iommu/vt-d: Remove device_to_iommu() call from domain_remove_dev_info()
[deliverable/linux.git] / drivers / iommu / intel-iommu.c
1 /*
2 * Copyright © 2006-2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * Authors: David Woodhouse <dwmw2@infradead.org>,
14 * Ashok Raj <ashok.raj@intel.com>,
15 * Shaohua Li <shaohua.li@intel.com>,
16 * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
17 * Fenghua Yu <fenghua.yu@intel.com>
18 */
19
20 #include <linux/init.h>
21 #include <linux/bitmap.h>
22 #include <linux/debugfs.h>
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/irq.h>
26 #include <linux/interrupt.h>
27 #include <linux/spinlock.h>
28 #include <linux/pci.h>
29 #include <linux/dmar.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/mempool.h>
32 #include <linux/memory.h>
33 #include <linux/timer.h>
34 #include <linux/iova.h>
35 #include <linux/iommu.h>
36 #include <linux/intel-iommu.h>
37 #include <linux/syscore_ops.h>
38 #include <linux/tboot.h>
39 #include <linux/dmi.h>
40 #include <linux/pci-ats.h>
41 #include <linux/memblock.h>
42 #include <asm/irq_remapping.h>
43 #include <asm/cacheflush.h>
44 #include <asm/iommu.h>
45
46 #include "irq_remapping.h"
47 #include "pci.h"
48
49 #define ROOT_SIZE VTD_PAGE_SIZE
50 #define CONTEXT_SIZE VTD_PAGE_SIZE
51
52 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
53 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
54 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
55
56 #define IOAPIC_RANGE_START (0xfee00000)
57 #define IOAPIC_RANGE_END (0xfeefffff)
58 #define IOVA_START_ADDR (0x1000)
59
60 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
61
62 #define MAX_AGAW_WIDTH 64
63 #define MAX_AGAW_PFN_WIDTH (MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
64
65 #define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
66 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
67
68 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
69 to match. That way, we can use 'unsigned long' for PFNs with impunity. */
70 #define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \
71 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
72 #define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
73
74 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
75 #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
76 #define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
77
78 /* page table handling */
79 #define LEVEL_STRIDE (9)
80 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
81
82 /*
83 * This bitmap is used to advertise the page sizes our hardware support
84 * to the IOMMU core, which will then use this information to split
85 * physically contiguous memory regions it is mapping into page sizes
86 * that we support.
87 *
88 * Traditionally the IOMMU core just handed us the mappings directly,
89 * after making sure the size is an order of a 4KiB page and that the
90 * mapping has natural alignment.
91 *
92 * To retain this behavior, we currently advertise that we support
93 * all page sizes that are an order of 4KiB.
94 *
95 * If at some point we'd like to utilize the IOMMU core's new behavior,
96 * we could change this to advertise the real page sizes we support.
97 */
98 #define INTEL_IOMMU_PGSIZES (~0xFFFUL)
99
100 static inline int agaw_to_level(int agaw)
101 {
102 return agaw + 2;
103 }
104
105 static inline int agaw_to_width(int agaw)
106 {
107 return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
108 }
109
110 static inline int width_to_agaw(int width)
111 {
112 return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
113 }
114
115 static inline unsigned int level_to_offset_bits(int level)
116 {
117 return (level - 1) * LEVEL_STRIDE;
118 }
119
120 static inline int pfn_level_offset(unsigned long pfn, int level)
121 {
122 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
123 }
124
125 static inline unsigned long level_mask(int level)
126 {
127 return -1UL << level_to_offset_bits(level);
128 }
129
130 static inline unsigned long level_size(int level)
131 {
132 return 1UL << level_to_offset_bits(level);
133 }
134
135 static inline unsigned long align_to_level(unsigned long pfn, int level)
136 {
137 return (pfn + level_size(level) - 1) & level_mask(level);
138 }
139
140 static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
141 {
142 return 1 << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
143 }
144
145 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
146 are never going to work. */
147 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
148 {
149 return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
150 }
151
152 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
153 {
154 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
155 }
156 static inline unsigned long page_to_dma_pfn(struct page *pg)
157 {
158 return mm_to_dma_pfn(page_to_pfn(pg));
159 }
160 static inline unsigned long virt_to_dma_pfn(void *p)
161 {
162 return page_to_dma_pfn(virt_to_page(p));
163 }
164
165 /* global iommu list, set NULL for ignored DMAR units */
166 static struct intel_iommu **g_iommus;
167
168 static void __init check_tylersburg_isoch(void);
169 static int rwbf_quirk;
170
171 /*
172 * set to 1 to panic kernel if can't successfully enable VT-d
173 * (used when kernel is launched w/ TXT)
174 */
175 static int force_on = 0;
176
177 /*
178 * 0: Present
179 * 1-11: Reserved
180 * 12-63: Context Ptr (12 - (haw-1))
181 * 64-127: Reserved
182 */
183 struct root_entry {
184 u64 val;
185 u64 rsvd1;
186 };
187 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
188 static inline bool root_present(struct root_entry *root)
189 {
190 return (root->val & 1);
191 }
192 static inline void set_root_present(struct root_entry *root)
193 {
194 root->val |= 1;
195 }
196 static inline void set_root_value(struct root_entry *root, unsigned long value)
197 {
198 root->val |= value & VTD_PAGE_MASK;
199 }
200
201 static inline struct context_entry *
202 get_context_addr_from_root(struct root_entry *root)
203 {
204 return (struct context_entry *)
205 (root_present(root)?phys_to_virt(
206 root->val & VTD_PAGE_MASK) :
207 NULL);
208 }
209
210 /*
211 * low 64 bits:
212 * 0: present
213 * 1: fault processing disable
214 * 2-3: translation type
215 * 12-63: address space root
216 * high 64 bits:
217 * 0-2: address width
218 * 3-6: aval
219 * 8-23: domain id
220 */
221 struct context_entry {
222 u64 lo;
223 u64 hi;
224 };
225
226 static inline bool context_present(struct context_entry *context)
227 {
228 return (context->lo & 1);
229 }
230 static inline void context_set_present(struct context_entry *context)
231 {
232 context->lo |= 1;
233 }
234
235 static inline void context_set_fault_enable(struct context_entry *context)
236 {
237 context->lo &= (((u64)-1) << 2) | 1;
238 }
239
240 static inline void context_set_translation_type(struct context_entry *context,
241 unsigned long value)
242 {
243 context->lo &= (((u64)-1) << 4) | 3;
244 context->lo |= (value & 3) << 2;
245 }
246
247 static inline void context_set_address_root(struct context_entry *context,
248 unsigned long value)
249 {
250 context->lo |= value & VTD_PAGE_MASK;
251 }
252
253 static inline void context_set_address_width(struct context_entry *context,
254 unsigned long value)
255 {
256 context->hi |= value & 7;
257 }
258
259 static inline void context_set_domain_id(struct context_entry *context,
260 unsigned long value)
261 {
262 context->hi |= (value & ((1 << 16) - 1)) << 8;
263 }
264
265 static inline void context_clear_entry(struct context_entry *context)
266 {
267 context->lo = 0;
268 context->hi = 0;
269 }
270
271 /*
272 * 0: readable
273 * 1: writable
274 * 2-6: reserved
275 * 7: super page
276 * 8-10: available
277 * 11: snoop behavior
278 * 12-63: Host physcial address
279 */
280 struct dma_pte {
281 u64 val;
282 };
283
284 static inline void dma_clear_pte(struct dma_pte *pte)
285 {
286 pte->val = 0;
287 }
288
289 static inline u64 dma_pte_addr(struct dma_pte *pte)
290 {
291 #ifdef CONFIG_64BIT
292 return pte->val & VTD_PAGE_MASK;
293 #else
294 /* Must have a full atomic 64-bit read */
295 return __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
296 #endif
297 }
298
299 static inline bool dma_pte_present(struct dma_pte *pte)
300 {
301 return (pte->val & 3) != 0;
302 }
303
304 static inline bool dma_pte_superpage(struct dma_pte *pte)
305 {
306 return (pte->val & (1 << 7));
307 }
308
309 static inline int first_pte_in_page(struct dma_pte *pte)
310 {
311 return !((unsigned long)pte & ~VTD_PAGE_MASK);
312 }
313
314 /*
315 * This domain is a statically identity mapping domain.
316 * 1. This domain creats a static 1:1 mapping to all usable memory.
317 * 2. It maps to each iommu if successful.
318 * 3. Each iommu mapps to this domain if successful.
319 */
320 static struct dmar_domain *si_domain;
321 static int hw_pass_through = 1;
322
323 /* devices under the same p2p bridge are owned in one domain */
324 #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
325
326 /* domain represents a virtual machine, more than one devices
327 * across iommus may be owned in one domain, e.g. kvm guest.
328 */
329 #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 1)
330
331 /* si_domain contains mulitple devices */
332 #define DOMAIN_FLAG_STATIC_IDENTITY (1 << 2)
333
334 /* define the limit of IOMMUs supported in each domain */
335 #ifdef CONFIG_X86
336 # define IOMMU_UNITS_SUPPORTED MAX_IO_APICS
337 #else
338 # define IOMMU_UNITS_SUPPORTED 64
339 #endif
340
341 struct dmar_domain {
342 int id; /* domain id */
343 int nid; /* node id */
344 DECLARE_BITMAP(iommu_bmp, IOMMU_UNITS_SUPPORTED);
345 /* bitmap of iommus this domain uses*/
346
347 struct list_head devices; /* all devices' list */
348 struct iova_domain iovad; /* iova's that belong to this domain */
349
350 struct dma_pte *pgd; /* virtual address */
351 int gaw; /* max guest address width */
352
353 /* adjusted guest address width, 0 is level 2 30-bit */
354 int agaw;
355
356 int flags; /* flags to find out type of domain */
357
358 int iommu_coherency;/* indicate coherency of iommu access */
359 int iommu_snooping; /* indicate snooping control feature*/
360 int iommu_count; /* reference count of iommu */
361 int iommu_superpage;/* Level of superpages supported:
362 0 == 4KiB (no superpages), 1 == 2MiB,
363 2 == 1GiB, 3 == 512GiB, 4 == 1TiB */
364 spinlock_t iommu_lock; /* protect iommu set in domain */
365 u64 max_addr; /* maximum mapped address */
366 };
367
368 /* PCI domain-device relationship */
369 struct device_domain_info {
370 struct list_head link; /* link to domain siblings */
371 struct list_head global; /* link to global list */
372 int segment; /* PCI domain */
373 u8 bus; /* PCI bus number */
374 u8 devfn; /* PCI devfn number */
375 struct device *dev; /* it's NULL for PCIe-to-PCI bridge */
376 struct intel_iommu *iommu; /* IOMMU used by this device */
377 struct dmar_domain *domain; /* pointer to domain */
378 };
379
380 struct dmar_rmrr_unit {
381 struct list_head list; /* list of rmrr units */
382 struct acpi_dmar_header *hdr; /* ACPI header */
383 u64 base_address; /* reserved base address*/
384 u64 end_address; /* reserved end address */
385 struct dmar_dev_scope *devices; /* target devices */
386 int devices_cnt; /* target device count */
387 };
388
389 struct dmar_atsr_unit {
390 struct list_head list; /* list of ATSR units */
391 struct acpi_dmar_header *hdr; /* ACPI header */
392 struct dmar_dev_scope *devices; /* target devices */
393 int devices_cnt; /* target device count */
394 u8 include_all:1; /* include all ports */
395 };
396
397 static LIST_HEAD(dmar_atsr_units);
398 static LIST_HEAD(dmar_rmrr_units);
399
400 #define for_each_rmrr_units(rmrr) \
401 list_for_each_entry(rmrr, &dmar_rmrr_units, list)
402
403 static void flush_unmaps_timeout(unsigned long data);
404
405 static DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0);
406
407 #define HIGH_WATER_MARK 250
408 struct deferred_flush_tables {
409 int next;
410 struct iova *iova[HIGH_WATER_MARK];
411 struct dmar_domain *domain[HIGH_WATER_MARK];
412 struct page *freelist[HIGH_WATER_MARK];
413 };
414
415 static struct deferred_flush_tables *deferred_flush;
416
417 /* bitmap for indexing intel_iommus */
418 static int g_num_of_iommus;
419
420 static DEFINE_SPINLOCK(async_umap_flush_lock);
421 static LIST_HEAD(unmaps_to_do);
422
423 static int timer_on;
424 static long list_size;
425
426 static void domain_exit(struct dmar_domain *domain);
427 static void domain_remove_dev_info(struct dmar_domain *domain);
428 static void domain_remove_one_dev_info(struct dmar_domain *domain,
429 struct pci_dev *pdev);
430 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
431 struct device *dev);
432
433 #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
434 int dmar_disabled = 0;
435 #else
436 int dmar_disabled = 1;
437 #endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
438
439 int intel_iommu_enabled = 0;
440 EXPORT_SYMBOL_GPL(intel_iommu_enabled);
441
442 static int dmar_map_gfx = 1;
443 static int dmar_forcedac;
444 static int intel_iommu_strict;
445 static int intel_iommu_superpage = 1;
446
447 int intel_iommu_gfx_mapped;
448 EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
449
450 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
451 static DEFINE_SPINLOCK(device_domain_lock);
452 static LIST_HEAD(device_domain_list);
453
454 static struct iommu_ops intel_iommu_ops;
455
456 static int __init intel_iommu_setup(char *str)
457 {
458 if (!str)
459 return -EINVAL;
460 while (*str) {
461 if (!strncmp(str, "on", 2)) {
462 dmar_disabled = 0;
463 printk(KERN_INFO "Intel-IOMMU: enabled\n");
464 } else if (!strncmp(str, "off", 3)) {
465 dmar_disabled = 1;
466 printk(KERN_INFO "Intel-IOMMU: disabled\n");
467 } else if (!strncmp(str, "igfx_off", 8)) {
468 dmar_map_gfx = 0;
469 printk(KERN_INFO
470 "Intel-IOMMU: disable GFX device mapping\n");
471 } else if (!strncmp(str, "forcedac", 8)) {
472 printk(KERN_INFO
473 "Intel-IOMMU: Forcing DAC for PCI devices\n");
474 dmar_forcedac = 1;
475 } else if (!strncmp(str, "strict", 6)) {
476 printk(KERN_INFO
477 "Intel-IOMMU: disable batched IOTLB flush\n");
478 intel_iommu_strict = 1;
479 } else if (!strncmp(str, "sp_off", 6)) {
480 printk(KERN_INFO
481 "Intel-IOMMU: disable supported super page\n");
482 intel_iommu_superpage = 0;
483 }
484
485 str += strcspn(str, ",");
486 while (*str == ',')
487 str++;
488 }
489 return 0;
490 }
491 __setup("intel_iommu=", intel_iommu_setup);
492
493 static struct kmem_cache *iommu_domain_cache;
494 static struct kmem_cache *iommu_devinfo_cache;
495 static struct kmem_cache *iommu_iova_cache;
496
497 static inline void *alloc_pgtable_page(int node)
498 {
499 struct page *page;
500 void *vaddr = NULL;
501
502 page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
503 if (page)
504 vaddr = page_address(page);
505 return vaddr;
506 }
507
508 static inline void free_pgtable_page(void *vaddr)
509 {
510 free_page((unsigned long)vaddr);
511 }
512
513 static inline void *alloc_domain_mem(void)
514 {
515 return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
516 }
517
518 static void free_domain_mem(void *vaddr)
519 {
520 kmem_cache_free(iommu_domain_cache, vaddr);
521 }
522
523 static inline void * alloc_devinfo_mem(void)
524 {
525 return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
526 }
527
528 static inline void free_devinfo_mem(void *vaddr)
529 {
530 kmem_cache_free(iommu_devinfo_cache, vaddr);
531 }
532
533 struct iova *alloc_iova_mem(void)
534 {
535 return kmem_cache_alloc(iommu_iova_cache, GFP_ATOMIC);
536 }
537
538 void free_iova_mem(struct iova *iova)
539 {
540 kmem_cache_free(iommu_iova_cache, iova);
541 }
542
543
544 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
545 {
546 unsigned long sagaw;
547 int agaw = -1;
548
549 sagaw = cap_sagaw(iommu->cap);
550 for (agaw = width_to_agaw(max_gaw);
551 agaw >= 0; agaw--) {
552 if (test_bit(agaw, &sagaw))
553 break;
554 }
555
556 return agaw;
557 }
558
559 /*
560 * Calculate max SAGAW for each iommu.
561 */
562 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
563 {
564 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
565 }
566
567 /*
568 * calculate agaw for each iommu.
569 * "SAGAW" may be different across iommus, use a default agaw, and
570 * get a supported less agaw for iommus that don't support the default agaw.
571 */
572 int iommu_calculate_agaw(struct intel_iommu *iommu)
573 {
574 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
575 }
576
577 /* This functionin only returns single iommu in a domain */
578 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
579 {
580 int iommu_id;
581
582 /* si_domain and vm domain should not get here. */
583 BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
584 BUG_ON(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY);
585
586 iommu_id = find_first_bit(domain->iommu_bmp, g_num_of_iommus);
587 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
588 return NULL;
589
590 return g_iommus[iommu_id];
591 }
592
593 static void domain_update_iommu_coherency(struct dmar_domain *domain)
594 {
595 struct dmar_drhd_unit *drhd;
596 struct intel_iommu *iommu;
597 int i, found = 0;
598
599 domain->iommu_coherency = 1;
600
601 for_each_set_bit(i, domain->iommu_bmp, g_num_of_iommus) {
602 found = 1;
603 if (!ecap_coherent(g_iommus[i]->ecap)) {
604 domain->iommu_coherency = 0;
605 break;
606 }
607 }
608 if (found)
609 return;
610
611 /* No hardware attached; use lowest common denominator */
612 rcu_read_lock();
613 for_each_active_iommu(iommu, drhd) {
614 if (!ecap_coherent(iommu->ecap)) {
615 domain->iommu_coherency = 0;
616 break;
617 }
618 }
619 rcu_read_unlock();
620 }
621
622 static void domain_update_iommu_snooping(struct dmar_domain *domain)
623 {
624 int i;
625
626 domain->iommu_snooping = 1;
627
628 for_each_set_bit(i, domain->iommu_bmp, g_num_of_iommus) {
629 if (!ecap_sc_support(g_iommus[i]->ecap)) {
630 domain->iommu_snooping = 0;
631 break;
632 }
633 }
634 }
635
636 static void domain_update_iommu_superpage(struct dmar_domain *domain)
637 {
638 struct dmar_drhd_unit *drhd;
639 struct intel_iommu *iommu = NULL;
640 int mask = 0xf;
641
642 if (!intel_iommu_superpage) {
643 domain->iommu_superpage = 0;
644 return;
645 }
646
647 /* set iommu_superpage to the smallest common denominator */
648 rcu_read_lock();
649 for_each_active_iommu(iommu, drhd) {
650 mask &= cap_super_page_val(iommu->cap);
651 if (!mask) {
652 break;
653 }
654 }
655 rcu_read_unlock();
656
657 domain->iommu_superpage = fls(mask);
658 }
659
660 /* Some capabilities may be different across iommus */
661 static void domain_update_iommu_cap(struct dmar_domain *domain)
662 {
663 domain_update_iommu_coherency(domain);
664 domain_update_iommu_snooping(domain);
665 domain_update_iommu_superpage(domain);
666 }
667
668 static struct intel_iommu *device_to_iommu(int segment, u8 bus, u8 devfn)
669 {
670 struct dmar_drhd_unit *drhd = NULL;
671 struct intel_iommu *iommu;
672 struct device *dev;
673 struct pci_dev *pdev;
674 int i;
675
676 rcu_read_lock();
677 for_each_active_iommu(iommu, drhd) {
678 if (segment != drhd->segment)
679 continue;
680
681 for_each_active_dev_scope(drhd->devices,
682 drhd->devices_cnt, i, dev) {
683 if (!dev_is_pci(dev))
684 continue;
685 pdev = to_pci_dev(dev);
686 if (pdev->bus->number == bus && pdev->devfn == devfn)
687 goto out;
688 if (pdev->subordinate &&
689 pdev->subordinate->number <= bus &&
690 pdev->subordinate->busn_res.end >= bus)
691 goto out;
692 }
693
694 if (drhd->include_all)
695 goto out;
696 }
697 iommu = NULL;
698 out:
699 rcu_read_unlock();
700
701 return iommu;
702 }
703
704 static void domain_flush_cache(struct dmar_domain *domain,
705 void *addr, int size)
706 {
707 if (!domain->iommu_coherency)
708 clflush_cache_range(addr, size);
709 }
710
711 /* Gets context entry for a given bus and devfn */
712 static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
713 u8 bus, u8 devfn)
714 {
715 struct root_entry *root;
716 struct context_entry *context;
717 unsigned long phy_addr;
718 unsigned long flags;
719
720 spin_lock_irqsave(&iommu->lock, flags);
721 root = &iommu->root_entry[bus];
722 context = get_context_addr_from_root(root);
723 if (!context) {
724 context = (struct context_entry *)
725 alloc_pgtable_page(iommu->node);
726 if (!context) {
727 spin_unlock_irqrestore(&iommu->lock, flags);
728 return NULL;
729 }
730 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
731 phy_addr = virt_to_phys((void *)context);
732 set_root_value(root, phy_addr);
733 set_root_present(root);
734 __iommu_flush_cache(iommu, root, sizeof(*root));
735 }
736 spin_unlock_irqrestore(&iommu->lock, flags);
737 return &context[devfn];
738 }
739
740 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
741 {
742 struct root_entry *root;
743 struct context_entry *context;
744 int ret;
745 unsigned long flags;
746
747 spin_lock_irqsave(&iommu->lock, flags);
748 root = &iommu->root_entry[bus];
749 context = get_context_addr_from_root(root);
750 if (!context) {
751 ret = 0;
752 goto out;
753 }
754 ret = context_present(&context[devfn]);
755 out:
756 spin_unlock_irqrestore(&iommu->lock, flags);
757 return ret;
758 }
759
760 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
761 {
762 struct root_entry *root;
763 struct context_entry *context;
764 unsigned long flags;
765
766 spin_lock_irqsave(&iommu->lock, flags);
767 root = &iommu->root_entry[bus];
768 context = get_context_addr_from_root(root);
769 if (context) {
770 context_clear_entry(&context[devfn]);
771 __iommu_flush_cache(iommu, &context[devfn], \
772 sizeof(*context));
773 }
774 spin_unlock_irqrestore(&iommu->lock, flags);
775 }
776
777 static void free_context_table(struct intel_iommu *iommu)
778 {
779 struct root_entry *root;
780 int i;
781 unsigned long flags;
782 struct context_entry *context;
783
784 spin_lock_irqsave(&iommu->lock, flags);
785 if (!iommu->root_entry) {
786 goto out;
787 }
788 for (i = 0; i < ROOT_ENTRY_NR; i++) {
789 root = &iommu->root_entry[i];
790 context = get_context_addr_from_root(root);
791 if (context)
792 free_pgtable_page(context);
793 }
794 free_pgtable_page(iommu->root_entry);
795 iommu->root_entry = NULL;
796 out:
797 spin_unlock_irqrestore(&iommu->lock, flags);
798 }
799
800 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
801 unsigned long pfn, int *target_level)
802 {
803 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
804 struct dma_pte *parent, *pte = NULL;
805 int level = agaw_to_level(domain->agaw);
806 int offset;
807
808 BUG_ON(!domain->pgd);
809
810 if (addr_width < BITS_PER_LONG && pfn >> addr_width)
811 /* Address beyond IOMMU's addressing capabilities. */
812 return NULL;
813
814 parent = domain->pgd;
815
816 while (1) {
817 void *tmp_page;
818
819 offset = pfn_level_offset(pfn, level);
820 pte = &parent[offset];
821 if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
822 break;
823 if (level == *target_level)
824 break;
825
826 if (!dma_pte_present(pte)) {
827 uint64_t pteval;
828
829 tmp_page = alloc_pgtable_page(domain->nid);
830
831 if (!tmp_page)
832 return NULL;
833
834 domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
835 pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
836 if (cmpxchg64(&pte->val, 0ULL, pteval)) {
837 /* Someone else set it while we were thinking; use theirs. */
838 free_pgtable_page(tmp_page);
839 } else {
840 dma_pte_addr(pte);
841 domain_flush_cache(domain, pte, sizeof(*pte));
842 }
843 }
844 if (level == 1)
845 break;
846
847 parent = phys_to_virt(dma_pte_addr(pte));
848 level--;
849 }
850
851 if (!*target_level)
852 *target_level = level;
853
854 return pte;
855 }
856
857
858 /* return address's pte at specific level */
859 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
860 unsigned long pfn,
861 int level, int *large_page)
862 {
863 struct dma_pte *parent, *pte = NULL;
864 int total = agaw_to_level(domain->agaw);
865 int offset;
866
867 parent = domain->pgd;
868 while (level <= total) {
869 offset = pfn_level_offset(pfn, total);
870 pte = &parent[offset];
871 if (level == total)
872 return pte;
873
874 if (!dma_pte_present(pte)) {
875 *large_page = total;
876 break;
877 }
878
879 if (pte->val & DMA_PTE_LARGE_PAGE) {
880 *large_page = total;
881 return pte;
882 }
883
884 parent = phys_to_virt(dma_pte_addr(pte));
885 total--;
886 }
887 return NULL;
888 }
889
890 /* clear last level pte, a tlb flush should be followed */
891 static void dma_pte_clear_range(struct dmar_domain *domain,
892 unsigned long start_pfn,
893 unsigned long last_pfn)
894 {
895 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
896 unsigned int large_page = 1;
897 struct dma_pte *first_pte, *pte;
898
899 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
900 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
901 BUG_ON(start_pfn > last_pfn);
902
903 /* we don't need lock here; nobody else touches the iova range */
904 do {
905 large_page = 1;
906 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
907 if (!pte) {
908 start_pfn = align_to_level(start_pfn + 1, large_page + 1);
909 continue;
910 }
911 do {
912 dma_clear_pte(pte);
913 start_pfn += lvl_to_nr_pages(large_page);
914 pte++;
915 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
916
917 domain_flush_cache(domain, first_pte,
918 (void *)pte - (void *)first_pte);
919
920 } while (start_pfn && start_pfn <= last_pfn);
921 }
922
923 static void dma_pte_free_level(struct dmar_domain *domain, int level,
924 struct dma_pte *pte, unsigned long pfn,
925 unsigned long start_pfn, unsigned long last_pfn)
926 {
927 pfn = max(start_pfn, pfn);
928 pte = &pte[pfn_level_offset(pfn, level)];
929
930 do {
931 unsigned long level_pfn;
932 struct dma_pte *level_pte;
933
934 if (!dma_pte_present(pte) || dma_pte_superpage(pte))
935 goto next;
936
937 level_pfn = pfn & level_mask(level - 1);
938 level_pte = phys_to_virt(dma_pte_addr(pte));
939
940 if (level > 2)
941 dma_pte_free_level(domain, level - 1, level_pte,
942 level_pfn, start_pfn, last_pfn);
943
944 /* If range covers entire pagetable, free it */
945 if (!(start_pfn > level_pfn ||
946 last_pfn < level_pfn + level_size(level) - 1)) {
947 dma_clear_pte(pte);
948 domain_flush_cache(domain, pte, sizeof(*pte));
949 free_pgtable_page(level_pte);
950 }
951 next:
952 pfn += level_size(level);
953 } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
954 }
955
956 /* free page table pages. last level pte should already be cleared */
957 static void dma_pte_free_pagetable(struct dmar_domain *domain,
958 unsigned long start_pfn,
959 unsigned long last_pfn)
960 {
961 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
962
963 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
964 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
965 BUG_ON(start_pfn > last_pfn);
966
967 /* We don't need lock here; nobody else touches the iova range */
968 dma_pte_free_level(domain, agaw_to_level(domain->agaw),
969 domain->pgd, 0, start_pfn, last_pfn);
970
971 /* free pgd */
972 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
973 free_pgtable_page(domain->pgd);
974 domain->pgd = NULL;
975 }
976 }
977
978 /* When a page at a given level is being unlinked from its parent, we don't
979 need to *modify* it at all. All we need to do is make a list of all the
980 pages which can be freed just as soon as we've flushed the IOTLB and we
981 know the hardware page-walk will no longer touch them.
982 The 'pte' argument is the *parent* PTE, pointing to the page that is to
983 be freed. */
984 static struct page *dma_pte_list_pagetables(struct dmar_domain *domain,
985 int level, struct dma_pte *pte,
986 struct page *freelist)
987 {
988 struct page *pg;
989
990 pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
991 pg->freelist = freelist;
992 freelist = pg;
993
994 if (level == 1)
995 return freelist;
996
997 for (pte = page_address(pg); !first_pte_in_page(pte); pte++) {
998 if (dma_pte_present(pte) && !dma_pte_superpage(pte))
999 freelist = dma_pte_list_pagetables(domain, level - 1,
1000 pte, freelist);
1001 }
1002
1003 return freelist;
1004 }
1005
1006 static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level,
1007 struct dma_pte *pte, unsigned long pfn,
1008 unsigned long start_pfn,
1009 unsigned long last_pfn,
1010 struct page *freelist)
1011 {
1012 struct dma_pte *first_pte = NULL, *last_pte = NULL;
1013
1014 pfn = max(start_pfn, pfn);
1015 pte = &pte[pfn_level_offset(pfn, level)];
1016
1017 do {
1018 unsigned long level_pfn;
1019
1020 if (!dma_pte_present(pte))
1021 goto next;
1022
1023 level_pfn = pfn & level_mask(level);
1024
1025 /* If range covers entire pagetable, free it */
1026 if (start_pfn <= level_pfn &&
1027 last_pfn >= level_pfn + level_size(level) - 1) {
1028 /* These suborbinate page tables are going away entirely. Don't
1029 bother to clear them; we're just going to *free* them. */
1030 if (level > 1 && !dma_pte_superpage(pte))
1031 freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist);
1032
1033 dma_clear_pte(pte);
1034 if (!first_pte)
1035 first_pte = pte;
1036 last_pte = pte;
1037 } else if (level > 1) {
1038 /* Recurse down into a level that isn't *entirely* obsolete */
1039 freelist = dma_pte_clear_level(domain, level - 1,
1040 phys_to_virt(dma_pte_addr(pte)),
1041 level_pfn, start_pfn, last_pfn,
1042 freelist);
1043 }
1044 next:
1045 pfn += level_size(level);
1046 } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1047
1048 if (first_pte)
1049 domain_flush_cache(domain, first_pte,
1050 (void *)++last_pte - (void *)first_pte);
1051
1052 return freelist;
1053 }
1054
1055 /* We can't just free the pages because the IOMMU may still be walking
1056 the page tables, and may have cached the intermediate levels. The
1057 pages can only be freed after the IOTLB flush has been done. */
1058 struct page *domain_unmap(struct dmar_domain *domain,
1059 unsigned long start_pfn,
1060 unsigned long last_pfn)
1061 {
1062 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
1063 struct page *freelist = NULL;
1064
1065 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
1066 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
1067 BUG_ON(start_pfn > last_pfn);
1068
1069 /* we don't need lock here; nobody else touches the iova range */
1070 freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
1071 domain->pgd, 0, start_pfn, last_pfn, NULL);
1072
1073 /* free pgd */
1074 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1075 struct page *pgd_page = virt_to_page(domain->pgd);
1076 pgd_page->freelist = freelist;
1077 freelist = pgd_page;
1078
1079 domain->pgd = NULL;
1080 }
1081
1082 return freelist;
1083 }
1084
1085 void dma_free_pagelist(struct page *freelist)
1086 {
1087 struct page *pg;
1088
1089 while ((pg = freelist)) {
1090 freelist = pg->freelist;
1091 free_pgtable_page(page_address(pg));
1092 }
1093 }
1094
1095 /* iommu handling */
1096 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
1097 {
1098 struct root_entry *root;
1099 unsigned long flags;
1100
1101 root = (struct root_entry *)alloc_pgtable_page(iommu->node);
1102 if (!root)
1103 return -ENOMEM;
1104
1105 __iommu_flush_cache(iommu, root, ROOT_SIZE);
1106
1107 spin_lock_irqsave(&iommu->lock, flags);
1108 iommu->root_entry = root;
1109 spin_unlock_irqrestore(&iommu->lock, flags);
1110
1111 return 0;
1112 }
1113
1114 static void iommu_set_root_entry(struct intel_iommu *iommu)
1115 {
1116 void *addr;
1117 u32 sts;
1118 unsigned long flag;
1119
1120 addr = iommu->root_entry;
1121
1122 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1123 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
1124
1125 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
1126
1127 /* Make sure hardware complete it */
1128 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1129 readl, (sts & DMA_GSTS_RTPS), sts);
1130
1131 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1132 }
1133
1134 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
1135 {
1136 u32 val;
1137 unsigned long flag;
1138
1139 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
1140 return;
1141
1142 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1143 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
1144
1145 /* Make sure hardware complete it */
1146 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1147 readl, (!(val & DMA_GSTS_WBFS)), val);
1148
1149 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1150 }
1151
1152 /* return value determine if we need a write buffer flush */
1153 static void __iommu_flush_context(struct intel_iommu *iommu,
1154 u16 did, u16 source_id, u8 function_mask,
1155 u64 type)
1156 {
1157 u64 val = 0;
1158 unsigned long flag;
1159
1160 switch (type) {
1161 case DMA_CCMD_GLOBAL_INVL:
1162 val = DMA_CCMD_GLOBAL_INVL;
1163 break;
1164 case DMA_CCMD_DOMAIN_INVL:
1165 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
1166 break;
1167 case DMA_CCMD_DEVICE_INVL:
1168 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
1169 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
1170 break;
1171 default:
1172 BUG();
1173 }
1174 val |= DMA_CCMD_ICC;
1175
1176 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1177 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1178
1179 /* Make sure hardware complete it */
1180 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1181 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1182
1183 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1184 }
1185
1186 /* return value determine if we need a write buffer flush */
1187 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1188 u64 addr, unsigned int size_order, u64 type)
1189 {
1190 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1191 u64 val = 0, val_iva = 0;
1192 unsigned long flag;
1193
1194 switch (type) {
1195 case DMA_TLB_GLOBAL_FLUSH:
1196 /* global flush doesn't need set IVA_REG */
1197 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1198 break;
1199 case DMA_TLB_DSI_FLUSH:
1200 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1201 break;
1202 case DMA_TLB_PSI_FLUSH:
1203 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1204 /* IH bit is passed in as part of address */
1205 val_iva = size_order | addr;
1206 break;
1207 default:
1208 BUG();
1209 }
1210 /* Note: set drain read/write */
1211 #if 0
1212 /*
1213 * This is probably to be super secure.. Looks like we can
1214 * ignore it without any impact.
1215 */
1216 if (cap_read_drain(iommu->cap))
1217 val |= DMA_TLB_READ_DRAIN;
1218 #endif
1219 if (cap_write_drain(iommu->cap))
1220 val |= DMA_TLB_WRITE_DRAIN;
1221
1222 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1223 /* Note: Only uses first TLB reg currently */
1224 if (val_iva)
1225 dmar_writeq(iommu->reg + tlb_offset, val_iva);
1226 dmar_writeq(iommu->reg + tlb_offset + 8, val);
1227
1228 /* Make sure hardware complete it */
1229 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1230 dmar_readq, (!(val & DMA_TLB_IVT)), val);
1231
1232 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1233
1234 /* check IOTLB invalidation granularity */
1235 if (DMA_TLB_IAIG(val) == 0)
1236 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
1237 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1238 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
1239 (unsigned long long)DMA_TLB_IIRG(type),
1240 (unsigned long long)DMA_TLB_IAIG(val));
1241 }
1242
1243 static struct device_domain_info *
1244 iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu,
1245 u8 bus, u8 devfn)
1246 {
1247 int found = 0;
1248 unsigned long flags;
1249 struct device_domain_info *info;
1250 struct pci_dev *pdev;
1251
1252 if (!ecap_dev_iotlb_support(iommu->ecap))
1253 return NULL;
1254
1255 if (!iommu->qi)
1256 return NULL;
1257
1258 spin_lock_irqsave(&device_domain_lock, flags);
1259 list_for_each_entry(info, &domain->devices, link)
1260 if (info->bus == bus && info->devfn == devfn) {
1261 found = 1;
1262 break;
1263 }
1264 spin_unlock_irqrestore(&device_domain_lock, flags);
1265
1266 if (!found || !info->dev || !dev_is_pci(info->dev))
1267 return NULL;
1268
1269 pdev = to_pci_dev(info->dev);
1270
1271 if (!pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS))
1272 return NULL;
1273
1274 if (!dmar_find_matched_atsr_unit(pdev))
1275 return NULL;
1276
1277 return info;
1278 }
1279
1280 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1281 {
1282 if (!info || !dev_is_pci(info->dev))
1283 return;
1284
1285 pci_enable_ats(to_pci_dev(info->dev), VTD_PAGE_SHIFT);
1286 }
1287
1288 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1289 {
1290 if (!info->dev || !dev_is_pci(info->dev) ||
1291 !pci_ats_enabled(to_pci_dev(info->dev)))
1292 return;
1293
1294 pci_disable_ats(to_pci_dev(info->dev));
1295 }
1296
1297 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1298 u64 addr, unsigned mask)
1299 {
1300 u16 sid, qdep;
1301 unsigned long flags;
1302 struct device_domain_info *info;
1303
1304 spin_lock_irqsave(&device_domain_lock, flags);
1305 list_for_each_entry(info, &domain->devices, link) {
1306 struct pci_dev *pdev;
1307 if (!info->dev || !dev_is_pci(info->dev))
1308 continue;
1309
1310 pdev = to_pci_dev(info->dev);
1311 if (!pci_ats_enabled(pdev))
1312 continue;
1313
1314 sid = info->bus << 8 | info->devfn;
1315 qdep = pci_ats_queue_depth(pdev);
1316 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1317 }
1318 spin_unlock_irqrestore(&device_domain_lock, flags);
1319 }
1320
1321 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
1322 unsigned long pfn, unsigned int pages, int ih, int map)
1323 {
1324 unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1325 uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1326
1327 BUG_ON(pages == 0);
1328
1329 if (ih)
1330 ih = 1 << 6;
1331 /*
1332 * Fallback to domain selective flush if no PSI support or the size is
1333 * too big.
1334 * PSI requires page size to be 2 ^ x, and the base address is naturally
1335 * aligned to the size
1336 */
1337 if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1338 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1339 DMA_TLB_DSI_FLUSH);
1340 else
1341 iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
1342 DMA_TLB_PSI_FLUSH);
1343
1344 /*
1345 * In caching mode, changes of pages from non-present to present require
1346 * flush. However, device IOTLB doesn't need to be flushed in this case.
1347 */
1348 if (!cap_caching_mode(iommu->cap) || !map)
1349 iommu_flush_dev_iotlb(iommu->domains[did], addr, mask);
1350 }
1351
1352 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1353 {
1354 u32 pmen;
1355 unsigned long flags;
1356
1357 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1358 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1359 pmen &= ~DMA_PMEN_EPM;
1360 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1361
1362 /* wait for the protected region status bit to clear */
1363 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1364 readl, !(pmen & DMA_PMEN_PRS), pmen);
1365
1366 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1367 }
1368
1369 static int iommu_enable_translation(struct intel_iommu *iommu)
1370 {
1371 u32 sts;
1372 unsigned long flags;
1373
1374 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1375 iommu->gcmd |= DMA_GCMD_TE;
1376 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1377
1378 /* Make sure hardware complete it */
1379 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1380 readl, (sts & DMA_GSTS_TES), sts);
1381
1382 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1383 return 0;
1384 }
1385
1386 static int iommu_disable_translation(struct intel_iommu *iommu)
1387 {
1388 u32 sts;
1389 unsigned long flag;
1390
1391 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1392 iommu->gcmd &= ~DMA_GCMD_TE;
1393 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1394
1395 /* Make sure hardware complete it */
1396 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1397 readl, (!(sts & DMA_GSTS_TES)), sts);
1398
1399 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1400 return 0;
1401 }
1402
1403
1404 static int iommu_init_domains(struct intel_iommu *iommu)
1405 {
1406 unsigned long ndomains;
1407 unsigned long nlongs;
1408
1409 ndomains = cap_ndoms(iommu->cap);
1410 pr_debug("IOMMU%d: Number of Domains supported <%ld>\n",
1411 iommu->seq_id, ndomains);
1412 nlongs = BITS_TO_LONGS(ndomains);
1413
1414 spin_lock_init(&iommu->lock);
1415
1416 /* TBD: there might be 64K domains,
1417 * consider other allocation for future chip
1418 */
1419 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1420 if (!iommu->domain_ids) {
1421 pr_err("IOMMU%d: allocating domain id array failed\n",
1422 iommu->seq_id);
1423 return -ENOMEM;
1424 }
1425 iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1426 GFP_KERNEL);
1427 if (!iommu->domains) {
1428 pr_err("IOMMU%d: allocating domain array failed\n",
1429 iommu->seq_id);
1430 kfree(iommu->domain_ids);
1431 iommu->domain_ids = NULL;
1432 return -ENOMEM;
1433 }
1434
1435 /*
1436 * if Caching mode is set, then invalid translations are tagged
1437 * with domainid 0. Hence we need to pre-allocate it.
1438 */
1439 if (cap_caching_mode(iommu->cap))
1440 set_bit(0, iommu->domain_ids);
1441 return 0;
1442 }
1443
1444 static void free_dmar_iommu(struct intel_iommu *iommu)
1445 {
1446 struct dmar_domain *domain;
1447 int i, count;
1448 unsigned long flags;
1449
1450 if ((iommu->domains) && (iommu->domain_ids)) {
1451 for_each_set_bit(i, iommu->domain_ids, cap_ndoms(iommu->cap)) {
1452 /*
1453 * Domain id 0 is reserved for invalid translation
1454 * if hardware supports caching mode.
1455 */
1456 if (cap_caching_mode(iommu->cap) && i == 0)
1457 continue;
1458
1459 domain = iommu->domains[i];
1460 clear_bit(i, iommu->domain_ids);
1461
1462 spin_lock_irqsave(&domain->iommu_lock, flags);
1463 count = --domain->iommu_count;
1464 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1465 if (count == 0)
1466 domain_exit(domain);
1467 }
1468 }
1469
1470 if (iommu->gcmd & DMA_GCMD_TE)
1471 iommu_disable_translation(iommu);
1472
1473 kfree(iommu->domains);
1474 kfree(iommu->domain_ids);
1475 iommu->domains = NULL;
1476 iommu->domain_ids = NULL;
1477
1478 g_iommus[iommu->seq_id] = NULL;
1479
1480 /* free context mapping */
1481 free_context_table(iommu);
1482 }
1483
1484 static struct dmar_domain *alloc_domain(bool vm)
1485 {
1486 /* domain id for virtual machine, it won't be set in context */
1487 static atomic_t vm_domid = ATOMIC_INIT(0);
1488 struct dmar_domain *domain;
1489
1490 domain = alloc_domain_mem();
1491 if (!domain)
1492 return NULL;
1493
1494 domain->nid = -1;
1495 domain->iommu_count = 0;
1496 memset(domain->iommu_bmp, 0, sizeof(domain->iommu_bmp));
1497 domain->flags = 0;
1498 spin_lock_init(&domain->iommu_lock);
1499 INIT_LIST_HEAD(&domain->devices);
1500 if (vm) {
1501 domain->id = atomic_inc_return(&vm_domid);
1502 domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE;
1503 }
1504
1505 return domain;
1506 }
1507
1508 static int iommu_attach_domain(struct dmar_domain *domain,
1509 struct intel_iommu *iommu)
1510 {
1511 int num;
1512 unsigned long ndomains;
1513 unsigned long flags;
1514
1515 ndomains = cap_ndoms(iommu->cap);
1516
1517 spin_lock_irqsave(&iommu->lock, flags);
1518
1519 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1520 if (num >= ndomains) {
1521 spin_unlock_irqrestore(&iommu->lock, flags);
1522 printk(KERN_ERR "IOMMU: no free domain ids\n");
1523 return -ENOMEM;
1524 }
1525
1526 domain->id = num;
1527 domain->iommu_count++;
1528 set_bit(num, iommu->domain_ids);
1529 set_bit(iommu->seq_id, domain->iommu_bmp);
1530 iommu->domains[num] = domain;
1531 spin_unlock_irqrestore(&iommu->lock, flags);
1532
1533 return 0;
1534 }
1535
1536 static void iommu_detach_domain(struct dmar_domain *domain,
1537 struct intel_iommu *iommu)
1538 {
1539 unsigned long flags;
1540 int num, ndomains;
1541
1542 spin_lock_irqsave(&iommu->lock, flags);
1543 ndomains = cap_ndoms(iommu->cap);
1544 for_each_set_bit(num, iommu->domain_ids, ndomains) {
1545 if (iommu->domains[num] == domain) {
1546 clear_bit(num, iommu->domain_ids);
1547 iommu->domains[num] = NULL;
1548 break;
1549 }
1550 }
1551 spin_unlock_irqrestore(&iommu->lock, flags);
1552 }
1553
1554 static struct iova_domain reserved_iova_list;
1555 static struct lock_class_key reserved_rbtree_key;
1556
1557 static int dmar_init_reserved_ranges(void)
1558 {
1559 struct pci_dev *pdev = NULL;
1560 struct iova *iova;
1561 int i;
1562
1563 init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
1564
1565 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1566 &reserved_rbtree_key);
1567
1568 /* IOAPIC ranges shouldn't be accessed by DMA */
1569 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1570 IOVA_PFN(IOAPIC_RANGE_END));
1571 if (!iova) {
1572 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1573 return -ENODEV;
1574 }
1575
1576 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1577 for_each_pci_dev(pdev) {
1578 struct resource *r;
1579
1580 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1581 r = &pdev->resource[i];
1582 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1583 continue;
1584 iova = reserve_iova(&reserved_iova_list,
1585 IOVA_PFN(r->start),
1586 IOVA_PFN(r->end));
1587 if (!iova) {
1588 printk(KERN_ERR "Reserve iova failed\n");
1589 return -ENODEV;
1590 }
1591 }
1592 }
1593 return 0;
1594 }
1595
1596 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1597 {
1598 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1599 }
1600
1601 static inline int guestwidth_to_adjustwidth(int gaw)
1602 {
1603 int agaw;
1604 int r = (gaw - 12) % 9;
1605
1606 if (r == 0)
1607 agaw = gaw;
1608 else
1609 agaw = gaw + 9 - r;
1610 if (agaw > 64)
1611 agaw = 64;
1612 return agaw;
1613 }
1614
1615 static int domain_init(struct dmar_domain *domain, int guest_width)
1616 {
1617 struct intel_iommu *iommu;
1618 int adjust_width, agaw;
1619 unsigned long sagaw;
1620
1621 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
1622 domain_reserve_special_ranges(domain);
1623
1624 /* calculate AGAW */
1625 iommu = domain_get_iommu(domain);
1626 if (guest_width > cap_mgaw(iommu->cap))
1627 guest_width = cap_mgaw(iommu->cap);
1628 domain->gaw = guest_width;
1629 adjust_width = guestwidth_to_adjustwidth(guest_width);
1630 agaw = width_to_agaw(adjust_width);
1631 sagaw = cap_sagaw(iommu->cap);
1632 if (!test_bit(agaw, &sagaw)) {
1633 /* hardware doesn't support it, choose a bigger one */
1634 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1635 agaw = find_next_bit(&sagaw, 5, agaw);
1636 if (agaw >= 5)
1637 return -ENODEV;
1638 }
1639 domain->agaw = agaw;
1640
1641 if (ecap_coherent(iommu->ecap))
1642 domain->iommu_coherency = 1;
1643 else
1644 domain->iommu_coherency = 0;
1645
1646 if (ecap_sc_support(iommu->ecap))
1647 domain->iommu_snooping = 1;
1648 else
1649 domain->iommu_snooping = 0;
1650
1651 if (intel_iommu_superpage)
1652 domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
1653 else
1654 domain->iommu_superpage = 0;
1655
1656 domain->nid = iommu->node;
1657
1658 /* always allocate the top pgd */
1659 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1660 if (!domain->pgd)
1661 return -ENOMEM;
1662 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1663 return 0;
1664 }
1665
1666 static void domain_exit(struct dmar_domain *domain)
1667 {
1668 struct dmar_drhd_unit *drhd;
1669 struct intel_iommu *iommu;
1670 struct page *freelist = NULL;
1671
1672 /* Domain 0 is reserved, so dont process it */
1673 if (!domain)
1674 return;
1675
1676 /* Flush any lazy unmaps that may reference this domain */
1677 if (!intel_iommu_strict)
1678 flush_unmaps_timeout(0);
1679
1680 /* remove associated devices */
1681 domain_remove_dev_info(domain);
1682
1683 /* destroy iovas */
1684 put_iova_domain(&domain->iovad);
1685
1686 freelist = domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1687
1688 /* clear attached or cached domains */
1689 rcu_read_lock();
1690 for_each_active_iommu(iommu, drhd)
1691 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
1692 test_bit(iommu->seq_id, domain->iommu_bmp))
1693 iommu_detach_domain(domain, iommu);
1694 rcu_read_unlock();
1695
1696 dma_free_pagelist(freelist);
1697
1698 free_domain_mem(domain);
1699 }
1700
1701 static int domain_context_mapping_one(struct dmar_domain *domain,
1702 struct intel_iommu *iommu,
1703 u8 bus, u8 devfn, int translation)
1704 {
1705 struct context_entry *context;
1706 unsigned long flags;
1707 struct dma_pte *pgd;
1708 unsigned long num;
1709 unsigned long ndomains;
1710 int id;
1711 int agaw;
1712 struct device_domain_info *info = NULL;
1713
1714 pr_debug("Set context mapping for %02x:%02x.%d\n",
1715 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1716
1717 BUG_ON(!domain->pgd);
1718 BUG_ON(translation != CONTEXT_TT_PASS_THROUGH &&
1719 translation != CONTEXT_TT_MULTI_LEVEL);
1720
1721 context = device_to_context_entry(iommu, bus, devfn);
1722 if (!context)
1723 return -ENOMEM;
1724 spin_lock_irqsave(&iommu->lock, flags);
1725 if (context_present(context)) {
1726 spin_unlock_irqrestore(&iommu->lock, flags);
1727 return 0;
1728 }
1729
1730 id = domain->id;
1731 pgd = domain->pgd;
1732
1733 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
1734 domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) {
1735 int found = 0;
1736
1737 /* find an available domain id for this device in iommu */
1738 ndomains = cap_ndoms(iommu->cap);
1739 for_each_set_bit(num, iommu->domain_ids, ndomains) {
1740 if (iommu->domains[num] == domain) {
1741 id = num;
1742 found = 1;
1743 break;
1744 }
1745 }
1746
1747 if (found == 0) {
1748 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1749 if (num >= ndomains) {
1750 spin_unlock_irqrestore(&iommu->lock, flags);
1751 printk(KERN_ERR "IOMMU: no free domain ids\n");
1752 return -EFAULT;
1753 }
1754
1755 set_bit(num, iommu->domain_ids);
1756 iommu->domains[num] = domain;
1757 id = num;
1758 }
1759
1760 /* Skip top levels of page tables for
1761 * iommu which has less agaw than default.
1762 * Unnecessary for PT mode.
1763 */
1764 if (translation != CONTEXT_TT_PASS_THROUGH) {
1765 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1766 pgd = phys_to_virt(dma_pte_addr(pgd));
1767 if (!dma_pte_present(pgd)) {
1768 spin_unlock_irqrestore(&iommu->lock, flags);
1769 return -ENOMEM;
1770 }
1771 }
1772 }
1773 }
1774
1775 context_set_domain_id(context, id);
1776
1777 if (translation != CONTEXT_TT_PASS_THROUGH) {
1778 info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
1779 translation = info ? CONTEXT_TT_DEV_IOTLB :
1780 CONTEXT_TT_MULTI_LEVEL;
1781 }
1782 /*
1783 * In pass through mode, AW must be programmed to indicate the largest
1784 * AGAW value supported by hardware. And ASR is ignored by hardware.
1785 */
1786 if (unlikely(translation == CONTEXT_TT_PASS_THROUGH))
1787 context_set_address_width(context, iommu->msagaw);
1788 else {
1789 context_set_address_root(context, virt_to_phys(pgd));
1790 context_set_address_width(context, iommu->agaw);
1791 }
1792
1793 context_set_translation_type(context, translation);
1794 context_set_fault_enable(context);
1795 context_set_present(context);
1796 domain_flush_cache(domain, context, sizeof(*context));
1797
1798 /*
1799 * It's a non-present to present mapping. If hardware doesn't cache
1800 * non-present entry we only need to flush the write-buffer. If the
1801 * _does_ cache non-present entries, then it does so in the special
1802 * domain #0, which we have to flush:
1803 */
1804 if (cap_caching_mode(iommu->cap)) {
1805 iommu->flush.flush_context(iommu, 0,
1806 (((u16)bus) << 8) | devfn,
1807 DMA_CCMD_MASK_NOBIT,
1808 DMA_CCMD_DEVICE_INVL);
1809 iommu->flush.flush_iotlb(iommu, domain->id, 0, 0, DMA_TLB_DSI_FLUSH);
1810 } else {
1811 iommu_flush_write_buffer(iommu);
1812 }
1813 iommu_enable_dev_iotlb(info);
1814 spin_unlock_irqrestore(&iommu->lock, flags);
1815
1816 spin_lock_irqsave(&domain->iommu_lock, flags);
1817 if (!test_and_set_bit(iommu->seq_id, domain->iommu_bmp)) {
1818 domain->iommu_count++;
1819 if (domain->iommu_count == 1)
1820 domain->nid = iommu->node;
1821 domain_update_iommu_cap(domain);
1822 }
1823 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1824 return 0;
1825 }
1826
1827 static int
1828 domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev,
1829 int translation)
1830 {
1831 int ret;
1832 struct pci_dev *tmp, *parent;
1833 struct intel_iommu *iommu;
1834
1835 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
1836 pdev->devfn);
1837 if (!iommu)
1838 return -ENODEV;
1839
1840 ret = domain_context_mapping_one(domain, iommu,
1841 pdev->bus->number, pdev->devfn,
1842 translation);
1843 if (ret)
1844 return ret;
1845
1846 /* dependent device mapping */
1847 tmp = pci_find_upstream_pcie_bridge(pdev);
1848 if (!tmp)
1849 return 0;
1850 /* Secondary interface's bus number and devfn 0 */
1851 parent = pdev->bus->self;
1852 while (parent != tmp) {
1853 ret = domain_context_mapping_one(domain, iommu,
1854 parent->bus->number,
1855 parent->devfn, translation);
1856 if (ret)
1857 return ret;
1858 parent = parent->bus->self;
1859 }
1860 if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */
1861 return domain_context_mapping_one(domain, iommu,
1862 tmp->subordinate->number, 0,
1863 translation);
1864 else /* this is a legacy PCI bridge */
1865 return domain_context_mapping_one(domain, iommu,
1866 tmp->bus->number,
1867 tmp->devfn,
1868 translation);
1869 }
1870
1871 static int domain_context_mapped(struct pci_dev *pdev)
1872 {
1873 int ret;
1874 struct pci_dev *tmp, *parent;
1875 struct intel_iommu *iommu;
1876
1877 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
1878 pdev->devfn);
1879 if (!iommu)
1880 return -ENODEV;
1881
1882 ret = device_context_mapped(iommu, pdev->bus->number, pdev->devfn);
1883 if (!ret)
1884 return ret;
1885 /* dependent device mapping */
1886 tmp = pci_find_upstream_pcie_bridge(pdev);
1887 if (!tmp)
1888 return ret;
1889 /* Secondary interface's bus number and devfn 0 */
1890 parent = pdev->bus->self;
1891 while (parent != tmp) {
1892 ret = device_context_mapped(iommu, parent->bus->number,
1893 parent->devfn);
1894 if (!ret)
1895 return ret;
1896 parent = parent->bus->self;
1897 }
1898 if (pci_is_pcie(tmp))
1899 return device_context_mapped(iommu, tmp->subordinate->number,
1900 0);
1901 else
1902 return device_context_mapped(iommu, tmp->bus->number,
1903 tmp->devfn);
1904 }
1905
1906 /* Returns a number of VTD pages, but aligned to MM page size */
1907 static inline unsigned long aligned_nrpages(unsigned long host_addr,
1908 size_t size)
1909 {
1910 host_addr &= ~PAGE_MASK;
1911 return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
1912 }
1913
1914 /* Return largest possible superpage level for a given mapping */
1915 static inline int hardware_largepage_caps(struct dmar_domain *domain,
1916 unsigned long iov_pfn,
1917 unsigned long phy_pfn,
1918 unsigned long pages)
1919 {
1920 int support, level = 1;
1921 unsigned long pfnmerge;
1922
1923 support = domain->iommu_superpage;
1924
1925 /* To use a large page, the virtual *and* physical addresses
1926 must be aligned to 2MiB/1GiB/etc. Lower bits set in either
1927 of them will mean we have to use smaller pages. So just
1928 merge them and check both at once. */
1929 pfnmerge = iov_pfn | phy_pfn;
1930
1931 while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
1932 pages >>= VTD_STRIDE_SHIFT;
1933 if (!pages)
1934 break;
1935 pfnmerge >>= VTD_STRIDE_SHIFT;
1936 level++;
1937 support--;
1938 }
1939 return level;
1940 }
1941
1942 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1943 struct scatterlist *sg, unsigned long phys_pfn,
1944 unsigned long nr_pages, int prot)
1945 {
1946 struct dma_pte *first_pte = NULL, *pte = NULL;
1947 phys_addr_t uninitialized_var(pteval);
1948 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
1949 unsigned long sg_res;
1950 unsigned int largepage_lvl = 0;
1951 unsigned long lvl_pages = 0;
1952
1953 BUG_ON(addr_width < BITS_PER_LONG && (iov_pfn + nr_pages - 1) >> addr_width);
1954
1955 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1956 return -EINVAL;
1957
1958 prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
1959
1960 if (sg)
1961 sg_res = 0;
1962 else {
1963 sg_res = nr_pages + 1;
1964 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
1965 }
1966
1967 while (nr_pages > 0) {
1968 uint64_t tmp;
1969
1970 if (!sg_res) {
1971 sg_res = aligned_nrpages(sg->offset, sg->length);
1972 sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
1973 sg->dma_length = sg->length;
1974 pteval = page_to_phys(sg_page(sg)) | prot;
1975 phys_pfn = pteval >> VTD_PAGE_SHIFT;
1976 }
1977
1978 if (!pte) {
1979 largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
1980
1981 first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl);
1982 if (!pte)
1983 return -ENOMEM;
1984 /* It is large page*/
1985 if (largepage_lvl > 1) {
1986 pteval |= DMA_PTE_LARGE_PAGE;
1987 /* Ensure that old small page tables are removed to make room
1988 for superpage, if they exist. */
1989 dma_pte_clear_range(domain, iov_pfn,
1990 iov_pfn + lvl_to_nr_pages(largepage_lvl) - 1);
1991 dma_pte_free_pagetable(domain, iov_pfn,
1992 iov_pfn + lvl_to_nr_pages(largepage_lvl) - 1);
1993 } else {
1994 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
1995 }
1996
1997 }
1998 /* We don't need lock here, nobody else
1999 * touches the iova range
2000 */
2001 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
2002 if (tmp) {
2003 static int dumps = 5;
2004 printk(KERN_CRIT "ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
2005 iov_pfn, tmp, (unsigned long long)pteval);
2006 if (dumps) {
2007 dumps--;
2008 debug_dma_dump_mappings(NULL);
2009 }
2010 WARN_ON(1);
2011 }
2012
2013 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2014
2015 BUG_ON(nr_pages < lvl_pages);
2016 BUG_ON(sg_res < lvl_pages);
2017
2018 nr_pages -= lvl_pages;
2019 iov_pfn += lvl_pages;
2020 phys_pfn += lvl_pages;
2021 pteval += lvl_pages * VTD_PAGE_SIZE;
2022 sg_res -= lvl_pages;
2023
2024 /* If the next PTE would be the first in a new page, then we
2025 need to flush the cache on the entries we've just written.
2026 And then we'll need to recalculate 'pte', so clear it and
2027 let it get set again in the if (!pte) block above.
2028
2029 If we're done (!nr_pages) we need to flush the cache too.
2030
2031 Also if we've been setting superpages, we may need to
2032 recalculate 'pte' and switch back to smaller pages for the
2033 end of the mapping, if the trailing size is not enough to
2034 use another superpage (i.e. sg_res < lvl_pages). */
2035 pte++;
2036 if (!nr_pages || first_pte_in_page(pte) ||
2037 (largepage_lvl > 1 && sg_res < lvl_pages)) {
2038 domain_flush_cache(domain, first_pte,
2039 (void *)pte - (void *)first_pte);
2040 pte = NULL;
2041 }
2042
2043 if (!sg_res && nr_pages)
2044 sg = sg_next(sg);
2045 }
2046 return 0;
2047 }
2048
2049 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2050 struct scatterlist *sg, unsigned long nr_pages,
2051 int prot)
2052 {
2053 return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
2054 }
2055
2056 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2057 unsigned long phys_pfn, unsigned long nr_pages,
2058 int prot)
2059 {
2060 return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
2061 }
2062
2063 static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
2064 {
2065 if (!iommu)
2066 return;
2067
2068 clear_context_table(iommu, bus, devfn);
2069 iommu->flush.flush_context(iommu, 0, 0, 0,
2070 DMA_CCMD_GLOBAL_INVL);
2071 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2072 }
2073
2074 static inline void unlink_domain_info(struct device_domain_info *info)
2075 {
2076 assert_spin_locked(&device_domain_lock);
2077 list_del(&info->link);
2078 list_del(&info->global);
2079 if (info->dev)
2080 info->dev->archdata.iommu = NULL;
2081 }
2082
2083 static void domain_remove_dev_info(struct dmar_domain *domain)
2084 {
2085 struct device_domain_info *info;
2086 unsigned long flags, flags2;
2087
2088 spin_lock_irqsave(&device_domain_lock, flags);
2089 while (!list_empty(&domain->devices)) {
2090 info = list_entry(domain->devices.next,
2091 struct device_domain_info, link);
2092 unlink_domain_info(info);
2093 spin_unlock_irqrestore(&device_domain_lock, flags);
2094
2095 iommu_disable_dev_iotlb(info);
2096 iommu_detach_dev(info->iommu, info->bus, info->devfn);
2097
2098 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) {
2099 iommu_detach_dependent_devices(info->iommu, info->dev);
2100 /* clear this iommu in iommu_bmp, update iommu count
2101 * and capabilities
2102 */
2103 spin_lock_irqsave(&domain->iommu_lock, flags2);
2104 if (test_and_clear_bit(info->iommu->seq_id,
2105 domain->iommu_bmp)) {
2106 domain->iommu_count--;
2107 domain_update_iommu_cap(domain);
2108 }
2109 spin_unlock_irqrestore(&domain->iommu_lock, flags2);
2110 }
2111
2112 free_devinfo_mem(info);
2113 spin_lock_irqsave(&device_domain_lock, flags);
2114 }
2115 spin_unlock_irqrestore(&device_domain_lock, flags);
2116 }
2117
2118 /*
2119 * find_domain
2120 * Note: we use struct device->archdata.iommu stores the info
2121 */
2122 static struct dmar_domain *find_domain(struct device *dev)
2123 {
2124 struct device_domain_info *info;
2125
2126 /* No lock here, assumes no domain exit in normal case */
2127 info = dev->archdata.iommu;
2128 if (info)
2129 return info->domain;
2130 return NULL;
2131 }
2132
2133 static inline struct device_domain_info *
2134 dmar_search_domain_by_dev_info(int segment, int bus, int devfn)
2135 {
2136 struct device_domain_info *info;
2137
2138 list_for_each_entry(info, &device_domain_list, global)
2139 if (info->segment == segment && info->bus == bus &&
2140 info->devfn == devfn)
2141 return info;
2142
2143 return NULL;
2144 }
2145
2146 static struct dmar_domain *dmar_insert_dev_info(struct intel_iommu *iommu,
2147 int segment, int bus, int devfn,
2148 struct device *dev,
2149 struct dmar_domain *domain)
2150 {
2151 struct dmar_domain *found = NULL;
2152 struct device_domain_info *info;
2153 unsigned long flags;
2154
2155 info = alloc_devinfo_mem();
2156 if (!info)
2157 return NULL;
2158
2159 info->segment = segment;
2160 info->bus = bus;
2161 info->devfn = devfn;
2162 info->dev = dev;
2163 info->domain = domain;
2164 info->iommu = iommu;
2165 if (!dev)
2166 domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
2167
2168 spin_lock_irqsave(&device_domain_lock, flags);
2169 if (dev)
2170 found = find_domain(dev);
2171 else {
2172 struct device_domain_info *info2;
2173 info2 = dmar_search_domain_by_dev_info(segment, bus, devfn);
2174 if (info2)
2175 found = info2->domain;
2176 }
2177 if (found) {
2178 spin_unlock_irqrestore(&device_domain_lock, flags);
2179 free_devinfo_mem(info);
2180 /* Caller must free the original domain */
2181 return found;
2182 }
2183
2184 list_add(&info->link, &domain->devices);
2185 list_add(&info->global, &device_domain_list);
2186 if (dev)
2187 dev->archdata.iommu = info;
2188 spin_unlock_irqrestore(&device_domain_lock, flags);
2189
2190 return domain;
2191 }
2192
2193 /* domain is initialized */
2194 static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
2195 {
2196 struct dmar_domain *domain, *free = NULL;
2197 struct intel_iommu *iommu = NULL;
2198 struct device_domain_info *info;
2199 struct dmar_drhd_unit *drhd;
2200 struct pci_dev *dev_tmp;
2201 unsigned long flags;
2202 int bus = 0, devfn = 0;
2203 int segment;
2204
2205 domain = find_domain(&pdev->dev);
2206 if (domain)
2207 return domain;
2208
2209 segment = pci_domain_nr(pdev->bus);
2210
2211 dev_tmp = pci_find_upstream_pcie_bridge(pdev);
2212 if (dev_tmp) {
2213 if (pci_is_pcie(dev_tmp)) {
2214 bus = dev_tmp->subordinate->number;
2215 devfn = 0;
2216 } else {
2217 bus = dev_tmp->bus->number;
2218 devfn = dev_tmp->devfn;
2219 }
2220 spin_lock_irqsave(&device_domain_lock, flags);
2221 info = dmar_search_domain_by_dev_info(segment, bus, devfn);
2222 if (info) {
2223 iommu = info->iommu;
2224 domain = info->domain;
2225 }
2226 spin_unlock_irqrestore(&device_domain_lock, flags);
2227 if (info)
2228 goto found_domain;
2229 }
2230
2231 drhd = dmar_find_matched_drhd_unit(pdev);
2232 if (!drhd) {
2233 printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
2234 pci_name(pdev));
2235 return NULL;
2236 }
2237 iommu = drhd->iommu;
2238
2239 /* Allocate and intialize new domain for the device */
2240 domain = alloc_domain(false);
2241 if (!domain)
2242 goto error;
2243 if (iommu_attach_domain(domain, iommu)) {
2244 free_domain_mem(domain);
2245 goto error;
2246 }
2247 free = domain;
2248 if (domain_init(domain, gaw))
2249 goto error;
2250
2251 /* register pcie-to-pci device */
2252 if (dev_tmp) {
2253 domain = dmar_insert_dev_info(iommu, segment, bus, devfn, NULL,
2254 domain);
2255 if (!domain)
2256 goto error;
2257 }
2258
2259 found_domain:
2260 domain = dmar_insert_dev_info(iommu, segment, pdev->bus->number,
2261 pdev->devfn, &pdev->dev, domain);
2262 error:
2263 if (free != domain)
2264 domain_exit(free);
2265
2266 return domain;
2267 }
2268
2269 static int iommu_identity_mapping;
2270 #define IDENTMAP_ALL 1
2271 #define IDENTMAP_GFX 2
2272 #define IDENTMAP_AZALIA 4
2273
2274 static int iommu_domain_identity_map(struct dmar_domain *domain,
2275 unsigned long long start,
2276 unsigned long long end)
2277 {
2278 unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
2279 unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
2280
2281 if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
2282 dma_to_mm_pfn(last_vpfn))) {
2283 printk(KERN_ERR "IOMMU: reserve iova failed\n");
2284 return -ENOMEM;
2285 }
2286
2287 pr_debug("Mapping reserved region %llx-%llx for domain %d\n",
2288 start, end, domain->id);
2289 /*
2290 * RMRR range might have overlap with physical memory range,
2291 * clear it first
2292 */
2293 dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2294
2295 return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
2296 last_vpfn - first_vpfn + 1,
2297 DMA_PTE_READ|DMA_PTE_WRITE);
2298 }
2299
2300 static int iommu_prepare_identity_map(struct pci_dev *pdev,
2301 unsigned long long start,
2302 unsigned long long end)
2303 {
2304 struct dmar_domain *domain;
2305 int ret;
2306
2307 domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2308 if (!domain)
2309 return -ENOMEM;
2310
2311 /* For _hardware_ passthrough, don't bother. But for software
2312 passthrough, we do it anyway -- it may indicate a memory
2313 range which is reserved in E820, so which didn't get set
2314 up to start with in si_domain */
2315 if (domain == si_domain && hw_pass_through) {
2316 printk("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
2317 pci_name(pdev), start, end);
2318 return 0;
2319 }
2320
2321 printk(KERN_INFO
2322 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
2323 pci_name(pdev), start, end);
2324
2325 if (end < start) {
2326 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2327 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2328 dmi_get_system_info(DMI_BIOS_VENDOR),
2329 dmi_get_system_info(DMI_BIOS_VERSION),
2330 dmi_get_system_info(DMI_PRODUCT_VERSION));
2331 ret = -EIO;
2332 goto error;
2333 }
2334
2335 if (end >> agaw_to_width(domain->agaw)) {
2336 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2337 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2338 agaw_to_width(domain->agaw),
2339 dmi_get_system_info(DMI_BIOS_VENDOR),
2340 dmi_get_system_info(DMI_BIOS_VERSION),
2341 dmi_get_system_info(DMI_PRODUCT_VERSION));
2342 ret = -EIO;
2343 goto error;
2344 }
2345
2346 ret = iommu_domain_identity_map(domain, start, end);
2347 if (ret)
2348 goto error;
2349
2350 /* context entry init */
2351 ret = domain_context_mapping(domain, pdev, CONTEXT_TT_MULTI_LEVEL);
2352 if (ret)
2353 goto error;
2354
2355 return 0;
2356
2357 error:
2358 domain_exit(domain);
2359 return ret;
2360 }
2361
2362 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2363 struct pci_dev *pdev)
2364 {
2365 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2366 return 0;
2367 return iommu_prepare_identity_map(pdev, rmrr->base_address,
2368 rmrr->end_address);
2369 }
2370
2371 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
2372 static inline void iommu_prepare_isa(void)
2373 {
2374 struct pci_dev *pdev;
2375 int ret;
2376
2377 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2378 if (!pdev)
2379 return;
2380
2381 printk(KERN_INFO "IOMMU: Prepare 0-16MiB unity mapping for LPC\n");
2382 ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024 - 1);
2383
2384 if (ret)
2385 printk(KERN_ERR "IOMMU: Failed to create 0-16MiB identity map; "
2386 "floppy might not work\n");
2387
2388 }
2389 #else
2390 static inline void iommu_prepare_isa(void)
2391 {
2392 return;
2393 }
2394 #endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */
2395
2396 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2397
2398 static int __init si_domain_init(int hw)
2399 {
2400 struct dmar_drhd_unit *drhd;
2401 struct intel_iommu *iommu;
2402 int nid, ret = 0;
2403
2404 si_domain = alloc_domain(false);
2405 if (!si_domain)
2406 return -EFAULT;
2407
2408 si_domain->flags = DOMAIN_FLAG_STATIC_IDENTITY;
2409
2410 for_each_active_iommu(iommu, drhd) {
2411 ret = iommu_attach_domain(si_domain, iommu);
2412 if (ret) {
2413 domain_exit(si_domain);
2414 return -EFAULT;
2415 }
2416 }
2417
2418 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2419 domain_exit(si_domain);
2420 return -EFAULT;
2421 }
2422
2423 pr_debug("IOMMU: identity mapping domain is domain %d\n",
2424 si_domain->id);
2425
2426 if (hw)
2427 return 0;
2428
2429 for_each_online_node(nid) {
2430 unsigned long start_pfn, end_pfn;
2431 int i;
2432
2433 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2434 ret = iommu_domain_identity_map(si_domain,
2435 PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
2436 if (ret)
2437 return ret;
2438 }
2439 }
2440
2441 return 0;
2442 }
2443
2444 static int identity_mapping(struct pci_dev *pdev)
2445 {
2446 struct device_domain_info *info;
2447
2448 if (likely(!iommu_identity_mapping))
2449 return 0;
2450
2451 info = pdev->dev.archdata.iommu;
2452 if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
2453 return (info->domain == si_domain);
2454
2455 return 0;
2456 }
2457
2458 static int domain_add_dev_info(struct dmar_domain *domain,
2459 struct pci_dev *pdev,
2460 int translation)
2461 {
2462 struct dmar_domain *ndomain;
2463 struct intel_iommu *iommu;
2464 int ret;
2465
2466 iommu = device_to_iommu(pci_domain_nr(pdev->bus),
2467 pdev->bus->number, pdev->devfn);
2468 if (!iommu)
2469 return -ENODEV;
2470
2471 ndomain = dmar_insert_dev_info(iommu, pci_domain_nr(pdev->bus),
2472 pdev->bus->number, pdev->devfn,
2473 &pdev->dev, domain);
2474 if (ndomain != domain)
2475 return -EBUSY;
2476
2477 ret = domain_context_mapping(domain, pdev, translation);
2478 if (ret) {
2479 domain_remove_one_dev_info(domain, pdev);
2480 return ret;
2481 }
2482
2483 return 0;
2484 }
2485
2486 static bool device_has_rmrr(struct pci_dev *dev)
2487 {
2488 struct dmar_rmrr_unit *rmrr;
2489 struct device *tmp;
2490 int i;
2491
2492 rcu_read_lock();
2493 for_each_rmrr_units(rmrr) {
2494 /*
2495 * Return TRUE if this RMRR contains the device that
2496 * is passed in.
2497 */
2498 for_each_active_dev_scope(rmrr->devices,
2499 rmrr->devices_cnt, i, tmp)
2500 if (tmp == &dev->dev) {
2501 rcu_read_unlock();
2502 return true;
2503 }
2504 }
2505 rcu_read_unlock();
2506 return false;
2507 }
2508
2509 static int iommu_should_identity_map(struct pci_dev *pdev, int startup)
2510 {
2511
2512 /*
2513 * We want to prevent any device associated with an RMRR from
2514 * getting placed into the SI Domain. This is done because
2515 * problems exist when devices are moved in and out of domains
2516 * and their respective RMRR info is lost. We exempt USB devices
2517 * from this process due to their usage of RMRRs that are known
2518 * to not be needed after BIOS hand-off to OS.
2519 */
2520 if (device_has_rmrr(pdev) &&
2521 (pdev->class >> 8) != PCI_CLASS_SERIAL_USB)
2522 return 0;
2523
2524 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2525 return 1;
2526
2527 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2528 return 1;
2529
2530 if (!(iommu_identity_mapping & IDENTMAP_ALL))
2531 return 0;
2532
2533 /*
2534 * We want to start off with all devices in the 1:1 domain, and
2535 * take them out later if we find they can't access all of memory.
2536 *
2537 * However, we can't do this for PCI devices behind bridges,
2538 * because all PCI devices behind the same bridge will end up
2539 * with the same source-id on their transactions.
2540 *
2541 * Practically speaking, we can't change things around for these
2542 * devices at run-time, because we can't be sure there'll be no
2543 * DMA transactions in flight for any of their siblings.
2544 *
2545 * So PCI devices (unless they're on the root bus) as well as
2546 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2547 * the 1:1 domain, just in _case_ one of their siblings turns out
2548 * not to be able to map all of memory.
2549 */
2550 if (!pci_is_pcie(pdev)) {
2551 if (!pci_is_root_bus(pdev->bus))
2552 return 0;
2553 if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2554 return 0;
2555 } else if (pci_pcie_type(pdev) == PCI_EXP_TYPE_PCI_BRIDGE)
2556 return 0;
2557
2558 /*
2559 * At boot time, we don't yet know if devices will be 64-bit capable.
2560 * Assume that they will -- if they turn out not to be, then we can
2561 * take them out of the 1:1 domain later.
2562 */
2563 if (!startup) {
2564 /*
2565 * If the device's dma_mask is less than the system's memory
2566 * size then this is not a candidate for identity mapping.
2567 */
2568 u64 dma_mask = pdev->dma_mask;
2569
2570 if (pdev->dev.coherent_dma_mask &&
2571 pdev->dev.coherent_dma_mask < dma_mask)
2572 dma_mask = pdev->dev.coherent_dma_mask;
2573
2574 return dma_mask >= dma_get_required_mask(&pdev->dev);
2575 }
2576
2577 return 1;
2578 }
2579
2580 static int __init iommu_prepare_static_identity_mapping(int hw)
2581 {
2582 struct pci_dev *pdev = NULL;
2583 int ret;
2584
2585 ret = si_domain_init(hw);
2586 if (ret)
2587 return -EFAULT;
2588
2589 for_each_pci_dev(pdev) {
2590 if (iommu_should_identity_map(pdev, 1)) {
2591 ret = domain_add_dev_info(si_domain, pdev,
2592 hw ? CONTEXT_TT_PASS_THROUGH :
2593 CONTEXT_TT_MULTI_LEVEL);
2594 if (ret) {
2595 /* device not associated with an iommu */
2596 if (ret == -ENODEV)
2597 continue;
2598 return ret;
2599 }
2600 pr_info("IOMMU: %s identity mapping for device %s\n",
2601 hw ? "hardware" : "software", pci_name(pdev));
2602 }
2603 }
2604
2605 return 0;
2606 }
2607
2608 static int __init init_dmars(void)
2609 {
2610 struct dmar_drhd_unit *drhd;
2611 struct dmar_rmrr_unit *rmrr;
2612 struct device *dev;
2613 struct intel_iommu *iommu;
2614 int i, ret;
2615
2616 /*
2617 * for each drhd
2618 * allocate root
2619 * initialize and program root entry to not present
2620 * endfor
2621 */
2622 for_each_drhd_unit(drhd) {
2623 /*
2624 * lock not needed as this is only incremented in the single
2625 * threaded kernel __init code path all other access are read
2626 * only
2627 */
2628 if (g_num_of_iommus < IOMMU_UNITS_SUPPORTED) {
2629 g_num_of_iommus++;
2630 continue;
2631 }
2632 printk_once(KERN_ERR "intel-iommu: exceeded %d IOMMUs\n",
2633 IOMMU_UNITS_SUPPORTED);
2634 }
2635
2636 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
2637 GFP_KERNEL);
2638 if (!g_iommus) {
2639 printk(KERN_ERR "Allocating global iommu array failed\n");
2640 ret = -ENOMEM;
2641 goto error;
2642 }
2643
2644 deferred_flush = kzalloc(g_num_of_iommus *
2645 sizeof(struct deferred_flush_tables), GFP_KERNEL);
2646 if (!deferred_flush) {
2647 ret = -ENOMEM;
2648 goto free_g_iommus;
2649 }
2650
2651 for_each_active_iommu(iommu, drhd) {
2652 g_iommus[iommu->seq_id] = iommu;
2653
2654 ret = iommu_init_domains(iommu);
2655 if (ret)
2656 goto free_iommu;
2657
2658 /*
2659 * TBD:
2660 * we could share the same root & context tables
2661 * among all IOMMU's. Need to Split it later.
2662 */
2663 ret = iommu_alloc_root_entry(iommu);
2664 if (ret) {
2665 printk(KERN_ERR "IOMMU: allocate root entry failed\n");
2666 goto free_iommu;
2667 }
2668 if (!ecap_pass_through(iommu->ecap))
2669 hw_pass_through = 0;
2670 }
2671
2672 /*
2673 * Start from the sane iommu hardware state.
2674 */
2675 for_each_active_iommu(iommu, drhd) {
2676 /*
2677 * If the queued invalidation is already initialized by us
2678 * (for example, while enabling interrupt-remapping) then
2679 * we got the things already rolling from a sane state.
2680 */
2681 if (iommu->qi)
2682 continue;
2683
2684 /*
2685 * Clear any previous faults.
2686 */
2687 dmar_fault(-1, iommu);
2688 /*
2689 * Disable queued invalidation if supported and already enabled
2690 * before OS handover.
2691 */
2692 dmar_disable_qi(iommu);
2693 }
2694
2695 for_each_active_iommu(iommu, drhd) {
2696 if (dmar_enable_qi(iommu)) {
2697 /*
2698 * Queued Invalidate not enabled, use Register Based
2699 * Invalidate
2700 */
2701 iommu->flush.flush_context = __iommu_flush_context;
2702 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2703 printk(KERN_INFO "IOMMU %d 0x%Lx: using Register based "
2704 "invalidation\n",
2705 iommu->seq_id,
2706 (unsigned long long)drhd->reg_base_addr);
2707 } else {
2708 iommu->flush.flush_context = qi_flush_context;
2709 iommu->flush.flush_iotlb = qi_flush_iotlb;
2710 printk(KERN_INFO "IOMMU %d 0x%Lx: using Queued "
2711 "invalidation\n",
2712 iommu->seq_id,
2713 (unsigned long long)drhd->reg_base_addr);
2714 }
2715 }
2716
2717 if (iommu_pass_through)
2718 iommu_identity_mapping |= IDENTMAP_ALL;
2719
2720 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
2721 iommu_identity_mapping |= IDENTMAP_GFX;
2722 #endif
2723
2724 check_tylersburg_isoch();
2725
2726 /*
2727 * If pass through is not set or not enabled, setup context entries for
2728 * identity mappings for rmrr, gfx, and isa and may fall back to static
2729 * identity mapping if iommu_identity_mapping is set.
2730 */
2731 if (iommu_identity_mapping) {
2732 ret = iommu_prepare_static_identity_mapping(hw_pass_through);
2733 if (ret) {
2734 printk(KERN_CRIT "Failed to setup IOMMU pass-through\n");
2735 goto free_iommu;
2736 }
2737 }
2738 /*
2739 * For each rmrr
2740 * for each dev attached to rmrr
2741 * do
2742 * locate drhd for dev, alloc domain for dev
2743 * allocate free domain
2744 * allocate page table entries for rmrr
2745 * if context not allocated for bus
2746 * allocate and init context
2747 * set present in root table for this bus
2748 * init context with domain, translation etc
2749 * endfor
2750 * endfor
2751 */
2752 printk(KERN_INFO "IOMMU: Setting RMRR:\n");
2753 for_each_rmrr_units(rmrr) {
2754 /* some BIOS lists non-exist devices in DMAR table. */
2755 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
2756 i, dev) {
2757 if (!dev_is_pci(dev))
2758 continue;
2759 ret = iommu_prepare_rmrr_dev(rmrr, to_pci_dev(dev));
2760 if (ret)
2761 printk(KERN_ERR
2762 "IOMMU: mapping reserved region failed\n");
2763 }
2764 }
2765
2766 iommu_prepare_isa();
2767
2768 /*
2769 * for each drhd
2770 * enable fault log
2771 * global invalidate context cache
2772 * global invalidate iotlb
2773 * enable translation
2774 */
2775 for_each_iommu(iommu, drhd) {
2776 if (drhd->ignored) {
2777 /*
2778 * we always have to disable PMRs or DMA may fail on
2779 * this device
2780 */
2781 if (force_on)
2782 iommu_disable_protect_mem_regions(iommu);
2783 continue;
2784 }
2785
2786 iommu_flush_write_buffer(iommu);
2787
2788 ret = dmar_set_interrupt(iommu);
2789 if (ret)
2790 goto free_iommu;
2791
2792 iommu_set_root_entry(iommu);
2793
2794 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
2795 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2796
2797 ret = iommu_enable_translation(iommu);
2798 if (ret)
2799 goto free_iommu;
2800
2801 iommu_disable_protect_mem_regions(iommu);
2802 }
2803
2804 return 0;
2805
2806 free_iommu:
2807 for_each_active_iommu(iommu, drhd)
2808 free_dmar_iommu(iommu);
2809 kfree(deferred_flush);
2810 free_g_iommus:
2811 kfree(g_iommus);
2812 error:
2813 return ret;
2814 }
2815
2816 /* This takes a number of _MM_ pages, not VTD pages */
2817 static struct iova *intel_alloc_iova(struct device *dev,
2818 struct dmar_domain *domain,
2819 unsigned long nrpages, uint64_t dma_mask)
2820 {
2821 struct pci_dev *pdev = to_pci_dev(dev);
2822 struct iova *iova = NULL;
2823
2824 /* Restrict dma_mask to the width that the iommu can handle */
2825 dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
2826
2827 if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
2828 /*
2829 * First try to allocate an io virtual address in
2830 * DMA_BIT_MASK(32) and if that fails then try allocating
2831 * from higher range
2832 */
2833 iova = alloc_iova(&domain->iovad, nrpages,
2834 IOVA_PFN(DMA_BIT_MASK(32)), 1);
2835 if (iova)
2836 return iova;
2837 }
2838 iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(dma_mask), 1);
2839 if (unlikely(!iova)) {
2840 printk(KERN_ERR "Allocating %ld-page iova for %s failed",
2841 nrpages, pci_name(pdev));
2842 return NULL;
2843 }
2844
2845 return iova;
2846 }
2847
2848 static struct dmar_domain *__get_valid_domain_for_dev(struct pci_dev *pdev)
2849 {
2850 struct dmar_domain *domain;
2851 int ret;
2852
2853 domain = get_domain_for_dev(pdev,
2854 DEFAULT_DOMAIN_ADDRESS_WIDTH);
2855 if (!domain) {
2856 printk(KERN_ERR
2857 "Allocating domain for %s failed", pci_name(pdev));
2858 return NULL;
2859 }
2860
2861 /* make sure context mapping is ok */
2862 if (unlikely(!domain_context_mapped(pdev))) {
2863 ret = domain_context_mapping(domain, pdev,
2864 CONTEXT_TT_MULTI_LEVEL);
2865 if (ret) {
2866 printk(KERN_ERR
2867 "Domain context map for %s failed",
2868 pci_name(pdev));
2869 return NULL;
2870 }
2871 }
2872
2873 return domain;
2874 }
2875
2876 static inline struct dmar_domain *get_valid_domain_for_dev(struct pci_dev *dev)
2877 {
2878 struct device_domain_info *info;
2879
2880 /* No lock here, assumes no domain exit in normal case */
2881 info = dev->dev.archdata.iommu;
2882 if (likely(info))
2883 return info->domain;
2884
2885 return __get_valid_domain_for_dev(dev);
2886 }
2887
2888 static int iommu_dummy(struct device *dev)
2889 {
2890 return dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
2891 }
2892
2893 /* Check if the pdev needs to go through non-identity map and unmap process.*/
2894 static int iommu_no_mapping(struct device *dev)
2895 {
2896 struct pci_dev *pdev;
2897 int found;
2898
2899 if (unlikely(!dev_is_pci(dev)))
2900 return 1;
2901
2902 if (iommu_dummy(dev))
2903 return 1;
2904
2905 if (!iommu_identity_mapping)
2906 return 0;
2907
2908 pdev = to_pci_dev(dev);
2909 found = identity_mapping(pdev);
2910 if (found) {
2911 if (iommu_should_identity_map(pdev, 0))
2912 return 1;
2913 else {
2914 /*
2915 * 32 bit DMA is removed from si_domain and fall back
2916 * to non-identity mapping.
2917 */
2918 domain_remove_one_dev_info(si_domain, pdev);
2919 printk(KERN_INFO "32bit %s uses non-identity mapping\n",
2920 pci_name(pdev));
2921 return 0;
2922 }
2923 } else {
2924 /*
2925 * In case of a detached 64 bit DMA device from vm, the device
2926 * is put into si_domain for identity mapping.
2927 */
2928 if (iommu_should_identity_map(pdev, 0)) {
2929 int ret;
2930 ret = domain_add_dev_info(si_domain, pdev,
2931 hw_pass_through ?
2932 CONTEXT_TT_PASS_THROUGH :
2933 CONTEXT_TT_MULTI_LEVEL);
2934 if (!ret) {
2935 printk(KERN_INFO "64bit %s uses identity mapping\n",
2936 pci_name(pdev));
2937 return 1;
2938 }
2939 }
2940 }
2941
2942 return 0;
2943 }
2944
2945 static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr,
2946 size_t size, int dir, u64 dma_mask)
2947 {
2948 struct pci_dev *pdev = to_pci_dev(hwdev);
2949 struct dmar_domain *domain;
2950 phys_addr_t start_paddr;
2951 struct iova *iova;
2952 int prot = 0;
2953 int ret;
2954 struct intel_iommu *iommu;
2955 unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
2956
2957 BUG_ON(dir == DMA_NONE);
2958
2959 if (iommu_no_mapping(hwdev))
2960 return paddr;
2961
2962 domain = get_valid_domain_for_dev(pdev);
2963 if (!domain)
2964 return 0;
2965
2966 iommu = domain_get_iommu(domain);
2967 size = aligned_nrpages(paddr, size);
2968
2969 iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size), dma_mask);
2970 if (!iova)
2971 goto error;
2972
2973 /*
2974 * Check if DMAR supports zero-length reads on write only
2975 * mappings..
2976 */
2977 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2978 !cap_zlr(iommu->cap))
2979 prot |= DMA_PTE_READ;
2980 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2981 prot |= DMA_PTE_WRITE;
2982 /*
2983 * paddr - (paddr + size) might be partial page, we should map the whole
2984 * page. Note: if two part of one page are separately mapped, we
2985 * might have two guest_addr mapping to the same host paddr, but this
2986 * is not a big problem
2987 */
2988 ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo),
2989 mm_to_dma_pfn(paddr_pfn), size, prot);
2990 if (ret)
2991 goto error;
2992
2993 /* it's a non-present to present mapping. Only flush if caching mode */
2994 if (cap_caching_mode(iommu->cap))
2995 iommu_flush_iotlb_psi(iommu, domain->id, mm_to_dma_pfn(iova->pfn_lo), size, 0, 1);
2996 else
2997 iommu_flush_write_buffer(iommu);
2998
2999 start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
3000 start_paddr += paddr & ~PAGE_MASK;
3001 return start_paddr;
3002
3003 error:
3004 if (iova)
3005 __free_iova(&domain->iovad, iova);
3006 printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n",
3007 pci_name(pdev), size, (unsigned long long)paddr, dir);
3008 return 0;
3009 }
3010
3011 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
3012 unsigned long offset, size_t size,
3013 enum dma_data_direction dir,
3014 struct dma_attrs *attrs)
3015 {
3016 return __intel_map_single(dev, page_to_phys(page) + offset, size,
3017 dir, to_pci_dev(dev)->dma_mask);
3018 }
3019
3020 static void flush_unmaps(void)
3021 {
3022 int i, j;
3023
3024 timer_on = 0;
3025
3026 /* just flush them all */
3027 for (i = 0; i < g_num_of_iommus; i++) {
3028 struct intel_iommu *iommu = g_iommus[i];
3029 if (!iommu)
3030 continue;
3031
3032 if (!deferred_flush[i].next)
3033 continue;
3034
3035 /* In caching mode, global flushes turn emulation expensive */
3036 if (!cap_caching_mode(iommu->cap))
3037 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3038 DMA_TLB_GLOBAL_FLUSH);
3039 for (j = 0; j < deferred_flush[i].next; j++) {
3040 unsigned long mask;
3041 struct iova *iova = deferred_flush[i].iova[j];
3042 struct dmar_domain *domain = deferred_flush[i].domain[j];
3043
3044 /* On real hardware multiple invalidations are expensive */
3045 if (cap_caching_mode(iommu->cap))
3046 iommu_flush_iotlb_psi(iommu, domain->id,
3047 iova->pfn_lo, iova->pfn_hi - iova->pfn_lo + 1,
3048 !deferred_flush[i].freelist[j], 0);
3049 else {
3050 mask = ilog2(mm_to_dma_pfn(iova->pfn_hi - iova->pfn_lo + 1));
3051 iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
3052 (uint64_t)iova->pfn_lo << PAGE_SHIFT, mask);
3053 }
3054 __free_iova(&deferred_flush[i].domain[j]->iovad, iova);
3055 if (deferred_flush[i].freelist[j])
3056 dma_free_pagelist(deferred_flush[i].freelist[j]);
3057 }
3058 deferred_flush[i].next = 0;
3059 }
3060
3061 list_size = 0;
3062 }
3063
3064 static void flush_unmaps_timeout(unsigned long data)
3065 {
3066 unsigned long flags;
3067
3068 spin_lock_irqsave(&async_umap_flush_lock, flags);
3069 flush_unmaps();
3070 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
3071 }
3072
3073 static void add_unmap(struct dmar_domain *dom, struct iova *iova, struct page *freelist)
3074 {
3075 unsigned long flags;
3076 int next, iommu_id;
3077 struct intel_iommu *iommu;
3078
3079 spin_lock_irqsave(&async_umap_flush_lock, flags);
3080 if (list_size == HIGH_WATER_MARK)
3081 flush_unmaps();
3082
3083 iommu = domain_get_iommu(dom);
3084 iommu_id = iommu->seq_id;
3085
3086 next = deferred_flush[iommu_id].next;
3087 deferred_flush[iommu_id].domain[next] = dom;
3088 deferred_flush[iommu_id].iova[next] = iova;
3089 deferred_flush[iommu_id].freelist[next] = freelist;
3090 deferred_flush[iommu_id].next++;
3091
3092 if (!timer_on) {
3093 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
3094 timer_on = 1;
3095 }
3096 list_size++;
3097 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
3098 }
3099
3100 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
3101 size_t size, enum dma_data_direction dir,
3102 struct dma_attrs *attrs)
3103 {
3104 struct pci_dev *pdev = to_pci_dev(dev);
3105 struct dmar_domain *domain;
3106 unsigned long start_pfn, last_pfn;
3107 struct iova *iova;
3108 struct intel_iommu *iommu;
3109 struct page *freelist;
3110
3111 if (iommu_no_mapping(dev))
3112 return;
3113
3114 domain = find_domain(dev);
3115 BUG_ON(!domain);
3116
3117 iommu = domain_get_iommu(domain);
3118
3119 iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
3120 if (WARN_ONCE(!iova, "Driver unmaps unmatched page at PFN %llx\n",
3121 (unsigned long long)dev_addr))
3122 return;
3123
3124 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
3125 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
3126
3127 pr_debug("Device %s unmapping: pfn %lx-%lx\n",
3128 pci_name(pdev), start_pfn, last_pfn);
3129
3130 freelist = domain_unmap(domain, start_pfn, last_pfn);
3131
3132 if (intel_iommu_strict) {
3133 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
3134 last_pfn - start_pfn + 1, !freelist, 0);
3135 /* free iova */
3136 __free_iova(&domain->iovad, iova);
3137 dma_free_pagelist(freelist);
3138 } else {
3139 add_unmap(domain, iova, freelist);
3140 /*
3141 * queue up the release of the unmap to save the 1/6th of the
3142 * cpu used up by the iotlb flush operation...
3143 */
3144 }
3145 }
3146
3147 static void *intel_alloc_coherent(struct device *hwdev, size_t size,
3148 dma_addr_t *dma_handle, gfp_t flags,
3149 struct dma_attrs *attrs)
3150 {
3151 void *vaddr;
3152 int order;
3153
3154 size = PAGE_ALIGN(size);
3155 order = get_order(size);
3156
3157 if (!iommu_no_mapping(hwdev))
3158 flags &= ~(GFP_DMA | GFP_DMA32);
3159 else if (hwdev->coherent_dma_mask < dma_get_required_mask(hwdev)) {
3160 if (hwdev->coherent_dma_mask < DMA_BIT_MASK(32))
3161 flags |= GFP_DMA;
3162 else
3163 flags |= GFP_DMA32;
3164 }
3165
3166 vaddr = (void *)__get_free_pages(flags, order);
3167 if (!vaddr)
3168 return NULL;
3169 memset(vaddr, 0, size);
3170
3171 *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size,
3172 DMA_BIDIRECTIONAL,
3173 hwdev->coherent_dma_mask);
3174 if (*dma_handle)
3175 return vaddr;
3176 free_pages((unsigned long)vaddr, order);
3177 return NULL;
3178 }
3179
3180 static void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr,
3181 dma_addr_t dma_handle, struct dma_attrs *attrs)
3182 {
3183 int order;
3184
3185 size = PAGE_ALIGN(size);
3186 order = get_order(size);
3187
3188 intel_unmap_page(hwdev, dma_handle, size, DMA_BIDIRECTIONAL, NULL);
3189 free_pages((unsigned long)vaddr, order);
3190 }
3191
3192 static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
3193 int nelems, enum dma_data_direction dir,
3194 struct dma_attrs *attrs)
3195 {
3196 struct dmar_domain *domain;
3197 unsigned long start_pfn, last_pfn;
3198 struct iova *iova;
3199 struct intel_iommu *iommu;
3200 struct page *freelist;
3201
3202 if (iommu_no_mapping(hwdev))
3203 return;
3204
3205 domain = find_domain(hwdev);
3206 BUG_ON(!domain);
3207
3208 iommu = domain_get_iommu(domain);
3209
3210 iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
3211 if (WARN_ONCE(!iova, "Driver unmaps unmatched sglist at PFN %llx\n",
3212 (unsigned long long)sglist[0].dma_address))
3213 return;
3214
3215 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
3216 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
3217
3218 freelist = domain_unmap(domain, start_pfn, last_pfn);
3219
3220 if (intel_iommu_strict) {
3221 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
3222 last_pfn - start_pfn + 1, !freelist, 0);
3223 /* free iova */
3224 __free_iova(&domain->iovad, iova);
3225 dma_free_pagelist(freelist);
3226 } else {
3227 add_unmap(domain, iova, freelist);
3228 /*
3229 * queue up the release of the unmap to save the 1/6th of the
3230 * cpu used up by the iotlb flush operation...
3231 */
3232 }
3233 }
3234
3235 static int intel_nontranslate_map_sg(struct device *hddev,
3236 struct scatterlist *sglist, int nelems, int dir)
3237 {
3238 int i;
3239 struct scatterlist *sg;
3240
3241 for_each_sg(sglist, sg, nelems, i) {
3242 BUG_ON(!sg_page(sg));
3243 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
3244 sg->dma_length = sg->length;
3245 }
3246 return nelems;
3247 }
3248
3249 static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems,
3250 enum dma_data_direction dir, struct dma_attrs *attrs)
3251 {
3252 int i;
3253 struct pci_dev *pdev = to_pci_dev(hwdev);
3254 struct dmar_domain *domain;
3255 size_t size = 0;
3256 int prot = 0;
3257 struct iova *iova = NULL;
3258 int ret;
3259 struct scatterlist *sg;
3260 unsigned long start_vpfn;
3261 struct intel_iommu *iommu;
3262
3263 BUG_ON(dir == DMA_NONE);
3264 if (iommu_no_mapping(hwdev))
3265 return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
3266
3267 domain = get_valid_domain_for_dev(pdev);
3268 if (!domain)
3269 return 0;
3270
3271 iommu = domain_get_iommu(domain);
3272
3273 for_each_sg(sglist, sg, nelems, i)
3274 size += aligned_nrpages(sg->offset, sg->length);
3275
3276 iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size),
3277 pdev->dma_mask);
3278 if (!iova) {
3279 sglist->dma_length = 0;
3280 return 0;
3281 }
3282
3283 /*
3284 * Check if DMAR supports zero-length reads on write only
3285 * mappings..
3286 */
3287 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3288 !cap_zlr(iommu->cap))
3289 prot |= DMA_PTE_READ;
3290 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3291 prot |= DMA_PTE_WRITE;
3292
3293 start_vpfn = mm_to_dma_pfn(iova->pfn_lo);
3294
3295 ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3296 if (unlikely(ret)) {
3297 /* clear the page */
3298 dma_pte_clear_range(domain, start_vpfn,
3299 start_vpfn + size - 1);
3300 /* free page tables */
3301 dma_pte_free_pagetable(domain, start_vpfn,
3302 start_vpfn + size - 1);
3303 /* free iova */
3304 __free_iova(&domain->iovad, iova);
3305 return 0;
3306 }
3307
3308 /* it's a non-present to present mapping. Only flush if caching mode */
3309 if (cap_caching_mode(iommu->cap))
3310 iommu_flush_iotlb_psi(iommu, domain->id, start_vpfn, size, 0, 1);
3311 else
3312 iommu_flush_write_buffer(iommu);
3313
3314 return nelems;
3315 }
3316
3317 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
3318 {
3319 return !dma_addr;
3320 }
3321
3322 struct dma_map_ops intel_dma_ops = {
3323 .alloc = intel_alloc_coherent,
3324 .free = intel_free_coherent,
3325 .map_sg = intel_map_sg,
3326 .unmap_sg = intel_unmap_sg,
3327 .map_page = intel_map_page,
3328 .unmap_page = intel_unmap_page,
3329 .mapping_error = intel_mapping_error,
3330 };
3331
3332 static inline int iommu_domain_cache_init(void)
3333 {
3334 int ret = 0;
3335
3336 iommu_domain_cache = kmem_cache_create("iommu_domain",
3337 sizeof(struct dmar_domain),
3338 0,
3339 SLAB_HWCACHE_ALIGN,
3340
3341 NULL);
3342 if (!iommu_domain_cache) {
3343 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
3344 ret = -ENOMEM;
3345 }
3346
3347 return ret;
3348 }
3349
3350 static inline int iommu_devinfo_cache_init(void)
3351 {
3352 int ret = 0;
3353
3354 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
3355 sizeof(struct device_domain_info),
3356 0,
3357 SLAB_HWCACHE_ALIGN,
3358 NULL);
3359 if (!iommu_devinfo_cache) {
3360 printk(KERN_ERR "Couldn't create devinfo cache\n");
3361 ret = -ENOMEM;
3362 }
3363
3364 return ret;
3365 }
3366
3367 static inline int iommu_iova_cache_init(void)
3368 {
3369 int ret = 0;
3370
3371 iommu_iova_cache = kmem_cache_create("iommu_iova",
3372 sizeof(struct iova),
3373 0,
3374 SLAB_HWCACHE_ALIGN,
3375 NULL);
3376 if (!iommu_iova_cache) {
3377 printk(KERN_ERR "Couldn't create iova cache\n");
3378 ret = -ENOMEM;
3379 }
3380
3381 return ret;
3382 }
3383
3384 static int __init iommu_init_mempool(void)
3385 {
3386 int ret;
3387 ret = iommu_iova_cache_init();
3388 if (ret)
3389 return ret;
3390
3391 ret = iommu_domain_cache_init();
3392 if (ret)
3393 goto domain_error;
3394
3395 ret = iommu_devinfo_cache_init();
3396 if (!ret)
3397 return ret;
3398
3399 kmem_cache_destroy(iommu_domain_cache);
3400 domain_error:
3401 kmem_cache_destroy(iommu_iova_cache);
3402
3403 return -ENOMEM;
3404 }
3405
3406 static void __init iommu_exit_mempool(void)
3407 {
3408 kmem_cache_destroy(iommu_devinfo_cache);
3409 kmem_cache_destroy(iommu_domain_cache);
3410 kmem_cache_destroy(iommu_iova_cache);
3411
3412 }
3413
3414 static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
3415 {
3416 struct dmar_drhd_unit *drhd;
3417 u32 vtbar;
3418 int rc;
3419
3420 /* We know that this device on this chipset has its own IOMMU.
3421 * If we find it under a different IOMMU, then the BIOS is lying
3422 * to us. Hope that the IOMMU for this device is actually
3423 * disabled, and it needs no translation...
3424 */
3425 rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
3426 if (rc) {
3427 /* "can't" happen */
3428 dev_info(&pdev->dev, "failed to run vt-d quirk\n");
3429 return;
3430 }
3431 vtbar &= 0xffff0000;
3432
3433 /* we know that the this iommu should be at offset 0xa000 from vtbar */
3434 drhd = dmar_find_matched_drhd_unit(pdev);
3435 if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
3436 TAINT_FIRMWARE_WORKAROUND,
3437 "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
3438 pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3439 }
3440 DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
3441
3442 static void __init init_no_remapping_devices(void)
3443 {
3444 struct dmar_drhd_unit *drhd;
3445 struct device *dev;
3446 int i;
3447
3448 for_each_drhd_unit(drhd) {
3449 if (!drhd->include_all) {
3450 for_each_active_dev_scope(drhd->devices,
3451 drhd->devices_cnt, i, dev)
3452 break;
3453 /* ignore DMAR unit if no devices exist */
3454 if (i == drhd->devices_cnt)
3455 drhd->ignored = 1;
3456 }
3457 }
3458
3459 for_each_active_drhd_unit(drhd) {
3460 if (drhd->include_all)
3461 continue;
3462
3463 for_each_active_dev_scope(drhd->devices,
3464 drhd->devices_cnt, i, dev)
3465 if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
3466 break;
3467 if (i < drhd->devices_cnt)
3468 continue;
3469
3470 /* This IOMMU has *only* gfx devices. Either bypass it or
3471 set the gfx_mapped flag, as appropriate */
3472 if (dmar_map_gfx) {
3473 intel_iommu_gfx_mapped = 1;
3474 } else {
3475 drhd->ignored = 1;
3476 for_each_active_dev_scope(drhd->devices,
3477 drhd->devices_cnt, i, dev)
3478 dev->archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3479 }
3480 }
3481 }
3482
3483 #ifdef CONFIG_SUSPEND
3484 static int init_iommu_hw(void)
3485 {
3486 struct dmar_drhd_unit *drhd;
3487 struct intel_iommu *iommu = NULL;
3488
3489 for_each_active_iommu(iommu, drhd)
3490 if (iommu->qi)
3491 dmar_reenable_qi(iommu);
3492
3493 for_each_iommu(iommu, drhd) {
3494 if (drhd->ignored) {
3495 /*
3496 * we always have to disable PMRs or DMA may fail on
3497 * this device
3498 */
3499 if (force_on)
3500 iommu_disable_protect_mem_regions(iommu);
3501 continue;
3502 }
3503
3504 iommu_flush_write_buffer(iommu);
3505
3506 iommu_set_root_entry(iommu);
3507
3508 iommu->flush.flush_context(iommu, 0, 0, 0,
3509 DMA_CCMD_GLOBAL_INVL);
3510 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3511 DMA_TLB_GLOBAL_FLUSH);
3512 if (iommu_enable_translation(iommu))
3513 return 1;
3514 iommu_disable_protect_mem_regions(iommu);
3515 }
3516
3517 return 0;
3518 }
3519
3520 static void iommu_flush_all(void)
3521 {
3522 struct dmar_drhd_unit *drhd;
3523 struct intel_iommu *iommu;
3524
3525 for_each_active_iommu(iommu, drhd) {
3526 iommu->flush.flush_context(iommu, 0, 0, 0,
3527 DMA_CCMD_GLOBAL_INVL);
3528 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3529 DMA_TLB_GLOBAL_FLUSH);
3530 }
3531 }
3532
3533 static int iommu_suspend(void)
3534 {
3535 struct dmar_drhd_unit *drhd;
3536 struct intel_iommu *iommu = NULL;
3537 unsigned long flag;
3538
3539 for_each_active_iommu(iommu, drhd) {
3540 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
3541 GFP_ATOMIC);
3542 if (!iommu->iommu_state)
3543 goto nomem;
3544 }
3545
3546 iommu_flush_all();
3547
3548 for_each_active_iommu(iommu, drhd) {
3549 iommu_disable_translation(iommu);
3550
3551 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3552
3553 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3554 readl(iommu->reg + DMAR_FECTL_REG);
3555 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3556 readl(iommu->reg + DMAR_FEDATA_REG);
3557 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3558 readl(iommu->reg + DMAR_FEADDR_REG);
3559 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3560 readl(iommu->reg + DMAR_FEUADDR_REG);
3561
3562 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3563 }
3564 return 0;
3565
3566 nomem:
3567 for_each_active_iommu(iommu, drhd)
3568 kfree(iommu->iommu_state);
3569
3570 return -ENOMEM;
3571 }
3572
3573 static void iommu_resume(void)
3574 {
3575 struct dmar_drhd_unit *drhd;
3576 struct intel_iommu *iommu = NULL;
3577 unsigned long flag;
3578
3579 if (init_iommu_hw()) {
3580 if (force_on)
3581 panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
3582 else
3583 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3584 return;
3585 }
3586
3587 for_each_active_iommu(iommu, drhd) {
3588
3589 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3590
3591 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3592 iommu->reg + DMAR_FECTL_REG);
3593 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3594 iommu->reg + DMAR_FEDATA_REG);
3595 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3596 iommu->reg + DMAR_FEADDR_REG);
3597 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3598 iommu->reg + DMAR_FEUADDR_REG);
3599
3600 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3601 }
3602
3603 for_each_active_iommu(iommu, drhd)
3604 kfree(iommu->iommu_state);
3605 }
3606
3607 static struct syscore_ops iommu_syscore_ops = {
3608 .resume = iommu_resume,
3609 .suspend = iommu_suspend,
3610 };
3611
3612 static void __init init_iommu_pm_ops(void)
3613 {
3614 register_syscore_ops(&iommu_syscore_ops);
3615 }
3616
3617 #else
3618 static inline void init_iommu_pm_ops(void) {}
3619 #endif /* CONFIG_PM */
3620
3621
3622 int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header)
3623 {
3624 struct acpi_dmar_reserved_memory *rmrr;
3625 struct dmar_rmrr_unit *rmrru;
3626
3627 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
3628 if (!rmrru)
3629 return -ENOMEM;
3630
3631 rmrru->hdr = header;
3632 rmrr = (struct acpi_dmar_reserved_memory *)header;
3633 rmrru->base_address = rmrr->base_address;
3634 rmrru->end_address = rmrr->end_address;
3635 rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
3636 ((void *)rmrr) + rmrr->header.length,
3637 &rmrru->devices_cnt);
3638 if (rmrru->devices_cnt && rmrru->devices == NULL) {
3639 kfree(rmrru);
3640 return -ENOMEM;
3641 }
3642
3643 list_add(&rmrru->list, &dmar_rmrr_units);
3644
3645 return 0;
3646 }
3647
3648 int __init dmar_parse_one_atsr(struct acpi_dmar_header *hdr)
3649 {
3650 struct acpi_dmar_atsr *atsr;
3651 struct dmar_atsr_unit *atsru;
3652
3653 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
3654 atsru = kzalloc(sizeof(*atsru), GFP_KERNEL);
3655 if (!atsru)
3656 return -ENOMEM;
3657
3658 atsru->hdr = hdr;
3659 atsru->include_all = atsr->flags & 0x1;
3660 if (!atsru->include_all) {
3661 atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
3662 (void *)atsr + atsr->header.length,
3663 &atsru->devices_cnt);
3664 if (atsru->devices_cnt && atsru->devices == NULL) {
3665 kfree(atsru);
3666 return -ENOMEM;
3667 }
3668 }
3669
3670 list_add_rcu(&atsru->list, &dmar_atsr_units);
3671
3672 return 0;
3673 }
3674
3675 static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
3676 {
3677 dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
3678 kfree(atsru);
3679 }
3680
3681 static void intel_iommu_free_dmars(void)
3682 {
3683 struct dmar_rmrr_unit *rmrru, *rmrr_n;
3684 struct dmar_atsr_unit *atsru, *atsr_n;
3685
3686 list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
3687 list_del(&rmrru->list);
3688 dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
3689 kfree(rmrru);
3690 }
3691
3692 list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
3693 list_del(&atsru->list);
3694 intel_iommu_free_atsr(atsru);
3695 }
3696 }
3697
3698 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
3699 {
3700 int i, ret = 1;
3701 struct pci_bus *bus;
3702 struct pci_dev *bridge = NULL;
3703 struct device *tmp;
3704 struct acpi_dmar_atsr *atsr;
3705 struct dmar_atsr_unit *atsru;
3706
3707 dev = pci_physfn(dev);
3708 for (bus = dev->bus; bus; bus = bus->parent) {
3709 bridge = bus->self;
3710 if (!bridge || !pci_is_pcie(bridge) ||
3711 pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
3712 return 0;
3713 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
3714 break;
3715 }
3716 if (!bridge)
3717 return 0;
3718
3719 rcu_read_lock();
3720 list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
3721 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
3722 if (atsr->segment != pci_domain_nr(dev->bus))
3723 continue;
3724
3725 for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
3726 if (tmp == &bridge->dev)
3727 goto out;
3728
3729 if (atsru->include_all)
3730 goto out;
3731 }
3732 ret = 0;
3733 out:
3734 rcu_read_unlock();
3735
3736 return ret;
3737 }
3738
3739 int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
3740 {
3741 int ret = 0;
3742 struct dmar_rmrr_unit *rmrru;
3743 struct dmar_atsr_unit *atsru;
3744 struct acpi_dmar_atsr *atsr;
3745 struct acpi_dmar_reserved_memory *rmrr;
3746
3747 if (!intel_iommu_enabled && system_state != SYSTEM_BOOTING)
3748 return 0;
3749
3750 list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
3751 rmrr = container_of(rmrru->hdr,
3752 struct acpi_dmar_reserved_memory, header);
3753 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
3754 ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
3755 ((void *)rmrr) + rmrr->header.length,
3756 rmrr->segment, rmrru->devices,
3757 rmrru->devices_cnt);
3758 if (ret > 0)
3759 break;
3760 else if(ret < 0)
3761 return ret;
3762 } else if (info->event == BUS_NOTIFY_DEL_DEVICE) {
3763 if (dmar_remove_dev_scope(info, rmrr->segment,
3764 rmrru->devices, rmrru->devices_cnt))
3765 break;
3766 }
3767 }
3768
3769 list_for_each_entry(atsru, &dmar_atsr_units, list) {
3770 if (atsru->include_all)
3771 continue;
3772
3773 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
3774 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
3775 ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
3776 (void *)atsr + atsr->header.length,
3777 atsr->segment, atsru->devices,
3778 atsru->devices_cnt);
3779 if (ret > 0)
3780 break;
3781 else if(ret < 0)
3782 return ret;
3783 } else if (info->event == BUS_NOTIFY_DEL_DEVICE) {
3784 if (dmar_remove_dev_scope(info, atsr->segment,
3785 atsru->devices, atsru->devices_cnt))
3786 break;
3787 }
3788 }
3789
3790 return 0;
3791 }
3792
3793 /*
3794 * Here we only respond to action of unbound device from driver.
3795 *
3796 * Added device is not attached to its DMAR domain here yet. That will happen
3797 * when mapping the device to iova.
3798 */
3799 static int device_notifier(struct notifier_block *nb,
3800 unsigned long action, void *data)
3801 {
3802 struct device *dev = data;
3803 struct pci_dev *pdev = to_pci_dev(dev);
3804 struct dmar_domain *domain;
3805
3806 if (iommu_dummy(dev))
3807 return 0;
3808
3809 if (action != BUS_NOTIFY_UNBOUND_DRIVER &&
3810 action != BUS_NOTIFY_DEL_DEVICE)
3811 return 0;
3812
3813 domain = find_domain(dev);
3814 if (!domain)
3815 return 0;
3816
3817 down_read(&dmar_global_lock);
3818 domain_remove_one_dev_info(domain, pdev);
3819 if (!(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) &&
3820 !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) &&
3821 list_empty(&domain->devices))
3822 domain_exit(domain);
3823 up_read(&dmar_global_lock);
3824
3825 return 0;
3826 }
3827
3828 static struct notifier_block device_nb = {
3829 .notifier_call = device_notifier,
3830 };
3831
3832 static int intel_iommu_memory_notifier(struct notifier_block *nb,
3833 unsigned long val, void *v)
3834 {
3835 struct memory_notify *mhp = v;
3836 unsigned long long start, end;
3837 unsigned long start_vpfn, last_vpfn;
3838
3839 switch (val) {
3840 case MEM_GOING_ONLINE:
3841 start = mhp->start_pfn << PAGE_SHIFT;
3842 end = ((mhp->start_pfn + mhp->nr_pages) << PAGE_SHIFT) - 1;
3843 if (iommu_domain_identity_map(si_domain, start, end)) {
3844 pr_warn("dmar: failed to build identity map for [%llx-%llx]\n",
3845 start, end);
3846 return NOTIFY_BAD;
3847 }
3848 break;
3849
3850 case MEM_OFFLINE:
3851 case MEM_CANCEL_ONLINE:
3852 start_vpfn = mm_to_dma_pfn(mhp->start_pfn);
3853 last_vpfn = mm_to_dma_pfn(mhp->start_pfn + mhp->nr_pages - 1);
3854 while (start_vpfn <= last_vpfn) {
3855 struct iova *iova;
3856 struct dmar_drhd_unit *drhd;
3857 struct intel_iommu *iommu;
3858 struct page *freelist;
3859
3860 iova = find_iova(&si_domain->iovad, start_vpfn);
3861 if (iova == NULL) {
3862 pr_debug("dmar: failed get IOVA for PFN %lx\n",
3863 start_vpfn);
3864 break;
3865 }
3866
3867 iova = split_and_remove_iova(&si_domain->iovad, iova,
3868 start_vpfn, last_vpfn);
3869 if (iova == NULL) {
3870 pr_warn("dmar: failed to split IOVA PFN [%lx-%lx]\n",
3871 start_vpfn, last_vpfn);
3872 return NOTIFY_BAD;
3873 }
3874
3875 freelist = domain_unmap(si_domain, iova->pfn_lo,
3876 iova->pfn_hi);
3877
3878 rcu_read_lock();
3879 for_each_active_iommu(iommu, drhd)
3880 iommu_flush_iotlb_psi(iommu, si_domain->id,
3881 iova->pfn_lo,
3882 iova->pfn_hi - iova->pfn_lo + 1,
3883 !freelist, 0);
3884 rcu_read_unlock();
3885 dma_free_pagelist(freelist);
3886
3887 start_vpfn = iova->pfn_hi + 1;
3888 free_iova_mem(iova);
3889 }
3890 break;
3891 }
3892
3893 return NOTIFY_OK;
3894 }
3895
3896 static struct notifier_block intel_iommu_memory_nb = {
3897 .notifier_call = intel_iommu_memory_notifier,
3898 .priority = 0
3899 };
3900
3901 int __init intel_iommu_init(void)
3902 {
3903 int ret = -ENODEV;
3904 struct dmar_drhd_unit *drhd;
3905 struct intel_iommu *iommu;
3906
3907 /* VT-d is required for a TXT/tboot launch, so enforce that */
3908 force_on = tboot_force_iommu();
3909
3910 if (iommu_init_mempool()) {
3911 if (force_on)
3912 panic("tboot: Failed to initialize iommu memory\n");
3913 return -ENOMEM;
3914 }
3915
3916 down_write(&dmar_global_lock);
3917 if (dmar_table_init()) {
3918 if (force_on)
3919 panic("tboot: Failed to initialize DMAR table\n");
3920 goto out_free_dmar;
3921 }
3922
3923 /*
3924 * Disable translation if already enabled prior to OS handover.
3925 */
3926 for_each_active_iommu(iommu, drhd)
3927 if (iommu->gcmd & DMA_GCMD_TE)
3928 iommu_disable_translation(iommu);
3929
3930 if (dmar_dev_scope_init() < 0) {
3931 if (force_on)
3932 panic("tboot: Failed to initialize DMAR device scope\n");
3933 goto out_free_dmar;
3934 }
3935
3936 if (no_iommu || dmar_disabled)
3937 goto out_free_dmar;
3938
3939 if (list_empty(&dmar_rmrr_units))
3940 printk(KERN_INFO "DMAR: No RMRR found\n");
3941
3942 if (list_empty(&dmar_atsr_units))
3943 printk(KERN_INFO "DMAR: No ATSR found\n");
3944
3945 if (dmar_init_reserved_ranges()) {
3946 if (force_on)
3947 panic("tboot: Failed to reserve iommu ranges\n");
3948 goto out_free_reserved_range;
3949 }
3950
3951 init_no_remapping_devices();
3952
3953 ret = init_dmars();
3954 if (ret) {
3955 if (force_on)
3956 panic("tboot: Failed to initialize DMARs\n");
3957 printk(KERN_ERR "IOMMU: dmar init failed\n");
3958 goto out_free_reserved_range;
3959 }
3960 up_write(&dmar_global_lock);
3961 printk(KERN_INFO
3962 "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
3963
3964 init_timer(&unmap_timer);
3965 #ifdef CONFIG_SWIOTLB
3966 swiotlb = 0;
3967 #endif
3968 dma_ops = &intel_dma_ops;
3969
3970 init_iommu_pm_ops();
3971
3972 bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
3973 bus_register_notifier(&pci_bus_type, &device_nb);
3974 if (si_domain && !hw_pass_through)
3975 register_memory_notifier(&intel_iommu_memory_nb);
3976
3977 intel_iommu_enabled = 1;
3978
3979 return 0;
3980
3981 out_free_reserved_range:
3982 put_iova_domain(&reserved_iova_list);
3983 out_free_dmar:
3984 intel_iommu_free_dmars();
3985 up_write(&dmar_global_lock);
3986 iommu_exit_mempool();
3987 return ret;
3988 }
3989
3990 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
3991 struct device *dev)
3992 {
3993 struct pci_dev *tmp, *parent, *pdev;
3994
3995 if (!iommu || !dev || !dev_is_pci(dev))
3996 return;
3997
3998 pdev = to_pci_dev(dev);
3999
4000 /* dependent device detach */
4001 tmp = pci_find_upstream_pcie_bridge(pdev);
4002 /* Secondary interface's bus number and devfn 0 */
4003 if (tmp) {
4004 parent = pdev->bus->self;
4005 while (parent != tmp) {
4006 iommu_detach_dev(iommu, parent->bus->number,
4007 parent->devfn);
4008 parent = parent->bus->self;
4009 }
4010 if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */
4011 iommu_detach_dev(iommu,
4012 tmp->subordinate->number, 0);
4013 else /* this is a legacy PCI bridge */
4014 iommu_detach_dev(iommu, tmp->bus->number,
4015 tmp->devfn);
4016 }
4017 }
4018
4019 static void domain_remove_one_dev_info(struct dmar_domain *domain,
4020 struct pci_dev *pdev)
4021 {
4022 struct device_domain_info *info, *tmp;
4023 struct intel_iommu *iommu;
4024 unsigned long flags;
4025 int found = 0;
4026
4027 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
4028 pdev->devfn);
4029 if (!iommu)
4030 return;
4031
4032 spin_lock_irqsave(&device_domain_lock, flags);
4033 list_for_each_entry_safe(info, tmp, &domain->devices, link) {
4034 if (info->segment == pci_domain_nr(pdev->bus) &&
4035 info->bus == pdev->bus->number &&
4036 info->devfn == pdev->devfn) {
4037 unlink_domain_info(info);
4038 spin_unlock_irqrestore(&device_domain_lock, flags);
4039
4040 iommu_disable_dev_iotlb(info);
4041 iommu_detach_dev(iommu, info->bus, info->devfn);
4042 iommu_detach_dependent_devices(iommu, &pdev->dev);
4043 free_devinfo_mem(info);
4044
4045 spin_lock_irqsave(&device_domain_lock, flags);
4046
4047 if (found)
4048 break;
4049 else
4050 continue;
4051 }
4052
4053 /* if there is no other devices under the same iommu
4054 * owned by this domain, clear this iommu in iommu_bmp
4055 * update iommu count and coherency
4056 */
4057 if (info->iommu == iommu)
4058 found = 1;
4059 }
4060
4061 spin_unlock_irqrestore(&device_domain_lock, flags);
4062
4063 if (found == 0) {
4064 unsigned long tmp_flags;
4065 spin_lock_irqsave(&domain->iommu_lock, tmp_flags);
4066 clear_bit(iommu->seq_id, domain->iommu_bmp);
4067 domain->iommu_count--;
4068 domain_update_iommu_cap(domain);
4069 spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags);
4070
4071 if (!(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) &&
4072 !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)) {
4073 spin_lock_irqsave(&iommu->lock, tmp_flags);
4074 clear_bit(domain->id, iommu->domain_ids);
4075 iommu->domains[domain->id] = NULL;
4076 spin_unlock_irqrestore(&iommu->lock, tmp_flags);
4077 }
4078 }
4079 }
4080
4081 static int md_domain_init(struct dmar_domain *domain, int guest_width)
4082 {
4083 int adjust_width;
4084
4085 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
4086 domain_reserve_special_ranges(domain);
4087
4088 /* calculate AGAW */
4089 domain->gaw = guest_width;
4090 adjust_width = guestwidth_to_adjustwidth(guest_width);
4091 domain->agaw = width_to_agaw(adjust_width);
4092
4093 domain->iommu_coherency = 0;
4094 domain->iommu_snooping = 0;
4095 domain->iommu_superpage = 0;
4096 domain->max_addr = 0;
4097 domain->nid = -1;
4098
4099 /* always allocate the top pgd */
4100 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
4101 if (!domain->pgd)
4102 return -ENOMEM;
4103 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
4104 return 0;
4105 }
4106
4107 static int intel_iommu_domain_init(struct iommu_domain *domain)
4108 {
4109 struct dmar_domain *dmar_domain;
4110
4111 dmar_domain = alloc_domain(true);
4112 if (!dmar_domain) {
4113 printk(KERN_ERR
4114 "intel_iommu_domain_init: dmar_domain == NULL\n");
4115 return -ENOMEM;
4116 }
4117 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
4118 printk(KERN_ERR
4119 "intel_iommu_domain_init() failed\n");
4120 domain_exit(dmar_domain);
4121 return -ENOMEM;
4122 }
4123 domain_update_iommu_cap(dmar_domain);
4124 domain->priv = dmar_domain;
4125
4126 domain->geometry.aperture_start = 0;
4127 domain->geometry.aperture_end = __DOMAIN_MAX_ADDR(dmar_domain->gaw);
4128 domain->geometry.force_aperture = true;
4129
4130 return 0;
4131 }
4132
4133 static void intel_iommu_domain_destroy(struct iommu_domain *domain)
4134 {
4135 struct dmar_domain *dmar_domain = domain->priv;
4136
4137 domain->priv = NULL;
4138 domain_exit(dmar_domain);
4139 }
4140
4141 static int intel_iommu_attach_device(struct iommu_domain *domain,
4142 struct device *dev)
4143 {
4144 struct dmar_domain *dmar_domain = domain->priv;
4145 struct pci_dev *pdev = to_pci_dev(dev);
4146 struct intel_iommu *iommu;
4147 int addr_width;
4148
4149 /* normally pdev is not mapped */
4150 if (unlikely(domain_context_mapped(pdev))) {
4151 struct dmar_domain *old_domain;
4152
4153 old_domain = find_domain(dev);
4154 if (old_domain) {
4155 if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
4156 dmar_domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)
4157 domain_remove_one_dev_info(old_domain, pdev);
4158 else
4159 domain_remove_dev_info(old_domain);
4160 }
4161 }
4162
4163 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
4164 pdev->devfn);
4165 if (!iommu)
4166 return -ENODEV;
4167
4168 /* check if this iommu agaw is sufficient for max mapped address */
4169 addr_width = agaw_to_width(iommu->agaw);
4170 if (addr_width > cap_mgaw(iommu->cap))
4171 addr_width = cap_mgaw(iommu->cap);
4172
4173 if (dmar_domain->max_addr > (1LL << addr_width)) {
4174 printk(KERN_ERR "%s: iommu width (%d) is not "
4175 "sufficient for the mapped address (%llx)\n",
4176 __func__, addr_width, dmar_domain->max_addr);
4177 return -EFAULT;
4178 }
4179 dmar_domain->gaw = addr_width;
4180
4181 /*
4182 * Knock out extra levels of page tables if necessary
4183 */
4184 while (iommu->agaw < dmar_domain->agaw) {
4185 struct dma_pte *pte;
4186
4187 pte = dmar_domain->pgd;
4188 if (dma_pte_present(pte)) {
4189 dmar_domain->pgd = (struct dma_pte *)
4190 phys_to_virt(dma_pte_addr(pte));
4191 free_pgtable_page(pte);
4192 }
4193 dmar_domain->agaw--;
4194 }
4195
4196 return domain_add_dev_info(dmar_domain, pdev, CONTEXT_TT_MULTI_LEVEL);
4197 }
4198
4199 static void intel_iommu_detach_device(struct iommu_domain *domain,
4200 struct device *dev)
4201 {
4202 struct dmar_domain *dmar_domain = domain->priv;
4203 struct pci_dev *pdev = to_pci_dev(dev);
4204
4205 domain_remove_one_dev_info(dmar_domain, pdev);
4206 }
4207
4208 static int intel_iommu_map(struct iommu_domain *domain,
4209 unsigned long iova, phys_addr_t hpa,
4210 size_t size, int iommu_prot)
4211 {
4212 struct dmar_domain *dmar_domain = domain->priv;
4213 u64 max_addr;
4214 int prot = 0;
4215 int ret;
4216
4217 if (iommu_prot & IOMMU_READ)
4218 prot |= DMA_PTE_READ;
4219 if (iommu_prot & IOMMU_WRITE)
4220 prot |= DMA_PTE_WRITE;
4221 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
4222 prot |= DMA_PTE_SNP;
4223
4224 max_addr = iova + size;
4225 if (dmar_domain->max_addr < max_addr) {
4226 u64 end;
4227
4228 /* check if minimum agaw is sufficient for mapped address */
4229 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
4230 if (end < max_addr) {
4231 printk(KERN_ERR "%s: iommu width (%d) is not "
4232 "sufficient for the mapped address (%llx)\n",
4233 __func__, dmar_domain->gaw, max_addr);
4234 return -EFAULT;
4235 }
4236 dmar_domain->max_addr = max_addr;
4237 }
4238 /* Round up size to next multiple of PAGE_SIZE, if it and
4239 the low bits of hpa would take us onto the next page */
4240 size = aligned_nrpages(hpa, size);
4241 ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
4242 hpa >> VTD_PAGE_SHIFT, size, prot);
4243 return ret;
4244 }
4245
4246 static size_t intel_iommu_unmap(struct iommu_domain *domain,
4247 unsigned long iova, size_t size)
4248 {
4249 struct dmar_domain *dmar_domain = domain->priv;
4250 struct page *freelist = NULL;
4251 struct intel_iommu *iommu;
4252 unsigned long start_pfn, last_pfn;
4253 unsigned int npages;
4254 int iommu_id, num, ndomains, level = 0;
4255
4256 /* Cope with horrid API which requires us to unmap more than the
4257 size argument if it happens to be a large-page mapping. */
4258 if (!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level))
4259 BUG();
4260
4261 if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
4262 size = VTD_PAGE_SIZE << level_to_offset_bits(level);
4263
4264 start_pfn = iova >> VTD_PAGE_SHIFT;
4265 last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;
4266
4267 freelist = domain_unmap(dmar_domain, start_pfn, last_pfn);
4268
4269 npages = last_pfn - start_pfn + 1;
4270
4271 for_each_set_bit(iommu_id, dmar_domain->iommu_bmp, g_num_of_iommus) {
4272 iommu = g_iommus[iommu_id];
4273
4274 /*
4275 * find bit position of dmar_domain
4276 */
4277 ndomains = cap_ndoms(iommu->cap);
4278 for_each_set_bit(num, iommu->domain_ids, ndomains) {
4279 if (iommu->domains[num] == dmar_domain)
4280 iommu_flush_iotlb_psi(iommu, num, start_pfn,
4281 npages, !freelist, 0);
4282 }
4283
4284 }
4285
4286 dma_free_pagelist(freelist);
4287
4288 if (dmar_domain->max_addr == iova + size)
4289 dmar_domain->max_addr = iova;
4290
4291 return size;
4292 }
4293
4294 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
4295 dma_addr_t iova)
4296 {
4297 struct dmar_domain *dmar_domain = domain->priv;
4298 struct dma_pte *pte;
4299 int level = 0;
4300 u64 phys = 0;
4301
4302 pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level);
4303 if (pte)
4304 phys = dma_pte_addr(pte);
4305
4306 return phys;
4307 }
4308
4309 static int intel_iommu_domain_has_cap(struct iommu_domain *domain,
4310 unsigned long cap)
4311 {
4312 struct dmar_domain *dmar_domain = domain->priv;
4313
4314 if (cap == IOMMU_CAP_CACHE_COHERENCY)
4315 return dmar_domain->iommu_snooping;
4316 if (cap == IOMMU_CAP_INTR_REMAP)
4317 return irq_remapping_enabled;
4318
4319 return 0;
4320 }
4321
4322 #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
4323
4324 static int intel_iommu_add_device(struct device *dev)
4325 {
4326 struct pci_dev *pdev = to_pci_dev(dev);
4327 struct pci_dev *bridge, *dma_pdev = NULL;
4328 struct iommu_group *group;
4329 int ret;
4330
4331 if (!device_to_iommu(pci_domain_nr(pdev->bus),
4332 pdev->bus->number, pdev->devfn))
4333 return -ENODEV;
4334
4335 bridge = pci_find_upstream_pcie_bridge(pdev);
4336 if (bridge) {
4337 if (pci_is_pcie(bridge))
4338 dma_pdev = pci_get_domain_bus_and_slot(
4339 pci_domain_nr(pdev->bus),
4340 bridge->subordinate->number, 0);
4341 if (!dma_pdev)
4342 dma_pdev = pci_dev_get(bridge);
4343 } else
4344 dma_pdev = pci_dev_get(pdev);
4345
4346 /* Account for quirked devices */
4347 swap_pci_ref(&dma_pdev, pci_get_dma_source(dma_pdev));
4348
4349 /*
4350 * If it's a multifunction device that does not support our
4351 * required ACS flags, add to the same group as lowest numbered
4352 * function that also does not suport the required ACS flags.
4353 */
4354 if (dma_pdev->multifunction &&
4355 !pci_acs_enabled(dma_pdev, REQ_ACS_FLAGS)) {
4356 u8 i, slot = PCI_SLOT(dma_pdev->devfn);
4357
4358 for (i = 0; i < 8; i++) {
4359 struct pci_dev *tmp;
4360
4361 tmp = pci_get_slot(dma_pdev->bus, PCI_DEVFN(slot, i));
4362 if (!tmp)
4363 continue;
4364
4365 if (!pci_acs_enabled(tmp, REQ_ACS_FLAGS)) {
4366 swap_pci_ref(&dma_pdev, tmp);
4367 break;
4368 }
4369 pci_dev_put(tmp);
4370 }
4371 }
4372
4373 /*
4374 * Devices on the root bus go through the iommu. If that's not us,
4375 * find the next upstream device and test ACS up to the root bus.
4376 * Finding the next device may require skipping virtual buses.
4377 */
4378 while (!pci_is_root_bus(dma_pdev->bus)) {
4379 struct pci_bus *bus = dma_pdev->bus;
4380
4381 while (!bus->self) {
4382 if (!pci_is_root_bus(bus))
4383 bus = bus->parent;
4384 else
4385 goto root_bus;
4386 }
4387
4388 if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
4389 break;
4390
4391 swap_pci_ref(&dma_pdev, pci_dev_get(bus->self));
4392 }
4393
4394 root_bus:
4395 group = iommu_group_get(&dma_pdev->dev);
4396 pci_dev_put(dma_pdev);
4397 if (!group) {
4398 group = iommu_group_alloc();
4399 if (IS_ERR(group))
4400 return PTR_ERR(group);
4401 }
4402
4403 ret = iommu_group_add_device(group, dev);
4404
4405 iommu_group_put(group);
4406 return ret;
4407 }
4408
4409 static void intel_iommu_remove_device(struct device *dev)
4410 {
4411 iommu_group_remove_device(dev);
4412 }
4413
4414 static struct iommu_ops intel_iommu_ops = {
4415 .domain_init = intel_iommu_domain_init,
4416 .domain_destroy = intel_iommu_domain_destroy,
4417 .attach_dev = intel_iommu_attach_device,
4418 .detach_dev = intel_iommu_detach_device,
4419 .map = intel_iommu_map,
4420 .unmap = intel_iommu_unmap,
4421 .iova_to_phys = intel_iommu_iova_to_phys,
4422 .domain_has_cap = intel_iommu_domain_has_cap,
4423 .add_device = intel_iommu_add_device,
4424 .remove_device = intel_iommu_remove_device,
4425 .pgsize_bitmap = INTEL_IOMMU_PGSIZES,
4426 };
4427
4428 static void quirk_iommu_g4x_gfx(struct pci_dev *dev)
4429 {
4430 /* G4x/GM45 integrated gfx dmar support is totally busted. */
4431 printk(KERN_INFO "DMAR: Disabling IOMMU for graphics on this chipset\n");
4432 dmar_map_gfx = 0;
4433 }
4434
4435 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_g4x_gfx);
4436 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_g4x_gfx);
4437 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_g4x_gfx);
4438 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_g4x_gfx);
4439 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_g4x_gfx);
4440 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_g4x_gfx);
4441 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_g4x_gfx);
4442
4443 static void quirk_iommu_rwbf(struct pci_dev *dev)
4444 {
4445 /*
4446 * Mobile 4 Series Chipset neglects to set RWBF capability,
4447 * but needs it. Same seems to hold for the desktop versions.
4448 */
4449 printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n");
4450 rwbf_quirk = 1;
4451 }
4452
4453 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
4454 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
4455 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
4456 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
4457 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
4458 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
4459 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
4460
4461 #define GGC 0x52
4462 #define GGC_MEMORY_SIZE_MASK (0xf << 8)
4463 #define GGC_MEMORY_SIZE_NONE (0x0 << 8)
4464 #define GGC_MEMORY_SIZE_1M (0x1 << 8)
4465 #define GGC_MEMORY_SIZE_2M (0x3 << 8)
4466 #define GGC_MEMORY_VT_ENABLED (0x8 << 8)
4467 #define GGC_MEMORY_SIZE_2M_VT (0x9 << 8)
4468 #define GGC_MEMORY_SIZE_3M_VT (0xa << 8)
4469 #define GGC_MEMORY_SIZE_4M_VT (0xb << 8)
4470
4471 static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
4472 {
4473 unsigned short ggc;
4474
4475 if (pci_read_config_word(dev, GGC, &ggc))
4476 return;
4477
4478 if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
4479 printk(KERN_INFO "DMAR: BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
4480 dmar_map_gfx = 0;
4481 } else if (dmar_map_gfx) {
4482 /* we have to ensure the gfx device is idle before we flush */
4483 printk(KERN_INFO "DMAR: Disabling batched IOTLB flush on Ironlake\n");
4484 intel_iommu_strict = 1;
4485 }
4486 }
4487 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
4488 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
4489 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
4490 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
4491
4492 /* On Tylersburg chipsets, some BIOSes have been known to enable the
4493 ISOCH DMAR unit for the Azalia sound device, but not give it any
4494 TLB entries, which causes it to deadlock. Check for that. We do
4495 this in a function called from init_dmars(), instead of in a PCI
4496 quirk, because we don't want to print the obnoxious "BIOS broken"
4497 message if VT-d is actually disabled.
4498 */
4499 static void __init check_tylersburg_isoch(void)
4500 {
4501 struct pci_dev *pdev;
4502 uint32_t vtisochctrl;
4503
4504 /* If there's no Azalia in the system anyway, forget it. */
4505 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
4506 if (!pdev)
4507 return;
4508 pci_dev_put(pdev);
4509
4510 /* System Management Registers. Might be hidden, in which case
4511 we can't do the sanity check. But that's OK, because the
4512 known-broken BIOSes _don't_ actually hide it, so far. */
4513 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
4514 if (!pdev)
4515 return;
4516
4517 if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
4518 pci_dev_put(pdev);
4519 return;
4520 }
4521
4522 pci_dev_put(pdev);
4523
4524 /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
4525 if (vtisochctrl & 1)
4526 return;
4527
4528 /* Drop all bits other than the number of TLB entries */
4529 vtisochctrl &= 0x1c;
4530
4531 /* If we have the recommended number of TLB entries (16), fine. */
4532 if (vtisochctrl == 0x10)
4533 return;
4534
4535 /* Zero TLB entries? You get to ride the short bus to school. */
4536 if (!vtisochctrl) {
4537 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
4538 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
4539 dmi_get_system_info(DMI_BIOS_VENDOR),
4540 dmi_get_system_info(DMI_BIOS_VERSION),
4541 dmi_get_system_info(DMI_PRODUCT_VERSION));
4542 iommu_identity_mapping |= IDENTMAP_AZALIA;
4543 return;
4544 }
4545
4546 printk(KERN_WARNING "DMAR: Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
4547 vtisochctrl);
4548 }
This page took 0.146108 seconds and 5 git commands to generate.