Merge tag 'efi-urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/mfleming...
[deliverable/linux.git] / drivers / iommu / intel-iommu.c
1 /*
2 * Copyright © 2006-2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * Authors: David Woodhouse <dwmw2@infradead.org>,
14 * Ashok Raj <ashok.raj@intel.com>,
15 * Shaohua Li <shaohua.li@intel.com>,
16 * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
17 * Fenghua Yu <fenghua.yu@intel.com>
18 */
19
20 #include <linux/init.h>
21 #include <linux/bitmap.h>
22 #include <linux/debugfs.h>
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/irq.h>
26 #include <linux/interrupt.h>
27 #include <linux/spinlock.h>
28 #include <linux/pci.h>
29 #include <linux/dmar.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/mempool.h>
32 #include <linux/memory.h>
33 #include <linux/timer.h>
34 #include <linux/iova.h>
35 #include <linux/iommu.h>
36 #include <linux/intel-iommu.h>
37 #include <linux/syscore_ops.h>
38 #include <linux/tboot.h>
39 #include <linux/dmi.h>
40 #include <linux/pci-ats.h>
41 #include <linux/memblock.h>
42 #include <linux/dma-contiguous.h>
43 #include <asm/irq_remapping.h>
44 #include <asm/cacheflush.h>
45 #include <asm/iommu.h>
46
47 #include "irq_remapping.h"
48
49 #define ROOT_SIZE VTD_PAGE_SIZE
50 #define CONTEXT_SIZE VTD_PAGE_SIZE
51
52 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
53 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
54 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
55
56 #define IOAPIC_RANGE_START (0xfee00000)
57 #define IOAPIC_RANGE_END (0xfeefffff)
58 #define IOVA_START_ADDR (0x1000)
59
60 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
61
62 #define MAX_AGAW_WIDTH 64
63 #define MAX_AGAW_PFN_WIDTH (MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
64
65 #define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
66 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
67
68 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
69 to match. That way, we can use 'unsigned long' for PFNs with impunity. */
70 #define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \
71 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
72 #define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
73
74 /* IO virtual address start page frame number */
75 #define IOVA_START_PFN (1)
76
77 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
78 #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
79 #define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
80
81 /* page table handling */
82 #define LEVEL_STRIDE (9)
83 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
84
85 /*
86 * This bitmap is used to advertise the page sizes our hardware support
87 * to the IOMMU core, which will then use this information to split
88 * physically contiguous memory regions it is mapping into page sizes
89 * that we support.
90 *
91 * Traditionally the IOMMU core just handed us the mappings directly,
92 * after making sure the size is an order of a 4KiB page and that the
93 * mapping has natural alignment.
94 *
95 * To retain this behavior, we currently advertise that we support
96 * all page sizes that are an order of 4KiB.
97 *
98 * If at some point we'd like to utilize the IOMMU core's new behavior,
99 * we could change this to advertise the real page sizes we support.
100 */
101 #define INTEL_IOMMU_PGSIZES (~0xFFFUL)
102
103 static inline int agaw_to_level(int agaw)
104 {
105 return agaw + 2;
106 }
107
108 static inline int agaw_to_width(int agaw)
109 {
110 return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
111 }
112
113 static inline int width_to_agaw(int width)
114 {
115 return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
116 }
117
118 static inline unsigned int level_to_offset_bits(int level)
119 {
120 return (level - 1) * LEVEL_STRIDE;
121 }
122
123 static inline int pfn_level_offset(unsigned long pfn, int level)
124 {
125 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
126 }
127
128 static inline unsigned long level_mask(int level)
129 {
130 return -1UL << level_to_offset_bits(level);
131 }
132
133 static inline unsigned long level_size(int level)
134 {
135 return 1UL << level_to_offset_bits(level);
136 }
137
138 static inline unsigned long align_to_level(unsigned long pfn, int level)
139 {
140 return (pfn + level_size(level) - 1) & level_mask(level);
141 }
142
143 static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
144 {
145 return 1 << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
146 }
147
148 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
149 are never going to work. */
150 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
151 {
152 return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
153 }
154
155 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
156 {
157 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
158 }
159 static inline unsigned long page_to_dma_pfn(struct page *pg)
160 {
161 return mm_to_dma_pfn(page_to_pfn(pg));
162 }
163 static inline unsigned long virt_to_dma_pfn(void *p)
164 {
165 return page_to_dma_pfn(virt_to_page(p));
166 }
167
168 /* global iommu list, set NULL for ignored DMAR units */
169 static struct intel_iommu **g_iommus;
170
171 static void __init check_tylersburg_isoch(void);
172 static int rwbf_quirk;
173
174 /*
175 * set to 1 to panic kernel if can't successfully enable VT-d
176 * (used when kernel is launched w/ TXT)
177 */
178 static int force_on = 0;
179
180 /*
181 * 0: Present
182 * 1-11: Reserved
183 * 12-63: Context Ptr (12 - (haw-1))
184 * 64-127: Reserved
185 */
186 struct root_entry {
187 u64 val;
188 u64 rsvd1;
189 };
190 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
191 static inline bool root_present(struct root_entry *root)
192 {
193 return (root->val & 1);
194 }
195 static inline void set_root_present(struct root_entry *root)
196 {
197 root->val |= 1;
198 }
199 static inline void set_root_value(struct root_entry *root, unsigned long value)
200 {
201 root->val &= ~VTD_PAGE_MASK;
202 root->val |= value & VTD_PAGE_MASK;
203 }
204
205 static inline struct context_entry *
206 get_context_addr_from_root(struct root_entry *root)
207 {
208 return (struct context_entry *)
209 (root_present(root)?phys_to_virt(
210 root->val & VTD_PAGE_MASK) :
211 NULL);
212 }
213
214 /*
215 * low 64 bits:
216 * 0: present
217 * 1: fault processing disable
218 * 2-3: translation type
219 * 12-63: address space root
220 * high 64 bits:
221 * 0-2: address width
222 * 3-6: aval
223 * 8-23: domain id
224 */
225 struct context_entry {
226 u64 lo;
227 u64 hi;
228 };
229
230 static inline bool context_present(struct context_entry *context)
231 {
232 return (context->lo & 1);
233 }
234 static inline void context_set_present(struct context_entry *context)
235 {
236 context->lo |= 1;
237 }
238
239 static inline void context_set_fault_enable(struct context_entry *context)
240 {
241 context->lo &= (((u64)-1) << 2) | 1;
242 }
243
244 static inline void context_set_translation_type(struct context_entry *context,
245 unsigned long value)
246 {
247 context->lo &= (((u64)-1) << 4) | 3;
248 context->lo |= (value & 3) << 2;
249 }
250
251 static inline void context_set_address_root(struct context_entry *context,
252 unsigned long value)
253 {
254 context->lo &= ~VTD_PAGE_MASK;
255 context->lo |= value & VTD_PAGE_MASK;
256 }
257
258 static inline void context_set_address_width(struct context_entry *context,
259 unsigned long value)
260 {
261 context->hi |= value & 7;
262 }
263
264 static inline void context_set_domain_id(struct context_entry *context,
265 unsigned long value)
266 {
267 context->hi |= (value & ((1 << 16) - 1)) << 8;
268 }
269
270 static inline void context_clear_entry(struct context_entry *context)
271 {
272 context->lo = 0;
273 context->hi = 0;
274 }
275
276 /*
277 * 0: readable
278 * 1: writable
279 * 2-6: reserved
280 * 7: super page
281 * 8-10: available
282 * 11: snoop behavior
283 * 12-63: Host physcial address
284 */
285 struct dma_pte {
286 u64 val;
287 };
288
289 static inline void dma_clear_pte(struct dma_pte *pte)
290 {
291 pte->val = 0;
292 }
293
294 static inline u64 dma_pte_addr(struct dma_pte *pte)
295 {
296 #ifdef CONFIG_64BIT
297 return pte->val & VTD_PAGE_MASK;
298 #else
299 /* Must have a full atomic 64-bit read */
300 return __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
301 #endif
302 }
303
304 static inline bool dma_pte_present(struct dma_pte *pte)
305 {
306 return (pte->val & 3) != 0;
307 }
308
309 static inline bool dma_pte_superpage(struct dma_pte *pte)
310 {
311 return (pte->val & DMA_PTE_LARGE_PAGE);
312 }
313
314 static inline int first_pte_in_page(struct dma_pte *pte)
315 {
316 return !((unsigned long)pte & ~VTD_PAGE_MASK);
317 }
318
319 /*
320 * This domain is a statically identity mapping domain.
321 * 1. This domain creats a static 1:1 mapping to all usable memory.
322 * 2. It maps to each iommu if successful.
323 * 3. Each iommu mapps to this domain if successful.
324 */
325 static struct dmar_domain *si_domain;
326 static int hw_pass_through = 1;
327
328 /* domain represents a virtual machine, more than one devices
329 * across iommus may be owned in one domain, e.g. kvm guest.
330 */
331 #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 0)
332
333 /* si_domain contains mulitple devices */
334 #define DOMAIN_FLAG_STATIC_IDENTITY (1 << 1)
335
336 struct dmar_domain {
337 int id; /* domain id */
338 int nid; /* node id */
339 DECLARE_BITMAP(iommu_bmp, DMAR_UNITS_SUPPORTED);
340 /* bitmap of iommus this domain uses*/
341
342 struct list_head devices; /* all devices' list */
343 struct iova_domain iovad; /* iova's that belong to this domain */
344
345 struct dma_pte *pgd; /* virtual address */
346 int gaw; /* max guest address width */
347
348 /* adjusted guest address width, 0 is level 2 30-bit */
349 int agaw;
350
351 int flags; /* flags to find out type of domain */
352
353 int iommu_coherency;/* indicate coherency of iommu access */
354 int iommu_snooping; /* indicate snooping control feature*/
355 int iommu_count; /* reference count of iommu */
356 int iommu_superpage;/* Level of superpages supported:
357 0 == 4KiB (no superpages), 1 == 2MiB,
358 2 == 1GiB, 3 == 512GiB, 4 == 1TiB */
359 spinlock_t iommu_lock; /* protect iommu set in domain */
360 u64 max_addr; /* maximum mapped address */
361 };
362
363 /* PCI domain-device relationship */
364 struct device_domain_info {
365 struct list_head link; /* link to domain siblings */
366 struct list_head global; /* link to global list */
367 u8 bus; /* PCI bus number */
368 u8 devfn; /* PCI devfn number */
369 struct device *dev; /* it's NULL for PCIe-to-PCI bridge */
370 struct intel_iommu *iommu; /* IOMMU used by this device */
371 struct dmar_domain *domain; /* pointer to domain */
372 };
373
374 struct dmar_rmrr_unit {
375 struct list_head list; /* list of rmrr units */
376 struct acpi_dmar_header *hdr; /* ACPI header */
377 u64 base_address; /* reserved base address*/
378 u64 end_address; /* reserved end address */
379 struct dmar_dev_scope *devices; /* target devices */
380 int devices_cnt; /* target device count */
381 };
382
383 struct dmar_atsr_unit {
384 struct list_head list; /* list of ATSR units */
385 struct acpi_dmar_header *hdr; /* ACPI header */
386 struct dmar_dev_scope *devices; /* target devices */
387 int devices_cnt; /* target device count */
388 u8 include_all:1; /* include all ports */
389 };
390
391 static LIST_HEAD(dmar_atsr_units);
392 static LIST_HEAD(dmar_rmrr_units);
393
394 #define for_each_rmrr_units(rmrr) \
395 list_for_each_entry(rmrr, &dmar_rmrr_units, list)
396
397 static void flush_unmaps_timeout(unsigned long data);
398
399 static DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0);
400
401 #define HIGH_WATER_MARK 250
402 struct deferred_flush_tables {
403 int next;
404 struct iova *iova[HIGH_WATER_MARK];
405 struct dmar_domain *domain[HIGH_WATER_MARK];
406 struct page *freelist[HIGH_WATER_MARK];
407 };
408
409 static struct deferred_flush_tables *deferred_flush;
410
411 /* bitmap for indexing intel_iommus */
412 static int g_num_of_iommus;
413
414 static DEFINE_SPINLOCK(async_umap_flush_lock);
415 static LIST_HEAD(unmaps_to_do);
416
417 static int timer_on;
418 static long list_size;
419
420 static void domain_exit(struct dmar_domain *domain);
421 static void domain_remove_dev_info(struct dmar_domain *domain);
422 static void domain_remove_one_dev_info(struct dmar_domain *domain,
423 struct device *dev);
424 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
425 struct device *dev);
426 static int domain_detach_iommu(struct dmar_domain *domain,
427 struct intel_iommu *iommu);
428
429 #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
430 int dmar_disabled = 0;
431 #else
432 int dmar_disabled = 1;
433 #endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
434
435 int intel_iommu_enabled = 0;
436 EXPORT_SYMBOL_GPL(intel_iommu_enabled);
437
438 static int dmar_map_gfx = 1;
439 static int dmar_forcedac;
440 static int intel_iommu_strict;
441 static int intel_iommu_superpage = 1;
442
443 int intel_iommu_gfx_mapped;
444 EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
445
446 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
447 static DEFINE_SPINLOCK(device_domain_lock);
448 static LIST_HEAD(device_domain_list);
449
450 static const struct iommu_ops intel_iommu_ops;
451
452 static int __init intel_iommu_setup(char *str)
453 {
454 if (!str)
455 return -EINVAL;
456 while (*str) {
457 if (!strncmp(str, "on", 2)) {
458 dmar_disabled = 0;
459 printk(KERN_INFO "Intel-IOMMU: enabled\n");
460 } else if (!strncmp(str, "off", 3)) {
461 dmar_disabled = 1;
462 printk(KERN_INFO "Intel-IOMMU: disabled\n");
463 } else if (!strncmp(str, "igfx_off", 8)) {
464 dmar_map_gfx = 0;
465 printk(KERN_INFO
466 "Intel-IOMMU: disable GFX device mapping\n");
467 } else if (!strncmp(str, "forcedac", 8)) {
468 printk(KERN_INFO
469 "Intel-IOMMU: Forcing DAC for PCI devices\n");
470 dmar_forcedac = 1;
471 } else if (!strncmp(str, "strict", 6)) {
472 printk(KERN_INFO
473 "Intel-IOMMU: disable batched IOTLB flush\n");
474 intel_iommu_strict = 1;
475 } else if (!strncmp(str, "sp_off", 6)) {
476 printk(KERN_INFO
477 "Intel-IOMMU: disable supported super page\n");
478 intel_iommu_superpage = 0;
479 }
480
481 str += strcspn(str, ",");
482 while (*str == ',')
483 str++;
484 }
485 return 0;
486 }
487 __setup("intel_iommu=", intel_iommu_setup);
488
489 static struct kmem_cache *iommu_domain_cache;
490 static struct kmem_cache *iommu_devinfo_cache;
491
492 static inline void *alloc_pgtable_page(int node)
493 {
494 struct page *page;
495 void *vaddr = NULL;
496
497 page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
498 if (page)
499 vaddr = page_address(page);
500 return vaddr;
501 }
502
503 static inline void free_pgtable_page(void *vaddr)
504 {
505 free_page((unsigned long)vaddr);
506 }
507
508 static inline void *alloc_domain_mem(void)
509 {
510 return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
511 }
512
513 static void free_domain_mem(void *vaddr)
514 {
515 kmem_cache_free(iommu_domain_cache, vaddr);
516 }
517
518 static inline void * alloc_devinfo_mem(void)
519 {
520 return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
521 }
522
523 static inline void free_devinfo_mem(void *vaddr)
524 {
525 kmem_cache_free(iommu_devinfo_cache, vaddr);
526 }
527
528 static inline int domain_type_is_vm(struct dmar_domain *domain)
529 {
530 return domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE;
531 }
532
533 static inline int domain_type_is_vm_or_si(struct dmar_domain *domain)
534 {
535 return domain->flags & (DOMAIN_FLAG_VIRTUAL_MACHINE |
536 DOMAIN_FLAG_STATIC_IDENTITY);
537 }
538
539 static inline int domain_pfn_supported(struct dmar_domain *domain,
540 unsigned long pfn)
541 {
542 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
543
544 return !(addr_width < BITS_PER_LONG && pfn >> addr_width);
545 }
546
547 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
548 {
549 unsigned long sagaw;
550 int agaw = -1;
551
552 sagaw = cap_sagaw(iommu->cap);
553 for (agaw = width_to_agaw(max_gaw);
554 agaw >= 0; agaw--) {
555 if (test_bit(agaw, &sagaw))
556 break;
557 }
558
559 return agaw;
560 }
561
562 /*
563 * Calculate max SAGAW for each iommu.
564 */
565 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
566 {
567 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
568 }
569
570 /*
571 * calculate agaw for each iommu.
572 * "SAGAW" may be different across iommus, use a default agaw, and
573 * get a supported less agaw for iommus that don't support the default agaw.
574 */
575 int iommu_calculate_agaw(struct intel_iommu *iommu)
576 {
577 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
578 }
579
580 /* This functionin only returns single iommu in a domain */
581 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
582 {
583 int iommu_id;
584
585 /* si_domain and vm domain should not get here. */
586 BUG_ON(domain_type_is_vm_or_si(domain));
587 iommu_id = find_first_bit(domain->iommu_bmp, g_num_of_iommus);
588 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
589 return NULL;
590
591 return g_iommus[iommu_id];
592 }
593
594 static void domain_update_iommu_coherency(struct dmar_domain *domain)
595 {
596 struct dmar_drhd_unit *drhd;
597 struct intel_iommu *iommu;
598 int i, found = 0;
599
600 domain->iommu_coherency = 1;
601
602 for_each_set_bit(i, domain->iommu_bmp, g_num_of_iommus) {
603 found = 1;
604 if (!ecap_coherent(g_iommus[i]->ecap)) {
605 domain->iommu_coherency = 0;
606 break;
607 }
608 }
609 if (found)
610 return;
611
612 /* No hardware attached; use lowest common denominator */
613 rcu_read_lock();
614 for_each_active_iommu(iommu, drhd) {
615 if (!ecap_coherent(iommu->ecap)) {
616 domain->iommu_coherency = 0;
617 break;
618 }
619 }
620 rcu_read_unlock();
621 }
622
623 static int domain_update_iommu_snooping(struct intel_iommu *skip)
624 {
625 struct dmar_drhd_unit *drhd;
626 struct intel_iommu *iommu;
627 int ret = 1;
628
629 rcu_read_lock();
630 for_each_active_iommu(iommu, drhd) {
631 if (iommu != skip) {
632 if (!ecap_sc_support(iommu->ecap)) {
633 ret = 0;
634 break;
635 }
636 }
637 }
638 rcu_read_unlock();
639
640 return ret;
641 }
642
643 static int domain_update_iommu_superpage(struct intel_iommu *skip)
644 {
645 struct dmar_drhd_unit *drhd;
646 struct intel_iommu *iommu;
647 int mask = 0xf;
648
649 if (!intel_iommu_superpage) {
650 return 0;
651 }
652
653 /* set iommu_superpage to the smallest common denominator */
654 rcu_read_lock();
655 for_each_active_iommu(iommu, drhd) {
656 if (iommu != skip) {
657 mask &= cap_super_page_val(iommu->cap);
658 if (!mask)
659 break;
660 }
661 }
662 rcu_read_unlock();
663
664 return fls(mask);
665 }
666
667 /* Some capabilities may be different across iommus */
668 static void domain_update_iommu_cap(struct dmar_domain *domain)
669 {
670 domain_update_iommu_coherency(domain);
671 domain->iommu_snooping = domain_update_iommu_snooping(NULL);
672 domain->iommu_superpage = domain_update_iommu_superpage(NULL);
673 }
674
675 static struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn)
676 {
677 struct dmar_drhd_unit *drhd = NULL;
678 struct intel_iommu *iommu;
679 struct device *tmp;
680 struct pci_dev *ptmp, *pdev = NULL;
681 u16 segment = 0;
682 int i;
683
684 if (dev_is_pci(dev)) {
685 pdev = to_pci_dev(dev);
686 segment = pci_domain_nr(pdev->bus);
687 } else if (ACPI_COMPANION(dev))
688 dev = &ACPI_COMPANION(dev)->dev;
689
690 rcu_read_lock();
691 for_each_active_iommu(iommu, drhd) {
692 if (pdev && segment != drhd->segment)
693 continue;
694
695 for_each_active_dev_scope(drhd->devices,
696 drhd->devices_cnt, i, tmp) {
697 if (tmp == dev) {
698 *bus = drhd->devices[i].bus;
699 *devfn = drhd->devices[i].devfn;
700 goto out;
701 }
702
703 if (!pdev || !dev_is_pci(tmp))
704 continue;
705
706 ptmp = to_pci_dev(tmp);
707 if (ptmp->subordinate &&
708 ptmp->subordinate->number <= pdev->bus->number &&
709 ptmp->subordinate->busn_res.end >= pdev->bus->number)
710 goto got_pdev;
711 }
712
713 if (pdev && drhd->include_all) {
714 got_pdev:
715 *bus = pdev->bus->number;
716 *devfn = pdev->devfn;
717 goto out;
718 }
719 }
720 iommu = NULL;
721 out:
722 rcu_read_unlock();
723
724 return iommu;
725 }
726
727 static void domain_flush_cache(struct dmar_domain *domain,
728 void *addr, int size)
729 {
730 if (!domain->iommu_coherency)
731 clflush_cache_range(addr, size);
732 }
733
734 /* Gets context entry for a given bus and devfn */
735 static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
736 u8 bus, u8 devfn)
737 {
738 struct root_entry *root;
739 struct context_entry *context;
740 unsigned long phy_addr;
741 unsigned long flags;
742
743 spin_lock_irqsave(&iommu->lock, flags);
744 root = &iommu->root_entry[bus];
745 context = get_context_addr_from_root(root);
746 if (!context) {
747 context = (struct context_entry *)
748 alloc_pgtable_page(iommu->node);
749 if (!context) {
750 spin_unlock_irqrestore(&iommu->lock, flags);
751 return NULL;
752 }
753 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
754 phy_addr = virt_to_phys((void *)context);
755 set_root_value(root, phy_addr);
756 set_root_present(root);
757 __iommu_flush_cache(iommu, root, sizeof(*root));
758 }
759 spin_unlock_irqrestore(&iommu->lock, flags);
760 return &context[devfn];
761 }
762
763 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
764 {
765 struct root_entry *root;
766 struct context_entry *context;
767 int ret;
768 unsigned long flags;
769
770 spin_lock_irqsave(&iommu->lock, flags);
771 root = &iommu->root_entry[bus];
772 context = get_context_addr_from_root(root);
773 if (!context) {
774 ret = 0;
775 goto out;
776 }
777 ret = context_present(&context[devfn]);
778 out:
779 spin_unlock_irqrestore(&iommu->lock, flags);
780 return ret;
781 }
782
783 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
784 {
785 struct root_entry *root;
786 struct context_entry *context;
787 unsigned long flags;
788
789 spin_lock_irqsave(&iommu->lock, flags);
790 root = &iommu->root_entry[bus];
791 context = get_context_addr_from_root(root);
792 if (context) {
793 context_clear_entry(&context[devfn]);
794 __iommu_flush_cache(iommu, &context[devfn], \
795 sizeof(*context));
796 }
797 spin_unlock_irqrestore(&iommu->lock, flags);
798 }
799
800 static void free_context_table(struct intel_iommu *iommu)
801 {
802 struct root_entry *root;
803 int i;
804 unsigned long flags;
805 struct context_entry *context;
806
807 spin_lock_irqsave(&iommu->lock, flags);
808 if (!iommu->root_entry) {
809 goto out;
810 }
811 for (i = 0; i < ROOT_ENTRY_NR; i++) {
812 root = &iommu->root_entry[i];
813 context = get_context_addr_from_root(root);
814 if (context)
815 free_pgtable_page(context);
816 }
817 free_pgtable_page(iommu->root_entry);
818 iommu->root_entry = NULL;
819 out:
820 spin_unlock_irqrestore(&iommu->lock, flags);
821 }
822
823 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
824 unsigned long pfn, int *target_level)
825 {
826 struct dma_pte *parent, *pte = NULL;
827 int level = agaw_to_level(domain->agaw);
828 int offset;
829
830 BUG_ON(!domain->pgd);
831
832 if (!domain_pfn_supported(domain, pfn))
833 /* Address beyond IOMMU's addressing capabilities. */
834 return NULL;
835
836 parent = domain->pgd;
837
838 while (1) {
839 void *tmp_page;
840
841 offset = pfn_level_offset(pfn, level);
842 pte = &parent[offset];
843 if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
844 break;
845 if (level == *target_level)
846 break;
847
848 if (!dma_pte_present(pte)) {
849 uint64_t pteval;
850
851 tmp_page = alloc_pgtable_page(domain->nid);
852
853 if (!tmp_page)
854 return NULL;
855
856 domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
857 pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
858 if (cmpxchg64(&pte->val, 0ULL, pteval))
859 /* Someone else set it while we were thinking; use theirs. */
860 free_pgtable_page(tmp_page);
861 else
862 domain_flush_cache(domain, pte, sizeof(*pte));
863 }
864 if (level == 1)
865 break;
866
867 parent = phys_to_virt(dma_pte_addr(pte));
868 level--;
869 }
870
871 if (!*target_level)
872 *target_level = level;
873
874 return pte;
875 }
876
877
878 /* return address's pte at specific level */
879 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
880 unsigned long pfn,
881 int level, int *large_page)
882 {
883 struct dma_pte *parent, *pte = NULL;
884 int total = agaw_to_level(domain->agaw);
885 int offset;
886
887 parent = domain->pgd;
888 while (level <= total) {
889 offset = pfn_level_offset(pfn, total);
890 pte = &parent[offset];
891 if (level == total)
892 return pte;
893
894 if (!dma_pte_present(pte)) {
895 *large_page = total;
896 break;
897 }
898
899 if (dma_pte_superpage(pte)) {
900 *large_page = total;
901 return pte;
902 }
903
904 parent = phys_to_virt(dma_pte_addr(pte));
905 total--;
906 }
907 return NULL;
908 }
909
910 /* clear last level pte, a tlb flush should be followed */
911 static void dma_pte_clear_range(struct dmar_domain *domain,
912 unsigned long start_pfn,
913 unsigned long last_pfn)
914 {
915 unsigned int large_page = 1;
916 struct dma_pte *first_pte, *pte;
917
918 BUG_ON(!domain_pfn_supported(domain, start_pfn));
919 BUG_ON(!domain_pfn_supported(domain, last_pfn));
920 BUG_ON(start_pfn > last_pfn);
921
922 /* we don't need lock here; nobody else touches the iova range */
923 do {
924 large_page = 1;
925 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
926 if (!pte) {
927 start_pfn = align_to_level(start_pfn + 1, large_page + 1);
928 continue;
929 }
930 do {
931 dma_clear_pte(pte);
932 start_pfn += lvl_to_nr_pages(large_page);
933 pte++;
934 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
935
936 domain_flush_cache(domain, first_pte,
937 (void *)pte - (void *)first_pte);
938
939 } while (start_pfn && start_pfn <= last_pfn);
940 }
941
942 static void dma_pte_free_level(struct dmar_domain *domain, int level,
943 struct dma_pte *pte, unsigned long pfn,
944 unsigned long start_pfn, unsigned long last_pfn)
945 {
946 pfn = max(start_pfn, pfn);
947 pte = &pte[pfn_level_offset(pfn, level)];
948
949 do {
950 unsigned long level_pfn;
951 struct dma_pte *level_pte;
952
953 if (!dma_pte_present(pte) || dma_pte_superpage(pte))
954 goto next;
955
956 level_pfn = pfn & level_mask(level - 1);
957 level_pte = phys_to_virt(dma_pte_addr(pte));
958
959 if (level > 2)
960 dma_pte_free_level(domain, level - 1, level_pte,
961 level_pfn, start_pfn, last_pfn);
962
963 /* If range covers entire pagetable, free it */
964 if (!(start_pfn > level_pfn ||
965 last_pfn < level_pfn + level_size(level) - 1)) {
966 dma_clear_pte(pte);
967 domain_flush_cache(domain, pte, sizeof(*pte));
968 free_pgtable_page(level_pte);
969 }
970 next:
971 pfn += level_size(level);
972 } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
973 }
974
975 /* free page table pages. last level pte should already be cleared */
976 static void dma_pte_free_pagetable(struct dmar_domain *domain,
977 unsigned long start_pfn,
978 unsigned long last_pfn)
979 {
980 BUG_ON(!domain_pfn_supported(domain, start_pfn));
981 BUG_ON(!domain_pfn_supported(domain, last_pfn));
982 BUG_ON(start_pfn > last_pfn);
983
984 dma_pte_clear_range(domain, start_pfn, last_pfn);
985
986 /* We don't need lock here; nobody else touches the iova range */
987 dma_pte_free_level(domain, agaw_to_level(domain->agaw),
988 domain->pgd, 0, start_pfn, last_pfn);
989
990 /* free pgd */
991 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
992 free_pgtable_page(domain->pgd);
993 domain->pgd = NULL;
994 }
995 }
996
997 /* When a page at a given level is being unlinked from its parent, we don't
998 need to *modify* it at all. All we need to do is make a list of all the
999 pages which can be freed just as soon as we've flushed the IOTLB and we
1000 know the hardware page-walk will no longer touch them.
1001 The 'pte' argument is the *parent* PTE, pointing to the page that is to
1002 be freed. */
1003 static struct page *dma_pte_list_pagetables(struct dmar_domain *domain,
1004 int level, struct dma_pte *pte,
1005 struct page *freelist)
1006 {
1007 struct page *pg;
1008
1009 pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
1010 pg->freelist = freelist;
1011 freelist = pg;
1012
1013 if (level == 1)
1014 return freelist;
1015
1016 pte = page_address(pg);
1017 do {
1018 if (dma_pte_present(pte) && !dma_pte_superpage(pte))
1019 freelist = dma_pte_list_pagetables(domain, level - 1,
1020 pte, freelist);
1021 pte++;
1022 } while (!first_pte_in_page(pte));
1023
1024 return freelist;
1025 }
1026
1027 static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level,
1028 struct dma_pte *pte, unsigned long pfn,
1029 unsigned long start_pfn,
1030 unsigned long last_pfn,
1031 struct page *freelist)
1032 {
1033 struct dma_pte *first_pte = NULL, *last_pte = NULL;
1034
1035 pfn = max(start_pfn, pfn);
1036 pte = &pte[pfn_level_offset(pfn, level)];
1037
1038 do {
1039 unsigned long level_pfn;
1040
1041 if (!dma_pte_present(pte))
1042 goto next;
1043
1044 level_pfn = pfn & level_mask(level);
1045
1046 /* If range covers entire pagetable, free it */
1047 if (start_pfn <= level_pfn &&
1048 last_pfn >= level_pfn + level_size(level) - 1) {
1049 /* These suborbinate page tables are going away entirely. Don't
1050 bother to clear them; we're just going to *free* them. */
1051 if (level > 1 && !dma_pte_superpage(pte))
1052 freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist);
1053
1054 dma_clear_pte(pte);
1055 if (!first_pte)
1056 first_pte = pte;
1057 last_pte = pte;
1058 } else if (level > 1) {
1059 /* Recurse down into a level that isn't *entirely* obsolete */
1060 freelist = dma_pte_clear_level(domain, level - 1,
1061 phys_to_virt(dma_pte_addr(pte)),
1062 level_pfn, start_pfn, last_pfn,
1063 freelist);
1064 }
1065 next:
1066 pfn += level_size(level);
1067 } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1068
1069 if (first_pte)
1070 domain_flush_cache(domain, first_pte,
1071 (void *)++last_pte - (void *)first_pte);
1072
1073 return freelist;
1074 }
1075
1076 /* We can't just free the pages because the IOMMU may still be walking
1077 the page tables, and may have cached the intermediate levels. The
1078 pages can only be freed after the IOTLB flush has been done. */
1079 struct page *domain_unmap(struct dmar_domain *domain,
1080 unsigned long start_pfn,
1081 unsigned long last_pfn)
1082 {
1083 struct page *freelist = NULL;
1084
1085 BUG_ON(!domain_pfn_supported(domain, start_pfn));
1086 BUG_ON(!domain_pfn_supported(domain, last_pfn));
1087 BUG_ON(start_pfn > last_pfn);
1088
1089 /* we don't need lock here; nobody else touches the iova range */
1090 freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
1091 domain->pgd, 0, start_pfn, last_pfn, NULL);
1092
1093 /* free pgd */
1094 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1095 struct page *pgd_page = virt_to_page(domain->pgd);
1096 pgd_page->freelist = freelist;
1097 freelist = pgd_page;
1098
1099 domain->pgd = NULL;
1100 }
1101
1102 return freelist;
1103 }
1104
1105 void dma_free_pagelist(struct page *freelist)
1106 {
1107 struct page *pg;
1108
1109 while ((pg = freelist)) {
1110 freelist = pg->freelist;
1111 free_pgtable_page(page_address(pg));
1112 }
1113 }
1114
1115 /* iommu handling */
1116 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
1117 {
1118 struct root_entry *root;
1119 unsigned long flags;
1120
1121 root = (struct root_entry *)alloc_pgtable_page(iommu->node);
1122 if (!root) {
1123 pr_err("IOMMU: allocating root entry for %s failed\n",
1124 iommu->name);
1125 return -ENOMEM;
1126 }
1127
1128 __iommu_flush_cache(iommu, root, ROOT_SIZE);
1129
1130 spin_lock_irqsave(&iommu->lock, flags);
1131 iommu->root_entry = root;
1132 spin_unlock_irqrestore(&iommu->lock, flags);
1133
1134 return 0;
1135 }
1136
1137 static void iommu_set_root_entry(struct intel_iommu *iommu)
1138 {
1139 void *addr;
1140 u32 sts;
1141 unsigned long flag;
1142
1143 addr = iommu->root_entry;
1144
1145 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1146 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
1147
1148 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
1149
1150 /* Make sure hardware complete it */
1151 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1152 readl, (sts & DMA_GSTS_RTPS), sts);
1153
1154 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1155 }
1156
1157 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
1158 {
1159 u32 val;
1160 unsigned long flag;
1161
1162 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
1163 return;
1164
1165 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1166 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
1167
1168 /* Make sure hardware complete it */
1169 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1170 readl, (!(val & DMA_GSTS_WBFS)), val);
1171
1172 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1173 }
1174
1175 /* return value determine if we need a write buffer flush */
1176 static void __iommu_flush_context(struct intel_iommu *iommu,
1177 u16 did, u16 source_id, u8 function_mask,
1178 u64 type)
1179 {
1180 u64 val = 0;
1181 unsigned long flag;
1182
1183 switch (type) {
1184 case DMA_CCMD_GLOBAL_INVL:
1185 val = DMA_CCMD_GLOBAL_INVL;
1186 break;
1187 case DMA_CCMD_DOMAIN_INVL:
1188 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
1189 break;
1190 case DMA_CCMD_DEVICE_INVL:
1191 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
1192 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
1193 break;
1194 default:
1195 BUG();
1196 }
1197 val |= DMA_CCMD_ICC;
1198
1199 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1200 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1201
1202 /* Make sure hardware complete it */
1203 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1204 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1205
1206 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1207 }
1208
1209 /* return value determine if we need a write buffer flush */
1210 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1211 u64 addr, unsigned int size_order, u64 type)
1212 {
1213 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1214 u64 val = 0, val_iva = 0;
1215 unsigned long flag;
1216
1217 switch (type) {
1218 case DMA_TLB_GLOBAL_FLUSH:
1219 /* global flush doesn't need set IVA_REG */
1220 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1221 break;
1222 case DMA_TLB_DSI_FLUSH:
1223 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1224 break;
1225 case DMA_TLB_PSI_FLUSH:
1226 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1227 /* IH bit is passed in as part of address */
1228 val_iva = size_order | addr;
1229 break;
1230 default:
1231 BUG();
1232 }
1233 /* Note: set drain read/write */
1234 #if 0
1235 /*
1236 * This is probably to be super secure.. Looks like we can
1237 * ignore it without any impact.
1238 */
1239 if (cap_read_drain(iommu->cap))
1240 val |= DMA_TLB_READ_DRAIN;
1241 #endif
1242 if (cap_write_drain(iommu->cap))
1243 val |= DMA_TLB_WRITE_DRAIN;
1244
1245 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1246 /* Note: Only uses first TLB reg currently */
1247 if (val_iva)
1248 dmar_writeq(iommu->reg + tlb_offset, val_iva);
1249 dmar_writeq(iommu->reg + tlb_offset + 8, val);
1250
1251 /* Make sure hardware complete it */
1252 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1253 dmar_readq, (!(val & DMA_TLB_IVT)), val);
1254
1255 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1256
1257 /* check IOTLB invalidation granularity */
1258 if (DMA_TLB_IAIG(val) == 0)
1259 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
1260 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1261 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
1262 (unsigned long long)DMA_TLB_IIRG(type),
1263 (unsigned long long)DMA_TLB_IAIG(val));
1264 }
1265
1266 static struct device_domain_info *
1267 iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu,
1268 u8 bus, u8 devfn)
1269 {
1270 int found = 0;
1271 unsigned long flags;
1272 struct device_domain_info *info;
1273 struct pci_dev *pdev;
1274
1275 if (!ecap_dev_iotlb_support(iommu->ecap))
1276 return NULL;
1277
1278 if (!iommu->qi)
1279 return NULL;
1280
1281 spin_lock_irqsave(&device_domain_lock, flags);
1282 list_for_each_entry(info, &domain->devices, link)
1283 if (info->iommu == iommu && info->bus == bus &&
1284 info->devfn == devfn) {
1285 found = 1;
1286 break;
1287 }
1288 spin_unlock_irqrestore(&device_domain_lock, flags);
1289
1290 if (!found || !info->dev || !dev_is_pci(info->dev))
1291 return NULL;
1292
1293 pdev = to_pci_dev(info->dev);
1294
1295 if (!pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS))
1296 return NULL;
1297
1298 if (!dmar_find_matched_atsr_unit(pdev))
1299 return NULL;
1300
1301 return info;
1302 }
1303
1304 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1305 {
1306 if (!info || !dev_is_pci(info->dev))
1307 return;
1308
1309 pci_enable_ats(to_pci_dev(info->dev), VTD_PAGE_SHIFT);
1310 }
1311
1312 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1313 {
1314 if (!info->dev || !dev_is_pci(info->dev) ||
1315 !pci_ats_enabled(to_pci_dev(info->dev)))
1316 return;
1317
1318 pci_disable_ats(to_pci_dev(info->dev));
1319 }
1320
1321 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1322 u64 addr, unsigned mask)
1323 {
1324 u16 sid, qdep;
1325 unsigned long flags;
1326 struct device_domain_info *info;
1327
1328 spin_lock_irqsave(&device_domain_lock, flags);
1329 list_for_each_entry(info, &domain->devices, link) {
1330 struct pci_dev *pdev;
1331 if (!info->dev || !dev_is_pci(info->dev))
1332 continue;
1333
1334 pdev = to_pci_dev(info->dev);
1335 if (!pci_ats_enabled(pdev))
1336 continue;
1337
1338 sid = info->bus << 8 | info->devfn;
1339 qdep = pci_ats_queue_depth(pdev);
1340 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1341 }
1342 spin_unlock_irqrestore(&device_domain_lock, flags);
1343 }
1344
1345 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
1346 unsigned long pfn, unsigned int pages, int ih, int map)
1347 {
1348 unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1349 uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1350
1351 BUG_ON(pages == 0);
1352
1353 if (ih)
1354 ih = 1 << 6;
1355 /*
1356 * Fallback to domain selective flush if no PSI support or the size is
1357 * too big.
1358 * PSI requires page size to be 2 ^ x, and the base address is naturally
1359 * aligned to the size
1360 */
1361 if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1362 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1363 DMA_TLB_DSI_FLUSH);
1364 else
1365 iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
1366 DMA_TLB_PSI_FLUSH);
1367
1368 /*
1369 * In caching mode, changes of pages from non-present to present require
1370 * flush. However, device IOTLB doesn't need to be flushed in this case.
1371 */
1372 if (!cap_caching_mode(iommu->cap) || !map)
1373 iommu_flush_dev_iotlb(iommu->domains[did], addr, mask);
1374 }
1375
1376 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1377 {
1378 u32 pmen;
1379 unsigned long flags;
1380
1381 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1382 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1383 pmen &= ~DMA_PMEN_EPM;
1384 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1385
1386 /* wait for the protected region status bit to clear */
1387 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1388 readl, !(pmen & DMA_PMEN_PRS), pmen);
1389
1390 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1391 }
1392
1393 static void iommu_enable_translation(struct intel_iommu *iommu)
1394 {
1395 u32 sts;
1396 unsigned long flags;
1397
1398 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1399 iommu->gcmd |= DMA_GCMD_TE;
1400 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1401
1402 /* Make sure hardware complete it */
1403 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1404 readl, (sts & DMA_GSTS_TES), sts);
1405
1406 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1407 }
1408
1409 static void iommu_disable_translation(struct intel_iommu *iommu)
1410 {
1411 u32 sts;
1412 unsigned long flag;
1413
1414 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1415 iommu->gcmd &= ~DMA_GCMD_TE;
1416 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1417
1418 /* Make sure hardware complete it */
1419 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1420 readl, (!(sts & DMA_GSTS_TES)), sts);
1421
1422 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1423 }
1424
1425
1426 static int iommu_init_domains(struct intel_iommu *iommu)
1427 {
1428 unsigned long ndomains;
1429 unsigned long nlongs;
1430
1431 ndomains = cap_ndoms(iommu->cap);
1432 pr_debug("IOMMU%d: Number of Domains supported <%ld>\n",
1433 iommu->seq_id, ndomains);
1434 nlongs = BITS_TO_LONGS(ndomains);
1435
1436 spin_lock_init(&iommu->lock);
1437
1438 /* TBD: there might be 64K domains,
1439 * consider other allocation for future chip
1440 */
1441 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1442 if (!iommu->domain_ids) {
1443 pr_err("IOMMU%d: allocating domain id array failed\n",
1444 iommu->seq_id);
1445 return -ENOMEM;
1446 }
1447 iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1448 GFP_KERNEL);
1449 if (!iommu->domains) {
1450 pr_err("IOMMU%d: allocating domain array failed\n",
1451 iommu->seq_id);
1452 kfree(iommu->domain_ids);
1453 iommu->domain_ids = NULL;
1454 return -ENOMEM;
1455 }
1456
1457 /*
1458 * if Caching mode is set, then invalid translations are tagged
1459 * with domainid 0. Hence we need to pre-allocate it.
1460 */
1461 if (cap_caching_mode(iommu->cap))
1462 set_bit(0, iommu->domain_ids);
1463 return 0;
1464 }
1465
1466 static void disable_dmar_iommu(struct intel_iommu *iommu)
1467 {
1468 struct dmar_domain *domain;
1469 int i;
1470
1471 if ((iommu->domains) && (iommu->domain_ids)) {
1472 for_each_set_bit(i, iommu->domain_ids, cap_ndoms(iommu->cap)) {
1473 /*
1474 * Domain id 0 is reserved for invalid translation
1475 * if hardware supports caching mode.
1476 */
1477 if (cap_caching_mode(iommu->cap) && i == 0)
1478 continue;
1479
1480 domain = iommu->domains[i];
1481 clear_bit(i, iommu->domain_ids);
1482 if (domain_detach_iommu(domain, iommu) == 0 &&
1483 !domain_type_is_vm(domain))
1484 domain_exit(domain);
1485 }
1486 }
1487
1488 if (iommu->gcmd & DMA_GCMD_TE)
1489 iommu_disable_translation(iommu);
1490 }
1491
1492 static void free_dmar_iommu(struct intel_iommu *iommu)
1493 {
1494 if ((iommu->domains) && (iommu->domain_ids)) {
1495 kfree(iommu->domains);
1496 kfree(iommu->domain_ids);
1497 iommu->domains = NULL;
1498 iommu->domain_ids = NULL;
1499 }
1500
1501 g_iommus[iommu->seq_id] = NULL;
1502
1503 /* free context mapping */
1504 free_context_table(iommu);
1505 }
1506
1507 static struct dmar_domain *alloc_domain(int flags)
1508 {
1509 /* domain id for virtual machine, it won't be set in context */
1510 static atomic_t vm_domid = ATOMIC_INIT(0);
1511 struct dmar_domain *domain;
1512
1513 domain = alloc_domain_mem();
1514 if (!domain)
1515 return NULL;
1516
1517 memset(domain, 0, sizeof(*domain));
1518 domain->nid = -1;
1519 domain->flags = flags;
1520 spin_lock_init(&domain->iommu_lock);
1521 INIT_LIST_HEAD(&domain->devices);
1522 if (flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
1523 domain->id = atomic_inc_return(&vm_domid);
1524
1525 return domain;
1526 }
1527
1528 static int __iommu_attach_domain(struct dmar_domain *domain,
1529 struct intel_iommu *iommu)
1530 {
1531 int num;
1532 unsigned long ndomains;
1533
1534 ndomains = cap_ndoms(iommu->cap);
1535 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1536 if (num < ndomains) {
1537 set_bit(num, iommu->domain_ids);
1538 iommu->domains[num] = domain;
1539 } else {
1540 num = -ENOSPC;
1541 }
1542
1543 return num;
1544 }
1545
1546 static int iommu_attach_domain(struct dmar_domain *domain,
1547 struct intel_iommu *iommu)
1548 {
1549 int num;
1550 unsigned long flags;
1551
1552 spin_lock_irqsave(&iommu->lock, flags);
1553 num = __iommu_attach_domain(domain, iommu);
1554 spin_unlock_irqrestore(&iommu->lock, flags);
1555 if (num < 0)
1556 pr_err("IOMMU: no free domain ids\n");
1557
1558 return num;
1559 }
1560
1561 static int iommu_attach_vm_domain(struct dmar_domain *domain,
1562 struct intel_iommu *iommu)
1563 {
1564 int num;
1565 unsigned long ndomains;
1566
1567 ndomains = cap_ndoms(iommu->cap);
1568 for_each_set_bit(num, iommu->domain_ids, ndomains)
1569 if (iommu->domains[num] == domain)
1570 return num;
1571
1572 return __iommu_attach_domain(domain, iommu);
1573 }
1574
1575 static void iommu_detach_domain(struct dmar_domain *domain,
1576 struct intel_iommu *iommu)
1577 {
1578 unsigned long flags;
1579 int num, ndomains;
1580
1581 spin_lock_irqsave(&iommu->lock, flags);
1582 if (domain_type_is_vm_or_si(domain)) {
1583 ndomains = cap_ndoms(iommu->cap);
1584 for_each_set_bit(num, iommu->domain_ids, ndomains) {
1585 if (iommu->domains[num] == domain) {
1586 clear_bit(num, iommu->domain_ids);
1587 iommu->domains[num] = NULL;
1588 break;
1589 }
1590 }
1591 } else {
1592 clear_bit(domain->id, iommu->domain_ids);
1593 iommu->domains[domain->id] = NULL;
1594 }
1595 spin_unlock_irqrestore(&iommu->lock, flags);
1596 }
1597
1598 static void domain_attach_iommu(struct dmar_domain *domain,
1599 struct intel_iommu *iommu)
1600 {
1601 unsigned long flags;
1602
1603 spin_lock_irqsave(&domain->iommu_lock, flags);
1604 if (!test_and_set_bit(iommu->seq_id, domain->iommu_bmp)) {
1605 domain->iommu_count++;
1606 if (domain->iommu_count == 1)
1607 domain->nid = iommu->node;
1608 domain_update_iommu_cap(domain);
1609 }
1610 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1611 }
1612
1613 static int domain_detach_iommu(struct dmar_domain *domain,
1614 struct intel_iommu *iommu)
1615 {
1616 unsigned long flags;
1617 int count = INT_MAX;
1618
1619 spin_lock_irqsave(&domain->iommu_lock, flags);
1620 if (test_and_clear_bit(iommu->seq_id, domain->iommu_bmp)) {
1621 count = --domain->iommu_count;
1622 domain_update_iommu_cap(domain);
1623 }
1624 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1625
1626 return count;
1627 }
1628
1629 static struct iova_domain reserved_iova_list;
1630 static struct lock_class_key reserved_rbtree_key;
1631
1632 static int dmar_init_reserved_ranges(void)
1633 {
1634 struct pci_dev *pdev = NULL;
1635 struct iova *iova;
1636 int i;
1637
1638 init_iova_domain(&reserved_iova_list, VTD_PAGE_SIZE, IOVA_START_PFN,
1639 DMA_32BIT_PFN);
1640
1641 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1642 &reserved_rbtree_key);
1643
1644 /* IOAPIC ranges shouldn't be accessed by DMA */
1645 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1646 IOVA_PFN(IOAPIC_RANGE_END));
1647 if (!iova) {
1648 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1649 return -ENODEV;
1650 }
1651
1652 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1653 for_each_pci_dev(pdev) {
1654 struct resource *r;
1655
1656 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1657 r = &pdev->resource[i];
1658 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1659 continue;
1660 iova = reserve_iova(&reserved_iova_list,
1661 IOVA_PFN(r->start),
1662 IOVA_PFN(r->end));
1663 if (!iova) {
1664 printk(KERN_ERR "Reserve iova failed\n");
1665 return -ENODEV;
1666 }
1667 }
1668 }
1669 return 0;
1670 }
1671
1672 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1673 {
1674 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1675 }
1676
1677 static inline int guestwidth_to_adjustwidth(int gaw)
1678 {
1679 int agaw;
1680 int r = (gaw - 12) % 9;
1681
1682 if (r == 0)
1683 agaw = gaw;
1684 else
1685 agaw = gaw + 9 - r;
1686 if (agaw > 64)
1687 agaw = 64;
1688 return agaw;
1689 }
1690
1691 static int domain_init(struct dmar_domain *domain, int guest_width)
1692 {
1693 struct intel_iommu *iommu;
1694 int adjust_width, agaw;
1695 unsigned long sagaw;
1696
1697 init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN,
1698 DMA_32BIT_PFN);
1699 domain_reserve_special_ranges(domain);
1700
1701 /* calculate AGAW */
1702 iommu = domain_get_iommu(domain);
1703 if (guest_width > cap_mgaw(iommu->cap))
1704 guest_width = cap_mgaw(iommu->cap);
1705 domain->gaw = guest_width;
1706 adjust_width = guestwidth_to_adjustwidth(guest_width);
1707 agaw = width_to_agaw(adjust_width);
1708 sagaw = cap_sagaw(iommu->cap);
1709 if (!test_bit(agaw, &sagaw)) {
1710 /* hardware doesn't support it, choose a bigger one */
1711 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1712 agaw = find_next_bit(&sagaw, 5, agaw);
1713 if (agaw >= 5)
1714 return -ENODEV;
1715 }
1716 domain->agaw = agaw;
1717
1718 if (ecap_coherent(iommu->ecap))
1719 domain->iommu_coherency = 1;
1720 else
1721 domain->iommu_coherency = 0;
1722
1723 if (ecap_sc_support(iommu->ecap))
1724 domain->iommu_snooping = 1;
1725 else
1726 domain->iommu_snooping = 0;
1727
1728 if (intel_iommu_superpage)
1729 domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
1730 else
1731 domain->iommu_superpage = 0;
1732
1733 domain->nid = iommu->node;
1734
1735 /* always allocate the top pgd */
1736 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1737 if (!domain->pgd)
1738 return -ENOMEM;
1739 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1740 return 0;
1741 }
1742
1743 static void domain_exit(struct dmar_domain *domain)
1744 {
1745 struct dmar_drhd_unit *drhd;
1746 struct intel_iommu *iommu;
1747 struct page *freelist = NULL;
1748
1749 /* Domain 0 is reserved, so dont process it */
1750 if (!domain)
1751 return;
1752
1753 /* Flush any lazy unmaps that may reference this domain */
1754 if (!intel_iommu_strict)
1755 flush_unmaps_timeout(0);
1756
1757 /* remove associated devices */
1758 domain_remove_dev_info(domain);
1759
1760 /* destroy iovas */
1761 put_iova_domain(&domain->iovad);
1762
1763 freelist = domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1764
1765 /* clear attached or cached domains */
1766 rcu_read_lock();
1767 for_each_active_iommu(iommu, drhd)
1768 iommu_detach_domain(domain, iommu);
1769 rcu_read_unlock();
1770
1771 dma_free_pagelist(freelist);
1772
1773 free_domain_mem(domain);
1774 }
1775
1776 static int domain_context_mapping_one(struct dmar_domain *domain,
1777 struct intel_iommu *iommu,
1778 u8 bus, u8 devfn, int translation)
1779 {
1780 struct context_entry *context;
1781 unsigned long flags;
1782 struct dma_pte *pgd;
1783 int id;
1784 int agaw;
1785 struct device_domain_info *info = NULL;
1786
1787 pr_debug("Set context mapping for %02x:%02x.%d\n",
1788 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1789
1790 BUG_ON(!domain->pgd);
1791 BUG_ON(translation != CONTEXT_TT_PASS_THROUGH &&
1792 translation != CONTEXT_TT_MULTI_LEVEL);
1793
1794 context = device_to_context_entry(iommu, bus, devfn);
1795 if (!context)
1796 return -ENOMEM;
1797 spin_lock_irqsave(&iommu->lock, flags);
1798 if (context_present(context)) {
1799 spin_unlock_irqrestore(&iommu->lock, flags);
1800 return 0;
1801 }
1802
1803 id = domain->id;
1804 pgd = domain->pgd;
1805
1806 if (domain_type_is_vm_or_si(domain)) {
1807 if (domain_type_is_vm(domain)) {
1808 id = iommu_attach_vm_domain(domain, iommu);
1809 if (id < 0) {
1810 spin_unlock_irqrestore(&iommu->lock, flags);
1811 pr_err("IOMMU: no free domain ids\n");
1812 return -EFAULT;
1813 }
1814 }
1815
1816 /* Skip top levels of page tables for
1817 * iommu which has less agaw than default.
1818 * Unnecessary for PT mode.
1819 */
1820 if (translation != CONTEXT_TT_PASS_THROUGH) {
1821 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1822 pgd = phys_to_virt(dma_pte_addr(pgd));
1823 if (!dma_pte_present(pgd)) {
1824 spin_unlock_irqrestore(&iommu->lock, flags);
1825 return -ENOMEM;
1826 }
1827 }
1828 }
1829 }
1830
1831 context_set_domain_id(context, id);
1832
1833 if (translation != CONTEXT_TT_PASS_THROUGH) {
1834 info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
1835 translation = info ? CONTEXT_TT_DEV_IOTLB :
1836 CONTEXT_TT_MULTI_LEVEL;
1837 }
1838 /*
1839 * In pass through mode, AW must be programmed to indicate the largest
1840 * AGAW value supported by hardware. And ASR is ignored by hardware.
1841 */
1842 if (unlikely(translation == CONTEXT_TT_PASS_THROUGH))
1843 context_set_address_width(context, iommu->msagaw);
1844 else {
1845 context_set_address_root(context, virt_to_phys(pgd));
1846 context_set_address_width(context, iommu->agaw);
1847 }
1848
1849 context_set_translation_type(context, translation);
1850 context_set_fault_enable(context);
1851 context_set_present(context);
1852 domain_flush_cache(domain, context, sizeof(*context));
1853
1854 /*
1855 * It's a non-present to present mapping. If hardware doesn't cache
1856 * non-present entry we only need to flush the write-buffer. If the
1857 * _does_ cache non-present entries, then it does so in the special
1858 * domain #0, which we have to flush:
1859 */
1860 if (cap_caching_mode(iommu->cap)) {
1861 iommu->flush.flush_context(iommu, 0,
1862 (((u16)bus) << 8) | devfn,
1863 DMA_CCMD_MASK_NOBIT,
1864 DMA_CCMD_DEVICE_INVL);
1865 iommu->flush.flush_iotlb(iommu, id, 0, 0, DMA_TLB_DSI_FLUSH);
1866 } else {
1867 iommu_flush_write_buffer(iommu);
1868 }
1869 iommu_enable_dev_iotlb(info);
1870 spin_unlock_irqrestore(&iommu->lock, flags);
1871
1872 domain_attach_iommu(domain, iommu);
1873
1874 return 0;
1875 }
1876
1877 struct domain_context_mapping_data {
1878 struct dmar_domain *domain;
1879 struct intel_iommu *iommu;
1880 int translation;
1881 };
1882
1883 static int domain_context_mapping_cb(struct pci_dev *pdev,
1884 u16 alias, void *opaque)
1885 {
1886 struct domain_context_mapping_data *data = opaque;
1887
1888 return domain_context_mapping_one(data->domain, data->iommu,
1889 PCI_BUS_NUM(alias), alias & 0xff,
1890 data->translation);
1891 }
1892
1893 static int
1894 domain_context_mapping(struct dmar_domain *domain, struct device *dev,
1895 int translation)
1896 {
1897 struct intel_iommu *iommu;
1898 u8 bus, devfn;
1899 struct domain_context_mapping_data data;
1900
1901 iommu = device_to_iommu(dev, &bus, &devfn);
1902 if (!iommu)
1903 return -ENODEV;
1904
1905 if (!dev_is_pci(dev))
1906 return domain_context_mapping_one(domain, iommu, bus, devfn,
1907 translation);
1908
1909 data.domain = domain;
1910 data.iommu = iommu;
1911 data.translation = translation;
1912
1913 return pci_for_each_dma_alias(to_pci_dev(dev),
1914 &domain_context_mapping_cb, &data);
1915 }
1916
1917 static int domain_context_mapped_cb(struct pci_dev *pdev,
1918 u16 alias, void *opaque)
1919 {
1920 struct intel_iommu *iommu = opaque;
1921
1922 return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff);
1923 }
1924
1925 static int domain_context_mapped(struct device *dev)
1926 {
1927 struct intel_iommu *iommu;
1928 u8 bus, devfn;
1929
1930 iommu = device_to_iommu(dev, &bus, &devfn);
1931 if (!iommu)
1932 return -ENODEV;
1933
1934 if (!dev_is_pci(dev))
1935 return device_context_mapped(iommu, bus, devfn);
1936
1937 return !pci_for_each_dma_alias(to_pci_dev(dev),
1938 domain_context_mapped_cb, iommu);
1939 }
1940
1941 /* Returns a number of VTD pages, but aligned to MM page size */
1942 static inline unsigned long aligned_nrpages(unsigned long host_addr,
1943 size_t size)
1944 {
1945 host_addr &= ~PAGE_MASK;
1946 return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
1947 }
1948
1949 /* Return largest possible superpage level for a given mapping */
1950 static inline int hardware_largepage_caps(struct dmar_domain *domain,
1951 unsigned long iov_pfn,
1952 unsigned long phy_pfn,
1953 unsigned long pages)
1954 {
1955 int support, level = 1;
1956 unsigned long pfnmerge;
1957
1958 support = domain->iommu_superpage;
1959
1960 /* To use a large page, the virtual *and* physical addresses
1961 must be aligned to 2MiB/1GiB/etc. Lower bits set in either
1962 of them will mean we have to use smaller pages. So just
1963 merge them and check both at once. */
1964 pfnmerge = iov_pfn | phy_pfn;
1965
1966 while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
1967 pages >>= VTD_STRIDE_SHIFT;
1968 if (!pages)
1969 break;
1970 pfnmerge >>= VTD_STRIDE_SHIFT;
1971 level++;
1972 support--;
1973 }
1974 return level;
1975 }
1976
1977 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1978 struct scatterlist *sg, unsigned long phys_pfn,
1979 unsigned long nr_pages, int prot)
1980 {
1981 struct dma_pte *first_pte = NULL, *pte = NULL;
1982 phys_addr_t uninitialized_var(pteval);
1983 unsigned long sg_res = 0;
1984 unsigned int largepage_lvl = 0;
1985 unsigned long lvl_pages = 0;
1986
1987 BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1));
1988
1989 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1990 return -EINVAL;
1991
1992 prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
1993
1994 if (!sg) {
1995 sg_res = nr_pages;
1996 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
1997 }
1998
1999 while (nr_pages > 0) {
2000 uint64_t tmp;
2001
2002 if (!sg_res) {
2003 sg_res = aligned_nrpages(sg->offset, sg->length);
2004 sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
2005 sg->dma_length = sg->length;
2006 pteval = page_to_phys(sg_page(sg)) | prot;
2007 phys_pfn = pteval >> VTD_PAGE_SHIFT;
2008 }
2009
2010 if (!pte) {
2011 largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
2012
2013 first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl);
2014 if (!pte)
2015 return -ENOMEM;
2016 /* It is large page*/
2017 if (largepage_lvl > 1) {
2018 pteval |= DMA_PTE_LARGE_PAGE;
2019 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2020 /*
2021 * Ensure that old small page tables are
2022 * removed to make room for superpage,
2023 * if they exist.
2024 */
2025 dma_pte_free_pagetable(domain, iov_pfn,
2026 iov_pfn + lvl_pages - 1);
2027 } else {
2028 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
2029 }
2030
2031 }
2032 /* We don't need lock here, nobody else
2033 * touches the iova range
2034 */
2035 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
2036 if (tmp) {
2037 static int dumps = 5;
2038 printk(KERN_CRIT "ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
2039 iov_pfn, tmp, (unsigned long long)pteval);
2040 if (dumps) {
2041 dumps--;
2042 debug_dma_dump_mappings(NULL);
2043 }
2044 WARN_ON(1);
2045 }
2046
2047 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2048
2049 BUG_ON(nr_pages < lvl_pages);
2050 BUG_ON(sg_res < lvl_pages);
2051
2052 nr_pages -= lvl_pages;
2053 iov_pfn += lvl_pages;
2054 phys_pfn += lvl_pages;
2055 pteval += lvl_pages * VTD_PAGE_SIZE;
2056 sg_res -= lvl_pages;
2057
2058 /* If the next PTE would be the first in a new page, then we
2059 need to flush the cache on the entries we've just written.
2060 And then we'll need to recalculate 'pte', so clear it and
2061 let it get set again in the if (!pte) block above.
2062
2063 If we're done (!nr_pages) we need to flush the cache too.
2064
2065 Also if we've been setting superpages, we may need to
2066 recalculate 'pte' and switch back to smaller pages for the
2067 end of the mapping, if the trailing size is not enough to
2068 use another superpage (i.e. sg_res < lvl_pages). */
2069 pte++;
2070 if (!nr_pages || first_pte_in_page(pte) ||
2071 (largepage_lvl > 1 && sg_res < lvl_pages)) {
2072 domain_flush_cache(domain, first_pte,
2073 (void *)pte - (void *)first_pte);
2074 pte = NULL;
2075 }
2076
2077 if (!sg_res && nr_pages)
2078 sg = sg_next(sg);
2079 }
2080 return 0;
2081 }
2082
2083 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2084 struct scatterlist *sg, unsigned long nr_pages,
2085 int prot)
2086 {
2087 return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
2088 }
2089
2090 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2091 unsigned long phys_pfn, unsigned long nr_pages,
2092 int prot)
2093 {
2094 return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
2095 }
2096
2097 static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
2098 {
2099 if (!iommu)
2100 return;
2101
2102 clear_context_table(iommu, bus, devfn);
2103 iommu->flush.flush_context(iommu, 0, 0, 0,
2104 DMA_CCMD_GLOBAL_INVL);
2105 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2106 }
2107
2108 static inline void unlink_domain_info(struct device_domain_info *info)
2109 {
2110 assert_spin_locked(&device_domain_lock);
2111 list_del(&info->link);
2112 list_del(&info->global);
2113 if (info->dev)
2114 info->dev->archdata.iommu = NULL;
2115 }
2116
2117 static void domain_remove_dev_info(struct dmar_domain *domain)
2118 {
2119 struct device_domain_info *info, *tmp;
2120 unsigned long flags;
2121
2122 spin_lock_irqsave(&device_domain_lock, flags);
2123 list_for_each_entry_safe(info, tmp, &domain->devices, link) {
2124 unlink_domain_info(info);
2125 spin_unlock_irqrestore(&device_domain_lock, flags);
2126
2127 iommu_disable_dev_iotlb(info);
2128 iommu_detach_dev(info->iommu, info->bus, info->devfn);
2129
2130 if (domain_type_is_vm(domain)) {
2131 iommu_detach_dependent_devices(info->iommu, info->dev);
2132 domain_detach_iommu(domain, info->iommu);
2133 }
2134
2135 free_devinfo_mem(info);
2136 spin_lock_irqsave(&device_domain_lock, flags);
2137 }
2138 spin_unlock_irqrestore(&device_domain_lock, flags);
2139 }
2140
2141 /*
2142 * find_domain
2143 * Note: we use struct device->archdata.iommu stores the info
2144 */
2145 static struct dmar_domain *find_domain(struct device *dev)
2146 {
2147 struct device_domain_info *info;
2148
2149 /* No lock here, assumes no domain exit in normal case */
2150 info = dev->archdata.iommu;
2151 if (info)
2152 return info->domain;
2153 return NULL;
2154 }
2155
2156 static inline struct device_domain_info *
2157 dmar_search_domain_by_dev_info(int segment, int bus, int devfn)
2158 {
2159 struct device_domain_info *info;
2160
2161 list_for_each_entry(info, &device_domain_list, global)
2162 if (info->iommu->segment == segment && info->bus == bus &&
2163 info->devfn == devfn)
2164 return info;
2165
2166 return NULL;
2167 }
2168
2169 static struct dmar_domain *dmar_insert_dev_info(struct intel_iommu *iommu,
2170 int bus, int devfn,
2171 struct device *dev,
2172 struct dmar_domain *domain)
2173 {
2174 struct dmar_domain *found = NULL;
2175 struct device_domain_info *info;
2176 unsigned long flags;
2177
2178 info = alloc_devinfo_mem();
2179 if (!info)
2180 return NULL;
2181
2182 info->bus = bus;
2183 info->devfn = devfn;
2184 info->dev = dev;
2185 info->domain = domain;
2186 info->iommu = iommu;
2187
2188 spin_lock_irqsave(&device_domain_lock, flags);
2189 if (dev)
2190 found = find_domain(dev);
2191 else {
2192 struct device_domain_info *info2;
2193 info2 = dmar_search_domain_by_dev_info(iommu->segment, bus, devfn);
2194 if (info2)
2195 found = info2->domain;
2196 }
2197 if (found) {
2198 spin_unlock_irqrestore(&device_domain_lock, flags);
2199 free_devinfo_mem(info);
2200 /* Caller must free the original domain */
2201 return found;
2202 }
2203
2204 list_add(&info->link, &domain->devices);
2205 list_add(&info->global, &device_domain_list);
2206 if (dev)
2207 dev->archdata.iommu = info;
2208 spin_unlock_irqrestore(&device_domain_lock, flags);
2209
2210 return domain;
2211 }
2212
2213 static int get_last_alias(struct pci_dev *pdev, u16 alias, void *opaque)
2214 {
2215 *(u16 *)opaque = alias;
2216 return 0;
2217 }
2218
2219 /* domain is initialized */
2220 static struct dmar_domain *get_domain_for_dev(struct device *dev, int gaw)
2221 {
2222 struct dmar_domain *domain, *tmp;
2223 struct intel_iommu *iommu;
2224 struct device_domain_info *info;
2225 u16 dma_alias;
2226 unsigned long flags;
2227 u8 bus, devfn;
2228
2229 domain = find_domain(dev);
2230 if (domain)
2231 return domain;
2232
2233 iommu = device_to_iommu(dev, &bus, &devfn);
2234 if (!iommu)
2235 return NULL;
2236
2237 if (dev_is_pci(dev)) {
2238 struct pci_dev *pdev = to_pci_dev(dev);
2239
2240 pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2241
2242 spin_lock_irqsave(&device_domain_lock, flags);
2243 info = dmar_search_domain_by_dev_info(pci_domain_nr(pdev->bus),
2244 PCI_BUS_NUM(dma_alias),
2245 dma_alias & 0xff);
2246 if (info) {
2247 iommu = info->iommu;
2248 domain = info->domain;
2249 }
2250 spin_unlock_irqrestore(&device_domain_lock, flags);
2251
2252 /* DMA alias already has a domain, uses it */
2253 if (info)
2254 goto found_domain;
2255 }
2256
2257 /* Allocate and initialize new domain for the device */
2258 domain = alloc_domain(0);
2259 if (!domain)
2260 return NULL;
2261 domain->id = iommu_attach_domain(domain, iommu);
2262 if (domain->id < 0) {
2263 free_domain_mem(domain);
2264 return NULL;
2265 }
2266 domain_attach_iommu(domain, iommu);
2267 if (domain_init(domain, gaw)) {
2268 domain_exit(domain);
2269 return NULL;
2270 }
2271
2272 /* register PCI DMA alias device */
2273 if (dev_is_pci(dev)) {
2274 tmp = dmar_insert_dev_info(iommu, PCI_BUS_NUM(dma_alias),
2275 dma_alias & 0xff, NULL, domain);
2276
2277 if (!tmp || tmp != domain) {
2278 domain_exit(domain);
2279 domain = tmp;
2280 }
2281
2282 if (!domain)
2283 return NULL;
2284 }
2285
2286 found_domain:
2287 tmp = dmar_insert_dev_info(iommu, bus, devfn, dev, domain);
2288
2289 if (!tmp || tmp != domain) {
2290 domain_exit(domain);
2291 domain = tmp;
2292 }
2293
2294 return domain;
2295 }
2296
2297 static int iommu_identity_mapping;
2298 #define IDENTMAP_ALL 1
2299 #define IDENTMAP_GFX 2
2300 #define IDENTMAP_AZALIA 4
2301
2302 static int iommu_domain_identity_map(struct dmar_domain *domain,
2303 unsigned long long start,
2304 unsigned long long end)
2305 {
2306 unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
2307 unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
2308
2309 if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
2310 dma_to_mm_pfn(last_vpfn))) {
2311 printk(KERN_ERR "IOMMU: reserve iova failed\n");
2312 return -ENOMEM;
2313 }
2314
2315 pr_debug("Mapping reserved region %llx-%llx for domain %d\n",
2316 start, end, domain->id);
2317 /*
2318 * RMRR range might have overlap with physical memory range,
2319 * clear it first
2320 */
2321 dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2322
2323 return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
2324 last_vpfn - first_vpfn + 1,
2325 DMA_PTE_READ|DMA_PTE_WRITE);
2326 }
2327
2328 static int iommu_prepare_identity_map(struct device *dev,
2329 unsigned long long start,
2330 unsigned long long end)
2331 {
2332 struct dmar_domain *domain;
2333 int ret;
2334
2335 domain = get_domain_for_dev(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2336 if (!domain)
2337 return -ENOMEM;
2338
2339 /* For _hardware_ passthrough, don't bother. But for software
2340 passthrough, we do it anyway -- it may indicate a memory
2341 range which is reserved in E820, so which didn't get set
2342 up to start with in si_domain */
2343 if (domain == si_domain && hw_pass_through) {
2344 printk("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
2345 dev_name(dev), start, end);
2346 return 0;
2347 }
2348
2349 printk(KERN_INFO
2350 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
2351 dev_name(dev), start, end);
2352
2353 if (end < start) {
2354 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2355 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2356 dmi_get_system_info(DMI_BIOS_VENDOR),
2357 dmi_get_system_info(DMI_BIOS_VERSION),
2358 dmi_get_system_info(DMI_PRODUCT_VERSION));
2359 ret = -EIO;
2360 goto error;
2361 }
2362
2363 if (end >> agaw_to_width(domain->agaw)) {
2364 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2365 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2366 agaw_to_width(domain->agaw),
2367 dmi_get_system_info(DMI_BIOS_VENDOR),
2368 dmi_get_system_info(DMI_BIOS_VERSION),
2369 dmi_get_system_info(DMI_PRODUCT_VERSION));
2370 ret = -EIO;
2371 goto error;
2372 }
2373
2374 ret = iommu_domain_identity_map(domain, start, end);
2375 if (ret)
2376 goto error;
2377
2378 /* context entry init */
2379 ret = domain_context_mapping(domain, dev, CONTEXT_TT_MULTI_LEVEL);
2380 if (ret)
2381 goto error;
2382
2383 return 0;
2384
2385 error:
2386 domain_exit(domain);
2387 return ret;
2388 }
2389
2390 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2391 struct device *dev)
2392 {
2393 if (dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2394 return 0;
2395 return iommu_prepare_identity_map(dev, rmrr->base_address,
2396 rmrr->end_address);
2397 }
2398
2399 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
2400 static inline void iommu_prepare_isa(void)
2401 {
2402 struct pci_dev *pdev;
2403 int ret;
2404
2405 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2406 if (!pdev)
2407 return;
2408
2409 printk(KERN_INFO "IOMMU: Prepare 0-16MiB unity mapping for LPC\n");
2410 ret = iommu_prepare_identity_map(&pdev->dev, 0, 16*1024*1024 - 1);
2411
2412 if (ret)
2413 printk(KERN_ERR "IOMMU: Failed to create 0-16MiB identity map; "
2414 "floppy might not work\n");
2415
2416 pci_dev_put(pdev);
2417 }
2418 #else
2419 static inline void iommu_prepare_isa(void)
2420 {
2421 return;
2422 }
2423 #endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */
2424
2425 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2426
2427 static int __init si_domain_init(int hw)
2428 {
2429 struct dmar_drhd_unit *drhd;
2430 struct intel_iommu *iommu;
2431 int nid, ret = 0;
2432 bool first = true;
2433
2434 si_domain = alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY);
2435 if (!si_domain)
2436 return -EFAULT;
2437
2438 for_each_active_iommu(iommu, drhd) {
2439 ret = iommu_attach_domain(si_domain, iommu);
2440 if (ret < 0) {
2441 domain_exit(si_domain);
2442 return -EFAULT;
2443 } else if (first) {
2444 si_domain->id = ret;
2445 first = false;
2446 } else if (si_domain->id != ret) {
2447 domain_exit(si_domain);
2448 return -EFAULT;
2449 }
2450 domain_attach_iommu(si_domain, iommu);
2451 }
2452
2453 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2454 domain_exit(si_domain);
2455 return -EFAULT;
2456 }
2457
2458 pr_debug("IOMMU: identity mapping domain is domain %d\n",
2459 si_domain->id);
2460
2461 if (hw)
2462 return 0;
2463
2464 for_each_online_node(nid) {
2465 unsigned long start_pfn, end_pfn;
2466 int i;
2467
2468 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2469 ret = iommu_domain_identity_map(si_domain,
2470 PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
2471 if (ret)
2472 return ret;
2473 }
2474 }
2475
2476 return 0;
2477 }
2478
2479 static int identity_mapping(struct device *dev)
2480 {
2481 struct device_domain_info *info;
2482
2483 if (likely(!iommu_identity_mapping))
2484 return 0;
2485
2486 info = dev->archdata.iommu;
2487 if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
2488 return (info->domain == si_domain);
2489
2490 return 0;
2491 }
2492
2493 static int domain_add_dev_info(struct dmar_domain *domain,
2494 struct device *dev, int translation)
2495 {
2496 struct dmar_domain *ndomain;
2497 struct intel_iommu *iommu;
2498 u8 bus, devfn;
2499 int ret;
2500
2501 iommu = device_to_iommu(dev, &bus, &devfn);
2502 if (!iommu)
2503 return -ENODEV;
2504
2505 ndomain = dmar_insert_dev_info(iommu, bus, devfn, dev, domain);
2506 if (ndomain != domain)
2507 return -EBUSY;
2508
2509 ret = domain_context_mapping(domain, dev, translation);
2510 if (ret) {
2511 domain_remove_one_dev_info(domain, dev);
2512 return ret;
2513 }
2514
2515 return 0;
2516 }
2517
2518 static bool device_has_rmrr(struct device *dev)
2519 {
2520 struct dmar_rmrr_unit *rmrr;
2521 struct device *tmp;
2522 int i;
2523
2524 rcu_read_lock();
2525 for_each_rmrr_units(rmrr) {
2526 /*
2527 * Return TRUE if this RMRR contains the device that
2528 * is passed in.
2529 */
2530 for_each_active_dev_scope(rmrr->devices,
2531 rmrr->devices_cnt, i, tmp)
2532 if (tmp == dev) {
2533 rcu_read_unlock();
2534 return true;
2535 }
2536 }
2537 rcu_read_unlock();
2538 return false;
2539 }
2540
2541 /*
2542 * There are a couple cases where we need to restrict the functionality of
2543 * devices associated with RMRRs. The first is when evaluating a device for
2544 * identity mapping because problems exist when devices are moved in and out
2545 * of domains and their respective RMRR information is lost. This means that
2546 * a device with associated RMRRs will never be in a "passthrough" domain.
2547 * The second is use of the device through the IOMMU API. This interface
2548 * expects to have full control of the IOVA space for the device. We cannot
2549 * satisfy both the requirement that RMRR access is maintained and have an
2550 * unencumbered IOVA space. We also have no ability to quiesce the device's
2551 * use of the RMRR space or even inform the IOMMU API user of the restriction.
2552 * We therefore prevent devices associated with an RMRR from participating in
2553 * the IOMMU API, which eliminates them from device assignment.
2554 *
2555 * In both cases we assume that PCI USB devices with RMRRs have them largely
2556 * for historical reasons and that the RMRR space is not actively used post
2557 * boot. This exclusion may change if vendors begin to abuse it.
2558 */
2559 static bool device_is_rmrr_locked(struct device *dev)
2560 {
2561 if (!device_has_rmrr(dev))
2562 return false;
2563
2564 if (dev_is_pci(dev)) {
2565 struct pci_dev *pdev = to_pci_dev(dev);
2566
2567 if ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB)
2568 return false;
2569 }
2570
2571 return true;
2572 }
2573
2574 static int iommu_should_identity_map(struct device *dev, int startup)
2575 {
2576
2577 if (dev_is_pci(dev)) {
2578 struct pci_dev *pdev = to_pci_dev(dev);
2579
2580 if (device_is_rmrr_locked(dev))
2581 return 0;
2582
2583 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2584 return 1;
2585
2586 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2587 return 1;
2588
2589 if (!(iommu_identity_mapping & IDENTMAP_ALL))
2590 return 0;
2591
2592 /*
2593 * We want to start off with all devices in the 1:1 domain, and
2594 * take them out later if we find they can't access all of memory.
2595 *
2596 * However, we can't do this for PCI devices behind bridges,
2597 * because all PCI devices behind the same bridge will end up
2598 * with the same source-id on their transactions.
2599 *
2600 * Practically speaking, we can't change things around for these
2601 * devices at run-time, because we can't be sure there'll be no
2602 * DMA transactions in flight for any of their siblings.
2603 *
2604 * So PCI devices (unless they're on the root bus) as well as
2605 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2606 * the 1:1 domain, just in _case_ one of their siblings turns out
2607 * not to be able to map all of memory.
2608 */
2609 if (!pci_is_pcie(pdev)) {
2610 if (!pci_is_root_bus(pdev->bus))
2611 return 0;
2612 if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2613 return 0;
2614 } else if (pci_pcie_type(pdev) == PCI_EXP_TYPE_PCI_BRIDGE)
2615 return 0;
2616 } else {
2617 if (device_has_rmrr(dev))
2618 return 0;
2619 }
2620
2621 /*
2622 * At boot time, we don't yet know if devices will be 64-bit capable.
2623 * Assume that they will — if they turn out not to be, then we can
2624 * take them out of the 1:1 domain later.
2625 */
2626 if (!startup) {
2627 /*
2628 * If the device's dma_mask is less than the system's memory
2629 * size then this is not a candidate for identity mapping.
2630 */
2631 u64 dma_mask = *dev->dma_mask;
2632
2633 if (dev->coherent_dma_mask &&
2634 dev->coherent_dma_mask < dma_mask)
2635 dma_mask = dev->coherent_dma_mask;
2636
2637 return dma_mask >= dma_get_required_mask(dev);
2638 }
2639
2640 return 1;
2641 }
2642
2643 static int __init dev_prepare_static_identity_mapping(struct device *dev, int hw)
2644 {
2645 int ret;
2646
2647 if (!iommu_should_identity_map(dev, 1))
2648 return 0;
2649
2650 ret = domain_add_dev_info(si_domain, dev,
2651 hw ? CONTEXT_TT_PASS_THROUGH :
2652 CONTEXT_TT_MULTI_LEVEL);
2653 if (!ret)
2654 pr_info("IOMMU: %s identity mapping for device %s\n",
2655 hw ? "hardware" : "software", dev_name(dev));
2656 else if (ret == -ENODEV)
2657 /* device not associated with an iommu */
2658 ret = 0;
2659
2660 return ret;
2661 }
2662
2663
2664 static int __init iommu_prepare_static_identity_mapping(int hw)
2665 {
2666 struct pci_dev *pdev = NULL;
2667 struct dmar_drhd_unit *drhd;
2668 struct intel_iommu *iommu;
2669 struct device *dev;
2670 int i;
2671 int ret = 0;
2672
2673 ret = si_domain_init(hw);
2674 if (ret)
2675 return -EFAULT;
2676
2677 for_each_pci_dev(pdev) {
2678 ret = dev_prepare_static_identity_mapping(&pdev->dev, hw);
2679 if (ret)
2680 return ret;
2681 }
2682
2683 for_each_active_iommu(iommu, drhd)
2684 for_each_active_dev_scope(drhd->devices, drhd->devices_cnt, i, dev) {
2685 struct acpi_device_physical_node *pn;
2686 struct acpi_device *adev;
2687
2688 if (dev->bus != &acpi_bus_type)
2689 continue;
2690
2691 adev= to_acpi_device(dev);
2692 mutex_lock(&adev->physical_node_lock);
2693 list_for_each_entry(pn, &adev->physical_node_list, node) {
2694 ret = dev_prepare_static_identity_mapping(pn->dev, hw);
2695 if (ret)
2696 break;
2697 }
2698 mutex_unlock(&adev->physical_node_lock);
2699 if (ret)
2700 return ret;
2701 }
2702
2703 return 0;
2704 }
2705
2706 static void intel_iommu_init_qi(struct intel_iommu *iommu)
2707 {
2708 /*
2709 * Start from the sane iommu hardware state.
2710 * If the queued invalidation is already initialized by us
2711 * (for example, while enabling interrupt-remapping) then
2712 * we got the things already rolling from a sane state.
2713 */
2714 if (!iommu->qi) {
2715 /*
2716 * Clear any previous faults.
2717 */
2718 dmar_fault(-1, iommu);
2719 /*
2720 * Disable queued invalidation if supported and already enabled
2721 * before OS handover.
2722 */
2723 dmar_disable_qi(iommu);
2724 }
2725
2726 if (dmar_enable_qi(iommu)) {
2727 /*
2728 * Queued Invalidate not enabled, use Register Based Invalidate
2729 */
2730 iommu->flush.flush_context = __iommu_flush_context;
2731 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2732 pr_info("IOMMU: %s using Register based invalidation\n",
2733 iommu->name);
2734 } else {
2735 iommu->flush.flush_context = qi_flush_context;
2736 iommu->flush.flush_iotlb = qi_flush_iotlb;
2737 pr_info("IOMMU: %s using Queued invalidation\n", iommu->name);
2738 }
2739 }
2740
2741 static int __init init_dmars(void)
2742 {
2743 struct dmar_drhd_unit *drhd;
2744 struct dmar_rmrr_unit *rmrr;
2745 struct device *dev;
2746 struct intel_iommu *iommu;
2747 int i, ret;
2748
2749 /*
2750 * for each drhd
2751 * allocate root
2752 * initialize and program root entry to not present
2753 * endfor
2754 */
2755 for_each_drhd_unit(drhd) {
2756 /*
2757 * lock not needed as this is only incremented in the single
2758 * threaded kernel __init code path all other access are read
2759 * only
2760 */
2761 if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) {
2762 g_num_of_iommus++;
2763 continue;
2764 }
2765 printk_once(KERN_ERR "intel-iommu: exceeded %d IOMMUs\n",
2766 DMAR_UNITS_SUPPORTED);
2767 }
2768
2769 /* Preallocate enough resources for IOMMU hot-addition */
2770 if (g_num_of_iommus < DMAR_UNITS_SUPPORTED)
2771 g_num_of_iommus = DMAR_UNITS_SUPPORTED;
2772
2773 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
2774 GFP_KERNEL);
2775 if (!g_iommus) {
2776 printk(KERN_ERR "Allocating global iommu array failed\n");
2777 ret = -ENOMEM;
2778 goto error;
2779 }
2780
2781 deferred_flush = kzalloc(g_num_of_iommus *
2782 sizeof(struct deferred_flush_tables), GFP_KERNEL);
2783 if (!deferred_flush) {
2784 ret = -ENOMEM;
2785 goto free_g_iommus;
2786 }
2787
2788 for_each_active_iommu(iommu, drhd) {
2789 g_iommus[iommu->seq_id] = iommu;
2790
2791 ret = iommu_init_domains(iommu);
2792 if (ret)
2793 goto free_iommu;
2794
2795 /*
2796 * TBD:
2797 * we could share the same root & context tables
2798 * among all IOMMU's. Need to Split it later.
2799 */
2800 ret = iommu_alloc_root_entry(iommu);
2801 if (ret)
2802 goto free_iommu;
2803 if (!ecap_pass_through(iommu->ecap))
2804 hw_pass_through = 0;
2805 }
2806
2807 for_each_active_iommu(iommu, drhd)
2808 intel_iommu_init_qi(iommu);
2809
2810 if (iommu_pass_through)
2811 iommu_identity_mapping |= IDENTMAP_ALL;
2812
2813 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
2814 iommu_identity_mapping |= IDENTMAP_GFX;
2815 #endif
2816
2817 check_tylersburg_isoch();
2818
2819 /*
2820 * If pass through is not set or not enabled, setup context entries for
2821 * identity mappings for rmrr, gfx, and isa and may fall back to static
2822 * identity mapping if iommu_identity_mapping is set.
2823 */
2824 if (iommu_identity_mapping) {
2825 ret = iommu_prepare_static_identity_mapping(hw_pass_through);
2826 if (ret) {
2827 printk(KERN_CRIT "Failed to setup IOMMU pass-through\n");
2828 goto free_iommu;
2829 }
2830 }
2831 /*
2832 * For each rmrr
2833 * for each dev attached to rmrr
2834 * do
2835 * locate drhd for dev, alloc domain for dev
2836 * allocate free domain
2837 * allocate page table entries for rmrr
2838 * if context not allocated for bus
2839 * allocate and init context
2840 * set present in root table for this bus
2841 * init context with domain, translation etc
2842 * endfor
2843 * endfor
2844 */
2845 printk(KERN_INFO "IOMMU: Setting RMRR:\n");
2846 for_each_rmrr_units(rmrr) {
2847 /* some BIOS lists non-exist devices in DMAR table. */
2848 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
2849 i, dev) {
2850 ret = iommu_prepare_rmrr_dev(rmrr, dev);
2851 if (ret)
2852 printk(KERN_ERR
2853 "IOMMU: mapping reserved region failed\n");
2854 }
2855 }
2856
2857 iommu_prepare_isa();
2858
2859 /*
2860 * for each drhd
2861 * enable fault log
2862 * global invalidate context cache
2863 * global invalidate iotlb
2864 * enable translation
2865 */
2866 for_each_iommu(iommu, drhd) {
2867 if (drhd->ignored) {
2868 /*
2869 * we always have to disable PMRs or DMA may fail on
2870 * this device
2871 */
2872 if (force_on)
2873 iommu_disable_protect_mem_regions(iommu);
2874 continue;
2875 }
2876
2877 iommu_flush_write_buffer(iommu);
2878
2879 ret = dmar_set_interrupt(iommu);
2880 if (ret)
2881 goto free_iommu;
2882
2883 iommu_set_root_entry(iommu);
2884
2885 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
2886 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2887 iommu_enable_translation(iommu);
2888 iommu_disable_protect_mem_regions(iommu);
2889 }
2890
2891 return 0;
2892
2893 free_iommu:
2894 for_each_active_iommu(iommu, drhd) {
2895 disable_dmar_iommu(iommu);
2896 free_dmar_iommu(iommu);
2897 }
2898 kfree(deferred_flush);
2899 free_g_iommus:
2900 kfree(g_iommus);
2901 error:
2902 return ret;
2903 }
2904
2905 /* This takes a number of _MM_ pages, not VTD pages */
2906 static struct iova *intel_alloc_iova(struct device *dev,
2907 struct dmar_domain *domain,
2908 unsigned long nrpages, uint64_t dma_mask)
2909 {
2910 struct iova *iova = NULL;
2911
2912 /* Restrict dma_mask to the width that the iommu can handle */
2913 dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
2914
2915 if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
2916 /*
2917 * First try to allocate an io virtual address in
2918 * DMA_BIT_MASK(32) and if that fails then try allocating
2919 * from higher range
2920 */
2921 iova = alloc_iova(&domain->iovad, nrpages,
2922 IOVA_PFN(DMA_BIT_MASK(32)), 1);
2923 if (iova)
2924 return iova;
2925 }
2926 iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(dma_mask), 1);
2927 if (unlikely(!iova)) {
2928 printk(KERN_ERR "Allocating %ld-page iova for %s failed",
2929 nrpages, dev_name(dev));
2930 return NULL;
2931 }
2932
2933 return iova;
2934 }
2935
2936 static struct dmar_domain *__get_valid_domain_for_dev(struct device *dev)
2937 {
2938 struct dmar_domain *domain;
2939 int ret;
2940
2941 domain = get_domain_for_dev(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2942 if (!domain) {
2943 printk(KERN_ERR "Allocating domain for %s failed",
2944 dev_name(dev));
2945 return NULL;
2946 }
2947
2948 /* make sure context mapping is ok */
2949 if (unlikely(!domain_context_mapped(dev))) {
2950 ret = domain_context_mapping(domain, dev, CONTEXT_TT_MULTI_LEVEL);
2951 if (ret) {
2952 printk(KERN_ERR "Domain context map for %s failed",
2953 dev_name(dev));
2954 return NULL;
2955 }
2956 }
2957
2958 return domain;
2959 }
2960
2961 static inline struct dmar_domain *get_valid_domain_for_dev(struct device *dev)
2962 {
2963 struct device_domain_info *info;
2964
2965 /* No lock here, assumes no domain exit in normal case */
2966 info = dev->archdata.iommu;
2967 if (likely(info))
2968 return info->domain;
2969
2970 return __get_valid_domain_for_dev(dev);
2971 }
2972
2973 static int iommu_dummy(struct device *dev)
2974 {
2975 return dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
2976 }
2977
2978 /* Check if the dev needs to go through non-identity map and unmap process.*/
2979 static int iommu_no_mapping(struct device *dev)
2980 {
2981 int found;
2982
2983 if (iommu_dummy(dev))
2984 return 1;
2985
2986 if (!iommu_identity_mapping)
2987 return 0;
2988
2989 found = identity_mapping(dev);
2990 if (found) {
2991 if (iommu_should_identity_map(dev, 0))
2992 return 1;
2993 else {
2994 /*
2995 * 32 bit DMA is removed from si_domain and fall back
2996 * to non-identity mapping.
2997 */
2998 domain_remove_one_dev_info(si_domain, dev);
2999 printk(KERN_INFO "32bit %s uses non-identity mapping\n",
3000 dev_name(dev));
3001 return 0;
3002 }
3003 } else {
3004 /*
3005 * In case of a detached 64 bit DMA device from vm, the device
3006 * is put into si_domain for identity mapping.
3007 */
3008 if (iommu_should_identity_map(dev, 0)) {
3009 int ret;
3010 ret = domain_add_dev_info(si_domain, dev,
3011 hw_pass_through ?
3012 CONTEXT_TT_PASS_THROUGH :
3013 CONTEXT_TT_MULTI_LEVEL);
3014 if (!ret) {
3015 printk(KERN_INFO "64bit %s uses identity mapping\n",
3016 dev_name(dev));
3017 return 1;
3018 }
3019 }
3020 }
3021
3022 return 0;
3023 }
3024
3025 static dma_addr_t __intel_map_single(struct device *dev, phys_addr_t paddr,
3026 size_t size, int dir, u64 dma_mask)
3027 {
3028 struct dmar_domain *domain;
3029 phys_addr_t start_paddr;
3030 struct iova *iova;
3031 int prot = 0;
3032 int ret;
3033 struct intel_iommu *iommu;
3034 unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
3035
3036 BUG_ON(dir == DMA_NONE);
3037
3038 if (iommu_no_mapping(dev))
3039 return paddr;
3040
3041 domain = get_valid_domain_for_dev(dev);
3042 if (!domain)
3043 return 0;
3044
3045 iommu = domain_get_iommu(domain);
3046 size = aligned_nrpages(paddr, size);
3047
3048 iova = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), dma_mask);
3049 if (!iova)
3050 goto error;
3051
3052 /*
3053 * Check if DMAR supports zero-length reads on write only
3054 * mappings..
3055 */
3056 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3057 !cap_zlr(iommu->cap))
3058 prot |= DMA_PTE_READ;
3059 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3060 prot |= DMA_PTE_WRITE;
3061 /*
3062 * paddr - (paddr + size) might be partial page, we should map the whole
3063 * page. Note: if two part of one page are separately mapped, we
3064 * might have two guest_addr mapping to the same host paddr, but this
3065 * is not a big problem
3066 */
3067 ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo),
3068 mm_to_dma_pfn(paddr_pfn), size, prot);
3069 if (ret)
3070 goto error;
3071
3072 /* it's a non-present to present mapping. Only flush if caching mode */
3073 if (cap_caching_mode(iommu->cap))
3074 iommu_flush_iotlb_psi(iommu, domain->id, mm_to_dma_pfn(iova->pfn_lo), size, 0, 1);
3075 else
3076 iommu_flush_write_buffer(iommu);
3077
3078 start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
3079 start_paddr += paddr & ~PAGE_MASK;
3080 return start_paddr;
3081
3082 error:
3083 if (iova)
3084 __free_iova(&domain->iovad, iova);
3085 printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n",
3086 dev_name(dev), size, (unsigned long long)paddr, dir);
3087 return 0;
3088 }
3089
3090 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
3091 unsigned long offset, size_t size,
3092 enum dma_data_direction dir,
3093 struct dma_attrs *attrs)
3094 {
3095 return __intel_map_single(dev, page_to_phys(page) + offset, size,
3096 dir, *dev->dma_mask);
3097 }
3098
3099 static void flush_unmaps(void)
3100 {
3101 int i, j;
3102
3103 timer_on = 0;
3104
3105 /* just flush them all */
3106 for (i = 0; i < g_num_of_iommus; i++) {
3107 struct intel_iommu *iommu = g_iommus[i];
3108 if (!iommu)
3109 continue;
3110
3111 if (!deferred_flush[i].next)
3112 continue;
3113
3114 /* In caching mode, global flushes turn emulation expensive */
3115 if (!cap_caching_mode(iommu->cap))
3116 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3117 DMA_TLB_GLOBAL_FLUSH);
3118 for (j = 0; j < deferred_flush[i].next; j++) {
3119 unsigned long mask;
3120 struct iova *iova = deferred_flush[i].iova[j];
3121 struct dmar_domain *domain = deferred_flush[i].domain[j];
3122
3123 /* On real hardware multiple invalidations are expensive */
3124 if (cap_caching_mode(iommu->cap))
3125 iommu_flush_iotlb_psi(iommu, domain->id,
3126 iova->pfn_lo, iova_size(iova),
3127 !deferred_flush[i].freelist[j], 0);
3128 else {
3129 mask = ilog2(mm_to_dma_pfn(iova_size(iova)));
3130 iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
3131 (uint64_t)iova->pfn_lo << PAGE_SHIFT, mask);
3132 }
3133 __free_iova(&deferred_flush[i].domain[j]->iovad, iova);
3134 if (deferred_flush[i].freelist[j])
3135 dma_free_pagelist(deferred_flush[i].freelist[j]);
3136 }
3137 deferred_flush[i].next = 0;
3138 }
3139
3140 list_size = 0;
3141 }
3142
3143 static void flush_unmaps_timeout(unsigned long data)
3144 {
3145 unsigned long flags;
3146
3147 spin_lock_irqsave(&async_umap_flush_lock, flags);
3148 flush_unmaps();
3149 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
3150 }
3151
3152 static void add_unmap(struct dmar_domain *dom, struct iova *iova, struct page *freelist)
3153 {
3154 unsigned long flags;
3155 int next, iommu_id;
3156 struct intel_iommu *iommu;
3157
3158 spin_lock_irqsave(&async_umap_flush_lock, flags);
3159 if (list_size == HIGH_WATER_MARK)
3160 flush_unmaps();
3161
3162 iommu = domain_get_iommu(dom);
3163 iommu_id = iommu->seq_id;
3164
3165 next = deferred_flush[iommu_id].next;
3166 deferred_flush[iommu_id].domain[next] = dom;
3167 deferred_flush[iommu_id].iova[next] = iova;
3168 deferred_flush[iommu_id].freelist[next] = freelist;
3169 deferred_flush[iommu_id].next++;
3170
3171 if (!timer_on) {
3172 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
3173 timer_on = 1;
3174 }
3175 list_size++;
3176 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
3177 }
3178
3179 static void intel_unmap(struct device *dev, dma_addr_t dev_addr)
3180 {
3181 struct dmar_domain *domain;
3182 unsigned long start_pfn, last_pfn;
3183 struct iova *iova;
3184 struct intel_iommu *iommu;
3185 struct page *freelist;
3186
3187 if (iommu_no_mapping(dev))
3188 return;
3189
3190 domain = find_domain(dev);
3191 BUG_ON(!domain);
3192
3193 iommu = domain_get_iommu(domain);
3194
3195 iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
3196 if (WARN_ONCE(!iova, "Driver unmaps unmatched page at PFN %llx\n",
3197 (unsigned long long)dev_addr))
3198 return;
3199
3200 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
3201 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
3202
3203 pr_debug("Device %s unmapping: pfn %lx-%lx\n",
3204 dev_name(dev), start_pfn, last_pfn);
3205
3206 freelist = domain_unmap(domain, start_pfn, last_pfn);
3207
3208 if (intel_iommu_strict) {
3209 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
3210 last_pfn - start_pfn + 1, !freelist, 0);
3211 /* free iova */
3212 __free_iova(&domain->iovad, iova);
3213 dma_free_pagelist(freelist);
3214 } else {
3215 add_unmap(domain, iova, freelist);
3216 /*
3217 * queue up the release of the unmap to save the 1/6th of the
3218 * cpu used up by the iotlb flush operation...
3219 */
3220 }
3221 }
3222
3223 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
3224 size_t size, enum dma_data_direction dir,
3225 struct dma_attrs *attrs)
3226 {
3227 intel_unmap(dev, dev_addr);
3228 }
3229
3230 static void *intel_alloc_coherent(struct device *dev, size_t size,
3231 dma_addr_t *dma_handle, gfp_t flags,
3232 struct dma_attrs *attrs)
3233 {
3234 struct page *page = NULL;
3235 int order;
3236
3237 size = PAGE_ALIGN(size);
3238 order = get_order(size);
3239
3240 if (!iommu_no_mapping(dev))
3241 flags &= ~(GFP_DMA | GFP_DMA32);
3242 else if (dev->coherent_dma_mask < dma_get_required_mask(dev)) {
3243 if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
3244 flags |= GFP_DMA;
3245 else
3246 flags |= GFP_DMA32;
3247 }
3248
3249 if (flags & __GFP_WAIT) {
3250 unsigned int count = size >> PAGE_SHIFT;
3251
3252 page = dma_alloc_from_contiguous(dev, count, order);
3253 if (page && iommu_no_mapping(dev) &&
3254 page_to_phys(page) + size > dev->coherent_dma_mask) {
3255 dma_release_from_contiguous(dev, page, count);
3256 page = NULL;
3257 }
3258 }
3259
3260 if (!page)
3261 page = alloc_pages(flags, order);
3262 if (!page)
3263 return NULL;
3264 memset(page_address(page), 0, size);
3265
3266 *dma_handle = __intel_map_single(dev, page_to_phys(page), size,
3267 DMA_BIDIRECTIONAL,
3268 dev->coherent_dma_mask);
3269 if (*dma_handle)
3270 return page_address(page);
3271 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3272 __free_pages(page, order);
3273
3274 return NULL;
3275 }
3276
3277 static void intel_free_coherent(struct device *dev, size_t size, void *vaddr,
3278 dma_addr_t dma_handle, struct dma_attrs *attrs)
3279 {
3280 int order;
3281 struct page *page = virt_to_page(vaddr);
3282
3283 size = PAGE_ALIGN(size);
3284 order = get_order(size);
3285
3286 intel_unmap(dev, dma_handle);
3287 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3288 __free_pages(page, order);
3289 }
3290
3291 static void intel_unmap_sg(struct device *dev, struct scatterlist *sglist,
3292 int nelems, enum dma_data_direction dir,
3293 struct dma_attrs *attrs)
3294 {
3295 intel_unmap(dev, sglist[0].dma_address);
3296 }
3297
3298 static int intel_nontranslate_map_sg(struct device *hddev,
3299 struct scatterlist *sglist, int nelems, int dir)
3300 {
3301 int i;
3302 struct scatterlist *sg;
3303
3304 for_each_sg(sglist, sg, nelems, i) {
3305 BUG_ON(!sg_page(sg));
3306 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
3307 sg->dma_length = sg->length;
3308 }
3309 return nelems;
3310 }
3311
3312 static int intel_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
3313 enum dma_data_direction dir, struct dma_attrs *attrs)
3314 {
3315 int i;
3316 struct dmar_domain *domain;
3317 size_t size = 0;
3318 int prot = 0;
3319 struct iova *iova = NULL;
3320 int ret;
3321 struct scatterlist *sg;
3322 unsigned long start_vpfn;
3323 struct intel_iommu *iommu;
3324
3325 BUG_ON(dir == DMA_NONE);
3326 if (iommu_no_mapping(dev))
3327 return intel_nontranslate_map_sg(dev, sglist, nelems, dir);
3328
3329 domain = get_valid_domain_for_dev(dev);
3330 if (!domain)
3331 return 0;
3332
3333 iommu = domain_get_iommu(domain);
3334
3335 for_each_sg(sglist, sg, nelems, i)
3336 size += aligned_nrpages(sg->offset, sg->length);
3337
3338 iova = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size),
3339 *dev->dma_mask);
3340 if (!iova) {
3341 sglist->dma_length = 0;
3342 return 0;
3343 }
3344
3345 /*
3346 * Check if DMAR supports zero-length reads on write only
3347 * mappings..
3348 */
3349 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3350 !cap_zlr(iommu->cap))
3351 prot |= DMA_PTE_READ;
3352 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3353 prot |= DMA_PTE_WRITE;
3354
3355 start_vpfn = mm_to_dma_pfn(iova->pfn_lo);
3356
3357 ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3358 if (unlikely(ret)) {
3359 dma_pte_free_pagetable(domain, start_vpfn,
3360 start_vpfn + size - 1);
3361 __free_iova(&domain->iovad, iova);
3362 return 0;
3363 }
3364
3365 /* it's a non-present to present mapping. Only flush if caching mode */
3366 if (cap_caching_mode(iommu->cap))
3367 iommu_flush_iotlb_psi(iommu, domain->id, start_vpfn, size, 0, 1);
3368 else
3369 iommu_flush_write_buffer(iommu);
3370
3371 return nelems;
3372 }
3373
3374 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
3375 {
3376 return !dma_addr;
3377 }
3378
3379 struct dma_map_ops intel_dma_ops = {
3380 .alloc = intel_alloc_coherent,
3381 .free = intel_free_coherent,
3382 .map_sg = intel_map_sg,
3383 .unmap_sg = intel_unmap_sg,
3384 .map_page = intel_map_page,
3385 .unmap_page = intel_unmap_page,
3386 .mapping_error = intel_mapping_error,
3387 };
3388
3389 static inline int iommu_domain_cache_init(void)
3390 {
3391 int ret = 0;
3392
3393 iommu_domain_cache = kmem_cache_create("iommu_domain",
3394 sizeof(struct dmar_domain),
3395 0,
3396 SLAB_HWCACHE_ALIGN,
3397
3398 NULL);
3399 if (!iommu_domain_cache) {
3400 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
3401 ret = -ENOMEM;
3402 }
3403
3404 return ret;
3405 }
3406
3407 static inline int iommu_devinfo_cache_init(void)
3408 {
3409 int ret = 0;
3410
3411 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
3412 sizeof(struct device_domain_info),
3413 0,
3414 SLAB_HWCACHE_ALIGN,
3415 NULL);
3416 if (!iommu_devinfo_cache) {
3417 printk(KERN_ERR "Couldn't create devinfo cache\n");
3418 ret = -ENOMEM;
3419 }
3420
3421 return ret;
3422 }
3423
3424 static int __init iommu_init_mempool(void)
3425 {
3426 int ret;
3427 ret = iommu_iova_cache_init();
3428 if (ret)
3429 return ret;
3430
3431 ret = iommu_domain_cache_init();
3432 if (ret)
3433 goto domain_error;
3434
3435 ret = iommu_devinfo_cache_init();
3436 if (!ret)
3437 return ret;
3438
3439 kmem_cache_destroy(iommu_domain_cache);
3440 domain_error:
3441 iommu_iova_cache_destroy();
3442
3443 return -ENOMEM;
3444 }
3445
3446 static void __init iommu_exit_mempool(void)
3447 {
3448 kmem_cache_destroy(iommu_devinfo_cache);
3449 kmem_cache_destroy(iommu_domain_cache);
3450 iommu_iova_cache_destroy();
3451 }
3452
3453 static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
3454 {
3455 struct dmar_drhd_unit *drhd;
3456 u32 vtbar;
3457 int rc;
3458
3459 /* We know that this device on this chipset has its own IOMMU.
3460 * If we find it under a different IOMMU, then the BIOS is lying
3461 * to us. Hope that the IOMMU for this device is actually
3462 * disabled, and it needs no translation...
3463 */
3464 rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
3465 if (rc) {
3466 /* "can't" happen */
3467 dev_info(&pdev->dev, "failed to run vt-d quirk\n");
3468 return;
3469 }
3470 vtbar &= 0xffff0000;
3471
3472 /* we know that the this iommu should be at offset 0xa000 from vtbar */
3473 drhd = dmar_find_matched_drhd_unit(pdev);
3474 if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
3475 TAINT_FIRMWARE_WORKAROUND,
3476 "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
3477 pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3478 }
3479 DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
3480
3481 static void __init init_no_remapping_devices(void)
3482 {
3483 struct dmar_drhd_unit *drhd;
3484 struct device *dev;
3485 int i;
3486
3487 for_each_drhd_unit(drhd) {
3488 if (!drhd->include_all) {
3489 for_each_active_dev_scope(drhd->devices,
3490 drhd->devices_cnt, i, dev)
3491 break;
3492 /* ignore DMAR unit if no devices exist */
3493 if (i == drhd->devices_cnt)
3494 drhd->ignored = 1;
3495 }
3496 }
3497
3498 for_each_active_drhd_unit(drhd) {
3499 if (drhd->include_all)
3500 continue;
3501
3502 for_each_active_dev_scope(drhd->devices,
3503 drhd->devices_cnt, i, dev)
3504 if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
3505 break;
3506 if (i < drhd->devices_cnt)
3507 continue;
3508
3509 /* This IOMMU has *only* gfx devices. Either bypass it or
3510 set the gfx_mapped flag, as appropriate */
3511 if (dmar_map_gfx) {
3512 intel_iommu_gfx_mapped = 1;
3513 } else {
3514 drhd->ignored = 1;
3515 for_each_active_dev_scope(drhd->devices,
3516 drhd->devices_cnt, i, dev)
3517 dev->archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3518 }
3519 }
3520 }
3521
3522 #ifdef CONFIG_SUSPEND
3523 static int init_iommu_hw(void)
3524 {
3525 struct dmar_drhd_unit *drhd;
3526 struct intel_iommu *iommu = NULL;
3527
3528 for_each_active_iommu(iommu, drhd)
3529 if (iommu->qi)
3530 dmar_reenable_qi(iommu);
3531
3532 for_each_iommu(iommu, drhd) {
3533 if (drhd->ignored) {
3534 /*
3535 * we always have to disable PMRs or DMA may fail on
3536 * this device
3537 */
3538 if (force_on)
3539 iommu_disable_protect_mem_regions(iommu);
3540 continue;
3541 }
3542
3543 iommu_flush_write_buffer(iommu);
3544
3545 iommu_set_root_entry(iommu);
3546
3547 iommu->flush.flush_context(iommu, 0, 0, 0,
3548 DMA_CCMD_GLOBAL_INVL);
3549 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
3550 iommu_enable_translation(iommu);
3551 iommu_disable_protect_mem_regions(iommu);
3552 }
3553
3554 return 0;
3555 }
3556
3557 static void iommu_flush_all(void)
3558 {
3559 struct dmar_drhd_unit *drhd;
3560 struct intel_iommu *iommu;
3561
3562 for_each_active_iommu(iommu, drhd) {
3563 iommu->flush.flush_context(iommu, 0, 0, 0,
3564 DMA_CCMD_GLOBAL_INVL);
3565 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3566 DMA_TLB_GLOBAL_FLUSH);
3567 }
3568 }
3569
3570 static int iommu_suspend(void)
3571 {
3572 struct dmar_drhd_unit *drhd;
3573 struct intel_iommu *iommu = NULL;
3574 unsigned long flag;
3575
3576 for_each_active_iommu(iommu, drhd) {
3577 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
3578 GFP_ATOMIC);
3579 if (!iommu->iommu_state)
3580 goto nomem;
3581 }
3582
3583 iommu_flush_all();
3584
3585 for_each_active_iommu(iommu, drhd) {
3586 iommu_disable_translation(iommu);
3587
3588 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3589
3590 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3591 readl(iommu->reg + DMAR_FECTL_REG);
3592 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3593 readl(iommu->reg + DMAR_FEDATA_REG);
3594 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3595 readl(iommu->reg + DMAR_FEADDR_REG);
3596 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3597 readl(iommu->reg + DMAR_FEUADDR_REG);
3598
3599 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3600 }
3601 return 0;
3602
3603 nomem:
3604 for_each_active_iommu(iommu, drhd)
3605 kfree(iommu->iommu_state);
3606
3607 return -ENOMEM;
3608 }
3609
3610 static void iommu_resume(void)
3611 {
3612 struct dmar_drhd_unit *drhd;
3613 struct intel_iommu *iommu = NULL;
3614 unsigned long flag;
3615
3616 if (init_iommu_hw()) {
3617 if (force_on)
3618 panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
3619 else
3620 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3621 return;
3622 }
3623
3624 for_each_active_iommu(iommu, drhd) {
3625
3626 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3627
3628 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3629 iommu->reg + DMAR_FECTL_REG);
3630 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3631 iommu->reg + DMAR_FEDATA_REG);
3632 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3633 iommu->reg + DMAR_FEADDR_REG);
3634 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3635 iommu->reg + DMAR_FEUADDR_REG);
3636
3637 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3638 }
3639
3640 for_each_active_iommu(iommu, drhd)
3641 kfree(iommu->iommu_state);
3642 }
3643
3644 static struct syscore_ops iommu_syscore_ops = {
3645 .resume = iommu_resume,
3646 .suspend = iommu_suspend,
3647 };
3648
3649 static void __init init_iommu_pm_ops(void)
3650 {
3651 register_syscore_ops(&iommu_syscore_ops);
3652 }
3653
3654 #else
3655 static inline void init_iommu_pm_ops(void) {}
3656 #endif /* CONFIG_PM */
3657
3658
3659 int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg)
3660 {
3661 struct acpi_dmar_reserved_memory *rmrr;
3662 struct dmar_rmrr_unit *rmrru;
3663
3664 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
3665 if (!rmrru)
3666 return -ENOMEM;
3667
3668 rmrru->hdr = header;
3669 rmrr = (struct acpi_dmar_reserved_memory *)header;
3670 rmrru->base_address = rmrr->base_address;
3671 rmrru->end_address = rmrr->end_address;
3672 rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
3673 ((void *)rmrr) + rmrr->header.length,
3674 &rmrru->devices_cnt);
3675 if (rmrru->devices_cnt && rmrru->devices == NULL) {
3676 kfree(rmrru);
3677 return -ENOMEM;
3678 }
3679
3680 list_add(&rmrru->list, &dmar_rmrr_units);
3681
3682 return 0;
3683 }
3684
3685 static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr)
3686 {
3687 struct dmar_atsr_unit *atsru;
3688 struct acpi_dmar_atsr *tmp;
3689
3690 list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
3691 tmp = (struct acpi_dmar_atsr *)atsru->hdr;
3692 if (atsr->segment != tmp->segment)
3693 continue;
3694 if (atsr->header.length != tmp->header.length)
3695 continue;
3696 if (memcmp(atsr, tmp, atsr->header.length) == 0)
3697 return atsru;
3698 }
3699
3700 return NULL;
3701 }
3702
3703 int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg)
3704 {
3705 struct acpi_dmar_atsr *atsr;
3706 struct dmar_atsr_unit *atsru;
3707
3708 if (system_state != SYSTEM_BOOTING && !intel_iommu_enabled)
3709 return 0;
3710
3711 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
3712 atsru = dmar_find_atsr(atsr);
3713 if (atsru)
3714 return 0;
3715
3716 atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL);
3717 if (!atsru)
3718 return -ENOMEM;
3719
3720 /*
3721 * If memory is allocated from slab by ACPI _DSM method, we need to
3722 * copy the memory content because the memory buffer will be freed
3723 * on return.
3724 */
3725 atsru->hdr = (void *)(atsru + 1);
3726 memcpy(atsru->hdr, hdr, hdr->length);
3727 atsru->include_all = atsr->flags & 0x1;
3728 if (!atsru->include_all) {
3729 atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
3730 (void *)atsr + atsr->header.length,
3731 &atsru->devices_cnt);
3732 if (atsru->devices_cnt && atsru->devices == NULL) {
3733 kfree(atsru);
3734 return -ENOMEM;
3735 }
3736 }
3737
3738 list_add_rcu(&atsru->list, &dmar_atsr_units);
3739
3740 return 0;
3741 }
3742
3743 static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
3744 {
3745 dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
3746 kfree(atsru);
3747 }
3748
3749 int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg)
3750 {
3751 struct acpi_dmar_atsr *atsr;
3752 struct dmar_atsr_unit *atsru;
3753
3754 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
3755 atsru = dmar_find_atsr(atsr);
3756 if (atsru) {
3757 list_del_rcu(&atsru->list);
3758 synchronize_rcu();
3759 intel_iommu_free_atsr(atsru);
3760 }
3761
3762 return 0;
3763 }
3764
3765 int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg)
3766 {
3767 int i;
3768 struct device *dev;
3769 struct acpi_dmar_atsr *atsr;
3770 struct dmar_atsr_unit *atsru;
3771
3772 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
3773 atsru = dmar_find_atsr(atsr);
3774 if (!atsru)
3775 return 0;
3776
3777 if (!atsru->include_all && atsru->devices && atsru->devices_cnt)
3778 for_each_active_dev_scope(atsru->devices, atsru->devices_cnt,
3779 i, dev)
3780 return -EBUSY;
3781
3782 return 0;
3783 }
3784
3785 static int intel_iommu_add(struct dmar_drhd_unit *dmaru)
3786 {
3787 int sp, ret = 0;
3788 struct intel_iommu *iommu = dmaru->iommu;
3789
3790 if (g_iommus[iommu->seq_id])
3791 return 0;
3792
3793 if (hw_pass_through && !ecap_pass_through(iommu->ecap)) {
3794 pr_warn("IOMMU: %s doesn't support hardware pass through.\n",
3795 iommu->name);
3796 return -ENXIO;
3797 }
3798 if (!ecap_sc_support(iommu->ecap) &&
3799 domain_update_iommu_snooping(iommu)) {
3800 pr_warn("IOMMU: %s doesn't support snooping.\n",
3801 iommu->name);
3802 return -ENXIO;
3803 }
3804 sp = domain_update_iommu_superpage(iommu) - 1;
3805 if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) {
3806 pr_warn("IOMMU: %s doesn't support large page.\n",
3807 iommu->name);
3808 return -ENXIO;
3809 }
3810
3811 /*
3812 * Disable translation if already enabled prior to OS handover.
3813 */
3814 if (iommu->gcmd & DMA_GCMD_TE)
3815 iommu_disable_translation(iommu);
3816
3817 g_iommus[iommu->seq_id] = iommu;
3818 ret = iommu_init_domains(iommu);
3819 if (ret == 0)
3820 ret = iommu_alloc_root_entry(iommu);
3821 if (ret)
3822 goto out;
3823
3824 if (dmaru->ignored) {
3825 /*
3826 * we always have to disable PMRs or DMA may fail on this device
3827 */
3828 if (force_on)
3829 iommu_disable_protect_mem_regions(iommu);
3830 return 0;
3831 }
3832
3833 intel_iommu_init_qi(iommu);
3834 iommu_flush_write_buffer(iommu);
3835 ret = dmar_set_interrupt(iommu);
3836 if (ret)
3837 goto disable_iommu;
3838
3839 iommu_set_root_entry(iommu);
3840 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
3841 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
3842 iommu_enable_translation(iommu);
3843
3844 if (si_domain) {
3845 ret = iommu_attach_domain(si_domain, iommu);
3846 if (ret < 0 || si_domain->id != ret)
3847 goto disable_iommu;
3848 domain_attach_iommu(si_domain, iommu);
3849 }
3850
3851 iommu_disable_protect_mem_regions(iommu);
3852 return 0;
3853
3854 disable_iommu:
3855 disable_dmar_iommu(iommu);
3856 out:
3857 free_dmar_iommu(iommu);
3858 return ret;
3859 }
3860
3861 int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
3862 {
3863 int ret = 0;
3864 struct intel_iommu *iommu = dmaru->iommu;
3865
3866 if (!intel_iommu_enabled)
3867 return 0;
3868 if (iommu == NULL)
3869 return -EINVAL;
3870
3871 if (insert) {
3872 ret = intel_iommu_add(dmaru);
3873 } else {
3874 disable_dmar_iommu(iommu);
3875 free_dmar_iommu(iommu);
3876 }
3877
3878 return ret;
3879 }
3880
3881 static void intel_iommu_free_dmars(void)
3882 {
3883 struct dmar_rmrr_unit *rmrru, *rmrr_n;
3884 struct dmar_atsr_unit *atsru, *atsr_n;
3885
3886 list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
3887 list_del(&rmrru->list);
3888 dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
3889 kfree(rmrru);
3890 }
3891
3892 list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
3893 list_del(&atsru->list);
3894 intel_iommu_free_atsr(atsru);
3895 }
3896 }
3897
3898 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
3899 {
3900 int i, ret = 1;
3901 struct pci_bus *bus;
3902 struct pci_dev *bridge = NULL;
3903 struct device *tmp;
3904 struct acpi_dmar_atsr *atsr;
3905 struct dmar_atsr_unit *atsru;
3906
3907 dev = pci_physfn(dev);
3908 for (bus = dev->bus; bus; bus = bus->parent) {
3909 bridge = bus->self;
3910 if (!bridge || !pci_is_pcie(bridge) ||
3911 pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
3912 return 0;
3913 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
3914 break;
3915 }
3916 if (!bridge)
3917 return 0;
3918
3919 rcu_read_lock();
3920 list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
3921 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
3922 if (atsr->segment != pci_domain_nr(dev->bus))
3923 continue;
3924
3925 for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
3926 if (tmp == &bridge->dev)
3927 goto out;
3928
3929 if (atsru->include_all)
3930 goto out;
3931 }
3932 ret = 0;
3933 out:
3934 rcu_read_unlock();
3935
3936 return ret;
3937 }
3938
3939 int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
3940 {
3941 int ret = 0;
3942 struct dmar_rmrr_unit *rmrru;
3943 struct dmar_atsr_unit *atsru;
3944 struct acpi_dmar_atsr *atsr;
3945 struct acpi_dmar_reserved_memory *rmrr;
3946
3947 if (!intel_iommu_enabled && system_state != SYSTEM_BOOTING)
3948 return 0;
3949
3950 list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
3951 rmrr = container_of(rmrru->hdr,
3952 struct acpi_dmar_reserved_memory, header);
3953 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
3954 ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
3955 ((void *)rmrr) + rmrr->header.length,
3956 rmrr->segment, rmrru->devices,
3957 rmrru->devices_cnt);
3958 if(ret < 0)
3959 return ret;
3960 } else if (info->event == BUS_NOTIFY_DEL_DEVICE) {
3961 dmar_remove_dev_scope(info, rmrr->segment,
3962 rmrru->devices, rmrru->devices_cnt);
3963 }
3964 }
3965
3966 list_for_each_entry(atsru, &dmar_atsr_units, list) {
3967 if (atsru->include_all)
3968 continue;
3969
3970 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
3971 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
3972 ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
3973 (void *)atsr + atsr->header.length,
3974 atsr->segment, atsru->devices,
3975 atsru->devices_cnt);
3976 if (ret > 0)
3977 break;
3978 else if(ret < 0)
3979 return ret;
3980 } else if (info->event == BUS_NOTIFY_DEL_DEVICE) {
3981 if (dmar_remove_dev_scope(info, atsr->segment,
3982 atsru->devices, atsru->devices_cnt))
3983 break;
3984 }
3985 }
3986
3987 return 0;
3988 }
3989
3990 /*
3991 * Here we only respond to action of unbound device from driver.
3992 *
3993 * Added device is not attached to its DMAR domain here yet. That will happen
3994 * when mapping the device to iova.
3995 */
3996 static int device_notifier(struct notifier_block *nb,
3997 unsigned long action, void *data)
3998 {
3999 struct device *dev = data;
4000 struct dmar_domain *domain;
4001
4002 if (iommu_dummy(dev))
4003 return 0;
4004
4005 if (action != BUS_NOTIFY_REMOVED_DEVICE)
4006 return 0;
4007
4008 domain = find_domain(dev);
4009 if (!domain)
4010 return 0;
4011
4012 down_read(&dmar_global_lock);
4013 domain_remove_one_dev_info(domain, dev);
4014 if (!domain_type_is_vm_or_si(domain) && list_empty(&domain->devices))
4015 domain_exit(domain);
4016 up_read(&dmar_global_lock);
4017
4018 return 0;
4019 }
4020
4021 static struct notifier_block device_nb = {
4022 .notifier_call = device_notifier,
4023 };
4024
4025 static int intel_iommu_memory_notifier(struct notifier_block *nb,
4026 unsigned long val, void *v)
4027 {
4028 struct memory_notify *mhp = v;
4029 unsigned long long start, end;
4030 unsigned long start_vpfn, last_vpfn;
4031
4032 switch (val) {
4033 case MEM_GOING_ONLINE:
4034 start = mhp->start_pfn << PAGE_SHIFT;
4035 end = ((mhp->start_pfn + mhp->nr_pages) << PAGE_SHIFT) - 1;
4036 if (iommu_domain_identity_map(si_domain, start, end)) {
4037 pr_warn("dmar: failed to build identity map for [%llx-%llx]\n",
4038 start, end);
4039 return NOTIFY_BAD;
4040 }
4041 break;
4042
4043 case MEM_OFFLINE:
4044 case MEM_CANCEL_ONLINE:
4045 start_vpfn = mm_to_dma_pfn(mhp->start_pfn);
4046 last_vpfn = mm_to_dma_pfn(mhp->start_pfn + mhp->nr_pages - 1);
4047 while (start_vpfn <= last_vpfn) {
4048 struct iova *iova;
4049 struct dmar_drhd_unit *drhd;
4050 struct intel_iommu *iommu;
4051 struct page *freelist;
4052
4053 iova = find_iova(&si_domain->iovad, start_vpfn);
4054 if (iova == NULL) {
4055 pr_debug("dmar: failed get IOVA for PFN %lx\n",
4056 start_vpfn);
4057 break;
4058 }
4059
4060 iova = split_and_remove_iova(&si_domain->iovad, iova,
4061 start_vpfn, last_vpfn);
4062 if (iova == NULL) {
4063 pr_warn("dmar: failed to split IOVA PFN [%lx-%lx]\n",
4064 start_vpfn, last_vpfn);
4065 return NOTIFY_BAD;
4066 }
4067
4068 freelist = domain_unmap(si_domain, iova->pfn_lo,
4069 iova->pfn_hi);
4070
4071 rcu_read_lock();
4072 for_each_active_iommu(iommu, drhd)
4073 iommu_flush_iotlb_psi(iommu, si_domain->id,
4074 iova->pfn_lo, iova_size(iova),
4075 !freelist, 0);
4076 rcu_read_unlock();
4077 dma_free_pagelist(freelist);
4078
4079 start_vpfn = iova->pfn_hi + 1;
4080 free_iova_mem(iova);
4081 }
4082 break;
4083 }
4084
4085 return NOTIFY_OK;
4086 }
4087
4088 static struct notifier_block intel_iommu_memory_nb = {
4089 .notifier_call = intel_iommu_memory_notifier,
4090 .priority = 0
4091 };
4092
4093
4094 static ssize_t intel_iommu_show_version(struct device *dev,
4095 struct device_attribute *attr,
4096 char *buf)
4097 {
4098 struct intel_iommu *iommu = dev_get_drvdata(dev);
4099 u32 ver = readl(iommu->reg + DMAR_VER_REG);
4100 return sprintf(buf, "%d:%d\n",
4101 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver));
4102 }
4103 static DEVICE_ATTR(version, S_IRUGO, intel_iommu_show_version, NULL);
4104
4105 static ssize_t intel_iommu_show_address(struct device *dev,
4106 struct device_attribute *attr,
4107 char *buf)
4108 {
4109 struct intel_iommu *iommu = dev_get_drvdata(dev);
4110 return sprintf(buf, "%llx\n", iommu->reg_phys);
4111 }
4112 static DEVICE_ATTR(address, S_IRUGO, intel_iommu_show_address, NULL);
4113
4114 static ssize_t intel_iommu_show_cap(struct device *dev,
4115 struct device_attribute *attr,
4116 char *buf)
4117 {
4118 struct intel_iommu *iommu = dev_get_drvdata(dev);
4119 return sprintf(buf, "%llx\n", iommu->cap);
4120 }
4121 static DEVICE_ATTR(cap, S_IRUGO, intel_iommu_show_cap, NULL);
4122
4123 static ssize_t intel_iommu_show_ecap(struct device *dev,
4124 struct device_attribute *attr,
4125 char *buf)
4126 {
4127 struct intel_iommu *iommu = dev_get_drvdata(dev);
4128 return sprintf(buf, "%llx\n", iommu->ecap);
4129 }
4130 static DEVICE_ATTR(ecap, S_IRUGO, intel_iommu_show_ecap, NULL);
4131
4132 static struct attribute *intel_iommu_attrs[] = {
4133 &dev_attr_version.attr,
4134 &dev_attr_address.attr,
4135 &dev_attr_cap.attr,
4136 &dev_attr_ecap.attr,
4137 NULL,
4138 };
4139
4140 static struct attribute_group intel_iommu_group = {
4141 .name = "intel-iommu",
4142 .attrs = intel_iommu_attrs,
4143 };
4144
4145 const struct attribute_group *intel_iommu_groups[] = {
4146 &intel_iommu_group,
4147 NULL,
4148 };
4149
4150 int __init intel_iommu_init(void)
4151 {
4152 int ret = -ENODEV;
4153 struct dmar_drhd_unit *drhd;
4154 struct intel_iommu *iommu;
4155
4156 /* VT-d is required for a TXT/tboot launch, so enforce that */
4157 force_on = tboot_force_iommu();
4158
4159 if (iommu_init_mempool()) {
4160 if (force_on)
4161 panic("tboot: Failed to initialize iommu memory\n");
4162 return -ENOMEM;
4163 }
4164
4165 down_write(&dmar_global_lock);
4166 if (dmar_table_init()) {
4167 if (force_on)
4168 panic("tboot: Failed to initialize DMAR table\n");
4169 goto out_free_dmar;
4170 }
4171
4172 /*
4173 * Disable translation if already enabled prior to OS handover.
4174 */
4175 for_each_active_iommu(iommu, drhd)
4176 if (iommu->gcmd & DMA_GCMD_TE)
4177 iommu_disable_translation(iommu);
4178
4179 if (dmar_dev_scope_init() < 0) {
4180 if (force_on)
4181 panic("tboot: Failed to initialize DMAR device scope\n");
4182 goto out_free_dmar;
4183 }
4184
4185 if (no_iommu || dmar_disabled)
4186 goto out_free_dmar;
4187
4188 if (list_empty(&dmar_rmrr_units))
4189 printk(KERN_INFO "DMAR: No RMRR found\n");
4190
4191 if (list_empty(&dmar_atsr_units))
4192 printk(KERN_INFO "DMAR: No ATSR found\n");
4193
4194 if (dmar_init_reserved_ranges()) {
4195 if (force_on)
4196 panic("tboot: Failed to reserve iommu ranges\n");
4197 goto out_free_reserved_range;
4198 }
4199
4200 init_no_remapping_devices();
4201
4202 ret = init_dmars();
4203 if (ret) {
4204 if (force_on)
4205 panic("tboot: Failed to initialize DMARs\n");
4206 printk(KERN_ERR "IOMMU: dmar init failed\n");
4207 goto out_free_reserved_range;
4208 }
4209 up_write(&dmar_global_lock);
4210 printk(KERN_INFO
4211 "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
4212
4213 init_timer(&unmap_timer);
4214 #ifdef CONFIG_SWIOTLB
4215 swiotlb = 0;
4216 #endif
4217 dma_ops = &intel_dma_ops;
4218
4219 init_iommu_pm_ops();
4220
4221 for_each_active_iommu(iommu, drhd)
4222 iommu->iommu_dev = iommu_device_create(NULL, iommu,
4223 intel_iommu_groups,
4224 iommu->name);
4225
4226 bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
4227 bus_register_notifier(&pci_bus_type, &device_nb);
4228 if (si_domain && !hw_pass_through)
4229 register_memory_notifier(&intel_iommu_memory_nb);
4230
4231 intel_iommu_enabled = 1;
4232
4233 return 0;
4234
4235 out_free_reserved_range:
4236 put_iova_domain(&reserved_iova_list);
4237 out_free_dmar:
4238 intel_iommu_free_dmars();
4239 up_write(&dmar_global_lock);
4240 iommu_exit_mempool();
4241 return ret;
4242 }
4243
4244 static int iommu_detach_dev_cb(struct pci_dev *pdev, u16 alias, void *opaque)
4245 {
4246 struct intel_iommu *iommu = opaque;
4247
4248 iommu_detach_dev(iommu, PCI_BUS_NUM(alias), alias & 0xff);
4249 return 0;
4250 }
4251
4252 /*
4253 * NB - intel-iommu lacks any sort of reference counting for the users of
4254 * dependent devices. If multiple endpoints have intersecting dependent
4255 * devices, unbinding the driver from any one of them will possibly leave
4256 * the others unable to operate.
4257 */
4258 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
4259 struct device *dev)
4260 {
4261 if (!iommu || !dev || !dev_is_pci(dev))
4262 return;
4263
4264 pci_for_each_dma_alias(to_pci_dev(dev), &iommu_detach_dev_cb, iommu);
4265 }
4266
4267 static void domain_remove_one_dev_info(struct dmar_domain *domain,
4268 struct device *dev)
4269 {
4270 struct device_domain_info *info, *tmp;
4271 struct intel_iommu *iommu;
4272 unsigned long flags;
4273 int found = 0;
4274 u8 bus, devfn;
4275
4276 iommu = device_to_iommu(dev, &bus, &devfn);
4277 if (!iommu)
4278 return;
4279
4280 spin_lock_irqsave(&device_domain_lock, flags);
4281 list_for_each_entry_safe(info, tmp, &domain->devices, link) {
4282 if (info->iommu == iommu && info->bus == bus &&
4283 info->devfn == devfn) {
4284 unlink_domain_info(info);
4285 spin_unlock_irqrestore(&device_domain_lock, flags);
4286
4287 iommu_disable_dev_iotlb(info);
4288 iommu_detach_dev(iommu, info->bus, info->devfn);
4289 iommu_detach_dependent_devices(iommu, dev);
4290 free_devinfo_mem(info);
4291
4292 spin_lock_irqsave(&device_domain_lock, flags);
4293
4294 if (found)
4295 break;
4296 else
4297 continue;
4298 }
4299
4300 /* if there is no other devices under the same iommu
4301 * owned by this domain, clear this iommu in iommu_bmp
4302 * update iommu count and coherency
4303 */
4304 if (info->iommu == iommu)
4305 found = 1;
4306 }
4307
4308 spin_unlock_irqrestore(&device_domain_lock, flags);
4309
4310 if (found == 0) {
4311 domain_detach_iommu(domain, iommu);
4312 if (!domain_type_is_vm_or_si(domain))
4313 iommu_detach_domain(domain, iommu);
4314 }
4315 }
4316
4317 static int md_domain_init(struct dmar_domain *domain, int guest_width)
4318 {
4319 int adjust_width;
4320
4321 init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN,
4322 DMA_32BIT_PFN);
4323 domain_reserve_special_ranges(domain);
4324
4325 /* calculate AGAW */
4326 domain->gaw = guest_width;
4327 adjust_width = guestwidth_to_adjustwidth(guest_width);
4328 domain->agaw = width_to_agaw(adjust_width);
4329
4330 domain->iommu_coherency = 0;
4331 domain->iommu_snooping = 0;
4332 domain->iommu_superpage = 0;
4333 domain->max_addr = 0;
4334
4335 /* always allocate the top pgd */
4336 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
4337 if (!domain->pgd)
4338 return -ENOMEM;
4339 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
4340 return 0;
4341 }
4342
4343 static int intel_iommu_domain_init(struct iommu_domain *domain)
4344 {
4345 struct dmar_domain *dmar_domain;
4346
4347 dmar_domain = alloc_domain(DOMAIN_FLAG_VIRTUAL_MACHINE);
4348 if (!dmar_domain) {
4349 printk(KERN_ERR
4350 "intel_iommu_domain_init: dmar_domain == NULL\n");
4351 return -ENOMEM;
4352 }
4353 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
4354 printk(KERN_ERR
4355 "intel_iommu_domain_init() failed\n");
4356 domain_exit(dmar_domain);
4357 return -ENOMEM;
4358 }
4359 domain_update_iommu_cap(dmar_domain);
4360 domain->priv = dmar_domain;
4361
4362 domain->geometry.aperture_start = 0;
4363 domain->geometry.aperture_end = __DOMAIN_MAX_ADDR(dmar_domain->gaw);
4364 domain->geometry.force_aperture = true;
4365
4366 return 0;
4367 }
4368
4369 static void intel_iommu_domain_destroy(struct iommu_domain *domain)
4370 {
4371 struct dmar_domain *dmar_domain = domain->priv;
4372
4373 domain->priv = NULL;
4374 domain_exit(dmar_domain);
4375 }
4376
4377 static int intel_iommu_attach_device(struct iommu_domain *domain,
4378 struct device *dev)
4379 {
4380 struct dmar_domain *dmar_domain = domain->priv;
4381 struct intel_iommu *iommu;
4382 int addr_width;
4383 u8 bus, devfn;
4384
4385 if (device_is_rmrr_locked(dev)) {
4386 dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement. Contact your platform vendor.\n");
4387 return -EPERM;
4388 }
4389
4390 /* normally dev is not mapped */
4391 if (unlikely(domain_context_mapped(dev))) {
4392 struct dmar_domain *old_domain;
4393
4394 old_domain = find_domain(dev);
4395 if (old_domain) {
4396 if (domain_type_is_vm_or_si(dmar_domain))
4397 domain_remove_one_dev_info(old_domain, dev);
4398 else
4399 domain_remove_dev_info(old_domain);
4400
4401 if (!domain_type_is_vm_or_si(old_domain) &&
4402 list_empty(&old_domain->devices))
4403 domain_exit(old_domain);
4404 }
4405 }
4406
4407 iommu = device_to_iommu(dev, &bus, &devfn);
4408 if (!iommu)
4409 return -ENODEV;
4410
4411 /* check if this iommu agaw is sufficient for max mapped address */
4412 addr_width = agaw_to_width(iommu->agaw);
4413 if (addr_width > cap_mgaw(iommu->cap))
4414 addr_width = cap_mgaw(iommu->cap);
4415
4416 if (dmar_domain->max_addr > (1LL << addr_width)) {
4417 printk(KERN_ERR "%s: iommu width (%d) is not "
4418 "sufficient for the mapped address (%llx)\n",
4419 __func__, addr_width, dmar_domain->max_addr);
4420 return -EFAULT;
4421 }
4422 dmar_domain->gaw = addr_width;
4423
4424 /*
4425 * Knock out extra levels of page tables if necessary
4426 */
4427 while (iommu->agaw < dmar_domain->agaw) {
4428 struct dma_pte *pte;
4429
4430 pte = dmar_domain->pgd;
4431 if (dma_pte_present(pte)) {
4432 dmar_domain->pgd = (struct dma_pte *)
4433 phys_to_virt(dma_pte_addr(pte));
4434 free_pgtable_page(pte);
4435 }
4436 dmar_domain->agaw--;
4437 }
4438
4439 return domain_add_dev_info(dmar_domain, dev, CONTEXT_TT_MULTI_LEVEL);
4440 }
4441
4442 static void intel_iommu_detach_device(struct iommu_domain *domain,
4443 struct device *dev)
4444 {
4445 struct dmar_domain *dmar_domain = domain->priv;
4446
4447 domain_remove_one_dev_info(dmar_domain, dev);
4448 }
4449
4450 static int intel_iommu_map(struct iommu_domain *domain,
4451 unsigned long iova, phys_addr_t hpa,
4452 size_t size, int iommu_prot)
4453 {
4454 struct dmar_domain *dmar_domain = domain->priv;
4455 u64 max_addr;
4456 int prot = 0;
4457 int ret;
4458
4459 if (iommu_prot & IOMMU_READ)
4460 prot |= DMA_PTE_READ;
4461 if (iommu_prot & IOMMU_WRITE)
4462 prot |= DMA_PTE_WRITE;
4463 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
4464 prot |= DMA_PTE_SNP;
4465
4466 max_addr = iova + size;
4467 if (dmar_domain->max_addr < max_addr) {
4468 u64 end;
4469
4470 /* check if minimum agaw is sufficient for mapped address */
4471 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
4472 if (end < max_addr) {
4473 printk(KERN_ERR "%s: iommu width (%d) is not "
4474 "sufficient for the mapped address (%llx)\n",
4475 __func__, dmar_domain->gaw, max_addr);
4476 return -EFAULT;
4477 }
4478 dmar_domain->max_addr = max_addr;
4479 }
4480 /* Round up size to next multiple of PAGE_SIZE, if it and
4481 the low bits of hpa would take us onto the next page */
4482 size = aligned_nrpages(hpa, size);
4483 ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
4484 hpa >> VTD_PAGE_SHIFT, size, prot);
4485 return ret;
4486 }
4487
4488 static size_t intel_iommu_unmap(struct iommu_domain *domain,
4489 unsigned long iova, size_t size)
4490 {
4491 struct dmar_domain *dmar_domain = domain->priv;
4492 struct page *freelist = NULL;
4493 struct intel_iommu *iommu;
4494 unsigned long start_pfn, last_pfn;
4495 unsigned int npages;
4496 int iommu_id, num, ndomains, level = 0;
4497
4498 /* Cope with horrid API which requires us to unmap more than the
4499 size argument if it happens to be a large-page mapping. */
4500 if (!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level))
4501 BUG();
4502
4503 if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
4504 size = VTD_PAGE_SIZE << level_to_offset_bits(level);
4505
4506 start_pfn = iova >> VTD_PAGE_SHIFT;
4507 last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;
4508
4509 freelist = domain_unmap(dmar_domain, start_pfn, last_pfn);
4510
4511 npages = last_pfn - start_pfn + 1;
4512
4513 for_each_set_bit(iommu_id, dmar_domain->iommu_bmp, g_num_of_iommus) {
4514 iommu = g_iommus[iommu_id];
4515
4516 /*
4517 * find bit position of dmar_domain
4518 */
4519 ndomains = cap_ndoms(iommu->cap);
4520 for_each_set_bit(num, iommu->domain_ids, ndomains) {
4521 if (iommu->domains[num] == dmar_domain)
4522 iommu_flush_iotlb_psi(iommu, num, start_pfn,
4523 npages, !freelist, 0);
4524 }
4525
4526 }
4527
4528 dma_free_pagelist(freelist);
4529
4530 if (dmar_domain->max_addr == iova + size)
4531 dmar_domain->max_addr = iova;
4532
4533 return size;
4534 }
4535
4536 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
4537 dma_addr_t iova)
4538 {
4539 struct dmar_domain *dmar_domain = domain->priv;
4540 struct dma_pte *pte;
4541 int level = 0;
4542 u64 phys = 0;
4543
4544 pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level);
4545 if (pte)
4546 phys = dma_pte_addr(pte);
4547
4548 return phys;
4549 }
4550
4551 static bool intel_iommu_capable(enum iommu_cap cap)
4552 {
4553 if (cap == IOMMU_CAP_CACHE_COHERENCY)
4554 return domain_update_iommu_snooping(NULL) == 1;
4555 if (cap == IOMMU_CAP_INTR_REMAP)
4556 return irq_remapping_enabled == 1;
4557
4558 return false;
4559 }
4560
4561 static int intel_iommu_add_device(struct device *dev)
4562 {
4563 struct intel_iommu *iommu;
4564 struct iommu_group *group;
4565 u8 bus, devfn;
4566
4567 iommu = device_to_iommu(dev, &bus, &devfn);
4568 if (!iommu)
4569 return -ENODEV;
4570
4571 iommu_device_link(iommu->iommu_dev, dev);
4572
4573 group = iommu_group_get_for_dev(dev);
4574
4575 if (IS_ERR(group))
4576 return PTR_ERR(group);
4577
4578 iommu_group_put(group);
4579 return 0;
4580 }
4581
4582 static void intel_iommu_remove_device(struct device *dev)
4583 {
4584 struct intel_iommu *iommu;
4585 u8 bus, devfn;
4586
4587 iommu = device_to_iommu(dev, &bus, &devfn);
4588 if (!iommu)
4589 return;
4590
4591 iommu_group_remove_device(dev);
4592
4593 iommu_device_unlink(iommu->iommu_dev, dev);
4594 }
4595
4596 static const struct iommu_ops intel_iommu_ops = {
4597 .capable = intel_iommu_capable,
4598 .domain_init = intel_iommu_domain_init,
4599 .domain_destroy = intel_iommu_domain_destroy,
4600 .attach_dev = intel_iommu_attach_device,
4601 .detach_dev = intel_iommu_detach_device,
4602 .map = intel_iommu_map,
4603 .unmap = intel_iommu_unmap,
4604 .map_sg = default_iommu_map_sg,
4605 .iova_to_phys = intel_iommu_iova_to_phys,
4606 .add_device = intel_iommu_add_device,
4607 .remove_device = intel_iommu_remove_device,
4608 .pgsize_bitmap = INTEL_IOMMU_PGSIZES,
4609 };
4610
4611 static void quirk_iommu_g4x_gfx(struct pci_dev *dev)
4612 {
4613 /* G4x/GM45 integrated gfx dmar support is totally busted. */
4614 printk(KERN_INFO "DMAR: Disabling IOMMU for graphics on this chipset\n");
4615 dmar_map_gfx = 0;
4616 }
4617
4618 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_g4x_gfx);
4619 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_g4x_gfx);
4620 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_g4x_gfx);
4621 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_g4x_gfx);
4622 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_g4x_gfx);
4623 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_g4x_gfx);
4624 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_g4x_gfx);
4625
4626 static void quirk_iommu_rwbf(struct pci_dev *dev)
4627 {
4628 /*
4629 * Mobile 4 Series Chipset neglects to set RWBF capability,
4630 * but needs it. Same seems to hold for the desktop versions.
4631 */
4632 printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n");
4633 rwbf_quirk = 1;
4634 }
4635
4636 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
4637 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
4638 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
4639 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
4640 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
4641 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
4642 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
4643
4644 #define GGC 0x52
4645 #define GGC_MEMORY_SIZE_MASK (0xf << 8)
4646 #define GGC_MEMORY_SIZE_NONE (0x0 << 8)
4647 #define GGC_MEMORY_SIZE_1M (0x1 << 8)
4648 #define GGC_MEMORY_SIZE_2M (0x3 << 8)
4649 #define GGC_MEMORY_VT_ENABLED (0x8 << 8)
4650 #define GGC_MEMORY_SIZE_2M_VT (0x9 << 8)
4651 #define GGC_MEMORY_SIZE_3M_VT (0xa << 8)
4652 #define GGC_MEMORY_SIZE_4M_VT (0xb << 8)
4653
4654 static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
4655 {
4656 unsigned short ggc;
4657
4658 if (pci_read_config_word(dev, GGC, &ggc))
4659 return;
4660
4661 if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
4662 printk(KERN_INFO "DMAR: BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
4663 dmar_map_gfx = 0;
4664 } else if (dmar_map_gfx) {
4665 /* we have to ensure the gfx device is idle before we flush */
4666 printk(KERN_INFO "DMAR: Disabling batched IOTLB flush on Ironlake\n");
4667 intel_iommu_strict = 1;
4668 }
4669 }
4670 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
4671 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
4672 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
4673 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
4674
4675 /* On Tylersburg chipsets, some BIOSes have been known to enable the
4676 ISOCH DMAR unit for the Azalia sound device, but not give it any
4677 TLB entries, which causes it to deadlock. Check for that. We do
4678 this in a function called from init_dmars(), instead of in a PCI
4679 quirk, because we don't want to print the obnoxious "BIOS broken"
4680 message if VT-d is actually disabled.
4681 */
4682 static void __init check_tylersburg_isoch(void)
4683 {
4684 struct pci_dev *pdev;
4685 uint32_t vtisochctrl;
4686
4687 /* If there's no Azalia in the system anyway, forget it. */
4688 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
4689 if (!pdev)
4690 return;
4691 pci_dev_put(pdev);
4692
4693 /* System Management Registers. Might be hidden, in which case
4694 we can't do the sanity check. But that's OK, because the
4695 known-broken BIOSes _don't_ actually hide it, so far. */
4696 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
4697 if (!pdev)
4698 return;
4699
4700 if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
4701 pci_dev_put(pdev);
4702 return;
4703 }
4704
4705 pci_dev_put(pdev);
4706
4707 /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
4708 if (vtisochctrl & 1)
4709 return;
4710
4711 /* Drop all bits other than the number of TLB entries */
4712 vtisochctrl &= 0x1c;
4713
4714 /* If we have the recommended number of TLB entries (16), fine. */
4715 if (vtisochctrl == 0x10)
4716 return;
4717
4718 /* Zero TLB entries? You get to ride the short bus to school. */
4719 if (!vtisochctrl) {
4720 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
4721 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
4722 dmi_get_system_info(DMI_BIOS_VENDOR),
4723 dmi_get_system_info(DMI_BIOS_VERSION),
4724 dmi_get_system_info(DMI_PRODUCT_VERSION));
4725 iommu_identity_mapping |= IDENTMAP_AZALIA;
4726 return;
4727 }
4728
4729 printk(KERN_WARNING "DMAR: Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
4730 vtisochctrl);
4731 }
This page took 0.126953 seconds and 6 git commands to generate.