si_domain_init(hw);
2693 if (ret)
2694 return -EFAULT;
2695
2696 for_each_pci_dev(pdev) {
2697 ret = dev_prepare_static_identity_mapping(&pdev->dev, hw);
2698 if (ret)
2699 return ret;
2700 }
2701
2702 for_each_active_iommu(iommu, drhd)
2703 for_each_active_dev_scope(drhd->devices, drhd->devices_cnt, i, dev) {
2704 struct acpi_device_physical_node *pn;
2705 struct acpi_device *adev;
2706
2707 if (dev->bus != &acpi_bus_type)
2708 continue;
2709
2710 adev= to_acpi_device(dev);
2711 mutex_lock(&adev->physical_node_lock);
2712 list_for_each_entry(pn, &adev->physical_node_list, node) {
2713 ret = dev_prepare_static_identity_mapping(pn->dev, hw);
2714 if (ret)
2715 break;
2716 }
2717 mutex_unlock(&adev->physical_node_lock);
2718 if (ret)
2719 return ret;
2720 }
2721
2722 return 0;
2723 }
2724
2725 static void intel_iommu_init_qi(struct intel_iommu *iommu)
2726 {
2727 /*
2728 * Start from the sane iommu hardware state.
2729 * If the queued invalidation is already initialized by us
2730 * (for example, while enabling interrupt-remapping) then
2731 * we got the things already rolling from a sane state.
2732 */
2733 if (!iommu->qi) {
2734 /*
2735 * Clear any previous faults.
2736 */
2737 dmar_fault(-1, iommu);
2738 /*
2739 * Disable queued invalidation if supported and already enabled
2740 * before OS handover.
2741 */
2742 dmar_disable_qi(iommu);
2743 }
2744
2745 if (dmar_enable_qi(iommu)) {
2746 /*
2747 * Queued Invalidate not enabled, use Register Based Invalidate
2748 */
2749 iommu->flush.flush_context = __iommu_flush_context;
2750 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2751 pr_info("IOMMU: %s using Register based invalidation\n",
2752 iommu->name);
2753 } else {
2754 iommu->flush.flush_context = qi_flush_context;
2755 iommu->flush.flush_iotlb = qi_flush_iotlb;
2756 pr_info("IOMMU: %s using Queued invalidation\n", iommu->name);
2757 }
2758 }
2759
2760 static int __init init_dmars(void)
2761 {
2762 struct dmar_drhd_unit *drhd;
2763 struct dmar_rmrr_unit *rmrr;
2764 struct device *dev;
2765 struct intel_iommu *iommu;
2766 int i, ret;
2767
2768 /*
2769 * for each drhd
2770 * allocate root
2771 * initialize and program root entry to not present
2772 * endfor
2773 */
2774 for_each_drhd_unit(drhd) {
2775 /*
2776 * lock not needed as this is only incremented in the single
2777 * threaded kernel __init code path all other access are read
2778 * only
2779 */
2780 if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) {
2781 g_num_of_iommus++;
2782 continue;
2783 }
2784 printk_once(KERN_ERR "intel-iommu: exceeded %d IOMMUs\n",
2785 DMAR_UNITS_SUPPORTED);
2786 }
2787
2788 /* Preallocate enough resources for IOMMU hot-addition */
2789 if (g_num_of_iommus < DMAR_UNITS_SUPPORTED)
2790 g_num_of_iommus = DMAR_UNITS_SUPPORTED;
2791
2792 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
2793 GFP_KERNEL);
2794 if (!g_iommus) {
2795 printk(KERN_ERR "Allocating global iommu array failed\n");
2796 ret = -ENOMEM;
2797 goto error;
2798 }
2799
2800 deferred_flush = kzalloc(g_num_of_iommus *
2801 sizeof(struct deferred_flush_tables), GFP_KERNEL);
2802 if (!deferred_flush) {
2803 ret = -ENOMEM;
2804 goto free_g_iommus;
2805 }
2806
2807 for_each_active_iommu(iommu, drhd) {
2808 g_iommus[iommu->seq_id] = iommu;
2809
2810 ret = iommu_init_domains(iommu);
2811 if (ret)
2812 goto free_iommu;
2813
2814 /*
2815 * TBD:
2816 * we could share the same root & context tables
2817 * among all IOMMU's. Need to Split it later.
2818 */
2819 ret = iommu_alloc_root_entry(iommu);
2820 if (ret)
2821 goto free_iommu;
2822 if (!ecap_pass_through(iommu->ecap))
2823 hw_pass_through = 0;
2824 }
2825
2826 for_each_active_iommu(iommu, drhd)
2827 intel_iommu_init_qi(iommu);
2828
2829 if (iommu_pass_through)
2830 iommu_identity_mapping |= IDENTMAP_ALL;
2831
2832 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
2833 iommu_identity_mapping |= IDENTMAP_GFX;
2834 #endif
2835
2836 check_tylersburg_isoch();
2837
2838 /*
2839 * If pass through is not set or not enabled, setup context entries for
2840 * identity mappings for rmrr, gfx, and isa and may fall back to static
2841 * identity mapping if iommu_identity_mapping is set.
2842 */
2843 if (iommu_identity_mapping) {
2844 ret = iommu_prepare_static_identity_mapping(hw_pass_through);
2845 if (ret) {
2846 printk(KERN_CRIT "Failed to setup IOMMU pass-through\n");
2847 goto free_iommu;
2848 }
2849 }
2850 /*
2851 * For each rmrr
2852 * for each dev attached to rmrr
2853 * do
2854 * locate drhd for dev, alloc domain for dev
2855 * allocate free domain
2856 * allocate page table entries for rmrr
2857 * if context not allocated for bus
2858 * allocate and init context
2859 * set present in root table for this bus
2860 * init context with domain, translation etc
2861 * endfor
2862 * endfor
2863 */
2864 printk(KERN_INFO "IOMMU: Setting RMRR:\n");
2865 for_each_rmrr_units(rmrr) {
2866 /* some BIOS lists non-exist devices in DMAR table. */
2867 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
2868 i, dev) {
2869 ret = iommu_prepare_rmrr_dev(rmrr, dev);
2870 if (ret)
2871 printk(KERN_ERR
2872 "IOMMU: mapping reserved region failed\n");
2873 }
2874 }
2875
2876 iommu_prepare_isa();
2877
2878 /*
2879 * for each drhd
2880 * enable fault log
2881 * global invalidate context cache
2882 * global invalidate iotlb
2883 * enable translation
2884 */
2885 for_each_iommu(iommu, drhd) {
2886 if (drhd->ignored) {
2887 /*
2888 * we always have to disable PMRs or DMA may fail on
2889 * this device
2890 */
2891 if (force_on)
2892 iommu_disable_protect_mem_regions(iommu);
2893 continue;
2894 }
2895
2896 iommu_flush_write_buffer(iommu);
2897
2898 ret = dmar_set_interrupt(iommu);
2899 if (ret)
2900 goto free_iommu;
2901
2902 iommu_set_root_entry(iommu);
2903
2904 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
2905 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2906 iommu_enable_translation(iommu);
2907 iommu_disable_protect_mem_regions(iommu);
2908 }
2909
2910 return 0;
2911
2912 free_iommu:
2913 for_each_active_iommu(iommu, drhd) {
2914 disable_dmar_iommu(iommu);
2915 free_dmar_iommu(iommu);
2916 }
2917 kfree(deferred_flush);
2918 free_g_iommus:
2919 kfree(g_iommus);
2920 error:
2921 return ret;
2922 }
2923
2924 /* This takes a number of _MM_ pages, not VTD pages */
2925 static struct iova *intel_alloc_iova(struct device *dev,
2926 struct dmar_domain *domain,
2927 unsigned long nrpages, uint64_t dma_mask)
2928 {
2929 struct iova *iova = NULL;
2930
2931 /* Restrict dma_mask to the width that the iommu can handle */
2932 dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
2933
2934 if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
2935 /*
2936 * First try to allocate an io virtual address in
2937 * DMA_BIT_MASK(32) and if that fails then try allocating
2938 * from higher range
2939 */
2940 iova = alloc_iova(&domain->iovad, nrpages,
2941 IOVA_PFN(DMA_BIT_MASK(32)), 1);
2942 if (iova)
2943 return iova;
2944 }
2945 iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(dma_mask), 1);
2946 if (unlikely(!iova)) {
2947 printk(KERN_ERR "Allocating %ld-page iova for %s failed",
2948 nrpages, dev_name(dev));
2949 return NULL;
2950 }
2951
2952 return iova;
2953 }
2954
2955 static struct dmar_domain *__get_valid_domain_for_dev(struct device *dev)
2956 {
2957 struct dmar_domain *domain;
2958 int ret;
2959
2960 domain = get_domain_for_dev(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2961 if (!domain) {
2962 printk(KERN_ERR "Allocating domain for %s failed",
2963 dev_name(dev));
2964 return NULL;
2965 }
2966
2967 /* make sure context mapping is ok */
2968 if (unlikely(!domain_context_mapped(dev))) {
2969 ret = domain_context_mapping(domain, dev, CONTEXT_TT_MULTI_LEVEL);
2970 if (ret) {
2971 printk(KERN_ERR "Domain context map for %s failed",
2972 dev_name(dev));
2973 return NULL;
2974 }
2975 }
2976
2977 return domain;
2978 }
2979
2980 static inline struct dmar_domain *get_valid_domain_for_dev(struct device *dev)
2981 {
2982 struct device_domain_info *info;
2983
2984 /* No lock here, assumes no domain exit in normal case */
2985 info = dev->archdata.iommu;
2986 if (likely(info))
2987 return info->domain;
2988
2989 return __get_valid_domain_for_dev(dev);
2990 }
2991
2992 /* Check if the dev needs to go through non-identity map and unmap process.*/
2993 static int iommu_no_mapping(struct device *dev)
2994 {
2995 int found;
2996
2997 if (iommu_dummy(dev))
2998 return 1;
2999
3000 if (!iommu_identity_mapping)
3001 return 0;
3002
3003 found = identity_mapping(dev);
3004 if (found) {
3005 if (iommu_should_identity_map(dev, 0))
3006 return 1;
3007 else {
3008 /*
3009 * 32 bit DMA is removed from si_domain and fall back
3010 * to non-identity mapping.
3011 */
3012 domain_remove_one_dev_info(si_domain, dev);
3013 printk(KERN_INFO "32bit %s uses non-identity mapping\n",
3014 dev_name(dev));
3015 return 0;
3016 }
3017 } else {
3018 /*
3019 * In case of a detached 64 bit DMA device from vm, the device
3020 * is put into si_domain for identity mapping.
3021 */
3022 if (iommu_should_identity_map(dev, 0)) {
3023 int ret;
3024 ret = domain_add_dev_info(si_domain, dev,
3025 hw_pass_through ?
3026 CONTEXT_TT_PASS_THROUGH :
3027 CONTEXT_TT_MULTI_LEVEL);
3028 if (!ret) {
3029 printk(KERN_INFO "64bit %s uses identity mapping\n",
3030 dev_name(dev));
3031 return 1;
3032 }
3033 }
3034 }
3035
3036 return 0;
3037 }
3038
3039 static dma_addr_t __intel_map_single(struct device *dev, phys_addr_t paddr,
3040 size_t size, int dir, u64 dma_mask)
3041 {
3042 struct dmar_domain *domain;
3043 phys_addr_t start_paddr;
3044 struct iova *iova;
3045 int prot = 0;
3046 int ret;
3047 struct intel_iommu *iommu;
3048 unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
3049
3050 BUG_ON(dir == DMA_NONE);
3051
3052 if (iommu_no_mapping(dev))
3053 return paddr;
3054
3055 domain = get_valid_domain_for_dev(dev);
3056 if (!domain)
3057 return 0;
3058
3059 iommu = domain_get_iommu(domain);
3060 size = aligned_nrpages(paddr, size);
3061
3062 iova = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), dma_mask);
3063 if (!iova)
3064 goto error;
3065
3066 /*
3067 * Check if DMAR supports zero-length reads on write only
3068 * mappings..
3069 */
3070 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3071 !cap_zlr(iommu->cap))
3072 prot |= DMA_PTE_READ;
3073 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3074 prot |= DMA_PTE_WRITE;
3075 /*
3076 * paddr - (paddr + size) might be partial page, we should map the whole
3077 * page. Note: if two part of one page are separately mapped, we
3078 * might have two guest_addr mapping to the same host paddr, but this
3079 * is not a big problem
3080 */
3081 ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo),
3082 mm_to_dma_pfn(paddr_pfn), size, prot);
3083 if (ret)
3084 goto error;
3085
3086 /* it's a non-present to present mapping. Only flush if caching mode */
3087 if (cap_caching_mode(iommu->cap))
3088 iommu_flush_iotlb_psi(iommu, domain->id, mm_to_dma_pfn(iova->pfn_lo), size, 0, 1);
3089 else
3090 iommu_flush_write_buffer(iommu);
3091
3092 start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
3093 start_paddr += paddr & ~PAGE_MASK;
3094 return start_paddr;
3095
3096 error:
3097 if (iova)
3098 __free_iova(&domain->iovad, iova);
3099 printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n",
3100 dev_name(dev), size, (unsigned long long)paddr, dir);
3101 return 0;
3102 }
3103
3104 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
3105 unsigned long offset, size_t size,
3106 enum dma_data_direction dir,
3107 struct dma_attrs *attrs)
3108 {
3109 return __intel_map_single(dev, page_to_phys(page) + offset, size,
3110 dir, *dev->dma_mask);
3111 }
3112
3113 static void flush_unmaps(void)
3114 {
3115 int i, j;
3116
3117 timer_on = 0;
3118
3119 /* just flush them all */
3120 for (i = 0; i < g_num_of_iommus; i++) {
3121 struct intel_iommu *iommu = g_iommus[i];
3122 if (!iommu)
3123 continue;
3124
3125 if (!deferred_flush[i].next)
3126 continue;
3127
3128 /* In caching mode, global flushes turn emulation expensive */
3129 if (!cap_caching_mode(iommu->cap))
3130 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3131 DMA_TLB_GLOBAL_FLUSH);
3132 for (j = 0; j < deferred_flush[i].next; j++) {
3133 unsigned long mask;
3134 struct iova *iova = deferred_flush[i].iova[j];
3135 struct dmar_domain *domain = deferred_flush[i].domain[j];
3136
3137 /* On real hardware multiple invalidations are expensive */
3138 if (cap_caching_mode(iommu->cap))
3139 iommu_flush_iotlb_psi(iommu, domain->id,
3140 iova->pfn_lo, iova_size(iova),
3141 !deferred_flush[i].freelist[j], 0);
3142 else {
3143 mask = ilog2(mm_to_dma_pfn(iova_size(iova)));
3144 iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
3145 (uint64_t)iova->pfn_lo << PAGE_SHIFT, mask);
3146 }
3147 __free_iova(&deferred_flush[i].domain[j]->iovad, iova);
3148 if (deferred_flush[i].freelist[j])
3149 dma_free_pagelist(deferred_flush[i].freelist[j]);
3150 }
3151 deferred_flush[i].next = 0;
3152 }
3153
3154 list_size = 0;
3155 }
3156
3157 static void flush_unmaps_timeout(unsigned long data)
3158 {
3159 unsigned long flags;
3160
3161 spin_lock_irqsave(&async_umap_flush_lock, flags);
3162 flush_unmaps();
3163 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
3164 }
3165
3166 static void add_unmap(struct dmar_domain *dom, struct iova *iova, struct page *freelist)
3167 {
3168 unsigned long flags;
3169 int next, iommu_id;
3170 struct intel_iommu *iommu;
3171
3172 spin_lock_irqsave(&async_umap_flush_lock, flags);
3173 if (list_size == HIGH_WATER_MARK)
3174 flush_unmaps();
3175
3176 iommu = domain_get_iommu(dom);
3177 iommu_id = iommu->seq_id;
3178
3179 next = deferred_flush[iommu_id].next;
3180 deferred_flush[iommu_id].domain[next] = dom;
3181 deferred_flush[iommu_id].iova[next] = iova;
3182 deferred_flush[iommu_id].freelist[next] = freelist;
3183 deferred_flush[iommu_id].next++;
3184
3185 if (!timer_on) {
3186 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
3187 timer_on = 1;
3188 }
3189 list_size++;
3190 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
3191 }
3192
3193 static void intel_unmap(struct device *dev, dma_addr_t dev_addr)
3194 {
3195 struct dmar_domain *domain;
3196 unsigned long start_pfn, last_pfn;
3197 struct iova *iova;
3198 struct intel_iommu *iommu;
3199 struct page *freelist;
3200
3201 if (iommu_no_mapping(dev))
3202 return;
3203
3204 domain = find_domain(dev);
3205 BUG_ON(!domain);
3206
3207 iommu = domain_get_iommu(domain);
3208
3209 iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
3210 if (WARN_ONCE(!iova, "Driver unmaps unmatched page at PFN %llx\n",
3211 (unsigned long long)dev_addr))
3212 return;
3213
3214 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
3215 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
3216
3217 pr_debug("Device %s unmapping: pfn %lx-%lx\n",
3218 dev_name(dev), start_pfn, last_pfn);
3219
3220 freelist = domain_unmap(domain, start_pfn, last_pfn);
3221
3222 if (intel_iommu_strict) {
3223 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
3224 last_pfn - start_pfn + 1, !freelist, 0);
3225 /* free iova */
3226 __free_iova(&domain->iovad, iova);
3227 dma_free_pagelist(freelist);
3228 } else {
3229 add_unmap(domain, iova, freelist);
3230 /*
3231 * queue up the release of the unmap to save the 1/6th of the
3232 * cpu used up by the iotlb flush operation...
3233 */
3234 }
3235 }
3236
3237 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
3238 size_t size, enum dma_data_direction dir,
3239 struct dma_attrs *attrs)
3240 {
3241 intel_unmap(dev, dev_addr);
3242 }
3243
3244 static void *intel_alloc_coherent(struct device *dev, size_t size,
3245 dma_addr_t *dma_handle, gfp_t flags,
3246 struct dma_attrs *attrs)
3247 {
3248 struct page *page = NULL;
3249 int order;
3250
3251 size = PAGE_ALIGN(size);
3252 order = get_order(size);
3253
3254 if (!iommu_no_mapping(dev))
3255 flags &= ~(GFP_DMA | GFP_DMA32);
3256 else if (dev->coherent_dma_mask < dma_get_required_mask(dev)) {
3257 if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
3258 flags |= GFP_DMA;
3259 else
3260 flags |= GFP_DMA32;
3261 }
3262
3263 if (flags & __GFP_WAIT) {
3264 unsigned int count = size >> PAGE_SHIFT;
3265
3266 page = dma_alloc_from_contiguous(dev, count, order);
3267 if (page && iommu_no_mapping(dev) &&
3268 page_to_phys(page) + size > dev->coherent_dma_mask) {
3269 dma_release_from_contiguous(dev, page, count);
3270 page = NULL;
3271 }
3272 }
3273
3274 if (!page)
3275 page = alloc_pages(flags, order);
3276 if (!page)
3277 return NULL;
3278 memset(page_address(page), 0, size);
3279
3280 *dma_handle = __intel_map_single(dev, page_to_phys(page), size,
3281 DMA_BIDIRECTIONAL,
3282 dev->coherent_dma_mask);
3283 if (*dma_handle)
3284 return page_address(page);
3285 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3286 __free_pages(page, order);
3287
3288 return NULL;
3289 }
3290
3291 static void intel_free_coherent(struct device *dev, size_t size, void *vaddr,
3292 dma_addr_t dma_handle, struct dma_attrs *attrs)
3293 {
3294 int order;
3295 struct page *page = virt_to_page(vaddr);
3296
3297 size = PAGE_ALIGN(size);
3298 order = get_order(size);
3299
3300 intel_unmap(dev, dma_handle);
3301 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3302 __free_pages(page, order);
3303 }
3304
3305 static void intel_unmap_sg(struct device *dev, struct scatterlist *sglist,
3306 int nelems, enum dma_data_direction dir,
3307 struct dma_attrs *attrs)
3308 {
3309 intel_unmap(dev, sglist[0].dma_address);
3310 }
3311
3312 static int intel_nontranslate_map_sg(struct device *hddev,
3313 struct scatterlist *sglist, int nelems, int dir)
3314 {
3315 int i;
3316 struct scatterlist *sg;
3317
3318 for_each_sg(sglist, sg, nelems, i) {
3319 BUG_ON(!sg_page(sg));
3320 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
3321 sg->dma_length = sg->length;
3322 }
3323 return nelems;
3324 }
3325
3326 static int intel_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
3327 enum dma_data_direction dir, struct dma_attrs *attrs)
3328 {
3329 int i;
3330 struct dmar_domain *domain;
3331 size_t size = 0;
3332 int prot = 0;
3333 struct iova *iova = NULL;
3334 int ret;
3335 struct scatterlist *sg;
3336 unsigned long start_vpfn;
3337 struct intel_iommu *iommu;
3338
3339 BUG_ON(dir == DMA_NONE);
3340 if (iommu_no_mapping(dev))
3341 return intel_nontranslate_map_sg(dev, sglist, nelems, dir);
3342
3343 domain = get_valid_domain_for_dev(dev);
3344 if (!domain)
3345 return 0;
3346
3347 iommu = domain_get_iommu(domain);
3348
3349 for_each_sg(sglist, sg, nelems, i)
3350 size += aligned_nrpages(sg->offset, sg->length);
3351
3352 iova = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size),
3353 *dev->dma_mask);
3354 if (!iova) {
3355 sglist->dma_length = 0;
3356 return 0;
3357 }
3358
3359 /*
3360 * Check if DMAR supports zero-length reads on write only
3361 * mappings..
3362 */
3363 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3364 !cap_zlr(iommu->cap))
3365 prot |= DMA_PTE_READ;
3366 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3367 prot |= DMA_PTE_WRITE;
3368
3369 start_vpfn = mm_to_dma_pfn(iova->pfn_lo);
3370
3371 ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3372 if (unlikely(ret)) {
3373 dma_pte_free_pagetable(domain, start_vpfn,
3374 start_vpfn + size - 1);
3375 __free_iova(&domain->iovad, iova);
3376 return 0;
3377 }
3378
3379 /* it's a non-present to present mapping. Only flush if caching mode */
3380 if (cap_caching_mode(iommu->cap))
3381 iommu_flush_iotlb_psi(iommu, domain->id, start_vpfn, size, 0, 1);
3382 else
3383 iommu_flush_write_buffer(iommu);
3384
3385 return nelems;
3386 }
3387
3388 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
3389 {
3390 return !dma_addr;
3391 }
3392
3393 struct dma_map_ops intel_dma_ops = {
3394 .alloc = intel_alloc_coherent,
3395 .free = intel_free_coherent,
3396 .map_sg = intel_map_sg,
3397 .unmap_sg = intel_unmap_sg,
3398 .map_page = intel_map_page,
3399 .unmap_page = intel_unmap_page,
3400 .mapping_error = intel_mapping_error,
3401 };
3402
3403 static inline int iommu_domain_cache_init(void)
3404 {
3405 int ret = 0;
3406
3407 iommu_domain_cache = kmem_cache_create("iommu_domain",
3408 sizeof(struct dmar_domain),
3409 0,
3410 SLAB_HWCACHE_ALIGN,
3411
3412 NULL);
3413 if (!iommu_domain_cache) {
3414 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
3415 ret = -ENOMEM;
3416 }
3417
3418 return ret;
3419 }
3420
3421 static inline int iommu_devinfo_cache_init(void)
3422 {
3423 int ret = 0;
3424
3425 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
3426 sizeof(struct device_domain_info),
3427 0,
3428 SLAB_HWCACHE_ALIGN,
3429 NULL);
3430 if (!iommu_devinfo_cache) {
3431 printk(KERN_ERR "Couldn't create devinfo cache\n");
3432 ret = -ENOMEM;
3433 }
3434
3435 return ret;
3436 }
3437
3438 static int __init iommu_init_mempool(void)
3439 {
3440 int ret;
3441 ret = iommu_iova_cache_init();
3442 if (ret)
3443 return ret;
3444
3445 ret = iommu_domain_cache_init();
3446 if (ret)
3447 goto domain_error;
3448
3449 ret = iommu_devinfo_cache_init();
3450 if (!ret)
3451 return ret;
3452
3453 kmem_cache_destroy(iommu_domain_cache);
3454 domain_error:
3455 iommu_iova_cache_destroy();
3456
3457 return -ENOMEM;
3458 }
3459
3460 static void __init iommu_exit_mempool(void)
3461 {
3462 kmem_cache_destroy(iommu_devinfo_cache);
3463 kmem_cache_destroy(iommu_domain_cache);
3464 iommu_iova_cache_destroy();
3465 }
3466
3467 static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
3468 {
3469 struct dmar_drhd_unit *drhd;
3470 u32 vtbar;
3471 int rc;
3472
3473 /* We know that this device on this chipset has its own IOMMU.
3474 * If we find it under a different IOMMU, then the BIOS is lying
3475 * to us. Hope that the IOMMU for this device is actually
3476 * disabled, and it needs no translation...
3477 */
3478 rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
3479 if (rc) {
3480 /* "can't" happen */
3481 dev_info(&pdev->dev, "failed to run vt-d quirk\n");
3482 return;
3483 }
3484 vtbar &= 0xffff0000;
3485
3486 /* we know that the this iommu should be at offset 0xa000 from vtbar */
3487 drhd = dmar_find_matched_drhd_unit(pdev);
3488 if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
3489 TAINT_FIRMWARE_WORKAROUND,
3490 "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
3491 pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3492 }
3493 DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
3494
3495 static void __init init_no_remapping_devices(void)
3496 {
3497 struct dmar_drhd_unit *drhd;
3498 struct device *dev;
3499 int i;
3500
3501 for_each_drhd_unit(drhd) {
3502 if (!drhd->include_all) {
3503 for_each_active_dev_scope(drhd->devices,
3504 drhd->devices_cnt, i, dev)
3505 break;
3506 /* ignore DMAR unit if no devices exist */
3507 if (i == drhd->devices_cnt)
3508 drhd->ignored = 1;
3509 }
3510 }
3511
3512 for_each_active_drhd_unit(drhd) {
3513 if (drhd->include_all)
3514 continue;
3515
3516 for_each_active_dev_scope(drhd->devices,
3517 drhd->devices_cnt, i, dev)
3518 if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
3519 break;
3520 if (i < drhd->devices_cnt)
3521 continue;
3522
3523 /* This IOMMU has *only* gfx devices. Either bypass it or
3524 set the gfx_mapped flag, as appropriate */
3525 if (dmar_map_gfx) {
3526 intel_iommu_gfx_mapped = 1;
3527 } else {
3528 drhd->ignored = 1;
3529 for_each_active_dev_scope(drhd->devices,
3530 drhd->devices_cnt, i, dev)
3531 dev->archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3532 }
3533 }
3534 }
3535
3536 #ifdef CONFIG_SUSPEND
3537 static int init_iommu_hw(void)
3538 {
3539 struct dmar_drhd_unit *drhd;
3540 struct intel_iommu *iommu = NULL;
3541
3542 for_each_active_iommu(iommu, drhd)
3543 if (iommu->qi)
3544 dmar_reenable_qi(iommu);
3545
3546 for_each_iommu(iommu, drhd) {
3547 if (drhd->ignored) {
3548 /*
3549 * we always have to disable PMRs or DMA may fail on
3550 * this device
3551 */
3552 if (force_on)
3553 iommu_disable_protect_mem_regions(iommu);
3554 continue;
3555 }
3556
3557 iommu_flush_write_buffer(iommu);
3558
3559 iommu_set_root_entry(iommu);
3560
3561 iommu->flush.flush_context(iommu, 0, 0, 0,
3562 DMA_CCMD_GLOBAL_INVL);
3563 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
3564 iommu_enable_translation(iommu);
3565 iommu_disable_protect_mem_regions(iommu);
3566 }
3567
3568 return 0;
3569 }
3570
3571 static void iommu_flush_all(void)
3572 {
3573 struct dmar_drhd_unit *drhd;
3574 struct intel_iommu *iommu;
3575
3576 for_each_active_iommu(iommu, drhd) {
3577 iommu->flush.flush_context(iommu, 0, 0, 0,
3578 DMA_CCMD_GLOBAL_INVL);
3579 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3580 DMA_TLB_GLOBAL_FLUSH);
3581 }
3582 }
3583
3584 static int iommu_suspend(void)
3585 {
3586 struct dmar_drhd_unit *drhd;
3587 struct intel_iommu *iommu = NULL;
3588 unsigned long flag;
3589
3590 for_each_active_iommu(iommu, drhd) {
3591 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
3592 GFP_ATOMIC);
3593 if (!iommu->iommu_state)
3594 goto nomem;
3595 }
3596
3597 iommu_flush_all();
3598
3599 for_each_active_iommu(iommu, drhd) {
3600 iommu_disable_translation(iommu);
3601
3602 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3603
3604 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3605 readl(iommu->reg + DMAR_FECTL_REG);
3606 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3607 readl(iommu->reg + DMAR_FEDATA_REG);
3608 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3609 readl(iommu->reg + DMAR_FEADDR_REG);
3610 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3611 readl(iommu->reg + DMAR_FEUADDR_REG);
3612
3613 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3614 }
3615 return 0;
3616
3617 nomem:
3618 for_each_active_iommu(iommu, drhd)
3619 kfree(iommu->iommu_state);
3620
3621 return -ENOMEM;
3622 }
3623
3624 static void iommu_resume(void)
3625 {
3626 struct dmar_drhd_unit *drhd;
3627 struct intel_iommu *iommu = NULL;
3628 unsigned long flag;
3629
3630 if (init_iommu_hw()) {
3631 if (force_on)
3632 panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
3633 else
3634 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3635 return;
3636 }
3637
3638 for_each_active_iommu(iommu, drhd) {
3639
3640 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3641
3642 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3643 iommu->reg + DMAR_FECTL_REG);
3644 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3645 iommu->reg + DMAR_FEDATA_REG);
3646 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3647 iommu->reg + DMAR_FEADDR_REG);
3648 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3649 iommu->reg + DMAR_FEUADDR_REG);
3650
3651 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3652 }
3653
3654 for_each_active_iommu(iommu, drhd)
3655 kfree(iommu->iommu_state);
3656 }
3657
3658 static struct syscore_ops iommu_syscore_ops = {
3659 .resume = iommu_resume,
3660 .suspend = iommu_suspend,
3661 };
3662
3663 static void __init init_iommu_pm_ops(void)
3664 {
3665 register_syscore_ops(&iommu_syscore_ops);
3666 }
3667
3668 #else
3669 static inline void init_iommu_pm_ops(void) {}
3670 #endif /* CONFIG_PM */
3671
3672
3673 int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg)
3674 {
3675 struct acpi_dmar_reserved_memory *rmrr;
3676 struct dmar_rmrr_unit *rmrru;
3677
3678 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
3679 if (!rmrru)
3680 return -ENOMEM;
3681
3682 rmrru->hdr = header;
3683 rmrr = (struct acpi_dmar_reserved_memory *)header;
3684 rmrru->base_address = rmrr->base_address;
3685 rmrru->end_address = rmrr->end_address;
3686 rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
3687 ((void *)rmrr) + rmrr->header.length,
3688 &rmrru->devices_cnt);
3689 if (rmrru->devices_cnt && rmrru->devices == NULL) {
3690 kfree(rmrru);
3691 return -ENOMEM;
3692 }
3693
3694 list_add(&rmrru->list, &dmar_rmrr_units);
3695
3696 return 0;
3697 }
3698
3699 static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr)
3700 {
3701 struct dmar_atsr_unit *atsru;
3702 struct acpi_dmar_atsr *tmp;
3703
3704 list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
3705 tmp = (struct acpi_dmar_atsr *)atsru->hdr;
3706 if (atsr->segment != tmp->segment)
3707 continue;
3708 if (atsr->header.length != tmp->header.length)
3709 continue;
3710 if (memcmp(atsr, tmp, atsr->header.length) == 0)
3711 return atsru;
3712 }
3713
3714 return NULL;
3715 }
3716
3717 int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg)
3718 {
3719 struct acpi_dmar_atsr *atsr;
3720 struct dmar_atsr_unit *atsru;
3721
3722 if (system_state != SYSTEM_BOOTING && !intel_iommu_enabled)
3723 return 0;
3724
3725 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
3726 atsru = dmar_find_atsr(atsr);
3727 if (atsru)
3728 return 0;
3729
3730 atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL);
3731 if (!atsru)
3732 return -ENOMEM;
3733
3734 /*
3735 * If memory is allocated from slab by ACPI _DSM method, we need to
3736 * copy the memory content because the memory buffer will be freed
3737 * on return.
3738 */
3739 atsru->hdr = (void *)(atsru + 1);
3740 memcpy(atsru->hdr, hdr, hdr->length);
3741 atsru->include_all = atsr->flags & 0x1;
3742 if (!atsru->include_all) {
3743 atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
3744 (void *)atsr + atsr->header.length,
3745 &atsru->devices_cnt);
3746 if (atsru->devices_cnt && atsru->devices == NULL) {
3747 kfree(atsru);
3748 return -ENOMEM;
3749 }
3750 }
3751
3752 list_add_rcu(&atsru->list, &dmar_atsr_units);
3753
3754 return 0;
3755 }
3756
3757 static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
3758 {
3759 dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
3760 kfree(atsru);
3761 }
3762
3763 int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg)
3764 {
3765 struct acpi_dmar_atsr *atsr;
3766 struct dmar_atsr_unit *atsru;
3767
3768 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
3769 atsru = dmar_find_atsr(atsr);
3770 if (atsru) {
3771 list_del_rcu(&atsru->list);
3772 synchronize_rcu();
3773 intel_iommu_free_atsr(atsru);
3774 }
3775
3776 return 0;
3777 }
3778
3779 int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg)
3780 {
3781 int i;
3782 struct device *dev;
3783 struct acpi_dmar_atsr *atsr;
3784 struct dmar_atsr_unit *atsru;
3785
3786 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
3787 atsru = dmar_find_atsr(atsr);
3788 if (!atsru)
3789 return 0;
3790
3791 if (!atsru->include_all && atsru->devices && atsru->devices_cnt)
3792 for_each_active_dev_scope(atsru->devices, atsru->devices_cnt,
3793 i, dev)
3794 return -EBUSY;
3795
3796 return 0;
3797 }
3798
3799 static int intel_iommu_add(struct dmar_drhd_unit *dmaru)
3800 {
3801 int sp, ret = 0;
3802 struct intel_iommu *iommu = dmaru->iommu;
3803
3804 if (g_iommus[iommu->seq_id])
3805 return 0;
3806
3807 if (hw_pass_through && !ecap_pass_through(iommu->ecap)) {
3808 pr_warn("IOMMU: %s doesn't support hardware pass through.\n",
3809 iommu->name);
3810 return -ENXIO;
3811 }
3812 if (!ecap_sc_support(iommu->ecap) &&
3813 domain_update_iommu_snooping(iommu)) {
3814 pr_warn("IOMMU: %s doesn't support snooping.\n",
3815 iommu->name);
3816 return -ENXIO;
3817 }
3818 sp = domain_update_iommu_superpage(iommu) - 1;
3819 if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) {
3820 pr_warn("IOMMU: %s doesn't support large page.\n",
3821 iommu->name);
3822 return -ENXIO;
3823 }
3824
3825 /*
3826 * Disable translation if already enabled prior to OS handover.
3827 */
3828 if (iommu->gcmd & DMA_GCMD_TE)
3829 iommu_disable_translation(iommu);
3830
3831 g_iommus[iommu->seq_id] = iommu;
3832 ret = iommu_init_domains(iommu);
3833 if (ret == 0)
3834 ret = iommu_alloc_root_entry(iommu);
3835 if (ret)
3836 goto out;
3837
3838 if (dmaru->ignored) {
3839 /*
3840 * we always have to disable PMRs or DMA may fail on this device
3841 */
3842 if (force_on)
3843 iommu_disable_protect_mem_regions(iommu);
3844 return 0;
3845 }
3846
3847 intel_iommu_init_qi(iommu);
3848 iommu_flush_write_buffer(iommu);
3849 ret = dmar_set_interrupt(iommu);
3850 if (ret)
3851 goto disable_iommu;
3852
3853 iommu_set_root_entry(iommu);
3854 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
3855 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
3856 iommu_enable_translation(iommu);
3857
3858 if (si_domain) {
3859 ret = iommu_attach_domain(si_domain, iommu);
3860 if (ret < 0 || si_domain->id != ret)
3861 goto disable_iommu;
3862 domain_attach_iommu(si_domain, iommu);
3863 }
3864
3865 iommu_disable_protect_mem_regions(iommu);
3866 return 0;
3867
3868 disable_iommu:
3869 disable_dmar_iommu(iommu);
3870 out:
3871 free_dmar_iommu(iommu);
3872 return ret;
3873 }
3874
3875 int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
3876 {
3877 int ret = 0;
3878 struct intel_iommu *iommu = dmaru->iommu;
3879
3880 if (!intel_iommu_enabled)
3881 return 0;
3882 if (iommu == NULL)
3883 return -EINVAL;
3884
3885 if (insert) {
3886 ret = intel_iommu_add(dmaru);
3887 } else {
3888 disable_dmar_iommu(iommu);
3889 free_dmar_iommu(iommu);
3890 }
3891
3892 return ret;
3893 }
3894
3895 static void intel_iommu_free_dmars(void)
3896 {
3897 struct dmar_rmrr_unit *rmrru, *rmrr_n;
3898 struct dmar_atsr_unit *atsru, *atsr_n;
3899
3900 list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
3901 list_del(&rmrru->list);
3902 dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
3903 kfree(rmrru);
3904 }
3905
3906 list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
3907 list_del(&atsru->list);
3908 intel_iommu_free_atsr(atsru);
3909 }
3910 }
3911
3912 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
3913 {
3914 int i, ret = 1;
3915 struct pci_bus *bus;
3916 struct pci_dev *bridge = NULL;
3917 struct device *tmp;
3918 struct acpi_dmar_atsr *atsr;
3919 struct dmar_atsr_unit *atsru;
3920
3921 dev = pci_physfn(dev);
3922 for (bus = dev->bus; bus; bus = bus->parent) {
3923 bridge = bus->self;
3924 if (!bridge || !pci_is_pcie(bridge) ||
3925 pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
3926 return 0;
3927 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
3928 break;
3929 }
3930 if (!bridge)
3931 return 0;
3932
3933 rcu_read_lock();
3934 list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
3935 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
3936 if (atsr->segment != pci_domain_nr(dev->bus))
3937 continue;
3938
3939 for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
3940 if (tmp == &bridge->dev)
3941 goto out;
3942
3943 if (atsru->include_all)
3944 goto out;
3945 }
3946 ret = 0;
3947 out:
3948 rcu_read_unlock();
3949
3950 return ret;
3951 }
3952
3953 int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
3954 {
3955 int ret = 0;
3956 struct dmar_rmrr_unit *rmrru;
3957 struct dmar_atsr_unit *atsru;
3958 struct acpi_dmar_atsr *atsr;
3959 struct acpi_dmar_reserved_memory *rmrr;
3960
3961 if (!intel_iommu_enabled && system_state != SYSTEM_BOOTING)
3962 return 0;
3963
3964 list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
3965 rmrr = container_of(rmrru->hdr,
3966 struct acpi_dmar_reserved_memory, header);
3967 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
3968 ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
3969 ((void *)rmrr) + rmrr->header.length,
3970 rmrr->segment, rmrru->devices,
3971 rmrru->devices_cnt);
3972 if(ret < 0)
3973 return ret;
3974 } else if (info->event == BUS_NOTIFY_DEL_DEVICE) {
3975 dmar_remove_dev_scope(info, rmrr->segment,
3976 rmrru->devices, rmrru->devices_cnt);
3977 }
3978 }
3979
3980 list_for_each_entry(atsru, &dmar_atsr_units, list) {
3981 if (atsru->include_all)
3982 continue;
3983
3984 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
3985 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
3986 ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
3987 (void *)atsr + atsr->header.length,
3988 atsr->segment, atsru->devices,
3989 atsru->devices_cnt);
3990 if (ret > 0)
3991 break;
3992 else if(ret < 0)
3993 return ret;
3994 } else if (info->event == BUS_NOTIFY_DEL_DEVICE) {
3995 if (dmar_remove_dev_scope(info, atsr->segment,
3996 atsru->devices, atsru->devices_cnt))
3997 break;
3998 }
3999 }
4000
4001 return 0;
4002 }
4003
4004 /*
4005 * Here we only respond to action of unbound device from driver.
4006 *
4007 * Added device is not attached to its DMAR domain here yet. That will happen
4008 * when mapping the device to iova.
4009 */
4010 static int device_notifier(struct notifier_block *nb,
4011 unsigned long action, void *data)
4012 {
4013 struct device *dev = data;
4014 struct dmar_domain *domain;
4015
4016 if (iommu_dummy(dev))
4017 return 0;
4018
4019 if (action != BUS_NOTIFY_REMOVED_DEVICE)
4020 return 0;
4021
4022 domain = find_domain(dev);
4023 if (!domain)
4024 return 0;
4025
4026 down_read(&dmar_global_lock);
4027 domain_remove_one_dev_info(domain, dev);
4028 if (!domain_type_is_vm_or_si(domain) && list_empty(&domain->devices))
4029 domain_exit(domain);
4030 up_read(&dmar_global_lock);
4031
4032 return 0;
4033 }
4034
4035 static struct notifier_block device_nb = {
4036 .notifier_call = device_notifier,
4037 };
4038
4039 static int intel_iommu_memory_notifier(struct notifier_block *nb,
4040 unsigned long val, void *v)
4041 {
4042 struct memory_notify *mhp = v;
4043 unsigned long long start, end;
4044 unsigned long start_vpfn, last_vpfn;
4045
4046 switch (val) {
4047 case MEM_GOING_ONLINE:
4048 start = mhp->start_pfn << PAGE_SHIFT;
4049 end = ((mhp->start_pfn + mhp->nr_pages) << PAGE_SHIFT) - 1;
4050 if (iommu_domain_identity_map(si_domain, start, end)) {
4051 pr_warn("dmar: failed to build identity map for [%llx-%llx]\n",
4052 start, end);
4053 return NOTIFY_BAD;
4054 }
4055 break;
4056
4057 case MEM_OFFLINE:
4058 case MEM_CANCEL_ONLINE:
4059 start_vpfn = mm_to_dma_pfn(mhp->start_pfn);
4060 last_vpfn = mm_to_dma_pfn(mhp->start_pfn + mhp->nr_pages - 1);
4061 while (start_vpfn <= last_vpfn) {
4062 struct iova *iova;
4063 struct dmar_drhd_unit *drhd;
4064 struct intel_iommu *iommu;
4065 struct page *freelist;
4066
4067 iova = find_iova(&si_domain->iovad, start_vpfn);
4068 if (iova == NULL) {
4069 pr_debug("dmar: failed get IOVA for PFN %lx\n",
4070 start_vpfn);
4071 break;
4072 }
4073
4074 iova = split_and_remove_iova(&si_domain->iovad, iova,
4075 start_vpfn, last_vpfn);
4076 if (iova == NULL) {
4077 pr_warn("dmar: failed to split IOVA PFN [%lx-%lx]\n",
4078 start_vpfn, last_vpfn);
4079 return NOTIFY_BAD;
4080 }
4081
4082 freelist = domain_unmap(si_domain, iova->pfn_lo,
4083 iova->pfn_hi);
4084
4085 rcu_read_lock();
4086 for_each_active_iommu(iommu, drhd)
4087 iommu_flush_iotlb_psi(iommu, si_domain->id,
4088 iova->pfn_lo, iova_size(iova),
4089 !freelist, 0);
4090 rcu_read_unlock();
4091 dma_free_pagelist(freelist);
4092
4093 start_vpfn = iova->pfn_hi + 1;
4094 free_iova_mem(iova);
4095 }
4096 break;
4097 }
4098
4099 return NOTIFY_OK;
4100 }
4101
4102 static struct notifier_block intel_iommu_memory_nb = {
4103 .notifier_call = intel_iommu_memory_notifier,
4104 .priority = 0
4105 };
4106
4107
4108 static ssize_t intel_iommu_show_version(struct device *dev,
4109 struct device_attribute *attr,
4110 char *buf)
4111 {
4112 struct intel_iommu *iommu = dev_get_drvdata(dev);
4113 u32 ver = readl(iommu->reg + DMAR_VER_REG);
4114 return sprintf(buf, "%d:%d\n",
4115 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver));
4116 }
4117 static DEVICE_ATTR(version, S_IRUGO, intel_iommu_show_version, NULL);
4118
4119 static ssize_t intel_iommu_show_address(struct device *dev,
4120 struct device_attribute *attr,
4121 char *buf)
4122 {
4123 struct intel_iommu *iommu = dev_get_drvdata(dev);
4124 return sprintf(buf, "%llx\n", iommu->reg_phys);
4125 }
4126 static DEVICE_ATTR(address, S_IRUGO, intel_iommu_show_address, NULL);
4127
4128 static ssize_t intel_iommu_show_cap(struct device *dev,
4129 struct device_attribute *attr,
4130 char *buf)
4131 {
4132 struct intel_iommu *iommu = dev_get_drvdata(dev);
4133 return sprintf(buf, "%llx\n", iommu->cap);
4134 }
4135 static DEVICE_ATTR(cap, S_IRUGO, intel_iommu_show_cap, NULL);
4136
4137 static ssize_t intel_iommu_show_ecap(struct device *dev,
4138 struct device_attribute *attr,
4139 char *buf)
4140 {
4141 struct intel_iommu *iommu = dev_get_drvdata(dev);
4142 return sprintf(buf, "%llx\n", iommu->ecap);
4143 }
4144 static DEVICE_ATTR(ecap, S_IRUGO, intel_iommu_show_ecap, NULL);
4145
4146 static struct attribute *intel_iommu_attrs[] = {
4147 &dev_attr_version.attr,
4148 &dev_attr_address.attr,
4149 &dev_attr_cap.attr,
4150 &dev_attr_ecap.attr,
4151 NULL,
4152 };
4153
4154 static struct attribute_group intel_iommu_group = {
4155 .name = "intel-iommu",
4156 .attrs = intel_iommu_attrs,
4157 };
4158
4159 const struct attribute_group *intel_iommu_groups[] = {
4160 &intel_iommu_group,
4161 NULL,
4162 };
4163
4164 int __init intel_iommu_init(void)
4165 {
4166 int ret = -ENODEV;
4167 struct dmar_drhd_unit *drhd;
4168 struct intel_iommu *iommu;
4169
4170 /* VT-d is required for a TXT/tboot launch, so enforce that */
4171 force_on = tboot_force_iommu();
4172
4173 if (iommu_init_mempool()) {
4174 if (force_on)
4175 panic("tboot: Failed to initialize iommu memory\n");
4176 return -ENOMEM;
4177 }
4178
4179 down_write(&dmar_global_lock);
4180 if (dmar_table_init()) {
4181 if (force_on)
4182 panic("tboot: Failed to initialize DMAR table\n");
4183 goto out_free_dmar;
4184 }
4185
4186 /*
4187 * Disable translation if already enabled prior to OS handover.
4188 */
4189 for_each_active_iommu(iommu, drhd)
4190 if (iommu->gcmd & DMA_GCMD_TE)
4191 iommu_disable_translation(iommu);
4192
4193 if (dmar_dev_scope_init() < 0) {
4194 if (force_on)
4195 panic("tboot: Failed to initialize DMAR device scope\n");
4196 goto out_free_dmar;
4197 }
4198
4199 if (no_iommu || dmar_disabled)
4200 goto out_free_dmar;
4201
4202 if (list_empty(&dmar_rmrr_units))
4203 printk(KERN_INFO "DMAR: No RMRR found\n");
4204
4205 if (list_empty(&dmar_atsr_units))
4206 printk(KERN_INFO "DMAR: No ATSR found\n");
4207
4208 if (dmar_init_reserved_ranges()) {
4209 if (force_on)
4210 panic("tboot: Failed to reserve iommu ranges\n");
4211 goto out_free_reserved_range;
4212 }
4213
4214 init_no_remapping_devices();
4215
4216 ret = init_dmars();
4217 if (ret) {
4218 if (force_on)
4219 panic("tboot: Failed to initialize DMARs\n");
4220 printk(KERN_ERR "IOMMU: dmar init failed\n");
4221 goto out_free_reserved_range;
4222 }
4223 up_write(&dmar_global_lock);
4224 printk(KERN_INFO
4225 "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
4226
4227 init_timer(&unmap_timer);
4228 #ifdef CONFIG_SWIOTLB
4229 swiotlb = 0;
4230 #endif
4231 dma_ops = &intel_dma_ops;
4232
4233 init_iommu_pm_ops();
4234
4235 for_each_active_iommu(iommu, drhd)
4236 iommu->iommu_dev = iommu_device_create(NULL, iommu,
4237 intel_iommu_groups,
4238 iommu->name);
4239
4240 bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
4241 bus_register_notifier(&pci_bus_type, &device_nb);
4242 if (si_domain && !hw_pass_through)
4243 register_memory_notifier(&intel_iommu_memory_nb);
4244
4245 intel_iommu_enabled = 1;
4246
4247 return 0;
4248
4249 out_free_reserved_range:
4250 put_iova_domain(&reserved_iova_list);
4251 out_free_dmar:
4252 intel_iommu_free_dmars();
4253 up_write(&dmar_global_lock);
4254 iommu_exit_mempool();
4255 return ret;
4256 }
4257
4258 static int iommu_detach_dev_cb(struct pci_dev *pdev, u16 alias, void *opaque)
4259 {
4260 struct intel_iommu *iommu = opaque;
4261
4262 iommu_detach_dev(iommu, PCI_BUS_NUM(alias), alias & 0xff);
4263 return 0;
4264 }
4265
4266 /*
4267 * NB - intel-iommu lacks any sort of reference counting for the users of
4268 * dependent devices. If multiple endpoints have intersecting dependent
4269 * devices, unbinding the driver from any one of them will possibly leave
4270 * the others unable to operate.
4271 */
4272 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
4273 struct device *dev)
4274 {
4275 if (!iommu || !dev || !dev_is_pci(dev))
4276 return;
4277
4278 pci_for_each_dma_alias(to_pci_dev(dev), &iommu_detach_dev_cb, iommu);
4279 }
4280
4281 static void domain_remove_one_dev_info(struct dmar_domain *domain,
4282 struct device *dev)
4283 {
4284 struct device_domain_info *info, *tmp;
4285 struct intel_iommu *iommu;
4286 unsigned long flags;
4287 bool found = false;
4288 u8 bus, devfn;
4289
4290 iommu = device_to_iommu(dev, &bus, &devfn);
4291 if (!iommu)
4292 return;
4293
4294 spin_lock_irqsave(&device_domain_lock, flags);
4295 list_for_each_entry_safe(info, tmp, &domain->devices, link) {
4296 if (info->iommu == iommu && info->bus == bus &&
4297 info->devfn == devfn) {
4298 unlink_domain_info(info);
4299 spin_unlock_irqrestore(&device_domain_lock, flags);
4300
4301 iommu_disable_dev_iotlb(info);
4302 iommu_detach_dev(iommu, info->bus, info->devfn);
4303 iommu_detach_dependent_devices(iommu, dev);
4304 free_devinfo_mem(info);
4305
4306 spin_lock_irqsave(&device_domain_lock, flags);
4307
4308 if (found)
4309 break;
4310 else
4311 continue;
4312 }
4313
4314 /* if there is no other devices under the same iommu
4315 * owned by this domain, clear this iommu in iommu_bmp
4316 * update iommu count and coherency
4317 */
4318 if (info->iommu == iommu)
4319 found = true;
4320 }
4321
4322 spin_unlock_irqrestore(&device_domain_lock, flags);
4323
4324 if (found == 0) {
4325 domain_detach_iommu(domain, iommu);
4326 if (!domain_type_is_vm_or_si(domain))
4327 iommu_detach_domain(domain, iommu);
4328 }
4329 }
4330
4331 static int md_domain_init(struct dmar_domain *domain, int guest_width)
4332 {
4333 int adjust_width;
4334
4335 init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN,
4336 DMA_32BIT_PFN);
4337 domain_reserve_special_ranges(domain);
4338
4339 /* calculate AGAW */
4340 domain->gaw = guest_width;
4341 adjust_width = guestwidth_to_adjustwidth(guest_width);
4342 domain->agaw = width_to_agaw(adjust_width);
4343
4344 domain->iommu_coherency = 0;
4345 domain->iommu_snooping = 0;
4346 domain->iommu_superpage = 0;
4347 domain->max_addr = 0;
4348
4349 /* always allocate the top pgd */
4350 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
4351 if (!domain->pgd)
4352 return -ENOMEM;
4353 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
4354 return 0;
4355 }
4356
4357 static struct iommu_domain *intel_iommu_domain_alloc(unsigned type)
4358 {
4359 struct dmar_domain *dmar_domain;
4360 struct iommu_domain *domain;
4361
4362 if (type != IOMMU_DOMAIN_UNMANAGED)
4363 return NULL;
4364
4365 dmar_domain = alloc_domain(DOMAIN_FLAG_VIRTUAL_MACHINE);
4366 if (!dmar_domain) {
4367 printk(KERN_ERR
4368 "intel_iommu_domain_init: dmar_domain == NULL\n");
4369 return NULL;
4370 }
4371 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
4372 printk(KERN_ERR
4373 "intel_iommu_domain_init() failed\n");
4374 domain_exit(dmar_domain);
4375 return NULL;
4376 }
4377 domain_update_iommu_cap(dmar_domain);
4378
4379 domain = &dmar_domain->domain;
4380 domain->geometry.aperture_start = 0;
4381 domain->geometry.aperture_end = __DOMAIN_MAX_ADDR(dmar_domain->gaw);
4382 domain->geometry.force_aperture = true;
4383
4384 return domain;
4385 }
4386
4387 static void intel_iommu_domain_free(struct iommu_domain *domain)
4388 {
4389 domain_exit(to_dmar_domain(domain));
4390 }
4391
4392 static int intel_iommu_attach_device(struct iommu_domain *domain,
4393 struct device *dev)
4394 {
4395 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4396 struct intel_iommu *iommu;
4397 int addr_width;
4398 u8 bus, devfn;
4399
4400 if (device_is_rmrr_locked(dev)) {
4401 dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement. Contact your platform vendor.\n");
4402 return -EPERM;
4403 }
4404
4405 /* normally dev is not mapped */
4406 if (unlikely(domain_context_mapped(dev))) {
4407 struct dmar_domain *old_domain;
4408
4409 old_domain = find_domain(dev);
4410 if (old_domain) {
4411 if (domain_type_is_vm_or_si(dmar_domain))
4412 domain_remove_one_dev_info(old_domain, dev);
4413 else
4414 domain_remove_dev_info(old_domain);
4415
4416 if (!domain_type_is_vm_or_si(old_domain) &&
4417 list_empty(&old_domain->devices))
4418 domain_exit(old_domain);
4419 }
4420 }
4421
4422 iommu = device_to_iommu(dev, &bus, &devfn);
4423 if (!iommu)
4424 return -ENODEV;
4425
4426 /* check if this iommu agaw is sufficient for max mapped address */
4427 addr_width = agaw_to_width(iommu->agaw);
4428 if (addr_width > cap_mgaw(iommu->cap))
4429 addr_width = cap_mgaw(iommu->cap);
4430
4431 if (dmar_domain->max_addr > (1LL << addr_width)) {
4432 printk(KERN_ERR "%s: iommu width (%d) is not "
4433 "sufficient for the mapped address (%llx)\n",
4434 __func__, addr_width, dmar_domain->max_addr);
4435 return -EFAULT;
4436 }
4437 dmar_domain->gaw = addr_width;
4438
4439 /*
4440 * Knock out extra levels of page tables if necessary
4441 */
4442 while (iommu->agaw < dmar_domain->agaw) {
4443 struct dma_pte *pte;
4444
4445 pte = dmar_domain->pgd;
4446 if (dma_pte_present(pte)) {
4447 dmar_domain->pgd = (struct dma_pte *)
4448 phys_to_virt(dma_pte_addr(pte));
4449 free_pgtable_page(pte);
4450 }
4451 dmar_domain->agaw--;
4452 }
4453
4454 return domain_add_dev_info(dmar_domain, dev, CONTEXT_TT_MULTI_LEVEL);
4455 }
4456
4457 static void intel_iommu_detach_device(struct iommu_domain *domain,
4458 struct device *dev)
4459 {
4460 domain_remove_one_dev_info(to_dmar_domain(domain), dev);
4461 }
4462
4463 static int intel_iommu_map(struct iommu_domain *domain,
4464 unsigned long iova, phys_addr_t hpa,
4465 size_t size, int iommu_prot)
4466 {
4467 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4468 u64 max_addr;
4469 int prot = 0;
4470 int ret;
4471
4472 if (iommu_prot & IOMMU_READ)
4473 prot |= DMA_PTE_READ;
4474 if (iommu_prot & IOMMU_WRITE)
4475 prot |= DMA_PTE_WRITE;
4476 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
4477 prot |= DMA_PTE_SNP;
4478
4479 max_addr = iova + size;
4480 if (dmar_domain->max_addr < max_addr) {
4481 u64 end;
4482
4483 /* check if minimum agaw is sufficient for mapped address */
4484 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
4485 if (end < max_addr) {
4486 printk(KERN_ERR "%s: iommu width (%d) is not "
4487 "sufficient for the mapped address (%llx)\n",
4488 __func__, dmar_domain->gaw, max_addr);
4489 return -EFAULT;
4490 }
4491 dmar_domain->max_addr = max_addr;
4492 }
4493 /* Round up size to next multiple of PAGE_SIZE, if it and
4494 the low bits of hpa would take us onto the next page */
4495 size = aligned_nrpages(hpa, size);
4496 ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
4497 hpa >> VTD_PAGE_SHIFT, size, prot);
4498 return ret;
4499 }
4500
4501 static size_t intel_iommu_unmap(struct iommu_domain *domain,
4502 unsigned long iova, size_t size)
4503 {
4504 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4505 struct page *freelist = NULL;
4506 struct intel_iommu *iommu;
4507 unsigned long start_pfn, last_pfn;
4508 unsigned int npages;
4509 int iommu_id, num, ndomains, level = 0;
4510
4511 /* Cope with horrid API which requires us to unmap more than the
4512 size argument if it happens to be a large-page mapping. */
4513 if (!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level))
4514 BUG();
4515
4516 if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
4517 size = VTD_PAGE_SIZE << level_to_offset_bits(level);
4518
4519 start_pfn = iova >> VTD_PAGE_SHIFT;
4520 last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;
4521
4522 freelist = domain_unmap(dmar_domain, start_pfn, last_pfn);
4523
4524 npages = last_pfn - start_pfn + 1;
4525
4526 for_each_set_bit(iommu_id, dmar_domain->iommu_bmp, g_num_of_iommus) {
4527 iommu = g_iommus[iommu_id];
4528
4529 /*
4530 * find bit position of dmar_domain
4531 */
4532 ndomains = cap_ndoms(iommu->cap);
4533 for_each_set_bit(num, iommu->domain_ids, ndomains) {
4534 if (iommu->domains[num] == dmar_domain)
4535 iommu_flush_iotlb_psi(iommu, num, start_pfn,
4536 npages, !freelist, 0);
4537 }
4538
4539 }
4540
4541 dma_free_pagelist(freelist);
4542
4543 if (dmar_domain->max_addr == iova + size)
4544 dmar_domain->max_addr = iova;
4545
4546 return size;
4547 }
4548
4549 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
4550 dma_addr_t iova)
4551 {
4552 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4553 struct dma_pte *pte;
4554 int level = 0;
4555 u64 phys = 0;
4556
4557 pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level);
4558 if (pte)
4559 phys = dma_pte_addr(pte);
4560
4561 return phys;
4562 }
4563
4564 static bool intel_iommu_capable(enum iommu_cap cap)
4565 {
4566 if (cap == IOMMU_CAP_CACHE_COHERENCY)
4567 return domain_update_iommu_snooping(NULL) == 1;
4568 if (cap == IOMMU_CAP_INTR_REMAP)
4569 return irq_remapping_enabled == 1;
4570
4571 return false;
4572 }
4573
4574 static int intel_iommu_add_device(struct device *dev)
4575 {
4576 struct intel_iommu *iommu;
4577 struct iommu_group *group;
4578 u8 bus, devfn;
4579
4580 iommu = device_to_iommu(dev, &bus, &devfn);
4581 if (!iommu)
4582 return -ENODEV;
4583
4584 iommu_device_link(iommu->iommu_dev, dev);
4585
4586 group = iommu_group_get_for_dev(dev);
4587
4588 if (IS_ERR(group))
4589 return PTR_ERR(group);
4590
4591 iommu_group_put(group);
4592 return 0;
4593 }
4594
4595 static void intel_iommu_remove_device(struct device *dev)
4596 {
4597 struct intel_iommu *iommu;
4598 u8 bus, devfn;
4599
4600 iommu = device_to_iommu(dev, &bus, &devfn);
4601 if (!iommu)
4602 return;
4603
4604 iommu_group_remove_device(dev);
4605
4606 iommu_device_unlink(iommu->iommu_dev, dev);
4607 }
4608
4609 static const struct iommu_ops intel_iommu_ops = {
4610 .capable = intel_iommu_capable,
4611 .domain_alloc = intel_iommu_domain_alloc,
4612 .domain_free = intel_iommu_domain_free,
4613 .attach_dev = intel_iommu_attach_device,
4614 .detach_dev = intel_iommu_detach_device,
4615 .map = intel_iommu_map,
4616 .unmap = intel_iommu_unmap,
4617 .map_sg = default_iommu_map_sg,
4618 .iova_to_phys = intel_iommu_iova_to_phys,
4619 .add_device = intel_iommu_add_device,
4620 .remove_device = intel_iommu_remove_device,
4621 .pgsize_bitmap = INTEL_IOMMU_PGSIZES,
4622 };
4623
4624 static void quirk_iommu_g4x_gfx(struct pci_dev *dev)
4625 {
4626 /* G4x/GM45 integrated gfx dmar support is totally busted. */
4627 printk(KERN_INFO "DMAR: Disabling IOMMU for graphics on this chipset\n");
4628 dmar_map_gfx = 0;
4629 }
4630
4631 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_g4x_gfx);
4632 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_g4x_gfx);
4633 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_g4x_gfx);
4634 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_g4x_gfx);
4635 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_g4x_gfx);
4636 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_g4x_gfx);
4637 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_g4x_gfx);
4638
4639 static void quirk_iommu_rwbf(struct pci_dev *dev)
4640 {
4641 /*
4642 * Mobile 4 Series Chipset neglects to set RWBF capability,
4643 * but needs it. Same seems to hold for the desktop versions.
4644 */
4645 printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n");
4646 rwbf_quirk = 1;
4647 }
4648
4649 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
4650 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
4651 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
4652 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
4653 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
4654 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
4655 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
4656
4657 #define GGC 0x52
4658 #define GGC_MEMORY_SIZE_MASK (0xf << 8)
4659 #define GGC_MEMORY_SIZE_NONE (0x0 << 8)
4660 #define GGC_MEMORY_SIZE_1M (0x1 << 8)
4661 #define GGC_MEMORY_SIZE_2M (0x3 << 8)
4662 #define GGC_MEMORY_VT_ENABLED (0x8 << 8)
4663 #define GGC_MEMORY_SIZE_2M_VT (0x9 << 8)
4664 #define GGC_MEMORY_SIZE_3M_VT (0xa << 8)
4665 #define GGC_MEMORY_SIZE_4M_VT (0xb << 8)
4666
4667 static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
4668 {
4669 unsigned short ggc;
4670
4671 if (pci_read_config_word(dev, GGC, &ggc))
4672 return;
4673
4674 if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
4675 printk(KERN_INFO "DMAR: BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
4676 dmar_map_gfx = 0;
4677 } else if (dmar_map_gfx) {
4678 /* we have to ensure the gfx device is idle before we flush */
4679 printk(KERN_INFO "DMAR: Disabling batched IOTLB flush on Ironlake\n");
4680 intel_iommu_strict = 1;
4681 }
4682 }
4683 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
4684 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
4685 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
4686 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
4687
4688 /* On Tylersburg chipsets, some BIOSes have been known to enable the
4689 ISOCH DMAR unit for the Azalia sound device, but not give it any
4690 TLB entries, which causes it to deadlock. Check for that. We do
4691 this in a function called from init_dmars(), instead of in a PCI
4692 quirk, because we don't want to print the obnoxious "BIOS broken"
4693 message if VT-d is actually disabled.
4694 */
4695 static void __init check_tylersburg_isoch(void)
4696 {
4697 struct pci_dev *pdev;
4698 uint32_t vtisochctrl;
4699
4700 /* If there's no Azalia in the system anyway, forget it. */
4701 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
4702 if (!pdev)
4703 return;
4704 pci_dev_put(pdev);
4705
4706 /* System Management Registers. Might be hidden, in which case
4707 we can't do the sanity check. But that's OK, because the
4708 known-broken BIOSes _don't_ actually hide it, so far. */
4709 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
4710 if (!pdev)
4711 return;
4712
4713 if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
4714 pci_dev_put(pdev);
4715 return;
4716 }
4717
4718 pci_dev_put(pdev);
4719
4720 /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
4721 if (vtisochctrl & 1)
4722 return;
4723
4724 /* Drop all bits other than the number of TLB entries */
4725 vtisochctrl &= 0x1c;
4726
4727 /* If we have the recommended number of TLB entries (16), fine. */
4728 if (vtisochctrl == 0x10)
4729 return;
4730
4731 /* Zero TLB entries? You get to ride the short bus to school. */
4732 if (!vtisochctrl) {
4733 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
4734 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
4735 dmi_get_system_info(DMI_BIOS_VENDOR),
4736 dmi_get_system_info(DMI_BIOS_VERSION),
4737 dmi_get_system_info(DMI_PRODUCT_VERSION));
4738 iommu_identity_mapping |= IDENTMAP_AZALIA;
4739 return;
4740 }
4741
4742 printk(KERN_WARNING "DMAR: Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
4743 vtisochctrl);
4744 }
This page took 0.132183 seconds and 5 git commands to generate.