iommu/vt-d: Make domain_remove_one_dev_info() take struct device
[deliverable/linux.git] / drivers / iommu / intel-iommu.c
1 /*
2 * Copyright © 2006-2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * Authors: David Woodhouse <dwmw2@infradead.org>,
14 * Ashok Raj <ashok.raj@intel.com>,
15 * Shaohua Li <shaohua.li@intel.com>,
16 * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
17 * Fenghua Yu <fenghua.yu@intel.com>
18 */
19
20 #include <linux/init.h>
21 #include <linux/bitmap.h>
22 #include <linux/debugfs.h>
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/irq.h>
26 #include <linux/interrupt.h>
27 #include <linux/spinlock.h>
28 #include <linux/pci.h>
29 #include <linux/dmar.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/mempool.h>
32 #include <linux/memory.h>
33 #include <linux/timer.h>
34 #include <linux/iova.h>
35 #include <linux/iommu.h>
36 #include <linux/intel-iommu.h>
37 #include <linux/syscore_ops.h>
38 #include <linux/tboot.h>
39 #include <linux/dmi.h>
40 #include <linux/pci-ats.h>
41 #include <linux/memblock.h>
42 #include <asm/irq_remapping.h>
43 #include <asm/cacheflush.h>
44 #include <asm/iommu.h>
45
46 #include "irq_remapping.h"
47 #include "pci.h"
48
49 #define ROOT_SIZE VTD_PAGE_SIZE
50 #define CONTEXT_SIZE VTD_PAGE_SIZE
51
52 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
53 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
54 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
55
56 #define IOAPIC_RANGE_START (0xfee00000)
57 #define IOAPIC_RANGE_END (0xfeefffff)
58 #define IOVA_START_ADDR (0x1000)
59
60 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
61
62 #define MAX_AGAW_WIDTH 64
63 #define MAX_AGAW_PFN_WIDTH (MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
64
65 #define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
66 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
67
68 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
69 to match. That way, we can use 'unsigned long' for PFNs with impunity. */
70 #define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \
71 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
72 #define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
73
74 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
75 #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
76 #define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
77
78 /* page table handling */
79 #define LEVEL_STRIDE (9)
80 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
81
82 /*
83 * This bitmap is used to advertise the page sizes our hardware support
84 * to the IOMMU core, which will then use this information to split
85 * physically contiguous memory regions it is mapping into page sizes
86 * that we support.
87 *
88 * Traditionally the IOMMU core just handed us the mappings directly,
89 * after making sure the size is an order of a 4KiB page and that the
90 * mapping has natural alignment.
91 *
92 * To retain this behavior, we currently advertise that we support
93 * all page sizes that are an order of 4KiB.
94 *
95 * If at some point we'd like to utilize the IOMMU core's new behavior,
96 * we could change this to advertise the real page sizes we support.
97 */
98 #define INTEL_IOMMU_PGSIZES (~0xFFFUL)
99
100 static inline int agaw_to_level(int agaw)
101 {
102 return agaw + 2;
103 }
104
105 static inline int agaw_to_width(int agaw)
106 {
107 return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
108 }
109
110 static inline int width_to_agaw(int width)
111 {
112 return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
113 }
114
115 static inline unsigned int level_to_offset_bits(int level)
116 {
117 return (level - 1) * LEVEL_STRIDE;
118 }
119
120 static inline int pfn_level_offset(unsigned long pfn, int level)
121 {
122 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
123 }
124
125 static inline unsigned long level_mask(int level)
126 {
127 return -1UL << level_to_offset_bits(level);
128 }
129
130 static inline unsigned long level_size(int level)
131 {
132 return 1UL << level_to_offset_bits(level);
133 }
134
135 static inline unsigned long align_to_level(unsigned long pfn, int level)
136 {
137 return (pfn + level_size(level) - 1) & level_mask(level);
138 }
139
140 static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
141 {
142 return 1 << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
143 }
144
145 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
146 are never going to work. */
147 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
148 {
149 return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
150 }
151
152 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
153 {
154 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
155 }
156 static inline unsigned long page_to_dma_pfn(struct page *pg)
157 {
158 return mm_to_dma_pfn(page_to_pfn(pg));
159 }
160 static inline unsigned long virt_to_dma_pfn(void *p)
161 {
162 return page_to_dma_pfn(virt_to_page(p));
163 }
164
165 /* global iommu list, set NULL for ignored DMAR units */
166 static struct intel_iommu **g_iommus;
167
168 static void __init check_tylersburg_isoch(void);
169 static int rwbf_quirk;
170
171 /*
172 * set to 1 to panic kernel if can't successfully enable VT-d
173 * (used when kernel is launched w/ TXT)
174 */
175 static int force_on = 0;
176
177 /*
178 * 0: Present
179 * 1-11: Reserved
180 * 12-63: Context Ptr (12 - (haw-1))
181 * 64-127: Reserved
182 */
183 struct root_entry {
184 u64 val;
185 u64 rsvd1;
186 };
187 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
188 static inline bool root_present(struct root_entry *root)
189 {
190 return (root->val & 1);
191 }
192 static inline void set_root_present(struct root_entry *root)
193 {
194 root->val |= 1;
195 }
196 static inline void set_root_value(struct root_entry *root, unsigned long value)
197 {
198 root->val |= value & VTD_PAGE_MASK;
199 }
200
201 static inline struct context_entry *
202 get_context_addr_from_root(struct root_entry *root)
203 {
204 return (struct context_entry *)
205 (root_present(root)?phys_to_virt(
206 root->val & VTD_PAGE_MASK) :
207 NULL);
208 }
209
210 /*
211 * low 64 bits:
212 * 0: present
213 * 1: fault processing disable
214 * 2-3: translation type
215 * 12-63: address space root
216 * high 64 bits:
217 * 0-2: address width
218 * 3-6: aval
219 * 8-23: domain id
220 */
221 struct context_entry {
222 u64 lo;
223 u64 hi;
224 };
225
226 static inline bool context_present(struct context_entry *context)
227 {
228 return (context->lo & 1);
229 }
230 static inline void context_set_present(struct context_entry *context)
231 {
232 context->lo |= 1;
233 }
234
235 static inline void context_set_fault_enable(struct context_entry *context)
236 {
237 context->lo &= (((u64)-1) << 2) | 1;
238 }
239
240 static inline void context_set_translation_type(struct context_entry *context,
241 unsigned long value)
242 {
243 context->lo &= (((u64)-1) << 4) | 3;
244 context->lo |= (value & 3) << 2;
245 }
246
247 static inline void context_set_address_root(struct context_entry *context,
248 unsigned long value)
249 {
250 context->lo |= value & VTD_PAGE_MASK;
251 }
252
253 static inline void context_set_address_width(struct context_entry *context,
254 unsigned long value)
255 {
256 context->hi |= value & 7;
257 }
258
259 static inline void context_set_domain_id(struct context_entry *context,
260 unsigned long value)
261 {
262 context->hi |= (value & ((1 << 16) - 1)) << 8;
263 }
264
265 static inline void context_clear_entry(struct context_entry *context)
266 {
267 context->lo = 0;
268 context->hi = 0;
269 }
270
271 /*
272 * 0: readable
273 * 1: writable
274 * 2-6: reserved
275 * 7: super page
276 * 8-10: available
277 * 11: snoop behavior
278 * 12-63: Host physcial address
279 */
280 struct dma_pte {
281 u64 val;
282 };
283
284 static inline void dma_clear_pte(struct dma_pte *pte)
285 {
286 pte->val = 0;
287 }
288
289 static inline u64 dma_pte_addr(struct dma_pte *pte)
290 {
291 #ifdef CONFIG_64BIT
292 return pte->val & VTD_PAGE_MASK;
293 #else
294 /* Must have a full atomic 64-bit read */
295 return __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
296 #endif
297 }
298
299 static inline bool dma_pte_present(struct dma_pte *pte)
300 {
301 return (pte->val & 3) != 0;
302 }
303
304 static inline bool dma_pte_superpage(struct dma_pte *pte)
305 {
306 return (pte->val & (1 << 7));
307 }
308
309 static inline int first_pte_in_page(struct dma_pte *pte)
310 {
311 return !((unsigned long)pte & ~VTD_PAGE_MASK);
312 }
313
314 /*
315 * This domain is a statically identity mapping domain.
316 * 1. This domain creats a static 1:1 mapping to all usable memory.
317 * 2. It maps to each iommu if successful.
318 * 3. Each iommu mapps to this domain if successful.
319 */
320 static struct dmar_domain *si_domain;
321 static int hw_pass_through = 1;
322
323 /* devices under the same p2p bridge are owned in one domain */
324 #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
325
326 /* domain represents a virtual machine, more than one devices
327 * across iommus may be owned in one domain, e.g. kvm guest.
328 */
329 #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 1)
330
331 /* si_domain contains mulitple devices */
332 #define DOMAIN_FLAG_STATIC_IDENTITY (1 << 2)
333
334 /* define the limit of IOMMUs supported in each domain */
335 #ifdef CONFIG_X86
336 # define IOMMU_UNITS_SUPPORTED MAX_IO_APICS
337 #else
338 # define IOMMU_UNITS_SUPPORTED 64
339 #endif
340
341 struct dmar_domain {
342 int id; /* domain id */
343 int nid; /* node id */
344 DECLARE_BITMAP(iommu_bmp, IOMMU_UNITS_SUPPORTED);
345 /* bitmap of iommus this domain uses*/
346
347 struct list_head devices; /* all devices' list */
348 struct iova_domain iovad; /* iova's that belong to this domain */
349
350 struct dma_pte *pgd; /* virtual address */
351 int gaw; /* max guest address width */
352
353 /* adjusted guest address width, 0 is level 2 30-bit */
354 int agaw;
355
356 int flags; /* flags to find out type of domain */
357
358 int iommu_coherency;/* indicate coherency of iommu access */
359 int iommu_snooping; /* indicate snooping control feature*/
360 int iommu_count; /* reference count of iommu */
361 int iommu_superpage;/* Level of superpages supported:
362 0 == 4KiB (no superpages), 1 == 2MiB,
363 2 == 1GiB, 3 == 512GiB, 4 == 1TiB */
364 spinlock_t iommu_lock; /* protect iommu set in domain */
365 u64 max_addr; /* maximum mapped address */
366 };
367
368 /* PCI domain-device relationship */
369 struct device_domain_info {
370 struct list_head link; /* link to domain siblings */
371 struct list_head global; /* link to global list */
372 u8 bus; /* PCI bus number */
373 u8 devfn; /* PCI devfn number */
374 struct device *dev; /* it's NULL for PCIe-to-PCI bridge */
375 struct intel_iommu *iommu; /* IOMMU used by this device */
376 struct dmar_domain *domain; /* pointer to domain */
377 };
378
379 struct dmar_rmrr_unit {
380 struct list_head list; /* list of rmrr units */
381 struct acpi_dmar_header *hdr; /* ACPI header */
382 u64 base_address; /* reserved base address*/
383 u64 end_address; /* reserved end address */
384 struct dmar_dev_scope *devices; /* target devices */
385 int devices_cnt; /* target device count */
386 };
387
388 struct dmar_atsr_unit {
389 struct list_head list; /* list of ATSR units */
390 struct acpi_dmar_header *hdr; /* ACPI header */
391 struct dmar_dev_scope *devices; /* target devices */
392 int devices_cnt; /* target device count */
393 u8 include_all:1; /* include all ports */
394 };
395
396 static LIST_HEAD(dmar_atsr_units);
397 static LIST_HEAD(dmar_rmrr_units);
398
399 #define for_each_rmrr_units(rmrr) \
400 list_for_each_entry(rmrr, &dmar_rmrr_units, list)
401
402 static void flush_unmaps_timeout(unsigned long data);
403
404 static DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0);
405
406 #define HIGH_WATER_MARK 250
407 struct deferred_flush_tables {
408 int next;
409 struct iova *iova[HIGH_WATER_MARK];
410 struct dmar_domain *domain[HIGH_WATER_MARK];
411 struct page *freelist[HIGH_WATER_MARK];
412 };
413
414 static struct deferred_flush_tables *deferred_flush;
415
416 /* bitmap for indexing intel_iommus */
417 static int g_num_of_iommus;
418
419 static DEFINE_SPINLOCK(async_umap_flush_lock);
420 static LIST_HEAD(unmaps_to_do);
421
422 static int timer_on;
423 static long list_size;
424
425 static void domain_exit(struct dmar_domain *domain);
426 static void domain_remove_dev_info(struct dmar_domain *domain);
427 static void domain_remove_one_dev_info(struct dmar_domain *domain,
428 struct device *dev);
429 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
430 struct device *dev);
431
432 #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
433 int dmar_disabled = 0;
434 #else
435 int dmar_disabled = 1;
436 #endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
437
438 int intel_iommu_enabled = 0;
439 EXPORT_SYMBOL_GPL(intel_iommu_enabled);
440
441 static int dmar_map_gfx = 1;
442 static int dmar_forcedac;
443 static int intel_iommu_strict;
444 static int intel_iommu_superpage = 1;
445
446 int intel_iommu_gfx_mapped;
447 EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
448
449 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
450 static DEFINE_SPINLOCK(device_domain_lock);
451 static LIST_HEAD(device_domain_list);
452
453 static struct iommu_ops intel_iommu_ops;
454
455 static int __init intel_iommu_setup(char *str)
456 {
457 if (!str)
458 return -EINVAL;
459 while (*str) {
460 if (!strncmp(str, "on", 2)) {
461 dmar_disabled = 0;
462 printk(KERN_INFO "Intel-IOMMU: enabled\n");
463 } else if (!strncmp(str, "off", 3)) {
464 dmar_disabled = 1;
465 printk(KERN_INFO "Intel-IOMMU: disabled\n");
466 } else if (!strncmp(str, "igfx_off", 8)) {
467 dmar_map_gfx = 0;
468 printk(KERN_INFO
469 "Intel-IOMMU: disable GFX device mapping\n");
470 } else if (!strncmp(str, "forcedac", 8)) {
471 printk(KERN_INFO
472 "Intel-IOMMU: Forcing DAC for PCI devices\n");
473 dmar_forcedac = 1;
474 } else if (!strncmp(str, "strict", 6)) {
475 printk(KERN_INFO
476 "Intel-IOMMU: disable batched IOTLB flush\n");
477 intel_iommu_strict = 1;
478 } else if (!strncmp(str, "sp_off", 6)) {
479 printk(KERN_INFO
480 "Intel-IOMMU: disable supported super page\n");
481 intel_iommu_superpage = 0;
482 }
483
484 str += strcspn(str, ",");
485 while (*str == ',')
486 str++;
487 }
488 return 0;
489 }
490 __setup("intel_iommu=", intel_iommu_setup);
491
492 static struct kmem_cache *iommu_domain_cache;
493 static struct kmem_cache *iommu_devinfo_cache;
494 static struct kmem_cache *iommu_iova_cache;
495
496 static inline void *alloc_pgtable_page(int node)
497 {
498 struct page *page;
499 void *vaddr = NULL;
500
501 page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
502 if (page)
503 vaddr = page_address(page);
504 return vaddr;
505 }
506
507 static inline void free_pgtable_page(void *vaddr)
508 {
509 free_page((unsigned long)vaddr);
510 }
511
512 static inline void *alloc_domain_mem(void)
513 {
514 return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
515 }
516
517 static void free_domain_mem(void *vaddr)
518 {
519 kmem_cache_free(iommu_domain_cache, vaddr);
520 }
521
522 static inline void * alloc_devinfo_mem(void)
523 {
524 return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
525 }
526
527 static inline void free_devinfo_mem(void *vaddr)
528 {
529 kmem_cache_free(iommu_devinfo_cache, vaddr);
530 }
531
532 struct iova *alloc_iova_mem(void)
533 {
534 return kmem_cache_alloc(iommu_iova_cache, GFP_ATOMIC);
535 }
536
537 void free_iova_mem(struct iova *iova)
538 {
539 kmem_cache_free(iommu_iova_cache, iova);
540 }
541
542
543 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
544 {
545 unsigned long sagaw;
546 int agaw = -1;
547
548 sagaw = cap_sagaw(iommu->cap);
549 for (agaw = width_to_agaw(max_gaw);
550 agaw >= 0; agaw--) {
551 if (test_bit(agaw, &sagaw))
552 break;
553 }
554
555 return agaw;
556 }
557
558 /*
559 * Calculate max SAGAW for each iommu.
560 */
561 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
562 {
563 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
564 }
565
566 /*
567 * calculate agaw for each iommu.
568 * "SAGAW" may be different across iommus, use a default agaw, and
569 * get a supported less agaw for iommus that don't support the default agaw.
570 */
571 int iommu_calculate_agaw(struct intel_iommu *iommu)
572 {
573 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
574 }
575
576 /* This functionin only returns single iommu in a domain */
577 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
578 {
579 int iommu_id;
580
581 /* si_domain and vm domain should not get here. */
582 BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
583 BUG_ON(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY);
584
585 iommu_id = find_first_bit(domain->iommu_bmp, g_num_of_iommus);
586 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
587 return NULL;
588
589 return g_iommus[iommu_id];
590 }
591
592 static void domain_update_iommu_coherency(struct dmar_domain *domain)
593 {
594 struct dmar_drhd_unit *drhd;
595 struct intel_iommu *iommu;
596 int i, found = 0;
597
598 domain->iommu_coherency = 1;
599
600 for_each_set_bit(i, domain->iommu_bmp, g_num_of_iommus) {
601 found = 1;
602 if (!ecap_coherent(g_iommus[i]->ecap)) {
603 domain->iommu_coherency = 0;
604 break;
605 }
606 }
607 if (found)
608 return;
609
610 /* No hardware attached; use lowest common denominator */
611 rcu_read_lock();
612 for_each_active_iommu(iommu, drhd) {
613 if (!ecap_coherent(iommu->ecap)) {
614 domain->iommu_coherency = 0;
615 break;
616 }
617 }
618 rcu_read_unlock();
619 }
620
621 static void domain_update_iommu_snooping(struct dmar_domain *domain)
622 {
623 int i;
624
625 domain->iommu_snooping = 1;
626
627 for_each_set_bit(i, domain->iommu_bmp, g_num_of_iommus) {
628 if (!ecap_sc_support(g_iommus[i]->ecap)) {
629 domain->iommu_snooping = 0;
630 break;
631 }
632 }
633 }
634
635 static void domain_update_iommu_superpage(struct dmar_domain *domain)
636 {
637 struct dmar_drhd_unit *drhd;
638 struct intel_iommu *iommu = NULL;
639 int mask = 0xf;
640
641 if (!intel_iommu_superpage) {
642 domain->iommu_superpage = 0;
643 return;
644 }
645
646 /* set iommu_superpage to the smallest common denominator */
647 rcu_read_lock();
648 for_each_active_iommu(iommu, drhd) {
649 mask &= cap_super_page_val(iommu->cap);
650 if (!mask) {
651 break;
652 }
653 }
654 rcu_read_unlock();
655
656 domain->iommu_superpage = fls(mask);
657 }
658
659 /* Some capabilities may be different across iommus */
660 static void domain_update_iommu_cap(struct dmar_domain *domain)
661 {
662 domain_update_iommu_coherency(domain);
663 domain_update_iommu_snooping(domain);
664 domain_update_iommu_superpage(domain);
665 }
666
667 static struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn)
668 {
669 struct dmar_drhd_unit *drhd = NULL;
670 struct intel_iommu *iommu;
671 struct device *tmp;
672 struct pci_dev *ptmp, *pdev = NULL;
673 u16 segment;
674 int i;
675
676 if (dev_is_pci(dev)) {
677 pdev = to_pci_dev(dev);
678 segment = pci_domain_nr(pdev->bus);
679 } else if (ACPI_COMPANION(dev))
680 dev = &ACPI_COMPANION(dev)->dev;
681
682 rcu_read_lock();
683 for_each_active_iommu(iommu, drhd) {
684 if (pdev && segment != drhd->segment)
685 continue;
686
687 for_each_active_dev_scope(drhd->devices,
688 drhd->devices_cnt, i, tmp) {
689 if (tmp == dev) {
690 *bus = drhd->devices[i].bus;
691 *devfn = drhd->devices[i].devfn;
692 goto out;
693 }
694
695 if (!pdev || !dev_is_pci(tmp))
696 continue;
697
698 ptmp = to_pci_dev(tmp);
699 if (ptmp->subordinate &&
700 ptmp->subordinate->number <= pdev->bus->number &&
701 ptmp->subordinate->busn_res.end >= pdev->bus->number)
702 goto got_pdev;
703 }
704
705 if (pdev && drhd->include_all) {
706 got_pdev:
707 *bus = pdev->bus->number;
708 *devfn = pdev->devfn;
709 goto out;
710 }
711 }
712 iommu = NULL;
713 out:
714 rcu_read_unlock();
715
716 return iommu;
717 }
718
719 static void domain_flush_cache(struct dmar_domain *domain,
720 void *addr, int size)
721 {
722 if (!domain->iommu_coherency)
723 clflush_cache_range(addr, size);
724 }
725
726 /* Gets context entry for a given bus and devfn */
727 static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
728 u8 bus, u8 devfn)
729 {
730 struct root_entry *root;
731 struct context_entry *context;
732 unsigned long phy_addr;
733 unsigned long flags;
734
735 spin_lock_irqsave(&iommu->lock, flags);
736 root = &iommu->root_entry[bus];
737 context = get_context_addr_from_root(root);
738 if (!context) {
739 context = (struct context_entry *)
740 alloc_pgtable_page(iommu->node);
741 if (!context) {
742 spin_unlock_irqrestore(&iommu->lock, flags);
743 return NULL;
744 }
745 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
746 phy_addr = virt_to_phys((void *)context);
747 set_root_value(root, phy_addr);
748 set_root_present(root);
749 __iommu_flush_cache(iommu, root, sizeof(*root));
750 }
751 spin_unlock_irqrestore(&iommu->lock, flags);
752 return &context[devfn];
753 }
754
755 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
756 {
757 struct root_entry *root;
758 struct context_entry *context;
759 int ret;
760 unsigned long flags;
761
762 spin_lock_irqsave(&iommu->lock, flags);
763 root = &iommu->root_entry[bus];
764 context = get_context_addr_from_root(root);
765 if (!context) {
766 ret = 0;
767 goto out;
768 }
769 ret = context_present(&context[devfn]);
770 out:
771 spin_unlock_irqrestore(&iommu->lock, flags);
772 return ret;
773 }
774
775 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
776 {
777 struct root_entry *root;
778 struct context_entry *context;
779 unsigned long flags;
780
781 spin_lock_irqsave(&iommu->lock, flags);
782 root = &iommu->root_entry[bus];
783 context = get_context_addr_from_root(root);
784 if (context) {
785 context_clear_entry(&context[devfn]);
786 __iommu_flush_cache(iommu, &context[devfn], \
787 sizeof(*context));
788 }
789 spin_unlock_irqrestore(&iommu->lock, flags);
790 }
791
792 static void free_context_table(struct intel_iommu *iommu)
793 {
794 struct root_entry *root;
795 int i;
796 unsigned long flags;
797 struct context_entry *context;
798
799 spin_lock_irqsave(&iommu->lock, flags);
800 if (!iommu->root_entry) {
801 goto out;
802 }
803 for (i = 0; i < ROOT_ENTRY_NR; i++) {
804 root = &iommu->root_entry[i];
805 context = get_context_addr_from_root(root);
806 if (context)
807 free_pgtable_page(context);
808 }
809 free_pgtable_page(iommu->root_entry);
810 iommu->root_entry = NULL;
811 out:
812 spin_unlock_irqrestore(&iommu->lock, flags);
813 }
814
815 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
816 unsigned long pfn, int *target_level)
817 {
818 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
819 struct dma_pte *parent, *pte = NULL;
820 int level = agaw_to_level(domain->agaw);
821 int offset;
822
823 BUG_ON(!domain->pgd);
824
825 if (addr_width < BITS_PER_LONG && pfn >> addr_width)
826 /* Address beyond IOMMU's addressing capabilities. */
827 return NULL;
828
829 parent = domain->pgd;
830
831 while (1) {
832 void *tmp_page;
833
834 offset = pfn_level_offset(pfn, level);
835 pte = &parent[offset];
836 if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
837 break;
838 if (level == *target_level)
839 break;
840
841 if (!dma_pte_present(pte)) {
842 uint64_t pteval;
843
844 tmp_page = alloc_pgtable_page(domain->nid);
845
846 if (!tmp_page)
847 return NULL;
848
849 domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
850 pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
851 if (cmpxchg64(&pte->val, 0ULL, pteval)) {
852 /* Someone else set it while we were thinking; use theirs. */
853 free_pgtable_page(tmp_page);
854 } else {
855 dma_pte_addr(pte);
856 domain_flush_cache(domain, pte, sizeof(*pte));
857 }
858 }
859 if (level == 1)
860 break;
861
862 parent = phys_to_virt(dma_pte_addr(pte));
863 level--;
864 }
865
866 if (!*target_level)
867 *target_level = level;
868
869 return pte;
870 }
871
872
873 /* return address's pte at specific level */
874 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
875 unsigned long pfn,
876 int level, int *large_page)
877 {
878 struct dma_pte *parent, *pte = NULL;
879 int total = agaw_to_level(domain->agaw);
880 int offset;
881
882 parent = domain->pgd;
883 while (level <= total) {
884 offset = pfn_level_offset(pfn, total);
885 pte = &parent[offset];
886 if (level == total)
887 return pte;
888
889 if (!dma_pte_present(pte)) {
890 *large_page = total;
891 break;
892 }
893
894 if (pte->val & DMA_PTE_LARGE_PAGE) {
895 *large_page = total;
896 return pte;
897 }
898
899 parent = phys_to_virt(dma_pte_addr(pte));
900 total--;
901 }
902 return NULL;
903 }
904
905 /* clear last level pte, a tlb flush should be followed */
906 static void dma_pte_clear_range(struct dmar_domain *domain,
907 unsigned long start_pfn,
908 unsigned long last_pfn)
909 {
910 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
911 unsigned int large_page = 1;
912 struct dma_pte *first_pte, *pte;
913
914 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
915 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
916 BUG_ON(start_pfn > last_pfn);
917
918 /* we don't need lock here; nobody else touches the iova range */
919 do {
920 large_page = 1;
921 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
922 if (!pte) {
923 start_pfn = align_to_level(start_pfn + 1, large_page + 1);
924 continue;
925 }
926 do {
927 dma_clear_pte(pte);
928 start_pfn += lvl_to_nr_pages(large_page);
929 pte++;
930 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
931
932 domain_flush_cache(domain, first_pte,
933 (void *)pte - (void *)first_pte);
934
935 } while (start_pfn && start_pfn <= last_pfn);
936 }
937
938 static void dma_pte_free_level(struct dmar_domain *domain, int level,
939 struct dma_pte *pte, unsigned long pfn,
940 unsigned long start_pfn, unsigned long last_pfn)
941 {
942 pfn = max(start_pfn, pfn);
943 pte = &pte[pfn_level_offset(pfn, level)];
944
945 do {
946 unsigned long level_pfn;
947 struct dma_pte *level_pte;
948
949 if (!dma_pte_present(pte) || dma_pte_superpage(pte))
950 goto next;
951
952 level_pfn = pfn & level_mask(level - 1);
953 level_pte = phys_to_virt(dma_pte_addr(pte));
954
955 if (level > 2)
956 dma_pte_free_level(domain, level - 1, level_pte,
957 level_pfn, start_pfn, last_pfn);
958
959 /* If range covers entire pagetable, free it */
960 if (!(start_pfn > level_pfn ||
961 last_pfn < level_pfn + level_size(level) - 1)) {
962 dma_clear_pte(pte);
963 domain_flush_cache(domain, pte, sizeof(*pte));
964 free_pgtable_page(level_pte);
965 }
966 next:
967 pfn += level_size(level);
968 } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
969 }
970
971 /* free page table pages. last level pte should already be cleared */
972 static void dma_pte_free_pagetable(struct dmar_domain *domain,
973 unsigned long start_pfn,
974 unsigned long last_pfn)
975 {
976 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
977
978 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
979 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
980 BUG_ON(start_pfn > last_pfn);
981
982 /* We don't need lock here; nobody else touches the iova range */
983 dma_pte_free_level(domain, agaw_to_level(domain->agaw),
984 domain->pgd, 0, start_pfn, last_pfn);
985
986 /* free pgd */
987 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
988 free_pgtable_page(domain->pgd);
989 domain->pgd = NULL;
990 }
991 }
992
993 /* When a page at a given level is being unlinked from its parent, we don't
994 need to *modify* it at all. All we need to do is make a list of all the
995 pages which can be freed just as soon as we've flushed the IOTLB and we
996 know the hardware page-walk will no longer touch them.
997 The 'pte' argument is the *parent* PTE, pointing to the page that is to
998 be freed. */
999 static struct page *dma_pte_list_pagetables(struct dmar_domain *domain,
1000 int level, struct dma_pte *pte,
1001 struct page *freelist)
1002 {
1003 struct page *pg;
1004
1005 pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
1006 pg->freelist = freelist;
1007 freelist = pg;
1008
1009 if (level == 1)
1010 return freelist;
1011
1012 for (pte = page_address(pg); !first_pte_in_page(pte); pte++) {
1013 if (dma_pte_present(pte) && !dma_pte_superpage(pte))
1014 freelist = dma_pte_list_pagetables(domain, level - 1,
1015 pte, freelist);
1016 }
1017
1018 return freelist;
1019 }
1020
1021 static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level,
1022 struct dma_pte *pte, unsigned long pfn,
1023 unsigned long start_pfn,
1024 unsigned long last_pfn,
1025 struct page *freelist)
1026 {
1027 struct dma_pte *first_pte = NULL, *last_pte = NULL;
1028
1029 pfn = max(start_pfn, pfn);
1030 pte = &pte[pfn_level_offset(pfn, level)];
1031
1032 do {
1033 unsigned long level_pfn;
1034
1035 if (!dma_pte_present(pte))
1036 goto next;
1037
1038 level_pfn = pfn & level_mask(level);
1039
1040 /* If range covers entire pagetable, free it */
1041 if (start_pfn <= level_pfn &&
1042 last_pfn >= level_pfn + level_size(level) - 1) {
1043 /* These suborbinate page tables are going away entirely. Don't
1044 bother to clear them; we're just going to *free* them. */
1045 if (level > 1 && !dma_pte_superpage(pte))
1046 freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist);
1047
1048 dma_clear_pte(pte);
1049 if (!first_pte)
1050 first_pte = pte;
1051 last_pte = pte;
1052 } else if (level > 1) {
1053 /* Recurse down into a level that isn't *entirely* obsolete */
1054 freelist = dma_pte_clear_level(domain, level - 1,
1055 phys_to_virt(dma_pte_addr(pte)),
1056 level_pfn, start_pfn, last_pfn,
1057 freelist);
1058 }
1059 next:
1060 pfn += level_size(level);
1061 } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1062
1063 if (first_pte)
1064 domain_flush_cache(domain, first_pte,
1065 (void *)++last_pte - (void *)first_pte);
1066
1067 return freelist;
1068 }
1069
1070 /* We can't just free the pages because the IOMMU may still be walking
1071 the page tables, and may have cached the intermediate levels. The
1072 pages can only be freed after the IOTLB flush has been done. */
1073 struct page *domain_unmap(struct dmar_domain *domain,
1074 unsigned long start_pfn,
1075 unsigned long last_pfn)
1076 {
1077 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
1078 struct page *freelist = NULL;
1079
1080 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
1081 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
1082 BUG_ON(start_pfn > last_pfn);
1083
1084 /* we don't need lock here; nobody else touches the iova range */
1085 freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
1086 domain->pgd, 0, start_pfn, last_pfn, NULL);
1087
1088 /* free pgd */
1089 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1090 struct page *pgd_page = virt_to_page(domain->pgd);
1091 pgd_page->freelist = freelist;
1092 freelist = pgd_page;
1093
1094 domain->pgd = NULL;
1095 }
1096
1097 return freelist;
1098 }
1099
1100 void dma_free_pagelist(struct page *freelist)
1101 {
1102 struct page *pg;
1103
1104 while ((pg = freelist)) {
1105 freelist = pg->freelist;
1106 free_pgtable_page(page_address(pg));
1107 }
1108 }
1109
1110 /* iommu handling */
1111 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
1112 {
1113 struct root_entry *root;
1114 unsigned long flags;
1115
1116 root = (struct root_entry *)alloc_pgtable_page(iommu->node);
1117 if (!root)
1118 return -ENOMEM;
1119
1120 __iommu_flush_cache(iommu, root, ROOT_SIZE);
1121
1122 spin_lock_irqsave(&iommu->lock, flags);
1123 iommu->root_entry = root;
1124 spin_unlock_irqrestore(&iommu->lock, flags);
1125
1126 return 0;
1127 }
1128
1129 static void iommu_set_root_entry(struct intel_iommu *iommu)
1130 {
1131 void *addr;
1132 u32 sts;
1133 unsigned long flag;
1134
1135 addr = iommu->root_entry;
1136
1137 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1138 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
1139
1140 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
1141
1142 /* Make sure hardware complete it */
1143 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1144 readl, (sts & DMA_GSTS_RTPS), sts);
1145
1146 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1147 }
1148
1149 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
1150 {
1151 u32 val;
1152 unsigned long flag;
1153
1154 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
1155 return;
1156
1157 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1158 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
1159
1160 /* Make sure hardware complete it */
1161 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1162 readl, (!(val & DMA_GSTS_WBFS)), val);
1163
1164 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1165 }
1166
1167 /* return value determine if we need a write buffer flush */
1168 static void __iommu_flush_context(struct intel_iommu *iommu,
1169 u16 did, u16 source_id, u8 function_mask,
1170 u64 type)
1171 {
1172 u64 val = 0;
1173 unsigned long flag;
1174
1175 switch (type) {
1176 case DMA_CCMD_GLOBAL_INVL:
1177 val = DMA_CCMD_GLOBAL_INVL;
1178 break;
1179 case DMA_CCMD_DOMAIN_INVL:
1180 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
1181 break;
1182 case DMA_CCMD_DEVICE_INVL:
1183 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
1184 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
1185 break;
1186 default:
1187 BUG();
1188 }
1189 val |= DMA_CCMD_ICC;
1190
1191 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1192 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1193
1194 /* Make sure hardware complete it */
1195 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1196 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1197
1198 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1199 }
1200
1201 /* return value determine if we need a write buffer flush */
1202 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1203 u64 addr, unsigned int size_order, u64 type)
1204 {
1205 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1206 u64 val = 0, val_iva = 0;
1207 unsigned long flag;
1208
1209 switch (type) {
1210 case DMA_TLB_GLOBAL_FLUSH:
1211 /* global flush doesn't need set IVA_REG */
1212 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1213 break;
1214 case DMA_TLB_DSI_FLUSH:
1215 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1216 break;
1217 case DMA_TLB_PSI_FLUSH:
1218 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1219 /* IH bit is passed in as part of address */
1220 val_iva = size_order | addr;
1221 break;
1222 default:
1223 BUG();
1224 }
1225 /* Note: set drain read/write */
1226 #if 0
1227 /*
1228 * This is probably to be super secure.. Looks like we can
1229 * ignore it without any impact.
1230 */
1231 if (cap_read_drain(iommu->cap))
1232 val |= DMA_TLB_READ_DRAIN;
1233 #endif
1234 if (cap_write_drain(iommu->cap))
1235 val |= DMA_TLB_WRITE_DRAIN;
1236
1237 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1238 /* Note: Only uses first TLB reg currently */
1239 if (val_iva)
1240 dmar_writeq(iommu->reg + tlb_offset, val_iva);
1241 dmar_writeq(iommu->reg + tlb_offset + 8, val);
1242
1243 /* Make sure hardware complete it */
1244 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1245 dmar_readq, (!(val & DMA_TLB_IVT)), val);
1246
1247 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1248
1249 /* check IOTLB invalidation granularity */
1250 if (DMA_TLB_IAIG(val) == 0)
1251 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
1252 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1253 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
1254 (unsigned long long)DMA_TLB_IIRG(type),
1255 (unsigned long long)DMA_TLB_IAIG(val));
1256 }
1257
1258 static struct device_domain_info *
1259 iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu,
1260 u8 bus, u8 devfn)
1261 {
1262 int found = 0;
1263 unsigned long flags;
1264 struct device_domain_info *info;
1265 struct pci_dev *pdev;
1266
1267 if (!ecap_dev_iotlb_support(iommu->ecap))
1268 return NULL;
1269
1270 if (!iommu->qi)
1271 return NULL;
1272
1273 spin_lock_irqsave(&device_domain_lock, flags);
1274 list_for_each_entry(info, &domain->devices, link)
1275 if (info->bus == bus && info->devfn == devfn) {
1276 found = 1;
1277 break;
1278 }
1279 spin_unlock_irqrestore(&device_domain_lock, flags);
1280
1281 if (!found || !info->dev || !dev_is_pci(info->dev))
1282 return NULL;
1283
1284 pdev = to_pci_dev(info->dev);
1285
1286 if (!pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS))
1287 return NULL;
1288
1289 if (!dmar_find_matched_atsr_unit(pdev))
1290 return NULL;
1291
1292 return info;
1293 }
1294
1295 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1296 {
1297 if (!info || !dev_is_pci(info->dev))
1298 return;
1299
1300 pci_enable_ats(to_pci_dev(info->dev), VTD_PAGE_SHIFT);
1301 }
1302
1303 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1304 {
1305 if (!info->dev || !dev_is_pci(info->dev) ||
1306 !pci_ats_enabled(to_pci_dev(info->dev)))
1307 return;
1308
1309 pci_disable_ats(to_pci_dev(info->dev));
1310 }
1311
1312 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1313 u64 addr, unsigned mask)
1314 {
1315 u16 sid, qdep;
1316 unsigned long flags;
1317 struct device_domain_info *info;
1318
1319 spin_lock_irqsave(&device_domain_lock, flags);
1320 list_for_each_entry(info, &domain->devices, link) {
1321 struct pci_dev *pdev;
1322 if (!info->dev || !dev_is_pci(info->dev))
1323 continue;
1324
1325 pdev = to_pci_dev(info->dev);
1326 if (!pci_ats_enabled(pdev))
1327 continue;
1328
1329 sid = info->bus << 8 | info->devfn;
1330 qdep = pci_ats_queue_depth(pdev);
1331 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1332 }
1333 spin_unlock_irqrestore(&device_domain_lock, flags);
1334 }
1335
1336 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
1337 unsigned long pfn, unsigned int pages, int ih, int map)
1338 {
1339 unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1340 uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1341
1342 BUG_ON(pages == 0);
1343
1344 if (ih)
1345 ih = 1 << 6;
1346 /*
1347 * Fallback to domain selective flush if no PSI support or the size is
1348 * too big.
1349 * PSI requires page size to be 2 ^ x, and the base address is naturally
1350 * aligned to the size
1351 */
1352 if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1353 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1354 DMA_TLB_DSI_FLUSH);
1355 else
1356 iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
1357 DMA_TLB_PSI_FLUSH);
1358
1359 /*
1360 * In caching mode, changes of pages from non-present to present require
1361 * flush. However, device IOTLB doesn't need to be flushed in this case.
1362 */
1363 if (!cap_caching_mode(iommu->cap) || !map)
1364 iommu_flush_dev_iotlb(iommu->domains[did], addr, mask);
1365 }
1366
1367 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1368 {
1369 u32 pmen;
1370 unsigned long flags;
1371
1372 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1373 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1374 pmen &= ~DMA_PMEN_EPM;
1375 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1376
1377 /* wait for the protected region status bit to clear */
1378 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1379 readl, !(pmen & DMA_PMEN_PRS), pmen);
1380
1381 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1382 }
1383
1384 static int iommu_enable_translation(struct intel_iommu *iommu)
1385 {
1386 u32 sts;
1387 unsigned long flags;
1388
1389 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1390 iommu->gcmd |= DMA_GCMD_TE;
1391 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1392
1393 /* Make sure hardware complete it */
1394 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1395 readl, (sts & DMA_GSTS_TES), sts);
1396
1397 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1398 return 0;
1399 }
1400
1401 static int iommu_disable_translation(struct intel_iommu *iommu)
1402 {
1403 u32 sts;
1404 unsigned long flag;
1405
1406 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1407 iommu->gcmd &= ~DMA_GCMD_TE;
1408 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1409
1410 /* Make sure hardware complete it */
1411 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1412 readl, (!(sts & DMA_GSTS_TES)), sts);
1413
1414 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1415 return 0;
1416 }
1417
1418
1419 static int iommu_init_domains(struct intel_iommu *iommu)
1420 {
1421 unsigned long ndomains;
1422 unsigned long nlongs;
1423
1424 ndomains = cap_ndoms(iommu->cap);
1425 pr_debug("IOMMU%d: Number of Domains supported <%ld>\n",
1426 iommu->seq_id, ndomains);
1427 nlongs = BITS_TO_LONGS(ndomains);
1428
1429 spin_lock_init(&iommu->lock);
1430
1431 /* TBD: there might be 64K domains,
1432 * consider other allocation for future chip
1433 */
1434 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1435 if (!iommu->domain_ids) {
1436 pr_err("IOMMU%d: allocating domain id array failed\n",
1437 iommu->seq_id);
1438 return -ENOMEM;
1439 }
1440 iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1441 GFP_KERNEL);
1442 if (!iommu->domains) {
1443 pr_err("IOMMU%d: allocating domain array failed\n",
1444 iommu->seq_id);
1445 kfree(iommu->domain_ids);
1446 iommu->domain_ids = NULL;
1447 return -ENOMEM;
1448 }
1449
1450 /*
1451 * if Caching mode is set, then invalid translations are tagged
1452 * with domainid 0. Hence we need to pre-allocate it.
1453 */
1454 if (cap_caching_mode(iommu->cap))
1455 set_bit(0, iommu->domain_ids);
1456 return 0;
1457 }
1458
1459 static void free_dmar_iommu(struct intel_iommu *iommu)
1460 {
1461 struct dmar_domain *domain;
1462 int i, count;
1463 unsigned long flags;
1464
1465 if ((iommu->domains) && (iommu->domain_ids)) {
1466 for_each_set_bit(i, iommu->domain_ids, cap_ndoms(iommu->cap)) {
1467 /*
1468 * Domain id 0 is reserved for invalid translation
1469 * if hardware supports caching mode.
1470 */
1471 if (cap_caching_mode(iommu->cap) && i == 0)
1472 continue;
1473
1474 domain = iommu->domains[i];
1475 clear_bit(i, iommu->domain_ids);
1476
1477 spin_lock_irqsave(&domain->iommu_lock, flags);
1478 count = --domain->iommu_count;
1479 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1480 if (count == 0)
1481 domain_exit(domain);
1482 }
1483 }
1484
1485 if (iommu->gcmd & DMA_GCMD_TE)
1486 iommu_disable_translation(iommu);
1487
1488 kfree(iommu->domains);
1489 kfree(iommu->domain_ids);
1490 iommu->domains = NULL;
1491 iommu->domain_ids = NULL;
1492
1493 g_iommus[iommu->seq_id] = NULL;
1494
1495 /* free context mapping */
1496 free_context_table(iommu);
1497 }
1498
1499 static struct dmar_domain *alloc_domain(bool vm)
1500 {
1501 /* domain id for virtual machine, it won't be set in context */
1502 static atomic_t vm_domid = ATOMIC_INIT(0);
1503 struct dmar_domain *domain;
1504
1505 domain = alloc_domain_mem();
1506 if (!domain)
1507 return NULL;
1508
1509 domain->nid = -1;
1510 domain->iommu_count = 0;
1511 memset(domain->iommu_bmp, 0, sizeof(domain->iommu_bmp));
1512 domain->flags = 0;
1513 spin_lock_init(&domain->iommu_lock);
1514 INIT_LIST_HEAD(&domain->devices);
1515 if (vm) {
1516 domain->id = atomic_inc_return(&vm_domid);
1517 domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE;
1518 }
1519
1520 return domain;
1521 }
1522
1523 static int iommu_attach_domain(struct dmar_domain *domain,
1524 struct intel_iommu *iommu)
1525 {
1526 int num;
1527 unsigned long ndomains;
1528 unsigned long flags;
1529
1530 ndomains = cap_ndoms(iommu->cap);
1531
1532 spin_lock_irqsave(&iommu->lock, flags);
1533
1534 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1535 if (num >= ndomains) {
1536 spin_unlock_irqrestore(&iommu->lock, flags);
1537 printk(KERN_ERR "IOMMU: no free domain ids\n");
1538 return -ENOMEM;
1539 }
1540
1541 domain->id = num;
1542 domain->iommu_count++;
1543 set_bit(num, iommu->domain_ids);
1544 set_bit(iommu->seq_id, domain->iommu_bmp);
1545 iommu->domains[num] = domain;
1546 spin_unlock_irqrestore(&iommu->lock, flags);
1547
1548 return 0;
1549 }
1550
1551 static void iommu_detach_domain(struct dmar_domain *domain,
1552 struct intel_iommu *iommu)
1553 {
1554 unsigned long flags;
1555 int num, ndomains;
1556
1557 spin_lock_irqsave(&iommu->lock, flags);
1558 ndomains = cap_ndoms(iommu->cap);
1559 for_each_set_bit(num, iommu->domain_ids, ndomains) {
1560 if (iommu->domains[num] == domain) {
1561 clear_bit(num, iommu->domain_ids);
1562 iommu->domains[num] = NULL;
1563 break;
1564 }
1565 }
1566 spin_unlock_irqrestore(&iommu->lock, flags);
1567 }
1568
1569 static struct iova_domain reserved_iova_list;
1570 static struct lock_class_key reserved_rbtree_key;
1571
1572 static int dmar_init_reserved_ranges(void)
1573 {
1574 struct pci_dev *pdev = NULL;
1575 struct iova *iova;
1576 int i;
1577
1578 init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
1579
1580 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1581 &reserved_rbtree_key);
1582
1583 /* IOAPIC ranges shouldn't be accessed by DMA */
1584 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1585 IOVA_PFN(IOAPIC_RANGE_END));
1586 if (!iova) {
1587 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1588 return -ENODEV;
1589 }
1590
1591 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1592 for_each_pci_dev(pdev) {
1593 struct resource *r;
1594
1595 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1596 r = &pdev->resource[i];
1597 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1598 continue;
1599 iova = reserve_iova(&reserved_iova_list,
1600 IOVA_PFN(r->start),
1601 IOVA_PFN(r->end));
1602 if (!iova) {
1603 printk(KERN_ERR "Reserve iova failed\n");
1604 return -ENODEV;
1605 }
1606 }
1607 }
1608 return 0;
1609 }
1610
1611 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1612 {
1613 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1614 }
1615
1616 static inline int guestwidth_to_adjustwidth(int gaw)
1617 {
1618 int agaw;
1619 int r = (gaw - 12) % 9;
1620
1621 if (r == 0)
1622 agaw = gaw;
1623 else
1624 agaw = gaw + 9 - r;
1625 if (agaw > 64)
1626 agaw = 64;
1627 return agaw;
1628 }
1629
1630 static int domain_init(struct dmar_domain *domain, int guest_width)
1631 {
1632 struct intel_iommu *iommu;
1633 int adjust_width, agaw;
1634 unsigned long sagaw;
1635
1636 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
1637 domain_reserve_special_ranges(domain);
1638
1639 /* calculate AGAW */
1640 iommu = domain_get_iommu(domain);
1641 if (guest_width > cap_mgaw(iommu->cap))
1642 guest_width = cap_mgaw(iommu->cap);
1643 domain->gaw = guest_width;
1644 adjust_width = guestwidth_to_adjustwidth(guest_width);
1645 agaw = width_to_agaw(adjust_width);
1646 sagaw = cap_sagaw(iommu->cap);
1647 if (!test_bit(agaw, &sagaw)) {
1648 /* hardware doesn't support it, choose a bigger one */
1649 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1650 agaw = find_next_bit(&sagaw, 5, agaw);
1651 if (agaw >= 5)
1652 return -ENODEV;
1653 }
1654 domain->agaw = agaw;
1655
1656 if (ecap_coherent(iommu->ecap))
1657 domain->iommu_coherency = 1;
1658 else
1659 domain->iommu_coherency = 0;
1660
1661 if (ecap_sc_support(iommu->ecap))
1662 domain->iommu_snooping = 1;
1663 else
1664 domain->iommu_snooping = 0;
1665
1666 if (intel_iommu_superpage)
1667 domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
1668 else
1669 domain->iommu_superpage = 0;
1670
1671 domain->nid = iommu->node;
1672
1673 /* always allocate the top pgd */
1674 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1675 if (!domain->pgd)
1676 return -ENOMEM;
1677 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1678 return 0;
1679 }
1680
1681 static void domain_exit(struct dmar_domain *domain)
1682 {
1683 struct dmar_drhd_unit *drhd;
1684 struct intel_iommu *iommu;
1685 struct page *freelist = NULL;
1686
1687 /* Domain 0 is reserved, so dont process it */
1688 if (!domain)
1689 return;
1690
1691 /* Flush any lazy unmaps that may reference this domain */
1692 if (!intel_iommu_strict)
1693 flush_unmaps_timeout(0);
1694
1695 /* remove associated devices */
1696 domain_remove_dev_info(domain);
1697
1698 /* destroy iovas */
1699 put_iova_domain(&domain->iovad);
1700
1701 freelist = domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1702
1703 /* clear attached or cached domains */
1704 rcu_read_lock();
1705 for_each_active_iommu(iommu, drhd)
1706 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
1707 test_bit(iommu->seq_id, domain->iommu_bmp))
1708 iommu_detach_domain(domain, iommu);
1709 rcu_read_unlock();
1710
1711 dma_free_pagelist(freelist);
1712
1713 free_domain_mem(domain);
1714 }
1715
1716 static int domain_context_mapping_one(struct dmar_domain *domain,
1717 struct intel_iommu *iommu,
1718 u8 bus, u8 devfn, int translation)
1719 {
1720 struct context_entry *context;
1721 unsigned long flags;
1722 struct dma_pte *pgd;
1723 unsigned long num;
1724 unsigned long ndomains;
1725 int id;
1726 int agaw;
1727 struct device_domain_info *info = NULL;
1728
1729 pr_debug("Set context mapping for %02x:%02x.%d\n",
1730 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1731
1732 BUG_ON(!domain->pgd);
1733 BUG_ON(translation != CONTEXT_TT_PASS_THROUGH &&
1734 translation != CONTEXT_TT_MULTI_LEVEL);
1735
1736 context = device_to_context_entry(iommu, bus, devfn);
1737 if (!context)
1738 return -ENOMEM;
1739 spin_lock_irqsave(&iommu->lock, flags);
1740 if (context_present(context)) {
1741 spin_unlock_irqrestore(&iommu->lock, flags);
1742 return 0;
1743 }
1744
1745 id = domain->id;
1746 pgd = domain->pgd;
1747
1748 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
1749 domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) {
1750 int found = 0;
1751
1752 /* find an available domain id for this device in iommu */
1753 ndomains = cap_ndoms(iommu->cap);
1754 for_each_set_bit(num, iommu->domain_ids, ndomains) {
1755 if (iommu->domains[num] == domain) {
1756 id = num;
1757 found = 1;
1758 break;
1759 }
1760 }
1761
1762 if (found == 0) {
1763 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1764 if (num >= ndomains) {
1765 spin_unlock_irqrestore(&iommu->lock, flags);
1766 printk(KERN_ERR "IOMMU: no free domain ids\n");
1767 return -EFAULT;
1768 }
1769
1770 set_bit(num, iommu->domain_ids);
1771 iommu->domains[num] = domain;
1772 id = num;
1773 }
1774
1775 /* Skip top levels of page tables for
1776 * iommu which has less agaw than default.
1777 * Unnecessary for PT mode.
1778 */
1779 if (translation != CONTEXT_TT_PASS_THROUGH) {
1780 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1781 pgd = phys_to_virt(dma_pte_addr(pgd));
1782 if (!dma_pte_present(pgd)) {
1783 spin_unlock_irqrestore(&iommu->lock, flags);
1784 return -ENOMEM;
1785 }
1786 }
1787 }
1788 }
1789
1790 context_set_domain_id(context, id);
1791
1792 if (translation != CONTEXT_TT_PASS_THROUGH) {
1793 info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
1794 translation = info ? CONTEXT_TT_DEV_IOTLB :
1795 CONTEXT_TT_MULTI_LEVEL;
1796 }
1797 /*
1798 * In pass through mode, AW must be programmed to indicate the largest
1799 * AGAW value supported by hardware. And ASR is ignored by hardware.
1800 */
1801 if (unlikely(translation == CONTEXT_TT_PASS_THROUGH))
1802 context_set_address_width(context, iommu->msagaw);
1803 else {
1804 context_set_address_root(context, virt_to_phys(pgd));
1805 context_set_address_width(context, iommu->agaw);
1806 }
1807
1808 context_set_translation_type(context, translation);
1809 context_set_fault_enable(context);
1810 context_set_present(context);
1811 domain_flush_cache(domain, context, sizeof(*context));
1812
1813 /*
1814 * It's a non-present to present mapping. If hardware doesn't cache
1815 * non-present entry we only need to flush the write-buffer. If the
1816 * _does_ cache non-present entries, then it does so in the special
1817 * domain #0, which we have to flush:
1818 */
1819 if (cap_caching_mode(iommu->cap)) {
1820 iommu->flush.flush_context(iommu, 0,
1821 (((u16)bus) << 8) | devfn,
1822 DMA_CCMD_MASK_NOBIT,
1823 DMA_CCMD_DEVICE_INVL);
1824 iommu->flush.flush_iotlb(iommu, domain->id, 0, 0, DMA_TLB_DSI_FLUSH);
1825 } else {
1826 iommu_flush_write_buffer(iommu);
1827 }
1828 iommu_enable_dev_iotlb(info);
1829 spin_unlock_irqrestore(&iommu->lock, flags);
1830
1831 spin_lock_irqsave(&domain->iommu_lock, flags);
1832 if (!test_and_set_bit(iommu->seq_id, domain->iommu_bmp)) {
1833 domain->iommu_count++;
1834 if (domain->iommu_count == 1)
1835 domain->nid = iommu->node;
1836 domain_update_iommu_cap(domain);
1837 }
1838 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1839 return 0;
1840 }
1841
1842 static int
1843 domain_context_mapping(struct dmar_domain *domain, struct device *dev,
1844 int translation)
1845 {
1846 int ret;
1847 struct pci_dev *pdev, *tmp, *parent;
1848 struct intel_iommu *iommu;
1849 u8 bus, devfn;
1850
1851 iommu = device_to_iommu(dev, &bus, &devfn);
1852 if (!iommu)
1853 return -ENODEV;
1854
1855 ret = domain_context_mapping_one(domain, iommu, bus, devfn,
1856 translation);
1857 if (ret || !dev_is_pci(dev))
1858 return ret;
1859
1860 /* dependent device mapping */
1861 pdev = to_pci_dev(dev);
1862 tmp = pci_find_upstream_pcie_bridge(pdev);
1863 if (!tmp)
1864 return 0;
1865 /* Secondary interface's bus number and devfn 0 */
1866 parent = pdev->bus->self;
1867 while (parent != tmp) {
1868 ret = domain_context_mapping_one(domain, iommu,
1869 parent->bus->number,
1870 parent->devfn, translation);
1871 if (ret)
1872 return ret;
1873 parent = parent->bus->self;
1874 }
1875 if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */
1876 return domain_context_mapping_one(domain, iommu,
1877 tmp->subordinate->number, 0,
1878 translation);
1879 else /* this is a legacy PCI bridge */
1880 return domain_context_mapping_one(domain, iommu,
1881 tmp->bus->number,
1882 tmp->devfn,
1883 translation);
1884 }
1885
1886 static int domain_context_mapped(struct device *dev)
1887 {
1888 int ret;
1889 struct pci_dev *pdev, *tmp, *parent;
1890 struct intel_iommu *iommu;
1891 u8 bus, devfn;
1892
1893 iommu = device_to_iommu(dev, &bus, &devfn);
1894 if (!iommu)
1895 return -ENODEV;
1896
1897 ret = device_context_mapped(iommu, bus, devfn);
1898 if (!ret || !dev_is_pci(dev))
1899 return ret;
1900
1901 /* dependent device mapping */
1902 pdev = to_pci_dev(dev);
1903 tmp = pci_find_upstream_pcie_bridge(pdev);
1904 if (!tmp)
1905 return ret;
1906 /* Secondary interface's bus number and devfn 0 */
1907 parent = pdev->bus->self;
1908 while (parent != tmp) {
1909 ret = device_context_mapped(iommu, parent->bus->number,
1910 parent->devfn);
1911 if (!ret)
1912 return ret;
1913 parent = parent->bus->self;
1914 }
1915 if (pci_is_pcie(tmp))
1916 return device_context_mapped(iommu, tmp->subordinate->number,
1917 0);
1918 else
1919 return device_context_mapped(iommu, tmp->bus->number,
1920 tmp->devfn);
1921 }
1922
1923 /* Returns a number of VTD pages, but aligned to MM page size */
1924 static inline unsigned long aligned_nrpages(unsigned long host_addr,
1925 size_t size)
1926 {
1927 host_addr &= ~PAGE_MASK;
1928 return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
1929 }
1930
1931 /* Return largest possible superpage level for a given mapping */
1932 static inline int hardware_largepage_caps(struct dmar_domain *domain,
1933 unsigned long iov_pfn,
1934 unsigned long phy_pfn,
1935 unsigned long pages)
1936 {
1937 int support, level = 1;
1938 unsigned long pfnmerge;
1939
1940 support = domain->iommu_superpage;
1941
1942 /* To use a large page, the virtual *and* physical addresses
1943 must be aligned to 2MiB/1GiB/etc. Lower bits set in either
1944 of them will mean we have to use smaller pages. So just
1945 merge them and check both at once. */
1946 pfnmerge = iov_pfn | phy_pfn;
1947
1948 while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
1949 pages >>= VTD_STRIDE_SHIFT;
1950 if (!pages)
1951 break;
1952 pfnmerge >>= VTD_STRIDE_SHIFT;
1953 level++;
1954 support--;
1955 }
1956 return level;
1957 }
1958
1959 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1960 struct scatterlist *sg, unsigned long phys_pfn,
1961 unsigned long nr_pages, int prot)
1962 {
1963 struct dma_pte *first_pte = NULL, *pte = NULL;
1964 phys_addr_t uninitialized_var(pteval);
1965 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
1966 unsigned long sg_res;
1967 unsigned int largepage_lvl = 0;
1968 unsigned long lvl_pages = 0;
1969
1970 BUG_ON(addr_width < BITS_PER_LONG && (iov_pfn + nr_pages - 1) >> addr_width);
1971
1972 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1973 return -EINVAL;
1974
1975 prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
1976
1977 if (sg)
1978 sg_res = 0;
1979 else {
1980 sg_res = nr_pages + 1;
1981 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
1982 }
1983
1984 while (nr_pages > 0) {
1985 uint64_t tmp;
1986
1987 if (!sg_res) {
1988 sg_res = aligned_nrpages(sg->offset, sg->length);
1989 sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
1990 sg->dma_length = sg->length;
1991 pteval = page_to_phys(sg_page(sg)) | prot;
1992 phys_pfn = pteval >> VTD_PAGE_SHIFT;
1993 }
1994
1995 if (!pte) {
1996 largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
1997
1998 first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl);
1999 if (!pte)
2000 return -ENOMEM;
2001 /* It is large page*/
2002 if (largepage_lvl > 1) {
2003 pteval |= DMA_PTE_LARGE_PAGE;
2004 /* Ensure that old small page tables are removed to make room
2005 for superpage, if they exist. */
2006 dma_pte_clear_range(domain, iov_pfn,
2007 iov_pfn + lvl_to_nr_pages(largepage_lvl) - 1);
2008 dma_pte_free_pagetable(domain, iov_pfn,
2009 iov_pfn + lvl_to_nr_pages(largepage_lvl) - 1);
2010 } else {
2011 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
2012 }
2013
2014 }
2015 /* We don't need lock here, nobody else
2016 * touches the iova range
2017 */
2018 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
2019 if (tmp) {
2020 static int dumps = 5;
2021 printk(KERN_CRIT "ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
2022 iov_pfn, tmp, (unsigned long long)pteval);
2023 if (dumps) {
2024 dumps--;
2025 debug_dma_dump_mappings(NULL);
2026 }
2027 WARN_ON(1);
2028 }
2029
2030 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2031
2032 BUG_ON(nr_pages < lvl_pages);
2033 BUG_ON(sg_res < lvl_pages);
2034
2035 nr_pages -= lvl_pages;
2036 iov_pfn += lvl_pages;
2037 phys_pfn += lvl_pages;
2038 pteval += lvl_pages * VTD_PAGE_SIZE;
2039 sg_res -= lvl_pages;
2040
2041 /* If the next PTE would be the first in a new page, then we
2042 need to flush the cache on the entries we've just written.
2043 And then we'll need to recalculate 'pte', so clear it and
2044 let it get set again in the if (!pte) block above.
2045
2046 If we're done (!nr_pages) we need to flush the cache too.
2047
2048 Also if we've been setting superpages, we may need to
2049 recalculate 'pte' and switch back to smaller pages for the
2050 end of the mapping, if the trailing size is not enough to
2051 use another superpage (i.e. sg_res < lvl_pages). */
2052 pte++;
2053 if (!nr_pages || first_pte_in_page(pte) ||
2054 (largepage_lvl > 1 && sg_res < lvl_pages)) {
2055 domain_flush_cache(domain, first_pte,
2056 (void *)pte - (void *)first_pte);
2057 pte = NULL;
2058 }
2059
2060 if (!sg_res && nr_pages)
2061 sg = sg_next(sg);
2062 }
2063 return 0;
2064 }
2065
2066 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2067 struct scatterlist *sg, unsigned long nr_pages,
2068 int prot)
2069 {
2070 return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
2071 }
2072
2073 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2074 unsigned long phys_pfn, unsigned long nr_pages,
2075 int prot)
2076 {
2077 return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
2078 }
2079
2080 static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
2081 {
2082 if (!iommu)
2083 return;
2084
2085 clear_context_table(iommu, bus, devfn);
2086 iommu->flush.flush_context(iommu, 0, 0, 0,
2087 DMA_CCMD_GLOBAL_INVL);
2088 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2089 }
2090
2091 static inline void unlink_domain_info(struct device_domain_info *info)
2092 {
2093 assert_spin_locked(&device_domain_lock);
2094 list_del(&info->link);
2095 list_del(&info->global);
2096 if (info->dev)
2097 info->dev->archdata.iommu = NULL;
2098 }
2099
2100 static void domain_remove_dev_info(struct dmar_domain *domain)
2101 {
2102 struct device_domain_info *info;
2103 unsigned long flags, flags2;
2104
2105 spin_lock_irqsave(&device_domain_lock, flags);
2106 while (!list_empty(&domain->devices)) {
2107 info = list_entry(domain->devices.next,
2108 struct device_domain_info, link);
2109 unlink_domain_info(info);
2110 spin_unlock_irqrestore(&device_domain_lock, flags);
2111
2112 iommu_disable_dev_iotlb(info);
2113 iommu_detach_dev(info->iommu, info->bus, info->devfn);
2114
2115 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) {
2116 iommu_detach_dependent_devices(info->iommu, info->dev);
2117 /* clear this iommu in iommu_bmp, update iommu count
2118 * and capabilities
2119 */
2120 spin_lock_irqsave(&domain->iommu_lock, flags2);
2121 if (test_and_clear_bit(info->iommu->seq_id,
2122 domain->iommu_bmp)) {
2123 domain->iommu_count--;
2124 domain_update_iommu_cap(domain);
2125 }
2126 spin_unlock_irqrestore(&domain->iommu_lock, flags2);
2127 }
2128
2129 free_devinfo_mem(info);
2130 spin_lock_irqsave(&device_domain_lock, flags);
2131 }
2132 spin_unlock_irqrestore(&device_domain_lock, flags);
2133 }
2134
2135 /*
2136 * find_domain
2137 * Note: we use struct device->archdata.iommu stores the info
2138 */
2139 static struct dmar_domain *find_domain(struct device *dev)
2140 {
2141 struct device_domain_info *info;
2142
2143 /* No lock here, assumes no domain exit in normal case */
2144 info = dev->archdata.iommu;
2145 if (info)
2146 return info->domain;
2147 return NULL;
2148 }
2149
2150 static inline struct device_domain_info *
2151 dmar_search_domain_by_dev_info(int segment, int bus, int devfn)
2152 {
2153 struct device_domain_info *info;
2154
2155 list_for_each_entry(info, &device_domain_list, global)
2156 if (info->iommu->segment == segment && info->bus == bus &&
2157 info->devfn == devfn)
2158 return info;
2159
2160 return NULL;
2161 }
2162
2163 static struct dmar_domain *dmar_insert_dev_info(struct intel_iommu *iommu,
2164 int bus, int devfn,
2165 struct device *dev,
2166 struct dmar_domain *domain)
2167 {
2168 struct dmar_domain *found = NULL;
2169 struct device_domain_info *info;
2170 unsigned long flags;
2171
2172 info = alloc_devinfo_mem();
2173 if (!info)
2174 return NULL;
2175
2176 info->bus = bus;
2177 info->devfn = devfn;
2178 info->dev = dev;
2179 info->domain = domain;
2180 info->iommu = iommu;
2181 if (!dev)
2182 domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
2183
2184 spin_lock_irqsave(&device_domain_lock, flags);
2185 if (dev)
2186 found = find_domain(dev);
2187 else {
2188 struct device_domain_info *info2;
2189 info2 = dmar_search_domain_by_dev_info(iommu->segment, bus, devfn);
2190 if (info2)
2191 found = info2->domain;
2192 }
2193 if (found) {
2194 spin_unlock_irqrestore(&device_domain_lock, flags);
2195 free_devinfo_mem(info);
2196 /* Caller must free the original domain */
2197 return found;
2198 }
2199
2200 list_add(&info->link, &domain->devices);
2201 list_add(&info->global, &device_domain_list);
2202 if (dev)
2203 dev->archdata.iommu = info;
2204 spin_unlock_irqrestore(&device_domain_lock, flags);
2205
2206 return domain;
2207 }
2208
2209 /* domain is initialized */
2210 static struct dmar_domain *get_domain_for_dev(struct device *dev, int gaw)
2211 {
2212 struct dmar_domain *domain, *free = NULL;
2213 struct intel_iommu *iommu = NULL;
2214 struct device_domain_info *info;
2215 struct pci_dev *dev_tmp = NULL;
2216 unsigned long flags;
2217 u8 bus, devfn, bridge_bus, bridge_devfn;
2218
2219 domain = find_domain(dev);
2220 if (domain)
2221 return domain;
2222
2223 if (dev_is_pci(dev)) {
2224 struct pci_dev *pdev = to_pci_dev(dev);
2225 u16 segment;
2226
2227 segment = pci_domain_nr(pdev->bus);
2228 dev_tmp = pci_find_upstream_pcie_bridge(pdev);
2229 if (dev_tmp) {
2230 if (pci_is_pcie(dev_tmp)) {
2231 bridge_bus = dev_tmp->subordinate->number;
2232 bridge_devfn = 0;
2233 } else {
2234 bridge_bus = dev_tmp->bus->number;
2235 bridge_devfn = dev_tmp->devfn;
2236 }
2237 spin_lock_irqsave(&device_domain_lock, flags);
2238 info = dmar_search_domain_by_dev_info(segment, bus, devfn);
2239 if (info) {
2240 iommu = info->iommu;
2241 domain = info->domain;
2242 }
2243 spin_unlock_irqrestore(&device_domain_lock, flags);
2244 /* pcie-pci bridge already has a domain, uses it */
2245 if (info)
2246 goto found_domain;
2247 }
2248 }
2249
2250 iommu = device_to_iommu(dev, &bus, &devfn);
2251 if (!iommu)
2252 goto error;
2253
2254 /* Allocate and initialize new domain for the device */
2255 domain = alloc_domain(false);
2256 if (!domain)
2257 goto error;
2258 if (iommu_attach_domain(domain, iommu)) {
2259 free_domain_mem(domain);
2260 goto error;
2261 }
2262 free = domain;
2263 if (domain_init(domain, gaw))
2264 goto error;
2265
2266 /* register pcie-to-pci device */
2267 if (dev_tmp) {
2268 domain = dmar_insert_dev_info(iommu, bridge_bus, bridge_devfn,
2269 NULL, domain);
2270 if (!domain)
2271 goto error;
2272 }
2273
2274 found_domain:
2275 domain = dmar_insert_dev_info(iommu, bus, devfn, dev, domain);
2276 error:
2277 if (free != domain)
2278 domain_exit(free);
2279
2280 return domain;
2281 }
2282
2283 static int iommu_identity_mapping;
2284 #define IDENTMAP_ALL 1
2285 #define IDENTMAP_GFX 2
2286 #define IDENTMAP_AZALIA 4
2287
2288 static int iommu_domain_identity_map(struct dmar_domain *domain,
2289 unsigned long long start,
2290 unsigned long long end)
2291 {
2292 unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
2293 unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
2294
2295 if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
2296 dma_to_mm_pfn(last_vpfn))) {
2297 printk(KERN_ERR "IOMMU: reserve iova failed\n");
2298 return -ENOMEM;
2299 }
2300
2301 pr_debug("Mapping reserved region %llx-%llx for domain %d\n",
2302 start, end, domain->id);
2303 /*
2304 * RMRR range might have overlap with physical memory range,
2305 * clear it first
2306 */
2307 dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2308
2309 return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
2310 last_vpfn - first_vpfn + 1,
2311 DMA_PTE_READ|DMA_PTE_WRITE);
2312 }
2313
2314 static int iommu_prepare_identity_map(struct device *dev,
2315 unsigned long long start,
2316 unsigned long long end)
2317 {
2318 struct dmar_domain *domain;
2319 int ret;
2320
2321 domain = get_domain_for_dev(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2322 if (!domain)
2323 return -ENOMEM;
2324
2325 /* For _hardware_ passthrough, don't bother. But for software
2326 passthrough, we do it anyway -- it may indicate a memory
2327 range which is reserved in E820, so which didn't get set
2328 up to start with in si_domain */
2329 if (domain == si_domain && hw_pass_through) {
2330 printk("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
2331 dev_name(dev), start, end);
2332 return 0;
2333 }
2334
2335 printk(KERN_INFO
2336 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
2337 dev_name(dev), start, end);
2338
2339 if (end < start) {
2340 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2341 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2342 dmi_get_system_info(DMI_BIOS_VENDOR),
2343 dmi_get_system_info(DMI_BIOS_VERSION),
2344 dmi_get_system_info(DMI_PRODUCT_VERSION));
2345 ret = -EIO;
2346 goto error;
2347 }
2348
2349 if (end >> agaw_to_width(domain->agaw)) {
2350 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2351 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2352 agaw_to_width(domain->agaw),
2353 dmi_get_system_info(DMI_BIOS_VENDOR),
2354 dmi_get_system_info(DMI_BIOS_VERSION),
2355 dmi_get_system_info(DMI_PRODUCT_VERSION));
2356 ret = -EIO;
2357 goto error;
2358 }
2359
2360 ret = iommu_domain_identity_map(domain, start, end);
2361 if (ret)
2362 goto error;
2363
2364 /* context entry init */
2365 ret = domain_context_mapping(domain, dev, CONTEXT_TT_MULTI_LEVEL);
2366 if (ret)
2367 goto error;
2368
2369 return 0;
2370
2371 error:
2372 domain_exit(domain);
2373 return ret;
2374 }
2375
2376 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2377 struct device *dev)
2378 {
2379 if (dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2380 return 0;
2381 return iommu_prepare_identity_map(dev, rmrr->base_address,
2382 rmrr->end_address);
2383 }
2384
2385 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
2386 static inline void iommu_prepare_isa(void)
2387 {
2388 struct pci_dev *pdev;
2389 int ret;
2390
2391 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2392 if (!pdev)
2393 return;
2394
2395 printk(KERN_INFO "IOMMU: Prepare 0-16MiB unity mapping for LPC\n");
2396 ret = iommu_prepare_identity_map(&pdev->dev, 0, 16*1024*1024 - 1);
2397
2398 if (ret)
2399 printk(KERN_ERR "IOMMU: Failed to create 0-16MiB identity map; "
2400 "floppy might not work\n");
2401
2402 }
2403 #else
2404 static inline void iommu_prepare_isa(void)
2405 {
2406 return;
2407 }
2408 #endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */
2409
2410 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2411
2412 static int __init si_domain_init(int hw)
2413 {
2414 struct dmar_drhd_unit *drhd;
2415 struct intel_iommu *iommu;
2416 int nid, ret = 0;
2417
2418 si_domain = alloc_domain(false);
2419 if (!si_domain)
2420 return -EFAULT;
2421
2422 si_domain->flags = DOMAIN_FLAG_STATIC_IDENTITY;
2423
2424 for_each_active_iommu(iommu, drhd) {
2425 ret = iommu_attach_domain(si_domain, iommu);
2426 if (ret) {
2427 domain_exit(si_domain);
2428 return -EFAULT;
2429 }
2430 }
2431
2432 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2433 domain_exit(si_domain);
2434 return -EFAULT;
2435 }
2436
2437 pr_debug("IOMMU: identity mapping domain is domain %d\n",
2438 si_domain->id);
2439
2440 if (hw)
2441 return 0;
2442
2443 for_each_online_node(nid) {
2444 unsigned long start_pfn, end_pfn;
2445 int i;
2446
2447 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2448 ret = iommu_domain_identity_map(si_domain,
2449 PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
2450 if (ret)
2451 return ret;
2452 }
2453 }
2454
2455 return 0;
2456 }
2457
2458 static int identity_mapping(struct device *dev)
2459 {
2460 struct device_domain_info *info;
2461
2462 if (likely(!iommu_identity_mapping))
2463 return 0;
2464
2465 info = dev->archdata.iommu;
2466 if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
2467 return (info->domain == si_domain);
2468
2469 return 0;
2470 }
2471
2472 static int domain_add_dev_info(struct dmar_domain *domain,
2473 struct pci_dev *pdev,
2474 int translation)
2475 {
2476 struct dmar_domain *ndomain;
2477 struct intel_iommu *iommu;
2478 u8 bus, devfn;
2479 int ret;
2480
2481 iommu = device_to_iommu(&pdev->dev, &bus, &devfn);
2482 if (!iommu)
2483 return -ENODEV;
2484
2485 ndomain = dmar_insert_dev_info(iommu, bus, devfn, &pdev->dev, domain);
2486 if (ndomain != domain)
2487 return -EBUSY;
2488
2489 ret = domain_context_mapping(domain, &pdev->dev, translation);
2490 if (ret) {
2491 domain_remove_one_dev_info(domain, &pdev->dev);
2492 return ret;
2493 }
2494
2495 return 0;
2496 }
2497
2498 static bool device_has_rmrr(struct device *dev)
2499 {
2500 struct dmar_rmrr_unit *rmrr;
2501 struct device *tmp;
2502 int i;
2503
2504 rcu_read_lock();
2505 for_each_rmrr_units(rmrr) {
2506 /*
2507 * Return TRUE if this RMRR contains the device that
2508 * is passed in.
2509 */
2510 for_each_active_dev_scope(rmrr->devices,
2511 rmrr->devices_cnt, i, tmp)
2512 if (tmp == dev) {
2513 rcu_read_unlock();
2514 return true;
2515 }
2516 }
2517 rcu_read_unlock();
2518 return false;
2519 }
2520
2521 static int iommu_should_identity_map(struct device *dev, int startup)
2522 {
2523
2524 if (dev_is_pci(dev)) {
2525 struct pci_dev *pdev = to_pci_dev(dev);
2526
2527 /*
2528 * We want to prevent any device associated with an RMRR from
2529 * getting placed into the SI Domain. This is done because
2530 * problems exist when devices are moved in and out of domains
2531 * and their respective RMRR info is lost. We exempt USB devices
2532 * from this process due to their usage of RMRRs that are known
2533 * to not be needed after BIOS hand-off to OS.
2534 */
2535 if (device_has_rmrr(dev) &&
2536 (pdev->class >> 8) != PCI_CLASS_SERIAL_USB)
2537 return 0;
2538
2539 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2540 return 1;
2541
2542 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2543 return 1;
2544
2545 if (!(iommu_identity_mapping & IDENTMAP_ALL))
2546 return 0;
2547
2548 /*
2549 * We want to start off with all devices in the 1:1 domain, and
2550 * take them out later if we find they can't access all of memory.
2551 *
2552 * However, we can't do this for PCI devices behind bridges,
2553 * because all PCI devices behind the same bridge will end up
2554 * with the same source-id on their transactions.
2555 *
2556 * Practically speaking, we can't change things around for these
2557 * devices at run-time, because we can't be sure there'll be no
2558 * DMA transactions in flight for any of their siblings.
2559 *
2560 * So PCI devices (unless they're on the root bus) as well as
2561 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2562 * the 1:1 domain, just in _case_ one of their siblings turns out
2563 * not to be able to map all of memory.
2564 */
2565 if (!pci_is_pcie(pdev)) {
2566 if (!pci_is_root_bus(pdev->bus))
2567 return 0;
2568 if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2569 return 0;
2570 } else if (pci_pcie_type(pdev) == PCI_EXP_TYPE_PCI_BRIDGE)
2571 return 0;
2572 } else {
2573 if (device_has_rmrr(dev))
2574 return 0;
2575 }
2576
2577 /*
2578 * At boot time, we don't yet know if devices will be 64-bit capable.
2579 * Assume that they will — if they turn out not to be, then we can
2580 * take them out of the 1:1 domain later.
2581 */
2582 if (!startup) {
2583 /*
2584 * If the device's dma_mask is less than the system's memory
2585 * size then this is not a candidate for identity mapping.
2586 */
2587 u64 dma_mask = *dev->dma_mask;
2588
2589 if (dev->coherent_dma_mask &&
2590 dev->coherent_dma_mask < dma_mask)
2591 dma_mask = dev->coherent_dma_mask;
2592
2593 return dma_mask >= dma_get_required_mask(dev);
2594 }
2595
2596 return 1;
2597 }
2598
2599 static int __init iommu_prepare_static_identity_mapping(int hw)
2600 {
2601 struct pci_dev *pdev = NULL;
2602 int ret;
2603
2604 ret = si_domain_init(hw);
2605 if (ret)
2606 return -EFAULT;
2607
2608 for_each_pci_dev(pdev) {
2609 if (iommu_should_identity_map(&pdev->dev, 1)) {
2610 ret = domain_add_dev_info(si_domain, pdev,
2611 hw ? CONTEXT_TT_PASS_THROUGH :
2612 CONTEXT_TT_MULTI_LEVEL);
2613 if (ret) {
2614 /* device not associated with an iommu */
2615 if (ret == -ENODEV)
2616 continue;
2617 return ret;
2618 }
2619 pr_info("IOMMU: %s identity mapping for device %s\n",
2620 hw ? "hardware" : "software", pci_name(pdev));
2621 }
2622 }
2623
2624 return 0;
2625 }
2626
2627 static int __init init_dmars(void)
2628 {
2629 struct dmar_drhd_unit *drhd;
2630 struct dmar_rmrr_unit *rmrr;
2631 struct device *dev;
2632 struct intel_iommu *iommu;
2633 int i, ret;
2634
2635 /*
2636 * for each drhd
2637 * allocate root
2638 * initialize and program root entry to not present
2639 * endfor
2640 */
2641 for_each_drhd_unit(drhd) {
2642 /*
2643 * lock not needed as this is only incremented in the single
2644 * threaded kernel __init code path all other access are read
2645 * only
2646 */
2647 if (g_num_of_iommus < IOMMU_UNITS_SUPPORTED) {
2648 g_num_of_iommus++;
2649 continue;
2650 }
2651 printk_once(KERN_ERR "intel-iommu: exceeded %d IOMMUs\n",
2652 IOMMU_UNITS_SUPPORTED);
2653 }
2654
2655 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
2656 GFP_KERNEL);
2657 if (!g_iommus) {
2658 printk(KERN_ERR "Allocating global iommu array failed\n");
2659 ret = -ENOMEM;
2660 goto error;
2661 }
2662
2663 deferred_flush = kzalloc(g_num_of_iommus *
2664 sizeof(struct deferred_flush_tables), GFP_KERNEL);
2665 if (!deferred_flush) {
2666 ret = -ENOMEM;
2667 goto free_g_iommus;
2668 }
2669
2670 for_each_active_iommu(iommu, drhd) {
2671 g_iommus[iommu->seq_id] = iommu;
2672
2673 ret = iommu_init_domains(iommu);
2674 if (ret)
2675 goto free_iommu;
2676
2677 /*
2678 * TBD:
2679 * we could share the same root & context tables
2680 * among all IOMMU's. Need to Split it later.
2681 */
2682 ret = iommu_alloc_root_entry(iommu);
2683 if (ret) {
2684 printk(KERN_ERR "IOMMU: allocate root entry failed\n");
2685 goto free_iommu;
2686 }
2687 if (!ecap_pass_through(iommu->ecap))
2688 hw_pass_through = 0;
2689 }
2690
2691 /*
2692 * Start from the sane iommu hardware state.
2693 */
2694 for_each_active_iommu(iommu, drhd) {
2695 /*
2696 * If the queued invalidation is already initialized by us
2697 * (for example, while enabling interrupt-remapping) then
2698 * we got the things already rolling from a sane state.
2699 */
2700 if (iommu->qi)
2701 continue;
2702
2703 /*
2704 * Clear any previous faults.
2705 */
2706 dmar_fault(-1, iommu);
2707 /*
2708 * Disable queued invalidation if supported and already enabled
2709 * before OS handover.
2710 */
2711 dmar_disable_qi(iommu);
2712 }
2713
2714 for_each_active_iommu(iommu, drhd) {
2715 if (dmar_enable_qi(iommu)) {
2716 /*
2717 * Queued Invalidate not enabled, use Register Based
2718 * Invalidate
2719 */
2720 iommu->flush.flush_context = __iommu_flush_context;
2721 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2722 printk(KERN_INFO "IOMMU %d 0x%Lx: using Register based "
2723 "invalidation\n",
2724 iommu->seq_id,
2725 (unsigned long long)drhd->reg_base_addr);
2726 } else {
2727 iommu->flush.flush_context = qi_flush_context;
2728 iommu->flush.flush_iotlb = qi_flush_iotlb;
2729 printk(KERN_INFO "IOMMU %d 0x%Lx: using Queued "
2730 "invalidation\n",
2731 iommu->seq_id,
2732 (unsigned long long)drhd->reg_base_addr);
2733 }
2734 }
2735
2736 if (iommu_pass_through)
2737 iommu_identity_mapping |= IDENTMAP_ALL;
2738
2739 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
2740 iommu_identity_mapping |= IDENTMAP_GFX;
2741 #endif
2742
2743 check_tylersburg_isoch();
2744
2745 /*
2746 * If pass through is not set or not enabled, setup context entries for
2747 * identity mappings for rmrr, gfx, and isa and may fall back to static
2748 * identity mapping if iommu_identity_mapping is set.
2749 */
2750 if (iommu_identity_mapping) {
2751 ret = iommu_prepare_static_identity_mapping(hw_pass_through);
2752 if (ret) {
2753 printk(KERN_CRIT "Failed to setup IOMMU pass-through\n");
2754 goto free_iommu;
2755 }
2756 }
2757 /*
2758 * For each rmrr
2759 * for each dev attached to rmrr
2760 * do
2761 * locate drhd for dev, alloc domain for dev
2762 * allocate free domain
2763 * allocate page table entries for rmrr
2764 * if context not allocated for bus
2765 * allocate and init context
2766 * set present in root table for this bus
2767 * init context with domain, translation etc
2768 * endfor
2769 * endfor
2770 */
2771 printk(KERN_INFO "IOMMU: Setting RMRR:\n");
2772 for_each_rmrr_units(rmrr) {
2773 /* some BIOS lists non-exist devices in DMAR table. */
2774 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
2775 i, dev) {
2776 ret = iommu_prepare_rmrr_dev(rmrr, dev);
2777 if (ret)
2778 printk(KERN_ERR
2779 "IOMMU: mapping reserved region failed\n");
2780 }
2781 }
2782
2783 iommu_prepare_isa();
2784
2785 /*
2786 * for each drhd
2787 * enable fault log
2788 * global invalidate context cache
2789 * global invalidate iotlb
2790 * enable translation
2791 */
2792 for_each_iommu(iommu, drhd) {
2793 if (drhd->ignored) {
2794 /*
2795 * we always have to disable PMRs or DMA may fail on
2796 * this device
2797 */
2798 if (force_on)
2799 iommu_disable_protect_mem_regions(iommu);
2800 continue;
2801 }
2802
2803 iommu_flush_write_buffer(iommu);
2804
2805 ret = dmar_set_interrupt(iommu);
2806 if (ret)
2807 goto free_iommu;
2808
2809 iommu_set_root_entry(iommu);
2810
2811 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
2812 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2813
2814 ret = iommu_enable_translation(iommu);
2815 if (ret)
2816 goto free_iommu;
2817
2818 iommu_disable_protect_mem_regions(iommu);
2819 }
2820
2821 return 0;
2822
2823 free_iommu:
2824 for_each_active_iommu(iommu, drhd)
2825 free_dmar_iommu(iommu);
2826 kfree(deferred_flush);
2827 free_g_iommus:
2828 kfree(g_iommus);
2829 error:
2830 return ret;
2831 }
2832
2833 /* This takes a number of _MM_ pages, not VTD pages */
2834 static struct iova *intel_alloc_iova(struct device *dev,
2835 struct dmar_domain *domain,
2836 unsigned long nrpages, uint64_t dma_mask)
2837 {
2838 struct iova *iova = NULL;
2839
2840 /* Restrict dma_mask to the width that the iommu can handle */
2841 dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
2842
2843 if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
2844 /*
2845 * First try to allocate an io virtual address in
2846 * DMA_BIT_MASK(32) and if that fails then try allocating
2847 * from higher range
2848 */
2849 iova = alloc_iova(&domain->iovad, nrpages,
2850 IOVA_PFN(DMA_BIT_MASK(32)), 1);
2851 if (iova)
2852 return iova;
2853 }
2854 iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(dma_mask), 1);
2855 if (unlikely(!iova)) {
2856 printk(KERN_ERR "Allocating %ld-page iova for %s failed",
2857 nrpages, dev_name(dev));
2858 return NULL;
2859 }
2860
2861 return iova;
2862 }
2863
2864 static struct dmar_domain *__get_valid_domain_for_dev(struct device *dev)
2865 {
2866 struct dmar_domain *domain;
2867 int ret;
2868
2869 domain = get_domain_for_dev(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2870 if (!domain) {
2871 printk(KERN_ERR "Allocating domain for %s failed",
2872 dev_name(dev));
2873 return NULL;
2874 }
2875
2876 /* make sure context mapping is ok */
2877 if (unlikely(!domain_context_mapped(dev))) {
2878 ret = domain_context_mapping(domain, dev, CONTEXT_TT_MULTI_LEVEL);
2879 if (ret) {
2880 printk(KERN_ERR "Domain context map for %s failed",
2881 dev_name(dev));
2882 return NULL;
2883 }
2884 }
2885
2886 return domain;
2887 }
2888
2889 static inline struct dmar_domain *get_valid_domain_for_dev(struct device *dev)
2890 {
2891 struct device_domain_info *info;
2892
2893 /* No lock here, assumes no domain exit in normal case */
2894 info = dev->archdata.iommu;
2895 if (likely(info))
2896 return info->domain;
2897
2898 return __get_valid_domain_for_dev(dev);
2899 }
2900
2901 static int iommu_dummy(struct device *dev)
2902 {
2903 return dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
2904 }
2905
2906 /* Check if the pdev needs to go through non-identity map and unmap process.*/
2907 static int iommu_no_mapping(struct device *dev)
2908 {
2909 struct pci_dev *pdev;
2910 int found;
2911
2912 if (unlikely(!dev_is_pci(dev)))
2913 return 1;
2914
2915 if (iommu_dummy(dev))
2916 return 1;
2917
2918 if (!iommu_identity_mapping)
2919 return 0;
2920
2921 pdev = to_pci_dev(dev);
2922 found = identity_mapping(dev);
2923 if (found) {
2924 if (iommu_should_identity_map(&pdev->dev, 0))
2925 return 1;
2926 else {
2927 /*
2928 * 32 bit DMA is removed from si_domain and fall back
2929 * to non-identity mapping.
2930 */
2931 domain_remove_one_dev_info(si_domain, dev);
2932 printk(KERN_INFO "32bit %s uses non-identity mapping\n",
2933 pci_name(pdev));
2934 return 0;
2935 }
2936 } else {
2937 /*
2938 * In case of a detached 64 bit DMA device from vm, the device
2939 * is put into si_domain for identity mapping.
2940 */
2941 if (iommu_should_identity_map(&pdev->dev, 0)) {
2942 int ret;
2943 ret = domain_add_dev_info(si_domain, pdev,
2944 hw_pass_through ?
2945 CONTEXT_TT_PASS_THROUGH :
2946 CONTEXT_TT_MULTI_LEVEL);
2947 if (!ret) {
2948 printk(KERN_INFO "64bit %s uses identity mapping\n",
2949 pci_name(pdev));
2950 return 1;
2951 }
2952 }
2953 }
2954
2955 return 0;
2956 }
2957
2958 static dma_addr_t __intel_map_single(struct device *dev, phys_addr_t paddr,
2959 size_t size, int dir, u64 dma_mask)
2960 {
2961 struct dmar_domain *domain;
2962 phys_addr_t start_paddr;
2963 struct iova *iova;
2964 int prot = 0;
2965 int ret;
2966 struct intel_iommu *iommu;
2967 unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
2968
2969 BUG_ON(dir == DMA_NONE);
2970
2971 if (iommu_no_mapping(dev))
2972 return paddr;
2973
2974 domain = get_valid_domain_for_dev(dev);
2975 if (!domain)
2976 return 0;
2977
2978 iommu = domain_get_iommu(domain);
2979 size = aligned_nrpages(paddr, size);
2980
2981 iova = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), dma_mask);
2982 if (!iova)
2983 goto error;
2984
2985 /*
2986 * Check if DMAR supports zero-length reads on write only
2987 * mappings..
2988 */
2989 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2990 !cap_zlr(iommu->cap))
2991 prot |= DMA_PTE_READ;
2992 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2993 prot |= DMA_PTE_WRITE;
2994 /*
2995 * paddr - (paddr + size) might be partial page, we should map the whole
2996 * page. Note: if two part of one page are separately mapped, we
2997 * might have two guest_addr mapping to the same host paddr, but this
2998 * is not a big problem
2999 */
3000 ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo),
3001 mm_to_dma_pfn(paddr_pfn), size, prot);
3002 if (ret)
3003 goto error;
3004
3005 /* it's a non-present to present mapping. Only flush if caching mode */
3006 if (cap_caching_mode(iommu->cap))
3007 iommu_flush_iotlb_psi(iommu, domain->id, mm_to_dma_pfn(iova->pfn_lo), size, 0, 1);
3008 else
3009 iommu_flush_write_buffer(iommu);
3010
3011 start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
3012 start_paddr += paddr & ~PAGE_MASK;
3013 return start_paddr;
3014
3015 error:
3016 if (iova)
3017 __free_iova(&domain->iovad, iova);
3018 printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n",
3019 dev_name(dev), size, (unsigned long long)paddr, dir);
3020 return 0;
3021 }
3022
3023 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
3024 unsigned long offset, size_t size,
3025 enum dma_data_direction dir,
3026 struct dma_attrs *attrs)
3027 {
3028 return __intel_map_single(dev, page_to_phys(page) + offset, size,
3029 dir, to_pci_dev(dev)->dma_mask);
3030 }
3031
3032 static void flush_unmaps(void)
3033 {
3034 int i, j;
3035
3036 timer_on = 0;
3037
3038 /* just flush them all */
3039 for (i = 0; i < g_num_of_iommus; i++) {
3040 struct intel_iommu *iommu = g_iommus[i];
3041 if (!iommu)
3042 continue;
3043
3044 if (!deferred_flush[i].next)
3045 continue;
3046
3047 /* In caching mode, global flushes turn emulation expensive */
3048 if (!cap_caching_mode(iommu->cap))
3049 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3050 DMA_TLB_GLOBAL_FLUSH);
3051 for (j = 0; j < deferred_flush[i].next; j++) {
3052 unsigned long mask;
3053 struct iova *iova = deferred_flush[i].iova[j];
3054 struct dmar_domain *domain = deferred_flush[i].domain[j];
3055
3056 /* On real hardware multiple invalidations are expensive */
3057 if (cap_caching_mode(iommu->cap))
3058 iommu_flush_iotlb_psi(iommu, domain->id,
3059 iova->pfn_lo, iova->pfn_hi - iova->pfn_lo + 1,
3060 !deferred_flush[i].freelist[j], 0);
3061 else {
3062 mask = ilog2(mm_to_dma_pfn(iova->pfn_hi - iova->pfn_lo + 1));
3063 iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
3064 (uint64_t)iova->pfn_lo << PAGE_SHIFT, mask);
3065 }
3066 __free_iova(&deferred_flush[i].domain[j]->iovad, iova);
3067 if (deferred_flush[i].freelist[j])
3068 dma_free_pagelist(deferred_flush[i].freelist[j]);
3069 }
3070 deferred_flush[i].next = 0;
3071 }
3072
3073 list_size = 0;
3074 }
3075
3076 static void flush_unmaps_timeout(unsigned long data)
3077 {
3078 unsigned long flags;
3079
3080 spin_lock_irqsave(&async_umap_flush_lock, flags);
3081 flush_unmaps();
3082 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
3083 }
3084
3085 static void add_unmap(struct dmar_domain *dom, struct iova *iova, struct page *freelist)
3086 {
3087 unsigned long flags;
3088 int next, iommu_id;
3089 struct intel_iommu *iommu;
3090
3091 spin_lock_irqsave(&async_umap_flush_lock, flags);
3092 if (list_size == HIGH_WATER_MARK)
3093 flush_unmaps();
3094
3095 iommu = domain_get_iommu(dom);
3096 iommu_id = iommu->seq_id;
3097
3098 next = deferred_flush[iommu_id].next;
3099 deferred_flush[iommu_id].domain[next] = dom;
3100 deferred_flush[iommu_id].iova[next] = iova;
3101 deferred_flush[iommu_id].freelist[next] = freelist;
3102 deferred_flush[iommu_id].next++;
3103
3104 if (!timer_on) {
3105 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
3106 timer_on = 1;
3107 }
3108 list_size++;
3109 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
3110 }
3111
3112 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
3113 size_t size, enum dma_data_direction dir,
3114 struct dma_attrs *attrs)
3115 {
3116 struct dmar_domain *domain;
3117 unsigned long start_pfn, last_pfn;
3118 struct iova *iova;
3119 struct intel_iommu *iommu;
3120 struct page *freelist;
3121
3122 if (iommu_no_mapping(dev))
3123 return;
3124
3125 domain = find_domain(dev);
3126 BUG_ON(!domain);
3127
3128 iommu = domain_get_iommu(domain);
3129
3130 iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
3131 if (WARN_ONCE(!iova, "Driver unmaps unmatched page at PFN %llx\n",
3132 (unsigned long long)dev_addr))
3133 return;
3134
3135 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
3136 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
3137
3138 pr_debug("Device %s unmapping: pfn %lx-%lx\n",
3139 dev_name(dev), start_pfn, last_pfn);
3140
3141 freelist = domain_unmap(domain, start_pfn, last_pfn);
3142
3143 if (intel_iommu_strict) {
3144 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
3145 last_pfn - start_pfn + 1, !freelist, 0);
3146 /* free iova */
3147 __free_iova(&domain->iovad, iova);
3148 dma_free_pagelist(freelist);
3149 } else {
3150 add_unmap(domain, iova, freelist);
3151 /*
3152 * queue up the release of the unmap to save the 1/6th of the
3153 * cpu used up by the iotlb flush operation...
3154 */
3155 }
3156 }
3157
3158 static void *intel_alloc_coherent(struct device *dev, size_t size,
3159 dma_addr_t *dma_handle, gfp_t flags,
3160 struct dma_attrs *attrs)
3161 {
3162 void *vaddr;
3163 int order;
3164
3165 size = PAGE_ALIGN(size);
3166 order = get_order(size);
3167
3168 if (!iommu_no_mapping(dev))
3169 flags &= ~(GFP_DMA | GFP_DMA32);
3170 else if (dev->coherent_dma_mask < dma_get_required_mask(dev)) {
3171 if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
3172 flags |= GFP_DMA;
3173 else
3174 flags |= GFP_DMA32;
3175 }
3176
3177 vaddr = (void *)__get_free_pages(flags, order);
3178 if (!vaddr)
3179 return NULL;
3180 memset(vaddr, 0, size);
3181
3182 *dma_handle = __intel_map_single(dev, virt_to_bus(vaddr), size,
3183 DMA_BIDIRECTIONAL,
3184 dev->coherent_dma_mask);
3185 if (*dma_handle)
3186 return vaddr;
3187 free_pages((unsigned long)vaddr, order);
3188 return NULL;
3189 }
3190
3191 static void intel_free_coherent(struct device *dev, size_t size, void *vaddr,
3192 dma_addr_t dma_handle, struct dma_attrs *attrs)
3193 {
3194 int order;
3195
3196 size = PAGE_ALIGN(size);
3197 order = get_order(size);
3198
3199 intel_unmap_page(dev, dma_handle, size, DMA_BIDIRECTIONAL, NULL);
3200 free_pages((unsigned long)vaddr, order);
3201 }
3202
3203 static void intel_unmap_sg(struct device *dev, struct scatterlist *sglist,
3204 int nelems, enum dma_data_direction dir,
3205 struct dma_attrs *attrs)
3206 {
3207 struct dmar_domain *domain;
3208 unsigned long start_pfn, last_pfn;
3209 struct iova *iova;
3210 struct intel_iommu *iommu;
3211 struct page *freelist;
3212
3213 if (iommu_no_mapping(dev))
3214 return;
3215
3216 domain = find_domain(dev);
3217 BUG_ON(!domain);
3218
3219 iommu = domain_get_iommu(domain);
3220
3221 iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
3222 if (WARN_ONCE(!iova, "Driver unmaps unmatched sglist at PFN %llx\n",
3223 (unsigned long long)sglist[0].dma_address))
3224 return;
3225
3226 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
3227 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
3228
3229 freelist = domain_unmap(domain, start_pfn, last_pfn);
3230
3231 if (intel_iommu_strict) {
3232 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
3233 last_pfn - start_pfn + 1, !freelist, 0);
3234 /* free iova */
3235 __free_iova(&domain->iovad, iova);
3236 dma_free_pagelist(freelist);
3237 } else {
3238 add_unmap(domain, iova, freelist);
3239 /*
3240 * queue up the release of the unmap to save the 1/6th of the
3241 * cpu used up by the iotlb flush operation...
3242 */
3243 }
3244 }
3245
3246 static int intel_nontranslate_map_sg(struct device *hddev,
3247 struct scatterlist *sglist, int nelems, int dir)
3248 {
3249 int i;
3250 struct scatterlist *sg;
3251
3252 for_each_sg(sglist, sg, nelems, i) {
3253 BUG_ON(!sg_page(sg));
3254 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
3255 sg->dma_length = sg->length;
3256 }
3257 return nelems;
3258 }
3259
3260 static int intel_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
3261 enum dma_data_direction dir, struct dma_attrs *attrs)
3262 {
3263 int i;
3264 struct dmar_domain *domain;
3265 size_t size = 0;
3266 int prot = 0;
3267 struct iova *iova = NULL;
3268 int ret;
3269 struct scatterlist *sg;
3270 unsigned long start_vpfn;
3271 struct intel_iommu *iommu;
3272
3273 BUG_ON(dir == DMA_NONE);
3274 if (iommu_no_mapping(dev))
3275 return intel_nontranslate_map_sg(dev, sglist, nelems, dir);
3276
3277 domain = get_valid_domain_for_dev(dev);
3278 if (!domain)
3279 return 0;
3280
3281 iommu = domain_get_iommu(domain);
3282
3283 for_each_sg(sglist, sg, nelems, i)
3284 size += aligned_nrpages(sg->offset, sg->length);
3285
3286 iova = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size),
3287 *dev->dma_mask);
3288 if (!iova) {
3289 sglist->dma_length = 0;
3290 return 0;
3291 }
3292
3293 /*
3294 * Check if DMAR supports zero-length reads on write only
3295 * mappings..
3296 */
3297 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3298 !cap_zlr(iommu->cap))
3299 prot |= DMA_PTE_READ;
3300 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3301 prot |= DMA_PTE_WRITE;
3302
3303 start_vpfn = mm_to_dma_pfn(iova->pfn_lo);
3304
3305 ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3306 if (unlikely(ret)) {
3307 /* clear the page */
3308 dma_pte_clear_range(domain, start_vpfn,
3309 start_vpfn + size - 1);
3310 /* free page tables */
3311 dma_pte_free_pagetable(domain, start_vpfn,
3312 start_vpfn + size - 1);
3313 /* free iova */
3314 __free_iova(&domain->iovad, iova);
3315 return 0;
3316 }
3317
3318 /* it's a non-present to present mapping. Only flush if caching mode */
3319 if (cap_caching_mode(iommu->cap))
3320 iommu_flush_iotlb_psi(iommu, domain->id, start_vpfn, size, 0, 1);
3321 else
3322 iommu_flush_write_buffer(iommu);
3323
3324 return nelems;
3325 }
3326
3327 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
3328 {
3329 return !dma_addr;
3330 }
3331
3332 struct dma_map_ops intel_dma_ops = {
3333 .alloc = intel_alloc_coherent,
3334 .free = intel_free_coherent,
3335 .map_sg = intel_map_sg,
3336 .unmap_sg = intel_unmap_sg,
3337 .map_page = intel_map_page,
3338 .unmap_page = intel_unmap_page,
3339 .mapping_error = intel_mapping_error,
3340 };
3341
3342 static inline int iommu_domain_cache_init(void)
3343 {
3344 int ret = 0;
3345
3346 iommu_domain_cache = kmem_cache_create("iommu_domain",
3347 sizeof(struct dmar_domain),
3348 0,
3349 SLAB_HWCACHE_ALIGN,
3350
3351 NULL);
3352 if (!iommu_domain_cache) {
3353 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
3354 ret = -ENOMEM;
3355 }
3356
3357 return ret;
3358 }
3359
3360 static inline int iommu_devinfo_cache_init(void)
3361 {
3362 int ret = 0;
3363
3364 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
3365 sizeof(struct device_domain_info),
3366 0,
3367 SLAB_HWCACHE_ALIGN,
3368 NULL);
3369 if (!iommu_devinfo_cache) {
3370 printk(KERN_ERR "Couldn't create devinfo cache\n");
3371 ret = -ENOMEM;
3372 }
3373
3374 return ret;
3375 }
3376
3377 static inline int iommu_iova_cache_init(void)
3378 {
3379 int ret = 0;
3380
3381 iommu_iova_cache = kmem_cache_create("iommu_iova",
3382 sizeof(struct iova),
3383 0,
3384 SLAB_HWCACHE_ALIGN,
3385 NULL);
3386 if (!iommu_iova_cache) {
3387 printk(KERN_ERR "Couldn't create iova cache\n");
3388 ret = -ENOMEM;
3389 }
3390
3391 return ret;
3392 }
3393
3394 static int __init iommu_init_mempool(void)
3395 {
3396 int ret;
3397 ret = iommu_iova_cache_init();
3398 if (ret)
3399 return ret;
3400
3401 ret = iommu_domain_cache_init();
3402 if (ret)
3403 goto domain_error;
3404
3405 ret = iommu_devinfo_cache_init();
3406 if (!ret)
3407 return ret;
3408
3409 kmem_cache_destroy(iommu_domain_cache);
3410 domain_error:
3411 kmem_cache_destroy(iommu_iova_cache);
3412
3413 return -ENOMEM;
3414 }
3415
3416 static void __init iommu_exit_mempool(void)
3417 {
3418 kmem_cache_destroy(iommu_devinfo_cache);
3419 kmem_cache_destroy(iommu_domain_cache);
3420 kmem_cache_destroy(iommu_iova_cache);
3421
3422 }
3423
3424 static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
3425 {
3426 struct dmar_drhd_unit *drhd;
3427 u32 vtbar;
3428 int rc;
3429
3430 /* We know that this device on this chipset has its own IOMMU.
3431 * If we find it under a different IOMMU, then the BIOS is lying
3432 * to us. Hope that the IOMMU for this device is actually
3433 * disabled, and it needs no translation...
3434 */
3435 rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
3436 if (rc) {
3437 /* "can't" happen */
3438 dev_info(&pdev->dev, "failed to run vt-d quirk\n");
3439 return;
3440 }
3441 vtbar &= 0xffff0000;
3442
3443 /* we know that the this iommu should be at offset 0xa000 from vtbar */
3444 drhd = dmar_find_matched_drhd_unit(pdev);
3445 if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
3446 TAINT_FIRMWARE_WORKAROUND,
3447 "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
3448 pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3449 }
3450 DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
3451
3452 static void __init init_no_remapping_devices(void)
3453 {
3454 struct dmar_drhd_unit *drhd;
3455 struct device *dev;
3456 int i;
3457
3458 for_each_drhd_unit(drhd) {
3459 if (!drhd->include_all) {
3460 for_each_active_dev_scope(drhd->devices,
3461 drhd->devices_cnt, i, dev)
3462 break;
3463 /* ignore DMAR unit if no devices exist */
3464 if (i == drhd->devices_cnt)
3465 drhd->ignored = 1;
3466 }
3467 }
3468
3469 for_each_active_drhd_unit(drhd) {
3470 if (drhd->include_all)
3471 continue;
3472
3473 for_each_active_dev_scope(drhd->devices,
3474 drhd->devices_cnt, i, dev)
3475 if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
3476 break;
3477 if (i < drhd->devices_cnt)
3478 continue;
3479
3480 /* This IOMMU has *only* gfx devices. Either bypass it or
3481 set the gfx_mapped flag, as appropriate */
3482 if (dmar_map_gfx) {
3483 intel_iommu_gfx_mapped = 1;
3484 } else {
3485 drhd->ignored = 1;
3486 for_each_active_dev_scope(drhd->devices,
3487 drhd->devices_cnt, i, dev)
3488 dev->archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3489 }
3490 }
3491 }
3492
3493 #ifdef CONFIG_SUSPEND
3494 static int init_iommu_hw(void)
3495 {
3496 struct dmar_drhd_unit *drhd;
3497 struct intel_iommu *iommu = NULL;
3498
3499 for_each_active_iommu(iommu, drhd)
3500 if (iommu->qi)
3501 dmar_reenable_qi(iommu);
3502
3503 for_each_iommu(iommu, drhd) {
3504 if (drhd->ignored) {
3505 /*
3506 * we always have to disable PMRs or DMA may fail on
3507 * this device
3508 */
3509 if (force_on)
3510 iommu_disable_protect_mem_regions(iommu);
3511 continue;
3512 }
3513
3514 iommu_flush_write_buffer(iommu);
3515
3516 iommu_set_root_entry(iommu);
3517
3518 iommu->flush.flush_context(iommu, 0, 0, 0,
3519 DMA_CCMD_GLOBAL_INVL);
3520 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3521 DMA_TLB_GLOBAL_FLUSH);
3522 if (iommu_enable_translation(iommu))
3523 return 1;
3524 iommu_disable_protect_mem_regions(iommu);
3525 }
3526
3527 return 0;
3528 }
3529
3530 static void iommu_flush_all(void)
3531 {
3532 struct dmar_drhd_unit *drhd;
3533 struct intel_iommu *iommu;
3534
3535 for_each_active_iommu(iommu, drhd) {
3536 iommu->flush.flush_context(iommu, 0, 0, 0,
3537 DMA_CCMD_GLOBAL_INVL);
3538 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3539 DMA_TLB_GLOBAL_FLUSH);
3540 }
3541 }
3542
3543 static int iommu_suspend(void)
3544 {
3545 struct dmar_drhd_unit *drhd;
3546 struct intel_iommu *iommu = NULL;
3547 unsigned long flag;
3548
3549 for_each_active_iommu(iommu, drhd) {
3550 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
3551 GFP_ATOMIC);
3552 if (!iommu->iommu_state)
3553 goto nomem;
3554 }
3555
3556 iommu_flush_all();
3557
3558 for_each_active_iommu(iommu, drhd) {
3559 iommu_disable_translation(iommu);
3560
3561 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3562
3563 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3564 readl(iommu->reg + DMAR_FECTL_REG);
3565 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3566 readl(iommu->reg + DMAR_FEDATA_REG);
3567 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3568 readl(iommu->reg + DMAR_FEADDR_REG);
3569 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3570 readl(iommu->reg + DMAR_FEUADDR_REG);
3571
3572 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3573 }
3574 return 0;
3575
3576 nomem:
3577 for_each_active_iommu(iommu, drhd)
3578 kfree(iommu->iommu_state);
3579
3580 return -ENOMEM;
3581 }
3582
3583 static void iommu_resume(void)
3584 {
3585 struct dmar_drhd_unit *drhd;
3586 struct intel_iommu *iommu = NULL;
3587 unsigned long flag;
3588
3589 if (init_iommu_hw()) {
3590 if (force_on)
3591 panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
3592 else
3593 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3594 return;
3595 }
3596
3597 for_each_active_iommu(iommu, drhd) {
3598
3599 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3600
3601 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3602 iommu->reg + DMAR_FECTL_REG);
3603 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3604 iommu->reg + DMAR_FEDATA_REG);
3605 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3606 iommu->reg + DMAR_FEADDR_REG);
3607 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3608 iommu->reg + DMAR_FEUADDR_REG);
3609
3610 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3611 }
3612
3613 for_each_active_iommu(iommu, drhd)
3614 kfree(iommu->iommu_state);
3615 }
3616
3617 static struct syscore_ops iommu_syscore_ops = {
3618 .resume = iommu_resume,
3619 .suspend = iommu_suspend,
3620 };
3621
3622 static void __init init_iommu_pm_ops(void)
3623 {
3624 register_syscore_ops(&iommu_syscore_ops);
3625 }
3626
3627 #else
3628 static inline void init_iommu_pm_ops(void) {}
3629 #endif /* CONFIG_PM */
3630
3631
3632 int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header)
3633 {
3634 struct acpi_dmar_reserved_memory *rmrr;
3635 struct dmar_rmrr_unit *rmrru;
3636
3637 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
3638 if (!rmrru)
3639 return -ENOMEM;
3640
3641 rmrru->hdr = header;
3642 rmrr = (struct acpi_dmar_reserved_memory *)header;
3643 rmrru->base_address = rmrr->base_address;
3644 rmrru->end_address = rmrr->end_address;
3645 rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
3646 ((void *)rmrr) + rmrr->header.length,
3647 &rmrru->devices_cnt);
3648 if (rmrru->devices_cnt && rmrru->devices == NULL) {
3649 kfree(rmrru);
3650 return -ENOMEM;
3651 }
3652
3653 list_add(&rmrru->list, &dmar_rmrr_units);
3654
3655 return 0;
3656 }
3657
3658 int __init dmar_parse_one_atsr(struct acpi_dmar_header *hdr)
3659 {
3660 struct acpi_dmar_atsr *atsr;
3661 struct dmar_atsr_unit *atsru;
3662
3663 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
3664 atsru = kzalloc(sizeof(*atsru), GFP_KERNEL);
3665 if (!atsru)
3666 return -ENOMEM;
3667
3668 atsru->hdr = hdr;
3669 atsru->include_all = atsr->flags & 0x1;
3670 if (!atsru->include_all) {
3671 atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
3672 (void *)atsr + atsr->header.length,
3673 &atsru->devices_cnt);
3674 if (atsru->devices_cnt && atsru->devices == NULL) {
3675 kfree(atsru);
3676 return -ENOMEM;
3677 }
3678 }
3679
3680 list_add_rcu(&atsru->list, &dmar_atsr_units);
3681
3682 return 0;
3683 }
3684
3685 static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
3686 {
3687 dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
3688 kfree(atsru);
3689 }
3690
3691 static void intel_iommu_free_dmars(void)
3692 {
3693 struct dmar_rmrr_unit *rmrru, *rmrr_n;
3694 struct dmar_atsr_unit *atsru, *atsr_n;
3695
3696 list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
3697 list_del(&rmrru->list);
3698 dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
3699 kfree(rmrru);
3700 }
3701
3702 list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
3703 list_del(&atsru->list);
3704 intel_iommu_free_atsr(atsru);
3705 }
3706 }
3707
3708 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
3709 {
3710 int i, ret = 1;
3711 struct pci_bus *bus;
3712 struct pci_dev *bridge = NULL;
3713 struct device *tmp;
3714 struct acpi_dmar_atsr *atsr;
3715 struct dmar_atsr_unit *atsru;
3716
3717 dev = pci_physfn(dev);
3718 for (bus = dev->bus; bus; bus = bus->parent) {
3719 bridge = bus->self;
3720 if (!bridge || !pci_is_pcie(bridge) ||
3721 pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
3722 return 0;
3723 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
3724 break;
3725 }
3726 if (!bridge)
3727 return 0;
3728
3729 rcu_read_lock();
3730 list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
3731 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
3732 if (atsr->segment != pci_domain_nr(dev->bus))
3733 continue;
3734
3735 for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
3736 if (tmp == &bridge->dev)
3737 goto out;
3738
3739 if (atsru->include_all)
3740 goto out;
3741 }
3742 ret = 0;
3743 out:
3744 rcu_read_unlock();
3745
3746 return ret;
3747 }
3748
3749 int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
3750 {
3751 int ret = 0;
3752 struct dmar_rmrr_unit *rmrru;
3753 struct dmar_atsr_unit *atsru;
3754 struct acpi_dmar_atsr *atsr;
3755 struct acpi_dmar_reserved_memory *rmrr;
3756
3757 if (!intel_iommu_enabled && system_state != SYSTEM_BOOTING)
3758 return 0;
3759
3760 list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
3761 rmrr = container_of(rmrru->hdr,
3762 struct acpi_dmar_reserved_memory, header);
3763 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
3764 ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
3765 ((void *)rmrr) + rmrr->header.length,
3766 rmrr->segment, rmrru->devices,
3767 rmrru->devices_cnt);
3768 if (ret > 0)
3769 break;
3770 else if(ret < 0)
3771 return ret;
3772 } else if (info->event == BUS_NOTIFY_DEL_DEVICE) {
3773 if (dmar_remove_dev_scope(info, rmrr->segment,
3774 rmrru->devices, rmrru->devices_cnt))
3775 break;
3776 }
3777 }
3778
3779 list_for_each_entry(atsru, &dmar_atsr_units, list) {
3780 if (atsru->include_all)
3781 continue;
3782
3783 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
3784 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
3785 ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
3786 (void *)atsr + atsr->header.length,
3787 atsr->segment, atsru->devices,
3788 atsru->devices_cnt);
3789 if (ret > 0)
3790 break;
3791 else if(ret < 0)
3792 return ret;
3793 } else if (info->event == BUS_NOTIFY_DEL_DEVICE) {
3794 if (dmar_remove_dev_scope(info, atsr->segment,
3795 atsru->devices, atsru->devices_cnt))
3796 break;
3797 }
3798 }
3799
3800 return 0;
3801 }
3802
3803 /*
3804 * Here we only respond to action of unbound device from driver.
3805 *
3806 * Added device is not attached to its DMAR domain here yet. That will happen
3807 * when mapping the device to iova.
3808 */
3809 static int device_notifier(struct notifier_block *nb,
3810 unsigned long action, void *data)
3811 {
3812 struct device *dev = data;
3813 struct dmar_domain *domain;
3814
3815 if (iommu_dummy(dev))
3816 return 0;
3817
3818 if (action != BUS_NOTIFY_UNBOUND_DRIVER &&
3819 action != BUS_NOTIFY_DEL_DEVICE)
3820 return 0;
3821
3822 domain = find_domain(dev);
3823 if (!domain)
3824 return 0;
3825
3826 down_read(&dmar_global_lock);
3827 domain_remove_one_dev_info(domain, dev);
3828 if (!(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) &&
3829 !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) &&
3830 list_empty(&domain->devices))
3831 domain_exit(domain);
3832 up_read(&dmar_global_lock);
3833
3834 return 0;
3835 }
3836
3837 static struct notifier_block device_nb = {
3838 .notifier_call = device_notifier,
3839 };
3840
3841 static int intel_iommu_memory_notifier(struct notifier_block *nb,
3842 unsigned long val, void *v)
3843 {
3844 struct memory_notify *mhp = v;
3845 unsigned long long start, end;
3846 unsigned long start_vpfn, last_vpfn;
3847
3848 switch (val) {
3849 case MEM_GOING_ONLINE:
3850 start = mhp->start_pfn << PAGE_SHIFT;
3851 end = ((mhp->start_pfn + mhp->nr_pages) << PAGE_SHIFT) - 1;
3852 if (iommu_domain_identity_map(si_domain, start, end)) {
3853 pr_warn("dmar: failed to build identity map for [%llx-%llx]\n",
3854 start, end);
3855 return NOTIFY_BAD;
3856 }
3857 break;
3858
3859 case MEM_OFFLINE:
3860 case MEM_CANCEL_ONLINE:
3861 start_vpfn = mm_to_dma_pfn(mhp->start_pfn);
3862 last_vpfn = mm_to_dma_pfn(mhp->start_pfn + mhp->nr_pages - 1);
3863 while (start_vpfn <= last_vpfn) {
3864 struct iova *iova;
3865 struct dmar_drhd_unit *drhd;
3866 struct intel_iommu *iommu;
3867 struct page *freelist;
3868
3869 iova = find_iova(&si_domain->iovad, start_vpfn);
3870 if (iova == NULL) {
3871 pr_debug("dmar: failed get IOVA for PFN %lx\n",
3872 start_vpfn);
3873 break;
3874 }
3875
3876 iova = split_and_remove_iova(&si_domain->iovad, iova,
3877 start_vpfn, last_vpfn);
3878 if (iova == NULL) {
3879 pr_warn("dmar: failed to split IOVA PFN [%lx-%lx]\n",
3880 start_vpfn, last_vpfn);
3881 return NOTIFY_BAD;
3882 }
3883
3884 freelist = domain_unmap(si_domain, iova->pfn_lo,
3885 iova->pfn_hi);
3886
3887 rcu_read_lock();
3888 for_each_active_iommu(iommu, drhd)
3889 iommu_flush_iotlb_psi(iommu, si_domain->id,
3890 iova->pfn_lo,
3891 iova->pfn_hi - iova->pfn_lo + 1,
3892 !freelist, 0);
3893 rcu_read_unlock();
3894 dma_free_pagelist(freelist);
3895
3896 start_vpfn = iova->pfn_hi + 1;
3897 free_iova_mem(iova);
3898 }
3899 break;
3900 }
3901
3902 return NOTIFY_OK;
3903 }
3904
3905 static struct notifier_block intel_iommu_memory_nb = {
3906 .notifier_call = intel_iommu_memory_notifier,
3907 .priority = 0
3908 };
3909
3910 int __init intel_iommu_init(void)
3911 {
3912 int ret = -ENODEV;
3913 struct dmar_drhd_unit *drhd;
3914 struct intel_iommu *iommu;
3915
3916 /* VT-d is required for a TXT/tboot launch, so enforce that */
3917 force_on = tboot_force_iommu();
3918
3919 if (iommu_init_mempool()) {
3920 if (force_on)
3921 panic("tboot: Failed to initialize iommu memory\n");
3922 return -ENOMEM;
3923 }
3924
3925 down_write(&dmar_global_lock);
3926 if (dmar_table_init()) {
3927 if (force_on)
3928 panic("tboot: Failed to initialize DMAR table\n");
3929 goto out_free_dmar;
3930 }
3931
3932 /*
3933 * Disable translation if already enabled prior to OS handover.
3934 */
3935 for_each_active_iommu(iommu, drhd)
3936 if (iommu->gcmd & DMA_GCMD_TE)
3937 iommu_disable_translation(iommu);
3938
3939 if (dmar_dev_scope_init() < 0) {
3940 if (force_on)
3941 panic("tboot: Failed to initialize DMAR device scope\n");
3942 goto out_free_dmar;
3943 }
3944
3945 if (no_iommu || dmar_disabled)
3946 goto out_free_dmar;
3947
3948 if (list_empty(&dmar_rmrr_units))
3949 printk(KERN_INFO "DMAR: No RMRR found\n");
3950
3951 if (list_empty(&dmar_atsr_units))
3952 printk(KERN_INFO "DMAR: No ATSR found\n");
3953
3954 if (dmar_init_reserved_ranges()) {
3955 if (force_on)
3956 panic("tboot: Failed to reserve iommu ranges\n");
3957 goto out_free_reserved_range;
3958 }
3959
3960 init_no_remapping_devices();
3961
3962 ret = init_dmars();
3963 if (ret) {
3964 if (force_on)
3965 panic("tboot: Failed to initialize DMARs\n");
3966 printk(KERN_ERR "IOMMU: dmar init failed\n");
3967 goto out_free_reserved_range;
3968 }
3969 up_write(&dmar_global_lock);
3970 printk(KERN_INFO
3971 "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
3972
3973 init_timer(&unmap_timer);
3974 #ifdef CONFIG_SWIOTLB
3975 swiotlb = 0;
3976 #endif
3977 dma_ops = &intel_dma_ops;
3978
3979 init_iommu_pm_ops();
3980
3981 bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
3982 bus_register_notifier(&pci_bus_type, &device_nb);
3983 if (si_domain && !hw_pass_through)
3984 register_memory_notifier(&intel_iommu_memory_nb);
3985
3986 intel_iommu_enabled = 1;
3987
3988 return 0;
3989
3990 out_free_reserved_range:
3991 put_iova_domain(&reserved_iova_list);
3992 out_free_dmar:
3993 intel_iommu_free_dmars();
3994 up_write(&dmar_global_lock);
3995 iommu_exit_mempool();
3996 return ret;
3997 }
3998
3999 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
4000 struct device *dev)
4001 {
4002 struct pci_dev *tmp, *parent, *pdev;
4003
4004 if (!iommu || !dev || !dev_is_pci(dev))
4005 return;
4006
4007 pdev = to_pci_dev(dev);
4008
4009 /* dependent device detach */
4010 tmp = pci_find_upstream_pcie_bridge(pdev);
4011 /* Secondary interface's bus number and devfn 0 */
4012 if (tmp) {
4013 parent = pdev->bus->self;
4014 while (parent != tmp) {
4015 iommu_detach_dev(iommu, parent->bus->number,
4016 parent->devfn);
4017 parent = parent->bus->self;
4018 }
4019 if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */
4020 iommu_detach_dev(iommu,
4021 tmp->subordinate->number, 0);
4022 else /* this is a legacy PCI bridge */
4023 iommu_detach_dev(iommu, tmp->bus->number,
4024 tmp->devfn);
4025 }
4026 }
4027
4028 static void domain_remove_one_dev_info(struct dmar_domain *domain,
4029 struct device *dev)
4030 {
4031 struct device_domain_info *info, *tmp;
4032 struct intel_iommu *iommu;
4033 unsigned long flags;
4034 int found = 0;
4035 u8 bus, devfn;
4036
4037 iommu = device_to_iommu(dev, &bus, &devfn);
4038 if (!iommu)
4039 return;
4040
4041 spin_lock_irqsave(&device_domain_lock, flags);
4042 list_for_each_entry_safe(info, tmp, &domain->devices, link) {
4043 if (info->iommu == iommu && info->bus == bus &&
4044 info->devfn == devfn) {
4045 unlink_domain_info(info);
4046 spin_unlock_irqrestore(&device_domain_lock, flags);
4047
4048 iommu_disable_dev_iotlb(info);
4049 iommu_detach_dev(iommu, info->bus, info->devfn);
4050 iommu_detach_dependent_devices(iommu, dev);
4051 free_devinfo_mem(info);
4052
4053 spin_lock_irqsave(&device_domain_lock, flags);
4054
4055 if (found)
4056 break;
4057 else
4058 continue;
4059 }
4060
4061 /* if there is no other devices under the same iommu
4062 * owned by this domain, clear this iommu in iommu_bmp
4063 * update iommu count and coherency
4064 */
4065 if (info->iommu == iommu)
4066 found = 1;
4067 }
4068
4069 spin_unlock_irqrestore(&device_domain_lock, flags);
4070
4071 if (found == 0) {
4072 unsigned long tmp_flags;
4073 spin_lock_irqsave(&domain->iommu_lock, tmp_flags);
4074 clear_bit(iommu->seq_id, domain->iommu_bmp);
4075 domain->iommu_count--;
4076 domain_update_iommu_cap(domain);
4077 spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags);
4078
4079 if (!(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) &&
4080 !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)) {
4081 spin_lock_irqsave(&iommu->lock, tmp_flags);
4082 clear_bit(domain->id, iommu->domain_ids);
4083 iommu->domains[domain->id] = NULL;
4084 spin_unlock_irqrestore(&iommu->lock, tmp_flags);
4085 }
4086 }
4087 }
4088
4089 static int md_domain_init(struct dmar_domain *domain, int guest_width)
4090 {
4091 int adjust_width;
4092
4093 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
4094 domain_reserve_special_ranges(domain);
4095
4096 /* calculate AGAW */
4097 domain->gaw = guest_width;
4098 adjust_width = guestwidth_to_adjustwidth(guest_width);
4099 domain->agaw = width_to_agaw(adjust_width);
4100
4101 domain->iommu_coherency = 0;
4102 domain->iommu_snooping = 0;
4103 domain->iommu_superpage = 0;
4104 domain->max_addr = 0;
4105 domain->nid = -1;
4106
4107 /* always allocate the top pgd */
4108 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
4109 if (!domain->pgd)
4110 return -ENOMEM;
4111 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
4112 return 0;
4113 }
4114
4115 static int intel_iommu_domain_init(struct iommu_domain *domain)
4116 {
4117 struct dmar_domain *dmar_domain;
4118
4119 dmar_domain = alloc_domain(true);
4120 if (!dmar_domain) {
4121 printk(KERN_ERR
4122 "intel_iommu_domain_init: dmar_domain == NULL\n");
4123 return -ENOMEM;
4124 }
4125 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
4126 printk(KERN_ERR
4127 "intel_iommu_domain_init() failed\n");
4128 domain_exit(dmar_domain);
4129 return -ENOMEM;
4130 }
4131 domain_update_iommu_cap(dmar_domain);
4132 domain->priv = dmar_domain;
4133
4134 domain->geometry.aperture_start = 0;
4135 domain->geometry.aperture_end = __DOMAIN_MAX_ADDR(dmar_domain->gaw);
4136 domain->geometry.force_aperture = true;
4137
4138 return 0;
4139 }
4140
4141 static void intel_iommu_domain_destroy(struct iommu_domain *domain)
4142 {
4143 struct dmar_domain *dmar_domain = domain->priv;
4144
4145 domain->priv = NULL;
4146 domain_exit(dmar_domain);
4147 }
4148
4149 static int intel_iommu_attach_device(struct iommu_domain *domain,
4150 struct device *dev)
4151 {
4152 struct dmar_domain *dmar_domain = domain->priv;
4153 struct pci_dev *pdev = to_pci_dev(dev);
4154 struct intel_iommu *iommu;
4155 int addr_width;
4156 u8 bus, devfn;
4157
4158 /* normally pdev is not mapped */
4159 if (unlikely(domain_context_mapped(&pdev->dev))) {
4160 struct dmar_domain *old_domain;
4161
4162 old_domain = find_domain(dev);
4163 if (old_domain) {
4164 if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
4165 dmar_domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)
4166 domain_remove_one_dev_info(old_domain, dev);
4167 else
4168 domain_remove_dev_info(old_domain);
4169 }
4170 }
4171
4172 iommu = device_to_iommu(dev, &bus, &devfn);
4173 if (!iommu)
4174 return -ENODEV;
4175
4176 /* check if this iommu agaw is sufficient for max mapped address */
4177 addr_width = agaw_to_width(iommu->agaw);
4178 if (addr_width > cap_mgaw(iommu->cap))
4179 addr_width = cap_mgaw(iommu->cap);
4180
4181 if (dmar_domain->max_addr > (1LL << addr_width)) {
4182 printk(KERN_ERR "%s: iommu width (%d) is not "
4183 "sufficient for the mapped address (%llx)\n",
4184 __func__, addr_width, dmar_domain->max_addr);
4185 return -EFAULT;
4186 }
4187 dmar_domain->gaw = addr_width;
4188
4189 /*
4190 * Knock out extra levels of page tables if necessary
4191 */
4192 while (iommu->agaw < dmar_domain->agaw) {
4193 struct dma_pte *pte;
4194
4195 pte = dmar_domain->pgd;
4196 if (dma_pte_present(pte)) {
4197 dmar_domain->pgd = (struct dma_pte *)
4198 phys_to_virt(dma_pte_addr(pte));
4199 free_pgtable_page(pte);
4200 }
4201 dmar_domain->agaw--;
4202 }
4203
4204 return domain_add_dev_info(dmar_domain, pdev, CONTEXT_TT_MULTI_LEVEL);
4205 }
4206
4207 static void intel_iommu_detach_device(struct iommu_domain *domain,
4208 struct device *dev)
4209 {
4210 struct dmar_domain *dmar_domain = domain->priv;
4211
4212 domain_remove_one_dev_info(dmar_domain, dev);
4213 }
4214
4215 static int intel_iommu_map(struct iommu_domain *domain,
4216 unsigned long iova, phys_addr_t hpa,
4217 size_t size, int iommu_prot)
4218 {
4219 struct dmar_domain *dmar_domain = domain->priv;
4220 u64 max_addr;
4221 int prot = 0;
4222 int ret;
4223
4224 if (iommu_prot & IOMMU_READ)
4225 prot |= DMA_PTE_READ;
4226 if (iommu_prot & IOMMU_WRITE)
4227 prot |= DMA_PTE_WRITE;
4228 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
4229 prot |= DMA_PTE_SNP;
4230
4231 max_addr = iova + size;
4232 if (dmar_domain->max_addr < max_addr) {
4233 u64 end;
4234
4235 /* check if minimum agaw is sufficient for mapped address */
4236 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
4237 if (end < max_addr) {
4238 printk(KERN_ERR "%s: iommu width (%d) is not "
4239 "sufficient for the mapped address (%llx)\n",
4240 __func__, dmar_domain->gaw, max_addr);
4241 return -EFAULT;
4242 }
4243 dmar_domain->max_addr = max_addr;
4244 }
4245 /* Round up size to next multiple of PAGE_SIZE, if it and
4246 the low bits of hpa would take us onto the next page */
4247 size = aligned_nrpages(hpa, size);
4248 ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
4249 hpa >> VTD_PAGE_SHIFT, size, prot);
4250 return ret;
4251 }
4252
4253 static size_t intel_iommu_unmap(struct iommu_domain *domain,
4254 unsigned long iova, size_t size)
4255 {
4256 struct dmar_domain *dmar_domain = domain->priv;
4257 struct page *freelist = NULL;
4258 struct intel_iommu *iommu;
4259 unsigned long start_pfn, last_pfn;
4260 unsigned int npages;
4261 int iommu_id, num, ndomains, level = 0;
4262
4263 /* Cope with horrid API which requires us to unmap more than the
4264 size argument if it happens to be a large-page mapping. */
4265 if (!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level))
4266 BUG();
4267
4268 if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
4269 size = VTD_PAGE_SIZE << level_to_offset_bits(level);
4270
4271 start_pfn = iova >> VTD_PAGE_SHIFT;
4272 last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;
4273
4274 freelist = domain_unmap(dmar_domain, start_pfn, last_pfn);
4275
4276 npages = last_pfn - start_pfn + 1;
4277
4278 for_each_set_bit(iommu_id, dmar_domain->iommu_bmp, g_num_of_iommus) {
4279 iommu = g_iommus[iommu_id];
4280
4281 /*
4282 * find bit position of dmar_domain
4283 */
4284 ndomains = cap_ndoms(iommu->cap);
4285 for_each_set_bit(num, iommu->domain_ids, ndomains) {
4286 if (iommu->domains[num] == dmar_domain)
4287 iommu_flush_iotlb_psi(iommu, num, start_pfn,
4288 npages, !freelist, 0);
4289 }
4290
4291 }
4292
4293 dma_free_pagelist(freelist);
4294
4295 if (dmar_domain->max_addr == iova + size)
4296 dmar_domain->max_addr = iova;
4297
4298 return size;
4299 }
4300
4301 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
4302 dma_addr_t iova)
4303 {
4304 struct dmar_domain *dmar_domain = domain->priv;
4305 struct dma_pte *pte;
4306 int level = 0;
4307 u64 phys = 0;
4308
4309 pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level);
4310 if (pte)
4311 phys = dma_pte_addr(pte);
4312
4313 return phys;
4314 }
4315
4316 static int intel_iommu_domain_has_cap(struct iommu_domain *domain,
4317 unsigned long cap)
4318 {
4319 struct dmar_domain *dmar_domain = domain->priv;
4320
4321 if (cap == IOMMU_CAP_CACHE_COHERENCY)
4322 return dmar_domain->iommu_snooping;
4323 if (cap == IOMMU_CAP_INTR_REMAP)
4324 return irq_remapping_enabled;
4325
4326 return 0;
4327 }
4328
4329 #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
4330
4331 static int intel_iommu_add_device(struct device *dev)
4332 {
4333 struct pci_dev *pdev = to_pci_dev(dev);
4334 struct pci_dev *bridge, *dma_pdev = NULL;
4335 struct iommu_group *group;
4336 int ret;
4337 u8 bus, devfn;
4338
4339 if (!device_to_iommu(dev, &bus, &devfn))
4340 return -ENODEV;
4341
4342 bridge = pci_find_upstream_pcie_bridge(pdev);
4343 if (bridge) {
4344 if (pci_is_pcie(bridge))
4345 dma_pdev = pci_get_domain_bus_and_slot(
4346 pci_domain_nr(pdev->bus),
4347 bridge->subordinate->number, 0);
4348 if (!dma_pdev)
4349 dma_pdev = pci_dev_get(bridge);
4350 } else
4351 dma_pdev = pci_dev_get(pdev);
4352
4353 /* Account for quirked devices */
4354 swap_pci_ref(&dma_pdev, pci_get_dma_source(dma_pdev));
4355
4356 /*
4357 * If it's a multifunction device that does not support our
4358 * required ACS flags, add to the same group as lowest numbered
4359 * function that also does not suport the required ACS flags.
4360 */
4361 if (dma_pdev->multifunction &&
4362 !pci_acs_enabled(dma_pdev, REQ_ACS_FLAGS)) {
4363 u8 i, slot = PCI_SLOT(dma_pdev->devfn);
4364
4365 for (i = 0; i < 8; i++) {
4366 struct pci_dev *tmp;
4367
4368 tmp = pci_get_slot(dma_pdev->bus, PCI_DEVFN(slot, i));
4369 if (!tmp)
4370 continue;
4371
4372 if (!pci_acs_enabled(tmp, REQ_ACS_FLAGS)) {
4373 swap_pci_ref(&dma_pdev, tmp);
4374 break;
4375 }
4376 pci_dev_put(tmp);
4377 }
4378 }
4379
4380 /*
4381 * Devices on the root bus go through the iommu. If that's not us,
4382 * find the next upstream device and test ACS up to the root bus.
4383 * Finding the next device may require skipping virtual buses.
4384 */
4385 while (!pci_is_root_bus(dma_pdev->bus)) {
4386 struct pci_bus *bus = dma_pdev->bus;
4387
4388 while (!bus->self) {
4389 if (!pci_is_root_bus(bus))
4390 bus = bus->parent;
4391 else
4392 goto root_bus;
4393 }
4394
4395 if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
4396 break;
4397
4398 swap_pci_ref(&dma_pdev, pci_dev_get(bus->self));
4399 }
4400
4401 root_bus:
4402 group = iommu_group_get(&dma_pdev->dev);
4403 pci_dev_put(dma_pdev);
4404 if (!group) {
4405 group = iommu_group_alloc();
4406 if (IS_ERR(group))
4407 return PTR_ERR(group);
4408 }
4409
4410 ret = iommu_group_add_device(group, dev);
4411
4412 iommu_group_put(group);
4413 return ret;
4414 }
4415
4416 static void intel_iommu_remove_device(struct device *dev)
4417 {
4418 iommu_group_remove_device(dev);
4419 }
4420
4421 static struct iommu_ops intel_iommu_ops = {
4422 .domain_init = intel_iommu_domain_init,
4423 .domain_destroy = intel_iommu_domain_destroy,
4424 .attach_dev = intel_iommu_attach_device,
4425 .detach_dev = intel_iommu_detach_device,
4426 .map = intel_iommu_map,
4427 .unmap = intel_iommu_unmap,
4428 .iova_to_phys = intel_iommu_iova_to_phys,
4429 .domain_has_cap = intel_iommu_domain_has_cap,
4430 .add_device = intel_iommu_add_device,
4431 .remove_device = intel_iommu_remove_device,
4432 .pgsize_bitmap = INTEL_IOMMU_PGSIZES,
4433 };
4434
4435 static void quirk_iommu_g4x_gfx(struct pci_dev *dev)
4436 {
4437 /* G4x/GM45 integrated gfx dmar support is totally busted. */
4438 printk(KERN_INFO "DMAR: Disabling IOMMU for graphics on this chipset\n");
4439 dmar_map_gfx = 0;
4440 }
4441
4442 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_g4x_gfx);
4443 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_g4x_gfx);
4444 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_g4x_gfx);
4445 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_g4x_gfx);
4446 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_g4x_gfx);
4447 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_g4x_gfx);
4448 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_g4x_gfx);
4449
4450 static void quirk_iommu_rwbf(struct pci_dev *dev)
4451 {
4452 /*
4453 * Mobile 4 Series Chipset neglects to set RWBF capability,
4454 * but needs it. Same seems to hold for the desktop versions.
4455 */
4456 printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n");
4457 rwbf_quirk = 1;
4458 }
4459
4460 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
4461 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
4462 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
4463 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
4464 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
4465 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
4466 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
4467
4468 #define GGC 0x52
4469 #define GGC_MEMORY_SIZE_MASK (0xf << 8)
4470 #define GGC_MEMORY_SIZE_NONE (0x0 << 8)
4471 #define GGC_MEMORY_SIZE_1M (0x1 << 8)
4472 #define GGC_MEMORY_SIZE_2M (0x3 << 8)
4473 #define GGC_MEMORY_VT_ENABLED (0x8 << 8)
4474 #define GGC_MEMORY_SIZE_2M_VT (0x9 << 8)
4475 #define GGC_MEMORY_SIZE_3M_VT (0xa << 8)
4476 #define GGC_MEMORY_SIZE_4M_VT (0xb << 8)
4477
4478 static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
4479 {
4480 unsigned short ggc;
4481
4482 if (pci_read_config_word(dev, GGC, &ggc))
4483 return;
4484
4485 if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
4486 printk(KERN_INFO "DMAR: BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
4487 dmar_map_gfx = 0;
4488 } else if (dmar_map_gfx) {
4489 /* we have to ensure the gfx device is idle before we flush */
4490 printk(KERN_INFO "DMAR: Disabling batched IOTLB flush on Ironlake\n");
4491 intel_iommu_strict = 1;
4492 }
4493 }
4494 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
4495 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
4496 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
4497 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
4498
4499 /* On Tylersburg chipsets, some BIOSes have been known to enable the
4500 ISOCH DMAR unit for the Azalia sound device, but not give it any
4501 TLB entries, which causes it to deadlock. Check for that. We do
4502 this in a function called from init_dmars(), instead of in a PCI
4503 quirk, because we don't want to print the obnoxious "BIOS broken"
4504 message if VT-d is actually disabled.
4505 */
4506 static void __init check_tylersburg_isoch(void)
4507 {
4508 struct pci_dev *pdev;
4509 uint32_t vtisochctrl;
4510
4511 /* If there's no Azalia in the system anyway, forget it. */
4512 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
4513 if (!pdev)
4514 return;
4515 pci_dev_put(pdev);
4516
4517 /* System Management Registers. Might be hidden, in which case
4518 we can't do the sanity check. But that's OK, because the
4519 known-broken BIOSes _don't_ actually hide it, so far. */
4520 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
4521 if (!pdev)
4522 return;
4523
4524 if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
4525 pci_dev_put(pdev);
4526 return;
4527 }
4528
4529 pci_dev_put(pdev);
4530
4531 /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
4532 if (vtisochctrl & 1)
4533 return;
4534
4535 /* Drop all bits other than the number of TLB entries */
4536 vtisochctrl &= 0x1c;
4537
4538 /* If we have the recommended number of TLB entries (16), fine. */
4539 if (vtisochctrl == 0x10)
4540 return;
4541
4542 /* Zero TLB entries? You get to ride the short bus to school. */
4543 if (!vtisochctrl) {
4544 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
4545 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
4546 dmi_get_system_info(DMI_BIOS_VENDOR),
4547 dmi_get_system_info(DMI_BIOS_VERSION),
4548 dmi_get_system_info(DMI_PRODUCT_VERSION));
4549 iommu_identity_mapping |= IDENTMAP_AZALIA;
4550 return;
4551 }
4552
4553 printk(KERN_WARNING "DMAR: Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
4554 vtisochctrl);
4555 }
This page took 0.124836 seconds and 5 git commands to generate.