iommu/vt-d: Implement DMAR unit hotplug framework
[deliverable/linux.git] / drivers / iommu / intel-iommu.c
1 /*
2 * Copyright © 2006-2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * Authors: David Woodhouse <dwmw2@infradead.org>,
14 * Ashok Raj <ashok.raj@intel.com>,
15 * Shaohua Li <shaohua.li@intel.com>,
16 * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
17 * Fenghua Yu <fenghua.yu@intel.com>
18 */
19
20 #include <linux/init.h>
21 #include <linux/bitmap.h>
22 #include <linux/debugfs.h>
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/irq.h>
26 #include <linux/interrupt.h>
27 #include <linux/spinlock.h>
28 #include <linux/pci.h>
29 #include <linux/dmar.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/mempool.h>
32 #include <linux/memory.h>
33 #include <linux/timer.h>
34 #include <linux/iova.h>
35 #include <linux/iommu.h>
36 #include <linux/intel-iommu.h>
37 #include <linux/syscore_ops.h>
38 #include <linux/tboot.h>
39 #include <linux/dmi.h>
40 #include <linux/pci-ats.h>
41 #include <linux/memblock.h>
42 #include <linux/dma-contiguous.h>
43 #include <asm/irq_remapping.h>
44 #include <asm/cacheflush.h>
45 #include <asm/iommu.h>
46
47 #include "irq_remapping.h"
48
49 #define ROOT_SIZE VTD_PAGE_SIZE
50 #define CONTEXT_SIZE VTD_PAGE_SIZE
51
52 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
53 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
54 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
55
56 #define IOAPIC_RANGE_START (0xfee00000)
57 #define IOAPIC_RANGE_END (0xfeefffff)
58 #define IOVA_START_ADDR (0x1000)
59
60 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
61
62 #define MAX_AGAW_WIDTH 64
63 #define MAX_AGAW_PFN_WIDTH (MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
64
65 #define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
66 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
67
68 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
69 to match. That way, we can use 'unsigned long' for PFNs with impunity. */
70 #define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \
71 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
72 #define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
73
74 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
75 #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
76 #define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
77
78 /* page table handling */
79 #define LEVEL_STRIDE (9)
80 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
81
82 /*
83 * This bitmap is used to advertise the page sizes our hardware support
84 * to the IOMMU core, which will then use this information to split
85 * physically contiguous memory regions it is mapping into page sizes
86 * that we support.
87 *
88 * Traditionally the IOMMU core just handed us the mappings directly,
89 * after making sure the size is an order of a 4KiB page and that the
90 * mapping has natural alignment.
91 *
92 * To retain this behavior, we currently advertise that we support
93 * all page sizes that are an order of 4KiB.
94 *
95 * If at some point we'd like to utilize the IOMMU core's new behavior,
96 * we could change this to advertise the real page sizes we support.
97 */
98 #define INTEL_IOMMU_PGSIZES (~0xFFFUL)
99
100 static inline int agaw_to_level(int agaw)
101 {
102 return agaw + 2;
103 }
104
105 static inline int agaw_to_width(int agaw)
106 {
107 return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
108 }
109
110 static inline int width_to_agaw(int width)
111 {
112 return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
113 }
114
115 static inline unsigned int level_to_offset_bits(int level)
116 {
117 return (level - 1) * LEVEL_STRIDE;
118 }
119
120 static inline int pfn_level_offset(unsigned long pfn, int level)
121 {
122 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
123 }
124
125 static inline unsigned long level_mask(int level)
126 {
127 return -1UL << level_to_offset_bits(level);
128 }
129
130 static inline unsigned long level_size(int level)
131 {
132 return 1UL << level_to_offset_bits(level);
133 }
134
135 static inline unsigned long align_to_level(unsigned long pfn, int level)
136 {
137 return (pfn + level_size(level) - 1) & level_mask(level);
138 }
139
140 static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
141 {
142 return 1 << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
143 }
144
145 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
146 are never going to work. */
147 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
148 {
149 return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
150 }
151
152 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
153 {
154 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
155 }
156 static inline unsigned long page_to_dma_pfn(struct page *pg)
157 {
158 return mm_to_dma_pfn(page_to_pfn(pg));
159 }
160 static inline unsigned long virt_to_dma_pfn(void *p)
161 {
162 return page_to_dma_pfn(virt_to_page(p));
163 }
164
165 /* global iommu list, set NULL for ignored DMAR units */
166 static struct intel_iommu **g_iommus;
167
168 static void __init check_tylersburg_isoch(void);
169 static int rwbf_quirk;
170
171 /*
172 * set to 1 to panic kernel if can't successfully enable VT-d
173 * (used when kernel is launched w/ TXT)
174 */
175 static int force_on = 0;
176
177 /*
178 * 0: Present
179 * 1-11: Reserved
180 * 12-63: Context Ptr (12 - (haw-1))
181 * 64-127: Reserved
182 */
183 struct root_entry {
184 u64 val;
185 u64 rsvd1;
186 };
187 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
188 static inline bool root_present(struct root_entry *root)
189 {
190 return (root->val & 1);
191 }
192 static inline void set_root_present(struct root_entry *root)
193 {
194 root->val |= 1;
195 }
196 static inline void set_root_value(struct root_entry *root, unsigned long value)
197 {
198 root->val &= ~VTD_PAGE_MASK;
199 root->val |= value & VTD_PAGE_MASK;
200 }
201
202 static inline struct context_entry *
203 get_context_addr_from_root(struct root_entry *root)
204 {
205 return (struct context_entry *)
206 (root_present(root)?phys_to_virt(
207 root->val & VTD_PAGE_MASK) :
208 NULL);
209 }
210
211 /*
212 * low 64 bits:
213 * 0: present
214 * 1: fault processing disable
215 * 2-3: translation type
216 * 12-63: address space root
217 * high 64 bits:
218 * 0-2: address width
219 * 3-6: aval
220 * 8-23: domain id
221 */
222 struct context_entry {
223 u64 lo;
224 u64 hi;
225 };
226
227 static inline bool context_present(struct context_entry *context)
228 {
229 return (context->lo & 1);
230 }
231 static inline void context_set_present(struct context_entry *context)
232 {
233 context->lo |= 1;
234 }
235
236 static inline void context_set_fault_enable(struct context_entry *context)
237 {
238 context->lo &= (((u64)-1) << 2) | 1;
239 }
240
241 static inline void context_set_translation_type(struct context_entry *context,
242 unsigned long value)
243 {
244 context->lo &= (((u64)-1) << 4) | 3;
245 context->lo |= (value & 3) << 2;
246 }
247
248 static inline void context_set_address_root(struct context_entry *context,
249 unsigned long value)
250 {
251 context->lo &= ~VTD_PAGE_MASK;
252 context->lo |= value & VTD_PAGE_MASK;
253 }
254
255 static inline void context_set_address_width(struct context_entry *context,
256 unsigned long value)
257 {
258 context->hi |= value & 7;
259 }
260
261 static inline void context_set_domain_id(struct context_entry *context,
262 unsigned long value)
263 {
264 context->hi |= (value & ((1 << 16) - 1)) << 8;
265 }
266
267 static inline void context_clear_entry(struct context_entry *context)
268 {
269 context->lo = 0;
270 context->hi = 0;
271 }
272
273 /*
274 * 0: readable
275 * 1: writable
276 * 2-6: reserved
277 * 7: super page
278 * 8-10: available
279 * 11: snoop behavior
280 * 12-63: Host physcial address
281 */
282 struct dma_pte {
283 u64 val;
284 };
285
286 static inline void dma_clear_pte(struct dma_pte *pte)
287 {
288 pte->val = 0;
289 }
290
291 static inline u64 dma_pte_addr(struct dma_pte *pte)
292 {
293 #ifdef CONFIG_64BIT
294 return pte->val & VTD_PAGE_MASK;
295 #else
296 /* Must have a full atomic 64-bit read */
297 return __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
298 #endif
299 }
300
301 static inline bool dma_pte_present(struct dma_pte *pte)
302 {
303 return (pte->val & 3) != 0;
304 }
305
306 static inline bool dma_pte_superpage(struct dma_pte *pte)
307 {
308 return (pte->val & DMA_PTE_LARGE_PAGE);
309 }
310
311 static inline int first_pte_in_page(struct dma_pte *pte)
312 {
313 return !((unsigned long)pte & ~VTD_PAGE_MASK);
314 }
315
316 /*
317 * This domain is a statically identity mapping domain.
318 * 1. This domain creats a static 1:1 mapping to all usable memory.
319 * 2. It maps to each iommu if successful.
320 * 3. Each iommu mapps to this domain if successful.
321 */
322 static struct dmar_domain *si_domain;
323 static int hw_pass_through = 1;
324
325 /* domain represents a virtual machine, more than one devices
326 * across iommus may be owned in one domain, e.g. kvm guest.
327 */
328 #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 0)
329
330 /* si_domain contains mulitple devices */
331 #define DOMAIN_FLAG_STATIC_IDENTITY (1 << 1)
332
333 struct dmar_domain {
334 int id; /* domain id */
335 int nid; /* node id */
336 DECLARE_BITMAP(iommu_bmp, DMAR_UNITS_SUPPORTED);
337 /* bitmap of iommus this domain uses*/
338
339 struct list_head devices; /* all devices' list */
340 struct iova_domain iovad; /* iova's that belong to this domain */
341
342 struct dma_pte *pgd; /* virtual address */
343 int gaw; /* max guest address width */
344
345 /* adjusted guest address width, 0 is level 2 30-bit */
346 int agaw;
347
348 int flags; /* flags to find out type of domain */
349
350 int iommu_coherency;/* indicate coherency of iommu access */
351 int iommu_snooping; /* indicate snooping control feature*/
352 int iommu_count; /* reference count of iommu */
353 int iommu_superpage;/* Level of superpages supported:
354 0 == 4KiB (no superpages), 1 == 2MiB,
355 2 == 1GiB, 3 == 512GiB, 4 == 1TiB */
356 spinlock_t iommu_lock; /* protect iommu set in domain */
357 u64 max_addr; /* maximum mapped address */
358 };
359
360 /* PCI domain-device relationship */
361 struct device_domain_info {
362 struct list_head link; /* link to domain siblings */
363 struct list_head global; /* link to global list */
364 u8 bus; /* PCI bus number */
365 u8 devfn; /* PCI devfn number */
366 struct device *dev; /* it's NULL for PCIe-to-PCI bridge */
367 struct intel_iommu *iommu; /* IOMMU used by this device */
368 struct dmar_domain *domain; /* pointer to domain */
369 };
370
371 struct dmar_rmrr_unit {
372 struct list_head list; /* list of rmrr units */
373 struct acpi_dmar_header *hdr; /* ACPI header */
374 u64 base_address; /* reserved base address*/
375 u64 end_address; /* reserved end address */
376 struct dmar_dev_scope *devices; /* target devices */
377 int devices_cnt; /* target device count */
378 };
379
380 struct dmar_atsr_unit {
381 struct list_head list; /* list of ATSR units */
382 struct acpi_dmar_header *hdr; /* ACPI header */
383 struct dmar_dev_scope *devices; /* target devices */
384 int devices_cnt; /* target device count */
385 u8 include_all:1; /* include all ports */
386 };
387
388 static LIST_HEAD(dmar_atsr_units);
389 static LIST_HEAD(dmar_rmrr_units);
390
391 #define for_each_rmrr_units(rmrr) \
392 list_for_each_entry(rmrr, &dmar_rmrr_units, list)
393
394 static void flush_unmaps_timeout(unsigned long data);
395
396 static DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0);
397
398 #define HIGH_WATER_MARK 250
399 struct deferred_flush_tables {
400 int next;
401 struct iova *iova[HIGH_WATER_MARK];
402 struct dmar_domain *domain[HIGH_WATER_MARK];
403 struct page *freelist[HIGH_WATER_MARK];
404 };
405
406 static struct deferred_flush_tables *deferred_flush;
407
408 /* bitmap for indexing intel_iommus */
409 static int g_num_of_iommus;
410
411 static DEFINE_SPINLOCK(async_umap_flush_lock);
412 static LIST_HEAD(unmaps_to_do);
413
414 static int timer_on;
415 static long list_size;
416
417 static void domain_exit(struct dmar_domain *domain);
418 static void domain_remove_dev_info(struct dmar_domain *domain);
419 static void domain_remove_one_dev_info(struct dmar_domain *domain,
420 struct device *dev);
421 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
422 struct device *dev);
423 static int domain_detach_iommu(struct dmar_domain *domain,
424 struct intel_iommu *iommu);
425
426 #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
427 int dmar_disabled = 0;
428 #else
429 int dmar_disabled = 1;
430 #endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
431
432 int intel_iommu_enabled = 0;
433 EXPORT_SYMBOL_GPL(intel_iommu_enabled);
434
435 static int dmar_map_gfx = 1;
436 static int dmar_forcedac;
437 static int intel_iommu_strict;
438 static int intel_iommu_superpage = 1;
439
440 int intel_iommu_gfx_mapped;
441 EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
442
443 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
444 static DEFINE_SPINLOCK(device_domain_lock);
445 static LIST_HEAD(device_domain_list);
446
447 static const struct iommu_ops intel_iommu_ops;
448
449 static int __init intel_iommu_setup(char *str)
450 {
451 if (!str)
452 return -EINVAL;
453 while (*str) {
454 if (!strncmp(str, "on", 2)) {
455 dmar_disabled = 0;
456 printk(KERN_INFO "Intel-IOMMU: enabled\n");
457 } else if (!strncmp(str, "off", 3)) {
458 dmar_disabled = 1;
459 printk(KERN_INFO "Intel-IOMMU: disabled\n");
460 } else if (!strncmp(str, "igfx_off", 8)) {
461 dmar_map_gfx = 0;
462 printk(KERN_INFO
463 "Intel-IOMMU: disable GFX device mapping\n");
464 } else if (!strncmp(str, "forcedac", 8)) {
465 printk(KERN_INFO
466 "Intel-IOMMU: Forcing DAC for PCI devices\n");
467 dmar_forcedac = 1;
468 } else if (!strncmp(str, "strict", 6)) {
469 printk(KERN_INFO
470 "Intel-IOMMU: disable batched IOTLB flush\n");
471 intel_iommu_strict = 1;
472 } else if (!strncmp(str, "sp_off", 6)) {
473 printk(KERN_INFO
474 "Intel-IOMMU: disable supported super page\n");
475 intel_iommu_superpage = 0;
476 }
477
478 str += strcspn(str, ",");
479 while (*str == ',')
480 str++;
481 }
482 return 0;
483 }
484 __setup("intel_iommu=", intel_iommu_setup);
485
486 static struct kmem_cache *iommu_domain_cache;
487 static struct kmem_cache *iommu_devinfo_cache;
488 static struct kmem_cache *iommu_iova_cache;
489
490 static inline void *alloc_pgtable_page(int node)
491 {
492 struct page *page;
493 void *vaddr = NULL;
494
495 page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
496 if (page)
497 vaddr = page_address(page);
498 return vaddr;
499 }
500
501 static inline void free_pgtable_page(void *vaddr)
502 {
503 free_page((unsigned long)vaddr);
504 }
505
506 static inline void *alloc_domain_mem(void)
507 {
508 return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
509 }
510
511 static void free_domain_mem(void *vaddr)
512 {
513 kmem_cache_free(iommu_domain_cache, vaddr);
514 }
515
516 static inline void * alloc_devinfo_mem(void)
517 {
518 return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
519 }
520
521 static inline void free_devinfo_mem(void *vaddr)
522 {
523 kmem_cache_free(iommu_devinfo_cache, vaddr);
524 }
525
526 struct iova *alloc_iova_mem(void)
527 {
528 return kmem_cache_alloc(iommu_iova_cache, GFP_ATOMIC);
529 }
530
531 void free_iova_mem(struct iova *iova)
532 {
533 kmem_cache_free(iommu_iova_cache, iova);
534 }
535
536 static inline int domain_type_is_vm(struct dmar_domain *domain)
537 {
538 return domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE;
539 }
540
541 static inline int domain_type_is_vm_or_si(struct dmar_domain *domain)
542 {
543 return domain->flags & (DOMAIN_FLAG_VIRTUAL_MACHINE |
544 DOMAIN_FLAG_STATIC_IDENTITY);
545 }
546
547 static inline int domain_pfn_supported(struct dmar_domain *domain,
548 unsigned long pfn)
549 {
550 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
551
552 return !(addr_width < BITS_PER_LONG && pfn >> addr_width);
553 }
554
555 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
556 {
557 unsigned long sagaw;
558 int agaw = -1;
559
560 sagaw = cap_sagaw(iommu->cap);
561 for (agaw = width_to_agaw(max_gaw);
562 agaw >= 0; agaw--) {
563 if (test_bit(agaw, &sagaw))
564 break;
565 }
566
567 return agaw;
568 }
569
570 /*
571 * Calculate max SAGAW for each iommu.
572 */
573 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
574 {
575 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
576 }
577
578 /*
579 * calculate agaw for each iommu.
580 * "SAGAW" may be different across iommus, use a default agaw, and
581 * get a supported less agaw for iommus that don't support the default agaw.
582 */
583 int iommu_calculate_agaw(struct intel_iommu *iommu)
584 {
585 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
586 }
587
588 /* This functionin only returns single iommu in a domain */
589 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
590 {
591 int iommu_id;
592
593 /* si_domain and vm domain should not get here. */
594 BUG_ON(domain_type_is_vm_or_si(domain));
595 iommu_id = find_first_bit(domain->iommu_bmp, g_num_of_iommus);
596 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
597 return NULL;
598
599 return g_iommus[iommu_id];
600 }
601
602 static void domain_update_iommu_coherency(struct dmar_domain *domain)
603 {
604 struct dmar_drhd_unit *drhd;
605 struct intel_iommu *iommu;
606 int i, found = 0;
607
608 domain->iommu_coherency = 1;
609
610 for_each_set_bit(i, domain->iommu_bmp, g_num_of_iommus) {
611 found = 1;
612 if (!ecap_coherent(g_iommus[i]->ecap)) {
613 domain->iommu_coherency = 0;
614 break;
615 }
616 }
617 if (found)
618 return;
619
620 /* No hardware attached; use lowest common denominator */
621 rcu_read_lock();
622 for_each_active_iommu(iommu, drhd) {
623 if (!ecap_coherent(iommu->ecap)) {
624 domain->iommu_coherency = 0;
625 break;
626 }
627 }
628 rcu_read_unlock();
629 }
630
631 static int domain_update_iommu_snooping(struct intel_iommu *skip)
632 {
633 struct dmar_drhd_unit *drhd;
634 struct intel_iommu *iommu;
635 int ret = 1;
636
637 rcu_read_lock();
638 for_each_active_iommu(iommu, drhd) {
639 if (iommu != skip) {
640 if (!ecap_sc_support(iommu->ecap)) {
641 ret = 0;
642 break;
643 }
644 }
645 }
646 rcu_read_unlock();
647
648 return ret;
649 }
650
651 static int domain_update_iommu_superpage(struct intel_iommu *skip)
652 {
653 struct dmar_drhd_unit *drhd;
654 struct intel_iommu *iommu;
655 int mask = 0xf;
656
657 if (!intel_iommu_superpage) {
658 return 0;
659 }
660
661 /* set iommu_superpage to the smallest common denominator */
662 rcu_read_lock();
663 for_each_active_iommu(iommu, drhd) {
664 if (iommu != skip) {
665 mask &= cap_super_page_val(iommu->cap);
666 if (!mask)
667 break;
668 }
669 }
670 rcu_read_unlock();
671
672 return fls(mask);
673 }
674
675 /* Some capabilities may be different across iommus */
676 static void domain_update_iommu_cap(struct dmar_domain *domain)
677 {
678 domain_update_iommu_coherency(domain);
679 domain->iommu_snooping = domain_update_iommu_snooping(NULL);
680 domain->iommu_superpage = domain_update_iommu_superpage(NULL);
681 }
682
683 static struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn)
684 {
685 struct dmar_drhd_unit *drhd = NULL;
686 struct intel_iommu *iommu;
687 struct device *tmp;
688 struct pci_dev *ptmp, *pdev = NULL;
689 u16 segment = 0;
690 int i;
691
692 if (dev_is_pci(dev)) {
693 pdev = to_pci_dev(dev);
694 segment = pci_domain_nr(pdev->bus);
695 } else if (ACPI_COMPANION(dev))
696 dev = &ACPI_COMPANION(dev)->dev;
697
698 rcu_read_lock();
699 for_each_active_iommu(iommu, drhd) {
700 if (pdev && segment != drhd->segment)
701 continue;
702
703 for_each_active_dev_scope(drhd->devices,
704 drhd->devices_cnt, i, tmp) {
705 if (tmp == dev) {
706 *bus = drhd->devices[i].bus;
707 *devfn = drhd->devices[i].devfn;
708 goto out;
709 }
710
711 if (!pdev || !dev_is_pci(tmp))
712 continue;
713
714 ptmp = to_pci_dev(tmp);
715 if (ptmp->subordinate &&
716 ptmp->subordinate->number <= pdev->bus->number &&
717 ptmp->subordinate->busn_res.end >= pdev->bus->number)
718 goto got_pdev;
719 }
720
721 if (pdev && drhd->include_all) {
722 got_pdev:
723 *bus = pdev->bus->number;
724 *devfn = pdev->devfn;
725 goto out;
726 }
727 }
728 iommu = NULL;
729 out:
730 rcu_read_unlock();
731
732 return iommu;
733 }
734
735 static void domain_flush_cache(struct dmar_domain *domain,
736 void *addr, int size)
737 {
738 if (!domain->iommu_coherency)
739 clflush_cache_range(addr, size);
740 }
741
742 /* Gets context entry for a given bus and devfn */
743 static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
744 u8 bus, u8 devfn)
745 {
746 struct root_entry *root;
747 struct context_entry *context;
748 unsigned long phy_addr;
749 unsigned long flags;
750
751 spin_lock_irqsave(&iommu->lock, flags);
752 root = &iommu->root_entry[bus];
753 context = get_context_addr_from_root(root);
754 if (!context) {
755 context = (struct context_entry *)
756 alloc_pgtable_page(iommu->node);
757 if (!context) {
758 spin_unlock_irqrestore(&iommu->lock, flags);
759 return NULL;
760 }
761 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
762 phy_addr = virt_to_phys((void *)context);
763 set_root_value(root, phy_addr);
764 set_root_present(root);
765 __iommu_flush_cache(iommu, root, sizeof(*root));
766 }
767 spin_unlock_irqrestore(&iommu->lock, flags);
768 return &context[devfn];
769 }
770
771 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
772 {
773 struct root_entry *root;
774 struct context_entry *context;
775 int ret;
776 unsigned long flags;
777
778 spin_lock_irqsave(&iommu->lock, flags);
779 root = &iommu->root_entry[bus];
780 context = get_context_addr_from_root(root);
781 if (!context) {
782 ret = 0;
783 goto out;
784 }
785 ret = context_present(&context[devfn]);
786 out:
787 spin_unlock_irqrestore(&iommu->lock, flags);
788 return ret;
789 }
790
791 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
792 {
793 struct root_entry *root;
794 struct context_entry *context;
795 unsigned long flags;
796
797 spin_lock_irqsave(&iommu->lock, flags);
798 root = &iommu->root_entry[bus];
799 context = get_context_addr_from_root(root);
800 if (context) {
801 context_clear_entry(&context[devfn]);
802 __iommu_flush_cache(iommu, &context[devfn], \
803 sizeof(*context));
804 }
805 spin_unlock_irqrestore(&iommu->lock, flags);
806 }
807
808 static void free_context_table(struct intel_iommu *iommu)
809 {
810 struct root_entry *root;
811 int i;
812 unsigned long flags;
813 struct context_entry *context;
814
815 spin_lock_irqsave(&iommu->lock, flags);
816 if (!iommu->root_entry) {
817 goto out;
818 }
819 for (i = 0; i < ROOT_ENTRY_NR; i++) {
820 root = &iommu->root_entry[i];
821 context = get_context_addr_from_root(root);
822 if (context)
823 free_pgtable_page(context);
824 }
825 free_pgtable_page(iommu->root_entry);
826 iommu->root_entry = NULL;
827 out:
828 spin_unlock_irqrestore(&iommu->lock, flags);
829 }
830
831 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
832 unsigned long pfn, int *target_level)
833 {
834 struct dma_pte *parent, *pte = NULL;
835 int level = agaw_to_level(domain->agaw);
836 int offset;
837
838 BUG_ON(!domain->pgd);
839
840 if (!domain_pfn_supported(domain, pfn))
841 /* Address beyond IOMMU's addressing capabilities. */
842 return NULL;
843
844 parent = domain->pgd;
845
846 while (1) {
847 void *tmp_page;
848
849 offset = pfn_level_offset(pfn, level);
850 pte = &parent[offset];
851 if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
852 break;
853 if (level == *target_level)
854 break;
855
856 if (!dma_pte_present(pte)) {
857 uint64_t pteval;
858
859 tmp_page = alloc_pgtable_page(domain->nid);
860
861 if (!tmp_page)
862 return NULL;
863
864 domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
865 pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
866 if (cmpxchg64(&pte->val, 0ULL, pteval))
867 /* Someone else set it while we were thinking; use theirs. */
868 free_pgtable_page(tmp_page);
869 else
870 domain_flush_cache(domain, pte, sizeof(*pte));
871 }
872 if (level == 1)
873 break;
874
875 parent = phys_to_virt(dma_pte_addr(pte));
876 level--;
877 }
878
879 if (!*target_level)
880 *target_level = level;
881
882 return pte;
883 }
884
885
886 /* return address's pte at specific level */
887 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
888 unsigned long pfn,
889 int level, int *large_page)
890 {
891 struct dma_pte *parent, *pte = NULL;
892 int total = agaw_to_level(domain->agaw);
893 int offset;
894
895 parent = domain->pgd;
896 while (level <= total) {
897 offset = pfn_level_offset(pfn, total);
898 pte = &parent[offset];
899 if (level == total)
900 return pte;
901
902 if (!dma_pte_present(pte)) {
903 *large_page = total;
904 break;
905 }
906
907 if (dma_pte_superpage(pte)) {
908 *large_page = total;
909 return pte;
910 }
911
912 parent = phys_to_virt(dma_pte_addr(pte));
913 total--;
914 }
915 return NULL;
916 }
917
918 /* clear last level pte, a tlb flush should be followed */
919 static void dma_pte_clear_range(struct dmar_domain *domain,
920 unsigned long start_pfn,
921 unsigned long last_pfn)
922 {
923 unsigned int large_page = 1;
924 struct dma_pte *first_pte, *pte;
925
926 BUG_ON(!domain_pfn_supported(domain, start_pfn));
927 BUG_ON(!domain_pfn_supported(domain, last_pfn));
928 BUG_ON(start_pfn > last_pfn);
929
930 /* we don't need lock here; nobody else touches the iova range */
931 do {
932 large_page = 1;
933 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
934 if (!pte) {
935 start_pfn = align_to_level(start_pfn + 1, large_page + 1);
936 continue;
937 }
938 do {
939 dma_clear_pte(pte);
940 start_pfn += lvl_to_nr_pages(large_page);
941 pte++;
942 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
943
944 domain_flush_cache(domain, first_pte,
945 (void *)pte - (void *)first_pte);
946
947 } while (start_pfn && start_pfn <= last_pfn);
948 }
949
950 static void dma_pte_free_level(struct dmar_domain *domain, int level,
951 struct dma_pte *pte, unsigned long pfn,
952 unsigned long start_pfn, unsigned long last_pfn)
953 {
954 pfn = max(start_pfn, pfn);
955 pte = &pte[pfn_level_offset(pfn, level)];
956
957 do {
958 unsigned long level_pfn;
959 struct dma_pte *level_pte;
960
961 if (!dma_pte_present(pte) || dma_pte_superpage(pte))
962 goto next;
963
964 level_pfn = pfn & level_mask(level - 1);
965 level_pte = phys_to_virt(dma_pte_addr(pte));
966
967 if (level > 2)
968 dma_pte_free_level(domain, level - 1, level_pte,
969 level_pfn, start_pfn, last_pfn);
970
971 /* If range covers entire pagetable, free it */
972 if (!(start_pfn > level_pfn ||
973 last_pfn < level_pfn + level_size(level) - 1)) {
974 dma_clear_pte(pte);
975 domain_flush_cache(domain, pte, sizeof(*pte));
976 free_pgtable_page(level_pte);
977 }
978 next:
979 pfn += level_size(level);
980 } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
981 }
982
983 /* free page table pages. last level pte should already be cleared */
984 static void dma_pte_free_pagetable(struct dmar_domain *domain,
985 unsigned long start_pfn,
986 unsigned long last_pfn)
987 {
988 BUG_ON(!domain_pfn_supported(domain, start_pfn));
989 BUG_ON(!domain_pfn_supported(domain, last_pfn));
990 BUG_ON(start_pfn > last_pfn);
991
992 dma_pte_clear_range(domain, start_pfn, last_pfn);
993
994 /* We don't need lock here; nobody else touches the iova range */
995 dma_pte_free_level(domain, agaw_to_level(domain->agaw),
996 domain->pgd, 0, start_pfn, last_pfn);
997
998 /* free pgd */
999 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1000 free_pgtable_page(domain->pgd);
1001 domain->pgd = NULL;
1002 }
1003 }
1004
1005 /* When a page at a given level is being unlinked from its parent, we don't
1006 need to *modify* it at all. All we need to do is make a list of all the
1007 pages which can be freed just as soon as we've flushed the IOTLB and we
1008 know the hardware page-walk will no longer touch them.
1009 The 'pte' argument is the *parent* PTE, pointing to the page that is to
1010 be freed. */
1011 static struct page *dma_pte_list_pagetables(struct dmar_domain *domain,
1012 int level, struct dma_pte *pte,
1013 struct page *freelist)
1014 {
1015 struct page *pg;
1016
1017 pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
1018 pg->freelist = freelist;
1019 freelist = pg;
1020
1021 if (level == 1)
1022 return freelist;
1023
1024 pte = page_address(pg);
1025 do {
1026 if (dma_pte_present(pte) && !dma_pte_superpage(pte))
1027 freelist = dma_pte_list_pagetables(domain, level - 1,
1028 pte, freelist);
1029 pte++;
1030 } while (!first_pte_in_page(pte));
1031
1032 return freelist;
1033 }
1034
1035 static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level,
1036 struct dma_pte *pte, unsigned long pfn,
1037 unsigned long start_pfn,
1038 unsigned long last_pfn,
1039 struct page *freelist)
1040 {
1041 struct dma_pte *first_pte = NULL, *last_pte = NULL;
1042
1043 pfn = max(start_pfn, pfn);
1044 pte = &pte[pfn_level_offset(pfn, level)];
1045
1046 do {
1047 unsigned long level_pfn;
1048
1049 if (!dma_pte_present(pte))
1050 goto next;
1051
1052 level_pfn = pfn & level_mask(level);
1053
1054 /* If range covers entire pagetable, free it */
1055 if (start_pfn <= level_pfn &&
1056 last_pfn >= level_pfn + level_size(level) - 1) {
1057 /* These suborbinate page tables are going away entirely. Don't
1058 bother to clear them; we're just going to *free* them. */
1059 if (level > 1 && !dma_pte_superpage(pte))
1060 freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist);
1061
1062 dma_clear_pte(pte);
1063 if (!first_pte)
1064 first_pte = pte;
1065 last_pte = pte;
1066 } else if (level > 1) {
1067 /* Recurse down into a level that isn't *entirely* obsolete */
1068 freelist = dma_pte_clear_level(domain, level - 1,
1069 phys_to_virt(dma_pte_addr(pte)),
1070 level_pfn, start_pfn, last_pfn,
1071 freelist);
1072 }
1073 next:
1074 pfn += level_size(level);
1075 } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1076
1077 if (first_pte)
1078 domain_flush_cache(domain, first_pte,
1079 (void *)++last_pte - (void *)first_pte);
1080
1081 return freelist;
1082 }
1083
1084 /* We can't just free the pages because the IOMMU may still be walking
1085 the page tables, and may have cached the intermediate levels. The
1086 pages can only be freed after the IOTLB flush has been done. */
1087 struct page *domain_unmap(struct dmar_domain *domain,
1088 unsigned long start_pfn,
1089 unsigned long last_pfn)
1090 {
1091 struct page *freelist = NULL;
1092
1093 BUG_ON(!domain_pfn_supported(domain, start_pfn));
1094 BUG_ON(!domain_pfn_supported(domain, last_pfn));
1095 BUG_ON(start_pfn > last_pfn);
1096
1097 /* we don't need lock here; nobody else touches the iova range */
1098 freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
1099 domain->pgd, 0, start_pfn, last_pfn, NULL);
1100
1101 /* free pgd */
1102 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1103 struct page *pgd_page = virt_to_page(domain->pgd);
1104 pgd_page->freelist = freelist;
1105 freelist = pgd_page;
1106
1107 domain->pgd = NULL;
1108 }
1109
1110 return freelist;
1111 }
1112
1113 void dma_free_pagelist(struct page *freelist)
1114 {
1115 struct page *pg;
1116
1117 while ((pg = freelist)) {
1118 freelist = pg->freelist;
1119 free_pgtable_page(page_address(pg));
1120 }
1121 }
1122
1123 /* iommu handling */
1124 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
1125 {
1126 struct root_entry *root;
1127 unsigned long flags;
1128
1129 root = (struct root_entry *)alloc_pgtable_page(iommu->node);
1130 if (!root)
1131 return -ENOMEM;
1132
1133 __iommu_flush_cache(iommu, root, ROOT_SIZE);
1134
1135 spin_lock_irqsave(&iommu->lock, flags);
1136 iommu->root_entry = root;
1137 spin_unlock_irqrestore(&iommu->lock, flags);
1138
1139 return 0;
1140 }
1141
1142 static void iommu_set_root_entry(struct intel_iommu *iommu)
1143 {
1144 void *addr;
1145 u32 sts;
1146 unsigned long flag;
1147
1148 addr = iommu->root_entry;
1149
1150 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1151 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
1152
1153 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
1154
1155 /* Make sure hardware complete it */
1156 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1157 readl, (sts & DMA_GSTS_RTPS), sts);
1158
1159 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1160 }
1161
1162 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
1163 {
1164 u32 val;
1165 unsigned long flag;
1166
1167 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
1168 return;
1169
1170 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1171 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
1172
1173 /* Make sure hardware complete it */
1174 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1175 readl, (!(val & DMA_GSTS_WBFS)), val);
1176
1177 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1178 }
1179
1180 /* return value determine if we need a write buffer flush */
1181 static void __iommu_flush_context(struct intel_iommu *iommu,
1182 u16 did, u16 source_id, u8 function_mask,
1183 u64 type)
1184 {
1185 u64 val = 0;
1186 unsigned long flag;
1187
1188 switch (type) {
1189 case DMA_CCMD_GLOBAL_INVL:
1190 val = DMA_CCMD_GLOBAL_INVL;
1191 break;
1192 case DMA_CCMD_DOMAIN_INVL:
1193 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
1194 break;
1195 case DMA_CCMD_DEVICE_INVL:
1196 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
1197 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
1198 break;
1199 default:
1200 BUG();
1201 }
1202 val |= DMA_CCMD_ICC;
1203
1204 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1205 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1206
1207 /* Make sure hardware complete it */
1208 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1209 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1210
1211 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1212 }
1213
1214 /* return value determine if we need a write buffer flush */
1215 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1216 u64 addr, unsigned int size_order, u64 type)
1217 {
1218 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1219 u64 val = 0, val_iva = 0;
1220 unsigned long flag;
1221
1222 switch (type) {
1223 case DMA_TLB_GLOBAL_FLUSH:
1224 /* global flush doesn't need set IVA_REG */
1225 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1226 break;
1227 case DMA_TLB_DSI_FLUSH:
1228 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1229 break;
1230 case DMA_TLB_PSI_FLUSH:
1231 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1232 /* IH bit is passed in as part of address */
1233 val_iva = size_order | addr;
1234 break;
1235 default:
1236 BUG();
1237 }
1238 /* Note: set drain read/write */
1239 #if 0
1240 /*
1241 * This is probably to be super secure.. Looks like we can
1242 * ignore it without any impact.
1243 */
1244 if (cap_read_drain(iommu->cap))
1245 val |= DMA_TLB_READ_DRAIN;
1246 #endif
1247 if (cap_write_drain(iommu->cap))
1248 val |= DMA_TLB_WRITE_DRAIN;
1249
1250 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1251 /* Note: Only uses first TLB reg currently */
1252 if (val_iva)
1253 dmar_writeq(iommu->reg + tlb_offset, val_iva);
1254 dmar_writeq(iommu->reg + tlb_offset + 8, val);
1255
1256 /* Make sure hardware complete it */
1257 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1258 dmar_readq, (!(val & DMA_TLB_IVT)), val);
1259
1260 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1261
1262 /* check IOTLB invalidation granularity */
1263 if (DMA_TLB_IAIG(val) == 0)
1264 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
1265 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1266 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
1267 (unsigned long long)DMA_TLB_IIRG(type),
1268 (unsigned long long)DMA_TLB_IAIG(val));
1269 }
1270
1271 static struct device_domain_info *
1272 iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu,
1273 u8 bus, u8 devfn)
1274 {
1275 int found = 0;
1276 unsigned long flags;
1277 struct device_domain_info *info;
1278 struct pci_dev *pdev;
1279
1280 if (!ecap_dev_iotlb_support(iommu->ecap))
1281 return NULL;
1282
1283 if (!iommu->qi)
1284 return NULL;
1285
1286 spin_lock_irqsave(&device_domain_lock, flags);
1287 list_for_each_entry(info, &domain->devices, link)
1288 if (info->iommu == iommu && info->bus == bus &&
1289 info->devfn == devfn) {
1290 found = 1;
1291 break;
1292 }
1293 spin_unlock_irqrestore(&device_domain_lock, flags);
1294
1295 if (!found || !info->dev || !dev_is_pci(info->dev))
1296 return NULL;
1297
1298 pdev = to_pci_dev(info->dev);
1299
1300 if (!pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS))
1301 return NULL;
1302
1303 if (!dmar_find_matched_atsr_unit(pdev))
1304 return NULL;
1305
1306 return info;
1307 }
1308
1309 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1310 {
1311 if (!info || !dev_is_pci(info->dev))
1312 return;
1313
1314 pci_enable_ats(to_pci_dev(info->dev), VTD_PAGE_SHIFT);
1315 }
1316
1317 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1318 {
1319 if (!info->dev || !dev_is_pci(info->dev) ||
1320 !pci_ats_enabled(to_pci_dev(info->dev)))
1321 return;
1322
1323 pci_disable_ats(to_pci_dev(info->dev));
1324 }
1325
1326 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1327 u64 addr, unsigned mask)
1328 {
1329 u16 sid, qdep;
1330 unsigned long flags;
1331 struct device_domain_info *info;
1332
1333 spin_lock_irqsave(&device_domain_lock, flags);
1334 list_for_each_entry(info, &domain->devices, link) {
1335 struct pci_dev *pdev;
1336 if (!info->dev || !dev_is_pci(info->dev))
1337 continue;
1338
1339 pdev = to_pci_dev(info->dev);
1340 if (!pci_ats_enabled(pdev))
1341 continue;
1342
1343 sid = info->bus << 8 | info->devfn;
1344 qdep = pci_ats_queue_depth(pdev);
1345 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1346 }
1347 spin_unlock_irqrestore(&device_domain_lock, flags);
1348 }
1349
1350 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
1351 unsigned long pfn, unsigned int pages, int ih, int map)
1352 {
1353 unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1354 uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1355
1356 BUG_ON(pages == 0);
1357
1358 if (ih)
1359 ih = 1 << 6;
1360 /*
1361 * Fallback to domain selective flush if no PSI support or the size is
1362 * too big.
1363 * PSI requires page size to be 2 ^ x, and the base address is naturally
1364 * aligned to the size
1365 */
1366 if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1367 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1368 DMA_TLB_DSI_FLUSH);
1369 else
1370 iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
1371 DMA_TLB_PSI_FLUSH);
1372
1373 /*
1374 * In caching mode, changes of pages from non-present to present require
1375 * flush. However, device IOTLB doesn't need to be flushed in this case.
1376 */
1377 if (!cap_caching_mode(iommu->cap) || !map)
1378 iommu_flush_dev_iotlb(iommu->domains[did], addr, mask);
1379 }
1380
1381 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1382 {
1383 u32 pmen;
1384 unsigned long flags;
1385
1386 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1387 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1388 pmen &= ~DMA_PMEN_EPM;
1389 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1390
1391 /* wait for the protected region status bit to clear */
1392 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1393 readl, !(pmen & DMA_PMEN_PRS), pmen);
1394
1395 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1396 }
1397
1398 static void iommu_enable_translation(struct intel_iommu *iommu)
1399 {
1400 u32 sts;
1401 unsigned long flags;
1402
1403 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1404 iommu->gcmd |= DMA_GCMD_TE;
1405 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1406
1407 /* Make sure hardware complete it */
1408 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1409 readl, (sts & DMA_GSTS_TES), sts);
1410
1411 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1412 }
1413
1414 static void iommu_disable_translation(struct intel_iommu *iommu)
1415 {
1416 u32 sts;
1417 unsigned long flag;
1418
1419 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1420 iommu->gcmd &= ~DMA_GCMD_TE;
1421 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1422
1423 /* Make sure hardware complete it */
1424 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1425 readl, (!(sts & DMA_GSTS_TES)), sts);
1426
1427 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1428 }
1429
1430
1431 static int iommu_init_domains(struct intel_iommu *iommu)
1432 {
1433 unsigned long ndomains;
1434 unsigned long nlongs;
1435
1436 ndomains = cap_ndoms(iommu->cap);
1437 pr_debug("IOMMU%d: Number of Domains supported <%ld>\n",
1438 iommu->seq_id, ndomains);
1439 nlongs = BITS_TO_LONGS(ndomains);
1440
1441 spin_lock_init(&iommu->lock);
1442
1443 /* TBD: there might be 64K domains,
1444 * consider other allocation for future chip
1445 */
1446 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1447 if (!iommu->domain_ids) {
1448 pr_err("IOMMU%d: allocating domain id array failed\n",
1449 iommu->seq_id);
1450 return -ENOMEM;
1451 }
1452 iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1453 GFP_KERNEL);
1454 if (!iommu->domains) {
1455 pr_err("IOMMU%d: allocating domain array failed\n",
1456 iommu->seq_id);
1457 kfree(iommu->domain_ids);
1458 iommu->domain_ids = NULL;
1459 return -ENOMEM;
1460 }
1461
1462 /*
1463 * if Caching mode is set, then invalid translations are tagged
1464 * with domainid 0. Hence we need to pre-allocate it.
1465 */
1466 if (cap_caching_mode(iommu->cap))
1467 set_bit(0, iommu->domain_ids);
1468 return 0;
1469 }
1470
1471 static void free_dmar_iommu(struct intel_iommu *iommu)
1472 {
1473 struct dmar_domain *domain;
1474 int i;
1475
1476 if ((iommu->domains) && (iommu->domain_ids)) {
1477 for_each_set_bit(i, iommu->domain_ids, cap_ndoms(iommu->cap)) {
1478 /*
1479 * Domain id 0 is reserved for invalid translation
1480 * if hardware supports caching mode.
1481 */
1482 if (cap_caching_mode(iommu->cap) && i == 0)
1483 continue;
1484
1485 domain = iommu->domains[i];
1486 clear_bit(i, iommu->domain_ids);
1487 if (domain_detach_iommu(domain, iommu) == 0 &&
1488 !domain_type_is_vm(domain))
1489 domain_exit(domain);
1490 }
1491 }
1492
1493 if (iommu->gcmd & DMA_GCMD_TE)
1494 iommu_disable_translation(iommu);
1495
1496 kfree(iommu->domains);
1497 kfree(iommu->domain_ids);
1498 iommu->domains = NULL;
1499 iommu->domain_ids = NULL;
1500
1501 g_iommus[iommu->seq_id] = NULL;
1502
1503 /* free context mapping */
1504 free_context_table(iommu);
1505 }
1506
1507 static struct dmar_domain *alloc_domain(int flags)
1508 {
1509 /* domain id for virtual machine, it won't be set in context */
1510 static atomic_t vm_domid = ATOMIC_INIT(0);
1511 struct dmar_domain *domain;
1512
1513 domain = alloc_domain_mem();
1514 if (!domain)
1515 return NULL;
1516
1517 memset(domain, 0, sizeof(*domain));
1518 domain->nid = -1;
1519 domain->flags = flags;
1520 spin_lock_init(&domain->iommu_lock);
1521 INIT_LIST_HEAD(&domain->devices);
1522 if (flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
1523 domain->id = atomic_inc_return(&vm_domid);
1524
1525 return domain;
1526 }
1527
1528 static int __iommu_attach_domain(struct dmar_domain *domain,
1529 struct intel_iommu *iommu)
1530 {
1531 int num;
1532 unsigned long ndomains;
1533
1534 ndomains = cap_ndoms(iommu->cap);
1535 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1536 if (num < ndomains) {
1537 set_bit(num, iommu->domain_ids);
1538 iommu->domains[num] = domain;
1539 } else {
1540 num = -ENOSPC;
1541 }
1542
1543 return num;
1544 }
1545
1546 static int iommu_attach_domain(struct dmar_domain *domain,
1547 struct intel_iommu *iommu)
1548 {
1549 int num;
1550 unsigned long flags;
1551
1552 spin_lock_irqsave(&iommu->lock, flags);
1553 num = __iommu_attach_domain(domain, iommu);
1554 spin_unlock_irqrestore(&iommu->lock, flags);
1555 if (num < 0)
1556 pr_err("IOMMU: no free domain ids\n");
1557
1558 return num;
1559 }
1560
1561 static int iommu_attach_vm_domain(struct dmar_domain *domain,
1562 struct intel_iommu *iommu)
1563 {
1564 int num;
1565 unsigned long ndomains;
1566
1567 ndomains = cap_ndoms(iommu->cap);
1568 for_each_set_bit(num, iommu->domain_ids, ndomains)
1569 if (iommu->domains[num] == domain)
1570 return num;
1571
1572 return __iommu_attach_domain(domain, iommu);
1573 }
1574
1575 static void iommu_detach_domain(struct dmar_domain *domain,
1576 struct intel_iommu *iommu)
1577 {
1578 unsigned long flags;
1579 int num, ndomains;
1580
1581 spin_lock_irqsave(&iommu->lock, flags);
1582 if (domain_type_is_vm_or_si(domain)) {
1583 ndomains = cap_ndoms(iommu->cap);
1584 for_each_set_bit(num, iommu->domain_ids, ndomains) {
1585 if (iommu->domains[num] == domain) {
1586 clear_bit(num, iommu->domain_ids);
1587 iommu->domains[num] = NULL;
1588 break;
1589 }
1590 }
1591 } else {
1592 clear_bit(domain->id, iommu->domain_ids);
1593 iommu->domains[domain->id] = NULL;
1594 }
1595 spin_unlock_irqrestore(&iommu->lock, flags);
1596 }
1597
1598 static void domain_attach_iommu(struct dmar_domain *domain,
1599 struct intel_iommu *iommu)
1600 {
1601 unsigned long flags;
1602
1603 spin_lock_irqsave(&domain->iommu_lock, flags);
1604 if (!test_and_set_bit(iommu->seq_id, domain->iommu_bmp)) {
1605 domain->iommu_count++;
1606 if (domain->iommu_count == 1)
1607 domain->nid = iommu->node;
1608 domain_update_iommu_cap(domain);
1609 }
1610 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1611 }
1612
1613 static int domain_detach_iommu(struct dmar_domain *domain,
1614 struct intel_iommu *iommu)
1615 {
1616 unsigned long flags;
1617 int count = INT_MAX;
1618
1619 spin_lock_irqsave(&domain->iommu_lock, flags);
1620 if (test_and_clear_bit(iommu->seq_id, domain->iommu_bmp)) {
1621 count = --domain->iommu_count;
1622 domain_update_iommu_cap(domain);
1623 }
1624 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1625
1626 return count;
1627 }
1628
1629 static struct iova_domain reserved_iova_list;
1630 static struct lock_class_key reserved_rbtree_key;
1631
1632 static int dmar_init_reserved_ranges(void)
1633 {
1634 struct pci_dev *pdev = NULL;
1635 struct iova *iova;
1636 int i;
1637
1638 init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
1639
1640 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1641 &reserved_rbtree_key);
1642
1643 /* IOAPIC ranges shouldn't be accessed by DMA */
1644 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1645 IOVA_PFN(IOAPIC_RANGE_END));
1646 if (!iova) {
1647 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1648 return -ENODEV;
1649 }
1650
1651 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1652 for_each_pci_dev(pdev) {
1653 struct resource *r;
1654
1655 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1656 r = &pdev->resource[i];
1657 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1658 continue;
1659 iova = reserve_iova(&reserved_iova_list,
1660 IOVA_PFN(r->start),
1661 IOVA_PFN(r->end));
1662 if (!iova) {
1663 printk(KERN_ERR "Reserve iova failed\n");
1664 return -ENODEV;
1665 }
1666 }
1667 }
1668 return 0;
1669 }
1670
1671 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1672 {
1673 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1674 }
1675
1676 static inline int guestwidth_to_adjustwidth(int gaw)
1677 {
1678 int agaw;
1679 int r = (gaw - 12) % 9;
1680
1681 if (r == 0)
1682 agaw = gaw;
1683 else
1684 agaw = gaw + 9 - r;
1685 if (agaw > 64)
1686 agaw = 64;
1687 return agaw;
1688 }
1689
1690 static int domain_init(struct dmar_domain *domain, int guest_width)
1691 {
1692 struct intel_iommu *iommu;
1693 int adjust_width, agaw;
1694 unsigned long sagaw;
1695
1696 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
1697 domain_reserve_special_ranges(domain);
1698
1699 /* calculate AGAW */
1700 iommu = domain_get_iommu(domain);
1701 if (guest_width > cap_mgaw(iommu->cap))
1702 guest_width = cap_mgaw(iommu->cap);
1703 domain->gaw = guest_width;
1704 adjust_width = guestwidth_to_adjustwidth(guest_width);
1705 agaw = width_to_agaw(adjust_width);
1706 sagaw = cap_sagaw(iommu->cap);
1707 if (!test_bit(agaw, &sagaw)) {
1708 /* hardware doesn't support it, choose a bigger one */
1709 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1710 agaw = find_next_bit(&sagaw, 5, agaw);
1711 if (agaw >= 5)
1712 return -ENODEV;
1713 }
1714 domain->agaw = agaw;
1715
1716 if (ecap_coherent(iommu->ecap))
1717 domain->iommu_coherency = 1;
1718 else
1719 domain->iommu_coherency = 0;
1720
1721 if (ecap_sc_support(iommu->ecap))
1722 domain->iommu_snooping = 1;
1723 else
1724 domain->iommu_snooping = 0;
1725
1726 if (intel_iommu_superpage)
1727 domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
1728 else
1729 domain->iommu_superpage = 0;
1730
1731 domain->nid = iommu->node;
1732
1733 /* always allocate the top pgd */
1734 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1735 if (!domain->pgd)
1736 return -ENOMEM;
1737 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1738 return 0;
1739 }
1740
1741 static void domain_exit(struct dmar_domain *domain)
1742 {
1743 struct dmar_drhd_unit *drhd;
1744 struct intel_iommu *iommu;
1745 struct page *freelist = NULL;
1746
1747 /* Domain 0 is reserved, so dont process it */
1748 if (!domain)
1749 return;
1750
1751 /* Flush any lazy unmaps that may reference this domain */
1752 if (!intel_iommu_strict)
1753 flush_unmaps_timeout(0);
1754
1755 /* remove associated devices */
1756 domain_remove_dev_info(domain);
1757
1758 /* destroy iovas */
1759 put_iova_domain(&domain->iovad);
1760
1761 freelist = domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1762
1763 /* clear attached or cached domains */
1764 rcu_read_lock();
1765 for_each_active_iommu(iommu, drhd)
1766 iommu_detach_domain(domain, iommu);
1767 rcu_read_unlock();
1768
1769 dma_free_pagelist(freelist);
1770
1771 free_domain_mem(domain);
1772 }
1773
1774 static int domain_context_mapping_one(struct dmar_domain *domain,
1775 struct intel_iommu *iommu,
1776 u8 bus, u8 devfn, int translation)
1777 {
1778 struct context_entry *context;
1779 unsigned long flags;
1780 struct dma_pte *pgd;
1781 int id;
1782 int agaw;
1783 struct device_domain_info *info = NULL;
1784
1785 pr_debug("Set context mapping for %02x:%02x.%d\n",
1786 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1787
1788 BUG_ON(!domain->pgd);
1789 BUG_ON(translation != CONTEXT_TT_PASS_THROUGH &&
1790 translation != CONTEXT_TT_MULTI_LEVEL);
1791
1792 context = device_to_context_entry(iommu, bus, devfn);
1793 if (!context)
1794 return -ENOMEM;
1795 spin_lock_irqsave(&iommu->lock, flags);
1796 if (context_present(context)) {
1797 spin_unlock_irqrestore(&iommu->lock, flags);
1798 return 0;
1799 }
1800
1801 id = domain->id;
1802 pgd = domain->pgd;
1803
1804 if (domain_type_is_vm_or_si(domain)) {
1805 if (domain_type_is_vm(domain)) {
1806 id = iommu_attach_vm_domain(domain, iommu);
1807 if (id < 0) {
1808 spin_unlock_irqrestore(&iommu->lock, flags);
1809 pr_err("IOMMU: no free domain ids\n");
1810 return -EFAULT;
1811 }
1812 }
1813
1814 /* Skip top levels of page tables for
1815 * iommu which has less agaw than default.
1816 * Unnecessary for PT mode.
1817 */
1818 if (translation != CONTEXT_TT_PASS_THROUGH) {
1819 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1820 pgd = phys_to_virt(dma_pte_addr(pgd));
1821 if (!dma_pte_present(pgd)) {
1822 spin_unlock_irqrestore(&iommu->lock, flags);
1823 return -ENOMEM;
1824 }
1825 }
1826 }
1827 }
1828
1829 context_set_domain_id(context, id);
1830
1831 if (translation != CONTEXT_TT_PASS_THROUGH) {
1832 info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
1833 translation = info ? CONTEXT_TT_DEV_IOTLB :
1834 CONTEXT_TT_MULTI_LEVEL;
1835 }
1836 /*
1837 * In pass through mode, AW must be programmed to indicate the largest
1838 * AGAW value supported by hardware. And ASR is ignored by hardware.
1839 */
1840 if (unlikely(translation == CONTEXT_TT_PASS_THROUGH))
1841 context_set_address_width(context, iommu->msagaw);
1842 else {
1843 context_set_address_root(context, virt_to_phys(pgd));
1844 context_set_address_width(context, iommu->agaw);
1845 }
1846
1847 context_set_translation_type(context, translation);
1848 context_set_fault_enable(context);
1849 context_set_present(context);
1850 domain_flush_cache(domain, context, sizeof(*context));
1851
1852 /*
1853 * It's a non-present to present mapping. If hardware doesn't cache
1854 * non-present entry we only need to flush the write-buffer. If the
1855 * _does_ cache non-present entries, then it does so in the special
1856 * domain #0, which we have to flush:
1857 */
1858 if (cap_caching_mode(iommu->cap)) {
1859 iommu->flush.flush_context(iommu, 0,
1860 (((u16)bus) << 8) | devfn,
1861 DMA_CCMD_MASK_NOBIT,
1862 DMA_CCMD_DEVICE_INVL);
1863 iommu->flush.flush_iotlb(iommu, id, 0, 0, DMA_TLB_DSI_FLUSH);
1864 } else {
1865 iommu_flush_write_buffer(iommu);
1866 }
1867 iommu_enable_dev_iotlb(info);
1868 spin_unlock_irqrestore(&iommu->lock, flags);
1869
1870 domain_attach_iommu(domain, iommu);
1871
1872 return 0;
1873 }
1874
1875 struct domain_context_mapping_data {
1876 struct dmar_domain *domain;
1877 struct intel_iommu *iommu;
1878 int translation;
1879 };
1880
1881 static int domain_context_mapping_cb(struct pci_dev *pdev,
1882 u16 alias, void *opaque)
1883 {
1884 struct domain_context_mapping_data *data = opaque;
1885
1886 return domain_context_mapping_one(data->domain, data->iommu,
1887 PCI_BUS_NUM(alias), alias & 0xff,
1888 data->translation);
1889 }
1890
1891 static int
1892 domain_context_mapping(struct dmar_domain *domain, struct device *dev,
1893 int translation)
1894 {
1895 struct intel_iommu *iommu;
1896 u8 bus, devfn;
1897 struct domain_context_mapping_data data;
1898
1899 iommu = device_to_iommu(dev, &bus, &devfn);
1900 if (!iommu)
1901 return -ENODEV;
1902
1903 if (!dev_is_pci(dev))
1904 return domain_context_mapping_one(domain, iommu, bus, devfn,
1905 translation);
1906
1907 data.domain = domain;
1908 data.iommu = iommu;
1909 data.translation = translation;
1910
1911 return pci_for_each_dma_alias(to_pci_dev(dev),
1912 &domain_context_mapping_cb, &data);
1913 }
1914
1915 static int domain_context_mapped_cb(struct pci_dev *pdev,
1916 u16 alias, void *opaque)
1917 {
1918 struct intel_iommu *iommu = opaque;
1919
1920 return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff);
1921 }
1922
1923 static int domain_context_mapped(struct device *dev)
1924 {
1925 struct intel_iommu *iommu;
1926 u8 bus, devfn;
1927
1928 iommu = device_to_iommu(dev, &bus, &devfn);
1929 if (!iommu)
1930 return -ENODEV;
1931
1932 if (!dev_is_pci(dev))
1933 return device_context_mapped(iommu, bus, devfn);
1934
1935 return !pci_for_each_dma_alias(to_pci_dev(dev),
1936 domain_context_mapped_cb, iommu);
1937 }
1938
1939 /* Returns a number of VTD pages, but aligned to MM page size */
1940 static inline unsigned long aligned_nrpages(unsigned long host_addr,
1941 size_t size)
1942 {
1943 host_addr &= ~PAGE_MASK;
1944 return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
1945 }
1946
1947 /* Return largest possible superpage level for a given mapping */
1948 static inline int hardware_largepage_caps(struct dmar_domain *domain,
1949 unsigned long iov_pfn,
1950 unsigned long phy_pfn,
1951 unsigned long pages)
1952 {
1953 int support, level = 1;
1954 unsigned long pfnmerge;
1955
1956 support = domain->iommu_superpage;
1957
1958 /* To use a large page, the virtual *and* physical addresses
1959 must be aligned to 2MiB/1GiB/etc. Lower bits set in either
1960 of them will mean we have to use smaller pages. So just
1961 merge them and check both at once. */
1962 pfnmerge = iov_pfn | phy_pfn;
1963
1964 while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
1965 pages >>= VTD_STRIDE_SHIFT;
1966 if (!pages)
1967 break;
1968 pfnmerge >>= VTD_STRIDE_SHIFT;
1969 level++;
1970 support--;
1971 }
1972 return level;
1973 }
1974
1975 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1976 struct scatterlist *sg, unsigned long phys_pfn,
1977 unsigned long nr_pages, int prot)
1978 {
1979 struct dma_pte *first_pte = NULL, *pte = NULL;
1980 phys_addr_t uninitialized_var(pteval);
1981 unsigned long sg_res;
1982 unsigned int largepage_lvl = 0;
1983 unsigned long lvl_pages = 0;
1984
1985 BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1));
1986
1987 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1988 return -EINVAL;
1989
1990 prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
1991
1992 if (sg)
1993 sg_res = 0;
1994 else {
1995 sg_res = nr_pages + 1;
1996 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
1997 }
1998
1999 while (nr_pages > 0) {
2000 uint64_t tmp;
2001
2002 if (!sg_res) {
2003 sg_res = aligned_nrpages(sg->offset, sg->length);
2004 sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
2005 sg->dma_length = sg->length;
2006 pteval = page_to_phys(sg_page(sg)) | prot;
2007 phys_pfn = pteval >> VTD_PAGE_SHIFT;
2008 }
2009
2010 if (!pte) {
2011 largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
2012
2013 first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl);
2014 if (!pte)
2015 return -ENOMEM;
2016 /* It is large page*/
2017 if (largepage_lvl > 1) {
2018 pteval |= DMA_PTE_LARGE_PAGE;
2019 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2020 /*
2021 * Ensure that old small page tables are
2022 * removed to make room for superpage,
2023 * if they exist.
2024 */
2025 dma_pte_free_pagetable(domain, iov_pfn,
2026 iov_pfn + lvl_pages - 1);
2027 } else {
2028 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
2029 }
2030
2031 }
2032 /* We don't need lock here, nobody else
2033 * touches the iova range
2034 */
2035 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
2036 if (tmp) {
2037 static int dumps = 5;
2038 printk(KERN_CRIT "ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
2039 iov_pfn, tmp, (unsigned long long)pteval);
2040 if (dumps) {
2041 dumps--;
2042 debug_dma_dump_mappings(NULL);
2043 }
2044 WARN_ON(1);
2045 }
2046
2047 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2048
2049 BUG_ON(nr_pages < lvl_pages);
2050 BUG_ON(sg_res < lvl_pages);
2051
2052 nr_pages -= lvl_pages;
2053 iov_pfn += lvl_pages;
2054 phys_pfn += lvl_pages;
2055 pteval += lvl_pages * VTD_PAGE_SIZE;
2056 sg_res -= lvl_pages;
2057
2058 /* If the next PTE would be the first in a new page, then we
2059 need to flush the cache on the entries we've just written.
2060 And then we'll need to recalculate 'pte', so clear it and
2061 let it get set again in the if (!pte) block above.
2062
2063 If we're done (!nr_pages) we need to flush the cache too.
2064
2065 Also if we've been setting superpages, we may need to
2066 recalculate 'pte' and switch back to smaller pages for the
2067 end of the mapping, if the trailing size is not enough to
2068 use another superpage (i.e. sg_res < lvl_pages). */
2069 pte++;
2070 if (!nr_pages || first_pte_in_page(pte) ||
2071 (largepage_lvl > 1 && sg_res < lvl_pages)) {
2072 domain_flush_cache(domain, first_pte,
2073 (void *)pte - (void *)first_pte);
2074 pte = NULL;
2075 }
2076
2077 if (!sg_res && nr_pages)
2078 sg = sg_next(sg);
2079 }
2080 return 0;
2081 }
2082
2083 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2084 struct scatterlist *sg, unsigned long nr_pages,
2085 int prot)
2086 {
2087 return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
2088 }
2089
2090 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2091 unsigned long phys_pfn, unsigned long nr_pages,
2092 int prot)
2093 {
2094 return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
2095 }
2096
2097 static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
2098 {
2099 if (!iommu)
2100 return;
2101
2102 clear_context_table(iommu, bus, devfn);
2103 iommu->flush.flush_context(iommu, 0, 0, 0,
2104 DMA_CCMD_GLOBAL_INVL);
2105 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2106 }
2107
2108 static inline void unlink_domain_info(struct device_domain_info *info)
2109 {
2110 assert_spin_locked(&device_domain_lock);
2111 list_del(&info->link);
2112 list_del(&info->global);
2113 if (info->dev)
2114 info->dev->archdata.iommu = NULL;
2115 }
2116
2117 static void domain_remove_dev_info(struct dmar_domain *domain)
2118 {
2119 struct device_domain_info *info, *tmp;
2120 unsigned long flags;
2121
2122 spin_lock_irqsave(&device_domain_lock, flags);
2123 list_for_each_entry_safe(info, tmp, &domain->devices, link) {
2124 unlink_domain_info(info);
2125 spin_unlock_irqrestore(&device_domain_lock, flags);
2126
2127 iommu_disable_dev_iotlb(info);
2128 iommu_detach_dev(info->iommu, info->bus, info->devfn);
2129
2130 if (domain_type_is_vm(domain)) {
2131 iommu_detach_dependent_devices(info->iommu, info->dev);
2132 domain_detach_iommu(domain, info->iommu);
2133 }
2134
2135 free_devinfo_mem(info);
2136 spin_lock_irqsave(&device_domain_lock, flags);
2137 }
2138 spin_unlock_irqrestore(&device_domain_lock, flags);
2139 }
2140
2141 /*
2142 * find_domain
2143 * Note: we use struct device->archdata.iommu stores the info
2144 */
2145 static struct dmar_domain *find_domain(struct device *dev)
2146 {
2147 struct device_domain_info *info;
2148
2149 /* No lock here, assumes no domain exit in normal case */
2150 info = dev->archdata.iommu;
2151 if (info)
2152 return info->domain;
2153 return NULL;
2154 }
2155
2156 static inline struct device_domain_info *
2157 dmar_search_domain_by_dev_info(int segment, int bus, int devfn)
2158 {
2159 struct device_domain_info *info;
2160
2161 list_for_each_entry(info, &device_domain_list, global)
2162 if (info->iommu->segment == segment && info->bus == bus &&
2163 info->devfn == devfn)
2164 return info;
2165
2166 return NULL;
2167 }
2168
2169 static struct dmar_domain *dmar_insert_dev_info(struct intel_iommu *iommu,
2170 int bus, int devfn,
2171 struct device *dev,
2172 struct dmar_domain *domain)
2173 {
2174 struct dmar_domain *found = NULL;
2175 struct device_domain_info *info;
2176 unsigned long flags;
2177
2178 info = alloc_devinfo_mem();
2179 if (!info)
2180 return NULL;
2181
2182 info->bus = bus;
2183 info->devfn = devfn;
2184 info->dev = dev;
2185 info->domain = domain;
2186 info->iommu = iommu;
2187
2188 spin_lock_irqsave(&device_domain_lock, flags);
2189 if (dev)
2190 found = find_domain(dev);
2191 else {
2192 struct device_domain_info *info2;
2193 info2 = dmar_search_domain_by_dev_info(iommu->segment, bus, devfn);
2194 if (info2)
2195 found = info2->domain;
2196 }
2197 if (found) {
2198 spin_unlock_irqrestore(&device_domain_lock, flags);
2199 free_devinfo_mem(info);
2200 /* Caller must free the original domain */
2201 return found;
2202 }
2203
2204 list_add(&info->link, &domain->devices);
2205 list_add(&info->global, &device_domain_list);
2206 if (dev)
2207 dev->archdata.iommu = info;
2208 spin_unlock_irqrestore(&device_domain_lock, flags);
2209
2210 return domain;
2211 }
2212
2213 static int get_last_alias(struct pci_dev *pdev, u16 alias, void *opaque)
2214 {
2215 *(u16 *)opaque = alias;
2216 return 0;
2217 }
2218
2219 /* domain is initialized */
2220 static struct dmar_domain *get_domain_for_dev(struct device *dev, int gaw)
2221 {
2222 struct dmar_domain *domain, *tmp;
2223 struct intel_iommu *iommu;
2224 struct device_domain_info *info;
2225 u16 dma_alias;
2226 unsigned long flags;
2227 u8 bus, devfn;
2228
2229 domain = find_domain(dev);
2230 if (domain)
2231 return domain;
2232
2233 iommu = device_to_iommu(dev, &bus, &devfn);
2234 if (!iommu)
2235 return NULL;
2236
2237 if (dev_is_pci(dev)) {
2238 struct pci_dev *pdev = to_pci_dev(dev);
2239
2240 pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2241
2242 spin_lock_irqsave(&device_domain_lock, flags);
2243 info = dmar_search_domain_by_dev_info(pci_domain_nr(pdev->bus),
2244 PCI_BUS_NUM(dma_alias),
2245 dma_alias & 0xff);
2246 if (info) {
2247 iommu = info->iommu;
2248 domain = info->domain;
2249 }
2250 spin_unlock_irqrestore(&device_domain_lock, flags);
2251
2252 /* DMA alias already has a domain, uses it */
2253 if (info)
2254 goto found_domain;
2255 }
2256
2257 /* Allocate and initialize new domain for the device */
2258 domain = alloc_domain(0);
2259 if (!domain)
2260 return NULL;
2261 domain->id = iommu_attach_domain(domain, iommu);
2262 if (domain->id < 0) {
2263 free_domain_mem(domain);
2264 return NULL;
2265 }
2266 domain_attach_iommu(domain, iommu);
2267 if (domain_init(domain, gaw)) {
2268 domain_exit(domain);
2269 return NULL;
2270 }
2271
2272 /* register PCI DMA alias device */
2273 if (dev_is_pci(dev)) {
2274 tmp = dmar_insert_dev_info(iommu, PCI_BUS_NUM(dma_alias),
2275 dma_alias & 0xff, NULL, domain);
2276
2277 if (!tmp || tmp != domain) {
2278 domain_exit(domain);
2279 domain = tmp;
2280 }
2281
2282 if (!domain)
2283 return NULL;
2284 }
2285
2286 found_domain:
2287 tmp = dmar_insert_dev_info(iommu, bus, devfn, dev, domain);
2288
2289 if (!tmp || tmp != domain) {
2290 domain_exit(domain);
2291 domain = tmp;
2292 }
2293
2294 return domain;
2295 }
2296
2297 static int iommu_identity_mapping;
2298 #define IDENTMAP_ALL 1
2299 #define IDENTMAP_GFX 2
2300 #define IDENTMAP_AZALIA 4
2301
2302 static int iommu_domain_identity_map(struct dmar_domain *domain,
2303 unsigned long long start,
2304 unsigned long long end)
2305 {
2306 unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
2307 unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
2308
2309 if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
2310 dma_to_mm_pfn(last_vpfn))) {
2311 printk(KERN_ERR "IOMMU: reserve iova failed\n");
2312 return -ENOMEM;
2313 }
2314
2315 pr_debug("Mapping reserved region %llx-%llx for domain %d\n",
2316 start, end, domain->id);
2317 /*
2318 * RMRR range might have overlap with physical memory range,
2319 * clear it first
2320 */
2321 dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2322
2323 return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
2324 last_vpfn - first_vpfn + 1,
2325 DMA_PTE_READ|DMA_PTE_WRITE);
2326 }
2327
2328 static int iommu_prepare_identity_map(struct device *dev,
2329 unsigned long long start,
2330 unsigned long long end)
2331 {
2332 struct dmar_domain *domain;
2333 int ret;
2334
2335 domain = get_domain_for_dev(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2336 if (!domain)
2337 return -ENOMEM;
2338
2339 /* For _hardware_ passthrough, don't bother. But for software
2340 passthrough, we do it anyway -- it may indicate a memory
2341 range which is reserved in E820, so which didn't get set
2342 up to start with in si_domain */
2343 if (domain == si_domain && hw_pass_through) {
2344 printk("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
2345 dev_name(dev), start, end);
2346 return 0;
2347 }
2348
2349 printk(KERN_INFO
2350 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
2351 dev_name(dev), start, end);
2352
2353 if (end < start) {
2354 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2355 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2356 dmi_get_system_info(DMI_BIOS_VENDOR),
2357 dmi_get_system_info(DMI_BIOS_VERSION),
2358 dmi_get_system_info(DMI_PRODUCT_VERSION));
2359 ret = -EIO;
2360 goto error;
2361 }
2362
2363 if (end >> agaw_to_width(domain->agaw)) {
2364 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2365 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2366 agaw_to_width(domain->agaw),
2367 dmi_get_system_info(DMI_BIOS_VENDOR),
2368 dmi_get_system_info(DMI_BIOS_VERSION),
2369 dmi_get_system_info(DMI_PRODUCT_VERSION));
2370 ret = -EIO;
2371 goto error;
2372 }
2373
2374 ret = iommu_domain_identity_map(domain, start, end);
2375 if (ret)
2376 goto error;
2377
2378 /* context entry init */
2379 ret = domain_context_mapping(domain, dev, CONTEXT_TT_MULTI_LEVEL);
2380 if (ret)
2381 goto error;
2382
2383 return 0;
2384
2385 error:
2386 domain_exit(domain);
2387 return ret;
2388 }
2389
2390 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2391 struct device *dev)
2392 {
2393 if (dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2394 return 0;
2395 return iommu_prepare_identity_map(dev, rmrr->base_address,
2396 rmrr->end_address);
2397 }
2398
2399 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
2400 static inline void iommu_prepare_isa(void)
2401 {
2402 struct pci_dev *pdev;
2403 int ret;
2404
2405 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2406 if (!pdev)
2407 return;
2408
2409 printk(KERN_INFO "IOMMU: Prepare 0-16MiB unity mapping for LPC\n");
2410 ret = iommu_prepare_identity_map(&pdev->dev, 0, 16*1024*1024 - 1);
2411
2412 if (ret)
2413 printk(KERN_ERR "IOMMU: Failed to create 0-16MiB identity map; "
2414 "floppy might not work\n");
2415
2416 pci_dev_put(pdev);
2417 }
2418 #else
2419 static inline void iommu_prepare_isa(void)
2420 {
2421 return;
2422 }
2423 #endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */
2424
2425 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2426
2427 static int __init si_domain_init(int hw)
2428 {
2429 struct dmar_drhd_unit *drhd;
2430 struct intel_iommu *iommu;
2431 int nid, ret = 0;
2432 bool first = true;
2433
2434 si_domain = alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY);
2435 if (!si_domain)
2436 return -EFAULT;
2437
2438 for_each_active_iommu(iommu, drhd) {
2439 ret = iommu_attach_domain(si_domain, iommu);
2440 if (ret < 0) {
2441 domain_exit(si_domain);
2442 return -EFAULT;
2443 } else if (first) {
2444 si_domain->id = ret;
2445 first = false;
2446 } else if (si_domain->id != ret) {
2447 domain_exit(si_domain);
2448 return -EFAULT;
2449 }
2450 domain_attach_iommu(si_domain, iommu);
2451 }
2452
2453 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2454 domain_exit(si_domain);
2455 return -EFAULT;
2456 }
2457
2458 pr_debug("IOMMU: identity mapping domain is domain %d\n",
2459 si_domain->id);
2460
2461 if (hw)
2462 return 0;
2463
2464 for_each_online_node(nid) {
2465 unsigned long start_pfn, end_pfn;
2466 int i;
2467
2468 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2469 ret = iommu_domain_identity_map(si_domain,
2470 PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
2471 if (ret)
2472 return ret;
2473 }
2474 }
2475
2476 return 0;
2477 }
2478
2479 static int identity_mapping(struct device *dev)
2480 {
2481 struct device_domain_info *info;
2482
2483 if (likely(!iommu_identity_mapping))
2484 return 0;
2485
2486 info = dev->archdata.iommu;
2487 if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
2488 return (info->domain == si_domain);
2489
2490 return 0;
2491 }
2492
2493 static int domain_add_dev_info(struct dmar_domain *domain,
2494 struct device *dev, int translation)
2495 {
2496 struct dmar_domain *ndomain;
2497 struct intel_iommu *iommu;
2498 u8 bus, devfn;
2499 int ret;
2500
2501 iommu = device_to_iommu(dev, &bus, &devfn);
2502 if (!iommu)
2503 return -ENODEV;
2504
2505 ndomain = dmar_insert_dev_info(iommu, bus, devfn, dev, domain);
2506 if (ndomain != domain)
2507 return -EBUSY;
2508
2509 ret = domain_context_mapping(domain, dev, translation);
2510 if (ret) {
2511 domain_remove_one_dev_info(domain, dev);
2512 return ret;
2513 }
2514
2515 return 0;
2516 }
2517
2518 static bool device_has_rmrr(struct device *dev)
2519 {
2520 struct dmar_rmrr_unit *rmrr;
2521 struct device *tmp;
2522 int i;
2523
2524 rcu_read_lock();
2525 for_each_rmrr_units(rmrr) {
2526 /*
2527 * Return TRUE if this RMRR contains the device that
2528 * is passed in.
2529 */
2530 for_each_active_dev_scope(rmrr->devices,
2531 rmrr->devices_cnt, i, tmp)
2532 if (tmp == dev) {
2533 rcu_read_unlock();
2534 return true;
2535 }
2536 }
2537 rcu_read_unlock();
2538 return false;
2539 }
2540
2541 /*
2542 * There are a couple cases where we need to restrict the functionality of
2543 * devices associated with RMRRs. The first is when evaluating a device for
2544 * identity mapping because problems exist when devices are moved in and out
2545 * of domains and their respective RMRR information is lost. This means that
2546 * a device with associated RMRRs will never be in a "passthrough" domain.
2547 * The second is use of the device through the IOMMU API. This interface
2548 * expects to have full control of the IOVA space for the device. We cannot
2549 * satisfy both the requirement that RMRR access is maintained and have an
2550 * unencumbered IOVA space. We also have no ability to quiesce the device's
2551 * use of the RMRR space or even inform the IOMMU API user of the restriction.
2552 * We therefore prevent devices associated with an RMRR from participating in
2553 * the IOMMU API, which eliminates them from device assignment.
2554 *
2555 * In both cases we assume that PCI USB devices with RMRRs have them largely
2556 * for historical reasons and that the RMRR space is not actively used post
2557 * boot. This exclusion may change if vendors begin to abuse it.
2558 */
2559 static bool device_is_rmrr_locked(struct device *dev)
2560 {
2561 if (!device_has_rmrr(dev))
2562 return false;
2563
2564 if (dev_is_pci(dev)) {
2565 struct pci_dev *pdev = to_pci_dev(dev);
2566
2567 if ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB)
2568 return false;
2569 }
2570
2571 return true;
2572 }
2573
2574 static int iommu_should_identity_map(struct device *dev, int startup)
2575 {
2576
2577 if (dev_is_pci(dev)) {
2578 struct pci_dev *pdev = to_pci_dev(dev);
2579
2580 if (device_is_rmrr_locked(dev))
2581 return 0;
2582
2583 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2584 return 1;
2585
2586 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2587 return 1;
2588
2589 if (!(iommu_identity_mapping & IDENTMAP_ALL))
2590 return 0;
2591
2592 /*
2593 * We want to start off with all devices in the 1:1 domain, and
2594 * take them out later if we find they can't access all of memory.
2595 *
2596 * However, we can't do this for PCI devices behind bridges,
2597 * because all PCI devices behind the same bridge will end up
2598 * with the same source-id on their transactions.
2599 *
2600 * Practically speaking, we can't change things around for these
2601 * devices at run-time, because we can't be sure there'll be no
2602 * DMA transactions in flight for any of their siblings.
2603 *
2604 * So PCI devices (unless they're on the root bus) as well as
2605 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2606 * the 1:1 domain, just in _case_ one of their siblings turns out
2607 * not to be able to map all of memory.
2608 */
2609 if (!pci_is_pcie(pdev)) {
2610 if (!pci_is_root_bus(pdev->bus))
2611 return 0;
2612 if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2613 return 0;
2614 } else if (pci_pcie_type(pdev) == PCI_EXP_TYPE_PCI_BRIDGE)
2615 return 0;
2616 } else {
2617 if (device_has_rmrr(dev))
2618 return 0;
2619 }
2620
2621 /*
2622 * At boot time, we don't yet know if devices will be 64-bit capable.
2623 * Assume that they will — if they turn out not to be, then we can
2624 * take them out of the 1:1 domain later.
2625 */
2626 if (!startup) {
2627 /*
2628 * If the device's dma_mask is less than the system's memory
2629 * size then this is not a candidate for identity mapping.
2630 */
2631 u64 dma_mask = *dev->dma_mask;
2632
2633 if (dev->coherent_dma_mask &&
2634 dev->coherent_dma_mask < dma_mask)
2635 dma_mask = dev->coherent_dma_mask;
2636
2637 return dma_mask >= dma_get_required_mask(dev);
2638 }
2639
2640 return 1;
2641 }
2642
2643 static int __init dev_prepare_static_identity_mapping(struct device *dev, int hw)
2644 {
2645 int ret;
2646
2647 if (!iommu_should_identity_map(dev, 1))
2648 return 0;
2649
2650 ret = domain_add_dev_info(si_domain, dev,
2651 hw ? CONTEXT_TT_PASS_THROUGH :
2652 CONTEXT_TT_MULTI_LEVEL);
2653 if (!ret)
2654 pr_info("IOMMU: %s identity mapping for device %s\n",
2655 hw ? "hardware" : "software", dev_name(dev));
2656 else if (ret == -ENODEV)
2657 /* device not associated with an iommu */
2658 ret = 0;
2659
2660 return ret;
2661 }
2662
2663
2664 static int __init iommu_prepare_static_identity_mapping(int hw)
2665 {
2666 struct pci_dev *pdev = NULL;
2667 struct dmar_drhd_unit *drhd;
2668 struct intel_iommu *iommu;
2669 struct device *dev;
2670 int i;
2671 int ret = 0;
2672
2673 ret = si_domain_init(hw);
2674 if (ret)
2675 return -EFAULT;
2676
2677 for_each_pci_dev(pdev) {
2678 ret = dev_prepare_static_identity_mapping(&pdev->dev, hw);
2679 if (ret)
2680 return ret;
2681 }
2682
2683 for_each_active_iommu(iommu, drhd)
2684 for_each_active_dev_scope(drhd->devices, drhd->devices_cnt, i, dev) {
2685 struct acpi_device_physical_node *pn;
2686 struct acpi_device *adev;
2687
2688 if (dev->bus != &acpi_bus_type)
2689 continue;
2690
2691 adev= to_acpi_device(dev);
2692 mutex_lock(&adev->physical_node_lock);
2693 list_for_each_entry(pn, &adev->physical_node_list, node) {
2694 ret = dev_prepare_static_identity_mapping(pn->dev, hw);
2695 if (ret)
2696 break;
2697 }
2698 mutex_unlock(&adev->physical_node_lock);
2699 if (ret)
2700 return ret;
2701 }
2702
2703 return 0;
2704 }
2705
2706 static int __init init_dmars(void)
2707 {
2708 struct dmar_drhd_unit *drhd;
2709 struct dmar_rmrr_unit *rmrr;
2710 struct device *dev;
2711 struct intel_iommu *iommu;
2712 int i, ret;
2713
2714 /*
2715 * for each drhd
2716 * allocate root
2717 * initialize and program root entry to not present
2718 * endfor
2719 */
2720 for_each_drhd_unit(drhd) {
2721 /*
2722 * lock not needed as this is only incremented in the single
2723 * threaded kernel __init code path all other access are read
2724 * only
2725 */
2726 if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) {
2727 g_num_of_iommus++;
2728 continue;
2729 }
2730 printk_once(KERN_ERR "intel-iommu: exceeded %d IOMMUs\n",
2731 DMAR_UNITS_SUPPORTED);
2732 }
2733
2734 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
2735 GFP_KERNEL);
2736 if (!g_iommus) {
2737 printk(KERN_ERR "Allocating global iommu array failed\n");
2738 ret = -ENOMEM;
2739 goto error;
2740 }
2741
2742 deferred_flush = kzalloc(g_num_of_iommus *
2743 sizeof(struct deferred_flush_tables), GFP_KERNEL);
2744 if (!deferred_flush) {
2745 ret = -ENOMEM;
2746 goto free_g_iommus;
2747 }
2748
2749 for_each_active_iommu(iommu, drhd) {
2750 g_iommus[iommu->seq_id] = iommu;
2751
2752 ret = iommu_init_domains(iommu);
2753 if (ret)
2754 goto free_iommu;
2755
2756 /*
2757 * TBD:
2758 * we could share the same root & context tables
2759 * among all IOMMU's. Need to Split it later.
2760 */
2761 ret = iommu_alloc_root_entry(iommu);
2762 if (ret) {
2763 printk(KERN_ERR "IOMMU: allocate root entry failed\n");
2764 goto free_iommu;
2765 }
2766 if (!ecap_pass_through(iommu->ecap))
2767 hw_pass_through = 0;
2768 }
2769
2770 /*
2771 * Start from the sane iommu hardware state.
2772 */
2773 for_each_active_iommu(iommu, drhd) {
2774 /*
2775 * If the queued invalidation is already initialized by us
2776 * (for example, while enabling interrupt-remapping) then
2777 * we got the things already rolling from a sane state.
2778 */
2779 if (iommu->qi)
2780 continue;
2781
2782 /*
2783 * Clear any previous faults.
2784 */
2785 dmar_fault(-1, iommu);
2786 /*
2787 * Disable queued invalidation if supported and already enabled
2788 * before OS handover.
2789 */
2790 dmar_disable_qi(iommu);
2791 }
2792
2793 for_each_active_iommu(iommu, drhd) {
2794 if (dmar_enable_qi(iommu)) {
2795 /*
2796 * Queued Invalidate not enabled, use Register Based
2797 * Invalidate
2798 */
2799 iommu->flush.flush_context = __iommu_flush_context;
2800 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2801 printk(KERN_INFO "IOMMU %d 0x%Lx: using Register based "
2802 "invalidation\n",
2803 iommu->seq_id,
2804 (unsigned long long)drhd->reg_base_addr);
2805 } else {
2806 iommu->flush.flush_context = qi_flush_context;
2807 iommu->flush.flush_iotlb = qi_flush_iotlb;
2808 printk(KERN_INFO "IOMMU %d 0x%Lx: using Queued "
2809 "invalidation\n",
2810 iommu->seq_id,
2811 (unsigned long long)drhd->reg_base_addr);
2812 }
2813 }
2814
2815 if (iommu_pass_through)
2816 iommu_identity_mapping |= IDENTMAP_ALL;
2817
2818 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
2819 iommu_identity_mapping |= IDENTMAP_GFX;
2820 #endif
2821
2822 check_tylersburg_isoch();
2823
2824 /*
2825 * If pass through is not set or not enabled, setup context entries for
2826 * identity mappings for rmrr, gfx, and isa and may fall back to static
2827 * identity mapping if iommu_identity_mapping is set.
2828 */
2829 if (iommu_identity_mapping) {
2830 ret = iommu_prepare_static_identity_mapping(hw_pass_through);
2831 if (ret) {
2832 printk(KERN_CRIT "Failed to setup IOMMU pass-through\n");
2833 goto free_iommu;
2834 }
2835 }
2836 /*
2837 * For each rmrr
2838 * for each dev attached to rmrr
2839 * do
2840 * locate drhd for dev, alloc domain for dev
2841 * allocate free domain
2842 * allocate page table entries for rmrr
2843 * if context not allocated for bus
2844 * allocate and init context
2845 * set present in root table for this bus
2846 * init context with domain, translation etc
2847 * endfor
2848 * endfor
2849 */
2850 printk(KERN_INFO "IOMMU: Setting RMRR:\n");
2851 for_each_rmrr_units(rmrr) {
2852 /* some BIOS lists non-exist devices in DMAR table. */
2853 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
2854 i, dev) {
2855 ret = iommu_prepare_rmrr_dev(rmrr, dev);
2856 if (ret)
2857 printk(KERN_ERR
2858 "IOMMU: mapping reserved region failed\n");
2859 }
2860 }
2861
2862 iommu_prepare_isa();
2863
2864 /*
2865 * for each drhd
2866 * enable fault log
2867 * global invalidate context cache
2868 * global invalidate iotlb
2869 * enable translation
2870 */
2871 for_each_iommu(iommu, drhd) {
2872 if (drhd->ignored) {
2873 /*
2874 * we always have to disable PMRs or DMA may fail on
2875 * this device
2876 */
2877 if (force_on)
2878 iommu_disable_protect_mem_regions(iommu);
2879 continue;
2880 }
2881
2882 iommu_flush_write_buffer(iommu);
2883
2884 ret = dmar_set_interrupt(iommu);
2885 if (ret)
2886 goto free_iommu;
2887
2888 iommu_set_root_entry(iommu);
2889
2890 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
2891 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2892 iommu_enable_translation(iommu);
2893 iommu_disable_protect_mem_regions(iommu);
2894 }
2895
2896 return 0;
2897
2898 free_iommu:
2899 for_each_active_iommu(iommu, drhd)
2900 free_dmar_iommu(iommu);
2901 kfree(deferred_flush);
2902 free_g_iommus:
2903 kfree(g_iommus);
2904 error:
2905 return ret;
2906 }
2907
2908 /* This takes a number of _MM_ pages, not VTD pages */
2909 static struct iova *intel_alloc_iova(struct device *dev,
2910 struct dmar_domain *domain,
2911 unsigned long nrpages, uint64_t dma_mask)
2912 {
2913 struct iova *iova = NULL;
2914
2915 /* Restrict dma_mask to the width that the iommu can handle */
2916 dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
2917
2918 if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
2919 /*
2920 * First try to allocate an io virtual address in
2921 * DMA_BIT_MASK(32) and if that fails then try allocating
2922 * from higher range
2923 */
2924 iova = alloc_iova(&domain->iovad, nrpages,
2925 IOVA_PFN(DMA_BIT_MASK(32)), 1);
2926 if (iova)
2927 return iova;
2928 }
2929 iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(dma_mask), 1);
2930 if (unlikely(!iova)) {
2931 printk(KERN_ERR "Allocating %ld-page iova for %s failed",
2932 nrpages, dev_name(dev));
2933 return NULL;
2934 }
2935
2936 return iova;
2937 }
2938
2939 static struct dmar_domain *__get_valid_domain_for_dev(struct device *dev)
2940 {
2941 struct dmar_domain *domain;
2942 int ret;
2943
2944 domain = get_domain_for_dev(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2945 if (!domain) {
2946 printk(KERN_ERR "Allocating domain for %s failed",
2947 dev_name(dev));
2948 return NULL;
2949 }
2950
2951 /* make sure context mapping is ok */
2952 if (unlikely(!domain_context_mapped(dev))) {
2953 ret = domain_context_mapping(domain, dev, CONTEXT_TT_MULTI_LEVEL);
2954 if (ret) {
2955 printk(KERN_ERR "Domain context map for %s failed",
2956 dev_name(dev));
2957 return NULL;
2958 }
2959 }
2960
2961 return domain;
2962 }
2963
2964 static inline struct dmar_domain *get_valid_domain_for_dev(struct device *dev)
2965 {
2966 struct device_domain_info *info;
2967
2968 /* No lock here, assumes no domain exit in normal case */
2969 info = dev->archdata.iommu;
2970 if (likely(info))
2971 return info->domain;
2972
2973 return __get_valid_domain_for_dev(dev);
2974 }
2975
2976 static int iommu_dummy(struct device *dev)
2977 {
2978 return dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
2979 }
2980
2981 /* Check if the dev needs to go through non-identity map and unmap process.*/
2982 static int iommu_no_mapping(struct device *dev)
2983 {
2984 int found;
2985
2986 if (iommu_dummy(dev))
2987 return 1;
2988
2989 if (!iommu_identity_mapping)
2990 return 0;
2991
2992 found = identity_mapping(dev);
2993 if (found) {
2994 if (iommu_should_identity_map(dev, 0))
2995 return 1;
2996 else {
2997 /*
2998 * 32 bit DMA is removed from si_domain and fall back
2999 * to non-identity mapping.
3000 */
3001 domain_remove_one_dev_info(si_domain, dev);
3002 printk(KERN_INFO "32bit %s uses non-identity mapping\n",
3003 dev_name(dev));
3004 return 0;
3005 }
3006 } else {
3007 /*
3008 * In case of a detached 64 bit DMA device from vm, the device
3009 * is put into si_domain for identity mapping.
3010 */
3011 if (iommu_should_identity_map(dev, 0)) {
3012 int ret;
3013 ret = domain_add_dev_info(si_domain, dev,
3014 hw_pass_through ?
3015 CONTEXT_TT_PASS_THROUGH :
3016 CONTEXT_TT_MULTI_LEVEL);
3017 if (!ret) {
3018 printk(KERN_INFO "64bit %s uses identity mapping\n",
3019 dev_name(dev));
3020 return 1;
3021 }
3022 }
3023 }
3024
3025 return 0;
3026 }
3027
3028 static dma_addr_t __intel_map_single(struct device *dev, phys_addr_t paddr,
3029 size_t size, int dir, u64 dma_mask)
3030 {
3031 struct dmar_domain *domain;
3032 phys_addr_t start_paddr;
3033 struct iova *iova;
3034 int prot = 0;
3035 int ret;
3036 struct intel_iommu *iommu;
3037 unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
3038
3039 BUG_ON(dir == DMA_NONE);
3040
3041 if (iommu_no_mapping(dev))
3042 return paddr;
3043
3044 domain = get_valid_domain_for_dev(dev);
3045 if (!domain)
3046 return 0;
3047
3048 iommu = domain_get_iommu(domain);
3049 size = aligned_nrpages(paddr, size);
3050
3051 iova = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), dma_mask);
3052 if (!iova)
3053 goto error;
3054
3055 /*
3056 * Check if DMAR supports zero-length reads on write only
3057 * mappings..
3058 */
3059 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3060 !cap_zlr(iommu->cap))
3061 prot |= DMA_PTE_READ;
3062 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3063 prot |= DMA_PTE_WRITE;
3064 /*
3065 * paddr - (paddr + size) might be partial page, we should map the whole
3066 * page. Note: if two part of one page are separately mapped, we
3067 * might have two guest_addr mapping to the same host paddr, but this
3068 * is not a big problem
3069 */
3070 ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo),
3071 mm_to_dma_pfn(paddr_pfn), size, prot);
3072 if (ret)
3073 goto error;
3074
3075 /* it's a non-present to present mapping. Only flush if caching mode */
3076 if (cap_caching_mode(iommu->cap))
3077 iommu_flush_iotlb_psi(iommu, domain->id, mm_to_dma_pfn(iova->pfn_lo), size, 0, 1);
3078 else
3079 iommu_flush_write_buffer(iommu);
3080
3081 start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
3082 start_paddr += paddr & ~PAGE_MASK;
3083 return start_paddr;
3084
3085 error:
3086 if (iova)
3087 __free_iova(&domain->iovad, iova);
3088 printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n",
3089 dev_name(dev), size, (unsigned long long)paddr, dir);
3090 return 0;
3091 }
3092
3093 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
3094 unsigned long offset, size_t size,
3095 enum dma_data_direction dir,
3096 struct dma_attrs *attrs)
3097 {
3098 return __intel_map_single(dev, page_to_phys(page) + offset, size,
3099 dir, *dev->dma_mask);
3100 }
3101
3102 static void flush_unmaps(void)
3103 {
3104 int i, j;
3105
3106 timer_on = 0;
3107
3108 /* just flush them all */
3109 for (i = 0; i < g_num_of_iommus; i++) {
3110 struct intel_iommu *iommu = g_iommus[i];
3111 if (!iommu)
3112 continue;
3113
3114 if (!deferred_flush[i].next)
3115 continue;
3116
3117 /* In caching mode, global flushes turn emulation expensive */
3118 if (!cap_caching_mode(iommu->cap))
3119 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3120 DMA_TLB_GLOBAL_FLUSH);
3121 for (j = 0; j < deferred_flush[i].next; j++) {
3122 unsigned long mask;
3123 struct iova *iova = deferred_flush[i].iova[j];
3124 struct dmar_domain *domain = deferred_flush[i].domain[j];
3125
3126 /* On real hardware multiple invalidations are expensive */
3127 if (cap_caching_mode(iommu->cap))
3128 iommu_flush_iotlb_psi(iommu, domain->id,
3129 iova->pfn_lo, iova_size(iova),
3130 !deferred_flush[i].freelist[j], 0);
3131 else {
3132 mask = ilog2(mm_to_dma_pfn(iova_size(iova)));
3133 iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
3134 (uint64_t)iova->pfn_lo << PAGE_SHIFT, mask);
3135 }
3136 __free_iova(&deferred_flush[i].domain[j]->iovad, iova);
3137 if (deferred_flush[i].freelist[j])
3138 dma_free_pagelist(deferred_flush[i].freelist[j]);
3139 }
3140 deferred_flush[i].next = 0;
3141 }
3142
3143 list_size = 0;
3144 }
3145
3146 static void flush_unmaps_timeout(unsigned long data)
3147 {
3148 unsigned long flags;
3149
3150 spin_lock_irqsave(&async_umap_flush_lock, flags);
3151 flush_unmaps();
3152 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
3153 }
3154
3155 static void add_unmap(struct dmar_domain *dom, struct iova *iova, struct page *freelist)
3156 {
3157 unsigned long flags;
3158 int next, iommu_id;
3159 struct intel_iommu *iommu;
3160
3161 spin_lock_irqsave(&async_umap_flush_lock, flags);
3162 if (list_size == HIGH_WATER_MARK)
3163 flush_unmaps();
3164
3165 iommu = domain_get_iommu(dom);
3166 iommu_id = iommu->seq_id;
3167
3168 next = deferred_flush[iommu_id].next;
3169 deferred_flush[iommu_id].domain[next] = dom;
3170 deferred_flush[iommu_id].iova[next] = iova;
3171 deferred_flush[iommu_id].freelist[next] = freelist;
3172 deferred_flush[iommu_id].next++;
3173
3174 if (!timer_on) {
3175 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
3176 timer_on = 1;
3177 }
3178 list_size++;
3179 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
3180 }
3181
3182 static void intel_unmap(struct device *dev, dma_addr_t dev_addr)
3183 {
3184 struct dmar_domain *domain;
3185 unsigned long start_pfn, last_pfn;
3186 struct iova *iova;
3187 struct intel_iommu *iommu;
3188 struct page *freelist;
3189
3190 if (iommu_no_mapping(dev))
3191 return;
3192
3193 domain = find_domain(dev);
3194 BUG_ON(!domain);
3195
3196 iommu = domain_get_iommu(domain);
3197
3198 iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
3199 if (WARN_ONCE(!iova, "Driver unmaps unmatched page at PFN %llx\n",
3200 (unsigned long long)dev_addr))
3201 return;
3202
3203 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
3204 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
3205
3206 pr_debug("Device %s unmapping: pfn %lx-%lx\n",
3207 dev_name(dev), start_pfn, last_pfn);
3208
3209 freelist = domain_unmap(domain, start_pfn, last_pfn);
3210
3211 if (intel_iommu_strict) {
3212 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
3213 last_pfn - start_pfn + 1, !freelist, 0);
3214 /* free iova */
3215 __free_iova(&domain->iovad, iova);
3216 dma_free_pagelist(freelist);
3217 } else {
3218 add_unmap(domain, iova, freelist);
3219 /*
3220 * queue up the release of the unmap to save the 1/6th of the
3221 * cpu used up by the iotlb flush operation...
3222 */
3223 }
3224 }
3225
3226 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
3227 size_t size, enum dma_data_direction dir,
3228 struct dma_attrs *attrs)
3229 {
3230 intel_unmap(dev, dev_addr);
3231 }
3232
3233 static void *intel_alloc_coherent(struct device *dev, size_t size,
3234 dma_addr_t *dma_handle, gfp_t flags,
3235 struct dma_attrs *attrs)
3236 {
3237 struct page *page = NULL;
3238 int order;
3239
3240 size = PAGE_ALIGN(size);
3241 order = get_order(size);
3242
3243 if (!iommu_no_mapping(dev))
3244 flags &= ~(GFP_DMA | GFP_DMA32);
3245 else if (dev->coherent_dma_mask < dma_get_required_mask(dev)) {
3246 if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
3247 flags |= GFP_DMA;
3248 else
3249 flags |= GFP_DMA32;
3250 }
3251
3252 if (flags & __GFP_WAIT) {
3253 unsigned int count = size >> PAGE_SHIFT;
3254
3255 page = dma_alloc_from_contiguous(dev, count, order);
3256 if (page && iommu_no_mapping(dev) &&
3257 page_to_phys(page) + size > dev->coherent_dma_mask) {
3258 dma_release_from_contiguous(dev, page, count);
3259 page = NULL;
3260 }
3261 }
3262
3263 if (!page)
3264 page = alloc_pages(flags, order);
3265 if (!page)
3266 return NULL;
3267 memset(page_address(page), 0, size);
3268
3269 *dma_handle = __intel_map_single(dev, page_to_phys(page), size,
3270 DMA_BIDIRECTIONAL,
3271 dev->coherent_dma_mask);
3272 if (*dma_handle)
3273 return page_address(page);
3274 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3275 __free_pages(page, order);
3276
3277 return NULL;
3278 }
3279
3280 static void intel_free_coherent(struct device *dev, size_t size, void *vaddr,
3281 dma_addr_t dma_handle, struct dma_attrs *attrs)
3282 {
3283 int order;
3284 struct page *page = virt_to_page(vaddr);
3285
3286 size = PAGE_ALIGN(size);
3287 order = get_order(size);
3288
3289 intel_unmap(dev, dma_handle);
3290 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3291 __free_pages(page, order);
3292 }
3293
3294 static void intel_unmap_sg(struct device *dev, struct scatterlist *sglist,
3295 int nelems, enum dma_data_direction dir,
3296 struct dma_attrs *attrs)
3297 {
3298 intel_unmap(dev, sglist[0].dma_address);
3299 }
3300
3301 static int intel_nontranslate_map_sg(struct device *hddev,
3302 struct scatterlist *sglist, int nelems, int dir)
3303 {
3304 int i;
3305 struct scatterlist *sg;
3306
3307 for_each_sg(sglist, sg, nelems, i) {
3308 BUG_ON(!sg_page(sg));
3309 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
3310 sg->dma_length = sg->length;
3311 }
3312 return nelems;
3313 }
3314
3315 static int intel_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
3316 enum dma_data_direction dir, struct dma_attrs *attrs)
3317 {
3318 int i;
3319 struct dmar_domain *domain;
3320 size_t size = 0;
3321 int prot = 0;
3322 struct iova *iova = NULL;
3323 int ret;
3324 struct scatterlist *sg;
3325 unsigned long start_vpfn;
3326 struct intel_iommu *iommu;
3327
3328 BUG_ON(dir == DMA_NONE);
3329 if (iommu_no_mapping(dev))
3330 return intel_nontranslate_map_sg(dev, sglist, nelems, dir);
3331
3332 domain = get_valid_domain_for_dev(dev);
3333 if (!domain)
3334 return 0;
3335
3336 iommu = domain_get_iommu(domain);
3337
3338 for_each_sg(sglist, sg, nelems, i)
3339 size += aligned_nrpages(sg->offset, sg->length);
3340
3341 iova = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size),
3342 *dev->dma_mask);
3343 if (!iova) {
3344 sglist->dma_length = 0;
3345 return 0;
3346 }
3347
3348 /*
3349 * Check if DMAR supports zero-length reads on write only
3350 * mappings..
3351 */
3352 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3353 !cap_zlr(iommu->cap))
3354 prot |= DMA_PTE_READ;
3355 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3356 prot |= DMA_PTE_WRITE;
3357
3358 start_vpfn = mm_to_dma_pfn(iova->pfn_lo);
3359
3360 ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3361 if (unlikely(ret)) {
3362 dma_pte_free_pagetable(domain, start_vpfn,
3363 start_vpfn + size - 1);
3364 __free_iova(&domain->iovad, iova);
3365 return 0;
3366 }
3367
3368 /* it's a non-present to present mapping. Only flush if caching mode */
3369 if (cap_caching_mode(iommu->cap))
3370 iommu_flush_iotlb_psi(iommu, domain->id, start_vpfn, size, 0, 1);
3371 else
3372 iommu_flush_write_buffer(iommu);
3373
3374 return nelems;
3375 }
3376
3377 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
3378 {
3379 return !dma_addr;
3380 }
3381
3382 struct dma_map_ops intel_dma_ops = {
3383 .alloc = intel_alloc_coherent,
3384 .free = intel_free_coherent,
3385 .map_sg = intel_map_sg,
3386 .unmap_sg = intel_unmap_sg,
3387 .map_page = intel_map_page,
3388 .unmap_page = intel_unmap_page,
3389 .mapping_error = intel_mapping_error,
3390 };
3391
3392 static inline int iommu_domain_cache_init(void)
3393 {
3394 int ret = 0;
3395
3396 iommu_domain_cache = kmem_cache_create("iommu_domain",
3397 sizeof(struct dmar_domain),
3398 0,
3399 SLAB_HWCACHE_ALIGN,
3400
3401 NULL);
3402 if (!iommu_domain_cache) {
3403 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
3404 ret = -ENOMEM;
3405 }
3406
3407 return ret;
3408 }
3409
3410 static inline int iommu_devinfo_cache_init(void)
3411 {
3412 int ret = 0;
3413
3414 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
3415 sizeof(struct device_domain_info),
3416 0,
3417 SLAB_HWCACHE_ALIGN,
3418 NULL);
3419 if (!iommu_devinfo_cache) {
3420 printk(KERN_ERR "Couldn't create devinfo cache\n");
3421 ret = -ENOMEM;
3422 }
3423
3424 return ret;
3425 }
3426
3427 static inline int iommu_iova_cache_init(void)
3428 {
3429 int ret = 0;
3430
3431 iommu_iova_cache = kmem_cache_create("iommu_iova",
3432 sizeof(struct iova),
3433 0,
3434 SLAB_HWCACHE_ALIGN,
3435 NULL);
3436 if (!iommu_iova_cache) {
3437 printk(KERN_ERR "Couldn't create iova cache\n");
3438 ret = -ENOMEM;
3439 }
3440
3441 return ret;
3442 }
3443
3444 static int __init iommu_init_mempool(void)
3445 {
3446 int ret;
3447 ret = iommu_iova_cache_init();
3448 if (ret)
3449 return ret;
3450
3451 ret = iommu_domain_cache_init();
3452 if (ret)
3453 goto domain_error;
3454
3455 ret = iommu_devinfo_cache_init();
3456 if (!ret)
3457 return ret;
3458
3459 kmem_cache_destroy(iommu_domain_cache);
3460 domain_error:
3461 kmem_cache_destroy(iommu_iova_cache);
3462
3463 return -ENOMEM;
3464 }
3465
3466 static void __init iommu_exit_mempool(void)
3467 {
3468 kmem_cache_destroy(iommu_devinfo_cache);
3469 kmem_cache_destroy(iommu_domain_cache);
3470 kmem_cache_destroy(iommu_iova_cache);
3471
3472 }
3473
3474 static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
3475 {
3476 struct dmar_drhd_unit *drhd;
3477 u32 vtbar;
3478 int rc;
3479
3480 /* We know that this device on this chipset has its own IOMMU.
3481 * If we find it under a different IOMMU, then the BIOS is lying
3482 * to us. Hope that the IOMMU for this device is actually
3483 * disabled, and it needs no translation...
3484 */
3485 rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
3486 if (rc) {
3487 /* "can't" happen */
3488 dev_info(&pdev->dev, "failed to run vt-d quirk\n");
3489 return;
3490 }
3491 vtbar &= 0xffff0000;
3492
3493 /* we know that the this iommu should be at offset 0xa000 from vtbar */
3494 drhd = dmar_find_matched_drhd_unit(pdev);
3495 if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
3496 TAINT_FIRMWARE_WORKAROUND,
3497 "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
3498 pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3499 }
3500 DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
3501
3502 static void __init init_no_remapping_devices(void)
3503 {
3504 struct dmar_drhd_unit *drhd;
3505 struct device *dev;
3506 int i;
3507
3508 for_each_drhd_unit(drhd) {
3509 if (!drhd->include_all) {
3510 for_each_active_dev_scope(drhd->devices,
3511 drhd->devices_cnt, i, dev)
3512 break;
3513 /* ignore DMAR unit if no devices exist */
3514 if (i == drhd->devices_cnt)
3515 drhd->ignored = 1;
3516 }
3517 }
3518
3519 for_each_active_drhd_unit(drhd) {
3520 if (drhd->include_all)
3521 continue;
3522
3523 for_each_active_dev_scope(drhd->devices,
3524 drhd->devices_cnt, i, dev)
3525 if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
3526 break;
3527 if (i < drhd->devices_cnt)
3528 continue;
3529
3530 /* This IOMMU has *only* gfx devices. Either bypass it or
3531 set the gfx_mapped flag, as appropriate */
3532 if (dmar_map_gfx) {
3533 intel_iommu_gfx_mapped = 1;
3534 } else {
3535 drhd->ignored = 1;
3536 for_each_active_dev_scope(drhd->devices,
3537 drhd->devices_cnt, i, dev)
3538 dev->archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3539 }
3540 }
3541 }
3542
3543 #ifdef CONFIG_SUSPEND
3544 static int init_iommu_hw(void)
3545 {
3546 struct dmar_drhd_unit *drhd;
3547 struct intel_iommu *iommu = NULL;
3548
3549 for_each_active_iommu(iommu, drhd)
3550 if (iommu->qi)
3551 dmar_reenable_qi(iommu);
3552
3553 for_each_iommu(iommu, drhd) {
3554 if (drhd->ignored) {
3555 /*
3556 * we always have to disable PMRs or DMA may fail on
3557 * this device
3558 */
3559 if (force_on)
3560 iommu_disable_protect_mem_regions(iommu);
3561 continue;
3562 }
3563
3564 iommu_flush_write_buffer(iommu);
3565
3566 iommu_set_root_entry(iommu);
3567
3568 iommu->flush.flush_context(iommu, 0, 0, 0,
3569 DMA_CCMD_GLOBAL_INVL);
3570 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
3571 iommu_enable_translation(iommu);
3572 iommu_disable_protect_mem_regions(iommu);
3573 }
3574
3575 return 0;
3576 }
3577
3578 static void iommu_flush_all(void)
3579 {
3580 struct dmar_drhd_unit *drhd;
3581 struct intel_iommu *iommu;
3582
3583 for_each_active_iommu(iommu, drhd) {
3584 iommu->flush.flush_context(iommu, 0, 0, 0,
3585 DMA_CCMD_GLOBAL_INVL);
3586 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3587 DMA_TLB_GLOBAL_FLUSH);
3588 }
3589 }
3590
3591 static int iommu_suspend(void)
3592 {
3593 struct dmar_drhd_unit *drhd;
3594 struct intel_iommu *iommu = NULL;
3595 unsigned long flag;
3596
3597 for_each_active_iommu(iommu, drhd) {
3598 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
3599 GFP_ATOMIC);
3600 if (!iommu->iommu_state)
3601 goto nomem;
3602 }
3603
3604 iommu_flush_all();
3605
3606 for_each_active_iommu(iommu, drhd) {
3607 iommu_disable_translation(iommu);
3608
3609 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3610
3611 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3612 readl(iommu->reg + DMAR_FECTL_REG);
3613 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3614 readl(iommu->reg + DMAR_FEDATA_REG);
3615 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3616 readl(iommu->reg + DMAR_FEADDR_REG);
3617 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3618 readl(iommu->reg + DMAR_FEUADDR_REG);
3619
3620 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3621 }
3622 return 0;
3623
3624 nomem:
3625 for_each_active_iommu(iommu, drhd)
3626 kfree(iommu->iommu_state);
3627
3628 return -ENOMEM;
3629 }
3630
3631 static void iommu_resume(void)
3632 {
3633 struct dmar_drhd_unit *drhd;
3634 struct intel_iommu *iommu = NULL;
3635 unsigned long flag;
3636
3637 if (init_iommu_hw()) {
3638 if (force_on)
3639 panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
3640 else
3641 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3642 return;
3643 }
3644
3645 for_each_active_iommu(iommu, drhd) {
3646
3647 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3648
3649 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3650 iommu->reg + DMAR_FECTL_REG);
3651 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3652 iommu->reg + DMAR_FEDATA_REG);
3653 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3654 iommu->reg + DMAR_FEADDR_REG);
3655 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3656 iommu->reg + DMAR_FEUADDR_REG);
3657
3658 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3659 }
3660
3661 for_each_active_iommu(iommu, drhd)
3662 kfree(iommu->iommu_state);
3663 }
3664
3665 static struct syscore_ops iommu_syscore_ops = {
3666 .resume = iommu_resume,
3667 .suspend = iommu_suspend,
3668 };
3669
3670 static void __init init_iommu_pm_ops(void)
3671 {
3672 register_syscore_ops(&iommu_syscore_ops);
3673 }
3674
3675 #else
3676 static inline void init_iommu_pm_ops(void) {}
3677 #endif /* CONFIG_PM */
3678
3679
3680 int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg)
3681 {
3682 struct acpi_dmar_reserved_memory *rmrr;
3683 struct dmar_rmrr_unit *rmrru;
3684
3685 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
3686 if (!rmrru)
3687 return -ENOMEM;
3688
3689 rmrru->hdr = header;
3690 rmrr = (struct acpi_dmar_reserved_memory *)header;
3691 rmrru->base_address = rmrr->base_address;
3692 rmrru->end_address = rmrr->end_address;
3693 rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
3694 ((void *)rmrr) + rmrr->header.length,
3695 &rmrru->devices_cnt);
3696 if (rmrru->devices_cnt && rmrru->devices == NULL) {
3697 kfree(rmrru);
3698 return -ENOMEM;
3699 }
3700
3701 list_add(&rmrru->list, &dmar_rmrr_units);
3702
3703 return 0;
3704 }
3705
3706 static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr)
3707 {
3708 struct dmar_atsr_unit *atsru;
3709 struct acpi_dmar_atsr *tmp;
3710
3711 list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
3712 tmp = (struct acpi_dmar_atsr *)atsru->hdr;
3713 if (atsr->segment != tmp->segment)
3714 continue;
3715 if (atsr->header.length != tmp->header.length)
3716 continue;
3717 if (memcmp(atsr, tmp, atsr->header.length) == 0)
3718 return atsru;
3719 }
3720
3721 return NULL;
3722 }
3723
3724 int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg)
3725 {
3726 struct acpi_dmar_atsr *atsr;
3727 struct dmar_atsr_unit *atsru;
3728
3729 if (system_state != SYSTEM_BOOTING && !intel_iommu_enabled)
3730 return 0;
3731
3732 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
3733 atsru = dmar_find_atsr(atsr);
3734 if (atsru)
3735 return 0;
3736
3737 atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL);
3738 if (!atsru)
3739 return -ENOMEM;
3740
3741 /*
3742 * If memory is allocated from slab by ACPI _DSM method, we need to
3743 * copy the memory content because the memory buffer will be freed
3744 * on return.
3745 */
3746 atsru->hdr = (void *)(atsru + 1);
3747 memcpy(atsru->hdr, hdr, hdr->length);
3748 atsru->include_all = atsr->flags & 0x1;
3749 if (!atsru->include_all) {
3750 atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
3751 (void *)atsr + atsr->header.length,
3752 &atsru->devices_cnt);
3753 if (atsru->devices_cnt && atsru->devices == NULL) {
3754 kfree(atsru);
3755 return -ENOMEM;
3756 }
3757 }
3758
3759 list_add_rcu(&atsru->list, &dmar_atsr_units);
3760
3761 return 0;
3762 }
3763
3764 static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
3765 {
3766 dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
3767 kfree(atsru);
3768 }
3769
3770 int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg)
3771 {
3772 struct acpi_dmar_atsr *atsr;
3773 struct dmar_atsr_unit *atsru;
3774
3775 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
3776 atsru = dmar_find_atsr(atsr);
3777 if (atsru) {
3778 list_del_rcu(&atsru->list);
3779 synchronize_rcu();
3780 intel_iommu_free_atsr(atsru);
3781 }
3782
3783 return 0;
3784 }
3785
3786 int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg)
3787 {
3788 int i;
3789 struct device *dev;
3790 struct acpi_dmar_atsr *atsr;
3791 struct dmar_atsr_unit *atsru;
3792
3793 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
3794 atsru = dmar_find_atsr(atsr);
3795 if (!atsru)
3796 return 0;
3797
3798 if (!atsru->include_all && atsru->devices && atsru->devices_cnt)
3799 for_each_active_dev_scope(atsru->devices, atsru->devices_cnt,
3800 i, dev)
3801 return -EBUSY;
3802
3803 return 0;
3804 }
3805
3806 int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
3807 {
3808 return intel_iommu_enabled ? -ENOSYS : 0;
3809 }
3810
3811 static void intel_iommu_free_dmars(void)
3812 {
3813 struct dmar_rmrr_unit *rmrru, *rmrr_n;
3814 struct dmar_atsr_unit *atsru, *atsr_n;
3815
3816 list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
3817 list_del(&rmrru->list);
3818 dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
3819 kfree(rmrru);
3820 }
3821
3822 list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
3823 list_del(&atsru->list);
3824 intel_iommu_free_atsr(atsru);
3825 }
3826 }
3827
3828 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
3829 {
3830 int i, ret = 1;
3831 struct pci_bus *bus;
3832 struct pci_dev *bridge = NULL;
3833 struct device *tmp;
3834 struct acpi_dmar_atsr *atsr;
3835 struct dmar_atsr_unit *atsru;
3836
3837 dev = pci_physfn(dev);
3838 for (bus = dev->bus; bus; bus = bus->parent) {
3839 bridge = bus->self;
3840 if (!bridge || !pci_is_pcie(bridge) ||
3841 pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
3842 return 0;
3843 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
3844 break;
3845 }
3846 if (!bridge)
3847 return 0;
3848
3849 rcu_read_lock();
3850 list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
3851 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
3852 if (atsr->segment != pci_domain_nr(dev->bus))
3853 continue;
3854
3855 for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
3856 if (tmp == &bridge->dev)
3857 goto out;
3858
3859 if (atsru->include_all)
3860 goto out;
3861 }
3862 ret = 0;
3863 out:
3864 rcu_read_unlock();
3865
3866 return ret;
3867 }
3868
3869 int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
3870 {
3871 int ret = 0;
3872 struct dmar_rmrr_unit *rmrru;
3873 struct dmar_atsr_unit *atsru;
3874 struct acpi_dmar_atsr *atsr;
3875 struct acpi_dmar_reserved_memory *rmrr;
3876
3877 if (!intel_iommu_enabled && system_state != SYSTEM_BOOTING)
3878 return 0;
3879
3880 list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
3881 rmrr = container_of(rmrru->hdr,
3882 struct acpi_dmar_reserved_memory, header);
3883 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
3884 ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
3885 ((void *)rmrr) + rmrr->header.length,
3886 rmrr->segment, rmrru->devices,
3887 rmrru->devices_cnt);
3888 if(ret < 0)
3889 return ret;
3890 } else if (info->event == BUS_NOTIFY_DEL_DEVICE) {
3891 dmar_remove_dev_scope(info, rmrr->segment,
3892 rmrru->devices, rmrru->devices_cnt);
3893 }
3894 }
3895
3896 list_for_each_entry(atsru, &dmar_atsr_units, list) {
3897 if (atsru->include_all)
3898 continue;
3899
3900 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
3901 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
3902 ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
3903 (void *)atsr + atsr->header.length,
3904 atsr->segment, atsru->devices,
3905 atsru->devices_cnt);
3906 if (ret > 0)
3907 break;
3908 else if(ret < 0)
3909 return ret;
3910 } else if (info->event == BUS_NOTIFY_DEL_DEVICE) {
3911 if (dmar_remove_dev_scope(info, atsr->segment,
3912 atsru->devices, atsru->devices_cnt))
3913 break;
3914 }
3915 }
3916
3917 return 0;
3918 }
3919
3920 /*
3921 * Here we only respond to action of unbound device from driver.
3922 *
3923 * Added device is not attached to its DMAR domain here yet. That will happen
3924 * when mapping the device to iova.
3925 */
3926 static int device_notifier(struct notifier_block *nb,
3927 unsigned long action, void *data)
3928 {
3929 struct device *dev = data;
3930 struct dmar_domain *domain;
3931
3932 if (iommu_dummy(dev))
3933 return 0;
3934
3935 if (action != BUS_NOTIFY_REMOVED_DEVICE)
3936 return 0;
3937
3938 /*
3939 * If the device is still attached to a device driver we can't
3940 * tear down the domain yet as DMA mappings may still be in use.
3941 * Wait for the BUS_NOTIFY_UNBOUND_DRIVER event to do that.
3942 */
3943 if (action == BUS_NOTIFY_DEL_DEVICE && dev->driver != NULL)
3944 return 0;
3945
3946 domain = find_domain(dev);
3947 if (!domain)
3948 return 0;
3949
3950 down_read(&dmar_global_lock);
3951 domain_remove_one_dev_info(domain, dev);
3952 if (!domain_type_is_vm_or_si(domain) && list_empty(&domain->devices))
3953 domain_exit(domain);
3954 up_read(&dmar_global_lock);
3955
3956 return 0;
3957 }
3958
3959 static struct notifier_block device_nb = {
3960 .notifier_call = device_notifier,
3961 };
3962
3963 static int intel_iommu_memory_notifier(struct notifier_block *nb,
3964 unsigned long val, void *v)
3965 {
3966 struct memory_notify *mhp = v;
3967 unsigned long long start, end;
3968 unsigned long start_vpfn, last_vpfn;
3969
3970 switch (val) {
3971 case MEM_GOING_ONLINE:
3972 start = mhp->start_pfn << PAGE_SHIFT;
3973 end = ((mhp->start_pfn + mhp->nr_pages) << PAGE_SHIFT) - 1;
3974 if (iommu_domain_identity_map(si_domain, start, end)) {
3975 pr_warn("dmar: failed to build identity map for [%llx-%llx]\n",
3976 start, end);
3977 return NOTIFY_BAD;
3978 }
3979 break;
3980
3981 case MEM_OFFLINE:
3982 case MEM_CANCEL_ONLINE:
3983 start_vpfn = mm_to_dma_pfn(mhp->start_pfn);
3984 last_vpfn = mm_to_dma_pfn(mhp->start_pfn + mhp->nr_pages - 1);
3985 while (start_vpfn <= last_vpfn) {
3986 struct iova *iova;
3987 struct dmar_drhd_unit *drhd;
3988 struct intel_iommu *iommu;
3989 struct page *freelist;
3990
3991 iova = find_iova(&si_domain->iovad, start_vpfn);
3992 if (iova == NULL) {
3993 pr_debug("dmar: failed get IOVA for PFN %lx\n",
3994 start_vpfn);
3995 break;
3996 }
3997
3998 iova = split_and_remove_iova(&si_domain->iovad, iova,
3999 start_vpfn, last_vpfn);
4000 if (iova == NULL) {
4001 pr_warn("dmar: failed to split IOVA PFN [%lx-%lx]\n",
4002 start_vpfn, last_vpfn);
4003 return NOTIFY_BAD;
4004 }
4005
4006 freelist = domain_unmap(si_domain, iova->pfn_lo,
4007 iova->pfn_hi);
4008
4009 rcu_read_lock();
4010 for_each_active_iommu(iommu, drhd)
4011 iommu_flush_iotlb_psi(iommu, si_domain->id,
4012 iova->pfn_lo, iova_size(iova),
4013 !freelist, 0);
4014 rcu_read_unlock();
4015 dma_free_pagelist(freelist);
4016
4017 start_vpfn = iova->pfn_hi + 1;
4018 free_iova_mem(iova);
4019 }
4020 break;
4021 }
4022
4023 return NOTIFY_OK;
4024 }
4025
4026 static struct notifier_block intel_iommu_memory_nb = {
4027 .notifier_call = intel_iommu_memory_notifier,
4028 .priority = 0
4029 };
4030
4031
4032 static ssize_t intel_iommu_show_version(struct device *dev,
4033 struct device_attribute *attr,
4034 char *buf)
4035 {
4036 struct intel_iommu *iommu = dev_get_drvdata(dev);
4037 u32 ver = readl(iommu->reg + DMAR_VER_REG);
4038 return sprintf(buf, "%d:%d\n",
4039 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver));
4040 }
4041 static DEVICE_ATTR(version, S_IRUGO, intel_iommu_show_version, NULL);
4042
4043 static ssize_t intel_iommu_show_address(struct device *dev,
4044 struct device_attribute *attr,
4045 char *buf)
4046 {
4047 struct intel_iommu *iommu = dev_get_drvdata(dev);
4048 return sprintf(buf, "%llx\n", iommu->reg_phys);
4049 }
4050 static DEVICE_ATTR(address, S_IRUGO, intel_iommu_show_address, NULL);
4051
4052 static ssize_t intel_iommu_show_cap(struct device *dev,
4053 struct device_attribute *attr,
4054 char *buf)
4055 {
4056 struct intel_iommu *iommu = dev_get_drvdata(dev);
4057 return sprintf(buf, "%llx\n", iommu->cap);
4058 }
4059 static DEVICE_ATTR(cap, S_IRUGO, intel_iommu_show_cap, NULL);
4060
4061 static ssize_t intel_iommu_show_ecap(struct device *dev,
4062 struct device_attribute *attr,
4063 char *buf)
4064 {
4065 struct intel_iommu *iommu = dev_get_drvdata(dev);
4066 return sprintf(buf, "%llx\n", iommu->ecap);
4067 }
4068 static DEVICE_ATTR(ecap, S_IRUGO, intel_iommu_show_ecap, NULL);
4069
4070 static struct attribute *intel_iommu_attrs[] = {
4071 &dev_attr_version.attr,
4072 &dev_attr_address.attr,
4073 &dev_attr_cap.attr,
4074 &dev_attr_ecap.attr,
4075 NULL,
4076 };
4077
4078 static struct attribute_group intel_iommu_group = {
4079 .name = "intel-iommu",
4080 .attrs = intel_iommu_attrs,
4081 };
4082
4083 const struct attribute_group *intel_iommu_groups[] = {
4084 &intel_iommu_group,
4085 NULL,
4086 };
4087
4088 int __init intel_iommu_init(void)
4089 {
4090 int ret = -ENODEV;
4091 struct dmar_drhd_unit *drhd;
4092 struct intel_iommu *iommu;
4093
4094 /* VT-d is required for a TXT/tboot launch, so enforce that */
4095 force_on = tboot_force_iommu();
4096
4097 if (iommu_init_mempool()) {
4098 if (force_on)
4099 panic("tboot: Failed to initialize iommu memory\n");
4100 return -ENOMEM;
4101 }
4102
4103 down_write(&dmar_global_lock);
4104 if (dmar_table_init()) {
4105 if (force_on)
4106 panic("tboot: Failed to initialize DMAR table\n");
4107 goto out_free_dmar;
4108 }
4109
4110 /*
4111 * Disable translation if already enabled prior to OS handover.
4112 */
4113 for_each_active_iommu(iommu, drhd)
4114 if (iommu->gcmd & DMA_GCMD_TE)
4115 iommu_disable_translation(iommu);
4116
4117 if (dmar_dev_scope_init() < 0) {
4118 if (force_on)
4119 panic("tboot: Failed to initialize DMAR device scope\n");
4120 goto out_free_dmar;
4121 }
4122
4123 if (no_iommu || dmar_disabled)
4124 goto out_free_dmar;
4125
4126 if (list_empty(&dmar_rmrr_units))
4127 printk(KERN_INFO "DMAR: No RMRR found\n");
4128
4129 if (list_empty(&dmar_atsr_units))
4130 printk(KERN_INFO "DMAR: No ATSR found\n");
4131
4132 if (dmar_init_reserved_ranges()) {
4133 if (force_on)
4134 panic("tboot: Failed to reserve iommu ranges\n");
4135 goto out_free_reserved_range;
4136 }
4137
4138 init_no_remapping_devices();
4139
4140 ret = init_dmars();
4141 if (ret) {
4142 if (force_on)
4143 panic("tboot: Failed to initialize DMARs\n");
4144 printk(KERN_ERR "IOMMU: dmar init failed\n");
4145 goto out_free_reserved_range;
4146 }
4147 up_write(&dmar_global_lock);
4148 printk(KERN_INFO
4149 "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
4150
4151 init_timer(&unmap_timer);
4152 #ifdef CONFIG_SWIOTLB
4153 swiotlb = 0;
4154 #endif
4155 dma_ops = &intel_dma_ops;
4156
4157 init_iommu_pm_ops();
4158
4159 for_each_active_iommu(iommu, drhd)
4160 iommu->iommu_dev = iommu_device_create(NULL, iommu,
4161 intel_iommu_groups,
4162 iommu->name);
4163
4164 bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
4165 bus_register_notifier(&pci_bus_type, &device_nb);
4166 if (si_domain && !hw_pass_through)
4167 register_memory_notifier(&intel_iommu_memory_nb);
4168
4169 intel_iommu_enabled = 1;
4170
4171 return 0;
4172
4173 out_free_reserved_range:
4174 put_iova_domain(&reserved_iova_list);
4175 out_free_dmar:
4176 intel_iommu_free_dmars();
4177 up_write(&dmar_global_lock);
4178 iommu_exit_mempool();
4179 return ret;
4180 }
4181
4182 static int iommu_detach_dev_cb(struct pci_dev *pdev, u16 alias, void *opaque)
4183 {
4184 struct intel_iommu *iommu = opaque;
4185
4186 iommu_detach_dev(iommu, PCI_BUS_NUM(alias), alias & 0xff);
4187 return 0;
4188 }
4189
4190 /*
4191 * NB - intel-iommu lacks any sort of reference counting for the users of
4192 * dependent devices. If multiple endpoints have intersecting dependent
4193 * devices, unbinding the driver from any one of them will possibly leave
4194 * the others unable to operate.
4195 */
4196 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
4197 struct device *dev)
4198 {
4199 if (!iommu || !dev || !dev_is_pci(dev))
4200 return;
4201
4202 pci_for_each_dma_alias(to_pci_dev(dev), &iommu_detach_dev_cb, iommu);
4203 }
4204
4205 static void domain_remove_one_dev_info(struct dmar_domain *domain,
4206 struct device *dev)
4207 {
4208 struct device_domain_info *info, *tmp;
4209 struct intel_iommu *iommu;
4210 unsigned long flags;
4211 int found = 0;
4212 u8 bus, devfn;
4213
4214 iommu = device_to_iommu(dev, &bus, &devfn);
4215 if (!iommu)
4216 return;
4217
4218 spin_lock_irqsave(&device_domain_lock, flags);
4219 list_for_each_entry_safe(info, tmp, &domain->devices, link) {
4220 if (info->iommu == iommu && info->bus == bus &&
4221 info->devfn == devfn) {
4222 unlink_domain_info(info);
4223 spin_unlock_irqrestore(&device_domain_lock, flags);
4224
4225 iommu_disable_dev_iotlb(info);
4226 iommu_detach_dev(iommu, info->bus, info->devfn);
4227 iommu_detach_dependent_devices(iommu, dev);
4228 free_devinfo_mem(info);
4229
4230 spin_lock_irqsave(&device_domain_lock, flags);
4231
4232 if (found)
4233 break;
4234 else
4235 continue;
4236 }
4237
4238 /* if there is no other devices under the same iommu
4239 * owned by this domain, clear this iommu in iommu_bmp
4240 * update iommu count and coherency
4241 */
4242 if (info->iommu == iommu)
4243 found = 1;
4244 }
4245
4246 spin_unlock_irqrestore(&device_domain_lock, flags);
4247
4248 if (found == 0) {
4249 domain_detach_iommu(domain, iommu);
4250 if (!domain_type_is_vm_or_si(domain))
4251 iommu_detach_domain(domain, iommu);
4252 }
4253 }
4254
4255 static int md_domain_init(struct dmar_domain *domain, int guest_width)
4256 {
4257 int adjust_width;
4258
4259 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
4260 domain_reserve_special_ranges(domain);
4261
4262 /* calculate AGAW */
4263 domain->gaw = guest_width;
4264 adjust_width = guestwidth_to_adjustwidth(guest_width);
4265 domain->agaw = width_to_agaw(adjust_width);
4266
4267 domain->iommu_coherency = 0;
4268 domain->iommu_snooping = 0;
4269 domain->iommu_superpage = 0;
4270 domain->max_addr = 0;
4271
4272 /* always allocate the top pgd */
4273 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
4274 if (!domain->pgd)
4275 return -ENOMEM;
4276 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
4277 return 0;
4278 }
4279
4280 static int intel_iommu_domain_init(struct iommu_domain *domain)
4281 {
4282 struct dmar_domain *dmar_domain;
4283
4284 dmar_domain = alloc_domain(DOMAIN_FLAG_VIRTUAL_MACHINE);
4285 if (!dmar_domain) {
4286 printk(KERN_ERR
4287 "intel_iommu_domain_init: dmar_domain == NULL\n");
4288 return -ENOMEM;
4289 }
4290 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
4291 printk(KERN_ERR
4292 "intel_iommu_domain_init() failed\n");
4293 domain_exit(dmar_domain);
4294 return -ENOMEM;
4295 }
4296 domain_update_iommu_cap(dmar_domain);
4297 domain->priv = dmar_domain;
4298
4299 domain->geometry.aperture_start = 0;
4300 domain->geometry.aperture_end = __DOMAIN_MAX_ADDR(dmar_domain->gaw);
4301 domain->geometry.force_aperture = true;
4302
4303 return 0;
4304 }
4305
4306 static void intel_iommu_domain_destroy(struct iommu_domain *domain)
4307 {
4308 struct dmar_domain *dmar_domain = domain->priv;
4309
4310 domain->priv = NULL;
4311 domain_exit(dmar_domain);
4312 }
4313
4314 static int intel_iommu_attach_device(struct iommu_domain *domain,
4315 struct device *dev)
4316 {
4317 struct dmar_domain *dmar_domain = domain->priv;
4318 struct intel_iommu *iommu;
4319 int addr_width;
4320 u8 bus, devfn;
4321
4322 if (device_is_rmrr_locked(dev)) {
4323 dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement. Contact your platform vendor.\n");
4324 return -EPERM;
4325 }
4326
4327 /* normally dev is not mapped */
4328 if (unlikely(domain_context_mapped(dev))) {
4329 struct dmar_domain *old_domain;
4330
4331 old_domain = find_domain(dev);
4332 if (old_domain) {
4333 if (domain_type_is_vm_or_si(dmar_domain))
4334 domain_remove_one_dev_info(old_domain, dev);
4335 else
4336 domain_remove_dev_info(old_domain);
4337 }
4338 }
4339
4340 iommu = device_to_iommu(dev, &bus, &devfn);
4341 if (!iommu)
4342 return -ENODEV;
4343
4344 /* check if this iommu agaw is sufficient for max mapped address */
4345 addr_width = agaw_to_width(iommu->agaw);
4346 if (addr_width > cap_mgaw(iommu->cap))
4347 addr_width = cap_mgaw(iommu->cap);
4348
4349 if (dmar_domain->max_addr > (1LL << addr_width)) {
4350 printk(KERN_ERR "%s: iommu width (%d) is not "
4351 "sufficient for the mapped address (%llx)\n",
4352 __func__, addr_width, dmar_domain->max_addr);
4353 return -EFAULT;
4354 }
4355 dmar_domain->gaw = addr_width;
4356
4357 /*
4358 * Knock out extra levels of page tables if necessary
4359 */
4360 while (iommu->agaw < dmar_domain->agaw) {
4361 struct dma_pte *pte;
4362
4363 pte = dmar_domain->pgd;
4364 if (dma_pte_present(pte)) {
4365 dmar_domain->pgd = (struct dma_pte *)
4366 phys_to_virt(dma_pte_addr(pte));
4367 free_pgtable_page(pte);
4368 }
4369 dmar_domain->agaw--;
4370 }
4371
4372 return domain_add_dev_info(dmar_domain, dev, CONTEXT_TT_MULTI_LEVEL);
4373 }
4374
4375 static void intel_iommu_detach_device(struct iommu_domain *domain,
4376 struct device *dev)
4377 {
4378 struct dmar_domain *dmar_domain = domain->priv;
4379
4380 domain_remove_one_dev_info(dmar_domain, dev);
4381 }
4382
4383 static int intel_iommu_map(struct iommu_domain *domain,
4384 unsigned long iova, phys_addr_t hpa,
4385 size_t size, int iommu_prot)
4386 {
4387 struct dmar_domain *dmar_domain = domain->priv;
4388 u64 max_addr;
4389 int prot = 0;
4390 int ret;
4391
4392 if (iommu_prot & IOMMU_READ)
4393 prot |= DMA_PTE_READ;
4394 if (iommu_prot & IOMMU_WRITE)
4395 prot |= DMA_PTE_WRITE;
4396 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
4397 prot |= DMA_PTE_SNP;
4398
4399 max_addr = iova + size;
4400 if (dmar_domain->max_addr < max_addr) {
4401 u64 end;
4402
4403 /* check if minimum agaw is sufficient for mapped address */
4404 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
4405 if (end < max_addr) {
4406 printk(KERN_ERR "%s: iommu width (%d) is not "
4407 "sufficient for the mapped address (%llx)\n",
4408 __func__, dmar_domain->gaw, max_addr);
4409 return -EFAULT;
4410 }
4411 dmar_domain->max_addr = max_addr;
4412 }
4413 /* Round up size to next multiple of PAGE_SIZE, if it and
4414 the low bits of hpa would take us onto the next page */
4415 size = aligned_nrpages(hpa, size);
4416 ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
4417 hpa >> VTD_PAGE_SHIFT, size, prot);
4418 return ret;
4419 }
4420
4421 static size_t intel_iommu_unmap(struct iommu_domain *domain,
4422 unsigned long iova, size_t size)
4423 {
4424 struct dmar_domain *dmar_domain = domain->priv;
4425 struct page *freelist = NULL;
4426 struct intel_iommu *iommu;
4427 unsigned long start_pfn, last_pfn;
4428 unsigned int npages;
4429 int iommu_id, num, ndomains, level = 0;
4430
4431 /* Cope with horrid API which requires us to unmap more than the
4432 size argument if it happens to be a large-page mapping. */
4433 if (!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level))
4434 BUG();
4435
4436 if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
4437 size = VTD_PAGE_SIZE << level_to_offset_bits(level);
4438
4439 start_pfn = iova >> VTD_PAGE_SHIFT;
4440 last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;
4441
4442 freelist = domain_unmap(dmar_domain, start_pfn, last_pfn);
4443
4444 npages = last_pfn - start_pfn + 1;
4445
4446 for_each_set_bit(iommu_id, dmar_domain->iommu_bmp, g_num_of_iommus) {
4447 iommu = g_iommus[iommu_id];
4448
4449 /*
4450 * find bit position of dmar_domain
4451 */
4452 ndomains = cap_ndoms(iommu->cap);
4453 for_each_set_bit(num, iommu->domain_ids, ndomains) {
4454 if (iommu->domains[num] == dmar_domain)
4455 iommu_flush_iotlb_psi(iommu, num, start_pfn,
4456 npages, !freelist, 0);
4457 }
4458
4459 }
4460
4461 dma_free_pagelist(freelist);
4462
4463 if (dmar_domain->max_addr == iova + size)
4464 dmar_domain->max_addr = iova;
4465
4466 return size;
4467 }
4468
4469 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
4470 dma_addr_t iova)
4471 {
4472 struct dmar_domain *dmar_domain = domain->priv;
4473 struct dma_pte *pte;
4474 int level = 0;
4475 u64 phys = 0;
4476
4477 pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level);
4478 if (pte)
4479 phys = dma_pte_addr(pte);
4480
4481 return phys;
4482 }
4483
4484 static bool intel_iommu_capable(enum iommu_cap cap)
4485 {
4486 if (cap == IOMMU_CAP_CACHE_COHERENCY)
4487 return domain_update_iommu_snooping(NULL) == 1;
4488 if (cap == IOMMU_CAP_INTR_REMAP)
4489 return irq_remapping_enabled == 1;
4490
4491 return false;
4492 }
4493
4494 static int intel_iommu_add_device(struct device *dev)
4495 {
4496 struct intel_iommu *iommu;
4497 struct iommu_group *group;
4498 u8 bus, devfn;
4499
4500 iommu = device_to_iommu(dev, &bus, &devfn);
4501 if (!iommu)
4502 return -ENODEV;
4503
4504 iommu_device_link(iommu->iommu_dev, dev);
4505
4506 group = iommu_group_get_for_dev(dev);
4507
4508 if (IS_ERR(group))
4509 return PTR_ERR(group);
4510
4511 iommu_group_put(group);
4512 return 0;
4513 }
4514
4515 static void intel_iommu_remove_device(struct device *dev)
4516 {
4517 struct intel_iommu *iommu;
4518 u8 bus, devfn;
4519
4520 iommu = device_to_iommu(dev, &bus, &devfn);
4521 if (!iommu)
4522 return;
4523
4524 iommu_group_remove_device(dev);
4525
4526 iommu_device_unlink(iommu->iommu_dev, dev);
4527 }
4528
4529 static const struct iommu_ops intel_iommu_ops = {
4530 .capable = intel_iommu_capable,
4531 .domain_init = intel_iommu_domain_init,
4532 .domain_destroy = intel_iommu_domain_destroy,
4533 .attach_dev = intel_iommu_attach_device,
4534 .detach_dev = intel_iommu_detach_device,
4535 .map = intel_iommu_map,
4536 .unmap = intel_iommu_unmap,
4537 .iova_to_phys = intel_iommu_iova_to_phys,
4538 .add_device = intel_iommu_add_device,
4539 .remove_device = intel_iommu_remove_device,
4540 .pgsize_bitmap = INTEL_IOMMU_PGSIZES,
4541 };
4542
4543 static void quirk_iommu_g4x_gfx(struct pci_dev *dev)
4544 {
4545 /* G4x/GM45 integrated gfx dmar support is totally busted. */
4546 printk(KERN_INFO "DMAR: Disabling IOMMU for graphics on this chipset\n");
4547 dmar_map_gfx = 0;
4548 }
4549
4550 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_g4x_gfx);
4551 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_g4x_gfx);
4552 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_g4x_gfx);
4553 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_g4x_gfx);
4554 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_g4x_gfx);
4555 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_g4x_gfx);
4556 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_g4x_gfx);
4557
4558 static void quirk_iommu_rwbf(struct pci_dev *dev)
4559 {
4560 /*
4561 * Mobile 4 Series Chipset neglects to set RWBF capability,
4562 * but needs it. Same seems to hold for the desktop versions.
4563 */
4564 printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n");
4565 rwbf_quirk = 1;
4566 }
4567
4568 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
4569 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
4570 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
4571 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
4572 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
4573 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
4574 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
4575
4576 #define GGC 0x52
4577 #define GGC_MEMORY_SIZE_MASK (0xf << 8)
4578 #define GGC_MEMORY_SIZE_NONE (0x0 << 8)
4579 #define GGC_MEMORY_SIZE_1M (0x1 << 8)
4580 #define GGC_MEMORY_SIZE_2M (0x3 << 8)
4581 #define GGC_MEMORY_VT_ENABLED (0x8 << 8)
4582 #define GGC_MEMORY_SIZE_2M_VT (0x9 << 8)
4583 #define GGC_MEMORY_SIZE_3M_VT (0xa << 8)
4584 #define GGC_MEMORY_SIZE_4M_VT (0xb << 8)
4585
4586 static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
4587 {
4588 unsigned short ggc;
4589
4590 if (pci_read_config_word(dev, GGC, &ggc))
4591 return;
4592
4593 if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
4594 printk(KERN_INFO "DMAR: BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
4595 dmar_map_gfx = 0;
4596 } else if (dmar_map_gfx) {
4597 /* we have to ensure the gfx device is idle before we flush */
4598 printk(KERN_INFO "DMAR: Disabling batched IOTLB flush on Ironlake\n");
4599 intel_iommu_strict = 1;
4600 }
4601 }
4602 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
4603 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
4604 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
4605 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
4606
4607 /* On Tylersburg chipsets, some BIOSes have been known to enable the
4608 ISOCH DMAR unit for the Azalia sound device, but not give it any
4609 TLB entries, which causes it to deadlock. Check for that. We do
4610 this in a function called from init_dmars(), instead of in a PCI
4611 quirk, because we don't want to print the obnoxious "BIOS broken"
4612 message if VT-d is actually disabled.
4613 */
4614 static void __init check_tylersburg_isoch(void)
4615 {
4616 struct pci_dev *pdev;
4617 uint32_t vtisochctrl;
4618
4619 /* If there's no Azalia in the system anyway, forget it. */
4620 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
4621 if (!pdev)
4622 return;
4623 pci_dev_put(pdev);
4624
4625 /* System Management Registers. Might be hidden, in which case
4626 we can't do the sanity check. But that's OK, because the
4627 known-broken BIOSes _don't_ actually hide it, so far. */
4628 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
4629 if (!pdev)
4630 return;
4631
4632 if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
4633 pci_dev_put(pdev);
4634 return;
4635 }
4636
4637 pci_dev_put(pdev);
4638
4639 /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
4640 if (vtisochctrl & 1)
4641 return;
4642
4643 /* Drop all bits other than the number of TLB entries */
4644 vtisochctrl &= 0x1c;
4645
4646 /* If we have the recommended number of TLB entries (16), fine. */
4647 if (vtisochctrl == 0x10)
4648 return;
4649
4650 /* Zero TLB entries? You get to ride the short bus to school. */
4651 if (!vtisochctrl) {
4652 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
4653 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
4654 dmi_get_system_info(DMI_BIOS_VENDOR),
4655 dmi_get_system_info(DMI_BIOS_VERSION),
4656 dmi_get_system_info(DMI_PRODUCT_VERSION));
4657 iommu_identity_mapping |= IDENTMAP_AZALIA;
4658 return;
4659 }
4660
4661 printk(KERN_WARNING "DMAR: Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
4662 vtisochctrl);
4663 }
This page took 0.143791 seconds and 5 git commands to generate.