Merge branch 'i2c-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jdelvar...
[deliverable/linux.git] / drivers / iommu / intel-iommu.c
1 /*
2 * Copyright (c) 2006, Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
16 *
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21 * Author: Fenghua Yu <fenghua.yu@intel.com>
22 */
23
24 #include <linux/init.h>
25 #include <linux/bitmap.h>
26 #include <linux/debugfs.h>
27 #include <linux/slab.h>
28 #include <linux/irq.h>
29 #include <linux/interrupt.h>
30 #include <linux/spinlock.h>
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/mempool.h>
35 #include <linux/timer.h>
36 #include <linux/iova.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/syscore_ops.h>
40 #include <linux/tboot.h>
41 #include <linux/dmi.h>
42 #include <linux/pci-ats.h>
43 #include <asm/cacheflush.h>
44 #include <asm/iommu.h>
45
46 #define ROOT_SIZE VTD_PAGE_SIZE
47 #define CONTEXT_SIZE VTD_PAGE_SIZE
48
49 #define IS_BRIDGE_HOST_DEVICE(pdev) \
50 ((pdev->class >> 8) == PCI_CLASS_BRIDGE_HOST)
51 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
52 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
53 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
54
55 #define IOAPIC_RANGE_START (0xfee00000)
56 #define IOAPIC_RANGE_END (0xfeefffff)
57 #define IOVA_START_ADDR (0x1000)
58
59 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
60
61 #define MAX_AGAW_WIDTH 64
62
63 #define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
64 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
65
66 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
67 to match. That way, we can use 'unsigned long' for PFNs with impunity. */
68 #define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \
69 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
70 #define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
71
72 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
73 #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
74 #define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
75
76 /* page table handling */
77 #define LEVEL_STRIDE (9)
78 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
79
80 static inline int agaw_to_level(int agaw)
81 {
82 return agaw + 2;
83 }
84
85 static inline int agaw_to_width(int agaw)
86 {
87 return 30 + agaw * LEVEL_STRIDE;
88 }
89
90 static inline int width_to_agaw(int width)
91 {
92 return (width - 30) / LEVEL_STRIDE;
93 }
94
95 static inline unsigned int level_to_offset_bits(int level)
96 {
97 return (level - 1) * LEVEL_STRIDE;
98 }
99
100 static inline int pfn_level_offset(unsigned long pfn, int level)
101 {
102 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
103 }
104
105 static inline unsigned long level_mask(int level)
106 {
107 return -1UL << level_to_offset_bits(level);
108 }
109
110 static inline unsigned long level_size(int level)
111 {
112 return 1UL << level_to_offset_bits(level);
113 }
114
115 static inline unsigned long align_to_level(unsigned long pfn, int level)
116 {
117 return (pfn + level_size(level) - 1) & level_mask(level);
118 }
119
120 static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
121 {
122 return 1 << ((lvl - 1) * LEVEL_STRIDE);
123 }
124
125 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
126 are never going to work. */
127 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
128 {
129 return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
130 }
131
132 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
133 {
134 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
135 }
136 static inline unsigned long page_to_dma_pfn(struct page *pg)
137 {
138 return mm_to_dma_pfn(page_to_pfn(pg));
139 }
140 static inline unsigned long virt_to_dma_pfn(void *p)
141 {
142 return page_to_dma_pfn(virt_to_page(p));
143 }
144
145 /* global iommu list, set NULL for ignored DMAR units */
146 static struct intel_iommu **g_iommus;
147
148 static void __init check_tylersburg_isoch(void);
149 static int rwbf_quirk;
150
151 /*
152 * set to 1 to panic kernel if can't successfully enable VT-d
153 * (used when kernel is launched w/ TXT)
154 */
155 static int force_on = 0;
156
157 /*
158 * 0: Present
159 * 1-11: Reserved
160 * 12-63: Context Ptr (12 - (haw-1))
161 * 64-127: Reserved
162 */
163 struct root_entry {
164 u64 val;
165 u64 rsvd1;
166 };
167 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
168 static inline bool root_present(struct root_entry *root)
169 {
170 return (root->val & 1);
171 }
172 static inline void set_root_present(struct root_entry *root)
173 {
174 root->val |= 1;
175 }
176 static inline void set_root_value(struct root_entry *root, unsigned long value)
177 {
178 root->val |= value & VTD_PAGE_MASK;
179 }
180
181 static inline struct context_entry *
182 get_context_addr_from_root(struct root_entry *root)
183 {
184 return (struct context_entry *)
185 (root_present(root)?phys_to_virt(
186 root->val & VTD_PAGE_MASK) :
187 NULL);
188 }
189
190 /*
191 * low 64 bits:
192 * 0: present
193 * 1: fault processing disable
194 * 2-3: translation type
195 * 12-63: address space root
196 * high 64 bits:
197 * 0-2: address width
198 * 3-6: aval
199 * 8-23: domain id
200 */
201 struct context_entry {
202 u64 lo;
203 u64 hi;
204 };
205
206 static inline bool context_present(struct context_entry *context)
207 {
208 return (context->lo & 1);
209 }
210 static inline void context_set_present(struct context_entry *context)
211 {
212 context->lo |= 1;
213 }
214
215 static inline void context_set_fault_enable(struct context_entry *context)
216 {
217 context->lo &= (((u64)-1) << 2) | 1;
218 }
219
220 static inline void context_set_translation_type(struct context_entry *context,
221 unsigned long value)
222 {
223 context->lo &= (((u64)-1) << 4) | 3;
224 context->lo |= (value & 3) << 2;
225 }
226
227 static inline void context_set_address_root(struct context_entry *context,
228 unsigned long value)
229 {
230 context->lo |= value & VTD_PAGE_MASK;
231 }
232
233 static inline void context_set_address_width(struct context_entry *context,
234 unsigned long value)
235 {
236 context->hi |= value & 7;
237 }
238
239 static inline void context_set_domain_id(struct context_entry *context,
240 unsigned long value)
241 {
242 context->hi |= (value & ((1 << 16) - 1)) << 8;
243 }
244
245 static inline void context_clear_entry(struct context_entry *context)
246 {
247 context->lo = 0;
248 context->hi = 0;
249 }
250
251 /*
252 * 0: readable
253 * 1: writable
254 * 2-6: reserved
255 * 7: super page
256 * 8-10: available
257 * 11: snoop behavior
258 * 12-63: Host physcial address
259 */
260 struct dma_pte {
261 u64 val;
262 };
263
264 static inline void dma_clear_pte(struct dma_pte *pte)
265 {
266 pte->val = 0;
267 }
268
269 static inline void dma_set_pte_readable(struct dma_pte *pte)
270 {
271 pte->val |= DMA_PTE_READ;
272 }
273
274 static inline void dma_set_pte_writable(struct dma_pte *pte)
275 {
276 pte->val |= DMA_PTE_WRITE;
277 }
278
279 static inline void dma_set_pte_snp(struct dma_pte *pte)
280 {
281 pte->val |= DMA_PTE_SNP;
282 }
283
284 static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot)
285 {
286 pte->val = (pte->val & ~3) | (prot & 3);
287 }
288
289 static inline u64 dma_pte_addr(struct dma_pte *pte)
290 {
291 #ifdef CONFIG_64BIT
292 return pte->val & VTD_PAGE_MASK;
293 #else
294 /* Must have a full atomic 64-bit read */
295 return __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
296 #endif
297 }
298
299 static inline void dma_set_pte_pfn(struct dma_pte *pte, unsigned long pfn)
300 {
301 pte->val |= (uint64_t)pfn << VTD_PAGE_SHIFT;
302 }
303
304 static inline bool dma_pte_present(struct dma_pte *pte)
305 {
306 return (pte->val & 3) != 0;
307 }
308
309 static inline bool dma_pte_superpage(struct dma_pte *pte)
310 {
311 return (pte->val & (1 << 7));
312 }
313
314 static inline int first_pte_in_page(struct dma_pte *pte)
315 {
316 return !((unsigned long)pte & ~VTD_PAGE_MASK);
317 }
318
319 /*
320 * This domain is a statically identity mapping domain.
321 * 1. This domain creats a static 1:1 mapping to all usable memory.
322 * 2. It maps to each iommu if successful.
323 * 3. Each iommu mapps to this domain if successful.
324 */
325 static struct dmar_domain *si_domain;
326 static int hw_pass_through = 1;
327
328 /* devices under the same p2p bridge are owned in one domain */
329 #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
330
331 /* domain represents a virtual machine, more than one devices
332 * across iommus may be owned in one domain, e.g. kvm guest.
333 */
334 #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 1)
335
336 /* si_domain contains mulitple devices */
337 #define DOMAIN_FLAG_STATIC_IDENTITY (1 << 2)
338
339 struct dmar_domain {
340 int id; /* domain id */
341 int nid; /* node id */
342 unsigned long iommu_bmp; /* bitmap of iommus this domain uses*/
343
344 struct list_head devices; /* all devices' list */
345 struct iova_domain iovad; /* iova's that belong to this domain */
346
347 struct dma_pte *pgd; /* virtual address */
348 int gaw; /* max guest address width */
349
350 /* adjusted guest address width, 0 is level 2 30-bit */
351 int agaw;
352
353 int flags; /* flags to find out type of domain */
354
355 int iommu_coherency;/* indicate coherency of iommu access */
356 int iommu_snooping; /* indicate snooping control feature*/
357 int iommu_count; /* reference count of iommu */
358 int iommu_superpage;/* Level of superpages supported:
359 0 == 4KiB (no superpages), 1 == 2MiB,
360 2 == 1GiB, 3 == 512GiB, 4 == 1TiB */
361 spinlock_t iommu_lock; /* protect iommu set in domain */
362 u64 max_addr; /* maximum mapped address */
363 };
364
365 /* PCI domain-device relationship */
366 struct device_domain_info {
367 struct list_head link; /* link to domain siblings */
368 struct list_head global; /* link to global list */
369 int segment; /* PCI domain */
370 u8 bus; /* PCI bus number */
371 u8 devfn; /* PCI devfn number */
372 struct pci_dev *dev; /* it's NULL for PCIe-to-PCI bridge */
373 struct intel_iommu *iommu; /* IOMMU used by this device */
374 struct dmar_domain *domain; /* pointer to domain */
375 };
376
377 static void flush_unmaps_timeout(unsigned long data);
378
379 DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0);
380
381 #define HIGH_WATER_MARK 250
382 struct deferred_flush_tables {
383 int next;
384 struct iova *iova[HIGH_WATER_MARK];
385 struct dmar_domain *domain[HIGH_WATER_MARK];
386 };
387
388 static struct deferred_flush_tables *deferred_flush;
389
390 /* bitmap for indexing intel_iommus */
391 static int g_num_of_iommus;
392
393 static DEFINE_SPINLOCK(async_umap_flush_lock);
394 static LIST_HEAD(unmaps_to_do);
395
396 static int timer_on;
397 static long list_size;
398
399 static void domain_remove_dev_info(struct dmar_domain *domain);
400
401 #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
402 int dmar_disabled = 0;
403 #else
404 int dmar_disabled = 1;
405 #endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
406
407 static int dmar_map_gfx = 1;
408 static int dmar_forcedac;
409 static int intel_iommu_strict;
410 static int intel_iommu_superpage = 1;
411
412 int intel_iommu_gfx_mapped;
413 EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
414
415 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
416 static DEFINE_SPINLOCK(device_domain_lock);
417 static LIST_HEAD(device_domain_list);
418
419 static struct iommu_ops intel_iommu_ops;
420
421 static int __init intel_iommu_setup(char *str)
422 {
423 if (!str)
424 return -EINVAL;
425 while (*str) {
426 if (!strncmp(str, "on", 2)) {
427 dmar_disabled = 0;
428 printk(KERN_INFO "Intel-IOMMU: enabled\n");
429 } else if (!strncmp(str, "off", 3)) {
430 dmar_disabled = 1;
431 printk(KERN_INFO "Intel-IOMMU: disabled\n");
432 } else if (!strncmp(str, "igfx_off", 8)) {
433 dmar_map_gfx = 0;
434 printk(KERN_INFO
435 "Intel-IOMMU: disable GFX device mapping\n");
436 } else if (!strncmp(str, "forcedac", 8)) {
437 printk(KERN_INFO
438 "Intel-IOMMU: Forcing DAC for PCI devices\n");
439 dmar_forcedac = 1;
440 } else if (!strncmp(str, "strict", 6)) {
441 printk(KERN_INFO
442 "Intel-IOMMU: disable batched IOTLB flush\n");
443 intel_iommu_strict = 1;
444 } else if (!strncmp(str, "sp_off", 6)) {
445 printk(KERN_INFO
446 "Intel-IOMMU: disable supported super page\n");
447 intel_iommu_superpage = 0;
448 }
449
450 str += strcspn(str, ",");
451 while (*str == ',')
452 str++;
453 }
454 return 0;
455 }
456 __setup("intel_iommu=", intel_iommu_setup);
457
458 static struct kmem_cache *iommu_domain_cache;
459 static struct kmem_cache *iommu_devinfo_cache;
460 static struct kmem_cache *iommu_iova_cache;
461
462 static inline void *alloc_pgtable_page(int node)
463 {
464 struct page *page;
465 void *vaddr = NULL;
466
467 page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
468 if (page)
469 vaddr = page_address(page);
470 return vaddr;
471 }
472
473 static inline void free_pgtable_page(void *vaddr)
474 {
475 free_page((unsigned long)vaddr);
476 }
477
478 static inline void *alloc_domain_mem(void)
479 {
480 return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
481 }
482
483 static void free_domain_mem(void *vaddr)
484 {
485 kmem_cache_free(iommu_domain_cache, vaddr);
486 }
487
488 static inline void * alloc_devinfo_mem(void)
489 {
490 return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
491 }
492
493 static inline void free_devinfo_mem(void *vaddr)
494 {
495 kmem_cache_free(iommu_devinfo_cache, vaddr);
496 }
497
498 struct iova *alloc_iova_mem(void)
499 {
500 return kmem_cache_alloc(iommu_iova_cache, GFP_ATOMIC);
501 }
502
503 void free_iova_mem(struct iova *iova)
504 {
505 kmem_cache_free(iommu_iova_cache, iova);
506 }
507
508
509 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
510 {
511 unsigned long sagaw;
512 int agaw = -1;
513
514 sagaw = cap_sagaw(iommu->cap);
515 for (agaw = width_to_agaw(max_gaw);
516 agaw >= 0; agaw--) {
517 if (test_bit(agaw, &sagaw))
518 break;
519 }
520
521 return agaw;
522 }
523
524 /*
525 * Calculate max SAGAW for each iommu.
526 */
527 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
528 {
529 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
530 }
531
532 /*
533 * calculate agaw for each iommu.
534 * "SAGAW" may be different across iommus, use a default agaw, and
535 * get a supported less agaw for iommus that don't support the default agaw.
536 */
537 int iommu_calculate_agaw(struct intel_iommu *iommu)
538 {
539 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
540 }
541
542 /* This functionin only returns single iommu in a domain */
543 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
544 {
545 int iommu_id;
546
547 /* si_domain and vm domain should not get here. */
548 BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
549 BUG_ON(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY);
550
551 iommu_id = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
552 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
553 return NULL;
554
555 return g_iommus[iommu_id];
556 }
557
558 static void domain_update_iommu_coherency(struct dmar_domain *domain)
559 {
560 int i;
561
562 domain->iommu_coherency = 1;
563
564 for_each_set_bit(i, &domain->iommu_bmp, g_num_of_iommus) {
565 if (!ecap_coherent(g_iommus[i]->ecap)) {
566 domain->iommu_coherency = 0;
567 break;
568 }
569 }
570 }
571
572 static void domain_update_iommu_snooping(struct dmar_domain *domain)
573 {
574 int i;
575
576 domain->iommu_snooping = 1;
577
578 for_each_set_bit(i, &domain->iommu_bmp, g_num_of_iommus) {
579 if (!ecap_sc_support(g_iommus[i]->ecap)) {
580 domain->iommu_snooping = 0;
581 break;
582 }
583 }
584 }
585
586 static void domain_update_iommu_superpage(struct dmar_domain *domain)
587 {
588 struct dmar_drhd_unit *drhd;
589 struct intel_iommu *iommu = NULL;
590 int mask = 0xf;
591
592 if (!intel_iommu_superpage) {
593 domain->iommu_superpage = 0;
594 return;
595 }
596
597 /* set iommu_superpage to the smallest common denominator */
598 for_each_active_iommu(iommu, drhd) {
599 mask &= cap_super_page_val(iommu->cap);
600 if (!mask) {
601 break;
602 }
603 }
604 domain->iommu_superpage = fls(mask);
605 }
606
607 /* Some capabilities may be different across iommus */
608 static void domain_update_iommu_cap(struct dmar_domain *domain)
609 {
610 domain_update_iommu_coherency(domain);
611 domain_update_iommu_snooping(domain);
612 domain_update_iommu_superpage(domain);
613 }
614
615 static struct intel_iommu *device_to_iommu(int segment, u8 bus, u8 devfn)
616 {
617 struct dmar_drhd_unit *drhd = NULL;
618 int i;
619
620 for_each_drhd_unit(drhd) {
621 if (drhd->ignored)
622 continue;
623 if (segment != drhd->segment)
624 continue;
625
626 for (i = 0; i < drhd->devices_cnt; i++) {
627 if (drhd->devices[i] &&
628 drhd->devices[i]->bus->number == bus &&
629 drhd->devices[i]->devfn == devfn)
630 return drhd->iommu;
631 if (drhd->devices[i] &&
632 drhd->devices[i]->subordinate &&
633 drhd->devices[i]->subordinate->number <= bus &&
634 drhd->devices[i]->subordinate->subordinate >= bus)
635 return drhd->iommu;
636 }
637
638 if (drhd->include_all)
639 return drhd->iommu;
640 }
641
642 return NULL;
643 }
644
645 static void domain_flush_cache(struct dmar_domain *domain,
646 void *addr, int size)
647 {
648 if (!domain->iommu_coherency)
649 clflush_cache_range(addr, size);
650 }
651
652 /* Gets context entry for a given bus and devfn */
653 static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
654 u8 bus, u8 devfn)
655 {
656 struct root_entry *root;
657 struct context_entry *context;
658 unsigned long phy_addr;
659 unsigned long flags;
660
661 spin_lock_irqsave(&iommu->lock, flags);
662 root = &iommu->root_entry[bus];
663 context = get_context_addr_from_root(root);
664 if (!context) {
665 context = (struct context_entry *)
666 alloc_pgtable_page(iommu->node);
667 if (!context) {
668 spin_unlock_irqrestore(&iommu->lock, flags);
669 return NULL;
670 }
671 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
672 phy_addr = virt_to_phys((void *)context);
673 set_root_value(root, phy_addr);
674 set_root_present(root);
675 __iommu_flush_cache(iommu, root, sizeof(*root));
676 }
677 spin_unlock_irqrestore(&iommu->lock, flags);
678 return &context[devfn];
679 }
680
681 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
682 {
683 struct root_entry *root;
684 struct context_entry *context;
685 int ret;
686 unsigned long flags;
687
688 spin_lock_irqsave(&iommu->lock, flags);
689 root = &iommu->root_entry[bus];
690 context = get_context_addr_from_root(root);
691 if (!context) {
692 ret = 0;
693 goto out;
694 }
695 ret = context_present(&context[devfn]);
696 out:
697 spin_unlock_irqrestore(&iommu->lock, flags);
698 return ret;
699 }
700
701 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
702 {
703 struct root_entry *root;
704 struct context_entry *context;
705 unsigned long flags;
706
707 spin_lock_irqsave(&iommu->lock, flags);
708 root = &iommu->root_entry[bus];
709 context = get_context_addr_from_root(root);
710 if (context) {
711 context_clear_entry(&context[devfn]);
712 __iommu_flush_cache(iommu, &context[devfn], \
713 sizeof(*context));
714 }
715 spin_unlock_irqrestore(&iommu->lock, flags);
716 }
717
718 static void free_context_table(struct intel_iommu *iommu)
719 {
720 struct root_entry *root;
721 int i;
722 unsigned long flags;
723 struct context_entry *context;
724
725 spin_lock_irqsave(&iommu->lock, flags);
726 if (!iommu->root_entry) {
727 goto out;
728 }
729 for (i = 0; i < ROOT_ENTRY_NR; i++) {
730 root = &iommu->root_entry[i];
731 context = get_context_addr_from_root(root);
732 if (context)
733 free_pgtable_page(context);
734 }
735 free_pgtable_page(iommu->root_entry);
736 iommu->root_entry = NULL;
737 out:
738 spin_unlock_irqrestore(&iommu->lock, flags);
739 }
740
741 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
742 unsigned long pfn, int target_level)
743 {
744 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
745 struct dma_pte *parent, *pte = NULL;
746 int level = agaw_to_level(domain->agaw);
747 int offset;
748
749 BUG_ON(!domain->pgd);
750 BUG_ON(addr_width < BITS_PER_LONG && pfn >> addr_width);
751 parent = domain->pgd;
752
753 while (level > 0) {
754 void *tmp_page;
755
756 offset = pfn_level_offset(pfn, level);
757 pte = &parent[offset];
758 if (!target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
759 break;
760 if (level == target_level)
761 break;
762
763 if (!dma_pte_present(pte)) {
764 uint64_t pteval;
765
766 tmp_page = alloc_pgtable_page(domain->nid);
767
768 if (!tmp_page)
769 return NULL;
770
771 domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
772 pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
773 if (cmpxchg64(&pte->val, 0ULL, pteval)) {
774 /* Someone else set it while we were thinking; use theirs. */
775 free_pgtable_page(tmp_page);
776 } else {
777 dma_pte_addr(pte);
778 domain_flush_cache(domain, pte, sizeof(*pte));
779 }
780 }
781 parent = phys_to_virt(dma_pte_addr(pte));
782 level--;
783 }
784
785 return pte;
786 }
787
788
789 /* return address's pte at specific level */
790 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
791 unsigned long pfn,
792 int level, int *large_page)
793 {
794 struct dma_pte *parent, *pte = NULL;
795 int total = agaw_to_level(domain->agaw);
796 int offset;
797
798 parent = domain->pgd;
799 while (level <= total) {
800 offset = pfn_level_offset(pfn, total);
801 pte = &parent[offset];
802 if (level == total)
803 return pte;
804
805 if (!dma_pte_present(pte)) {
806 *large_page = total;
807 break;
808 }
809
810 if (pte->val & DMA_PTE_LARGE_PAGE) {
811 *large_page = total;
812 return pte;
813 }
814
815 parent = phys_to_virt(dma_pte_addr(pte));
816 total--;
817 }
818 return NULL;
819 }
820
821 /* clear last level pte, a tlb flush should be followed */
822 static int dma_pte_clear_range(struct dmar_domain *domain,
823 unsigned long start_pfn,
824 unsigned long last_pfn)
825 {
826 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
827 unsigned int large_page = 1;
828 struct dma_pte *first_pte, *pte;
829 int order;
830
831 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
832 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
833 BUG_ON(start_pfn > last_pfn);
834
835 /* we don't need lock here; nobody else touches the iova range */
836 do {
837 large_page = 1;
838 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
839 if (!pte) {
840 start_pfn = align_to_level(start_pfn + 1, large_page + 1);
841 continue;
842 }
843 do {
844 dma_clear_pte(pte);
845 start_pfn += lvl_to_nr_pages(large_page);
846 pte++;
847 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
848
849 domain_flush_cache(domain, first_pte,
850 (void *)pte - (void *)first_pte);
851
852 } while (start_pfn && start_pfn <= last_pfn);
853
854 order = (large_page - 1) * 9;
855 return order;
856 }
857
858 /* free page table pages. last level pte should already be cleared */
859 static void dma_pte_free_pagetable(struct dmar_domain *domain,
860 unsigned long start_pfn,
861 unsigned long last_pfn)
862 {
863 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
864 struct dma_pte *first_pte, *pte;
865 int total = agaw_to_level(domain->agaw);
866 int level;
867 unsigned long tmp;
868 int large_page = 2;
869
870 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
871 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
872 BUG_ON(start_pfn > last_pfn);
873
874 /* We don't need lock here; nobody else touches the iova range */
875 level = 2;
876 while (level <= total) {
877 tmp = align_to_level(start_pfn, level);
878
879 /* If we can't even clear one PTE at this level, we're done */
880 if (tmp + level_size(level) - 1 > last_pfn)
881 return;
882
883 do {
884 large_page = level;
885 first_pte = pte = dma_pfn_level_pte(domain, tmp, level, &large_page);
886 if (large_page > level)
887 level = large_page + 1;
888 if (!pte) {
889 tmp = align_to_level(tmp + 1, level + 1);
890 continue;
891 }
892 do {
893 if (dma_pte_present(pte)) {
894 free_pgtable_page(phys_to_virt(dma_pte_addr(pte)));
895 dma_clear_pte(pte);
896 }
897 pte++;
898 tmp += level_size(level);
899 } while (!first_pte_in_page(pte) &&
900 tmp + level_size(level) - 1 <= last_pfn);
901
902 domain_flush_cache(domain, first_pte,
903 (void *)pte - (void *)first_pte);
904
905 } while (tmp && tmp + level_size(level) - 1 <= last_pfn);
906 level++;
907 }
908 /* free pgd */
909 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
910 free_pgtable_page(domain->pgd);
911 domain->pgd = NULL;
912 }
913 }
914
915 /* iommu handling */
916 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
917 {
918 struct root_entry *root;
919 unsigned long flags;
920
921 root = (struct root_entry *)alloc_pgtable_page(iommu->node);
922 if (!root)
923 return -ENOMEM;
924
925 __iommu_flush_cache(iommu, root, ROOT_SIZE);
926
927 spin_lock_irqsave(&iommu->lock, flags);
928 iommu->root_entry = root;
929 spin_unlock_irqrestore(&iommu->lock, flags);
930
931 return 0;
932 }
933
934 static void iommu_set_root_entry(struct intel_iommu *iommu)
935 {
936 void *addr;
937 u32 sts;
938 unsigned long flag;
939
940 addr = iommu->root_entry;
941
942 raw_spin_lock_irqsave(&iommu->register_lock, flag);
943 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
944
945 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
946
947 /* Make sure hardware complete it */
948 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
949 readl, (sts & DMA_GSTS_RTPS), sts);
950
951 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
952 }
953
954 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
955 {
956 u32 val;
957 unsigned long flag;
958
959 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
960 return;
961
962 raw_spin_lock_irqsave(&iommu->register_lock, flag);
963 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
964
965 /* Make sure hardware complete it */
966 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
967 readl, (!(val & DMA_GSTS_WBFS)), val);
968
969 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
970 }
971
972 /* return value determine if we need a write buffer flush */
973 static void __iommu_flush_context(struct intel_iommu *iommu,
974 u16 did, u16 source_id, u8 function_mask,
975 u64 type)
976 {
977 u64 val = 0;
978 unsigned long flag;
979
980 switch (type) {
981 case DMA_CCMD_GLOBAL_INVL:
982 val = DMA_CCMD_GLOBAL_INVL;
983 break;
984 case DMA_CCMD_DOMAIN_INVL:
985 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
986 break;
987 case DMA_CCMD_DEVICE_INVL:
988 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
989 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
990 break;
991 default:
992 BUG();
993 }
994 val |= DMA_CCMD_ICC;
995
996 raw_spin_lock_irqsave(&iommu->register_lock, flag);
997 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
998
999 /* Make sure hardware complete it */
1000 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1001 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1002
1003 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1004 }
1005
1006 /* return value determine if we need a write buffer flush */
1007 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1008 u64 addr, unsigned int size_order, u64 type)
1009 {
1010 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1011 u64 val = 0, val_iva = 0;
1012 unsigned long flag;
1013
1014 switch (type) {
1015 case DMA_TLB_GLOBAL_FLUSH:
1016 /* global flush doesn't need set IVA_REG */
1017 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1018 break;
1019 case DMA_TLB_DSI_FLUSH:
1020 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1021 break;
1022 case DMA_TLB_PSI_FLUSH:
1023 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1024 /* Note: always flush non-leaf currently */
1025 val_iva = size_order | addr;
1026 break;
1027 default:
1028 BUG();
1029 }
1030 /* Note: set drain read/write */
1031 #if 0
1032 /*
1033 * This is probably to be super secure.. Looks like we can
1034 * ignore it without any impact.
1035 */
1036 if (cap_read_drain(iommu->cap))
1037 val |= DMA_TLB_READ_DRAIN;
1038 #endif
1039 if (cap_write_drain(iommu->cap))
1040 val |= DMA_TLB_WRITE_DRAIN;
1041
1042 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1043 /* Note: Only uses first TLB reg currently */
1044 if (val_iva)
1045 dmar_writeq(iommu->reg + tlb_offset, val_iva);
1046 dmar_writeq(iommu->reg + tlb_offset + 8, val);
1047
1048 /* Make sure hardware complete it */
1049 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1050 dmar_readq, (!(val & DMA_TLB_IVT)), val);
1051
1052 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1053
1054 /* check IOTLB invalidation granularity */
1055 if (DMA_TLB_IAIG(val) == 0)
1056 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
1057 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1058 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
1059 (unsigned long long)DMA_TLB_IIRG(type),
1060 (unsigned long long)DMA_TLB_IAIG(val));
1061 }
1062
1063 static struct device_domain_info *iommu_support_dev_iotlb(
1064 struct dmar_domain *domain, int segment, u8 bus, u8 devfn)
1065 {
1066 int found = 0;
1067 unsigned long flags;
1068 struct device_domain_info *info;
1069 struct intel_iommu *iommu = device_to_iommu(segment, bus, devfn);
1070
1071 if (!ecap_dev_iotlb_support(iommu->ecap))
1072 return NULL;
1073
1074 if (!iommu->qi)
1075 return NULL;
1076
1077 spin_lock_irqsave(&device_domain_lock, flags);
1078 list_for_each_entry(info, &domain->devices, link)
1079 if (info->bus == bus && info->devfn == devfn) {
1080 found = 1;
1081 break;
1082 }
1083 spin_unlock_irqrestore(&device_domain_lock, flags);
1084
1085 if (!found || !info->dev)
1086 return NULL;
1087
1088 if (!pci_find_ext_capability(info->dev, PCI_EXT_CAP_ID_ATS))
1089 return NULL;
1090
1091 if (!dmar_find_matched_atsr_unit(info->dev))
1092 return NULL;
1093
1094 info->iommu = iommu;
1095
1096 return info;
1097 }
1098
1099 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1100 {
1101 if (!info)
1102 return;
1103
1104 pci_enable_ats(info->dev, VTD_PAGE_SHIFT);
1105 }
1106
1107 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1108 {
1109 if (!info->dev || !pci_ats_enabled(info->dev))
1110 return;
1111
1112 pci_disable_ats(info->dev);
1113 }
1114
1115 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1116 u64 addr, unsigned mask)
1117 {
1118 u16 sid, qdep;
1119 unsigned long flags;
1120 struct device_domain_info *info;
1121
1122 spin_lock_irqsave(&device_domain_lock, flags);
1123 list_for_each_entry(info, &domain->devices, link) {
1124 if (!info->dev || !pci_ats_enabled(info->dev))
1125 continue;
1126
1127 sid = info->bus << 8 | info->devfn;
1128 qdep = pci_ats_queue_depth(info->dev);
1129 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1130 }
1131 spin_unlock_irqrestore(&device_domain_lock, flags);
1132 }
1133
1134 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
1135 unsigned long pfn, unsigned int pages, int map)
1136 {
1137 unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1138 uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1139
1140 BUG_ON(pages == 0);
1141
1142 /*
1143 * Fallback to domain selective flush if no PSI support or the size is
1144 * too big.
1145 * PSI requires page size to be 2 ^ x, and the base address is naturally
1146 * aligned to the size
1147 */
1148 if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1149 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1150 DMA_TLB_DSI_FLUSH);
1151 else
1152 iommu->flush.flush_iotlb(iommu, did, addr, mask,
1153 DMA_TLB_PSI_FLUSH);
1154
1155 /*
1156 * In caching mode, changes of pages from non-present to present require
1157 * flush. However, device IOTLB doesn't need to be flushed in this case.
1158 */
1159 if (!cap_caching_mode(iommu->cap) || !map)
1160 iommu_flush_dev_iotlb(iommu->domains[did], addr, mask);
1161 }
1162
1163 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1164 {
1165 u32 pmen;
1166 unsigned long flags;
1167
1168 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1169 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1170 pmen &= ~DMA_PMEN_EPM;
1171 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1172
1173 /* wait for the protected region status bit to clear */
1174 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1175 readl, !(pmen & DMA_PMEN_PRS), pmen);
1176
1177 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1178 }
1179
1180 static int iommu_enable_translation(struct intel_iommu *iommu)
1181 {
1182 u32 sts;
1183 unsigned long flags;
1184
1185 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1186 iommu->gcmd |= DMA_GCMD_TE;
1187 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1188
1189 /* Make sure hardware complete it */
1190 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1191 readl, (sts & DMA_GSTS_TES), sts);
1192
1193 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1194 return 0;
1195 }
1196
1197 static int iommu_disable_translation(struct intel_iommu *iommu)
1198 {
1199 u32 sts;
1200 unsigned long flag;
1201
1202 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1203 iommu->gcmd &= ~DMA_GCMD_TE;
1204 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1205
1206 /* Make sure hardware complete it */
1207 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1208 readl, (!(sts & DMA_GSTS_TES)), sts);
1209
1210 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1211 return 0;
1212 }
1213
1214
1215 static int iommu_init_domains(struct intel_iommu *iommu)
1216 {
1217 unsigned long ndomains;
1218 unsigned long nlongs;
1219
1220 ndomains = cap_ndoms(iommu->cap);
1221 pr_debug("IOMMU %d: Number of Domains supportd <%ld>\n", iommu->seq_id,
1222 ndomains);
1223 nlongs = BITS_TO_LONGS(ndomains);
1224
1225 spin_lock_init(&iommu->lock);
1226
1227 /* TBD: there might be 64K domains,
1228 * consider other allocation for future chip
1229 */
1230 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1231 if (!iommu->domain_ids) {
1232 printk(KERN_ERR "Allocating domain id array failed\n");
1233 return -ENOMEM;
1234 }
1235 iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1236 GFP_KERNEL);
1237 if (!iommu->domains) {
1238 printk(KERN_ERR "Allocating domain array failed\n");
1239 return -ENOMEM;
1240 }
1241
1242 /*
1243 * if Caching mode is set, then invalid translations are tagged
1244 * with domainid 0. Hence we need to pre-allocate it.
1245 */
1246 if (cap_caching_mode(iommu->cap))
1247 set_bit(0, iommu->domain_ids);
1248 return 0;
1249 }
1250
1251
1252 static void domain_exit(struct dmar_domain *domain);
1253 static void vm_domain_exit(struct dmar_domain *domain);
1254
1255 void free_dmar_iommu(struct intel_iommu *iommu)
1256 {
1257 struct dmar_domain *domain;
1258 int i;
1259 unsigned long flags;
1260
1261 if ((iommu->domains) && (iommu->domain_ids)) {
1262 for_each_set_bit(i, iommu->domain_ids, cap_ndoms(iommu->cap)) {
1263 domain = iommu->domains[i];
1264 clear_bit(i, iommu->domain_ids);
1265
1266 spin_lock_irqsave(&domain->iommu_lock, flags);
1267 if (--domain->iommu_count == 0) {
1268 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
1269 vm_domain_exit(domain);
1270 else
1271 domain_exit(domain);
1272 }
1273 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1274 }
1275 }
1276
1277 if (iommu->gcmd & DMA_GCMD_TE)
1278 iommu_disable_translation(iommu);
1279
1280 if (iommu->irq) {
1281 irq_set_handler_data(iommu->irq, NULL);
1282 /* This will mask the irq */
1283 free_irq(iommu->irq, iommu);
1284 destroy_irq(iommu->irq);
1285 }
1286
1287 kfree(iommu->domains);
1288 kfree(iommu->domain_ids);
1289
1290 g_iommus[iommu->seq_id] = NULL;
1291
1292 /* if all iommus are freed, free g_iommus */
1293 for (i = 0; i < g_num_of_iommus; i++) {
1294 if (g_iommus[i])
1295 break;
1296 }
1297
1298 if (i == g_num_of_iommus)
1299 kfree(g_iommus);
1300
1301 /* free context mapping */
1302 free_context_table(iommu);
1303 }
1304
1305 static struct dmar_domain *alloc_domain(void)
1306 {
1307 struct dmar_domain *domain;
1308
1309 domain = alloc_domain_mem();
1310 if (!domain)
1311 return NULL;
1312
1313 domain->nid = -1;
1314 memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
1315 domain->flags = 0;
1316
1317 return domain;
1318 }
1319
1320 static int iommu_attach_domain(struct dmar_domain *domain,
1321 struct intel_iommu *iommu)
1322 {
1323 int num;
1324 unsigned long ndomains;
1325 unsigned long flags;
1326
1327 ndomains = cap_ndoms(iommu->cap);
1328
1329 spin_lock_irqsave(&iommu->lock, flags);
1330
1331 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1332 if (num >= ndomains) {
1333 spin_unlock_irqrestore(&iommu->lock, flags);
1334 printk(KERN_ERR "IOMMU: no free domain ids\n");
1335 return -ENOMEM;
1336 }
1337
1338 domain->id = num;
1339 set_bit(num, iommu->domain_ids);
1340 set_bit(iommu->seq_id, &domain->iommu_bmp);
1341 iommu->domains[num] = domain;
1342 spin_unlock_irqrestore(&iommu->lock, flags);
1343
1344 return 0;
1345 }
1346
1347 static void iommu_detach_domain(struct dmar_domain *domain,
1348 struct intel_iommu *iommu)
1349 {
1350 unsigned long flags;
1351 int num, ndomains;
1352 int found = 0;
1353
1354 spin_lock_irqsave(&iommu->lock, flags);
1355 ndomains = cap_ndoms(iommu->cap);
1356 for_each_set_bit(num, iommu->domain_ids, ndomains) {
1357 if (iommu->domains[num] == domain) {
1358 found = 1;
1359 break;
1360 }
1361 }
1362
1363 if (found) {
1364 clear_bit(num, iommu->domain_ids);
1365 clear_bit(iommu->seq_id, &domain->iommu_bmp);
1366 iommu->domains[num] = NULL;
1367 }
1368 spin_unlock_irqrestore(&iommu->lock, flags);
1369 }
1370
1371 static struct iova_domain reserved_iova_list;
1372 static struct lock_class_key reserved_rbtree_key;
1373
1374 static int dmar_init_reserved_ranges(void)
1375 {
1376 struct pci_dev *pdev = NULL;
1377 struct iova *iova;
1378 int i;
1379
1380 init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
1381
1382 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1383 &reserved_rbtree_key);
1384
1385 /* IOAPIC ranges shouldn't be accessed by DMA */
1386 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1387 IOVA_PFN(IOAPIC_RANGE_END));
1388 if (!iova) {
1389 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1390 return -ENODEV;
1391 }
1392
1393 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1394 for_each_pci_dev(pdev) {
1395 struct resource *r;
1396
1397 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1398 r = &pdev->resource[i];
1399 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1400 continue;
1401 iova = reserve_iova(&reserved_iova_list,
1402 IOVA_PFN(r->start),
1403 IOVA_PFN(r->end));
1404 if (!iova) {
1405 printk(KERN_ERR "Reserve iova failed\n");
1406 return -ENODEV;
1407 }
1408 }
1409 }
1410 return 0;
1411 }
1412
1413 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1414 {
1415 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1416 }
1417
1418 static inline int guestwidth_to_adjustwidth(int gaw)
1419 {
1420 int agaw;
1421 int r = (gaw - 12) % 9;
1422
1423 if (r == 0)
1424 agaw = gaw;
1425 else
1426 agaw = gaw + 9 - r;
1427 if (agaw > 64)
1428 agaw = 64;
1429 return agaw;
1430 }
1431
1432 static int domain_init(struct dmar_domain *domain, int guest_width)
1433 {
1434 struct intel_iommu *iommu;
1435 int adjust_width, agaw;
1436 unsigned long sagaw;
1437
1438 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
1439 spin_lock_init(&domain->iommu_lock);
1440
1441 domain_reserve_special_ranges(domain);
1442
1443 /* calculate AGAW */
1444 iommu = domain_get_iommu(domain);
1445 if (guest_width > cap_mgaw(iommu->cap))
1446 guest_width = cap_mgaw(iommu->cap);
1447 domain->gaw = guest_width;
1448 adjust_width = guestwidth_to_adjustwidth(guest_width);
1449 agaw = width_to_agaw(adjust_width);
1450 sagaw = cap_sagaw(iommu->cap);
1451 if (!test_bit(agaw, &sagaw)) {
1452 /* hardware doesn't support it, choose a bigger one */
1453 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1454 agaw = find_next_bit(&sagaw, 5, agaw);
1455 if (agaw >= 5)
1456 return -ENODEV;
1457 }
1458 domain->agaw = agaw;
1459 INIT_LIST_HEAD(&domain->devices);
1460
1461 if (ecap_coherent(iommu->ecap))
1462 domain->iommu_coherency = 1;
1463 else
1464 domain->iommu_coherency = 0;
1465
1466 if (ecap_sc_support(iommu->ecap))
1467 domain->iommu_snooping = 1;
1468 else
1469 domain->iommu_snooping = 0;
1470
1471 domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
1472 domain->iommu_count = 1;
1473 domain->nid = iommu->node;
1474
1475 /* always allocate the top pgd */
1476 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1477 if (!domain->pgd)
1478 return -ENOMEM;
1479 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1480 return 0;
1481 }
1482
1483 static void domain_exit(struct dmar_domain *domain)
1484 {
1485 struct dmar_drhd_unit *drhd;
1486 struct intel_iommu *iommu;
1487
1488 /* Domain 0 is reserved, so dont process it */
1489 if (!domain)
1490 return;
1491
1492 /* Flush any lazy unmaps that may reference this domain */
1493 if (!intel_iommu_strict)
1494 flush_unmaps_timeout(0);
1495
1496 domain_remove_dev_info(domain);
1497 /* destroy iovas */
1498 put_iova_domain(&domain->iovad);
1499
1500 /* clear ptes */
1501 dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1502
1503 /* free page tables */
1504 dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1505
1506 for_each_active_iommu(iommu, drhd)
1507 if (test_bit(iommu->seq_id, &domain->iommu_bmp))
1508 iommu_detach_domain(domain, iommu);
1509
1510 free_domain_mem(domain);
1511 }
1512
1513 static int domain_context_mapping_one(struct dmar_domain *domain, int segment,
1514 u8 bus, u8 devfn, int translation)
1515 {
1516 struct context_entry *context;
1517 unsigned long flags;
1518 struct intel_iommu *iommu;
1519 struct dma_pte *pgd;
1520 unsigned long num;
1521 unsigned long ndomains;
1522 int id;
1523 int agaw;
1524 struct device_domain_info *info = NULL;
1525
1526 pr_debug("Set context mapping for %02x:%02x.%d\n",
1527 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1528
1529 BUG_ON(!domain->pgd);
1530 BUG_ON(translation != CONTEXT_TT_PASS_THROUGH &&
1531 translation != CONTEXT_TT_MULTI_LEVEL);
1532
1533 iommu = device_to_iommu(segment, bus, devfn);
1534 if (!iommu)
1535 return -ENODEV;
1536
1537 context = device_to_context_entry(iommu, bus, devfn);
1538 if (!context)
1539 return -ENOMEM;
1540 spin_lock_irqsave(&iommu->lock, flags);
1541 if (context_present(context)) {
1542 spin_unlock_irqrestore(&iommu->lock, flags);
1543 return 0;
1544 }
1545
1546 id = domain->id;
1547 pgd = domain->pgd;
1548
1549 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
1550 domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) {
1551 int found = 0;
1552
1553 /* find an available domain id for this device in iommu */
1554 ndomains = cap_ndoms(iommu->cap);
1555 for_each_set_bit(num, iommu->domain_ids, ndomains) {
1556 if (iommu->domains[num] == domain) {
1557 id = num;
1558 found = 1;
1559 break;
1560 }
1561 }
1562
1563 if (found == 0) {
1564 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1565 if (num >= ndomains) {
1566 spin_unlock_irqrestore(&iommu->lock, flags);
1567 printk(KERN_ERR "IOMMU: no free domain ids\n");
1568 return -EFAULT;
1569 }
1570
1571 set_bit(num, iommu->domain_ids);
1572 iommu->domains[num] = domain;
1573 id = num;
1574 }
1575
1576 /* Skip top levels of page tables for
1577 * iommu which has less agaw than default.
1578 * Unnecessary for PT mode.
1579 */
1580 if (translation != CONTEXT_TT_PASS_THROUGH) {
1581 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1582 pgd = phys_to_virt(dma_pte_addr(pgd));
1583 if (!dma_pte_present(pgd)) {
1584 spin_unlock_irqrestore(&iommu->lock, flags);
1585 return -ENOMEM;
1586 }
1587 }
1588 }
1589 }
1590
1591 context_set_domain_id(context, id);
1592
1593 if (translation != CONTEXT_TT_PASS_THROUGH) {
1594 info = iommu_support_dev_iotlb(domain, segment, bus, devfn);
1595 translation = info ? CONTEXT_TT_DEV_IOTLB :
1596 CONTEXT_TT_MULTI_LEVEL;
1597 }
1598 /*
1599 * In pass through mode, AW must be programmed to indicate the largest
1600 * AGAW value supported by hardware. And ASR is ignored by hardware.
1601 */
1602 if (unlikely(translation == CONTEXT_TT_PASS_THROUGH))
1603 context_set_address_width(context, iommu->msagaw);
1604 else {
1605 context_set_address_root(context, virt_to_phys(pgd));
1606 context_set_address_width(context, iommu->agaw);
1607 }
1608
1609 context_set_translation_type(context, translation);
1610 context_set_fault_enable(context);
1611 context_set_present(context);
1612 domain_flush_cache(domain, context, sizeof(*context));
1613
1614 /*
1615 * It's a non-present to present mapping. If hardware doesn't cache
1616 * non-present entry we only need to flush the write-buffer. If the
1617 * _does_ cache non-present entries, then it does so in the special
1618 * domain #0, which we have to flush:
1619 */
1620 if (cap_caching_mode(iommu->cap)) {
1621 iommu->flush.flush_context(iommu, 0,
1622 (((u16)bus) << 8) | devfn,
1623 DMA_CCMD_MASK_NOBIT,
1624 DMA_CCMD_DEVICE_INVL);
1625 iommu->flush.flush_iotlb(iommu, domain->id, 0, 0, DMA_TLB_DSI_FLUSH);
1626 } else {
1627 iommu_flush_write_buffer(iommu);
1628 }
1629 iommu_enable_dev_iotlb(info);
1630 spin_unlock_irqrestore(&iommu->lock, flags);
1631
1632 spin_lock_irqsave(&domain->iommu_lock, flags);
1633 if (!test_and_set_bit(iommu->seq_id, &domain->iommu_bmp)) {
1634 domain->iommu_count++;
1635 if (domain->iommu_count == 1)
1636 domain->nid = iommu->node;
1637 domain_update_iommu_cap(domain);
1638 }
1639 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1640 return 0;
1641 }
1642
1643 static int
1644 domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev,
1645 int translation)
1646 {
1647 int ret;
1648 struct pci_dev *tmp, *parent;
1649
1650 ret = domain_context_mapping_one(domain, pci_domain_nr(pdev->bus),
1651 pdev->bus->number, pdev->devfn,
1652 translation);
1653 if (ret)
1654 return ret;
1655
1656 /* dependent device mapping */
1657 tmp = pci_find_upstream_pcie_bridge(pdev);
1658 if (!tmp)
1659 return 0;
1660 /* Secondary interface's bus number and devfn 0 */
1661 parent = pdev->bus->self;
1662 while (parent != tmp) {
1663 ret = domain_context_mapping_one(domain,
1664 pci_domain_nr(parent->bus),
1665 parent->bus->number,
1666 parent->devfn, translation);
1667 if (ret)
1668 return ret;
1669 parent = parent->bus->self;
1670 }
1671 if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */
1672 return domain_context_mapping_one(domain,
1673 pci_domain_nr(tmp->subordinate),
1674 tmp->subordinate->number, 0,
1675 translation);
1676 else /* this is a legacy PCI bridge */
1677 return domain_context_mapping_one(domain,
1678 pci_domain_nr(tmp->bus),
1679 tmp->bus->number,
1680 tmp->devfn,
1681 translation);
1682 }
1683
1684 static int domain_context_mapped(struct pci_dev *pdev)
1685 {
1686 int ret;
1687 struct pci_dev *tmp, *parent;
1688 struct intel_iommu *iommu;
1689
1690 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
1691 pdev->devfn);
1692 if (!iommu)
1693 return -ENODEV;
1694
1695 ret = device_context_mapped(iommu, pdev->bus->number, pdev->devfn);
1696 if (!ret)
1697 return ret;
1698 /* dependent device mapping */
1699 tmp = pci_find_upstream_pcie_bridge(pdev);
1700 if (!tmp)
1701 return ret;
1702 /* Secondary interface's bus number and devfn 0 */
1703 parent = pdev->bus->self;
1704 while (parent != tmp) {
1705 ret = device_context_mapped(iommu, parent->bus->number,
1706 parent->devfn);
1707 if (!ret)
1708 return ret;
1709 parent = parent->bus->self;
1710 }
1711 if (pci_is_pcie(tmp))
1712 return device_context_mapped(iommu, tmp->subordinate->number,
1713 0);
1714 else
1715 return device_context_mapped(iommu, tmp->bus->number,
1716 tmp->devfn);
1717 }
1718
1719 /* Returns a number of VTD pages, but aligned to MM page size */
1720 static inline unsigned long aligned_nrpages(unsigned long host_addr,
1721 size_t size)
1722 {
1723 host_addr &= ~PAGE_MASK;
1724 return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
1725 }
1726
1727 /* Return largest possible superpage level for a given mapping */
1728 static inline int hardware_largepage_caps(struct dmar_domain *domain,
1729 unsigned long iov_pfn,
1730 unsigned long phy_pfn,
1731 unsigned long pages)
1732 {
1733 int support, level = 1;
1734 unsigned long pfnmerge;
1735
1736 support = domain->iommu_superpage;
1737
1738 /* To use a large page, the virtual *and* physical addresses
1739 must be aligned to 2MiB/1GiB/etc. Lower bits set in either
1740 of them will mean we have to use smaller pages. So just
1741 merge them and check both at once. */
1742 pfnmerge = iov_pfn | phy_pfn;
1743
1744 while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
1745 pages >>= VTD_STRIDE_SHIFT;
1746 if (!pages)
1747 break;
1748 pfnmerge >>= VTD_STRIDE_SHIFT;
1749 level++;
1750 support--;
1751 }
1752 return level;
1753 }
1754
1755 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1756 struct scatterlist *sg, unsigned long phys_pfn,
1757 unsigned long nr_pages, int prot)
1758 {
1759 struct dma_pte *first_pte = NULL, *pte = NULL;
1760 phys_addr_t uninitialized_var(pteval);
1761 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
1762 unsigned long sg_res;
1763 unsigned int largepage_lvl = 0;
1764 unsigned long lvl_pages = 0;
1765
1766 BUG_ON(addr_width < BITS_PER_LONG && (iov_pfn + nr_pages - 1) >> addr_width);
1767
1768 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1769 return -EINVAL;
1770
1771 prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
1772
1773 if (sg)
1774 sg_res = 0;
1775 else {
1776 sg_res = nr_pages + 1;
1777 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
1778 }
1779
1780 while (nr_pages > 0) {
1781 uint64_t tmp;
1782
1783 if (!sg_res) {
1784 sg_res = aligned_nrpages(sg->offset, sg->length);
1785 sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
1786 sg->dma_length = sg->length;
1787 pteval = page_to_phys(sg_page(sg)) | prot;
1788 phys_pfn = pteval >> VTD_PAGE_SHIFT;
1789 }
1790
1791 if (!pte) {
1792 largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
1793
1794 first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, largepage_lvl);
1795 if (!pte)
1796 return -ENOMEM;
1797 /* It is large page*/
1798 if (largepage_lvl > 1)
1799 pteval |= DMA_PTE_LARGE_PAGE;
1800 else
1801 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
1802
1803 }
1804 /* We don't need lock here, nobody else
1805 * touches the iova range
1806 */
1807 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
1808 if (tmp) {
1809 static int dumps = 5;
1810 printk(KERN_CRIT "ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
1811 iov_pfn, tmp, (unsigned long long)pteval);
1812 if (dumps) {
1813 dumps--;
1814 debug_dma_dump_mappings(NULL);
1815 }
1816 WARN_ON(1);
1817 }
1818
1819 lvl_pages = lvl_to_nr_pages(largepage_lvl);
1820
1821 BUG_ON(nr_pages < lvl_pages);
1822 BUG_ON(sg_res < lvl_pages);
1823
1824 nr_pages -= lvl_pages;
1825 iov_pfn += lvl_pages;
1826 phys_pfn += lvl_pages;
1827 pteval += lvl_pages * VTD_PAGE_SIZE;
1828 sg_res -= lvl_pages;
1829
1830 /* If the next PTE would be the first in a new page, then we
1831 need to flush the cache on the entries we've just written.
1832 And then we'll need to recalculate 'pte', so clear it and
1833 let it get set again in the if (!pte) block above.
1834
1835 If we're done (!nr_pages) we need to flush the cache too.
1836
1837 Also if we've been setting superpages, we may need to
1838 recalculate 'pte' and switch back to smaller pages for the
1839 end of the mapping, if the trailing size is not enough to
1840 use another superpage (i.e. sg_res < lvl_pages). */
1841 pte++;
1842 if (!nr_pages || first_pte_in_page(pte) ||
1843 (largepage_lvl > 1 && sg_res < lvl_pages)) {
1844 domain_flush_cache(domain, first_pte,
1845 (void *)pte - (void *)first_pte);
1846 pte = NULL;
1847 }
1848
1849 if (!sg_res && nr_pages)
1850 sg = sg_next(sg);
1851 }
1852 return 0;
1853 }
1854
1855 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1856 struct scatterlist *sg, unsigned long nr_pages,
1857 int prot)
1858 {
1859 return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
1860 }
1861
1862 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1863 unsigned long phys_pfn, unsigned long nr_pages,
1864 int prot)
1865 {
1866 return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
1867 }
1868
1869 static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
1870 {
1871 if (!iommu)
1872 return;
1873
1874 clear_context_table(iommu, bus, devfn);
1875 iommu->flush.flush_context(iommu, 0, 0, 0,
1876 DMA_CCMD_GLOBAL_INVL);
1877 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
1878 }
1879
1880 static void domain_remove_dev_info(struct dmar_domain *domain)
1881 {
1882 struct device_domain_info *info;
1883 unsigned long flags;
1884 struct intel_iommu *iommu;
1885
1886 spin_lock_irqsave(&device_domain_lock, flags);
1887 while (!list_empty(&domain->devices)) {
1888 info = list_entry(domain->devices.next,
1889 struct device_domain_info, link);
1890 list_del(&info->link);
1891 list_del(&info->global);
1892 if (info->dev)
1893 info->dev->dev.archdata.iommu = NULL;
1894 spin_unlock_irqrestore(&device_domain_lock, flags);
1895
1896 iommu_disable_dev_iotlb(info);
1897 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
1898 iommu_detach_dev(iommu, info->bus, info->devfn);
1899 free_devinfo_mem(info);
1900
1901 spin_lock_irqsave(&device_domain_lock, flags);
1902 }
1903 spin_unlock_irqrestore(&device_domain_lock, flags);
1904 }
1905
1906 /*
1907 * find_domain
1908 * Note: we use struct pci_dev->dev.archdata.iommu stores the info
1909 */
1910 static struct dmar_domain *
1911 find_domain(struct pci_dev *pdev)
1912 {
1913 struct device_domain_info *info;
1914
1915 /* No lock here, assumes no domain exit in normal case */
1916 info = pdev->dev.archdata.iommu;
1917 if (info)
1918 return info->domain;
1919 return NULL;
1920 }
1921
1922 /* domain is initialized */
1923 static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
1924 {
1925 struct dmar_domain *domain, *found = NULL;
1926 struct intel_iommu *iommu;
1927 struct dmar_drhd_unit *drhd;
1928 struct device_domain_info *info, *tmp;
1929 struct pci_dev *dev_tmp;
1930 unsigned long flags;
1931 int bus = 0, devfn = 0;
1932 int segment;
1933 int ret;
1934
1935 domain = find_domain(pdev);
1936 if (domain)
1937 return domain;
1938
1939 segment = pci_domain_nr(pdev->bus);
1940
1941 dev_tmp = pci_find_upstream_pcie_bridge(pdev);
1942 if (dev_tmp) {
1943 if (pci_is_pcie(dev_tmp)) {
1944 bus = dev_tmp->subordinate->number;
1945 devfn = 0;
1946 } else {
1947 bus = dev_tmp->bus->number;
1948 devfn = dev_tmp->devfn;
1949 }
1950 spin_lock_irqsave(&device_domain_lock, flags);
1951 list_for_each_entry(info, &device_domain_list, global) {
1952 if (info->segment == segment &&
1953 info->bus == bus && info->devfn == devfn) {
1954 found = info->domain;
1955 break;
1956 }
1957 }
1958 spin_unlock_irqrestore(&device_domain_lock, flags);
1959 /* pcie-pci bridge already has a domain, uses it */
1960 if (found) {
1961 domain = found;
1962 goto found_domain;
1963 }
1964 }
1965
1966 domain = alloc_domain();
1967 if (!domain)
1968 goto error;
1969
1970 /* Allocate new domain for the device */
1971 drhd = dmar_find_matched_drhd_unit(pdev);
1972 if (!drhd) {
1973 printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
1974 pci_name(pdev));
1975 return NULL;
1976 }
1977 iommu = drhd->iommu;
1978
1979 ret = iommu_attach_domain(domain, iommu);
1980 if (ret) {
1981 free_domain_mem(domain);
1982 goto error;
1983 }
1984
1985 if (domain_init(domain, gaw)) {
1986 domain_exit(domain);
1987 goto error;
1988 }
1989
1990 /* register pcie-to-pci device */
1991 if (dev_tmp) {
1992 info = alloc_devinfo_mem();
1993 if (!info) {
1994 domain_exit(domain);
1995 goto error;
1996 }
1997 info->segment = segment;
1998 info->bus = bus;
1999 info->devfn = devfn;
2000 info->dev = NULL;
2001 info->domain = domain;
2002 /* This domain is shared by devices under p2p bridge */
2003 domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
2004
2005 /* pcie-to-pci bridge already has a domain, uses it */
2006 found = NULL;
2007 spin_lock_irqsave(&device_domain_lock, flags);
2008 list_for_each_entry(tmp, &device_domain_list, global) {
2009 if (tmp->segment == segment &&
2010 tmp->bus == bus && tmp->devfn == devfn) {
2011 found = tmp->domain;
2012 break;
2013 }
2014 }
2015 if (found) {
2016 spin_unlock_irqrestore(&device_domain_lock, flags);
2017 free_devinfo_mem(info);
2018 domain_exit(domain);
2019 domain = found;
2020 } else {
2021 list_add(&info->link, &domain->devices);
2022 list_add(&info->global, &device_domain_list);
2023 spin_unlock_irqrestore(&device_domain_lock, flags);
2024 }
2025 }
2026
2027 found_domain:
2028 info = alloc_devinfo_mem();
2029 if (!info)
2030 goto error;
2031 info->segment = segment;
2032 info->bus = pdev->bus->number;
2033 info->devfn = pdev->devfn;
2034 info->dev = pdev;
2035 info->domain = domain;
2036 spin_lock_irqsave(&device_domain_lock, flags);
2037 /* somebody is fast */
2038 found = find_domain(pdev);
2039 if (found != NULL) {
2040 spin_unlock_irqrestore(&device_domain_lock, flags);
2041 if (found != domain) {
2042 domain_exit(domain);
2043 domain = found;
2044 }
2045 free_devinfo_mem(info);
2046 return domain;
2047 }
2048 list_add(&info->link, &domain->devices);
2049 list_add(&info->global, &device_domain_list);
2050 pdev->dev.archdata.iommu = info;
2051 spin_unlock_irqrestore(&device_domain_lock, flags);
2052 return domain;
2053 error:
2054 /* recheck it here, maybe others set it */
2055 return find_domain(pdev);
2056 }
2057
2058 static int iommu_identity_mapping;
2059 #define IDENTMAP_ALL 1
2060 #define IDENTMAP_GFX 2
2061 #define IDENTMAP_AZALIA 4
2062
2063 static int iommu_domain_identity_map(struct dmar_domain *domain,
2064 unsigned long long start,
2065 unsigned long long end)
2066 {
2067 unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
2068 unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
2069
2070 if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
2071 dma_to_mm_pfn(last_vpfn))) {
2072 printk(KERN_ERR "IOMMU: reserve iova failed\n");
2073 return -ENOMEM;
2074 }
2075
2076 pr_debug("Mapping reserved region %llx-%llx for domain %d\n",
2077 start, end, domain->id);
2078 /*
2079 * RMRR range might have overlap with physical memory range,
2080 * clear it first
2081 */
2082 dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2083
2084 return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
2085 last_vpfn - first_vpfn + 1,
2086 DMA_PTE_READ|DMA_PTE_WRITE);
2087 }
2088
2089 static int iommu_prepare_identity_map(struct pci_dev *pdev,
2090 unsigned long long start,
2091 unsigned long long end)
2092 {
2093 struct dmar_domain *domain;
2094 int ret;
2095
2096 domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2097 if (!domain)
2098 return -ENOMEM;
2099
2100 /* For _hardware_ passthrough, don't bother. But for software
2101 passthrough, we do it anyway -- it may indicate a memory
2102 range which is reserved in E820, so which didn't get set
2103 up to start with in si_domain */
2104 if (domain == si_domain && hw_pass_through) {
2105 printk("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
2106 pci_name(pdev), start, end);
2107 return 0;
2108 }
2109
2110 printk(KERN_INFO
2111 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
2112 pci_name(pdev), start, end);
2113
2114 if (end < start) {
2115 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2116 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2117 dmi_get_system_info(DMI_BIOS_VENDOR),
2118 dmi_get_system_info(DMI_BIOS_VERSION),
2119 dmi_get_system_info(DMI_PRODUCT_VERSION));
2120 ret = -EIO;
2121 goto error;
2122 }
2123
2124 if (end >> agaw_to_width(domain->agaw)) {
2125 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2126 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2127 agaw_to_width(domain->agaw),
2128 dmi_get_system_info(DMI_BIOS_VENDOR),
2129 dmi_get_system_info(DMI_BIOS_VERSION),
2130 dmi_get_system_info(DMI_PRODUCT_VERSION));
2131 ret = -EIO;
2132 goto error;
2133 }
2134
2135 ret = iommu_domain_identity_map(domain, start, end);
2136 if (ret)
2137 goto error;
2138
2139 /* context entry init */
2140 ret = domain_context_mapping(domain, pdev, CONTEXT_TT_MULTI_LEVEL);
2141 if (ret)
2142 goto error;
2143
2144 return 0;
2145
2146 error:
2147 domain_exit(domain);
2148 return ret;
2149 }
2150
2151 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2152 struct pci_dev *pdev)
2153 {
2154 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2155 return 0;
2156 return iommu_prepare_identity_map(pdev, rmrr->base_address,
2157 rmrr->end_address);
2158 }
2159
2160 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
2161 static inline void iommu_prepare_isa(void)
2162 {
2163 struct pci_dev *pdev;
2164 int ret;
2165
2166 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2167 if (!pdev)
2168 return;
2169
2170 printk(KERN_INFO "IOMMU: Prepare 0-16MiB unity mapping for LPC\n");
2171 ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024 - 1);
2172
2173 if (ret)
2174 printk(KERN_ERR "IOMMU: Failed to create 0-16MiB identity map; "
2175 "floppy might not work\n");
2176
2177 }
2178 #else
2179 static inline void iommu_prepare_isa(void)
2180 {
2181 return;
2182 }
2183 #endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */
2184
2185 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2186
2187 static int __init si_domain_work_fn(unsigned long start_pfn,
2188 unsigned long end_pfn, void *datax)
2189 {
2190 int *ret = datax;
2191
2192 *ret = iommu_domain_identity_map(si_domain,
2193 (uint64_t)start_pfn << PAGE_SHIFT,
2194 (uint64_t)end_pfn << PAGE_SHIFT);
2195 return *ret;
2196
2197 }
2198
2199 static int __init si_domain_init(int hw)
2200 {
2201 struct dmar_drhd_unit *drhd;
2202 struct intel_iommu *iommu;
2203 int nid, ret = 0;
2204
2205 si_domain = alloc_domain();
2206 if (!si_domain)
2207 return -EFAULT;
2208
2209 pr_debug("Identity mapping domain is domain %d\n", si_domain->id);
2210
2211 for_each_active_iommu(iommu, drhd) {
2212 ret = iommu_attach_domain(si_domain, iommu);
2213 if (ret) {
2214 domain_exit(si_domain);
2215 return -EFAULT;
2216 }
2217 }
2218
2219 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2220 domain_exit(si_domain);
2221 return -EFAULT;
2222 }
2223
2224 si_domain->flags = DOMAIN_FLAG_STATIC_IDENTITY;
2225
2226 if (hw)
2227 return 0;
2228
2229 for_each_online_node(nid) {
2230 work_with_active_regions(nid, si_domain_work_fn, &ret);
2231 if (ret)
2232 return ret;
2233 }
2234
2235 return 0;
2236 }
2237
2238 static void domain_remove_one_dev_info(struct dmar_domain *domain,
2239 struct pci_dev *pdev);
2240 static int identity_mapping(struct pci_dev *pdev)
2241 {
2242 struct device_domain_info *info;
2243
2244 if (likely(!iommu_identity_mapping))
2245 return 0;
2246
2247 info = pdev->dev.archdata.iommu;
2248 if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
2249 return (info->domain == si_domain);
2250
2251 return 0;
2252 }
2253
2254 static int domain_add_dev_info(struct dmar_domain *domain,
2255 struct pci_dev *pdev,
2256 int translation)
2257 {
2258 struct device_domain_info *info;
2259 unsigned long flags;
2260 int ret;
2261
2262 info = alloc_devinfo_mem();
2263 if (!info)
2264 return -ENOMEM;
2265
2266 ret = domain_context_mapping(domain, pdev, translation);
2267 if (ret) {
2268 free_devinfo_mem(info);
2269 return ret;
2270 }
2271
2272 info->segment = pci_domain_nr(pdev->bus);
2273 info->bus = pdev->bus->number;
2274 info->devfn = pdev->devfn;
2275 info->dev = pdev;
2276 info->domain = domain;
2277
2278 spin_lock_irqsave(&device_domain_lock, flags);
2279 list_add(&info->link, &domain->devices);
2280 list_add(&info->global, &device_domain_list);
2281 pdev->dev.archdata.iommu = info;
2282 spin_unlock_irqrestore(&device_domain_lock, flags);
2283
2284 return 0;
2285 }
2286
2287 static int iommu_should_identity_map(struct pci_dev *pdev, int startup)
2288 {
2289 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2290 return 1;
2291
2292 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2293 return 1;
2294
2295 if (!(iommu_identity_mapping & IDENTMAP_ALL))
2296 return 0;
2297
2298 /*
2299 * We want to start off with all devices in the 1:1 domain, and
2300 * take them out later if we find they can't access all of memory.
2301 *
2302 * However, we can't do this for PCI devices behind bridges,
2303 * because all PCI devices behind the same bridge will end up
2304 * with the same source-id on their transactions.
2305 *
2306 * Practically speaking, we can't change things around for these
2307 * devices at run-time, because we can't be sure there'll be no
2308 * DMA transactions in flight for any of their siblings.
2309 *
2310 * So PCI devices (unless they're on the root bus) as well as
2311 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2312 * the 1:1 domain, just in _case_ one of their siblings turns out
2313 * not to be able to map all of memory.
2314 */
2315 if (!pci_is_pcie(pdev)) {
2316 if (!pci_is_root_bus(pdev->bus))
2317 return 0;
2318 if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2319 return 0;
2320 } else if (pdev->pcie_type == PCI_EXP_TYPE_PCI_BRIDGE)
2321 return 0;
2322
2323 /*
2324 * At boot time, we don't yet know if devices will be 64-bit capable.
2325 * Assume that they will -- if they turn out not to be, then we can
2326 * take them out of the 1:1 domain later.
2327 */
2328 if (!startup) {
2329 /*
2330 * If the device's dma_mask is less than the system's memory
2331 * size then this is not a candidate for identity mapping.
2332 */
2333 u64 dma_mask = pdev->dma_mask;
2334
2335 if (pdev->dev.coherent_dma_mask &&
2336 pdev->dev.coherent_dma_mask < dma_mask)
2337 dma_mask = pdev->dev.coherent_dma_mask;
2338
2339 return dma_mask >= dma_get_required_mask(&pdev->dev);
2340 }
2341
2342 return 1;
2343 }
2344
2345 static int __init iommu_prepare_static_identity_mapping(int hw)
2346 {
2347 struct pci_dev *pdev = NULL;
2348 int ret;
2349
2350 ret = si_domain_init(hw);
2351 if (ret)
2352 return -EFAULT;
2353
2354 for_each_pci_dev(pdev) {
2355 /* Skip Host/PCI Bridge devices */
2356 if (IS_BRIDGE_HOST_DEVICE(pdev))
2357 continue;
2358 if (iommu_should_identity_map(pdev, 1)) {
2359 printk(KERN_INFO "IOMMU: %s identity mapping for device %s\n",
2360 hw ? "hardware" : "software", pci_name(pdev));
2361
2362 ret = domain_add_dev_info(si_domain, pdev,
2363 hw ? CONTEXT_TT_PASS_THROUGH :
2364 CONTEXT_TT_MULTI_LEVEL);
2365 if (ret)
2366 return ret;
2367 }
2368 }
2369
2370 return 0;
2371 }
2372
2373 static int __init init_dmars(void)
2374 {
2375 struct dmar_drhd_unit *drhd;
2376 struct dmar_rmrr_unit *rmrr;
2377 struct pci_dev *pdev;
2378 struct intel_iommu *iommu;
2379 int i, ret;
2380
2381 /*
2382 * for each drhd
2383 * allocate root
2384 * initialize and program root entry to not present
2385 * endfor
2386 */
2387 for_each_drhd_unit(drhd) {
2388 g_num_of_iommus++;
2389 /*
2390 * lock not needed as this is only incremented in the single
2391 * threaded kernel __init code path all other access are read
2392 * only
2393 */
2394 }
2395
2396 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
2397 GFP_KERNEL);
2398 if (!g_iommus) {
2399 printk(KERN_ERR "Allocating global iommu array failed\n");
2400 ret = -ENOMEM;
2401 goto error;
2402 }
2403
2404 deferred_flush = kzalloc(g_num_of_iommus *
2405 sizeof(struct deferred_flush_tables), GFP_KERNEL);
2406 if (!deferred_flush) {
2407 ret = -ENOMEM;
2408 goto error;
2409 }
2410
2411 for_each_drhd_unit(drhd) {
2412 if (drhd->ignored)
2413 continue;
2414
2415 iommu = drhd->iommu;
2416 g_iommus[iommu->seq_id] = iommu;
2417
2418 ret = iommu_init_domains(iommu);
2419 if (ret)
2420 goto error;
2421
2422 /*
2423 * TBD:
2424 * we could share the same root & context tables
2425 * among all IOMMU's. Need to Split it later.
2426 */
2427 ret = iommu_alloc_root_entry(iommu);
2428 if (ret) {
2429 printk(KERN_ERR "IOMMU: allocate root entry failed\n");
2430 goto error;
2431 }
2432 if (!ecap_pass_through(iommu->ecap))
2433 hw_pass_through = 0;
2434 }
2435
2436 /*
2437 * Start from the sane iommu hardware state.
2438 */
2439 for_each_drhd_unit(drhd) {
2440 if (drhd->ignored)
2441 continue;
2442
2443 iommu = drhd->iommu;
2444
2445 /*
2446 * If the queued invalidation is already initialized by us
2447 * (for example, while enabling interrupt-remapping) then
2448 * we got the things already rolling from a sane state.
2449 */
2450 if (iommu->qi)
2451 continue;
2452
2453 /*
2454 * Clear any previous faults.
2455 */
2456 dmar_fault(-1, iommu);
2457 /*
2458 * Disable queued invalidation if supported and already enabled
2459 * before OS handover.
2460 */
2461 dmar_disable_qi(iommu);
2462 }
2463
2464 for_each_drhd_unit(drhd) {
2465 if (drhd->ignored)
2466 continue;
2467
2468 iommu = drhd->iommu;
2469
2470 if (dmar_enable_qi(iommu)) {
2471 /*
2472 * Queued Invalidate not enabled, use Register Based
2473 * Invalidate
2474 */
2475 iommu->flush.flush_context = __iommu_flush_context;
2476 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2477 printk(KERN_INFO "IOMMU %d 0x%Lx: using Register based "
2478 "invalidation\n",
2479 iommu->seq_id,
2480 (unsigned long long)drhd->reg_base_addr);
2481 } else {
2482 iommu->flush.flush_context = qi_flush_context;
2483 iommu->flush.flush_iotlb = qi_flush_iotlb;
2484 printk(KERN_INFO "IOMMU %d 0x%Lx: using Queued "
2485 "invalidation\n",
2486 iommu->seq_id,
2487 (unsigned long long)drhd->reg_base_addr);
2488 }
2489 }
2490
2491 if (iommu_pass_through)
2492 iommu_identity_mapping |= IDENTMAP_ALL;
2493
2494 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
2495 iommu_identity_mapping |= IDENTMAP_GFX;
2496 #endif
2497
2498 check_tylersburg_isoch();
2499
2500 /*
2501 * If pass through is not set or not enabled, setup context entries for
2502 * identity mappings for rmrr, gfx, and isa and may fall back to static
2503 * identity mapping if iommu_identity_mapping is set.
2504 */
2505 if (iommu_identity_mapping) {
2506 ret = iommu_prepare_static_identity_mapping(hw_pass_through);
2507 if (ret) {
2508 printk(KERN_CRIT "Failed to setup IOMMU pass-through\n");
2509 goto error;
2510 }
2511 }
2512 /*
2513 * For each rmrr
2514 * for each dev attached to rmrr
2515 * do
2516 * locate drhd for dev, alloc domain for dev
2517 * allocate free domain
2518 * allocate page table entries for rmrr
2519 * if context not allocated for bus
2520 * allocate and init context
2521 * set present in root table for this bus
2522 * init context with domain, translation etc
2523 * endfor
2524 * endfor
2525 */
2526 printk(KERN_INFO "IOMMU: Setting RMRR:\n");
2527 for_each_rmrr_units(rmrr) {
2528 for (i = 0; i < rmrr->devices_cnt; i++) {
2529 pdev = rmrr->devices[i];
2530 /*
2531 * some BIOS lists non-exist devices in DMAR
2532 * table.
2533 */
2534 if (!pdev)
2535 continue;
2536 ret = iommu_prepare_rmrr_dev(rmrr, pdev);
2537 if (ret)
2538 printk(KERN_ERR
2539 "IOMMU: mapping reserved region failed\n");
2540 }
2541 }
2542
2543 iommu_prepare_isa();
2544
2545 /*
2546 * for each drhd
2547 * enable fault log
2548 * global invalidate context cache
2549 * global invalidate iotlb
2550 * enable translation
2551 */
2552 for_each_drhd_unit(drhd) {
2553 if (drhd->ignored) {
2554 /*
2555 * we always have to disable PMRs or DMA may fail on
2556 * this device
2557 */
2558 if (force_on)
2559 iommu_disable_protect_mem_regions(drhd->iommu);
2560 continue;
2561 }
2562 iommu = drhd->iommu;
2563
2564 iommu_flush_write_buffer(iommu);
2565
2566 ret = dmar_set_interrupt(iommu);
2567 if (ret)
2568 goto error;
2569
2570 iommu_set_root_entry(iommu);
2571
2572 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
2573 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2574
2575 ret = iommu_enable_translation(iommu);
2576 if (ret)
2577 goto error;
2578
2579 iommu_disable_protect_mem_regions(iommu);
2580 }
2581
2582 return 0;
2583 error:
2584 for_each_drhd_unit(drhd) {
2585 if (drhd->ignored)
2586 continue;
2587 iommu = drhd->iommu;
2588 free_iommu(iommu);
2589 }
2590 kfree(g_iommus);
2591 return ret;
2592 }
2593
2594 /* This takes a number of _MM_ pages, not VTD pages */
2595 static struct iova *intel_alloc_iova(struct device *dev,
2596 struct dmar_domain *domain,
2597 unsigned long nrpages, uint64_t dma_mask)
2598 {
2599 struct pci_dev *pdev = to_pci_dev(dev);
2600 struct iova *iova = NULL;
2601
2602 /* Restrict dma_mask to the width that the iommu can handle */
2603 dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
2604
2605 if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
2606 /*
2607 * First try to allocate an io virtual address in
2608 * DMA_BIT_MASK(32) and if that fails then try allocating
2609 * from higher range
2610 */
2611 iova = alloc_iova(&domain->iovad, nrpages,
2612 IOVA_PFN(DMA_BIT_MASK(32)), 1);
2613 if (iova)
2614 return iova;
2615 }
2616 iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(dma_mask), 1);
2617 if (unlikely(!iova)) {
2618 printk(KERN_ERR "Allocating %ld-page iova for %s failed",
2619 nrpages, pci_name(pdev));
2620 return NULL;
2621 }
2622
2623 return iova;
2624 }
2625
2626 static struct dmar_domain *__get_valid_domain_for_dev(struct pci_dev *pdev)
2627 {
2628 struct dmar_domain *domain;
2629 int ret;
2630
2631 domain = get_domain_for_dev(pdev,
2632 DEFAULT_DOMAIN_ADDRESS_WIDTH);
2633 if (!domain) {
2634 printk(KERN_ERR
2635 "Allocating domain for %s failed", pci_name(pdev));
2636 return NULL;
2637 }
2638
2639 /* make sure context mapping is ok */
2640 if (unlikely(!domain_context_mapped(pdev))) {
2641 ret = domain_context_mapping(domain, pdev,
2642 CONTEXT_TT_MULTI_LEVEL);
2643 if (ret) {
2644 printk(KERN_ERR
2645 "Domain context map for %s failed",
2646 pci_name(pdev));
2647 return NULL;
2648 }
2649 }
2650
2651 return domain;
2652 }
2653
2654 static inline struct dmar_domain *get_valid_domain_for_dev(struct pci_dev *dev)
2655 {
2656 struct device_domain_info *info;
2657
2658 /* No lock here, assumes no domain exit in normal case */
2659 info = dev->dev.archdata.iommu;
2660 if (likely(info))
2661 return info->domain;
2662
2663 return __get_valid_domain_for_dev(dev);
2664 }
2665
2666 static int iommu_dummy(struct pci_dev *pdev)
2667 {
2668 return pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
2669 }
2670
2671 /* Check if the pdev needs to go through non-identity map and unmap process.*/
2672 static int iommu_no_mapping(struct device *dev)
2673 {
2674 struct pci_dev *pdev;
2675 int found;
2676
2677 if (unlikely(dev->bus != &pci_bus_type))
2678 return 1;
2679
2680 pdev = to_pci_dev(dev);
2681 if (iommu_dummy(pdev))
2682 return 1;
2683
2684 if (!iommu_identity_mapping)
2685 return 0;
2686
2687 found = identity_mapping(pdev);
2688 if (found) {
2689 if (iommu_should_identity_map(pdev, 0))
2690 return 1;
2691 else {
2692 /*
2693 * 32 bit DMA is removed from si_domain and fall back
2694 * to non-identity mapping.
2695 */
2696 domain_remove_one_dev_info(si_domain, pdev);
2697 printk(KERN_INFO "32bit %s uses non-identity mapping\n",
2698 pci_name(pdev));
2699 return 0;
2700 }
2701 } else {
2702 /*
2703 * In case of a detached 64 bit DMA device from vm, the device
2704 * is put into si_domain for identity mapping.
2705 */
2706 if (iommu_should_identity_map(pdev, 0)) {
2707 int ret;
2708 ret = domain_add_dev_info(si_domain, pdev,
2709 hw_pass_through ?
2710 CONTEXT_TT_PASS_THROUGH :
2711 CONTEXT_TT_MULTI_LEVEL);
2712 if (!ret) {
2713 printk(KERN_INFO "64bit %s uses identity mapping\n",
2714 pci_name(pdev));
2715 return 1;
2716 }
2717 }
2718 }
2719
2720 return 0;
2721 }
2722
2723 static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr,
2724 size_t size, int dir, u64 dma_mask)
2725 {
2726 struct pci_dev *pdev = to_pci_dev(hwdev);
2727 struct dmar_domain *domain;
2728 phys_addr_t start_paddr;
2729 struct iova *iova;
2730 int prot = 0;
2731 int ret;
2732 struct intel_iommu *iommu;
2733 unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
2734
2735 BUG_ON(dir == DMA_NONE);
2736
2737 if (iommu_no_mapping(hwdev))
2738 return paddr;
2739
2740 domain = get_valid_domain_for_dev(pdev);
2741 if (!domain)
2742 return 0;
2743
2744 iommu = domain_get_iommu(domain);
2745 size = aligned_nrpages(paddr, size);
2746
2747 iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size), dma_mask);
2748 if (!iova)
2749 goto error;
2750
2751 /*
2752 * Check if DMAR supports zero-length reads on write only
2753 * mappings..
2754 */
2755 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2756 !cap_zlr(iommu->cap))
2757 prot |= DMA_PTE_READ;
2758 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2759 prot |= DMA_PTE_WRITE;
2760 /*
2761 * paddr - (paddr + size) might be partial page, we should map the whole
2762 * page. Note: if two part of one page are separately mapped, we
2763 * might have two guest_addr mapping to the same host paddr, but this
2764 * is not a big problem
2765 */
2766 ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo),
2767 mm_to_dma_pfn(paddr_pfn), size, prot);
2768 if (ret)
2769 goto error;
2770
2771 /* it's a non-present to present mapping. Only flush if caching mode */
2772 if (cap_caching_mode(iommu->cap))
2773 iommu_flush_iotlb_psi(iommu, domain->id, mm_to_dma_pfn(iova->pfn_lo), size, 1);
2774 else
2775 iommu_flush_write_buffer(iommu);
2776
2777 start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
2778 start_paddr += paddr & ~PAGE_MASK;
2779 return start_paddr;
2780
2781 error:
2782 if (iova)
2783 __free_iova(&domain->iovad, iova);
2784 printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n",
2785 pci_name(pdev), size, (unsigned long long)paddr, dir);
2786 return 0;
2787 }
2788
2789 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
2790 unsigned long offset, size_t size,
2791 enum dma_data_direction dir,
2792 struct dma_attrs *attrs)
2793 {
2794 return __intel_map_single(dev, page_to_phys(page) + offset, size,
2795 dir, to_pci_dev(dev)->dma_mask);
2796 }
2797
2798 static void flush_unmaps(void)
2799 {
2800 int i, j;
2801
2802 timer_on = 0;
2803
2804 /* just flush them all */
2805 for (i = 0; i < g_num_of_iommus; i++) {
2806 struct intel_iommu *iommu = g_iommus[i];
2807 if (!iommu)
2808 continue;
2809
2810 if (!deferred_flush[i].next)
2811 continue;
2812
2813 /* In caching mode, global flushes turn emulation expensive */
2814 if (!cap_caching_mode(iommu->cap))
2815 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2816 DMA_TLB_GLOBAL_FLUSH);
2817 for (j = 0; j < deferred_flush[i].next; j++) {
2818 unsigned long mask;
2819 struct iova *iova = deferred_flush[i].iova[j];
2820 struct dmar_domain *domain = deferred_flush[i].domain[j];
2821
2822 /* On real hardware multiple invalidations are expensive */
2823 if (cap_caching_mode(iommu->cap))
2824 iommu_flush_iotlb_psi(iommu, domain->id,
2825 iova->pfn_lo, iova->pfn_hi - iova->pfn_lo + 1, 0);
2826 else {
2827 mask = ilog2(mm_to_dma_pfn(iova->pfn_hi - iova->pfn_lo + 1));
2828 iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
2829 (uint64_t)iova->pfn_lo << PAGE_SHIFT, mask);
2830 }
2831 __free_iova(&deferred_flush[i].domain[j]->iovad, iova);
2832 }
2833 deferred_flush[i].next = 0;
2834 }
2835
2836 list_size = 0;
2837 }
2838
2839 static void flush_unmaps_timeout(unsigned long data)
2840 {
2841 unsigned long flags;
2842
2843 spin_lock_irqsave(&async_umap_flush_lock, flags);
2844 flush_unmaps();
2845 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2846 }
2847
2848 static void add_unmap(struct dmar_domain *dom, struct iova *iova)
2849 {
2850 unsigned long flags;
2851 int next, iommu_id;
2852 struct intel_iommu *iommu;
2853
2854 spin_lock_irqsave(&async_umap_flush_lock, flags);
2855 if (list_size == HIGH_WATER_MARK)
2856 flush_unmaps();
2857
2858 iommu = domain_get_iommu(dom);
2859 iommu_id = iommu->seq_id;
2860
2861 next = deferred_flush[iommu_id].next;
2862 deferred_flush[iommu_id].domain[next] = dom;
2863 deferred_flush[iommu_id].iova[next] = iova;
2864 deferred_flush[iommu_id].next++;
2865
2866 if (!timer_on) {
2867 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
2868 timer_on = 1;
2869 }
2870 list_size++;
2871 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2872 }
2873
2874 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
2875 size_t size, enum dma_data_direction dir,
2876 struct dma_attrs *attrs)
2877 {
2878 struct pci_dev *pdev = to_pci_dev(dev);
2879 struct dmar_domain *domain;
2880 unsigned long start_pfn, last_pfn;
2881 struct iova *iova;
2882 struct intel_iommu *iommu;
2883
2884 if (iommu_no_mapping(dev))
2885 return;
2886
2887 domain = find_domain(pdev);
2888 BUG_ON(!domain);
2889
2890 iommu = domain_get_iommu(domain);
2891
2892 iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
2893 if (WARN_ONCE(!iova, "Driver unmaps unmatched page at PFN %llx\n",
2894 (unsigned long long)dev_addr))
2895 return;
2896
2897 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2898 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
2899
2900 pr_debug("Device %s unmapping: pfn %lx-%lx\n",
2901 pci_name(pdev), start_pfn, last_pfn);
2902
2903 /* clear the whole page */
2904 dma_pte_clear_range(domain, start_pfn, last_pfn);
2905
2906 /* free page tables */
2907 dma_pte_free_pagetable(domain, start_pfn, last_pfn);
2908
2909 if (intel_iommu_strict) {
2910 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
2911 last_pfn - start_pfn + 1, 0);
2912 /* free iova */
2913 __free_iova(&domain->iovad, iova);
2914 } else {
2915 add_unmap(domain, iova);
2916 /*
2917 * queue up the release of the unmap to save the 1/6th of the
2918 * cpu used up by the iotlb flush operation...
2919 */
2920 }
2921 }
2922
2923 static void *intel_alloc_coherent(struct device *hwdev, size_t size,
2924 dma_addr_t *dma_handle, gfp_t flags)
2925 {
2926 void *vaddr;
2927 int order;
2928
2929 size = PAGE_ALIGN(size);
2930 order = get_order(size);
2931
2932 if (!iommu_no_mapping(hwdev))
2933 flags &= ~(GFP_DMA | GFP_DMA32);
2934 else if (hwdev->coherent_dma_mask < dma_get_required_mask(hwdev)) {
2935 if (hwdev->coherent_dma_mask < DMA_BIT_MASK(32))
2936 flags |= GFP_DMA;
2937 else
2938 flags |= GFP_DMA32;
2939 }
2940
2941 vaddr = (void *)__get_free_pages(flags, order);
2942 if (!vaddr)
2943 return NULL;
2944 memset(vaddr, 0, size);
2945
2946 *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size,
2947 DMA_BIDIRECTIONAL,
2948 hwdev->coherent_dma_mask);
2949 if (*dma_handle)
2950 return vaddr;
2951 free_pages((unsigned long)vaddr, order);
2952 return NULL;
2953 }
2954
2955 static void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr,
2956 dma_addr_t dma_handle)
2957 {
2958 int order;
2959
2960 size = PAGE_ALIGN(size);
2961 order = get_order(size);
2962
2963 intel_unmap_page(hwdev, dma_handle, size, DMA_BIDIRECTIONAL, NULL);
2964 free_pages((unsigned long)vaddr, order);
2965 }
2966
2967 static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
2968 int nelems, enum dma_data_direction dir,
2969 struct dma_attrs *attrs)
2970 {
2971 struct pci_dev *pdev = to_pci_dev(hwdev);
2972 struct dmar_domain *domain;
2973 unsigned long start_pfn, last_pfn;
2974 struct iova *iova;
2975 struct intel_iommu *iommu;
2976
2977 if (iommu_no_mapping(hwdev))
2978 return;
2979
2980 domain = find_domain(pdev);
2981 BUG_ON(!domain);
2982
2983 iommu = domain_get_iommu(domain);
2984
2985 iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
2986 if (WARN_ONCE(!iova, "Driver unmaps unmatched sglist at PFN %llx\n",
2987 (unsigned long long)sglist[0].dma_address))
2988 return;
2989
2990 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2991 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
2992
2993 /* clear the whole page */
2994 dma_pte_clear_range(domain, start_pfn, last_pfn);
2995
2996 /* free page tables */
2997 dma_pte_free_pagetable(domain, start_pfn, last_pfn);
2998
2999 if (intel_iommu_strict) {
3000 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
3001 last_pfn - start_pfn + 1, 0);
3002 /* free iova */
3003 __free_iova(&domain->iovad, iova);
3004 } else {
3005 add_unmap(domain, iova);
3006 /*
3007 * queue up the release of the unmap to save the 1/6th of the
3008 * cpu used up by the iotlb flush operation...
3009 */
3010 }
3011 }
3012
3013 static int intel_nontranslate_map_sg(struct device *hddev,
3014 struct scatterlist *sglist, int nelems, int dir)
3015 {
3016 int i;
3017 struct scatterlist *sg;
3018
3019 for_each_sg(sglist, sg, nelems, i) {
3020 BUG_ON(!sg_page(sg));
3021 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
3022 sg->dma_length = sg->length;
3023 }
3024 return nelems;
3025 }
3026
3027 static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems,
3028 enum dma_data_direction dir, struct dma_attrs *attrs)
3029 {
3030 int i;
3031 struct pci_dev *pdev = to_pci_dev(hwdev);
3032 struct dmar_domain *domain;
3033 size_t size = 0;
3034 int prot = 0;
3035 struct iova *iova = NULL;
3036 int ret;
3037 struct scatterlist *sg;
3038 unsigned long start_vpfn;
3039 struct intel_iommu *iommu;
3040
3041 BUG_ON(dir == DMA_NONE);
3042 if (iommu_no_mapping(hwdev))
3043 return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
3044
3045 domain = get_valid_domain_for_dev(pdev);
3046 if (!domain)
3047 return 0;
3048
3049 iommu = domain_get_iommu(domain);
3050
3051 for_each_sg(sglist, sg, nelems, i)
3052 size += aligned_nrpages(sg->offset, sg->length);
3053
3054 iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size),
3055 pdev->dma_mask);
3056 if (!iova) {
3057 sglist->dma_length = 0;
3058 return 0;
3059 }
3060
3061 /*
3062 * Check if DMAR supports zero-length reads on write only
3063 * mappings..
3064 */
3065 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3066 !cap_zlr(iommu->cap))
3067 prot |= DMA_PTE_READ;
3068 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3069 prot |= DMA_PTE_WRITE;
3070
3071 start_vpfn = mm_to_dma_pfn(iova->pfn_lo);
3072
3073 ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3074 if (unlikely(ret)) {
3075 /* clear the page */
3076 dma_pte_clear_range(domain, start_vpfn,
3077 start_vpfn + size - 1);
3078 /* free page tables */
3079 dma_pte_free_pagetable(domain, start_vpfn,
3080 start_vpfn + size - 1);
3081 /* free iova */
3082 __free_iova(&domain->iovad, iova);
3083 return 0;
3084 }
3085
3086 /* it's a non-present to present mapping. Only flush if caching mode */
3087 if (cap_caching_mode(iommu->cap))
3088 iommu_flush_iotlb_psi(iommu, domain->id, start_vpfn, size, 1);
3089 else
3090 iommu_flush_write_buffer(iommu);
3091
3092 return nelems;
3093 }
3094
3095 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
3096 {
3097 return !dma_addr;
3098 }
3099
3100 struct dma_map_ops intel_dma_ops = {
3101 .alloc_coherent = intel_alloc_coherent,
3102 .free_coherent = intel_free_coherent,
3103 .map_sg = intel_map_sg,
3104 .unmap_sg = intel_unmap_sg,
3105 .map_page = intel_map_page,
3106 .unmap_page = intel_unmap_page,
3107 .mapping_error = intel_mapping_error,
3108 };
3109
3110 static inline int iommu_domain_cache_init(void)
3111 {
3112 int ret = 0;
3113
3114 iommu_domain_cache = kmem_cache_create("iommu_domain",
3115 sizeof(struct dmar_domain),
3116 0,
3117 SLAB_HWCACHE_ALIGN,
3118
3119 NULL);
3120 if (!iommu_domain_cache) {
3121 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
3122 ret = -ENOMEM;
3123 }
3124
3125 return ret;
3126 }
3127
3128 static inline int iommu_devinfo_cache_init(void)
3129 {
3130 int ret = 0;
3131
3132 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
3133 sizeof(struct device_domain_info),
3134 0,
3135 SLAB_HWCACHE_ALIGN,
3136 NULL);
3137 if (!iommu_devinfo_cache) {
3138 printk(KERN_ERR "Couldn't create devinfo cache\n");
3139 ret = -ENOMEM;
3140 }
3141
3142 return ret;
3143 }
3144
3145 static inline int iommu_iova_cache_init(void)
3146 {
3147 int ret = 0;
3148
3149 iommu_iova_cache = kmem_cache_create("iommu_iova",
3150 sizeof(struct iova),
3151 0,
3152 SLAB_HWCACHE_ALIGN,
3153 NULL);
3154 if (!iommu_iova_cache) {
3155 printk(KERN_ERR "Couldn't create iova cache\n");
3156 ret = -ENOMEM;
3157 }
3158
3159 return ret;
3160 }
3161
3162 static int __init iommu_init_mempool(void)
3163 {
3164 int ret;
3165 ret = iommu_iova_cache_init();
3166 if (ret)
3167 return ret;
3168
3169 ret = iommu_domain_cache_init();
3170 if (ret)
3171 goto domain_error;
3172
3173 ret = iommu_devinfo_cache_init();
3174 if (!ret)
3175 return ret;
3176
3177 kmem_cache_destroy(iommu_domain_cache);
3178 domain_error:
3179 kmem_cache_destroy(iommu_iova_cache);
3180
3181 return -ENOMEM;
3182 }
3183
3184 static void __init iommu_exit_mempool(void)
3185 {
3186 kmem_cache_destroy(iommu_devinfo_cache);
3187 kmem_cache_destroy(iommu_domain_cache);
3188 kmem_cache_destroy(iommu_iova_cache);
3189
3190 }
3191
3192 static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
3193 {
3194 struct dmar_drhd_unit *drhd;
3195 u32 vtbar;
3196 int rc;
3197
3198 /* We know that this device on this chipset has its own IOMMU.
3199 * If we find it under a different IOMMU, then the BIOS is lying
3200 * to us. Hope that the IOMMU for this device is actually
3201 * disabled, and it needs no translation...
3202 */
3203 rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
3204 if (rc) {
3205 /* "can't" happen */
3206 dev_info(&pdev->dev, "failed to run vt-d quirk\n");
3207 return;
3208 }
3209 vtbar &= 0xffff0000;
3210
3211 /* we know that the this iommu should be at offset 0xa000 from vtbar */
3212 drhd = dmar_find_matched_drhd_unit(pdev);
3213 if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
3214 TAINT_FIRMWARE_WORKAROUND,
3215 "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
3216 pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3217 }
3218 DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
3219
3220 static void __init init_no_remapping_devices(void)
3221 {
3222 struct dmar_drhd_unit *drhd;
3223
3224 for_each_drhd_unit(drhd) {
3225 if (!drhd->include_all) {
3226 int i;
3227 for (i = 0; i < drhd->devices_cnt; i++)
3228 if (drhd->devices[i] != NULL)
3229 break;
3230 /* ignore DMAR unit if no pci devices exist */
3231 if (i == drhd->devices_cnt)
3232 drhd->ignored = 1;
3233 }
3234 }
3235
3236 for_each_drhd_unit(drhd) {
3237 int i;
3238 if (drhd->ignored || drhd->include_all)
3239 continue;
3240
3241 for (i = 0; i < drhd->devices_cnt; i++)
3242 if (drhd->devices[i] &&
3243 !IS_GFX_DEVICE(drhd->devices[i]))
3244 break;
3245
3246 if (i < drhd->devices_cnt)
3247 continue;
3248
3249 /* This IOMMU has *only* gfx devices. Either bypass it or
3250 set the gfx_mapped flag, as appropriate */
3251 if (dmar_map_gfx) {
3252 intel_iommu_gfx_mapped = 1;
3253 } else {
3254 drhd->ignored = 1;
3255 for (i = 0; i < drhd->devices_cnt; i++) {
3256 if (!drhd->devices[i])
3257 continue;
3258 drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3259 }
3260 }
3261 }
3262 }
3263
3264 #ifdef CONFIG_SUSPEND
3265 static int init_iommu_hw(void)
3266 {
3267 struct dmar_drhd_unit *drhd;
3268 struct intel_iommu *iommu = NULL;
3269
3270 for_each_active_iommu(iommu, drhd)
3271 if (iommu->qi)
3272 dmar_reenable_qi(iommu);
3273
3274 for_each_iommu(iommu, drhd) {
3275 if (drhd->ignored) {
3276 /*
3277 * we always have to disable PMRs or DMA may fail on
3278 * this device
3279 */
3280 if (force_on)
3281 iommu_disable_protect_mem_regions(iommu);
3282 continue;
3283 }
3284
3285 iommu_flush_write_buffer(iommu);
3286
3287 iommu_set_root_entry(iommu);
3288
3289 iommu->flush.flush_context(iommu, 0, 0, 0,
3290 DMA_CCMD_GLOBAL_INVL);
3291 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3292 DMA_TLB_GLOBAL_FLUSH);
3293 if (iommu_enable_translation(iommu))
3294 return 1;
3295 iommu_disable_protect_mem_regions(iommu);
3296 }
3297
3298 return 0;
3299 }
3300
3301 static void iommu_flush_all(void)
3302 {
3303 struct dmar_drhd_unit *drhd;
3304 struct intel_iommu *iommu;
3305
3306 for_each_active_iommu(iommu, drhd) {
3307 iommu->flush.flush_context(iommu, 0, 0, 0,
3308 DMA_CCMD_GLOBAL_INVL);
3309 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3310 DMA_TLB_GLOBAL_FLUSH);
3311 }
3312 }
3313
3314 static int iommu_suspend(void)
3315 {
3316 struct dmar_drhd_unit *drhd;
3317 struct intel_iommu *iommu = NULL;
3318 unsigned long flag;
3319
3320 for_each_active_iommu(iommu, drhd) {
3321 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
3322 GFP_ATOMIC);
3323 if (!iommu->iommu_state)
3324 goto nomem;
3325 }
3326
3327 iommu_flush_all();
3328
3329 for_each_active_iommu(iommu, drhd) {
3330 iommu_disable_translation(iommu);
3331
3332 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3333
3334 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3335 readl(iommu->reg + DMAR_FECTL_REG);
3336 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3337 readl(iommu->reg + DMAR_FEDATA_REG);
3338 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3339 readl(iommu->reg + DMAR_FEADDR_REG);
3340 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3341 readl(iommu->reg + DMAR_FEUADDR_REG);
3342
3343 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3344 }
3345 return 0;
3346
3347 nomem:
3348 for_each_active_iommu(iommu, drhd)
3349 kfree(iommu->iommu_state);
3350
3351 return -ENOMEM;
3352 }
3353
3354 static void iommu_resume(void)
3355 {
3356 struct dmar_drhd_unit *drhd;
3357 struct intel_iommu *iommu = NULL;
3358 unsigned long flag;
3359
3360 if (init_iommu_hw()) {
3361 if (force_on)
3362 panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
3363 else
3364 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3365 return;
3366 }
3367
3368 for_each_active_iommu(iommu, drhd) {
3369
3370 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3371
3372 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3373 iommu->reg + DMAR_FECTL_REG);
3374 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3375 iommu->reg + DMAR_FEDATA_REG);
3376 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3377 iommu->reg + DMAR_FEADDR_REG);
3378 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3379 iommu->reg + DMAR_FEUADDR_REG);
3380
3381 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3382 }
3383
3384 for_each_active_iommu(iommu, drhd)
3385 kfree(iommu->iommu_state);
3386 }
3387
3388 static struct syscore_ops iommu_syscore_ops = {
3389 .resume = iommu_resume,
3390 .suspend = iommu_suspend,
3391 };
3392
3393 static void __init init_iommu_pm_ops(void)
3394 {
3395 register_syscore_ops(&iommu_syscore_ops);
3396 }
3397
3398 #else
3399 static inline void init_iommu_pm_ops(void) {}
3400 #endif /* CONFIG_PM */
3401
3402 LIST_HEAD(dmar_rmrr_units);
3403
3404 static void __init dmar_register_rmrr_unit(struct dmar_rmrr_unit *rmrr)
3405 {
3406 list_add(&rmrr->list, &dmar_rmrr_units);
3407 }
3408
3409
3410 int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header)
3411 {
3412 struct acpi_dmar_reserved_memory *rmrr;
3413 struct dmar_rmrr_unit *rmrru;
3414
3415 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
3416 if (!rmrru)
3417 return -ENOMEM;
3418
3419 rmrru->hdr = header;
3420 rmrr = (struct acpi_dmar_reserved_memory *)header;
3421 rmrru->base_address = rmrr->base_address;
3422 rmrru->end_address = rmrr->end_address;
3423
3424 dmar_register_rmrr_unit(rmrru);
3425 return 0;
3426 }
3427
3428 static int __init
3429 rmrr_parse_dev(struct dmar_rmrr_unit *rmrru)
3430 {
3431 struct acpi_dmar_reserved_memory *rmrr;
3432 int ret;
3433
3434 rmrr = (struct acpi_dmar_reserved_memory *) rmrru->hdr;
3435 ret = dmar_parse_dev_scope((void *)(rmrr + 1),
3436 ((void *)rmrr) + rmrr->header.length,
3437 &rmrru->devices_cnt, &rmrru->devices, rmrr->segment);
3438
3439 if (ret || (rmrru->devices_cnt == 0)) {
3440 list_del(&rmrru->list);
3441 kfree(rmrru);
3442 }
3443 return ret;
3444 }
3445
3446 static LIST_HEAD(dmar_atsr_units);
3447
3448 int __init dmar_parse_one_atsr(struct acpi_dmar_header *hdr)
3449 {
3450 struct acpi_dmar_atsr *atsr;
3451 struct dmar_atsr_unit *atsru;
3452
3453 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
3454 atsru = kzalloc(sizeof(*atsru), GFP_KERNEL);
3455 if (!atsru)
3456 return -ENOMEM;
3457
3458 atsru->hdr = hdr;
3459 atsru->include_all = atsr->flags & 0x1;
3460
3461 list_add(&atsru->list, &dmar_atsr_units);
3462
3463 return 0;
3464 }
3465
3466 static int __init atsr_parse_dev(struct dmar_atsr_unit *atsru)
3467 {
3468 int rc;
3469 struct acpi_dmar_atsr *atsr;
3470
3471 if (atsru->include_all)
3472 return 0;
3473
3474 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
3475 rc = dmar_parse_dev_scope((void *)(atsr + 1),
3476 (void *)atsr + atsr->header.length,
3477 &atsru->devices_cnt, &atsru->devices,
3478 atsr->segment);
3479 if (rc || !atsru->devices_cnt) {
3480 list_del(&atsru->list);
3481 kfree(atsru);
3482 }
3483
3484 return rc;
3485 }
3486
3487 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
3488 {
3489 int i;
3490 struct pci_bus *bus;
3491 struct acpi_dmar_atsr *atsr;
3492 struct dmar_atsr_unit *atsru;
3493
3494 dev = pci_physfn(dev);
3495
3496 list_for_each_entry(atsru, &dmar_atsr_units, list) {
3497 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
3498 if (atsr->segment == pci_domain_nr(dev->bus))
3499 goto found;
3500 }
3501
3502 return 0;
3503
3504 found:
3505 for (bus = dev->bus; bus; bus = bus->parent) {
3506 struct pci_dev *bridge = bus->self;
3507
3508 if (!bridge || !pci_is_pcie(bridge) ||
3509 bridge->pcie_type == PCI_EXP_TYPE_PCI_BRIDGE)
3510 return 0;
3511
3512 if (bridge->pcie_type == PCI_EXP_TYPE_ROOT_PORT) {
3513 for (i = 0; i < atsru->devices_cnt; i++)
3514 if (atsru->devices[i] == bridge)
3515 return 1;
3516 break;
3517 }
3518 }
3519
3520 if (atsru->include_all)
3521 return 1;
3522
3523 return 0;
3524 }
3525
3526 int dmar_parse_rmrr_atsr_dev(void)
3527 {
3528 struct dmar_rmrr_unit *rmrr, *rmrr_n;
3529 struct dmar_atsr_unit *atsr, *atsr_n;
3530 int ret = 0;
3531
3532 list_for_each_entry_safe(rmrr, rmrr_n, &dmar_rmrr_units, list) {
3533 ret = rmrr_parse_dev(rmrr);
3534 if (ret)
3535 return ret;
3536 }
3537
3538 list_for_each_entry_safe(atsr, atsr_n, &dmar_atsr_units, list) {
3539 ret = atsr_parse_dev(atsr);
3540 if (ret)
3541 return ret;
3542 }
3543
3544 return ret;
3545 }
3546
3547 /*
3548 * Here we only respond to action of unbound device from driver.
3549 *
3550 * Added device is not attached to its DMAR domain here yet. That will happen
3551 * when mapping the device to iova.
3552 */
3553 static int device_notifier(struct notifier_block *nb,
3554 unsigned long action, void *data)
3555 {
3556 struct device *dev = data;
3557 struct pci_dev *pdev = to_pci_dev(dev);
3558 struct dmar_domain *domain;
3559
3560 if (iommu_no_mapping(dev))
3561 return 0;
3562
3563 domain = find_domain(pdev);
3564 if (!domain)
3565 return 0;
3566
3567 if (action == BUS_NOTIFY_UNBOUND_DRIVER && !iommu_pass_through) {
3568 domain_remove_one_dev_info(domain, pdev);
3569
3570 if (!(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) &&
3571 !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) &&
3572 list_empty(&domain->devices))
3573 domain_exit(domain);
3574 }
3575
3576 return 0;
3577 }
3578
3579 static struct notifier_block device_nb = {
3580 .notifier_call = device_notifier,
3581 };
3582
3583 int __init intel_iommu_init(void)
3584 {
3585 int ret = 0;
3586
3587 /* VT-d is required for a TXT/tboot launch, so enforce that */
3588 force_on = tboot_force_iommu();
3589
3590 if (dmar_table_init()) {
3591 if (force_on)
3592 panic("tboot: Failed to initialize DMAR table\n");
3593 return -ENODEV;
3594 }
3595
3596 if (dmar_dev_scope_init() < 0) {
3597 if (force_on)
3598 panic("tboot: Failed to initialize DMAR device scope\n");
3599 return -ENODEV;
3600 }
3601
3602 if (no_iommu || dmar_disabled)
3603 return -ENODEV;
3604
3605 if (iommu_init_mempool()) {
3606 if (force_on)
3607 panic("tboot: Failed to initialize iommu memory\n");
3608 return -ENODEV;
3609 }
3610
3611 if (list_empty(&dmar_rmrr_units))
3612 printk(KERN_INFO "DMAR: No RMRR found\n");
3613
3614 if (list_empty(&dmar_atsr_units))
3615 printk(KERN_INFO "DMAR: No ATSR found\n");
3616
3617 if (dmar_init_reserved_ranges()) {
3618 if (force_on)
3619 panic("tboot: Failed to reserve iommu ranges\n");
3620 return -ENODEV;
3621 }
3622
3623 init_no_remapping_devices();
3624
3625 ret = init_dmars();
3626 if (ret) {
3627 if (force_on)
3628 panic("tboot: Failed to initialize DMARs\n");
3629 printk(KERN_ERR "IOMMU: dmar init failed\n");
3630 put_iova_domain(&reserved_iova_list);
3631 iommu_exit_mempool();
3632 return ret;
3633 }
3634 printk(KERN_INFO
3635 "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
3636
3637 init_timer(&unmap_timer);
3638 #ifdef CONFIG_SWIOTLB
3639 swiotlb = 0;
3640 #endif
3641 dma_ops = &intel_dma_ops;
3642
3643 init_iommu_pm_ops();
3644
3645 bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
3646
3647 bus_register_notifier(&pci_bus_type, &device_nb);
3648
3649 return 0;
3650 }
3651
3652 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
3653 struct pci_dev *pdev)
3654 {
3655 struct pci_dev *tmp, *parent;
3656
3657 if (!iommu || !pdev)
3658 return;
3659
3660 /* dependent device detach */
3661 tmp = pci_find_upstream_pcie_bridge(pdev);
3662 /* Secondary interface's bus number and devfn 0 */
3663 if (tmp) {
3664 parent = pdev->bus->self;
3665 while (parent != tmp) {
3666 iommu_detach_dev(iommu, parent->bus->number,
3667 parent->devfn);
3668 parent = parent->bus->self;
3669 }
3670 if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */
3671 iommu_detach_dev(iommu,
3672 tmp->subordinate->number, 0);
3673 else /* this is a legacy PCI bridge */
3674 iommu_detach_dev(iommu, tmp->bus->number,
3675 tmp->devfn);
3676 }
3677 }
3678
3679 static void domain_remove_one_dev_info(struct dmar_domain *domain,
3680 struct pci_dev *pdev)
3681 {
3682 struct device_domain_info *info;
3683 struct intel_iommu *iommu;
3684 unsigned long flags;
3685 int found = 0;
3686 struct list_head *entry, *tmp;
3687
3688 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3689 pdev->devfn);
3690 if (!iommu)
3691 return;
3692
3693 spin_lock_irqsave(&device_domain_lock, flags);
3694 list_for_each_safe(entry, tmp, &domain->devices) {
3695 info = list_entry(entry, struct device_domain_info, link);
3696 if (info->segment == pci_domain_nr(pdev->bus) &&
3697 info->bus == pdev->bus->number &&
3698 info->devfn == pdev->devfn) {
3699 list_del(&info->link);
3700 list_del(&info->global);
3701 if (info->dev)
3702 info->dev->dev.archdata.iommu = NULL;
3703 spin_unlock_irqrestore(&device_domain_lock, flags);
3704
3705 iommu_disable_dev_iotlb(info);
3706 iommu_detach_dev(iommu, info->bus, info->devfn);
3707 iommu_detach_dependent_devices(iommu, pdev);
3708 free_devinfo_mem(info);
3709
3710 spin_lock_irqsave(&device_domain_lock, flags);
3711
3712 if (found)
3713 break;
3714 else
3715 continue;
3716 }
3717
3718 /* if there is no other devices under the same iommu
3719 * owned by this domain, clear this iommu in iommu_bmp
3720 * update iommu count and coherency
3721 */
3722 if (iommu == device_to_iommu(info->segment, info->bus,
3723 info->devfn))
3724 found = 1;
3725 }
3726
3727 spin_unlock_irqrestore(&device_domain_lock, flags);
3728
3729 if (found == 0) {
3730 unsigned long tmp_flags;
3731 spin_lock_irqsave(&domain->iommu_lock, tmp_flags);
3732 clear_bit(iommu->seq_id, &domain->iommu_bmp);
3733 domain->iommu_count--;
3734 domain_update_iommu_cap(domain);
3735 spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags);
3736
3737 if (!(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) &&
3738 !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)) {
3739 spin_lock_irqsave(&iommu->lock, tmp_flags);
3740 clear_bit(domain->id, iommu->domain_ids);
3741 iommu->domains[domain->id] = NULL;
3742 spin_unlock_irqrestore(&iommu->lock, tmp_flags);
3743 }
3744 }
3745 }
3746
3747 static void vm_domain_remove_all_dev_info(struct dmar_domain *domain)
3748 {
3749 struct device_domain_info *info;
3750 struct intel_iommu *iommu;
3751 unsigned long flags1, flags2;
3752
3753 spin_lock_irqsave(&device_domain_lock, flags1);
3754 while (!list_empty(&domain->devices)) {
3755 info = list_entry(domain->devices.next,
3756 struct device_domain_info, link);
3757 list_del(&info->link);
3758 list_del(&info->global);
3759 if (info->dev)
3760 info->dev->dev.archdata.iommu = NULL;
3761
3762 spin_unlock_irqrestore(&device_domain_lock, flags1);
3763
3764 iommu_disable_dev_iotlb(info);
3765 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
3766 iommu_detach_dev(iommu, info->bus, info->devfn);
3767 iommu_detach_dependent_devices(iommu, info->dev);
3768
3769 /* clear this iommu in iommu_bmp, update iommu count
3770 * and capabilities
3771 */
3772 spin_lock_irqsave(&domain->iommu_lock, flags2);
3773 if (test_and_clear_bit(iommu->seq_id,
3774 &domain->iommu_bmp)) {
3775 domain->iommu_count--;
3776 domain_update_iommu_cap(domain);
3777 }
3778 spin_unlock_irqrestore(&domain->iommu_lock, flags2);
3779
3780 free_devinfo_mem(info);
3781 spin_lock_irqsave(&device_domain_lock, flags1);
3782 }
3783 spin_unlock_irqrestore(&device_domain_lock, flags1);
3784 }
3785
3786 /* domain id for virtual machine, it won't be set in context */
3787 static unsigned long vm_domid;
3788
3789 static struct dmar_domain *iommu_alloc_vm_domain(void)
3790 {
3791 struct dmar_domain *domain;
3792
3793 domain = alloc_domain_mem();
3794 if (!domain)
3795 return NULL;
3796
3797 domain->id = vm_domid++;
3798 domain->nid = -1;
3799 memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
3800 domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE;
3801
3802 return domain;
3803 }
3804
3805 static int md_domain_init(struct dmar_domain *domain, int guest_width)
3806 {
3807 int adjust_width;
3808
3809 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
3810 spin_lock_init(&domain->iommu_lock);
3811
3812 domain_reserve_special_ranges(domain);
3813
3814 /* calculate AGAW */
3815 domain->gaw = guest_width;
3816 adjust_width = guestwidth_to_adjustwidth(guest_width);
3817 domain->agaw = width_to_agaw(adjust_width);
3818
3819 INIT_LIST_HEAD(&domain->devices);
3820
3821 domain->iommu_count = 0;
3822 domain->iommu_coherency = 0;
3823 domain->iommu_snooping = 0;
3824 domain->iommu_superpage = 0;
3825 domain->max_addr = 0;
3826 domain->nid = -1;
3827
3828 /* always allocate the top pgd */
3829 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
3830 if (!domain->pgd)
3831 return -ENOMEM;
3832 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
3833 return 0;
3834 }
3835
3836 static void iommu_free_vm_domain(struct dmar_domain *domain)
3837 {
3838 unsigned long flags;
3839 struct dmar_drhd_unit *drhd;
3840 struct intel_iommu *iommu;
3841 unsigned long i;
3842 unsigned long ndomains;
3843
3844 for_each_drhd_unit(drhd) {
3845 if (drhd->ignored)
3846 continue;
3847 iommu = drhd->iommu;
3848
3849 ndomains = cap_ndoms(iommu->cap);
3850 for_each_set_bit(i, iommu->domain_ids, ndomains) {
3851 if (iommu->domains[i] == domain) {
3852 spin_lock_irqsave(&iommu->lock, flags);
3853 clear_bit(i, iommu->domain_ids);
3854 iommu->domains[i] = NULL;
3855 spin_unlock_irqrestore(&iommu->lock, flags);
3856 break;
3857 }
3858 }
3859 }
3860 }
3861
3862 static void vm_domain_exit(struct dmar_domain *domain)
3863 {
3864 /* Domain 0 is reserved, so dont process it */
3865 if (!domain)
3866 return;
3867
3868 vm_domain_remove_all_dev_info(domain);
3869 /* destroy iovas */
3870 put_iova_domain(&domain->iovad);
3871
3872 /* clear ptes */
3873 dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3874
3875 /* free page tables */
3876 dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3877
3878 iommu_free_vm_domain(domain);
3879 free_domain_mem(domain);
3880 }
3881
3882 static int intel_iommu_domain_init(struct iommu_domain *domain)
3883 {
3884 struct dmar_domain *dmar_domain;
3885
3886 dmar_domain = iommu_alloc_vm_domain();
3887 if (!dmar_domain) {
3888 printk(KERN_ERR
3889 "intel_iommu_domain_init: dmar_domain == NULL\n");
3890 return -ENOMEM;
3891 }
3892 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
3893 printk(KERN_ERR
3894 "intel_iommu_domain_init() failed\n");
3895 vm_domain_exit(dmar_domain);
3896 return -ENOMEM;
3897 }
3898 domain_update_iommu_cap(dmar_domain);
3899 domain->priv = dmar_domain;
3900
3901 return 0;
3902 }
3903
3904 static void intel_iommu_domain_destroy(struct iommu_domain *domain)
3905 {
3906 struct dmar_domain *dmar_domain = domain->priv;
3907
3908 domain->priv = NULL;
3909 vm_domain_exit(dmar_domain);
3910 }
3911
3912 static int intel_iommu_attach_device(struct iommu_domain *domain,
3913 struct device *dev)
3914 {
3915 struct dmar_domain *dmar_domain = domain->priv;
3916 struct pci_dev *pdev = to_pci_dev(dev);
3917 struct intel_iommu *iommu;
3918 int addr_width;
3919
3920 /* normally pdev is not mapped */
3921 if (unlikely(domain_context_mapped(pdev))) {
3922 struct dmar_domain *old_domain;
3923
3924 old_domain = find_domain(pdev);
3925 if (old_domain) {
3926 if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
3927 dmar_domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)
3928 domain_remove_one_dev_info(old_domain, pdev);
3929 else
3930 domain_remove_dev_info(old_domain);
3931 }
3932 }
3933
3934 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3935 pdev->devfn);
3936 if (!iommu)
3937 return -ENODEV;
3938
3939 /* check if this iommu agaw is sufficient for max mapped address */
3940 addr_width = agaw_to_width(iommu->agaw);
3941 if (addr_width > cap_mgaw(iommu->cap))
3942 addr_width = cap_mgaw(iommu->cap);
3943
3944 if (dmar_domain->max_addr > (1LL << addr_width)) {
3945 printk(KERN_ERR "%s: iommu width (%d) is not "
3946 "sufficient for the mapped address (%llx)\n",
3947 __func__, addr_width, dmar_domain->max_addr);
3948 return -EFAULT;
3949 }
3950 dmar_domain->gaw = addr_width;
3951
3952 /*
3953 * Knock out extra levels of page tables if necessary
3954 */
3955 while (iommu->agaw < dmar_domain->agaw) {
3956 struct dma_pte *pte;
3957
3958 pte = dmar_domain->pgd;
3959 if (dma_pte_present(pte)) {
3960 dmar_domain->pgd = (struct dma_pte *)
3961 phys_to_virt(dma_pte_addr(pte));
3962 free_pgtable_page(pte);
3963 }
3964 dmar_domain->agaw--;
3965 }
3966
3967 return domain_add_dev_info(dmar_domain, pdev, CONTEXT_TT_MULTI_LEVEL);
3968 }
3969
3970 static void intel_iommu_detach_device(struct iommu_domain *domain,
3971 struct device *dev)
3972 {
3973 struct dmar_domain *dmar_domain = domain->priv;
3974 struct pci_dev *pdev = to_pci_dev(dev);
3975
3976 domain_remove_one_dev_info(dmar_domain, pdev);
3977 }
3978
3979 static int intel_iommu_map(struct iommu_domain *domain,
3980 unsigned long iova, phys_addr_t hpa,
3981 int gfp_order, int iommu_prot)
3982 {
3983 struct dmar_domain *dmar_domain = domain->priv;
3984 u64 max_addr;
3985 int prot = 0;
3986 size_t size;
3987 int ret;
3988
3989 if (iommu_prot & IOMMU_READ)
3990 prot |= DMA_PTE_READ;
3991 if (iommu_prot & IOMMU_WRITE)
3992 prot |= DMA_PTE_WRITE;
3993 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
3994 prot |= DMA_PTE_SNP;
3995
3996 size = PAGE_SIZE << gfp_order;
3997 max_addr = iova + size;
3998 if (dmar_domain->max_addr < max_addr) {
3999 u64 end;
4000
4001 /* check if minimum agaw is sufficient for mapped address */
4002 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
4003 if (end < max_addr) {
4004 printk(KERN_ERR "%s: iommu width (%d) is not "
4005 "sufficient for the mapped address (%llx)\n",
4006 __func__, dmar_domain->gaw, max_addr);
4007 return -EFAULT;
4008 }
4009 dmar_domain->max_addr = max_addr;
4010 }
4011 /* Round up size to next multiple of PAGE_SIZE, if it and
4012 the low bits of hpa would take us onto the next page */
4013 size = aligned_nrpages(hpa, size);
4014 ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
4015 hpa >> VTD_PAGE_SHIFT, size, prot);
4016 return ret;
4017 }
4018
4019 static int intel_iommu_unmap(struct iommu_domain *domain,
4020 unsigned long iova, int gfp_order)
4021 {
4022 struct dmar_domain *dmar_domain = domain->priv;
4023 size_t size = PAGE_SIZE << gfp_order;
4024 int order;
4025
4026 order = dma_pte_clear_range(dmar_domain, iova >> VTD_PAGE_SHIFT,
4027 (iova + size - 1) >> VTD_PAGE_SHIFT);
4028
4029 if (dmar_domain->max_addr == iova + size)
4030 dmar_domain->max_addr = iova;
4031
4032 return order;
4033 }
4034
4035 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
4036 unsigned long iova)
4037 {
4038 struct dmar_domain *dmar_domain = domain->priv;
4039 struct dma_pte *pte;
4040 u64 phys = 0;
4041
4042 pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, 0);
4043 if (pte)
4044 phys = dma_pte_addr(pte);
4045
4046 return phys;
4047 }
4048
4049 static int intel_iommu_domain_has_cap(struct iommu_domain *domain,
4050 unsigned long cap)
4051 {
4052 struct dmar_domain *dmar_domain = domain->priv;
4053
4054 if (cap == IOMMU_CAP_CACHE_COHERENCY)
4055 return dmar_domain->iommu_snooping;
4056 if (cap == IOMMU_CAP_INTR_REMAP)
4057 return intr_remapping_enabled;
4058
4059 return 0;
4060 }
4061
4062 static struct iommu_ops intel_iommu_ops = {
4063 .domain_init = intel_iommu_domain_init,
4064 .domain_destroy = intel_iommu_domain_destroy,
4065 .attach_dev = intel_iommu_attach_device,
4066 .detach_dev = intel_iommu_detach_device,
4067 .map = intel_iommu_map,
4068 .unmap = intel_iommu_unmap,
4069 .iova_to_phys = intel_iommu_iova_to_phys,
4070 .domain_has_cap = intel_iommu_domain_has_cap,
4071 };
4072
4073 static void __devinit quirk_iommu_rwbf(struct pci_dev *dev)
4074 {
4075 /*
4076 * Mobile 4 Series Chipset neglects to set RWBF capability,
4077 * but needs it:
4078 */
4079 printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n");
4080 rwbf_quirk = 1;
4081
4082 /* https://bugzilla.redhat.com/show_bug.cgi?id=538163 */
4083 if (dev->revision == 0x07) {
4084 printk(KERN_INFO "DMAR: Disabling IOMMU for graphics on this chipset\n");
4085 dmar_map_gfx = 0;
4086 }
4087 }
4088
4089 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
4090
4091 #define GGC 0x52
4092 #define GGC_MEMORY_SIZE_MASK (0xf << 8)
4093 #define GGC_MEMORY_SIZE_NONE (0x0 << 8)
4094 #define GGC_MEMORY_SIZE_1M (0x1 << 8)
4095 #define GGC_MEMORY_SIZE_2M (0x3 << 8)
4096 #define GGC_MEMORY_VT_ENABLED (0x8 << 8)
4097 #define GGC_MEMORY_SIZE_2M_VT (0x9 << 8)
4098 #define GGC_MEMORY_SIZE_3M_VT (0xa << 8)
4099 #define GGC_MEMORY_SIZE_4M_VT (0xb << 8)
4100
4101 static void __devinit quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
4102 {
4103 unsigned short ggc;
4104
4105 if (pci_read_config_word(dev, GGC, &ggc))
4106 return;
4107
4108 if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
4109 printk(KERN_INFO "DMAR: BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
4110 dmar_map_gfx = 0;
4111 } else if (dmar_map_gfx) {
4112 /* we have to ensure the gfx device is idle before we flush */
4113 printk(KERN_INFO "DMAR: Disabling batched IOTLB flush on Ironlake\n");
4114 intel_iommu_strict = 1;
4115 }
4116 }
4117 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
4118 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
4119 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
4120 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
4121
4122 /* On Tylersburg chipsets, some BIOSes have been known to enable the
4123 ISOCH DMAR unit for the Azalia sound device, but not give it any
4124 TLB entries, which causes it to deadlock. Check for that. We do
4125 this in a function called from init_dmars(), instead of in a PCI
4126 quirk, because we don't want to print the obnoxious "BIOS broken"
4127 message if VT-d is actually disabled.
4128 */
4129 static void __init check_tylersburg_isoch(void)
4130 {
4131 struct pci_dev *pdev;
4132 uint32_t vtisochctrl;
4133
4134 /* If there's no Azalia in the system anyway, forget it. */
4135 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
4136 if (!pdev)
4137 return;
4138 pci_dev_put(pdev);
4139
4140 /* System Management Registers. Might be hidden, in which case
4141 we can't do the sanity check. But that's OK, because the
4142 known-broken BIOSes _don't_ actually hide it, so far. */
4143 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
4144 if (!pdev)
4145 return;
4146
4147 if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
4148 pci_dev_put(pdev);
4149 return;
4150 }
4151
4152 pci_dev_put(pdev);
4153
4154 /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
4155 if (vtisochctrl & 1)
4156 return;
4157
4158 /* Drop all bits other than the number of TLB entries */
4159 vtisochctrl &= 0x1c;
4160
4161 /* If we have the recommended number of TLB entries (16), fine. */
4162 if (vtisochctrl == 0x10)
4163 return;
4164
4165 /* Zero TLB entries? You get to ride the short bus to school. */
4166 if (!vtisochctrl) {
4167 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
4168 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
4169 dmi_get_system_info(DMI_BIOS_VENDOR),
4170 dmi_get_system_info(DMI_BIOS_VERSION),
4171 dmi_get_system_info(DMI_PRODUCT_VERSION));
4172 iommu_identity_mapping |= IDENTMAP_AZALIA;
4173 return;
4174 }
4175
4176 printk(KERN_WARNING "DMAR: Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
4177 vtisochctrl);
4178 }
This page took 0.148149 seconds and 5 git commands to generate.