iommu/vt-d: Remove unused variable
[deliverable/linux.git] / drivers / iommu / intel-iommu.c
1 /*
2 * Copyright © 2006-2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * Authors: David Woodhouse <dwmw2@infradead.org>,
14 * Ashok Raj <ashok.raj@intel.com>,
15 * Shaohua Li <shaohua.li@intel.com>,
16 * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
17 * Fenghua Yu <fenghua.yu@intel.com>
18 */
19
20 #include <linux/init.h>
21 #include <linux/bitmap.h>
22 #include <linux/debugfs.h>
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/irq.h>
26 #include <linux/interrupt.h>
27 #include <linux/spinlock.h>
28 #include <linux/pci.h>
29 #include <linux/dmar.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/mempool.h>
32 #include <linux/memory.h>
33 #include <linux/timer.h>
34 #include <linux/iova.h>
35 #include <linux/iommu.h>
36 #include <linux/intel-iommu.h>
37 #include <linux/syscore_ops.h>
38 #include <linux/tboot.h>
39 #include <linux/dmi.h>
40 #include <linux/pci-ats.h>
41 #include <linux/memblock.h>
42 #include <linux/dma-contiguous.h>
43 #include <asm/irq_remapping.h>
44 #include <asm/cacheflush.h>
45 #include <asm/iommu.h>
46
47 #include "irq_remapping.h"
48
49 #define ROOT_SIZE VTD_PAGE_SIZE
50 #define CONTEXT_SIZE VTD_PAGE_SIZE
51
52 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
53 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
54 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
55
56 #define IOAPIC_RANGE_START (0xfee00000)
57 #define IOAPIC_RANGE_END (0xfeefffff)
58 #define IOVA_START_ADDR (0x1000)
59
60 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
61
62 #define MAX_AGAW_WIDTH 64
63 #define MAX_AGAW_PFN_WIDTH (MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
64
65 #define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
66 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
67
68 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
69 to match. That way, we can use 'unsigned long' for PFNs with impunity. */
70 #define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \
71 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
72 #define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
73
74 /* IO virtual address start page frame number */
75 #define IOVA_START_PFN (1)
76
77 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
78 #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
79 #define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
80
81 /* page table handling */
82 #define LEVEL_STRIDE (9)
83 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
84
85 /*
86 * This bitmap is used to advertise the page sizes our hardware support
87 * to the IOMMU core, which will then use this information to split
88 * physically contiguous memory regions it is mapping into page sizes
89 * that we support.
90 *
91 * Traditionally the IOMMU core just handed us the mappings directly,
92 * after making sure the size is an order of a 4KiB page and that the
93 * mapping has natural alignment.
94 *
95 * To retain this behavior, we currently advertise that we support
96 * all page sizes that are an order of 4KiB.
97 *
98 * If at some point we'd like to utilize the IOMMU core's new behavior,
99 * we could change this to advertise the real page sizes we support.
100 */
101 #define INTEL_IOMMU_PGSIZES (~0xFFFUL)
102
103 static inline int agaw_to_level(int agaw)
104 {
105 return agaw + 2;
106 }
107
108 static inline int agaw_to_width(int agaw)
109 {
110 return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
111 }
112
113 static inline int width_to_agaw(int width)
114 {
115 return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
116 }
117
118 static inline unsigned int level_to_offset_bits(int level)
119 {
120 return (level - 1) * LEVEL_STRIDE;
121 }
122
123 static inline int pfn_level_offset(unsigned long pfn, int level)
124 {
125 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
126 }
127
128 static inline unsigned long level_mask(int level)
129 {
130 return -1UL << level_to_offset_bits(level);
131 }
132
133 static inline unsigned long level_size(int level)
134 {
135 return 1UL << level_to_offset_bits(level);
136 }
137
138 static inline unsigned long align_to_level(unsigned long pfn, int level)
139 {
140 return (pfn + level_size(level) - 1) & level_mask(level);
141 }
142
143 static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
144 {
145 return 1 << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
146 }
147
148 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
149 are never going to work. */
150 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
151 {
152 return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
153 }
154
155 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
156 {
157 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
158 }
159 static inline unsigned long page_to_dma_pfn(struct page *pg)
160 {
161 return mm_to_dma_pfn(page_to_pfn(pg));
162 }
163 static inline unsigned long virt_to_dma_pfn(void *p)
164 {
165 return page_to_dma_pfn(virt_to_page(p));
166 }
167
168 /* global iommu list, set NULL for ignored DMAR units */
169 static struct intel_iommu **g_iommus;
170
171 static void __init check_tylersburg_isoch(void);
172 static int rwbf_quirk;
173
174 /*
175 * set to 1 to panic kernel if can't successfully enable VT-d
176 * (used when kernel is launched w/ TXT)
177 */
178 static int force_on = 0;
179
180 /*
181 * 0: Present
182 * 1-11: Reserved
183 * 12-63: Context Ptr (12 - (haw-1))
184 * 64-127: Reserved
185 */
186 struct root_entry {
187 u64 val;
188 u64 rsvd1;
189 };
190 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
191 static inline bool root_present(struct root_entry *root)
192 {
193 return (root->val & 1);
194 }
195 static inline void set_root_present(struct root_entry *root)
196 {
197 root->val |= 1;
198 }
199 static inline void set_root_value(struct root_entry *root, unsigned long value)
200 {
201 root->val &= ~VTD_PAGE_MASK;
202 root->val |= value & VTD_PAGE_MASK;
203 }
204
205 static inline struct context_entry *
206 get_context_addr_from_root(struct root_entry *root)
207 {
208 return (struct context_entry *)
209 (root_present(root)?phys_to_virt(
210 root->val & VTD_PAGE_MASK) :
211 NULL);
212 }
213
214 /*
215 * low 64 bits:
216 * 0: present
217 * 1: fault processing disable
218 * 2-3: translation type
219 * 12-63: address space root
220 * high 64 bits:
221 * 0-2: address width
222 * 3-6: aval
223 * 8-23: domain id
224 */
225 struct context_entry {
226 u64 lo;
227 u64 hi;
228 };
229
230 static inline bool context_present(struct context_entry *context)
231 {
232 return (context->lo & 1);
233 }
234 static inline void context_set_present(struct context_entry *context)
235 {
236 context->lo |= 1;
237 }
238
239 static inline void context_set_fault_enable(struct context_entry *context)
240 {
241 context->lo &= (((u64)-1) << 2) | 1;
242 }
243
244 static inline void context_set_translation_type(struct context_entry *context,
245 unsigned long value)
246 {
247 context->lo &= (((u64)-1) << 4) | 3;
248 context->lo |= (value & 3) << 2;
249 }
250
251 static inline void context_set_address_root(struct context_entry *context,
252 unsigned long value)
253 {
254 context->lo &= ~VTD_PAGE_MASK;
255 context->lo |= value & VTD_PAGE_MASK;
256 }
257
258 static inline void context_set_address_width(struct context_entry *context,
259 unsigned long value)
260 {
261 context->hi |= value & 7;
262 }
263
264 static inline void context_set_domain_id(struct context_entry *context,
265 unsigned long value)
266 {
267 context->hi |= (value & ((1 << 16) - 1)) << 8;
268 }
269
270 static inline void context_clear_entry(struct context_entry *context)
271 {
272 context->lo = 0;
273 context->hi = 0;
274 }
275
276 /*
277 * 0: readable
278 * 1: writable
279 * 2-6: reserved
280 * 7: super page
281 * 8-10: available
282 * 11: snoop behavior
283 * 12-63: Host physcial address
284 */
285 struct dma_pte {
286 u64 val;
287 };
288
289 static inline void dma_clear_pte(struct dma_pte *pte)
290 {
291 pte->val = 0;
292 }
293
294 static inline u64 dma_pte_addr(struct dma_pte *pte)
295 {
296 #ifdef CONFIG_64BIT
297 return pte->val & VTD_PAGE_MASK;
298 #else
299 /* Must have a full atomic 64-bit read */
300 return __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
301 #endif
302 }
303
304 static inline bool dma_pte_present(struct dma_pte *pte)
305 {
306 return (pte->val & 3) != 0;
307 }
308
309 static inline bool dma_pte_superpage(struct dma_pte *pte)
310 {
311 return (pte->val & DMA_PTE_LARGE_PAGE);
312 }
313
314 static inline int first_pte_in_page(struct dma_pte *pte)
315 {
316 return !((unsigned long)pte & ~VTD_PAGE_MASK);
317 }
318
319 /*
320 * This domain is a statically identity mapping domain.
321 * 1. This domain creats a static 1:1 mapping to all usable memory.
322 * 2. It maps to each iommu if successful.
323 * 3. Each iommu mapps to this domain if successful.
324 */
325 static struct dmar_domain *si_domain;
326 static int hw_pass_through = 1;
327
328 /* domain represents a virtual machine, more than one devices
329 * across iommus may be owned in one domain, e.g. kvm guest.
330 */
331 #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 0)
332
333 /* si_domain contains mulitple devices */
334 #define DOMAIN_FLAG_STATIC_IDENTITY (1 << 1)
335
336 struct dmar_domain {
337 int id; /* domain id */
338 int nid; /* node id */
339 DECLARE_BITMAP(iommu_bmp, DMAR_UNITS_SUPPORTED);
340 /* bitmap of iommus this domain uses*/
341
342 struct list_head devices; /* all devices' list */
343 struct iova_domain iovad; /* iova's that belong to this domain */
344
345 struct dma_pte *pgd; /* virtual address */
346 int gaw; /* max guest address width */
347
348 /* adjusted guest address width, 0 is level 2 30-bit */
349 int agaw;
350
351 int flags; /* flags to find out type of domain */
352
353 int iommu_coherency;/* indicate coherency of iommu access */
354 int iommu_snooping; /* indicate snooping control feature*/
355 int iommu_count; /* reference count of iommu */
356 int iommu_superpage;/* Level of superpages supported:
357 0 == 4KiB (no superpages), 1 == 2MiB,
358 2 == 1GiB, 3 == 512GiB, 4 == 1TiB */
359 spinlock_t iommu_lock; /* protect iommu set in domain */
360 u64 max_addr; /* maximum mapped address */
361 };
362
363 /* PCI domain-device relationship */
364 struct device_domain_info {
365 struct list_head link; /* link to domain siblings */
366 struct list_head global; /* link to global list */
367 u8 bus; /* PCI bus number */
368 u8 devfn; /* PCI devfn number */
369 struct device *dev; /* it's NULL for PCIe-to-PCI bridge */
370 struct intel_iommu *iommu; /* IOMMU used by this device */
371 struct dmar_domain *domain; /* pointer to domain */
372 };
373
374 struct dmar_rmrr_unit {
375 struct list_head list; /* list of rmrr units */
376 struct acpi_dmar_header *hdr; /* ACPI header */
377 u64 base_address; /* reserved base address*/
378 u64 end_address; /* reserved end address */
379 struct dmar_dev_scope *devices; /* target devices */
380 int devices_cnt; /* target device count */
381 };
382
383 struct dmar_atsr_unit {
384 struct list_head list; /* list of ATSR units */
385 struct acpi_dmar_header *hdr; /* ACPI header */
386 struct dmar_dev_scope *devices; /* target devices */
387 int devices_cnt; /* target device count */
388 u8 include_all:1; /* include all ports */
389 };
390
391 static LIST_HEAD(dmar_atsr_units);
392 static LIST_HEAD(dmar_rmrr_units);
393
394 #define for_each_rmrr_units(rmrr) \
395 list_for_each_entry(rmrr, &dmar_rmrr_units, list)
396
397 static void flush_unmaps_timeout(unsigned long data);
398
399 static DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0);
400
401 #define HIGH_WATER_MARK 250
402 struct deferred_flush_tables {
403 int next;
404 struct iova *iova[HIGH_WATER_MARK];
405 struct dmar_domain *domain[HIGH_WATER_MARK];
406 struct page *freelist[HIGH_WATER_MARK];
407 };
408
409 static struct deferred_flush_tables *deferred_flush;
410
411 /* bitmap for indexing intel_iommus */
412 static int g_num_of_iommus;
413
414 static DEFINE_SPINLOCK(async_umap_flush_lock);
415 static LIST_HEAD(unmaps_to_do);
416
417 static int timer_on;
418 static long list_size;
419
420 static void domain_exit(struct dmar_domain *domain);
421 static void domain_remove_dev_info(struct dmar_domain *domain);
422 static void domain_remove_one_dev_info(struct dmar_domain *domain,
423 struct device *dev);
424 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
425 struct device *dev);
426 static int domain_detach_iommu(struct dmar_domain *domain,
427 struct intel_iommu *iommu);
428
429 #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
430 int dmar_disabled = 0;
431 #else
432 int dmar_disabled = 1;
433 #endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
434
435 int intel_iommu_enabled = 0;
436 EXPORT_SYMBOL_GPL(intel_iommu_enabled);
437
438 static int dmar_map_gfx = 1;
439 static int dmar_forcedac;
440 static int intel_iommu_strict;
441 static int intel_iommu_superpage = 1;
442
443 int intel_iommu_gfx_mapped;
444 EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
445
446 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
447 static DEFINE_SPINLOCK(device_domain_lock);
448 static LIST_HEAD(device_domain_list);
449
450 static const struct iommu_ops intel_iommu_ops;
451
452 static int __init intel_iommu_setup(char *str)
453 {
454 if (!str)
455 return -EINVAL;
456 while (*str) {
457 if (!strncmp(str, "on", 2)) {
458 dmar_disabled = 0;
459 printk(KERN_INFO "Intel-IOMMU: enabled\n");
460 } else if (!strncmp(str, "off", 3)) {
461 dmar_disabled = 1;
462 printk(KERN_INFO "Intel-IOMMU: disabled\n");
463 } else if (!strncmp(str, "igfx_off", 8)) {
464 dmar_map_gfx = 0;
465 printk(KERN_INFO
466 "Intel-IOMMU: disable GFX device mapping\n");
467 } else if (!strncmp(str, "forcedac", 8)) {
468 printk(KERN_INFO
469 "Intel-IOMMU: Forcing DAC for PCI devices\n");
470 dmar_forcedac = 1;
471 } else if (!strncmp(str, "strict", 6)) {
472 printk(KERN_INFO
473 "Intel-IOMMU: disable batched IOTLB flush\n");
474 intel_iommu_strict = 1;
475 } else if (!strncmp(str, "sp_off", 6)) {
476 printk(KERN_INFO
477 "Intel-IOMMU: disable supported super page\n");
478 intel_iommu_superpage = 0;
479 }
480
481 str += strcspn(str, ",");
482 while (*str == ',')
483 str++;
484 }
485 return 0;
486 }
487 __setup("intel_iommu=", intel_iommu_setup);
488
489 static struct kmem_cache *iommu_domain_cache;
490 static struct kmem_cache *iommu_devinfo_cache;
491
492 static inline void *alloc_pgtable_page(int node)
493 {
494 struct page *page;
495 void *vaddr = NULL;
496
497 page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
498 if (page)
499 vaddr = page_address(page);
500 return vaddr;
501 }
502
503 static inline void free_pgtable_page(void *vaddr)
504 {
505 free_page((unsigned long)vaddr);
506 }
507
508 static inline void *alloc_domain_mem(void)
509 {
510 return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
511 }
512
513 static void free_domain_mem(void *vaddr)
514 {
515 kmem_cache_free(iommu_domain_cache, vaddr);
516 }
517
518 static inline void * alloc_devinfo_mem(void)
519 {
520 return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
521 }
522
523 static inline void free_devinfo_mem(void *vaddr)
524 {
525 kmem_cache_free(iommu_devinfo_cache, vaddr);
526 }
527
528 static inline int domain_type_is_vm(struct dmar_domain *domain)
529 {
530 return domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE;
531 }
532
533 static inline int domain_type_is_vm_or_si(struct dmar_domain *domain)
534 {
535 return domain->flags & (DOMAIN_FLAG_VIRTUAL_MACHINE |
536 DOMAIN_FLAG_STATIC_IDENTITY);
537 }
538
539 static inline int domain_pfn_supported(struct dmar_domain *domain,
540 unsigned long pfn)
541 {
542 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
543
544 return !(addr_width < BITS_PER_LONG && pfn >> addr_width);
545 }
546
547 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
548 {
549 unsigned long sagaw;
550 int agaw = -1;
551
552 sagaw = cap_sagaw(iommu->cap);
553 for (agaw = width_to_agaw(max_gaw);
554 agaw >= 0; agaw--) {
555 if (test_bit(agaw, &sagaw))
556 break;
557 }
558
559 return agaw;
560 }
561
562 /*
563 * Calculate max SAGAW for each iommu.
564 */
565 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
566 {
567 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
568 }
569
570 /*
571 * calculate agaw for each iommu.
572 * "SAGAW" may be different across iommus, use a default agaw, and
573 * get a supported less agaw for iommus that don't support the default agaw.
574 */
575 int iommu_calculate_agaw(struct intel_iommu *iommu)
576 {
577 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
578 }
579
580 /* This functionin only returns single iommu in a domain */
581 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
582 {
583 int iommu_id;
584
585 /* si_domain and vm domain should not get here. */
586 BUG_ON(domain_type_is_vm_or_si(domain));
587 iommu_id = find_first_bit(domain->iommu_bmp, g_num_of_iommus);
588 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
589 return NULL;
590
591 return g_iommus[iommu_id];
592 }
593
594 static void domain_update_iommu_coherency(struct dmar_domain *domain)
595 {
596 struct dmar_drhd_unit *drhd;
597 struct intel_iommu *iommu;
598 int i, found = 0;
599
600 domain->iommu_coherency = 1;
601
602 for_each_set_bit(i, domain->iommu_bmp, g_num_of_iommus) {
603 found = 1;
604 if (!ecap_coherent(g_iommus[i]->ecap)) {
605 domain->iommu_coherency = 0;
606 break;
607 }
608 }
609 if (found)
610 return;
611
612 /* No hardware attached; use lowest common denominator */
613 rcu_read_lock();
614 for_each_active_iommu(iommu, drhd) {
615 if (!ecap_coherent(iommu->ecap)) {
616 domain->iommu_coherency = 0;
617 break;
618 }
619 }
620 rcu_read_unlock();
621 }
622
623 static int domain_update_iommu_snooping(struct intel_iommu *skip)
624 {
625 struct dmar_drhd_unit *drhd;
626 struct intel_iommu *iommu;
627 int ret = 1;
628
629 rcu_read_lock();
630 for_each_active_iommu(iommu, drhd) {
631 if (iommu != skip) {
632 if (!ecap_sc_support(iommu->ecap)) {
633 ret = 0;
634 break;
635 }
636 }
637 }
638 rcu_read_unlock();
639
640 return ret;
641 }
642
643 static int domain_update_iommu_superpage(struct intel_iommu *skip)
644 {
645 struct dmar_drhd_unit *drhd;
646 struct intel_iommu *iommu;
647 int mask = 0xf;
648
649 if (!intel_iommu_superpage) {
650 return 0;
651 }
652
653 /* set iommu_superpage to the smallest common denominator */
654 rcu_read_lock();
655 for_each_active_iommu(iommu, drhd) {
656 if (iommu != skip) {
657 mask &= cap_super_page_val(iommu->cap);
658 if (!mask)
659 break;
660 }
661 }
662 rcu_read_unlock();
663
664 return fls(mask);
665 }
666
667 /* Some capabilities may be different across iommus */
668 static void domain_update_iommu_cap(struct dmar_domain *domain)
669 {
670 domain_update_iommu_coherency(domain);
671 domain->iommu_snooping = domain_update_iommu_snooping(NULL);
672 domain->iommu_superpage = domain_update_iommu_superpage(NULL);
673 }
674
675 static struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn)
676 {
677 struct dmar_drhd_unit *drhd = NULL;
678 struct intel_iommu *iommu;
679 struct device *tmp;
680 struct pci_dev *ptmp, *pdev = NULL;
681 u16 segment = 0;
682 int i;
683
684 if (dev_is_pci(dev)) {
685 pdev = to_pci_dev(dev);
686 segment = pci_domain_nr(pdev->bus);
687 } else if (ACPI_COMPANION(dev))
688 dev = &ACPI_COMPANION(dev)->dev;
689
690 rcu_read_lock();
691 for_each_active_iommu(iommu, drhd) {
692 if (pdev && segment != drhd->segment)
693 continue;
694
695 for_each_active_dev_scope(drhd->devices,
696 drhd->devices_cnt, i, tmp) {
697 if (tmp == dev) {
698 *bus = drhd->devices[i].bus;
699 *devfn = drhd->devices[i].devfn;
700 goto out;
701 }
702
703 if (!pdev || !dev_is_pci(tmp))
704 continue;
705
706 ptmp = to_pci_dev(tmp);
707 if (ptmp->subordinate &&
708 ptmp->subordinate->number <= pdev->bus->number &&
709 ptmp->subordinate->busn_res.end >= pdev->bus->number)
710 goto got_pdev;
711 }
712
713 if (pdev && drhd->include_all) {
714 got_pdev:
715 *bus = pdev->bus->number;
716 *devfn = pdev->devfn;
717 goto out;
718 }
719 }
720 iommu = NULL;
721 out:
722 rcu_read_unlock();
723
724 return iommu;
725 }
726
727 static void domain_flush_cache(struct dmar_domain *domain,
728 void *addr, int size)
729 {
730 if (!domain->iommu_coherency)
731 clflush_cache_range(addr, size);
732 }
733
734 /* Gets context entry for a given bus and devfn */
735 static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
736 u8 bus, u8 devfn)
737 {
738 struct root_entry *root;
739 struct context_entry *context;
740 unsigned long phy_addr;
741 unsigned long flags;
742
743 spin_lock_irqsave(&iommu->lock, flags);
744 root = &iommu->root_entry[bus];
745 context = get_context_addr_from_root(root);
746 if (!context) {
747 context = (struct context_entry *)
748 alloc_pgtable_page(iommu->node);
749 if (!context) {
750 spin_unlock_irqrestore(&iommu->lock, flags);
751 return NULL;
752 }
753 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
754 phy_addr = virt_to_phys((void *)context);
755 set_root_value(root, phy_addr);
756 set_root_present(root);
757 __iommu_flush_cache(iommu, root, sizeof(*root));
758 }
759 spin_unlock_irqrestore(&iommu->lock, flags);
760 return &context[devfn];
761 }
762
763 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
764 {
765 struct root_entry *root;
766 struct context_entry *context;
767 int ret;
768 unsigned long flags;
769
770 spin_lock_irqsave(&iommu->lock, flags);
771 root = &iommu->root_entry[bus];
772 context = get_context_addr_from_root(root);
773 if (!context) {
774 ret = 0;
775 goto out;
776 }
777 ret = context_present(&context[devfn]);
778 out:
779 spin_unlock_irqrestore(&iommu->lock, flags);
780 return ret;
781 }
782
783 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
784 {
785 struct root_entry *root;
786 struct context_entry *context;
787 unsigned long flags;
788
789 spin_lock_irqsave(&iommu->lock, flags);
790 root = &iommu->root_entry[bus];
791 context = get_context_addr_from_root(root);
792 if (context) {
793 context_clear_entry(&context[devfn]);
794 __iommu_flush_cache(iommu, &context[devfn], \
795 sizeof(*context));
796 }
797 spin_unlock_irqrestore(&iommu->lock, flags);
798 }
799
800 static void free_context_table(struct intel_iommu *iommu)
801 {
802 struct root_entry *root;
803 int i;
804 unsigned long flags;
805 struct context_entry *context;
806
807 spin_lock_irqsave(&iommu->lock, flags);
808 if (!iommu->root_entry) {
809 goto out;
810 }
811 for (i = 0; i < ROOT_ENTRY_NR; i++) {
812 root = &iommu->root_entry[i];
813 context = get_context_addr_from_root(root);
814 if (context)
815 free_pgtable_page(context);
816 }
817 free_pgtable_page(iommu->root_entry);
818 iommu->root_entry = NULL;
819 out:
820 spin_unlock_irqrestore(&iommu->lock, flags);
821 }
822
823 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
824 unsigned long pfn, int *target_level)
825 {
826 struct dma_pte *parent, *pte = NULL;
827 int level = agaw_to_level(domain->agaw);
828 int offset;
829
830 BUG_ON(!domain->pgd);
831
832 if (!domain_pfn_supported(domain, pfn))
833 /* Address beyond IOMMU's addressing capabilities. */
834 return NULL;
835
836 parent = domain->pgd;
837
838 while (1) {
839 void *tmp_page;
840
841 offset = pfn_level_offset(pfn, level);
842 pte = &parent[offset];
843 if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
844 break;
845 if (level == *target_level)
846 break;
847
848 if (!dma_pte_present(pte)) {
849 uint64_t pteval;
850
851 tmp_page = alloc_pgtable_page(domain->nid);
852
853 if (!tmp_page)
854 return NULL;
855
856 domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
857 pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
858 if (cmpxchg64(&pte->val, 0ULL, pteval))
859 /* Someone else set it while we were thinking; use theirs. */
860 free_pgtable_page(tmp_page);
861 else
862 domain_flush_cache(domain, pte, sizeof(*pte));
863 }
864 if (level == 1)
865 break;
866
867 parent = phys_to_virt(dma_pte_addr(pte));
868 level--;
869 }
870
871 if (!*target_level)
872 *target_level = level;
873
874 return pte;
875 }
876
877
878 /* return address's pte at specific level */
879 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
880 unsigned long pfn,
881 int level, int *large_page)
882 {
883 struct dma_pte *parent, *pte = NULL;
884 int total = agaw_to_level(domain->agaw);
885 int offset;
886
887 parent = domain->pgd;
888 while (level <= total) {
889 offset = pfn_level_offset(pfn, total);
890 pte = &parent[offset];
891 if (level == total)
892 return pte;
893
894 if (!dma_pte_present(pte)) {
895 *large_page = total;
896 break;
897 }
898
899 if (dma_pte_superpage(pte)) {
900 *large_page = total;
901 return pte;
902 }
903
904 parent = phys_to_virt(dma_pte_addr(pte));
905 total--;
906 }
907 return NULL;
908 }
909
910 /* clear last level pte, a tlb flush should be followed */
911 static void dma_pte_clear_range(struct dmar_domain *domain,
912 unsigned long start_pfn,
913 unsigned long last_pfn)
914 {
915 unsigned int large_page = 1;
916 struct dma_pte *first_pte, *pte;
917
918 BUG_ON(!domain_pfn_supported(domain, start_pfn));
919 BUG_ON(!domain_pfn_supported(domain, last_pfn));
920 BUG_ON(start_pfn > last_pfn);
921
922 /* we don't need lock here; nobody else touches the iova range */
923 do {
924 large_page = 1;
925 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
926 if (!pte) {
927 start_pfn = align_to_level(start_pfn + 1, large_page + 1);
928 continue;
929 }
930 do {
931 dma_clear_pte(pte);
932 start_pfn += lvl_to_nr_pages(large_page);
933 pte++;
934 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
935
936 domain_flush_cache(domain, first_pte,
937 (void *)pte - (void *)first_pte);
938
939 } while (start_pfn && start_pfn <= last_pfn);
940 }
941
942 static void dma_pte_free_level(struct dmar_domain *domain, int level,
943 struct dma_pte *pte, unsigned long pfn,
944 unsigned long start_pfn, unsigned long last_pfn)
945 {
946 pfn = max(start_pfn, pfn);
947 pte = &pte[pfn_level_offset(pfn, level)];
948
949 do {
950 unsigned long level_pfn;
951 struct dma_pte *level_pte;
952
953 if (!dma_pte_present(pte) || dma_pte_superpage(pte))
954 goto next;
955
956 level_pfn = pfn & level_mask(level - 1);
957 level_pte = phys_to_virt(dma_pte_addr(pte));
958
959 if (level > 2)
960 dma_pte_free_level(domain, level - 1, level_pte,
961 level_pfn, start_pfn, last_pfn);
962
963 /* If range covers entire pagetable, free it */
964 if (!(start_pfn > level_pfn ||
965 last_pfn < level_pfn + level_size(level) - 1)) {
966 dma_clear_pte(pte);
967 domain_flush_cache(domain, pte, sizeof(*pte));
968 free_pgtable_page(level_pte);
969 }
970 next:
971 pfn += level_size(level);
972 } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
973 }
974
975 /* free page table pages. last level pte should already be cleared */
976 static void dma_pte_free_pagetable(struct dmar_domain *domain,
977 unsigned long start_pfn,
978 unsigned long last_pfn)
979 {
980 BUG_ON(!domain_pfn_supported(domain, start_pfn));
981 BUG_ON(!domain_pfn_supported(domain, last_pfn));
982 BUG_ON(start_pfn > last_pfn);
983
984 dma_pte_clear_range(domain, start_pfn, last_pfn);
985
986 /* We don't need lock here; nobody else touches the iova range */
987 dma_pte_free_level(domain, agaw_to_level(domain->agaw),
988 domain->pgd, 0, start_pfn, last_pfn);
989
990 /* free pgd */
991 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
992 free_pgtable_page(domain->pgd);
993 domain->pgd = NULL;
994 }
995 }
996
997 /* When a page at a given level is being unlinked from its parent, we don't
998 need to *modify* it at all. All we need to do is make a list of all the
999 pages which can be freed just as soon as we've flushed the IOTLB and we
1000 know the hardware page-walk will no longer touch them.
1001 The 'pte' argument is the *parent* PTE, pointing to the page that is to
1002 be freed. */
1003 static struct page *dma_pte_list_pagetables(struct dmar_domain *domain,
1004 int level, struct dma_pte *pte,
1005 struct page *freelist)
1006 {
1007 struct page *pg;
1008
1009 pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
1010 pg->freelist = freelist;
1011 freelist = pg;
1012
1013 if (level == 1)
1014 return freelist;
1015
1016 pte = page_address(pg);
1017 do {
1018 if (dma_pte_present(pte) && !dma_pte_superpage(pte))
1019 freelist = dma_pte_list_pagetables(domain, level - 1,
1020 pte, freelist);
1021 pte++;
1022 } while (!first_pte_in_page(pte));
1023
1024 return freelist;
1025 }
1026
1027 static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level,
1028 struct dma_pte *pte, unsigned long pfn,
1029 unsigned long start_pfn,
1030 unsigned long last_pfn,
1031 struct page *freelist)
1032 {
1033 struct dma_pte *first_pte = NULL, *last_pte = NULL;
1034
1035 pfn = max(start_pfn, pfn);
1036 pte = &pte[pfn_level_offset(pfn, level)];
1037
1038 do {
1039 unsigned long level_pfn;
1040
1041 if (!dma_pte_present(pte))
1042 goto next;
1043
1044 level_pfn = pfn & level_mask(level);
1045
1046 /* If range covers entire pagetable, free it */
1047 if (start_pfn <= level_pfn &&
1048 last_pfn >= level_pfn + level_size(level) - 1) {
1049 /* These suborbinate page tables are going away entirely. Don't
1050 bother to clear them; we're just going to *free* them. */
1051 if (level > 1 && !dma_pte_superpage(pte))
1052 freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist);
1053
1054 dma_clear_pte(pte);
1055 if (!first_pte)
1056 first_pte = pte;
1057 last_pte = pte;
1058 } else if (level > 1) {
1059 /* Recurse down into a level that isn't *entirely* obsolete */
1060 freelist = dma_pte_clear_level(domain, level - 1,
1061 phys_to_virt(dma_pte_addr(pte)),
1062 level_pfn, start_pfn, last_pfn,
1063 freelist);
1064 }
1065 next:
1066 pfn += level_size(level);
1067 } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1068
1069 if (first_pte)
1070 domain_flush_cache(domain, first_pte,
1071 (void *)++last_pte - (void *)first_pte);
1072
1073 return freelist;
1074 }
1075
1076 /* We can't just free the pages because the IOMMU may still be walking
1077 the page tables, and may have cached the intermediate levels. The
1078 pages can only be freed after the IOTLB flush has been done. */
1079 struct page *domain_unmap(struct dmar_domain *domain,
1080 unsigned long start_pfn,
1081 unsigned long last_pfn)
1082 {
1083 struct page *freelist = NULL;
1084
1085 BUG_ON(!domain_pfn_supported(domain, start_pfn));
1086 BUG_ON(!domain_pfn_supported(domain, last_pfn));
1087 BUG_ON(start_pfn > last_pfn);
1088
1089 /* we don't need lock here; nobody else touches the iova range */
1090 freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
1091 domain->pgd, 0, start_pfn, last_pfn, NULL);
1092
1093 /* free pgd */
1094 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1095 struct page *pgd_page = virt_to_page(domain->pgd);
1096 pgd_page->freelist = freelist;
1097 freelist = pgd_page;
1098
1099 domain->pgd = NULL;
1100 }
1101
1102 return freelist;
1103 }
1104
1105 void dma_free_pagelist(struct page *freelist)
1106 {
1107 struct page *pg;
1108
1109 while ((pg = freelist)) {
1110 freelist = pg->freelist;
1111 free_pgtable_page(page_address(pg));
1112 }
1113 }
1114
1115 /* iommu handling */
1116 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
1117 {
1118 struct root_entry *root;
1119 unsigned long flags;
1120
1121 root = (struct root_entry *)alloc_pgtable_page(iommu->node);
1122 if (!root) {
1123 pr_err("IOMMU: allocating root entry for %s failed\n",
1124 iommu->name);
1125 return -ENOMEM;
1126 }
1127
1128 __iommu_flush_cache(iommu, root, ROOT_SIZE);
1129
1130 spin_lock_irqsave(&iommu->lock, flags);
1131 iommu->root_entry = root;
1132 spin_unlock_irqrestore(&iommu->lock, flags);
1133
1134 return 0;
1135 }
1136
1137 static void iommu_set_root_entry(struct intel_iommu *iommu)
1138 {
1139 void *addr;
1140 u32 sts;
1141 unsigned long flag;
1142
1143 addr = iommu->root_entry;
1144
1145 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1146 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
1147
1148 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
1149
1150 /* Make sure hardware complete it */
1151 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1152 readl, (sts & DMA_GSTS_RTPS), sts);
1153
1154 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1155 }
1156
1157 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
1158 {
1159 u32 val;
1160 unsigned long flag;
1161
1162 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
1163 return;
1164
1165 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1166 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
1167
1168 /* Make sure hardware complete it */
1169 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1170 readl, (!(val & DMA_GSTS_WBFS)), val);
1171
1172 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1173 }
1174
1175 /* return value determine if we need a write buffer flush */
1176 static void __iommu_flush_context(struct intel_iommu *iommu,
1177 u16 did, u16 source_id, u8 function_mask,
1178 u64 type)
1179 {
1180 u64 val = 0;
1181 unsigned long flag;
1182
1183 switch (type) {
1184 case DMA_CCMD_GLOBAL_INVL:
1185 val = DMA_CCMD_GLOBAL_INVL;
1186 break;
1187 case DMA_CCMD_DOMAIN_INVL:
1188 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
1189 break;
1190 case DMA_CCMD_DEVICE_INVL:
1191 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
1192 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
1193 break;
1194 default:
1195 BUG();
1196 }
1197 val |= DMA_CCMD_ICC;
1198
1199 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1200 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1201
1202 /* Make sure hardware complete it */
1203 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1204 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1205
1206 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1207 }
1208
1209 /* return value determine if we need a write buffer flush */
1210 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1211 u64 addr, unsigned int size_order, u64 type)
1212 {
1213 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1214 u64 val = 0, val_iva = 0;
1215 unsigned long flag;
1216
1217 switch (type) {
1218 case DMA_TLB_GLOBAL_FLUSH:
1219 /* global flush doesn't need set IVA_REG */
1220 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1221 break;
1222 case DMA_TLB_DSI_FLUSH:
1223 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1224 break;
1225 case DMA_TLB_PSI_FLUSH:
1226 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1227 /* IH bit is passed in as part of address */
1228 val_iva = size_order | addr;
1229 break;
1230 default:
1231 BUG();
1232 }
1233 /* Note: set drain read/write */
1234 #if 0
1235 /*
1236 * This is probably to be super secure.. Looks like we can
1237 * ignore it without any impact.
1238 */
1239 if (cap_read_drain(iommu->cap))
1240 val |= DMA_TLB_READ_DRAIN;
1241 #endif
1242 if (cap_write_drain(iommu->cap))
1243 val |= DMA_TLB_WRITE_DRAIN;
1244
1245 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1246 /* Note: Only uses first TLB reg currently */
1247 if (val_iva)
1248 dmar_writeq(iommu->reg + tlb_offset, val_iva);
1249 dmar_writeq(iommu->reg + tlb_offset + 8, val);
1250
1251 /* Make sure hardware complete it */
1252 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1253 dmar_readq, (!(val & DMA_TLB_IVT)), val);
1254
1255 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1256
1257 /* check IOTLB invalidation granularity */
1258 if (DMA_TLB_IAIG(val) == 0)
1259 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
1260 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1261 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
1262 (unsigned long long)DMA_TLB_IIRG(type),
1263 (unsigned long long)DMA_TLB_IAIG(val));
1264 }
1265
1266 static struct device_domain_info *
1267 iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu,
1268 u8 bus, u8 devfn)
1269 {
1270 int found = 0;
1271 unsigned long flags;
1272 struct device_domain_info *info;
1273 struct pci_dev *pdev;
1274
1275 if (!ecap_dev_iotlb_support(iommu->ecap))
1276 return NULL;
1277
1278 if (!iommu->qi)
1279 return NULL;
1280
1281 spin_lock_irqsave(&device_domain_lock, flags);
1282 list_for_each_entry(info, &domain->devices, link)
1283 if (info->iommu == iommu && info->bus == bus &&
1284 info->devfn == devfn) {
1285 found = 1;
1286 break;
1287 }
1288 spin_unlock_irqrestore(&device_domain_lock, flags);
1289
1290 if (!found || !info->dev || !dev_is_pci(info->dev))
1291 return NULL;
1292
1293 pdev = to_pci_dev(info->dev);
1294
1295 if (!pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS))
1296 return NULL;
1297
1298 if (!dmar_find_matched_atsr_unit(pdev))
1299 return NULL;
1300
1301 return info;
1302 }
1303
1304 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1305 {
1306 if (!info || !dev_is_pci(info->dev))
1307 return;
1308
1309 pci_enable_ats(to_pci_dev(info->dev), VTD_PAGE_SHIFT);
1310 }
1311
1312 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1313 {
1314 if (!info->dev || !dev_is_pci(info->dev) ||
1315 !pci_ats_enabled(to_pci_dev(info->dev)))
1316 return;
1317
1318 pci_disable_ats(to_pci_dev(info->dev));
1319 }
1320
1321 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1322 u64 addr, unsigned mask)
1323 {
1324 u16 sid, qdep;
1325 unsigned long flags;
1326 struct device_domain_info *info;
1327
1328 spin_lock_irqsave(&device_domain_lock, flags);
1329 list_for_each_entry(info, &domain->devices, link) {
1330 struct pci_dev *pdev;
1331 if (!info->dev || !dev_is_pci(info->dev))
1332 continue;
1333
1334 pdev = to_pci_dev(info->dev);
1335 if (!pci_ats_enabled(pdev))
1336 continue;
1337
1338 sid = info->bus << 8 | info->devfn;
1339 qdep = pci_ats_queue_depth(pdev);
1340 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1341 }
1342 spin_unlock_irqrestore(&device_domain_lock, flags);
1343 }
1344
1345 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
1346 unsigned long pfn, unsigned int pages, int ih, int map)
1347 {
1348 unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1349 uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1350
1351 BUG_ON(pages == 0);
1352
1353 if (ih)
1354 ih = 1 << 6;
1355 /*
1356 * Fallback to domain selective flush if no PSI support or the size is
1357 * too big.
1358 * PSI requires page size to be 2 ^ x, and the base address is naturally
1359 * aligned to the size
1360 */
1361 if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1362 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1363 DMA_TLB_DSI_FLUSH);
1364 else
1365 iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
1366 DMA_TLB_PSI_FLUSH);
1367
1368 /*
1369 * In caching mode, changes of pages from non-present to present require
1370 * flush. However, device IOTLB doesn't need to be flushed in this case.
1371 */
1372 if (!cap_caching_mode(iommu->cap) || !map)
1373 iommu_flush_dev_iotlb(iommu->domains[did], addr, mask);
1374 }
1375
1376 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1377 {
1378 u32 pmen;
1379 unsigned long flags;
1380
1381 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1382 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1383 pmen &= ~DMA_PMEN_EPM;
1384 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1385
1386 /* wait for the protected region status bit to clear */
1387 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1388 readl, !(pmen & DMA_PMEN_PRS), pmen);
1389
1390 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1391 }
1392
1393 static void iommu_enable_translation(struct intel_iommu *iommu)
1394 {
1395 u32 sts;
1396 unsigned long flags;
1397
1398 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1399 iommu->gcmd |= DMA_GCMD_TE;
1400 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1401
1402 /* Make sure hardware complete it */
1403 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1404 readl, (sts & DMA_GSTS_TES), sts);
1405
1406 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1407 }
1408
1409 static void iommu_disable_translation(struct intel_iommu *iommu)
1410 {
1411 u32 sts;
1412 unsigned long flag;
1413
1414 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1415 iommu->gcmd &= ~DMA_GCMD_TE;
1416 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1417
1418 /* Make sure hardware complete it */
1419 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1420 readl, (!(sts & DMA_GSTS_TES)), sts);
1421
1422 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1423 }
1424
1425
1426 static int iommu_init_domains(struct intel_iommu *iommu)
1427 {
1428 unsigned long ndomains;
1429 unsigned long nlongs;
1430
1431 ndomains = cap_ndoms(iommu->cap);
1432 pr_debug("IOMMU%d: Number of Domains supported <%ld>\n",
1433 iommu->seq_id, ndomains);
1434 nlongs = BITS_TO_LONGS(ndomains);
1435
1436 spin_lock_init(&iommu->lock);
1437
1438 /* TBD: there might be 64K domains,
1439 * consider other allocation for future chip
1440 */
1441 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1442 if (!iommu->domain_ids) {
1443 pr_err("IOMMU%d: allocating domain id array failed\n",
1444 iommu->seq_id);
1445 return -ENOMEM;
1446 }
1447 iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1448 GFP_KERNEL);
1449 if (!iommu->domains) {
1450 pr_err("IOMMU%d: allocating domain array failed\n",
1451 iommu->seq_id);
1452 kfree(iommu->domain_ids);
1453 iommu->domain_ids = NULL;
1454 return -ENOMEM;
1455 }
1456
1457 /*
1458 * if Caching mode is set, then invalid translations are tagged
1459 * with domainid 0. Hence we need to pre-allocate it.
1460 */
1461 if (cap_caching_mode(iommu->cap))
1462 set_bit(0, iommu->domain_ids);
1463 return 0;
1464 }
1465
1466 static void disable_dmar_iommu(struct intel_iommu *iommu)
1467 {
1468 struct dmar_domain *domain;
1469 int i;
1470
1471 if ((iommu->domains) && (iommu->domain_ids)) {
1472 for_each_set_bit(i, iommu->domain_ids, cap_ndoms(iommu->cap)) {
1473 /*
1474 * Domain id 0 is reserved for invalid translation
1475 * if hardware supports caching mode.
1476 */
1477 if (cap_caching_mode(iommu->cap) && i == 0)
1478 continue;
1479
1480 domain = iommu->domains[i];
1481 clear_bit(i, iommu->domain_ids);
1482 if (domain_detach_iommu(domain, iommu) == 0 &&
1483 !domain_type_is_vm(domain))
1484 domain_exit(domain);
1485 }
1486 }
1487
1488 if (iommu->gcmd & DMA_GCMD_TE)
1489 iommu_disable_translation(iommu);
1490 }
1491
1492 static void free_dmar_iommu(struct intel_iommu *iommu)
1493 {
1494 if ((iommu->domains) && (iommu->domain_ids)) {
1495 kfree(iommu->domains);
1496 kfree(iommu->domain_ids);
1497 iommu->domains = NULL;
1498 iommu->domain_ids = NULL;
1499 }
1500
1501 g_iommus[iommu->seq_id] = NULL;
1502
1503 /* free context mapping */
1504 free_context_table(iommu);
1505 }
1506
1507 static struct dmar_domain *alloc_domain(int flags)
1508 {
1509 /* domain id for virtual machine, it won't be set in context */
1510 static atomic_t vm_domid = ATOMIC_INIT(0);
1511 struct dmar_domain *domain;
1512
1513 domain = alloc_domain_mem();
1514 if (!domain)
1515 return NULL;
1516
1517 memset(domain, 0, sizeof(*domain));
1518 domain->nid = -1;
1519 domain->flags = flags;
1520 spin_lock_init(&domain->iommu_lock);
1521 INIT_LIST_HEAD(&domain->devices);
1522 if (flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
1523 domain->id = atomic_inc_return(&vm_domid);
1524
1525 return domain;
1526 }
1527
1528 static int __iommu_attach_domain(struct dmar_domain *domain,
1529 struct intel_iommu *iommu)
1530 {
1531 int num;
1532 unsigned long ndomains;
1533
1534 ndomains = cap_ndoms(iommu->cap);
1535 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1536 if (num < ndomains) {
1537 set_bit(num, iommu->domain_ids);
1538 iommu->domains[num] = domain;
1539 } else {
1540 num = -ENOSPC;
1541 }
1542
1543 return num;
1544 }
1545
1546 static int iommu_attach_domain(struct dmar_domain *domain,
1547 struct intel_iommu *iommu)
1548 {
1549 int num;
1550 unsigned long flags;
1551
1552 spin_lock_irqsave(&iommu->lock, flags);
1553 num = __iommu_attach_domain(domain, iommu);
1554 spin_unlock_irqrestore(&iommu->lock, flags);
1555 if (num < 0)
1556 pr_err("IOMMU: no free domain ids\n");
1557
1558 return num;
1559 }
1560
1561 static int iommu_attach_vm_domain(struct dmar_domain *domain,
1562 struct intel_iommu *iommu)
1563 {
1564 int num;
1565 unsigned long ndomains;
1566
1567 ndomains = cap_ndoms(iommu->cap);
1568 for_each_set_bit(num, iommu->domain_ids, ndomains)
1569 if (iommu->domains[num] == domain)
1570 return num;
1571
1572 return __iommu_attach_domain(domain, iommu);
1573 }
1574
1575 static void iommu_detach_domain(struct dmar_domain *domain,
1576 struct intel_iommu *iommu)
1577 {
1578 unsigned long flags;
1579 int num, ndomains;
1580
1581 spin_lock_irqsave(&iommu->lock, flags);
1582 if (domain_type_is_vm_or_si(domain)) {
1583 ndomains = cap_ndoms(iommu->cap);
1584 for_each_set_bit(num, iommu->domain_ids, ndomains) {
1585 if (iommu->domains[num] == domain) {
1586 clear_bit(num, iommu->domain_ids);
1587 iommu->domains[num] = NULL;
1588 break;
1589 }
1590 }
1591 } else {
1592 clear_bit(domain->id, iommu->domain_ids);
1593 iommu->domains[domain->id] = NULL;
1594 }
1595 spin_unlock_irqrestore(&iommu->lock, flags);
1596 }
1597
1598 static void domain_attach_iommu(struct dmar_domain *domain,
1599 struct intel_iommu *iommu)
1600 {
1601 unsigned long flags;
1602
1603 spin_lock_irqsave(&domain->iommu_lock, flags);
1604 if (!test_and_set_bit(iommu->seq_id, domain->iommu_bmp)) {
1605 domain->iommu_count++;
1606 if (domain->iommu_count == 1)
1607 domain->nid = iommu->node;
1608 domain_update_iommu_cap(domain);
1609 }
1610 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1611 }
1612
1613 static int domain_detach_iommu(struct dmar_domain *domain,
1614 struct intel_iommu *iommu)
1615 {
1616 unsigned long flags;
1617 int count = INT_MAX;
1618
1619 spin_lock_irqsave(&domain->iommu_lock, flags);
1620 if (test_and_clear_bit(iommu->seq_id, domain->iommu_bmp)) {
1621 count = --domain->iommu_count;
1622 domain_update_iommu_cap(domain);
1623 }
1624 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1625
1626 return count;
1627 }
1628
1629 static struct iova_domain reserved_iova_list;
1630 static struct lock_class_key reserved_rbtree_key;
1631
1632 static int dmar_init_reserved_ranges(void)
1633 {
1634 struct pci_dev *pdev = NULL;
1635 struct iova *iova;
1636 int i;
1637
1638 init_iova_domain(&reserved_iova_list, VTD_PAGE_SIZE, IOVA_START_PFN,
1639 DMA_32BIT_PFN);
1640
1641 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1642 &reserved_rbtree_key);
1643
1644 /* IOAPIC ranges shouldn't be accessed by DMA */
1645 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1646 IOVA_PFN(IOAPIC_RANGE_END));
1647 if (!iova) {
1648 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1649 return -ENODEV;
1650 }
1651
1652 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1653 for_each_pci_dev(pdev) {
1654 struct resource *r;
1655
1656 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1657 r = &pdev->resource[i];
1658 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1659 continue;
1660 iova = reserve_iova(&reserved_iova_list,
1661 IOVA_PFN(r->start),
1662 IOVA_PFN(r->end));
1663 if (!iova) {
1664 printk(KERN_ERR "Reserve iova failed\n");
1665 return -ENODEV;
1666 }
1667 }
1668 }
1669 return 0;
1670 }
1671
1672 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1673 {
1674 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1675 }
1676
1677 static inline int guestwidth_to_adjustwidth(int gaw)
1678 {
1679 int agaw;
1680 int r = (gaw - 12) % 9;
1681
1682 if (r == 0)
1683 agaw = gaw;
1684 else
1685 agaw = gaw + 9 - r;
1686 if (agaw > 64)
1687 agaw = 64;
1688 return agaw;
1689 }
1690
1691 static int domain_init(struct dmar_domain *domain, int guest_width)
1692 {
1693 struct intel_iommu *iommu;
1694 int adjust_width, agaw;
1695 unsigned long sagaw;
1696
1697 init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN,
1698 DMA_32BIT_PFN);
1699 domain_reserve_special_ranges(domain);
1700
1701 /* calculate AGAW */
1702 iommu = domain_get_iommu(domain);
1703 if (guest_width > cap_mgaw(iommu->cap))
1704 guest_width = cap_mgaw(iommu->cap);
1705 domain->gaw = guest_width;
1706 adjust_width = guestwidth_to_adjustwidth(guest_width);
1707 agaw = width_to_agaw(adjust_width);
1708 sagaw = cap_sagaw(iommu->cap);
1709 if (!test_bit(agaw, &sagaw)) {
1710 /* hardware doesn't support it, choose a bigger one */
1711 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1712 agaw = find_next_bit(&sagaw, 5, agaw);
1713 if (agaw >= 5)
1714 return -ENODEV;
1715 }
1716 domain->agaw = agaw;
1717
1718 if (ecap_coherent(iommu->ecap))
1719 domain->iommu_coherency = 1;
1720 else
1721 domain->iommu_coherency = 0;
1722
1723 if (ecap_sc_support(iommu->ecap))
1724 domain->iommu_snooping = 1;
1725 else
1726 domain->iommu_snooping = 0;
1727
1728 if (intel_iommu_superpage)
1729 domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
1730 else
1731 domain->iommu_superpage = 0;
1732
1733 domain->nid = iommu->node;
1734
1735 /* always allocate the top pgd */
1736 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1737 if (!domain->pgd)
1738 return -ENOMEM;
1739 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1740 return 0;
1741 }
1742
1743 static void domain_exit(struct dmar_domain *domain)
1744 {
1745 struct page *freelist = NULL;
1746 int i;
1747
1748 /* Domain 0 is reserved, so dont process it */
1749 if (!domain)
1750 return;
1751
1752 /* Flush any lazy unmaps that may reference this domain */
1753 if (!intel_iommu_strict)
1754 flush_unmaps_timeout(0);
1755
1756 /* remove associated devices */
1757 domain_remove_dev_info(domain);
1758
1759 /* destroy iovas */
1760 put_iova_domain(&domain->iovad);
1761
1762 freelist = domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1763
1764 /* clear attached or cached domains */
1765 rcu_read_lock();
1766 for_each_set_bit(i, domain->iommu_bmp, g_num_of_iommus)
1767 iommu_detach_domain(domain, g_iommus[i]);
1768 rcu_read_unlock();
1769
1770 dma_free_pagelist(freelist);
1771
1772 free_domain_mem(domain);
1773 }
1774
1775 static int domain_context_mapping_one(struct dmar_domain *domain,
1776 struct intel_iommu *iommu,
1777 u8 bus, u8 devfn, int translation)
1778 {
1779 struct context_entry *context;
1780 unsigned long flags;
1781 struct dma_pte *pgd;
1782 int id;
1783 int agaw;
1784 struct device_domain_info *info = NULL;
1785
1786 pr_debug("Set context mapping for %02x:%02x.%d\n",
1787 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1788
1789 BUG_ON(!domain->pgd);
1790 BUG_ON(translation != CONTEXT_TT_PASS_THROUGH &&
1791 translation != CONTEXT_TT_MULTI_LEVEL);
1792
1793 context = device_to_context_entry(iommu, bus, devfn);
1794 if (!context)
1795 return -ENOMEM;
1796 spin_lock_irqsave(&iommu->lock, flags);
1797 if (context_present(context)) {
1798 spin_unlock_irqrestore(&iommu->lock, flags);
1799 return 0;
1800 }
1801
1802 id = domain->id;
1803 pgd = domain->pgd;
1804
1805 if (domain_type_is_vm_or_si(domain)) {
1806 if (domain_type_is_vm(domain)) {
1807 id = iommu_attach_vm_domain(domain, iommu);
1808 if (id < 0) {
1809 spin_unlock_irqrestore(&iommu->lock, flags);
1810 pr_err("IOMMU: no free domain ids\n");
1811 return -EFAULT;
1812 }
1813 }
1814
1815 /* Skip top levels of page tables for
1816 * iommu which has less agaw than default.
1817 * Unnecessary for PT mode.
1818 */
1819 if (translation != CONTEXT_TT_PASS_THROUGH) {
1820 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1821 pgd = phys_to_virt(dma_pte_addr(pgd));
1822 if (!dma_pte_present(pgd)) {
1823 spin_unlock_irqrestore(&iommu->lock, flags);
1824 return -ENOMEM;
1825 }
1826 }
1827 }
1828 }
1829
1830 context_set_domain_id(context, id);
1831
1832 if (translation != CONTEXT_TT_PASS_THROUGH) {
1833 info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
1834 translation = info ? CONTEXT_TT_DEV_IOTLB :
1835 CONTEXT_TT_MULTI_LEVEL;
1836 }
1837 /*
1838 * In pass through mode, AW must be programmed to indicate the largest
1839 * AGAW value supported by hardware. And ASR is ignored by hardware.
1840 */
1841 if (unlikely(translation == CONTEXT_TT_PASS_THROUGH))
1842 context_set_address_width(context, iommu->msagaw);
1843 else {
1844 context_set_address_root(context, virt_to_phys(pgd));
1845 context_set_address_width(context, iommu->agaw);
1846 }
1847
1848 context_set_translation_type(context, translation);
1849 context_set_fault_enable(context);
1850 context_set_present(context);
1851 domain_flush_cache(domain, context, sizeof(*context));
1852
1853 /*
1854 * It's a non-present to present mapping. If hardware doesn't cache
1855 * non-present entry we only need to flush the write-buffer. If the
1856 * _does_ cache non-present entries, then it does so in the special
1857 * domain #0, which we have to flush:
1858 */
1859 if (cap_caching_mode(iommu->cap)) {
1860 iommu->flush.flush_context(iommu, 0,
1861 (((u16)bus) << 8) | devfn,
1862 DMA_CCMD_MASK_NOBIT,
1863 DMA_CCMD_DEVICE_INVL);
1864 iommu->flush.flush_iotlb(iommu, id, 0, 0, DMA_TLB_DSI_FLUSH);
1865 } else {
1866 iommu_flush_write_buffer(iommu);
1867 }
1868 iommu_enable_dev_iotlb(info);
1869 spin_unlock_irqrestore(&iommu->lock, flags);
1870
1871 domain_attach_iommu(domain, iommu);
1872
1873 return 0;
1874 }
1875
1876 struct domain_context_mapping_data {
1877 struct dmar_domain *domain;
1878 struct intel_iommu *iommu;
1879 int translation;
1880 };
1881
1882 static int domain_context_mapping_cb(struct pci_dev *pdev,
1883 u16 alias, void *opaque)
1884 {
1885 struct domain_context_mapping_data *data = opaque;
1886
1887 return domain_context_mapping_one(data->domain, data->iommu,
1888 PCI_BUS_NUM(alias), alias & 0xff,
1889 data->translation);
1890 }
1891
1892 static int
1893 domain_context_mapping(struct dmar_domain *domain, struct device *dev,
1894 int translation)
1895 {
1896 struct intel_iommu *iommu;
1897 u8 bus, devfn;
1898 struct domain_context_mapping_data data;
1899
1900 iommu = device_to_iommu(dev, &bus, &devfn);
1901 if (!iommu)
1902 return -ENODEV;
1903
1904 if (!dev_is_pci(dev))
1905 return domain_context_mapping_one(domain, iommu, bus, devfn,
1906 translation);
1907
1908 data.domain = domain;
1909 data.iommu = iommu;
1910 data.translation = translation;
1911
1912 return pci_for_each_dma_alias(to_pci_dev(dev),
1913 &domain_context_mapping_cb, &data);
1914 }
1915
1916 static int domain_context_mapped_cb(struct pci_dev *pdev,
1917 u16 alias, void *opaque)
1918 {
1919 struct intel_iommu *iommu = opaque;
1920
1921 return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff);
1922 }
1923
1924 static int domain_context_mapped(struct device *dev)
1925 {
1926 struct intel_iommu *iommu;
1927 u8 bus, devfn;
1928
1929 iommu = device_to_iommu(dev, &bus, &devfn);
1930 if (!iommu)
1931 return -ENODEV;
1932
1933 if (!dev_is_pci(dev))
1934 return device_context_mapped(iommu, bus, devfn);
1935
1936 return !pci_for_each_dma_alias(to_pci_dev(dev),
1937 domain_context_mapped_cb, iommu);
1938 }
1939
1940 /* Returns a number of VTD pages, but aligned to MM page size */
1941 static inline unsigned long aligned_nrpages(unsigned long host_addr,
1942 size_t size)
1943 {
1944 host_addr &= ~PAGE_MASK;
1945 return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
1946 }
1947
1948 /* Return largest possible superpage level for a given mapping */
1949 static inline int hardware_largepage_caps(struct dmar_domain *domain,
1950 unsigned long iov_pfn,
1951 unsigned long phy_pfn,
1952 unsigned long pages)
1953 {
1954 int support, level = 1;
1955 unsigned long pfnmerge;
1956
1957 support = domain->iommu_superpage;
1958
1959 /* To use a large page, the virtual *and* physical addresses
1960 must be aligned to 2MiB/1GiB/etc. Lower bits set in either
1961 of them will mean we have to use smaller pages. So just
1962 merge them and check both at once. */
1963 pfnmerge = iov_pfn | phy_pfn;
1964
1965 while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
1966 pages >>= VTD_STRIDE_SHIFT;
1967 if (!pages)
1968 break;
1969 pfnmerge >>= VTD_STRIDE_SHIFT;
1970 level++;
1971 support--;
1972 }
1973 return level;
1974 }
1975
1976 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1977 struct scatterlist *sg, unsigned long phys_pfn,
1978 unsigned long nr_pages, int prot)
1979 {
1980 struct dma_pte *first_pte = NULL, *pte = NULL;
1981 phys_addr_t uninitialized_var(pteval);
1982 unsigned long sg_res = 0;
1983 unsigned int largepage_lvl = 0;
1984 unsigned long lvl_pages = 0;
1985
1986 BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1));
1987
1988 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1989 return -EINVAL;
1990
1991 prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
1992
1993 if (!sg) {
1994 sg_res = nr_pages;
1995 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
1996 }
1997
1998 while (nr_pages > 0) {
1999 uint64_t tmp;
2000
2001 if (!sg_res) {
2002 sg_res = aligned_nrpages(sg->offset, sg->length);
2003 sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
2004 sg->dma_length = sg->length;
2005 pteval = page_to_phys(sg_page(sg)) | prot;
2006 phys_pfn = pteval >> VTD_PAGE_SHIFT;
2007 }
2008
2009 if (!pte) {
2010 largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
2011
2012 first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl);
2013 if (!pte)
2014 return -ENOMEM;
2015 /* It is large page*/
2016 if (largepage_lvl > 1) {
2017 pteval |= DMA_PTE_LARGE_PAGE;
2018 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2019 /*
2020 * Ensure that old small page tables are
2021 * removed to make room for superpage,
2022 * if they exist.
2023 */
2024 dma_pte_free_pagetable(domain, iov_pfn,
2025 iov_pfn + lvl_pages - 1);
2026 } else {
2027 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
2028 }
2029
2030 }
2031 /* We don't need lock here, nobody else
2032 * touches the iova range
2033 */
2034 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
2035 if (tmp) {
2036 static int dumps = 5;
2037 printk(KERN_CRIT "ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
2038 iov_pfn, tmp, (unsigned long long)pteval);
2039 if (dumps) {
2040 dumps--;
2041 debug_dma_dump_mappings(NULL);
2042 }
2043 WARN_ON(1);
2044 }
2045
2046 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2047
2048 BUG_ON(nr_pages < lvl_pages);
2049 BUG_ON(sg_res < lvl_pages);
2050
2051 nr_pages -= lvl_pages;
2052 iov_pfn += lvl_pages;
2053 phys_pfn += lvl_pages;
2054 pteval += lvl_pages * VTD_PAGE_SIZE;
2055 sg_res -= lvl_pages;
2056
2057 /* If the next PTE would be the first in a new page, then we
2058 need to flush the cache on the entries we've just written.
2059 And then we'll need to recalculate 'pte', so clear it and
2060 let it get set again in the if (!pte) block above.
2061
2062 If we're done (!nr_pages) we need to flush the cache too.
2063
2064 Also if we've been setting superpages, we may need to
2065 recalculate 'pte' and switch back to smaller pages for the
2066 end of the mapping, if the trailing size is not enough to
2067 use another superpage (i.e. sg_res < lvl_pages). */
2068 pte++;
2069 if (!nr_pages || first_pte_in_page(pte) ||
2070 (largepage_lvl > 1 && sg_res < lvl_pages)) {
2071 domain_flush_cache(domain, first_pte,
2072 (void *)pte - (void *)first_pte);
2073 pte = NULL;
2074 }
2075
2076 if (!sg_res && nr_pages)
2077 sg = sg_next(sg);
2078 }
2079 return 0;
2080 }
2081
2082 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2083 struct scatterlist *sg, unsigned long nr_pages,
2084 int prot)
2085 {
2086 return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
2087 }
2088
2089 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2090 unsigned long phys_pfn, unsigned long nr_pages,
2091 int prot)
2092 {
2093 return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
2094 }
2095
2096 static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
2097 {
2098 if (!iommu)
2099 return;
2100
2101 clear_context_table(iommu, bus, devfn);
2102 iommu->flush.flush_context(iommu, 0, 0, 0,
2103 DMA_CCMD_GLOBAL_INVL);
2104 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2105 }
2106
2107 static inline void unlink_domain_info(struct device_domain_info *info)
2108 {
2109 assert_spin_locked(&device_domain_lock);
2110 list_del(&info->link);
2111 list_del(&info->global);
2112 if (info->dev)
2113 info->dev->archdata.iommu = NULL;
2114 }
2115
2116 static void domain_remove_dev_info(struct dmar_domain *domain)
2117 {
2118 struct device_domain_info *info, *tmp;
2119 unsigned long flags;
2120
2121 spin_lock_irqsave(&device_domain_lock, flags);
2122 list_for_each_entry_safe(info, tmp, &domain->devices, link) {
2123 unlink_domain_info(info);
2124 spin_unlock_irqrestore(&device_domain_lock, flags);
2125
2126 iommu_disable_dev_iotlb(info);
2127 iommu_detach_dev(info->iommu, info->bus, info->devfn);
2128
2129 if (domain_type_is_vm(domain)) {
2130 iommu_detach_dependent_devices(info->iommu, info->dev);
2131 domain_detach_iommu(domain, info->iommu);
2132 }
2133
2134 free_devinfo_mem(info);
2135 spin_lock_irqsave(&device_domain_lock, flags);
2136 }
2137 spin_unlock_irqrestore(&device_domain_lock, flags);
2138 }
2139
2140 /*
2141 * find_domain
2142 * Note: we use struct device->archdata.iommu stores the info
2143 */
2144 static struct dmar_domain *find_domain(struct device *dev)
2145 {
2146 struct device_domain_info *info;
2147
2148 /* No lock here, assumes no domain exit in normal case */
2149 info = dev->archdata.iommu;
2150 if (info)
2151 return info->domain;
2152 return NULL;
2153 }
2154
2155 static inline struct device_domain_info *
2156 dmar_search_domain_by_dev_info(int segment, int bus, int devfn)
2157 {
2158 struct device_domain_info *info;
2159
2160 list_for_each_entry(info, &device_domain_list, global)
2161 if (info->iommu->segment == segment && info->bus == bus &&
2162 info->devfn == devfn)
2163 return info;
2164
2165 return NULL;
2166 }
2167
2168 static struct dmar_domain *dmar_insert_dev_info(struct intel_iommu *iommu,
2169 int bus, int devfn,
2170 struct device *dev,
2171 struct dmar_domain *domain)
2172 {
2173 struct dmar_domain *found = NULL;
2174 struct device_domain_info *info;
2175 unsigned long flags;
2176
2177 info = alloc_devinfo_mem();
2178 if (!info)
2179 return NULL;
2180
2181 info->bus = bus;
2182 info->devfn = devfn;
2183 info->dev = dev;
2184 info->domain = domain;
2185 info->iommu = iommu;
2186
2187 spin_lock_irqsave(&device_domain_lock, flags);
2188 if (dev)
2189 found = find_domain(dev);
2190 else {
2191 struct device_domain_info *info2;
2192 info2 = dmar_search_domain_by_dev_info(iommu->segment, bus, devfn);
2193 if (info2)
2194 found = info2->domain;
2195 }
2196 if (found) {
2197 spin_unlock_irqrestore(&device_domain_lock, flags);
2198 free_devinfo_mem(info);
2199 /* Caller must free the original domain */
2200 return found;
2201 }
2202
2203 list_add(&info->link, &domain->devices);
2204 list_add(&info->global, &device_domain_list);
2205 if (dev)
2206 dev->archdata.iommu = info;
2207 spin_unlock_irqrestore(&device_domain_lock, flags);
2208
2209 return domain;
2210 }
2211
2212 static int get_last_alias(struct pci_dev *pdev, u16 alias, void *opaque)
2213 {
2214 *(u16 *)opaque = alias;
2215 return 0;
2216 }
2217
2218 /* domain is initialized */
2219 static struct dmar_domain *get_domain_for_dev(struct device *dev, int gaw)
2220 {
2221 struct dmar_domain *domain, *tmp;
2222 struct intel_iommu *iommu;
2223 struct device_domain_info *info;
2224 u16 dma_alias;
2225 unsigned long flags;
2226 u8 bus, devfn;
2227
2228 domain = find_domain(dev);
2229 if (domain)
2230 return domain;
2231
2232 iommu = device_to_iommu(dev, &bus, &devfn);
2233 if (!iommu)
2234 return NULL;
2235
2236 if (dev_is_pci(dev)) {
2237 struct pci_dev *pdev = to_pci_dev(dev);
2238
2239 pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2240
2241 spin_lock_irqsave(&device_domain_lock, flags);
2242 info = dmar_search_domain_by_dev_info(pci_domain_nr(pdev->bus),
2243 PCI_BUS_NUM(dma_alias),
2244 dma_alias & 0xff);
2245 if (info) {
2246 iommu = info->iommu;
2247 domain = info->domain;
2248 }
2249 spin_unlock_irqrestore(&device_domain_lock, flags);
2250
2251 /* DMA alias already has a domain, uses it */
2252 if (info)
2253 goto found_domain;
2254 }
2255
2256 /* Allocate and initialize new domain for the device */
2257 domain = alloc_domain(0);
2258 if (!domain)
2259 return NULL;
2260 domain->id = iommu_attach_domain(domain, iommu);
2261 if (domain->id < 0) {
2262 free_domain_mem(domain);
2263 return NULL;
2264 }
2265 domain_attach_iommu(domain, iommu);
2266 if (domain_init(domain, gaw)) {
2267 domain_exit(domain);
2268 return NULL;
2269 }
2270
2271 /* register PCI DMA alias device */
2272 if (dev_is_pci(dev)) {
2273 tmp = dmar_insert_dev_info(iommu, PCI_BUS_NUM(dma_alias),
2274 dma_alias & 0xff, NULL, domain);
2275
2276 if (!tmp || tmp != domain) {
2277 domain_exit(domain);
2278 domain = tmp;
2279 }
2280
2281 if (!domain)
2282 return NULL;
2283 }
2284
2285 found_domain:
2286 tmp = dmar_insert_dev_info(iommu, bus, devfn, dev, domain);
2287
2288 if (!tmp || tmp != domain) {
2289 domain_exit(domain);
2290 domain = tmp;
2291 }
2292
2293 return domain;
2294 }
2295
2296 static int iommu_identity_mapping;
2297 #define IDENTMAP_ALL 1
2298 #define IDENTMAP_GFX 2
2299 #define IDENTMAP_AZALIA 4
2300
2301 static int iommu_domain_identity_map(struct dmar_domain *domain,
2302 unsigned long long start,
2303 unsigned long long end)
2304 {
2305 unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
2306 unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
2307
2308 if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
2309 dma_to_mm_pfn(last_vpfn))) {
2310 printk(KERN_ERR "IOMMU: reserve iova failed\n");
2311 return -ENOMEM;
2312 }
2313
2314 pr_debug("Mapping reserved region %llx-%llx for domain %d\n",
2315 start, end, domain->id);
2316 /*
2317 * RMRR range might have overlap with physical memory range,
2318 * clear it first
2319 */
2320 dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2321
2322 return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
2323 last_vpfn - first_vpfn + 1,
2324 DMA_PTE_READ|DMA_PTE_WRITE);
2325 }
2326
2327 static int iommu_prepare_identity_map(struct device *dev,
2328 unsigned long long start,
2329 unsigned long long end)
2330 {
2331 struct dmar_domain *domain;
2332 int ret;
2333
2334 domain = get_domain_for_dev(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2335 if (!domain)
2336 return -ENOMEM;
2337
2338 /* For _hardware_ passthrough, don't bother. But for software
2339 passthrough, we do it anyway -- it may indicate a memory
2340 range which is reserved in E820, so which didn't get set
2341 up to start with in si_domain */
2342 if (domain == si_domain && hw_pass_through) {
2343 printk("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
2344 dev_name(dev), start, end);
2345 return 0;
2346 }
2347
2348 printk(KERN_INFO
2349 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
2350 dev_name(dev), start, end);
2351
2352 if (end < start) {
2353 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2354 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2355 dmi_get_system_info(DMI_BIOS_VENDOR),
2356 dmi_get_system_info(DMI_BIOS_VERSION),
2357 dmi_get_system_info(DMI_PRODUCT_VERSION));
2358 ret = -EIO;
2359 goto error;
2360 }
2361
2362 if (end >> agaw_to_width(domain->agaw)) {
2363 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2364 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2365 agaw_to_width(domain->agaw),
2366 dmi_get_system_info(DMI_BIOS_VENDOR),
2367 dmi_get_system_info(DMI_BIOS_VERSION),
2368 dmi_get_system_info(DMI_PRODUCT_VERSION));
2369 ret = -EIO;
2370 goto error;
2371 }
2372
2373 ret = iommu_domain_identity_map(domain, start, end);
2374 if (ret)
2375 goto error;
2376
2377 /* context entry init */
2378 ret = domain_context_mapping(domain, dev, CONTEXT_TT_MULTI_LEVEL);
2379 if (ret)
2380 goto error;
2381
2382 return 0;
2383
2384 error:
2385 domain_exit(domain);
2386 return ret;
2387 }
2388
2389 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2390 struct device *dev)
2391 {
2392 if (dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2393 return 0;
2394 return iommu_prepare_identity_map(dev, rmrr->base_address,
2395 rmrr->end_address);
2396 }
2397
2398 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
2399 static inline void iommu_prepare_isa(void)
2400 {
2401 struct pci_dev *pdev;
2402 int ret;
2403
2404 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2405 if (!pdev)
2406 return;
2407
2408 printk(KERN_INFO "IOMMU: Prepare 0-16MiB unity mapping for LPC\n");
2409 ret = iommu_prepare_identity_map(&pdev->dev, 0, 16*1024*1024 - 1);
2410
2411 if (ret)
2412 printk(KERN_ERR "IOMMU: Failed to create 0-16MiB identity map; "
2413 "floppy might not work\n");
2414
2415 pci_dev_put(pdev);
2416 }
2417 #else
2418 static inline void iommu_prepare_isa(void)
2419 {
2420 return;
2421 }
2422 #endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */
2423
2424 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2425
2426 static int __init si_domain_init(int hw)
2427 {
2428 struct dmar_drhd_unit *drhd;
2429 struct intel_iommu *iommu;
2430 int nid, ret = 0;
2431 bool first = true;
2432
2433 si_domain = alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY);
2434 if (!si_domain)
2435 return -EFAULT;
2436
2437 for_each_active_iommu(iommu, drhd) {
2438 ret = iommu_attach_domain(si_domain, iommu);
2439 if (ret < 0) {
2440 domain_exit(si_domain);
2441 return -EFAULT;
2442 } else if (first) {
2443 si_domain->id = ret;
2444 first = false;
2445 } else if (si_domain->id != ret) {
2446 domain_exit(si_domain);
2447 return -EFAULT;
2448 }
2449 domain_attach_iommu(si_domain, iommu);
2450 }
2451
2452 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2453 domain_exit(si_domain);
2454 return -EFAULT;
2455 }
2456
2457 pr_debug("IOMMU: identity mapping domain is domain %d\n",
2458 si_domain->id);
2459
2460 if (hw)
2461 return 0;
2462
2463 for_each_online_node(nid) {
2464 unsigned long start_pfn, end_pfn;
2465 int i;
2466
2467 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2468 ret = iommu_domain_identity_map(si_domain,
2469 PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
2470 if (ret)
2471 return ret;
2472 }
2473 }
2474
2475 return 0;
2476 }
2477
2478 static int identity_mapping(struct device *dev)
2479 {
2480 struct device_domain_info *info;
2481
2482 if (likely(!iommu_identity_mapping))
2483 return 0;
2484
2485 info = dev->archdata.iommu;
2486 if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
2487 return (info->domain == si_domain);
2488
2489 return 0;
2490 }
2491
2492 static int domain_add_dev_info(struct dmar_domain *domain,
2493 struct device *dev, int translation)
2494 {
2495 struct dmar_domain *ndomain;
2496 struct intel_iommu *iommu;
2497 u8 bus, devfn;
2498 int ret;
2499
2500 iommu = device_to_iommu(dev, &bus, &devfn);
2501 if (!iommu)
2502 return -ENODEV;
2503
2504 ndomain = dmar_insert_dev_info(iommu, bus, devfn, dev, domain);
2505 if (ndomain != domain)
2506 return -EBUSY;
2507
2508 ret = domain_context_mapping(domain, dev, translation);
2509 if (ret) {
2510 domain_remove_one_dev_info(domain, dev);
2511 return ret;
2512 }
2513
2514 return 0;
2515 }
2516
2517 static bool device_has_rmrr(struct device *dev)
2518 {
2519 struct dmar_rmrr_unit *rmrr;
2520 struct device *tmp;
2521 int i;
2522
2523 rcu_read_lock();
2524 for_each_rmrr_units(rmrr) {
2525 /*
2526 * Return TRUE if this RMRR contains the device that
2527 * is passed in.
2528 */
2529 for_each_active_dev_scope(rmrr->devices,
2530 rmrr->devices_cnt, i, tmp)
2531 if (tmp == dev) {
2532 rcu_read_unlock();
2533 return true;
2534 }
2535 }
2536 rcu_read_unlock();
2537 return false;
2538 }
2539
2540 /*
2541 * There are a couple cases where we need to restrict the functionality of
2542 * devices associated with RMRRs. The first is when evaluating a device for
2543 * identity mapping because problems exist when devices are moved in and out
2544 * of domains and their respective RMRR information is lost. This means that
2545 * a device with associated RMRRs will never be in a "passthrough" domain.
2546 * The second is use of the device through the IOMMU API. This interface
2547 * expects to have full control of the IOVA space for the device. We cannot
2548 * satisfy both the requirement that RMRR access is maintained and have an
2549 * unencumbered IOVA space. We also have no ability to quiesce the device's
2550 * use of the RMRR space or even inform the IOMMU API user of the restriction.
2551 * We therefore prevent devices associated with an RMRR from participating in
2552 * the IOMMU API, which eliminates them from device assignment.
2553 *
2554 * In both cases we assume that PCI USB devices with RMRRs have them largely
2555 * for historical reasons and that the RMRR space is not actively used post
2556 * boot. This exclusion may change if vendors begin to abuse it.
2557 */
2558 static bool device_is_rmrr_locked(struct device *dev)
2559 {
2560 if (!device_has_rmrr(dev))
2561 return false;
2562
2563 if (dev_is_pci(dev)) {
2564 struct pci_dev *pdev = to_pci_dev(dev);
2565
2566 if ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB)
2567 return false;
2568 }
2569
2570 return true;
2571 }
2572
2573 static int iommu_should_identity_map(struct device *dev, int startup)
2574 {
2575
2576 if (dev_is_pci(dev)) {
2577 struct pci_dev *pdev = to_pci_dev(dev);
2578
2579 if (device_is_rmrr_locked(dev))
2580 return 0;
2581
2582 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2583 return 1;
2584
2585 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2586 return 1;
2587
2588 if (!(iommu_identity_mapping & IDENTMAP_ALL))
2589 return 0;
2590
2591 /*
2592 * We want to start off with all devices in the 1:1 domain, and
2593 * take them out later if we find they can't access all of memory.
2594 *
2595 * However, we can't do this for PCI devices behind bridges,
2596 * because all PCI devices behind the same bridge will end up
2597 * with the same source-id on their transactions.
2598 *
2599 * Practically speaking, we can't change things around for these
2600 * devices at run-time, because we can't be sure there'll be no
2601 * DMA transactions in flight for any of their siblings.
2602 *
2603 * So PCI devices (unless they're on the root bus) as well as
2604 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2605 * the 1:1 domain, just in _case_ one of their siblings turns out
2606 * not to be able to map all of memory.
2607 */
2608 if (!pci_is_pcie(pdev)) {
2609 if (!pci_is_root_bus(pdev->bus))
2610 return 0;
2611 if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2612 return 0;
2613 } else if (pci_pcie_type(pdev) == PCI_EXP_TYPE_PCI_BRIDGE)
2614 return 0;
2615 } else {
2616 if (device_has_rmrr(dev))
2617 return 0;
2618 }
2619
2620 /*
2621 * At boot time, we don't yet know if devices will be 64-bit capable.
2622 * Assume that they will — if they turn out not to be, then we can
2623 * take them out of the 1:1 domain later.
2624 */
2625 if (!startup) {
2626 /*
2627 * If the device's dma_mask is less than the system's memory
2628 * size then this is not a candidate for identity mapping.
2629 */
2630 u64 dma_mask = *dev->dma_mask;
2631
2632 if (dev->coherent_dma_mask &&
2633 dev->coherent_dma_mask < dma_mask)
2634 dma_mask = dev->coherent_dma_mask;
2635
2636 return dma_mask >= dma_get_required_mask(dev);
2637 }
2638
2639 return 1;
2640 }
2641
2642 static int __init dev_prepare_static_identity_mapping(struct device *dev, int hw)
2643 {
2644 int ret;
2645
2646 if (!iommu_should_identity_map(dev, 1))
2647 return 0;
2648
2649 ret = domain_add_dev_info(si_domain, dev,
2650 hw ? CONTEXT_TT_PASS_THROUGH :
2651 CONTEXT_TT_MULTI_LEVEL);
2652 if (!ret)
2653 pr_info("IOMMU: %s identity mapping for device %s\n",
2654 hw ? "hardware" : "software", dev_name(dev));
2655 else if (ret == -ENODEV)
2656 /* device not associated with an iommu */
2657 ret = 0;
2658
2659 return ret;
2660 }
2661
2662
2663 static int __init iommu_prepare_static_identity_mapping(int hw)
2664 {
2665 struct pci_dev *pdev = NULL;
2666 struct dmar_drhd_unit *drhd;
2667 struct intel_iommu *iommu;
2668 struct device *dev;
2669 int i;
2670 int ret = 0;
2671
2672 ret = si_domain_init(hw);
2673 if (ret)
2674 return -EFAULT;
2675
2676 for_each_pci_dev(pdev) {
2677 ret = dev_prepare_static_identity_mapping(&pdev->dev, hw);
2678 if (ret)
2679 return ret;
2680 }
2681
2682 for_each_active_iommu(iommu, drhd)
2683 for_each_active_dev_scope(drhd->devices, drhd->devices_cnt, i, dev) {
2684 struct acpi_device_physical_node *pn;
2685 struct acpi_device *adev;
2686
2687 if (dev->bus != &acpi_bus_type)
2688 continue;
2689
2690 adev= to_acpi_device(dev);
2691 mutex_lock(&adev->physical_node_lock);
2692 list_for_each_entry(pn, &adev->physical_node_list, node) {
2693 ret = dev_prepare_static_identity_mapping(pn->dev, hw);
2694 if (ret)
2695 break;
2696 }
2697 mutex_unlock(&adev->physical_node_lock);
2698 if (ret)
2699 return ret;
2700 }
2701
2702 return 0;
2703 }
2704
2705 static void intel_iommu_init_qi(struct intel_iommu *iommu)
2706 {
2707 /*
2708 * Start from the sane iommu hardware state.
2709 * If the queued invalidation is already initialized by us
2710 * (for example, while enabling interrupt-remapping) then
2711 * we got the things already rolling from a sane state.
2712 */
2713 if (!iommu->qi) {
2714 /*
2715 * Clear any previous faults.
2716 */
2717 dmar_fault(-1, iommu);
2718 /*
2719 * Disable queued invalidation if supported and already enabled
2720 * before OS handover.
2721 */
2722 dmar_disable_qi(iommu);
2723 }
2724
2725 if (dmar_enable_qi(iommu)) {
2726 /*
2727 * Queued Invalidate not enabled, use Register Based Invalidate
2728 */
2729 iommu->flush.flush_context = __iommu_flush_context;
2730 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2731 pr_info("IOMMU: %s using Register based invalidation\n",
2732 iommu->name);
2733 } else {
2734 iommu->flush.flush_context = qi_flush_context;
2735 iommu->flush.flush_iotlb = qi_flush_iotlb;
2736 pr_info("IOMMU: %s using Queued invalidation\n", iommu->name);
2737 }
2738 }
2739
2740 static int __init init_dmars(void)
2741 {
2742 struct dmar_drhd_unit *drhd;
2743 struct dmar_rmrr_unit *rmrr;
2744 struct device *dev;
2745 struct intel_iommu *iommu;
2746 int i, ret;
2747
2748 /*
2749 * for each drhd
2750 * allocate root
2751 * initialize and program root entry to not present
2752 * endfor
2753 */
2754 for_each_drhd_unit(drhd) {
2755 /*
2756 * lock not needed as this is only incremented in the single
2757 * threaded kernel __init code path all other access are read
2758 * only
2759 */
2760 if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) {
2761 g_num_of_iommus++;
2762 continue;
2763 }
2764 printk_once(KERN_ERR "intel-iommu: exceeded %d IOMMUs\n",
2765 DMAR_UNITS_SUPPORTED);
2766 }
2767
2768 /* Preallocate enough resources for IOMMU hot-addition */
2769 if (g_num_of_iommus < DMAR_UNITS_SUPPORTED)
2770 g_num_of_iommus = DMAR_UNITS_SUPPORTED;
2771
2772 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
2773 GFP_KERNEL);
2774 if (!g_iommus) {
2775 printk(KERN_ERR "Allocating global iommu array failed\n");
2776 ret = -ENOMEM;
2777 goto error;
2778 }
2779
2780 deferred_flush = kzalloc(g_num_of_iommus *
2781 sizeof(struct deferred_flush_tables), GFP_KERNEL);
2782 if (!deferred_flush) {
2783 ret = -ENOMEM;
2784 goto free_g_iommus;
2785 }
2786
2787 for_each_active_iommu(iommu, drhd) {
2788 g_iommus[iommu->seq_id] = iommu;
2789
2790 ret = iommu_init_domains(iommu);
2791 if (ret)
2792 goto free_iommu;
2793
2794 /*
2795 * TBD:
2796 * we could share the same root & context tables
2797 * among all IOMMU's. Need to Split it later.
2798 */
2799 ret = iommu_alloc_root_entry(iommu);
2800 if (ret)
2801 goto free_iommu;
2802 if (!ecap_pass_through(iommu->ecap))
2803 hw_pass_through = 0;
2804 }
2805
2806 for_each_active_iommu(iommu, drhd)
2807 intel_iommu_init_qi(iommu);
2808
2809 if (iommu_pass_through)
2810 iommu_identity_mapping |= IDENTMAP_ALL;
2811
2812 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
2813 iommu_identity_mapping |= IDENTMAP_GFX;
2814 #endif
2815
2816 check_tylersburg_isoch();
2817
2818 /*
2819 * If pass through is not set or not enabled, setup context entries for
2820 * identity mappings for rmrr, gfx, and isa and may fall back to static
2821 * identity mapping if iommu_identity_mapping is set.
2822 */
2823 if (iommu_identity_mapping) {
2824 ret = iommu_prepare_static_identity_mapping(hw_pass_through);
2825 if (ret) {
2826 printk(KERN_CRIT "Failed to setup IOMMU pass-through\n");
2827 goto free_iommu;
2828 }
2829 }
2830 /*
2831 * For each rmrr
2832 * for each dev attached to rmrr
2833 * do
2834 * locate drhd for dev, alloc domain for dev
2835 * allocate free domain
2836 * allocate page table entries for rmrr
2837 * if context not allocated for bus
2838 * allocate and init context
2839 * set present in root table for this bus
2840 * init context with domain, translation etc
2841 * endfor
2842 * endfor
2843 */
2844 printk(KERN_INFO "IOMMU: Setting RMRR:\n");
2845 for_each_rmrr_units(rmrr) {
2846 /* some BIOS lists non-exist devices in DMAR table. */
2847 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
2848 i, dev) {
2849 ret = iommu_prepare_rmrr_dev(rmrr, dev);
2850 if (ret)
2851 printk(KERN_ERR
2852 "IOMMU: mapping reserved region failed\n");
2853 }
2854 }
2855
2856 iommu_prepare_isa();
2857
2858 /*
2859 * for each drhd
2860 * enable fault log
2861 * global invalidate context cache
2862 * global invalidate iotlb
2863 * enable translation
2864 */
2865 for_each_iommu(iommu, drhd) {
2866 if (drhd->ignored) {
2867 /*
2868 * we always have to disable PMRs or DMA may fail on
2869 * this device
2870 */
2871 if (force_on)
2872 iommu_disable_protect_mem_regions(iommu);
2873 continue;
2874 }
2875
2876 iommu_flush_write_buffer(iommu);
2877
2878 ret = dmar_set_interrupt(iommu);
2879 if (ret)
2880 goto free_iommu;
2881
2882 iommu_set_root_entry(iommu);
2883
2884 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
2885 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2886 iommu_enable_translation(iommu);
2887 iommu_disable_protect_mem_regions(iommu);
2888 }
2889
2890 return 0;
2891
2892 free_iommu:
2893 for_each_active_iommu(iommu, drhd) {
2894 disable_dmar_iommu(iommu);
2895 free_dmar_iommu(iommu);
2896 }
2897 kfree(deferred_flush);
2898 free_g_iommus:
2899 kfree(g_iommus);
2900 error:
2901 return ret;
2902 }
2903
2904 /* This takes a number of _MM_ pages, not VTD pages */
2905 static struct iova *intel_alloc_iova(struct device *dev,
2906 struct dmar_domain *domain,
2907 unsigned long nrpages, uint64_t dma_mask)
2908 {
2909 struct iova *iova = NULL;
2910
2911 /* Restrict dma_mask to the width that the iommu can handle */
2912 dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
2913
2914 if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
2915 /*
2916 * First try to allocate an io virtual address in
2917 * DMA_BIT_MASK(32) and if that fails then try allocating
2918 * from higher range
2919 */
2920 iova = alloc_iova(&domain->iovad, nrpages,
2921 IOVA_PFN(DMA_BIT_MASK(32)), 1);
2922 if (iova)
2923 return iova;
2924 }
2925 iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(dma_mask), 1);
2926 if (unlikely(!iova)) {
2927 printk(KERN_ERR "Allocating %ld-page iova for %s failed",
2928 nrpages, dev_name(dev));
2929 return NULL;
2930 }
2931
2932 return iova;
2933 }
2934
2935 static struct dmar_domain *__get_valid_domain_for_dev(struct device *dev)
2936 {
2937 struct dmar_domain *domain;
2938 int ret;
2939
2940 domain = get_domain_for_dev(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2941 if (!domain) {
2942 printk(KERN_ERR "Allocating domain for %s failed",
2943 dev_name(dev));
2944 return NULL;
2945 }
2946
2947 /* make sure context mapping is ok */
2948 if (unlikely(!domain_context_mapped(dev))) {
2949 ret = domain_context_mapping(domain, dev, CONTEXT_TT_MULTI_LEVEL);
2950 if (ret) {
2951 printk(KERN_ERR "Domain context map for %s failed",
2952 dev_name(dev));
2953 return NULL;
2954 }
2955 }
2956
2957 return domain;
2958 }
2959
2960 static inline struct dmar_domain *get_valid_domain_for_dev(struct device *dev)
2961 {
2962 struct device_domain_info *info;
2963
2964 /* No lock here, assumes no domain exit in normal case */
2965 info = dev->archdata.iommu;
2966 if (likely(info))
2967 return info->domain;
2968
2969 return __get_valid_domain_for_dev(dev);
2970 }
2971
2972 static int iommu_dummy(struct device *dev)
2973 {
2974 return dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
2975 }
2976
2977 /* Check if the dev needs to go through non-identity map and unmap process.*/
2978 static int iommu_no_mapping(struct device *dev)
2979 {
2980 int found;
2981
2982 if (iommu_dummy(dev))
2983 return 1;
2984
2985 if (!iommu_identity_mapping)
2986 return 0;
2987
2988 found = identity_mapping(dev);
2989 if (found) {
2990 if (iommu_should_identity_map(dev, 0))
2991 return 1;
2992 else {
2993 /*
2994 * 32 bit DMA is removed from si_domain and fall back
2995 * to non-identity mapping.
2996 */
2997 domain_remove_one_dev_info(si_domain, dev);
2998 printk(KERN_INFO "32bit %s uses non-identity mapping\n",
2999 dev_name(dev));
3000 return 0;
3001 }
3002 } else {
3003 /*
3004 * In case of a detached 64 bit DMA device from vm, the device
3005 * is put into si_domain for identity mapping.
3006 */
3007 if (iommu_should_identity_map(dev, 0)) {
3008 int ret;
3009 ret = domain_add_dev_info(si_domain, dev,
3010 hw_pass_through ?
3011 CONTEXT_TT_PASS_THROUGH :
3012 CONTEXT_TT_MULTI_LEVEL);
3013 if (!ret) {
3014 printk(KERN_INFO "64bit %s uses identity mapping\n",
3015 dev_name(dev));
3016 return 1;
3017 }
3018 }
3019 }
3020
3021 return 0;
3022 }
3023
3024 static dma_addr_t __intel_map_single(struct device *dev, phys_addr_t paddr,
3025 size_t size, int dir, u64 dma_mask)
3026 {
3027 struct dmar_domain *domain;
3028 phys_addr_t start_paddr;
3029 struct iova *iova;
3030 int prot = 0;
3031 int ret;
3032 struct intel_iommu *iommu;
3033 unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
3034
3035 BUG_ON(dir == DMA_NONE);
3036
3037 if (iommu_no_mapping(dev))
3038 return paddr;
3039
3040 domain = get_valid_domain_for_dev(dev);
3041 if (!domain)
3042 return 0;
3043
3044 iommu = domain_get_iommu(domain);
3045 size = aligned_nrpages(paddr, size);
3046
3047 iova = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), dma_mask);
3048 if (!iova)
3049 goto error;
3050
3051 /*
3052 * Check if DMAR supports zero-length reads on write only
3053 * mappings..
3054 */
3055 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3056 !cap_zlr(iommu->cap))
3057 prot |= DMA_PTE_READ;
3058 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3059 prot |= DMA_PTE_WRITE;
3060 /*
3061 * paddr - (paddr + size) might be partial page, we should map the whole
3062 * page. Note: if two part of one page are separately mapped, we
3063 * might have two guest_addr mapping to the same host paddr, but this
3064 * is not a big problem
3065 */
3066 ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo),
3067 mm_to_dma_pfn(paddr_pfn), size, prot);
3068 if (ret)
3069 goto error;
3070
3071 /* it's a non-present to present mapping. Only flush if caching mode */
3072 if (cap_caching_mode(iommu->cap))
3073 iommu_flush_iotlb_psi(iommu, domain->id, mm_to_dma_pfn(iova->pfn_lo), size, 0, 1);
3074 else
3075 iommu_flush_write_buffer(iommu);
3076
3077 start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
3078 start_paddr += paddr & ~PAGE_MASK;
3079 return start_paddr;
3080
3081 error:
3082 if (iova)
3083 __free_iova(&domain->iovad, iova);
3084 printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n",
3085 dev_name(dev), size, (unsigned long long)paddr, dir);
3086 return 0;
3087 }
3088
3089 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
3090 unsigned long offset, size_t size,
3091 enum dma_data_direction dir,
3092 struct dma_attrs *attrs)
3093 {
3094 return __intel_map_single(dev, page_to_phys(page) + offset, size,
3095 dir, *dev->dma_mask);
3096 }
3097
3098 static void flush_unmaps(void)
3099 {
3100 int i, j;
3101
3102 timer_on = 0;
3103
3104 /* just flush them all */
3105 for (i = 0; i < g_num_of_iommus; i++) {
3106 struct intel_iommu *iommu = g_iommus[i];
3107 if (!iommu)
3108 continue;
3109
3110 if (!deferred_flush[i].next)
3111 continue;
3112
3113 /* In caching mode, global flushes turn emulation expensive */
3114 if (!cap_caching_mode(iommu->cap))
3115 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3116 DMA_TLB_GLOBAL_FLUSH);
3117 for (j = 0; j < deferred_flush[i].next; j++) {
3118 unsigned long mask;
3119 struct iova *iova = deferred_flush[i].iova[j];
3120 struct dmar_domain *domain = deferred_flush[i].domain[j];
3121
3122 /* On real hardware multiple invalidations are expensive */
3123 if (cap_caching_mode(iommu->cap))
3124 iommu_flush_iotlb_psi(iommu, domain->id,
3125 iova->pfn_lo, iova_size(iova),
3126 !deferred_flush[i].freelist[j], 0);
3127 else {
3128 mask = ilog2(mm_to_dma_pfn(iova_size(iova)));
3129 iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
3130 (uint64_t)iova->pfn_lo << PAGE_SHIFT, mask);
3131 }
3132 __free_iova(&deferred_flush[i].domain[j]->iovad, iova);
3133 if (deferred_flush[i].freelist[j])
3134 dma_free_pagelist(deferred_flush[i].freelist[j]);
3135 }
3136 deferred_flush[i].next = 0;
3137 }
3138
3139 list_size = 0;
3140 }
3141
3142 static void flush_unmaps_timeout(unsigned long data)
3143 {
3144 unsigned long flags;
3145
3146 spin_lock_irqsave(&async_umap_flush_lock, flags);
3147 flush_unmaps();
3148 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
3149 }
3150
3151 static void add_unmap(struct dmar_domain *dom, struct iova *iova, struct page *freelist)
3152 {
3153 unsigned long flags;
3154 int next, iommu_id;
3155 struct intel_iommu *iommu;
3156
3157 spin_lock_irqsave(&async_umap_flush_lock, flags);
3158 if (list_size == HIGH_WATER_MARK)
3159 flush_unmaps();
3160
3161 iommu = domain_get_iommu(dom);
3162 iommu_id = iommu->seq_id;
3163
3164 next = deferred_flush[iommu_id].next;
3165 deferred_flush[iommu_id].domain[next] = dom;
3166 deferred_flush[iommu_id].iova[next] = iova;
3167 deferred_flush[iommu_id].freelist[next] = freelist;
3168 deferred_flush[iommu_id].next++;
3169
3170 if (!timer_on) {
3171 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
3172 timer_on = 1;
3173 }
3174 list_size++;
3175 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
3176 }
3177
3178 static void intel_unmap(struct device *dev, dma_addr_t dev_addr)
3179 {
3180 struct dmar_domain *domain;
3181 unsigned long start_pfn, last_pfn;
3182 struct iova *iova;
3183 struct intel_iommu *iommu;
3184 struct page *freelist;
3185
3186 if (iommu_no_mapping(dev))
3187 return;
3188
3189 domain = find_domain(dev);
3190 BUG_ON(!domain);
3191
3192 iommu = domain_get_iommu(domain);
3193
3194 iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
3195 if (WARN_ONCE(!iova, "Driver unmaps unmatched page at PFN %llx\n",
3196 (unsigned long long)dev_addr))
3197 return;
3198
3199 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
3200 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
3201
3202 pr_debug("Device %s unmapping: pfn %lx-%lx\n",
3203 dev_name(dev), start_pfn, last_pfn);
3204
3205 freelist = domain_unmap(domain, start_pfn, last_pfn);
3206
3207 if (intel_iommu_strict) {
3208 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
3209 last_pfn - start_pfn + 1, !freelist, 0);
3210 /* free iova */
3211 __free_iova(&domain->iovad, iova);
3212 dma_free_pagelist(freelist);
3213 } else {
3214 add_unmap(domain, iova, freelist);
3215 /*
3216 * queue up the release of the unmap to save the 1/6th of the
3217 * cpu used up by the iotlb flush operation...
3218 */
3219 }
3220 }
3221
3222 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
3223 size_t size, enum dma_data_direction dir,
3224 struct dma_attrs *attrs)
3225 {
3226 intel_unmap(dev, dev_addr);
3227 }
3228
3229 static void *intel_alloc_coherent(struct device *dev, size_t size,
3230 dma_addr_t *dma_handle, gfp_t flags,
3231 struct dma_attrs *attrs)
3232 {
3233 struct page *page = NULL;
3234 int order;
3235
3236 size = PAGE_ALIGN(size);
3237 order = get_order(size);
3238
3239 if (!iommu_no_mapping(dev))
3240 flags &= ~(GFP_DMA | GFP_DMA32);
3241 else if (dev->coherent_dma_mask < dma_get_required_mask(dev)) {
3242 if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
3243 flags |= GFP_DMA;
3244 else
3245 flags |= GFP_DMA32;
3246 }
3247
3248 if (flags & __GFP_WAIT) {
3249 unsigned int count = size >> PAGE_SHIFT;
3250
3251 page = dma_alloc_from_contiguous(dev, count, order);
3252 if (page && iommu_no_mapping(dev) &&
3253 page_to_phys(page) + size > dev->coherent_dma_mask) {
3254 dma_release_from_contiguous(dev, page, count);
3255 page = NULL;
3256 }
3257 }
3258
3259 if (!page)
3260 page = alloc_pages(flags, order);
3261 if (!page)
3262 return NULL;
3263 memset(page_address(page), 0, size);
3264
3265 *dma_handle = __intel_map_single(dev, page_to_phys(page), size,
3266 DMA_BIDIRECTIONAL,
3267 dev->coherent_dma_mask);
3268 if (*dma_handle)
3269 return page_address(page);
3270 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3271 __free_pages(page, order);
3272
3273 return NULL;
3274 }
3275
3276 static void intel_free_coherent(struct device *dev, size_t size, void *vaddr,
3277 dma_addr_t dma_handle, struct dma_attrs *attrs)
3278 {
3279 int order;
3280 struct page *page = virt_to_page(vaddr);
3281
3282 size = PAGE_ALIGN(size);
3283 order = get_order(size);
3284
3285 intel_unmap(dev, dma_handle);
3286 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3287 __free_pages(page, order);
3288 }
3289
3290 static void intel_unmap_sg(struct device *dev, struct scatterlist *sglist,
3291 int nelems, enum dma_data_direction dir,
3292 struct dma_attrs *attrs)
3293 {
3294 intel_unmap(dev, sglist[0].dma_address);
3295 }
3296
3297 static int intel_nontranslate_map_sg(struct device *hddev,
3298 struct scatterlist *sglist, int nelems, int dir)
3299 {
3300 int i;
3301 struct scatterlist *sg;
3302
3303 for_each_sg(sglist, sg, nelems, i) {
3304 BUG_ON(!sg_page(sg));
3305 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
3306 sg->dma_length = sg->length;
3307 }
3308 return nelems;
3309 }
3310
3311 static int intel_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
3312 enum dma_data_direction dir, struct dma_attrs *attrs)
3313 {
3314 int i;
3315 struct dmar_domain *domain;
3316 size_t size = 0;
3317 int prot = 0;
3318 struct iova *iova = NULL;
3319 int ret;
3320 struct scatterlist *sg;
3321 unsigned long start_vpfn;
3322 struct intel_iommu *iommu;
3323
3324 BUG_ON(dir == DMA_NONE);
3325 if (iommu_no_mapping(dev))
3326 return intel_nontranslate_map_sg(dev, sglist, nelems, dir);
3327
3328 domain = get_valid_domain_for_dev(dev);
3329 if (!domain)
3330 return 0;
3331
3332 iommu = domain_get_iommu(domain);
3333
3334 for_each_sg(sglist, sg, nelems, i)
3335 size += aligned_nrpages(sg->offset, sg->length);
3336
3337 iova = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size),
3338 *dev->dma_mask);
3339 if (!iova) {
3340 sglist->dma_length = 0;
3341 return 0;
3342 }
3343
3344 /*
3345 * Check if DMAR supports zero-length reads on write only
3346 * mappings..
3347 */
3348 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3349 !cap_zlr(iommu->cap))
3350 prot |= DMA_PTE_READ;
3351 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3352 prot |= DMA_PTE_WRITE;
3353
3354 start_vpfn = mm_to_dma_pfn(iova->pfn_lo);
3355
3356 ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3357 if (unlikely(ret)) {
3358 dma_pte_free_pagetable(domain, start_vpfn,
3359 start_vpfn + size - 1);
3360 __free_iova(&domain->iovad, iova);
3361 return 0;
3362 }
3363
3364 /* it's a non-present to present mapping. Only flush if caching mode */
3365 if (cap_caching_mode(iommu->cap))
3366 iommu_flush_iotlb_psi(iommu, domain->id, start_vpfn, size, 0, 1);
3367 else
3368 iommu_flush_write_buffer(iommu);
3369
3370 return nelems;
3371 }
3372
3373 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
3374 {
3375 return !dma_addr;
3376 }
3377
3378 struct dma_map_ops intel_dma_ops = {
3379 .alloc = intel_alloc_coherent,
3380 .free = intel_free_coherent,
3381 .map_sg = intel_map_sg,
3382 .unmap_sg = intel_unmap_sg,
3383 .map_page = intel_map_page,
3384 .unmap_page = intel_unmap_page,
3385 .mapping_error = intel_mapping_error,
3386 };
3387
3388 static inline int iommu_domain_cache_init(void)
3389 {
3390 int ret = 0;
3391
3392 iommu_domain_cache = kmem_cache_create("iommu_domain",
3393 sizeof(struct dmar_domain),
3394 0,
3395 SLAB_HWCACHE_ALIGN,
3396
3397 NULL);
3398 if (!iommu_domain_cache) {
3399 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
3400 ret = -ENOMEM;
3401 }
3402
3403 return ret;
3404 }
3405
3406 static inline int iommu_devinfo_cache_init(void)
3407 {
3408 int ret = 0;
3409
3410 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
3411 sizeof(struct device_domain_info),
3412 0,
3413 SLAB_HWCACHE_ALIGN,
3414 NULL);
3415 if (!iommu_devinfo_cache) {
3416 printk(KERN_ERR "Couldn't create devinfo cache\n");
3417 ret = -ENOMEM;
3418 }
3419
3420 return ret;
3421 }
3422
3423 static int __init iommu_init_mempool(void)
3424 {
3425 int ret;
3426 ret = iommu_iova_cache_init();
3427 if (ret)
3428 return ret;
3429
3430 ret = iommu_domain_cache_init();
3431 if (ret)
3432 goto domain_error;
3433
3434 ret = iommu_devinfo_cache_init();
3435 if (!ret)
3436 return ret;
3437
3438 kmem_cache_destroy(iommu_domain_cache);
3439 domain_error:
3440 iommu_iova_cache_destroy();
3441
3442 return -ENOMEM;
3443 }
3444
3445 static void __init iommu_exit_mempool(void)
3446 {
3447 kmem_cache_destroy(iommu_devinfo_cache);
3448 kmem_cache_destroy(iommu_domain_cache);
3449 iommu_iova_cache_destroy();
3450 }
3451
3452 static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
3453 {
3454 struct dmar_drhd_unit *drhd;
3455 u32 vtbar;
3456 int rc;
3457
3458 /* We know that this device on this chipset has its own IOMMU.
3459 * If we find it under a different IOMMU, then the BIOS is lying
3460 * to us. Hope that the IOMMU for this device is actually
3461 * disabled, and it needs no translation...
3462 */
3463 rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
3464 if (rc) {
3465 /* "can't" happen */
3466 dev_info(&pdev->dev, "failed to run vt-d quirk\n");
3467 return;
3468 }
3469 vtbar &= 0xffff0000;
3470
3471 /* we know that the this iommu should be at offset 0xa000 from vtbar */
3472 drhd = dmar_find_matched_drhd_unit(pdev);
3473 if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
3474 TAINT_FIRMWARE_WORKAROUND,
3475 "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
3476 pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3477 }
3478 DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
3479
3480 static void __init init_no_remapping_devices(void)
3481 {
3482 struct dmar_drhd_unit *drhd;
3483 struct device *dev;
3484 int i;
3485
3486 for_each_drhd_unit(drhd) {
3487 if (!drhd->include_all) {
3488 for_each_active_dev_scope(drhd->devices,
3489 drhd->devices_cnt, i, dev)
3490 break;
3491 /* ignore DMAR unit if no devices exist */
3492 if (i == drhd->devices_cnt)
3493 drhd->ignored = 1;
3494 }
3495 }
3496
3497 for_each_active_drhd_unit(drhd) {
3498 if (drhd->include_all)
3499 continue;
3500
3501 for_each_active_dev_scope(drhd->devices,
3502 drhd->devices_cnt, i, dev)
3503 if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
3504 break;
3505 if (i < drhd->devices_cnt)
3506 continue;
3507
3508 /* This IOMMU has *only* gfx devices. Either bypass it or
3509 set the gfx_mapped flag, as appropriate */
3510 if (dmar_map_gfx) {
3511 intel_iommu_gfx_mapped = 1;
3512 } else {
3513 drhd->ignored = 1;
3514 for_each_active_dev_scope(drhd->devices,
3515 drhd->devices_cnt, i, dev)
3516 dev->archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3517 }
3518 }
3519 }
3520
3521 #ifdef CONFIG_SUSPEND
3522 static int init_iommu_hw(void)
3523 {
3524 struct dmar_drhd_unit *drhd;
3525 struct intel_iommu *iommu = NULL;
3526
3527 for_each_active_iommu(iommu, drhd)
3528 if (iommu->qi)
3529 dmar_reenable_qi(iommu);
3530
3531 for_each_iommu(iommu, drhd) {
3532 if (drhd->ignored) {
3533 /*
3534 * we always have to disable PMRs or DMA may fail on
3535 * this device
3536 */
3537 if (force_on)
3538 iommu_disable_protect_mem_regions(iommu);
3539 continue;
3540 }
3541
3542 iommu_flush_write_buffer(iommu);
3543
3544 iommu_set_root_entry(iommu);
3545
3546 iommu->flush.flush_context(iommu, 0, 0, 0,
3547 DMA_CCMD_GLOBAL_INVL);
3548 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
3549 iommu_enable_translation(iommu);
3550 iommu_disable_protect_mem_regions(iommu);
3551 }
3552
3553 return 0;
3554 }
3555
3556 static void iommu_flush_all(void)
3557 {
3558 struct dmar_drhd_unit *drhd;
3559 struct intel_iommu *iommu;
3560
3561 for_each_active_iommu(iommu, drhd) {
3562 iommu->flush.flush_context(iommu, 0, 0, 0,
3563 DMA_CCMD_GLOBAL_INVL);
3564 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3565 DMA_TLB_GLOBAL_FLUSH);
3566 }
3567 }
3568
3569 static int iommu_suspend(void)
3570 {
3571 struct dmar_drhd_unit *drhd;
3572 struct intel_iommu *iommu = NULL;
3573 unsigned long flag;
3574
3575 for_each_active_iommu(iommu, drhd) {
3576 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
3577 GFP_ATOMIC);
3578 if (!iommu->iommu_state)
3579 goto nomem;
3580 }
3581
3582 iommu_flush_all();
3583
3584 for_each_active_iommu(iommu, drhd) {
3585 iommu_disable_translation(iommu);
3586
3587 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3588
3589 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3590 readl(iommu->reg + DMAR_FECTL_REG);
3591 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3592 readl(iommu->reg + DMAR_FEDATA_REG);
3593 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3594 readl(iommu->reg + DMAR_FEADDR_REG);
3595 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3596 readl(iommu->reg + DMAR_FEUADDR_REG);
3597
3598 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3599 }
3600 return 0;
3601
3602 nomem:
3603 for_each_active_iommu(iommu, drhd)
3604 kfree(iommu->iommu_state);
3605
3606 return -ENOMEM;
3607 }
3608
3609 static void iommu_resume(void)
3610 {
3611 struct dmar_drhd_unit *drhd;
3612 struct intel_iommu *iommu = NULL;
3613 unsigned long flag;
3614
3615 if (init_iommu_hw()) {
3616 if (force_on)
3617 panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
3618 else
3619 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3620 return;
3621 }
3622
3623 for_each_active_iommu(iommu, drhd) {
3624
3625 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3626
3627 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3628 iommu->reg + DMAR_FECTL_REG);
3629 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3630 iommu->reg + DMAR_FEDATA_REG);
3631 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3632 iommu->reg + DMAR_FEADDR_REG);
3633 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3634 iommu->reg + DMAR_FEUADDR_REG);
3635
3636 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3637 }
3638
3639 for_each_active_iommu(iommu, drhd)
3640 kfree(iommu->iommu_state);
3641 }
3642
3643 static struct syscore_ops iommu_syscore_ops = {
3644 .resume = iommu_resume,
3645 .suspend = iommu_suspend,
3646 };
3647
3648 static void __init init_iommu_pm_ops(void)
3649 {
3650 register_syscore_ops(&iommu_syscore_ops);
3651 }
3652
3653 #else
3654 static inline void init_iommu_pm_ops(void) {}
3655 #endif /* CONFIG_PM */
3656
3657
3658 int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg)
3659 {
3660 struct acpi_dmar_reserved_memory *rmrr;
3661 struct dmar_rmrr_unit *rmrru;
3662
3663 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
3664 if (!rmrru)
3665 return -ENOMEM;
3666
3667 rmrru->hdr = header;
3668 rmrr = (struct acpi_dmar_reserved_memory *)header;
3669 rmrru->base_address = rmrr->base_address;
3670 rmrru->end_address = rmrr->end_address;
3671 rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
3672 ((void *)rmrr) + rmrr->header.length,
3673 &rmrru->devices_cnt);
3674 if (rmrru->devices_cnt && rmrru->devices == NULL) {
3675 kfree(rmrru);
3676 return -ENOMEM;
3677 }
3678
3679 list_add(&rmrru->list, &dmar_rmrr_units);
3680
3681 return 0;
3682 }
3683
3684 static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr)
3685 {
3686 struct dmar_atsr_unit *atsru;
3687 struct acpi_dmar_atsr *tmp;
3688
3689 list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
3690 tmp = (struct acpi_dmar_atsr *)atsru->hdr;
3691 if (atsr->segment != tmp->segment)
3692 continue;
3693 if (atsr->header.length != tmp->header.length)
3694 continue;
3695 if (memcmp(atsr, tmp, atsr->header.length) == 0)
3696 return atsru;
3697 }
3698
3699 return NULL;
3700 }
3701
3702 int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg)
3703 {
3704 struct acpi_dmar_atsr *atsr;
3705 struct dmar_atsr_unit *atsru;
3706
3707 if (system_state != SYSTEM_BOOTING && !intel_iommu_enabled)
3708 return 0;
3709
3710 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
3711 atsru = dmar_find_atsr(atsr);
3712 if (atsru)
3713 return 0;
3714
3715 atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL);
3716 if (!atsru)
3717 return -ENOMEM;
3718
3719 /*
3720 * If memory is allocated from slab by ACPI _DSM method, we need to
3721 * copy the memory content because the memory buffer will be freed
3722 * on return.
3723 */
3724 atsru->hdr = (void *)(atsru + 1);
3725 memcpy(atsru->hdr, hdr, hdr->length);
3726 atsru->include_all = atsr->flags & 0x1;
3727 if (!atsru->include_all) {
3728 atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
3729 (void *)atsr + atsr->header.length,
3730 &atsru->devices_cnt);
3731 if (atsru->devices_cnt && atsru->devices == NULL) {
3732 kfree(atsru);
3733 return -ENOMEM;
3734 }
3735 }
3736
3737 list_add_rcu(&atsru->list, &dmar_atsr_units);
3738
3739 return 0;
3740 }
3741
3742 static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
3743 {
3744 dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
3745 kfree(atsru);
3746 }
3747
3748 int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg)
3749 {
3750 struct acpi_dmar_atsr *atsr;
3751 struct dmar_atsr_unit *atsru;
3752
3753 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
3754 atsru = dmar_find_atsr(atsr);
3755 if (atsru) {
3756 list_del_rcu(&atsru->list);
3757 synchronize_rcu();
3758 intel_iommu_free_atsr(atsru);
3759 }
3760
3761 return 0;
3762 }
3763
3764 int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg)
3765 {
3766 int i;
3767 struct device *dev;
3768 struct acpi_dmar_atsr *atsr;
3769 struct dmar_atsr_unit *atsru;
3770
3771 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
3772 atsru = dmar_find_atsr(atsr);
3773 if (!atsru)
3774 return 0;
3775
3776 if (!atsru->include_all && atsru->devices && atsru->devices_cnt)
3777 for_each_active_dev_scope(atsru->devices, atsru->devices_cnt,
3778 i, dev)
3779 return -EBUSY;
3780
3781 return 0;
3782 }
3783
3784 static int intel_iommu_add(struct dmar_drhd_unit *dmaru)
3785 {
3786 int sp, ret = 0;
3787 struct intel_iommu *iommu = dmaru->iommu;
3788
3789 if (g_iommus[iommu->seq_id])
3790 return 0;
3791
3792 if (hw_pass_through && !ecap_pass_through(iommu->ecap)) {
3793 pr_warn("IOMMU: %s doesn't support hardware pass through.\n",
3794 iommu->name);
3795 return -ENXIO;
3796 }
3797 if (!ecap_sc_support(iommu->ecap) &&
3798 domain_update_iommu_snooping(iommu)) {
3799 pr_warn("IOMMU: %s doesn't support snooping.\n",
3800 iommu->name);
3801 return -ENXIO;
3802 }
3803 sp = domain_update_iommu_superpage(iommu) - 1;
3804 if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) {
3805 pr_warn("IOMMU: %s doesn't support large page.\n",
3806 iommu->name);
3807 return -ENXIO;
3808 }
3809
3810 /*
3811 * Disable translation if already enabled prior to OS handover.
3812 */
3813 if (iommu->gcmd & DMA_GCMD_TE)
3814 iommu_disable_translation(iommu);
3815
3816 g_iommus[iommu->seq_id] = iommu;
3817 ret = iommu_init_domains(iommu);
3818 if (ret == 0)
3819 ret = iommu_alloc_root_entry(iommu);
3820 if (ret)
3821 goto out;
3822
3823 if (dmaru->ignored) {
3824 /*
3825 * we always have to disable PMRs or DMA may fail on this device
3826 */
3827 if (force_on)
3828 iommu_disable_protect_mem_regions(iommu);
3829 return 0;
3830 }
3831
3832 intel_iommu_init_qi(iommu);
3833 iommu_flush_write_buffer(iommu);
3834 ret = dmar_set_interrupt(iommu);
3835 if (ret)
3836 goto disable_iommu;
3837
3838 iommu_set_root_entry(iommu);
3839 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
3840 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
3841 iommu_enable_translation(iommu);
3842
3843 if (si_domain) {
3844 ret = iommu_attach_domain(si_domain, iommu);
3845 if (ret < 0 || si_domain->id != ret)
3846 goto disable_iommu;
3847 domain_attach_iommu(si_domain, iommu);
3848 }
3849
3850 iommu_disable_protect_mem_regions(iommu);
3851 return 0;
3852
3853 disable_iommu:
3854 disable_dmar_iommu(iommu);
3855 out:
3856 free_dmar_iommu(iommu);
3857 return ret;
3858 }
3859
3860 int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
3861 {
3862 int ret = 0;
3863 struct intel_iommu *iommu = dmaru->iommu;
3864
3865 if (!intel_iommu_enabled)
3866 return 0;
3867 if (iommu == NULL)
3868 return -EINVAL;
3869
3870 if (insert) {
3871 ret = intel_iommu_add(dmaru);
3872 } else {
3873 disable_dmar_iommu(iommu);
3874 free_dmar_iommu(iommu);
3875 }
3876
3877 return ret;
3878 }
3879
3880 static void intel_iommu_free_dmars(void)
3881 {
3882 struct dmar_rmrr_unit *rmrru, *rmrr_n;
3883 struct dmar_atsr_unit *atsru, *atsr_n;
3884
3885 list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
3886 list_del(&rmrru->list);
3887 dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
3888 kfree(rmrru);
3889 }
3890
3891 list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
3892 list_del(&atsru->list);
3893 intel_iommu_free_atsr(atsru);
3894 }
3895 }
3896
3897 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
3898 {
3899 int i, ret = 1;
3900 struct pci_bus *bus;
3901 struct pci_dev *bridge = NULL;
3902 struct device *tmp;
3903 struct acpi_dmar_atsr *atsr;
3904 struct dmar_atsr_unit *atsru;
3905
3906 dev = pci_physfn(dev);
3907 for (bus = dev->bus; bus; bus = bus->parent) {
3908 bridge = bus->self;
3909 if (!bridge || !pci_is_pcie(bridge) ||
3910 pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
3911 return 0;
3912 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
3913 break;
3914 }
3915 if (!bridge)
3916 return 0;
3917
3918 rcu_read_lock();
3919 list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
3920 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
3921 if (atsr->segment != pci_domain_nr(dev->bus))
3922 continue;
3923
3924 for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
3925 if (tmp == &bridge->dev)
3926 goto out;
3927
3928 if (atsru->include_all)
3929 goto out;
3930 }
3931 ret = 0;
3932 out:
3933 rcu_read_unlock();
3934
3935 return ret;
3936 }
3937
3938 int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
3939 {
3940 int ret = 0;
3941 struct dmar_rmrr_unit *rmrru;
3942 struct dmar_atsr_unit *atsru;
3943 struct acpi_dmar_atsr *atsr;
3944 struct acpi_dmar_reserved_memory *rmrr;
3945
3946 if (!intel_iommu_enabled && system_state != SYSTEM_BOOTING)
3947 return 0;
3948
3949 list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
3950 rmrr = container_of(rmrru->hdr,
3951 struct acpi_dmar_reserved_memory, header);
3952 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
3953 ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
3954 ((void *)rmrr) + rmrr->header.length,
3955 rmrr->segment, rmrru->devices,
3956 rmrru->devices_cnt);
3957 if(ret < 0)
3958 return ret;
3959 } else if (info->event == BUS_NOTIFY_DEL_DEVICE) {
3960 dmar_remove_dev_scope(info, rmrr->segment,
3961 rmrru->devices, rmrru->devices_cnt);
3962 }
3963 }
3964
3965 list_for_each_entry(atsru, &dmar_atsr_units, list) {
3966 if (atsru->include_all)
3967 continue;
3968
3969 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
3970 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
3971 ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
3972 (void *)atsr + atsr->header.length,
3973 atsr->segment, atsru->devices,
3974 atsru->devices_cnt);
3975 if (ret > 0)
3976 break;
3977 else if(ret < 0)
3978 return ret;
3979 } else if (info->event == BUS_NOTIFY_DEL_DEVICE) {
3980 if (dmar_remove_dev_scope(info, atsr->segment,
3981 atsru->devices, atsru->devices_cnt))
3982 break;
3983 }
3984 }
3985
3986 return 0;
3987 }
3988
3989 /*
3990 * Here we only respond to action of unbound device from driver.
3991 *
3992 * Added device is not attached to its DMAR domain here yet. That will happen
3993 * when mapping the device to iova.
3994 */
3995 static int device_notifier(struct notifier_block *nb,
3996 unsigned long action, void *data)
3997 {
3998 struct device *dev = data;
3999 struct dmar_domain *domain;
4000
4001 if (iommu_dummy(dev))
4002 return 0;
4003
4004 if (action != BUS_NOTIFY_REMOVED_DEVICE)
4005 return 0;
4006
4007 domain = find_domain(dev);
4008 if (!domain)
4009 return 0;
4010
4011 down_read(&dmar_global_lock);
4012 domain_remove_one_dev_info(domain, dev);
4013 if (!domain_type_is_vm_or_si(domain) && list_empty(&domain->devices))
4014 domain_exit(domain);
4015 up_read(&dmar_global_lock);
4016
4017 return 0;
4018 }
4019
4020 static struct notifier_block device_nb = {
4021 .notifier_call = device_notifier,
4022 };
4023
4024 static int intel_iommu_memory_notifier(struct notifier_block *nb,
4025 unsigned long val, void *v)
4026 {
4027 struct memory_notify *mhp = v;
4028 unsigned long long start, end;
4029 unsigned long start_vpfn, last_vpfn;
4030
4031 switch (val) {
4032 case MEM_GOING_ONLINE:
4033 start = mhp->start_pfn << PAGE_SHIFT;
4034 end = ((mhp->start_pfn + mhp->nr_pages) << PAGE_SHIFT) - 1;
4035 if (iommu_domain_identity_map(si_domain, start, end)) {
4036 pr_warn("dmar: failed to build identity map for [%llx-%llx]\n",
4037 start, end);
4038 return NOTIFY_BAD;
4039 }
4040 break;
4041
4042 case MEM_OFFLINE:
4043 case MEM_CANCEL_ONLINE:
4044 start_vpfn = mm_to_dma_pfn(mhp->start_pfn);
4045 last_vpfn = mm_to_dma_pfn(mhp->start_pfn + mhp->nr_pages - 1);
4046 while (start_vpfn <= last_vpfn) {
4047 struct iova *iova;
4048 struct dmar_drhd_unit *drhd;
4049 struct intel_iommu *iommu;
4050 struct page *freelist;
4051
4052 iova = find_iova(&si_domain->iovad, start_vpfn);
4053 if (iova == NULL) {
4054 pr_debug("dmar: failed get IOVA for PFN %lx\n",
4055 start_vpfn);
4056 break;
4057 }
4058
4059 iova = split_and_remove_iova(&si_domain->iovad, iova,
4060 start_vpfn, last_vpfn);
4061 if (iova == NULL) {
4062 pr_warn("dmar: failed to split IOVA PFN [%lx-%lx]\n",
4063 start_vpfn, last_vpfn);
4064 return NOTIFY_BAD;
4065 }
4066
4067 freelist = domain_unmap(si_domain, iova->pfn_lo,
4068 iova->pfn_hi);
4069
4070 rcu_read_lock();
4071 for_each_active_iommu(iommu, drhd)
4072 iommu_flush_iotlb_psi(iommu, si_domain->id,
4073 iova->pfn_lo, iova_size(iova),
4074 !freelist, 0);
4075 rcu_read_unlock();
4076 dma_free_pagelist(freelist);
4077
4078 start_vpfn = iova->pfn_hi + 1;
4079 free_iova_mem(iova);
4080 }
4081 break;
4082 }
4083
4084 return NOTIFY_OK;
4085 }
4086
4087 static struct notifier_block intel_iommu_memory_nb = {
4088 .notifier_call = intel_iommu_memory_notifier,
4089 .priority = 0
4090 };
4091
4092
4093 static ssize_t intel_iommu_show_version(struct device *dev,
4094 struct device_attribute *attr,
4095 char *buf)
4096 {
4097 struct intel_iommu *iommu = dev_get_drvdata(dev);
4098 u32 ver = readl(iommu->reg + DMAR_VER_REG);
4099 return sprintf(buf, "%d:%d\n",
4100 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver));
4101 }
4102 static DEVICE_ATTR(version, S_IRUGO, intel_iommu_show_version, NULL);
4103
4104 static ssize_t intel_iommu_show_address(struct device *dev,
4105 struct device_attribute *attr,
4106 char *buf)
4107 {
4108 struct intel_iommu *iommu = dev_get_drvdata(dev);
4109 return sprintf(buf, "%llx\n", iommu->reg_phys);
4110 }
4111 static DEVICE_ATTR(address, S_IRUGO, intel_iommu_show_address, NULL);
4112
4113 static ssize_t intel_iommu_show_cap(struct device *dev,
4114 struct device_attribute *attr,
4115 char *buf)
4116 {
4117 struct intel_iommu *iommu = dev_get_drvdata(dev);
4118 return sprintf(buf, "%llx\n", iommu->cap);
4119 }
4120 static DEVICE_ATTR(cap, S_IRUGO, intel_iommu_show_cap, NULL);
4121
4122 static ssize_t intel_iommu_show_ecap(struct device *dev,
4123 struct device_attribute *attr,
4124 char *buf)
4125 {
4126 struct intel_iommu *iommu = dev_get_drvdata(dev);
4127 return sprintf(buf, "%llx\n", iommu->ecap);
4128 }
4129 static DEVICE_ATTR(ecap, S_IRUGO, intel_iommu_show_ecap, NULL);
4130
4131 static struct attribute *intel_iommu_attrs[] = {
4132 &dev_attr_version.attr,
4133 &dev_attr_address.attr,
4134 &dev_attr_cap.attr,
4135 &dev_attr_ecap.attr,
4136 NULL,
4137 };
4138
4139 static struct attribute_group intel_iommu_group = {
4140 .name = "intel-iommu",
4141 .attrs = intel_iommu_attrs,
4142 };
4143
4144 const struct attribute_group *intel_iommu_groups[] = {
4145 &intel_iommu_group,
4146 NULL,
4147 };
4148
4149 int __init intel_iommu_init(void)
4150 {
4151 int ret = -ENODEV;
4152 struct dmar_drhd_unit *drhd;
4153 struct intel_iommu *iommu;
4154
4155 /* VT-d is required for a TXT/tboot launch, so enforce that */
4156 force_on = tboot_force_iommu();
4157
4158 if (iommu_init_mempool()) {
4159 if (force_on)
4160 panic("tboot: Failed to initialize iommu memory\n");
4161 return -ENOMEM;
4162 }
4163
4164 down_write(&dmar_global_lock);
4165 if (dmar_table_init()) {
4166 if (force_on)
4167 panic("tboot: Failed to initialize DMAR table\n");
4168 goto out_free_dmar;
4169 }
4170
4171 /*
4172 * Disable translation if already enabled prior to OS handover.
4173 */
4174 for_each_active_iommu(iommu, drhd)
4175 if (iommu->gcmd & DMA_GCMD_TE)
4176 iommu_disable_translation(iommu);
4177
4178 if (dmar_dev_scope_init() < 0) {
4179 if (force_on)
4180 panic("tboot: Failed to initialize DMAR device scope\n");
4181 goto out_free_dmar;
4182 }
4183
4184 if (no_iommu || dmar_disabled)
4185 goto out_free_dmar;
4186
4187 if (list_empty(&dmar_rmrr_units))
4188 printk(KERN_INFO "DMAR: No RMRR found\n");
4189
4190 if (list_empty(&dmar_atsr_units))
4191 printk(KERN_INFO "DMAR: No ATSR found\n");
4192
4193 if (dmar_init_reserved_ranges()) {
4194 if (force_on)
4195 panic("tboot: Failed to reserve iommu ranges\n");
4196 goto out_free_reserved_range;
4197 }
4198
4199 init_no_remapping_devices();
4200
4201 ret = init_dmars();
4202 if (ret) {
4203 if (force_on)
4204 panic("tboot: Failed to initialize DMARs\n");
4205 printk(KERN_ERR "IOMMU: dmar init failed\n");
4206 goto out_free_reserved_range;
4207 }
4208 up_write(&dmar_global_lock);
4209 printk(KERN_INFO
4210 "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
4211
4212 init_timer(&unmap_timer);
4213 #ifdef CONFIG_SWIOTLB
4214 swiotlb = 0;
4215 #endif
4216 dma_ops = &intel_dma_ops;
4217
4218 init_iommu_pm_ops();
4219
4220 for_each_active_iommu(iommu, drhd)
4221 iommu->iommu_dev = iommu_device_create(NULL, iommu,
4222 intel_iommu_groups,
4223 iommu->name);
4224
4225 bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
4226 bus_register_notifier(&pci_bus_type, &device_nb);
4227 if (si_domain && !hw_pass_through)
4228 register_memory_notifier(&intel_iommu_memory_nb);
4229
4230 intel_iommu_enabled = 1;
4231
4232 return 0;
4233
4234 out_free_reserved_range:
4235 put_iova_domain(&reserved_iova_list);
4236 out_free_dmar:
4237 intel_iommu_free_dmars();
4238 up_write(&dmar_global_lock);
4239 iommu_exit_mempool();
4240 return ret;
4241 }
4242
4243 static int iommu_detach_dev_cb(struct pci_dev *pdev, u16 alias, void *opaque)
4244 {
4245 struct intel_iommu *iommu = opaque;
4246
4247 iommu_detach_dev(iommu, PCI_BUS_NUM(alias), alias & 0xff);
4248 return 0;
4249 }
4250
4251 /*
4252 * NB - intel-iommu lacks any sort of reference counting for the users of
4253 * dependent devices. If multiple endpoints have intersecting dependent
4254 * devices, unbinding the driver from any one of them will possibly leave
4255 * the others unable to operate.
4256 */
4257 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
4258 struct device *dev)
4259 {
4260 if (!iommu || !dev || !dev_is_pci(dev))
4261 return;
4262
4263 pci_for_each_dma_alias(to_pci_dev(dev), &iommu_detach_dev_cb, iommu);
4264 }
4265
4266 static void domain_remove_one_dev_info(struct dmar_domain *domain,
4267 struct device *dev)
4268 {
4269 struct device_domain_info *info, *tmp;
4270 struct intel_iommu *iommu;
4271 unsigned long flags;
4272 int found = 0;
4273 u8 bus, devfn;
4274
4275 iommu = device_to_iommu(dev, &bus, &devfn);
4276 if (!iommu)
4277 return;
4278
4279 spin_lock_irqsave(&device_domain_lock, flags);
4280 list_for_each_entry_safe(info, tmp, &domain->devices, link) {
4281 if (info->iommu == iommu && info->bus == bus &&
4282 info->devfn == devfn) {
4283 unlink_domain_info(info);
4284 spin_unlock_irqrestore(&device_domain_lock, flags);
4285
4286 iommu_disable_dev_iotlb(info);
4287 iommu_detach_dev(iommu, info->bus, info->devfn);
4288 iommu_detach_dependent_devices(iommu, dev);
4289 free_devinfo_mem(info);
4290
4291 spin_lock_irqsave(&device_domain_lock, flags);
4292
4293 if (found)
4294 break;
4295 else
4296 continue;
4297 }
4298
4299 /* if there is no other devices under the same iommu
4300 * owned by this domain, clear this iommu in iommu_bmp
4301 * update iommu count and coherency
4302 */
4303 if (info->iommu == iommu)
4304 found = 1;
4305 }
4306
4307 spin_unlock_irqrestore(&device_domain_lock, flags);
4308
4309 if (found == 0) {
4310 domain_detach_iommu(domain, iommu);
4311 if (!domain_type_is_vm_or_si(domain))
4312 iommu_detach_domain(domain, iommu);
4313 }
4314 }
4315
4316 static int md_domain_init(struct dmar_domain *domain, int guest_width)
4317 {
4318 int adjust_width;
4319
4320 init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN,
4321 DMA_32BIT_PFN);
4322 domain_reserve_special_ranges(domain);
4323
4324 /* calculate AGAW */
4325 domain->gaw = guest_width;
4326 adjust_width = guestwidth_to_adjustwidth(guest_width);
4327 domain->agaw = width_to_agaw(adjust_width);
4328
4329 domain->iommu_coherency = 0;
4330 domain->iommu_snooping = 0;
4331 domain->iommu_superpage = 0;
4332 domain->max_addr = 0;
4333
4334 /* always allocate the top pgd */
4335 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
4336 if (!domain->pgd)
4337 return -ENOMEM;
4338 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
4339 return 0;
4340 }
4341
4342 static int intel_iommu_domain_init(struct iommu_domain *domain)
4343 {
4344 struct dmar_domain *dmar_domain;
4345
4346 dmar_domain = alloc_domain(DOMAIN_FLAG_VIRTUAL_MACHINE);
4347 if (!dmar_domain) {
4348 printk(KERN_ERR
4349 "intel_iommu_domain_init: dmar_domain == NULL\n");
4350 return -ENOMEM;
4351 }
4352 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
4353 printk(KERN_ERR
4354 "intel_iommu_domain_init() failed\n");
4355 domain_exit(dmar_domain);
4356 return -ENOMEM;
4357 }
4358 domain_update_iommu_cap(dmar_domain);
4359 domain->priv = dmar_domain;
4360
4361 domain->geometry.aperture_start = 0;
4362 domain->geometry.aperture_end = __DOMAIN_MAX_ADDR(dmar_domain->gaw);
4363 domain->geometry.force_aperture = true;
4364
4365 return 0;
4366 }
4367
4368 static void intel_iommu_domain_destroy(struct iommu_domain *domain)
4369 {
4370 struct dmar_domain *dmar_domain = domain->priv;
4371
4372 domain->priv = NULL;
4373 domain_exit(dmar_domain);
4374 }
4375
4376 static int intel_iommu_attach_device(struct iommu_domain *domain,
4377 struct device *dev)
4378 {
4379 struct dmar_domain *dmar_domain = domain->priv;
4380 struct intel_iommu *iommu;
4381 int addr_width;
4382 u8 bus, devfn;
4383
4384 if (device_is_rmrr_locked(dev)) {
4385 dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement. Contact your platform vendor.\n");
4386 return -EPERM;
4387 }
4388
4389 /* normally dev is not mapped */
4390 if (unlikely(domain_context_mapped(dev))) {
4391 struct dmar_domain *old_domain;
4392
4393 old_domain = find_domain(dev);
4394 if (old_domain) {
4395 if (domain_type_is_vm_or_si(dmar_domain))
4396 domain_remove_one_dev_info(old_domain, dev);
4397 else
4398 domain_remove_dev_info(old_domain);
4399
4400 if (!domain_type_is_vm_or_si(old_domain) &&
4401 list_empty(&old_domain->devices))
4402 domain_exit(old_domain);
4403 }
4404 }
4405
4406 iommu = device_to_iommu(dev, &bus, &devfn);
4407 if (!iommu)
4408 return -ENODEV;
4409
4410 /* check if this iommu agaw is sufficient for max mapped address */
4411 addr_width = agaw_to_width(iommu->agaw);
4412 if (addr_width > cap_mgaw(iommu->cap))
4413 addr_width = cap_mgaw(iommu->cap);
4414
4415 if (dmar_domain->max_addr > (1LL << addr_width)) {
4416 printk(KERN_ERR "%s: iommu width (%d) is not "
4417 "sufficient for the mapped address (%llx)\n",
4418 __func__, addr_width, dmar_domain->max_addr);
4419 return -EFAULT;
4420 }
4421 dmar_domain->gaw = addr_width;
4422
4423 /*
4424 * Knock out extra levels of page tables if necessary
4425 */
4426 while (iommu->agaw < dmar_domain->agaw) {
4427 struct dma_pte *pte;
4428
4429 pte = dmar_domain->pgd;
4430 if (dma_pte_present(pte)) {
4431 dmar_domain->pgd = (struct dma_pte *)
4432 phys_to_virt(dma_pte_addr(pte));
4433 free_pgtable_page(pte);
4434 }
4435 dmar_domain->agaw--;
4436 }
4437
4438 return domain_add_dev_info(dmar_domain, dev, CONTEXT_TT_MULTI_LEVEL);
4439 }
4440
4441 static void intel_iommu_detach_device(struct iommu_domain *domain,
4442 struct device *dev)
4443 {
4444 struct dmar_domain *dmar_domain = domain->priv;
4445
4446 domain_remove_one_dev_info(dmar_domain, dev);
4447 }
4448
4449 static int intel_iommu_map(struct iommu_domain *domain,
4450 unsigned long iova, phys_addr_t hpa,
4451 size_t size, int iommu_prot)
4452 {
4453 struct dmar_domain *dmar_domain = domain->priv;
4454 u64 max_addr;
4455 int prot = 0;
4456 int ret;
4457
4458 if (iommu_prot & IOMMU_READ)
4459 prot |= DMA_PTE_READ;
4460 if (iommu_prot & IOMMU_WRITE)
4461 prot |= DMA_PTE_WRITE;
4462 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
4463 prot |= DMA_PTE_SNP;
4464
4465 max_addr = iova + size;
4466 if (dmar_domain->max_addr < max_addr) {
4467 u64 end;
4468
4469 /* check if minimum agaw is sufficient for mapped address */
4470 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
4471 if (end < max_addr) {
4472 printk(KERN_ERR "%s: iommu width (%d) is not "
4473 "sufficient for the mapped address (%llx)\n",
4474 __func__, dmar_domain->gaw, max_addr);
4475 return -EFAULT;
4476 }
4477 dmar_domain->max_addr = max_addr;
4478 }
4479 /* Round up size to next multiple of PAGE_SIZE, if it and
4480 the low bits of hpa would take us onto the next page */
4481 size = aligned_nrpages(hpa, size);
4482 ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
4483 hpa >> VTD_PAGE_SHIFT, size, prot);
4484 return ret;
4485 }
4486
4487 static size_t intel_iommu_unmap(struct iommu_domain *domain,
4488 unsigned long iova, size_t size)
4489 {
4490 struct dmar_domain *dmar_domain = domain->priv;
4491 struct page *freelist = NULL;
4492 struct intel_iommu *iommu;
4493 unsigned long start_pfn, last_pfn;
4494 unsigned int npages;
4495 int iommu_id, num, ndomains, level = 0;
4496
4497 /* Cope with horrid API which requires us to unmap more than the
4498 size argument if it happens to be a large-page mapping. */
4499 if (!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level))
4500 BUG();
4501
4502 if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
4503 size = VTD_PAGE_SIZE << level_to_offset_bits(level);
4504
4505 start_pfn = iova >> VTD_PAGE_SHIFT;
4506 last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;
4507
4508 freelist = domain_unmap(dmar_domain, start_pfn, last_pfn);
4509
4510 npages = last_pfn - start_pfn + 1;
4511
4512 for_each_set_bit(iommu_id, dmar_domain->iommu_bmp, g_num_of_iommus) {
4513 iommu = g_iommus[iommu_id];
4514
4515 /*
4516 * find bit position of dmar_domain
4517 */
4518 ndomains = cap_ndoms(iommu->cap);
4519 for_each_set_bit(num, iommu->domain_ids, ndomains) {
4520 if (iommu->domains[num] == dmar_domain)
4521 iommu_flush_iotlb_psi(iommu, num, start_pfn,
4522 npages, !freelist, 0);
4523 }
4524
4525 }
4526
4527 dma_free_pagelist(freelist);
4528
4529 if (dmar_domain->max_addr == iova + size)
4530 dmar_domain->max_addr = iova;
4531
4532 return size;
4533 }
4534
4535 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
4536 dma_addr_t iova)
4537 {
4538 struct dmar_domain *dmar_domain = domain->priv;
4539 struct dma_pte *pte;
4540 int level = 0;
4541 u64 phys = 0;
4542
4543 pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level);
4544 if (pte)
4545 phys = dma_pte_addr(pte);
4546
4547 return phys;
4548 }
4549
4550 static bool intel_iommu_capable(enum iommu_cap cap)
4551 {
4552 if (cap == IOMMU_CAP_CACHE_COHERENCY)
4553 return domain_update_iommu_snooping(NULL) == 1;
4554 if (cap == IOMMU_CAP_INTR_REMAP)
4555 return irq_remapping_enabled == 1;
4556
4557 return false;
4558 }
4559
4560 static int intel_iommu_add_device(struct device *dev)
4561 {
4562 struct intel_iommu *iommu;
4563 struct iommu_group *group;
4564 u8 bus, devfn;
4565
4566 iommu = device_to_iommu(dev, &bus, &devfn);
4567 if (!iommu)
4568 return -ENODEV;
4569
4570 iommu_device_link(iommu->iommu_dev, dev);
4571
4572 group = iommu_group_get_for_dev(dev);
4573
4574 if (IS_ERR(group))
4575 return PTR_ERR(group);
4576
4577 iommu_group_put(group);
4578 return 0;
4579 }
4580
4581 static void intel_iommu_remove_device(struct device *dev)
4582 {
4583 struct intel_iommu *iommu;
4584 u8 bus, devfn;
4585
4586 iommu = device_to_iommu(dev, &bus, &devfn);
4587 if (!iommu)
4588 return;
4589
4590 iommu_group_remove_device(dev);
4591
4592 iommu_device_unlink(iommu->iommu_dev, dev);
4593 }
4594
4595 static const struct iommu_ops intel_iommu_ops = {
4596 .capable = intel_iommu_capable,
4597 .domain_init = intel_iommu_domain_init,
4598 .domain_destroy = intel_iommu_domain_destroy,
4599 .attach_dev = intel_iommu_attach_device,
4600 .detach_dev = intel_iommu_detach_device,
4601 .map = intel_iommu_map,
4602 .unmap = intel_iommu_unmap,
4603 .map_sg = default_iommu_map_sg,
4604 .iova_to_phys = intel_iommu_iova_to_phys,
4605 .add_device = intel_iommu_add_device,
4606 .remove_device = intel_iommu_remove_device,
4607 .pgsize_bitmap = INTEL_IOMMU_PGSIZES,
4608 };
4609
4610 static void quirk_iommu_g4x_gfx(struct pci_dev *dev)
4611 {
4612 /* G4x/GM45 integrated gfx dmar support is totally busted. */
4613 printk(KERN_INFO "DMAR: Disabling IOMMU for graphics on this chipset\n");
4614 dmar_map_gfx = 0;
4615 }
4616
4617 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_g4x_gfx);
4618 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_g4x_gfx);
4619 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_g4x_gfx);
4620 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_g4x_gfx);
4621 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_g4x_gfx);
4622 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_g4x_gfx);
4623 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_g4x_gfx);
4624
4625 static void quirk_iommu_rwbf(struct pci_dev *dev)
4626 {
4627 /*
4628 * Mobile 4 Series Chipset neglects to set RWBF capability,
4629 * but needs it. Same seems to hold for the desktop versions.
4630 */
4631 printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n");
4632 rwbf_quirk = 1;
4633 }
4634
4635 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
4636 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
4637 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
4638 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
4639 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
4640 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
4641 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
4642
4643 #define GGC 0x52
4644 #define GGC_MEMORY_SIZE_MASK (0xf << 8)
4645 #define GGC_MEMORY_SIZE_NONE (0x0 << 8)
4646 #define GGC_MEMORY_SIZE_1M (0x1 << 8)
4647 #define GGC_MEMORY_SIZE_2M (0x3 << 8)
4648 #define GGC_MEMORY_VT_ENABLED (0x8 << 8)
4649 #define GGC_MEMORY_SIZE_2M_VT (0x9 << 8)
4650 #define GGC_MEMORY_SIZE_3M_VT (0xa << 8)
4651 #define GGC_MEMORY_SIZE_4M_VT (0xb << 8)
4652
4653 static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
4654 {
4655 unsigned short ggc;
4656
4657 if (pci_read_config_word(dev, GGC, &ggc))
4658 return;
4659
4660 if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
4661 printk(KERN_INFO "DMAR: BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
4662 dmar_map_gfx = 0;
4663 } else if (dmar_map_gfx) {
4664 /* we have to ensure the gfx device is idle before we flush */
4665 printk(KERN_INFO "DMAR: Disabling batched IOTLB flush on Ironlake\n");
4666 intel_iommu_strict = 1;
4667 }
4668 }
4669 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
4670 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
4671 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
4672 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
4673
4674 /* On Tylersburg chipsets, some BIOSes have been known to enable the
4675 ISOCH DMAR unit for the Azalia sound device, but not give it any
4676 TLB entries, which causes it to deadlock. Check for that. We do
4677 this in a function called from init_dmars(), instead of in a PCI
4678 quirk, because we don't want to print the obnoxious "BIOS broken"
4679 message if VT-d is actually disabled.
4680 */
4681 static void __init check_tylersburg_isoch(void)
4682 {
4683 struct pci_dev *pdev;
4684 uint32_t vtisochctrl;
4685
4686 /* If there's no Azalia in the system anyway, forget it. */
4687 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
4688 if (!pdev)
4689 return;
4690 pci_dev_put(pdev);
4691
4692 /* System Management Registers. Might be hidden, in which case
4693 we can't do the sanity check. But that's OK, because the
4694 known-broken BIOSes _don't_ actually hide it, so far. */
4695 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
4696 if (!pdev)
4697 return;
4698
4699 if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
4700 pci_dev_put(pdev);
4701 return;
4702 }
4703
4704 pci_dev_put(pdev);
4705
4706 /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
4707 if (vtisochctrl & 1)
4708 return;
4709
4710 /* Drop all bits other than the number of TLB entries */
4711 vtisochctrl &= 0x1c;
4712
4713 /* If we have the recommended number of TLB entries (16), fine. */
4714 if (vtisochctrl == 0x10)
4715 return;
4716
4717 /* Zero TLB entries? You get to ride the short bus to school. */
4718 if (!vtisochctrl) {
4719 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
4720 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
4721 dmi_get_system_info(DMI_BIOS_VENDOR),
4722 dmi_get_system_info(DMI_BIOS_VERSION),
4723 dmi_get_system_info(DMI_PRODUCT_VERSION));
4724 iommu_identity_mapping |= IDENTMAP_AZALIA;
4725 return;
4726 }
4727
4728 printk(KERN_WARNING "DMAR: Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
4729 vtisochctrl);
4730 }
This page took 0.128935 seconds and 6 git commands to generate.