Merge tag 'ktest-v3.8' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux...
[deliverable/linux.git] / drivers / iommu / intel-iommu.c
1 /*
2 * Copyright (c) 2006, Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
16 *
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21 * Author: Fenghua Yu <fenghua.yu@intel.com>
22 */
23
24 #include <linux/init.h>
25 #include <linux/bitmap.h>
26 #include <linux/debugfs.h>
27 #include <linux/export.h>
28 #include <linux/slab.h>
29 #include <linux/irq.h>
30 #include <linux/interrupt.h>
31 #include <linux/spinlock.h>
32 #include <linux/pci.h>
33 #include <linux/dmar.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/mempool.h>
36 #include <linux/timer.h>
37 #include <linux/iova.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/syscore_ops.h>
41 #include <linux/tboot.h>
42 #include <linux/dmi.h>
43 #include <linux/pci-ats.h>
44 #include <linux/memblock.h>
45 #include <asm/irq_remapping.h>
46 #include <asm/cacheflush.h>
47 #include <asm/iommu.h>
48
49 #define ROOT_SIZE VTD_PAGE_SIZE
50 #define CONTEXT_SIZE VTD_PAGE_SIZE
51
52 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
53 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
54 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
55
56 #define IOAPIC_RANGE_START (0xfee00000)
57 #define IOAPIC_RANGE_END (0xfeefffff)
58 #define IOVA_START_ADDR (0x1000)
59
60 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
61
62 #define MAX_AGAW_WIDTH 64
63
64 #define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
65 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
66
67 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
68 to match. That way, we can use 'unsigned long' for PFNs with impunity. */
69 #define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \
70 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
71 #define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
72
73 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
74 #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
75 #define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
76
77 /* page table handling */
78 #define LEVEL_STRIDE (9)
79 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
80
81 /*
82 * This bitmap is used to advertise the page sizes our hardware support
83 * to the IOMMU core, which will then use this information to split
84 * physically contiguous memory regions it is mapping into page sizes
85 * that we support.
86 *
87 * Traditionally the IOMMU core just handed us the mappings directly,
88 * after making sure the size is an order of a 4KiB page and that the
89 * mapping has natural alignment.
90 *
91 * To retain this behavior, we currently advertise that we support
92 * all page sizes that are an order of 4KiB.
93 *
94 * If at some point we'd like to utilize the IOMMU core's new behavior,
95 * we could change this to advertise the real page sizes we support.
96 */
97 #define INTEL_IOMMU_PGSIZES (~0xFFFUL)
98
99 static inline int agaw_to_level(int agaw)
100 {
101 return agaw + 2;
102 }
103
104 static inline int agaw_to_width(int agaw)
105 {
106 return 30 + agaw * LEVEL_STRIDE;
107 }
108
109 static inline int width_to_agaw(int width)
110 {
111 return (width - 30) / LEVEL_STRIDE;
112 }
113
114 static inline unsigned int level_to_offset_bits(int level)
115 {
116 return (level - 1) * LEVEL_STRIDE;
117 }
118
119 static inline int pfn_level_offset(unsigned long pfn, int level)
120 {
121 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
122 }
123
124 static inline unsigned long level_mask(int level)
125 {
126 return -1UL << level_to_offset_bits(level);
127 }
128
129 static inline unsigned long level_size(int level)
130 {
131 return 1UL << level_to_offset_bits(level);
132 }
133
134 static inline unsigned long align_to_level(unsigned long pfn, int level)
135 {
136 return (pfn + level_size(level) - 1) & level_mask(level);
137 }
138
139 static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
140 {
141 return 1 << ((lvl - 1) * LEVEL_STRIDE);
142 }
143
144 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
145 are never going to work. */
146 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
147 {
148 return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
149 }
150
151 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
152 {
153 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
154 }
155 static inline unsigned long page_to_dma_pfn(struct page *pg)
156 {
157 return mm_to_dma_pfn(page_to_pfn(pg));
158 }
159 static inline unsigned long virt_to_dma_pfn(void *p)
160 {
161 return page_to_dma_pfn(virt_to_page(p));
162 }
163
164 /* global iommu list, set NULL for ignored DMAR units */
165 static struct intel_iommu **g_iommus;
166
167 static void __init check_tylersburg_isoch(void);
168 static int rwbf_quirk;
169
170 /*
171 * set to 1 to panic kernel if can't successfully enable VT-d
172 * (used when kernel is launched w/ TXT)
173 */
174 static int force_on = 0;
175
176 /*
177 * 0: Present
178 * 1-11: Reserved
179 * 12-63: Context Ptr (12 - (haw-1))
180 * 64-127: Reserved
181 */
182 struct root_entry {
183 u64 val;
184 u64 rsvd1;
185 };
186 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
187 static inline bool root_present(struct root_entry *root)
188 {
189 return (root->val & 1);
190 }
191 static inline void set_root_present(struct root_entry *root)
192 {
193 root->val |= 1;
194 }
195 static inline void set_root_value(struct root_entry *root, unsigned long value)
196 {
197 root->val |= value & VTD_PAGE_MASK;
198 }
199
200 static inline struct context_entry *
201 get_context_addr_from_root(struct root_entry *root)
202 {
203 return (struct context_entry *)
204 (root_present(root)?phys_to_virt(
205 root->val & VTD_PAGE_MASK) :
206 NULL);
207 }
208
209 /*
210 * low 64 bits:
211 * 0: present
212 * 1: fault processing disable
213 * 2-3: translation type
214 * 12-63: address space root
215 * high 64 bits:
216 * 0-2: address width
217 * 3-6: aval
218 * 8-23: domain id
219 */
220 struct context_entry {
221 u64 lo;
222 u64 hi;
223 };
224
225 static inline bool context_present(struct context_entry *context)
226 {
227 return (context->lo & 1);
228 }
229 static inline void context_set_present(struct context_entry *context)
230 {
231 context->lo |= 1;
232 }
233
234 static inline void context_set_fault_enable(struct context_entry *context)
235 {
236 context->lo &= (((u64)-1) << 2) | 1;
237 }
238
239 static inline void context_set_translation_type(struct context_entry *context,
240 unsigned long value)
241 {
242 context->lo &= (((u64)-1) << 4) | 3;
243 context->lo |= (value & 3) << 2;
244 }
245
246 static inline void context_set_address_root(struct context_entry *context,
247 unsigned long value)
248 {
249 context->lo |= value & VTD_PAGE_MASK;
250 }
251
252 static inline void context_set_address_width(struct context_entry *context,
253 unsigned long value)
254 {
255 context->hi |= value & 7;
256 }
257
258 static inline void context_set_domain_id(struct context_entry *context,
259 unsigned long value)
260 {
261 context->hi |= (value & ((1 << 16) - 1)) << 8;
262 }
263
264 static inline void context_clear_entry(struct context_entry *context)
265 {
266 context->lo = 0;
267 context->hi = 0;
268 }
269
270 /*
271 * 0: readable
272 * 1: writable
273 * 2-6: reserved
274 * 7: super page
275 * 8-10: available
276 * 11: snoop behavior
277 * 12-63: Host physcial address
278 */
279 struct dma_pte {
280 u64 val;
281 };
282
283 static inline void dma_clear_pte(struct dma_pte *pte)
284 {
285 pte->val = 0;
286 }
287
288 static inline void dma_set_pte_readable(struct dma_pte *pte)
289 {
290 pte->val |= DMA_PTE_READ;
291 }
292
293 static inline void dma_set_pte_writable(struct dma_pte *pte)
294 {
295 pte->val |= DMA_PTE_WRITE;
296 }
297
298 static inline void dma_set_pte_snp(struct dma_pte *pte)
299 {
300 pte->val |= DMA_PTE_SNP;
301 }
302
303 static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot)
304 {
305 pte->val = (pte->val & ~3) | (prot & 3);
306 }
307
308 static inline u64 dma_pte_addr(struct dma_pte *pte)
309 {
310 #ifdef CONFIG_64BIT
311 return pte->val & VTD_PAGE_MASK;
312 #else
313 /* Must have a full atomic 64-bit read */
314 return __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
315 #endif
316 }
317
318 static inline void dma_set_pte_pfn(struct dma_pte *pte, unsigned long pfn)
319 {
320 pte->val |= (uint64_t)pfn << VTD_PAGE_SHIFT;
321 }
322
323 static inline bool dma_pte_present(struct dma_pte *pte)
324 {
325 return (pte->val & 3) != 0;
326 }
327
328 static inline bool dma_pte_superpage(struct dma_pte *pte)
329 {
330 return (pte->val & (1 << 7));
331 }
332
333 static inline int first_pte_in_page(struct dma_pte *pte)
334 {
335 return !((unsigned long)pte & ~VTD_PAGE_MASK);
336 }
337
338 /*
339 * This domain is a statically identity mapping domain.
340 * 1. This domain creats a static 1:1 mapping to all usable memory.
341 * 2. It maps to each iommu if successful.
342 * 3. Each iommu mapps to this domain if successful.
343 */
344 static struct dmar_domain *si_domain;
345 static int hw_pass_through = 1;
346
347 /* devices under the same p2p bridge are owned in one domain */
348 #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
349
350 /* domain represents a virtual machine, more than one devices
351 * across iommus may be owned in one domain, e.g. kvm guest.
352 */
353 #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 1)
354
355 /* si_domain contains mulitple devices */
356 #define DOMAIN_FLAG_STATIC_IDENTITY (1 << 2)
357
358 /* define the limit of IOMMUs supported in each domain */
359 #ifdef CONFIG_X86
360 # define IOMMU_UNITS_SUPPORTED MAX_IO_APICS
361 #else
362 # define IOMMU_UNITS_SUPPORTED 64
363 #endif
364
365 struct dmar_domain {
366 int id; /* domain id */
367 int nid; /* node id */
368 DECLARE_BITMAP(iommu_bmp, IOMMU_UNITS_SUPPORTED);
369 /* bitmap of iommus this domain uses*/
370
371 struct list_head devices; /* all devices' list */
372 struct iova_domain iovad; /* iova's that belong to this domain */
373
374 struct dma_pte *pgd; /* virtual address */
375 int gaw; /* max guest address width */
376
377 /* adjusted guest address width, 0 is level 2 30-bit */
378 int agaw;
379
380 int flags; /* flags to find out type of domain */
381
382 int iommu_coherency;/* indicate coherency of iommu access */
383 int iommu_snooping; /* indicate snooping control feature*/
384 int iommu_count; /* reference count of iommu */
385 int iommu_superpage;/* Level of superpages supported:
386 0 == 4KiB (no superpages), 1 == 2MiB,
387 2 == 1GiB, 3 == 512GiB, 4 == 1TiB */
388 spinlock_t iommu_lock; /* protect iommu set in domain */
389 u64 max_addr; /* maximum mapped address */
390 };
391
392 /* PCI domain-device relationship */
393 struct device_domain_info {
394 struct list_head link; /* link to domain siblings */
395 struct list_head global; /* link to global list */
396 int segment; /* PCI domain */
397 u8 bus; /* PCI bus number */
398 u8 devfn; /* PCI devfn number */
399 struct pci_dev *dev; /* it's NULL for PCIe-to-PCI bridge */
400 struct intel_iommu *iommu; /* IOMMU used by this device */
401 struct dmar_domain *domain; /* pointer to domain */
402 };
403
404 static void flush_unmaps_timeout(unsigned long data);
405
406 DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0);
407
408 #define HIGH_WATER_MARK 250
409 struct deferred_flush_tables {
410 int next;
411 struct iova *iova[HIGH_WATER_MARK];
412 struct dmar_domain *domain[HIGH_WATER_MARK];
413 };
414
415 static struct deferred_flush_tables *deferred_flush;
416
417 /* bitmap for indexing intel_iommus */
418 static int g_num_of_iommus;
419
420 static DEFINE_SPINLOCK(async_umap_flush_lock);
421 static LIST_HEAD(unmaps_to_do);
422
423 static int timer_on;
424 static long list_size;
425
426 static void domain_remove_dev_info(struct dmar_domain *domain);
427
428 #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
429 int dmar_disabled = 0;
430 #else
431 int dmar_disabled = 1;
432 #endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
433
434 int intel_iommu_enabled = 0;
435 EXPORT_SYMBOL_GPL(intel_iommu_enabled);
436
437 static int dmar_map_gfx = 1;
438 static int dmar_forcedac;
439 static int intel_iommu_strict;
440 static int intel_iommu_superpage = 1;
441
442 int intel_iommu_gfx_mapped;
443 EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
444
445 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
446 static DEFINE_SPINLOCK(device_domain_lock);
447 static LIST_HEAD(device_domain_list);
448
449 static struct iommu_ops intel_iommu_ops;
450
451 static int __init intel_iommu_setup(char *str)
452 {
453 if (!str)
454 return -EINVAL;
455 while (*str) {
456 if (!strncmp(str, "on", 2)) {
457 dmar_disabled = 0;
458 printk(KERN_INFO "Intel-IOMMU: enabled\n");
459 } else if (!strncmp(str, "off", 3)) {
460 dmar_disabled = 1;
461 printk(KERN_INFO "Intel-IOMMU: disabled\n");
462 } else if (!strncmp(str, "igfx_off", 8)) {
463 dmar_map_gfx = 0;
464 printk(KERN_INFO
465 "Intel-IOMMU: disable GFX device mapping\n");
466 } else if (!strncmp(str, "forcedac", 8)) {
467 printk(KERN_INFO
468 "Intel-IOMMU: Forcing DAC for PCI devices\n");
469 dmar_forcedac = 1;
470 } else if (!strncmp(str, "strict", 6)) {
471 printk(KERN_INFO
472 "Intel-IOMMU: disable batched IOTLB flush\n");
473 intel_iommu_strict = 1;
474 } else if (!strncmp(str, "sp_off", 6)) {
475 printk(KERN_INFO
476 "Intel-IOMMU: disable supported super page\n");
477 intel_iommu_superpage = 0;
478 }
479
480 str += strcspn(str, ",");
481 while (*str == ',')
482 str++;
483 }
484 return 0;
485 }
486 __setup("intel_iommu=", intel_iommu_setup);
487
488 static struct kmem_cache *iommu_domain_cache;
489 static struct kmem_cache *iommu_devinfo_cache;
490 static struct kmem_cache *iommu_iova_cache;
491
492 static inline void *alloc_pgtable_page(int node)
493 {
494 struct page *page;
495 void *vaddr = NULL;
496
497 page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
498 if (page)
499 vaddr = page_address(page);
500 return vaddr;
501 }
502
503 static inline void free_pgtable_page(void *vaddr)
504 {
505 free_page((unsigned long)vaddr);
506 }
507
508 static inline void *alloc_domain_mem(void)
509 {
510 return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
511 }
512
513 static void free_domain_mem(void *vaddr)
514 {
515 kmem_cache_free(iommu_domain_cache, vaddr);
516 }
517
518 static inline void * alloc_devinfo_mem(void)
519 {
520 return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
521 }
522
523 static inline void free_devinfo_mem(void *vaddr)
524 {
525 kmem_cache_free(iommu_devinfo_cache, vaddr);
526 }
527
528 struct iova *alloc_iova_mem(void)
529 {
530 return kmem_cache_alloc(iommu_iova_cache, GFP_ATOMIC);
531 }
532
533 void free_iova_mem(struct iova *iova)
534 {
535 kmem_cache_free(iommu_iova_cache, iova);
536 }
537
538
539 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
540 {
541 unsigned long sagaw;
542 int agaw = -1;
543
544 sagaw = cap_sagaw(iommu->cap);
545 for (agaw = width_to_agaw(max_gaw);
546 agaw >= 0; agaw--) {
547 if (test_bit(agaw, &sagaw))
548 break;
549 }
550
551 return agaw;
552 }
553
554 /*
555 * Calculate max SAGAW for each iommu.
556 */
557 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
558 {
559 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
560 }
561
562 /*
563 * calculate agaw for each iommu.
564 * "SAGAW" may be different across iommus, use a default agaw, and
565 * get a supported less agaw for iommus that don't support the default agaw.
566 */
567 int iommu_calculate_agaw(struct intel_iommu *iommu)
568 {
569 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
570 }
571
572 /* This functionin only returns single iommu in a domain */
573 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
574 {
575 int iommu_id;
576
577 /* si_domain and vm domain should not get here. */
578 BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
579 BUG_ON(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY);
580
581 iommu_id = find_first_bit(domain->iommu_bmp, g_num_of_iommus);
582 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
583 return NULL;
584
585 return g_iommus[iommu_id];
586 }
587
588 static void domain_update_iommu_coherency(struct dmar_domain *domain)
589 {
590 int i;
591
592 i = find_first_bit(domain->iommu_bmp, g_num_of_iommus);
593
594 domain->iommu_coherency = i < g_num_of_iommus ? 1 : 0;
595
596 for_each_set_bit(i, domain->iommu_bmp, g_num_of_iommus) {
597 if (!ecap_coherent(g_iommus[i]->ecap)) {
598 domain->iommu_coherency = 0;
599 break;
600 }
601 }
602 }
603
604 static void domain_update_iommu_snooping(struct dmar_domain *domain)
605 {
606 int i;
607
608 domain->iommu_snooping = 1;
609
610 for_each_set_bit(i, domain->iommu_bmp, g_num_of_iommus) {
611 if (!ecap_sc_support(g_iommus[i]->ecap)) {
612 domain->iommu_snooping = 0;
613 break;
614 }
615 }
616 }
617
618 static void domain_update_iommu_superpage(struct dmar_domain *domain)
619 {
620 struct dmar_drhd_unit *drhd;
621 struct intel_iommu *iommu = NULL;
622 int mask = 0xf;
623
624 if (!intel_iommu_superpage) {
625 domain->iommu_superpage = 0;
626 return;
627 }
628
629 /* set iommu_superpage to the smallest common denominator */
630 for_each_active_iommu(iommu, drhd) {
631 mask &= cap_super_page_val(iommu->cap);
632 if (!mask) {
633 break;
634 }
635 }
636 domain->iommu_superpage = fls(mask);
637 }
638
639 /* Some capabilities may be different across iommus */
640 static void domain_update_iommu_cap(struct dmar_domain *domain)
641 {
642 domain_update_iommu_coherency(domain);
643 domain_update_iommu_snooping(domain);
644 domain_update_iommu_superpage(domain);
645 }
646
647 static struct intel_iommu *device_to_iommu(int segment, u8 bus, u8 devfn)
648 {
649 struct dmar_drhd_unit *drhd = NULL;
650 int i;
651
652 for_each_drhd_unit(drhd) {
653 if (drhd->ignored)
654 continue;
655 if (segment != drhd->segment)
656 continue;
657
658 for (i = 0; i < drhd->devices_cnt; i++) {
659 if (drhd->devices[i] &&
660 drhd->devices[i]->bus->number == bus &&
661 drhd->devices[i]->devfn == devfn)
662 return drhd->iommu;
663 if (drhd->devices[i] &&
664 drhd->devices[i]->subordinate &&
665 drhd->devices[i]->subordinate->number <= bus &&
666 drhd->devices[i]->subordinate->busn_res.end >= bus)
667 return drhd->iommu;
668 }
669
670 if (drhd->include_all)
671 return drhd->iommu;
672 }
673
674 return NULL;
675 }
676
677 static void domain_flush_cache(struct dmar_domain *domain,
678 void *addr, int size)
679 {
680 if (!domain->iommu_coherency)
681 clflush_cache_range(addr, size);
682 }
683
684 /* Gets context entry for a given bus and devfn */
685 static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
686 u8 bus, u8 devfn)
687 {
688 struct root_entry *root;
689 struct context_entry *context;
690 unsigned long phy_addr;
691 unsigned long flags;
692
693 spin_lock_irqsave(&iommu->lock, flags);
694 root = &iommu->root_entry[bus];
695 context = get_context_addr_from_root(root);
696 if (!context) {
697 context = (struct context_entry *)
698 alloc_pgtable_page(iommu->node);
699 if (!context) {
700 spin_unlock_irqrestore(&iommu->lock, flags);
701 return NULL;
702 }
703 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
704 phy_addr = virt_to_phys((void *)context);
705 set_root_value(root, phy_addr);
706 set_root_present(root);
707 __iommu_flush_cache(iommu, root, sizeof(*root));
708 }
709 spin_unlock_irqrestore(&iommu->lock, flags);
710 return &context[devfn];
711 }
712
713 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
714 {
715 struct root_entry *root;
716 struct context_entry *context;
717 int ret;
718 unsigned long flags;
719
720 spin_lock_irqsave(&iommu->lock, flags);
721 root = &iommu->root_entry[bus];
722 context = get_context_addr_from_root(root);
723 if (!context) {
724 ret = 0;
725 goto out;
726 }
727 ret = context_present(&context[devfn]);
728 out:
729 spin_unlock_irqrestore(&iommu->lock, flags);
730 return ret;
731 }
732
733 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
734 {
735 struct root_entry *root;
736 struct context_entry *context;
737 unsigned long flags;
738
739 spin_lock_irqsave(&iommu->lock, flags);
740 root = &iommu->root_entry[bus];
741 context = get_context_addr_from_root(root);
742 if (context) {
743 context_clear_entry(&context[devfn]);
744 __iommu_flush_cache(iommu, &context[devfn], \
745 sizeof(*context));
746 }
747 spin_unlock_irqrestore(&iommu->lock, flags);
748 }
749
750 static void free_context_table(struct intel_iommu *iommu)
751 {
752 struct root_entry *root;
753 int i;
754 unsigned long flags;
755 struct context_entry *context;
756
757 spin_lock_irqsave(&iommu->lock, flags);
758 if (!iommu->root_entry) {
759 goto out;
760 }
761 for (i = 0; i < ROOT_ENTRY_NR; i++) {
762 root = &iommu->root_entry[i];
763 context = get_context_addr_from_root(root);
764 if (context)
765 free_pgtable_page(context);
766 }
767 free_pgtable_page(iommu->root_entry);
768 iommu->root_entry = NULL;
769 out:
770 spin_unlock_irqrestore(&iommu->lock, flags);
771 }
772
773 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
774 unsigned long pfn, int target_level)
775 {
776 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
777 struct dma_pte *parent, *pte = NULL;
778 int level = agaw_to_level(domain->agaw);
779 int offset;
780
781 BUG_ON(!domain->pgd);
782 BUG_ON(addr_width < BITS_PER_LONG && pfn >> addr_width);
783 parent = domain->pgd;
784
785 while (level > 0) {
786 void *tmp_page;
787
788 offset = pfn_level_offset(pfn, level);
789 pte = &parent[offset];
790 if (!target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
791 break;
792 if (level == target_level)
793 break;
794
795 if (!dma_pte_present(pte)) {
796 uint64_t pteval;
797
798 tmp_page = alloc_pgtable_page(domain->nid);
799
800 if (!tmp_page)
801 return NULL;
802
803 domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
804 pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
805 if (cmpxchg64(&pte->val, 0ULL, pteval)) {
806 /* Someone else set it while we were thinking; use theirs. */
807 free_pgtable_page(tmp_page);
808 } else {
809 dma_pte_addr(pte);
810 domain_flush_cache(domain, pte, sizeof(*pte));
811 }
812 }
813 parent = phys_to_virt(dma_pte_addr(pte));
814 level--;
815 }
816
817 return pte;
818 }
819
820
821 /* return address's pte at specific level */
822 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
823 unsigned long pfn,
824 int level, int *large_page)
825 {
826 struct dma_pte *parent, *pte = NULL;
827 int total = agaw_to_level(domain->agaw);
828 int offset;
829
830 parent = domain->pgd;
831 while (level <= total) {
832 offset = pfn_level_offset(pfn, total);
833 pte = &parent[offset];
834 if (level == total)
835 return pte;
836
837 if (!dma_pte_present(pte)) {
838 *large_page = total;
839 break;
840 }
841
842 if (pte->val & DMA_PTE_LARGE_PAGE) {
843 *large_page = total;
844 return pte;
845 }
846
847 parent = phys_to_virt(dma_pte_addr(pte));
848 total--;
849 }
850 return NULL;
851 }
852
853 /* clear last level pte, a tlb flush should be followed */
854 static int dma_pte_clear_range(struct dmar_domain *domain,
855 unsigned long start_pfn,
856 unsigned long last_pfn)
857 {
858 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
859 unsigned int large_page = 1;
860 struct dma_pte *first_pte, *pte;
861 int order;
862
863 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
864 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
865 BUG_ON(start_pfn > last_pfn);
866
867 /* we don't need lock here; nobody else touches the iova range */
868 do {
869 large_page = 1;
870 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
871 if (!pte) {
872 start_pfn = align_to_level(start_pfn + 1, large_page + 1);
873 continue;
874 }
875 do {
876 dma_clear_pte(pte);
877 start_pfn += lvl_to_nr_pages(large_page);
878 pte++;
879 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
880
881 domain_flush_cache(domain, first_pte,
882 (void *)pte - (void *)first_pte);
883
884 } while (start_pfn && start_pfn <= last_pfn);
885
886 order = (large_page - 1) * 9;
887 return order;
888 }
889
890 /* free page table pages. last level pte should already be cleared */
891 static void dma_pte_free_pagetable(struct dmar_domain *domain,
892 unsigned long start_pfn,
893 unsigned long last_pfn)
894 {
895 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
896 struct dma_pte *first_pte, *pte;
897 int total = agaw_to_level(domain->agaw);
898 int level;
899 unsigned long tmp;
900 int large_page = 2;
901
902 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
903 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
904 BUG_ON(start_pfn > last_pfn);
905
906 /* We don't need lock here; nobody else touches the iova range */
907 level = 2;
908 while (level <= total) {
909 tmp = align_to_level(start_pfn, level);
910
911 /* If we can't even clear one PTE at this level, we're done */
912 if (tmp + level_size(level) - 1 > last_pfn)
913 return;
914
915 do {
916 large_page = level;
917 first_pte = pte = dma_pfn_level_pte(domain, tmp, level, &large_page);
918 if (large_page > level)
919 level = large_page + 1;
920 if (!pte) {
921 tmp = align_to_level(tmp + 1, level + 1);
922 continue;
923 }
924 do {
925 if (dma_pte_present(pte)) {
926 free_pgtable_page(phys_to_virt(dma_pte_addr(pte)));
927 dma_clear_pte(pte);
928 }
929 pte++;
930 tmp += level_size(level);
931 } while (!first_pte_in_page(pte) &&
932 tmp + level_size(level) - 1 <= last_pfn);
933
934 domain_flush_cache(domain, first_pte,
935 (void *)pte - (void *)first_pte);
936
937 } while (tmp && tmp + level_size(level) - 1 <= last_pfn);
938 level++;
939 }
940 /* free pgd */
941 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
942 free_pgtable_page(domain->pgd);
943 domain->pgd = NULL;
944 }
945 }
946
947 /* iommu handling */
948 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
949 {
950 struct root_entry *root;
951 unsigned long flags;
952
953 root = (struct root_entry *)alloc_pgtable_page(iommu->node);
954 if (!root)
955 return -ENOMEM;
956
957 __iommu_flush_cache(iommu, root, ROOT_SIZE);
958
959 spin_lock_irqsave(&iommu->lock, flags);
960 iommu->root_entry = root;
961 spin_unlock_irqrestore(&iommu->lock, flags);
962
963 return 0;
964 }
965
966 static void iommu_set_root_entry(struct intel_iommu *iommu)
967 {
968 void *addr;
969 u32 sts;
970 unsigned long flag;
971
972 addr = iommu->root_entry;
973
974 raw_spin_lock_irqsave(&iommu->register_lock, flag);
975 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
976
977 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
978
979 /* Make sure hardware complete it */
980 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
981 readl, (sts & DMA_GSTS_RTPS), sts);
982
983 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
984 }
985
986 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
987 {
988 u32 val;
989 unsigned long flag;
990
991 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
992 return;
993
994 raw_spin_lock_irqsave(&iommu->register_lock, flag);
995 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
996
997 /* Make sure hardware complete it */
998 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
999 readl, (!(val & DMA_GSTS_WBFS)), val);
1000
1001 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1002 }
1003
1004 /* return value determine if we need a write buffer flush */
1005 static void __iommu_flush_context(struct intel_iommu *iommu,
1006 u16 did, u16 source_id, u8 function_mask,
1007 u64 type)
1008 {
1009 u64 val = 0;
1010 unsigned long flag;
1011
1012 switch (type) {
1013 case DMA_CCMD_GLOBAL_INVL:
1014 val = DMA_CCMD_GLOBAL_INVL;
1015 break;
1016 case DMA_CCMD_DOMAIN_INVL:
1017 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
1018 break;
1019 case DMA_CCMD_DEVICE_INVL:
1020 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
1021 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
1022 break;
1023 default:
1024 BUG();
1025 }
1026 val |= DMA_CCMD_ICC;
1027
1028 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1029 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1030
1031 /* Make sure hardware complete it */
1032 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1033 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1034
1035 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1036 }
1037
1038 /* return value determine if we need a write buffer flush */
1039 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1040 u64 addr, unsigned int size_order, u64 type)
1041 {
1042 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1043 u64 val = 0, val_iva = 0;
1044 unsigned long flag;
1045
1046 switch (type) {
1047 case DMA_TLB_GLOBAL_FLUSH:
1048 /* global flush doesn't need set IVA_REG */
1049 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1050 break;
1051 case DMA_TLB_DSI_FLUSH:
1052 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1053 break;
1054 case DMA_TLB_PSI_FLUSH:
1055 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1056 /* Note: always flush non-leaf currently */
1057 val_iva = size_order | addr;
1058 break;
1059 default:
1060 BUG();
1061 }
1062 /* Note: set drain read/write */
1063 #if 0
1064 /*
1065 * This is probably to be super secure.. Looks like we can
1066 * ignore it without any impact.
1067 */
1068 if (cap_read_drain(iommu->cap))
1069 val |= DMA_TLB_READ_DRAIN;
1070 #endif
1071 if (cap_write_drain(iommu->cap))
1072 val |= DMA_TLB_WRITE_DRAIN;
1073
1074 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1075 /* Note: Only uses first TLB reg currently */
1076 if (val_iva)
1077 dmar_writeq(iommu->reg + tlb_offset, val_iva);
1078 dmar_writeq(iommu->reg + tlb_offset + 8, val);
1079
1080 /* Make sure hardware complete it */
1081 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1082 dmar_readq, (!(val & DMA_TLB_IVT)), val);
1083
1084 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1085
1086 /* check IOTLB invalidation granularity */
1087 if (DMA_TLB_IAIG(val) == 0)
1088 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
1089 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1090 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
1091 (unsigned long long)DMA_TLB_IIRG(type),
1092 (unsigned long long)DMA_TLB_IAIG(val));
1093 }
1094
1095 static struct device_domain_info *iommu_support_dev_iotlb(
1096 struct dmar_domain *domain, int segment, u8 bus, u8 devfn)
1097 {
1098 int found = 0;
1099 unsigned long flags;
1100 struct device_domain_info *info;
1101 struct intel_iommu *iommu = device_to_iommu(segment, bus, devfn);
1102
1103 if (!ecap_dev_iotlb_support(iommu->ecap))
1104 return NULL;
1105
1106 if (!iommu->qi)
1107 return NULL;
1108
1109 spin_lock_irqsave(&device_domain_lock, flags);
1110 list_for_each_entry(info, &domain->devices, link)
1111 if (info->bus == bus && info->devfn == devfn) {
1112 found = 1;
1113 break;
1114 }
1115 spin_unlock_irqrestore(&device_domain_lock, flags);
1116
1117 if (!found || !info->dev)
1118 return NULL;
1119
1120 if (!pci_find_ext_capability(info->dev, PCI_EXT_CAP_ID_ATS))
1121 return NULL;
1122
1123 if (!dmar_find_matched_atsr_unit(info->dev))
1124 return NULL;
1125
1126 info->iommu = iommu;
1127
1128 return info;
1129 }
1130
1131 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1132 {
1133 if (!info)
1134 return;
1135
1136 pci_enable_ats(info->dev, VTD_PAGE_SHIFT);
1137 }
1138
1139 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1140 {
1141 if (!info->dev || !pci_ats_enabled(info->dev))
1142 return;
1143
1144 pci_disable_ats(info->dev);
1145 }
1146
1147 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1148 u64 addr, unsigned mask)
1149 {
1150 u16 sid, qdep;
1151 unsigned long flags;
1152 struct device_domain_info *info;
1153
1154 spin_lock_irqsave(&device_domain_lock, flags);
1155 list_for_each_entry(info, &domain->devices, link) {
1156 if (!info->dev || !pci_ats_enabled(info->dev))
1157 continue;
1158
1159 sid = info->bus << 8 | info->devfn;
1160 qdep = pci_ats_queue_depth(info->dev);
1161 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1162 }
1163 spin_unlock_irqrestore(&device_domain_lock, flags);
1164 }
1165
1166 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
1167 unsigned long pfn, unsigned int pages, int map)
1168 {
1169 unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1170 uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1171
1172 BUG_ON(pages == 0);
1173
1174 /*
1175 * Fallback to domain selective flush if no PSI support or the size is
1176 * too big.
1177 * PSI requires page size to be 2 ^ x, and the base address is naturally
1178 * aligned to the size
1179 */
1180 if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1181 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1182 DMA_TLB_DSI_FLUSH);
1183 else
1184 iommu->flush.flush_iotlb(iommu, did, addr, mask,
1185 DMA_TLB_PSI_FLUSH);
1186
1187 /*
1188 * In caching mode, changes of pages from non-present to present require
1189 * flush. However, device IOTLB doesn't need to be flushed in this case.
1190 */
1191 if (!cap_caching_mode(iommu->cap) || !map)
1192 iommu_flush_dev_iotlb(iommu->domains[did], addr, mask);
1193 }
1194
1195 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1196 {
1197 u32 pmen;
1198 unsigned long flags;
1199
1200 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1201 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1202 pmen &= ~DMA_PMEN_EPM;
1203 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1204
1205 /* wait for the protected region status bit to clear */
1206 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1207 readl, !(pmen & DMA_PMEN_PRS), pmen);
1208
1209 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1210 }
1211
1212 static int iommu_enable_translation(struct intel_iommu *iommu)
1213 {
1214 u32 sts;
1215 unsigned long flags;
1216
1217 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1218 iommu->gcmd |= DMA_GCMD_TE;
1219 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1220
1221 /* Make sure hardware complete it */
1222 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1223 readl, (sts & DMA_GSTS_TES), sts);
1224
1225 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1226 return 0;
1227 }
1228
1229 static int iommu_disable_translation(struct intel_iommu *iommu)
1230 {
1231 u32 sts;
1232 unsigned long flag;
1233
1234 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1235 iommu->gcmd &= ~DMA_GCMD_TE;
1236 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1237
1238 /* Make sure hardware complete it */
1239 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1240 readl, (!(sts & DMA_GSTS_TES)), sts);
1241
1242 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1243 return 0;
1244 }
1245
1246
1247 static int iommu_init_domains(struct intel_iommu *iommu)
1248 {
1249 unsigned long ndomains;
1250 unsigned long nlongs;
1251
1252 ndomains = cap_ndoms(iommu->cap);
1253 pr_debug("IOMMU %d: Number of Domains supported <%ld>\n", iommu->seq_id,
1254 ndomains);
1255 nlongs = BITS_TO_LONGS(ndomains);
1256
1257 spin_lock_init(&iommu->lock);
1258
1259 /* TBD: there might be 64K domains,
1260 * consider other allocation for future chip
1261 */
1262 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1263 if (!iommu->domain_ids) {
1264 printk(KERN_ERR "Allocating domain id array failed\n");
1265 return -ENOMEM;
1266 }
1267 iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1268 GFP_KERNEL);
1269 if (!iommu->domains) {
1270 printk(KERN_ERR "Allocating domain array failed\n");
1271 return -ENOMEM;
1272 }
1273
1274 /*
1275 * if Caching mode is set, then invalid translations are tagged
1276 * with domainid 0. Hence we need to pre-allocate it.
1277 */
1278 if (cap_caching_mode(iommu->cap))
1279 set_bit(0, iommu->domain_ids);
1280 return 0;
1281 }
1282
1283
1284 static void domain_exit(struct dmar_domain *domain);
1285 static void vm_domain_exit(struct dmar_domain *domain);
1286
1287 void free_dmar_iommu(struct intel_iommu *iommu)
1288 {
1289 struct dmar_domain *domain;
1290 int i;
1291 unsigned long flags;
1292
1293 if ((iommu->domains) && (iommu->domain_ids)) {
1294 for_each_set_bit(i, iommu->domain_ids, cap_ndoms(iommu->cap)) {
1295 domain = iommu->domains[i];
1296 clear_bit(i, iommu->domain_ids);
1297
1298 spin_lock_irqsave(&domain->iommu_lock, flags);
1299 if (--domain->iommu_count == 0) {
1300 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
1301 vm_domain_exit(domain);
1302 else
1303 domain_exit(domain);
1304 }
1305 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1306 }
1307 }
1308
1309 if (iommu->gcmd & DMA_GCMD_TE)
1310 iommu_disable_translation(iommu);
1311
1312 if (iommu->irq) {
1313 irq_set_handler_data(iommu->irq, NULL);
1314 /* This will mask the irq */
1315 free_irq(iommu->irq, iommu);
1316 destroy_irq(iommu->irq);
1317 }
1318
1319 kfree(iommu->domains);
1320 kfree(iommu->domain_ids);
1321
1322 g_iommus[iommu->seq_id] = NULL;
1323
1324 /* if all iommus are freed, free g_iommus */
1325 for (i = 0; i < g_num_of_iommus; i++) {
1326 if (g_iommus[i])
1327 break;
1328 }
1329
1330 if (i == g_num_of_iommus)
1331 kfree(g_iommus);
1332
1333 /* free context mapping */
1334 free_context_table(iommu);
1335 }
1336
1337 static struct dmar_domain *alloc_domain(void)
1338 {
1339 struct dmar_domain *domain;
1340
1341 domain = alloc_domain_mem();
1342 if (!domain)
1343 return NULL;
1344
1345 domain->nid = -1;
1346 memset(domain->iommu_bmp, 0, sizeof(domain->iommu_bmp));
1347 domain->flags = 0;
1348
1349 return domain;
1350 }
1351
1352 static int iommu_attach_domain(struct dmar_domain *domain,
1353 struct intel_iommu *iommu)
1354 {
1355 int num;
1356 unsigned long ndomains;
1357 unsigned long flags;
1358
1359 ndomains = cap_ndoms(iommu->cap);
1360
1361 spin_lock_irqsave(&iommu->lock, flags);
1362
1363 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1364 if (num >= ndomains) {
1365 spin_unlock_irqrestore(&iommu->lock, flags);
1366 printk(KERN_ERR "IOMMU: no free domain ids\n");
1367 return -ENOMEM;
1368 }
1369
1370 domain->id = num;
1371 set_bit(num, iommu->domain_ids);
1372 set_bit(iommu->seq_id, domain->iommu_bmp);
1373 iommu->domains[num] = domain;
1374 spin_unlock_irqrestore(&iommu->lock, flags);
1375
1376 return 0;
1377 }
1378
1379 static void iommu_detach_domain(struct dmar_domain *domain,
1380 struct intel_iommu *iommu)
1381 {
1382 unsigned long flags;
1383 int num, ndomains;
1384 int found = 0;
1385
1386 spin_lock_irqsave(&iommu->lock, flags);
1387 ndomains = cap_ndoms(iommu->cap);
1388 for_each_set_bit(num, iommu->domain_ids, ndomains) {
1389 if (iommu->domains[num] == domain) {
1390 found = 1;
1391 break;
1392 }
1393 }
1394
1395 if (found) {
1396 clear_bit(num, iommu->domain_ids);
1397 clear_bit(iommu->seq_id, domain->iommu_bmp);
1398 iommu->domains[num] = NULL;
1399 }
1400 spin_unlock_irqrestore(&iommu->lock, flags);
1401 }
1402
1403 static struct iova_domain reserved_iova_list;
1404 static struct lock_class_key reserved_rbtree_key;
1405
1406 static int dmar_init_reserved_ranges(void)
1407 {
1408 struct pci_dev *pdev = NULL;
1409 struct iova *iova;
1410 int i;
1411
1412 init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
1413
1414 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1415 &reserved_rbtree_key);
1416
1417 /* IOAPIC ranges shouldn't be accessed by DMA */
1418 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1419 IOVA_PFN(IOAPIC_RANGE_END));
1420 if (!iova) {
1421 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1422 return -ENODEV;
1423 }
1424
1425 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1426 for_each_pci_dev(pdev) {
1427 struct resource *r;
1428
1429 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1430 r = &pdev->resource[i];
1431 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1432 continue;
1433 iova = reserve_iova(&reserved_iova_list,
1434 IOVA_PFN(r->start),
1435 IOVA_PFN(r->end));
1436 if (!iova) {
1437 printk(KERN_ERR "Reserve iova failed\n");
1438 return -ENODEV;
1439 }
1440 }
1441 }
1442 return 0;
1443 }
1444
1445 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1446 {
1447 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1448 }
1449
1450 static inline int guestwidth_to_adjustwidth(int gaw)
1451 {
1452 int agaw;
1453 int r = (gaw - 12) % 9;
1454
1455 if (r == 0)
1456 agaw = gaw;
1457 else
1458 agaw = gaw + 9 - r;
1459 if (agaw > 64)
1460 agaw = 64;
1461 return agaw;
1462 }
1463
1464 static int domain_init(struct dmar_domain *domain, int guest_width)
1465 {
1466 struct intel_iommu *iommu;
1467 int adjust_width, agaw;
1468 unsigned long sagaw;
1469
1470 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
1471 spin_lock_init(&domain->iommu_lock);
1472
1473 domain_reserve_special_ranges(domain);
1474
1475 /* calculate AGAW */
1476 iommu = domain_get_iommu(domain);
1477 if (guest_width > cap_mgaw(iommu->cap))
1478 guest_width = cap_mgaw(iommu->cap);
1479 domain->gaw = guest_width;
1480 adjust_width = guestwidth_to_adjustwidth(guest_width);
1481 agaw = width_to_agaw(adjust_width);
1482 sagaw = cap_sagaw(iommu->cap);
1483 if (!test_bit(agaw, &sagaw)) {
1484 /* hardware doesn't support it, choose a bigger one */
1485 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1486 agaw = find_next_bit(&sagaw, 5, agaw);
1487 if (agaw >= 5)
1488 return -ENODEV;
1489 }
1490 domain->agaw = agaw;
1491 INIT_LIST_HEAD(&domain->devices);
1492
1493 if (ecap_coherent(iommu->ecap))
1494 domain->iommu_coherency = 1;
1495 else
1496 domain->iommu_coherency = 0;
1497
1498 if (ecap_sc_support(iommu->ecap))
1499 domain->iommu_snooping = 1;
1500 else
1501 domain->iommu_snooping = 0;
1502
1503 domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
1504 domain->iommu_count = 1;
1505 domain->nid = iommu->node;
1506
1507 /* always allocate the top pgd */
1508 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1509 if (!domain->pgd)
1510 return -ENOMEM;
1511 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1512 return 0;
1513 }
1514
1515 static void domain_exit(struct dmar_domain *domain)
1516 {
1517 struct dmar_drhd_unit *drhd;
1518 struct intel_iommu *iommu;
1519
1520 /* Domain 0 is reserved, so dont process it */
1521 if (!domain)
1522 return;
1523
1524 /* Flush any lazy unmaps that may reference this domain */
1525 if (!intel_iommu_strict)
1526 flush_unmaps_timeout(0);
1527
1528 domain_remove_dev_info(domain);
1529 /* destroy iovas */
1530 put_iova_domain(&domain->iovad);
1531
1532 /* clear ptes */
1533 dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1534
1535 /* free page tables */
1536 dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1537
1538 for_each_active_iommu(iommu, drhd)
1539 if (test_bit(iommu->seq_id, domain->iommu_bmp))
1540 iommu_detach_domain(domain, iommu);
1541
1542 free_domain_mem(domain);
1543 }
1544
1545 static int domain_context_mapping_one(struct dmar_domain *domain, int segment,
1546 u8 bus, u8 devfn, int translation)
1547 {
1548 struct context_entry *context;
1549 unsigned long flags;
1550 struct intel_iommu *iommu;
1551 struct dma_pte *pgd;
1552 unsigned long num;
1553 unsigned long ndomains;
1554 int id;
1555 int agaw;
1556 struct device_domain_info *info = NULL;
1557
1558 pr_debug("Set context mapping for %02x:%02x.%d\n",
1559 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1560
1561 BUG_ON(!domain->pgd);
1562 BUG_ON(translation != CONTEXT_TT_PASS_THROUGH &&
1563 translation != CONTEXT_TT_MULTI_LEVEL);
1564
1565 iommu = device_to_iommu(segment, bus, devfn);
1566 if (!iommu)
1567 return -ENODEV;
1568
1569 context = device_to_context_entry(iommu, bus, devfn);
1570 if (!context)
1571 return -ENOMEM;
1572 spin_lock_irqsave(&iommu->lock, flags);
1573 if (context_present(context)) {
1574 spin_unlock_irqrestore(&iommu->lock, flags);
1575 return 0;
1576 }
1577
1578 id = domain->id;
1579 pgd = domain->pgd;
1580
1581 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
1582 domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) {
1583 int found = 0;
1584
1585 /* find an available domain id for this device in iommu */
1586 ndomains = cap_ndoms(iommu->cap);
1587 for_each_set_bit(num, iommu->domain_ids, ndomains) {
1588 if (iommu->domains[num] == domain) {
1589 id = num;
1590 found = 1;
1591 break;
1592 }
1593 }
1594
1595 if (found == 0) {
1596 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1597 if (num >= ndomains) {
1598 spin_unlock_irqrestore(&iommu->lock, flags);
1599 printk(KERN_ERR "IOMMU: no free domain ids\n");
1600 return -EFAULT;
1601 }
1602
1603 set_bit(num, iommu->domain_ids);
1604 iommu->domains[num] = domain;
1605 id = num;
1606 }
1607
1608 /* Skip top levels of page tables for
1609 * iommu which has less agaw than default.
1610 * Unnecessary for PT mode.
1611 */
1612 if (translation != CONTEXT_TT_PASS_THROUGH) {
1613 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1614 pgd = phys_to_virt(dma_pte_addr(pgd));
1615 if (!dma_pte_present(pgd)) {
1616 spin_unlock_irqrestore(&iommu->lock, flags);
1617 return -ENOMEM;
1618 }
1619 }
1620 }
1621 }
1622
1623 context_set_domain_id(context, id);
1624
1625 if (translation != CONTEXT_TT_PASS_THROUGH) {
1626 info = iommu_support_dev_iotlb(domain, segment, bus, devfn);
1627 translation = info ? CONTEXT_TT_DEV_IOTLB :
1628 CONTEXT_TT_MULTI_LEVEL;
1629 }
1630 /*
1631 * In pass through mode, AW must be programmed to indicate the largest
1632 * AGAW value supported by hardware. And ASR is ignored by hardware.
1633 */
1634 if (unlikely(translation == CONTEXT_TT_PASS_THROUGH))
1635 context_set_address_width(context, iommu->msagaw);
1636 else {
1637 context_set_address_root(context, virt_to_phys(pgd));
1638 context_set_address_width(context, iommu->agaw);
1639 }
1640
1641 context_set_translation_type(context, translation);
1642 context_set_fault_enable(context);
1643 context_set_present(context);
1644 domain_flush_cache(domain, context, sizeof(*context));
1645
1646 /*
1647 * It's a non-present to present mapping. If hardware doesn't cache
1648 * non-present entry we only need to flush the write-buffer. If the
1649 * _does_ cache non-present entries, then it does so in the special
1650 * domain #0, which we have to flush:
1651 */
1652 if (cap_caching_mode(iommu->cap)) {
1653 iommu->flush.flush_context(iommu, 0,
1654 (((u16)bus) << 8) | devfn,
1655 DMA_CCMD_MASK_NOBIT,
1656 DMA_CCMD_DEVICE_INVL);
1657 iommu->flush.flush_iotlb(iommu, domain->id, 0, 0, DMA_TLB_DSI_FLUSH);
1658 } else {
1659 iommu_flush_write_buffer(iommu);
1660 }
1661 iommu_enable_dev_iotlb(info);
1662 spin_unlock_irqrestore(&iommu->lock, flags);
1663
1664 spin_lock_irqsave(&domain->iommu_lock, flags);
1665 if (!test_and_set_bit(iommu->seq_id, domain->iommu_bmp)) {
1666 domain->iommu_count++;
1667 if (domain->iommu_count == 1)
1668 domain->nid = iommu->node;
1669 domain_update_iommu_cap(domain);
1670 }
1671 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1672 return 0;
1673 }
1674
1675 static int
1676 domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev,
1677 int translation)
1678 {
1679 int ret;
1680 struct pci_dev *tmp, *parent;
1681
1682 ret = domain_context_mapping_one(domain, pci_domain_nr(pdev->bus),
1683 pdev->bus->number, pdev->devfn,
1684 translation);
1685 if (ret)
1686 return ret;
1687
1688 /* dependent device mapping */
1689 tmp = pci_find_upstream_pcie_bridge(pdev);
1690 if (!tmp)
1691 return 0;
1692 /* Secondary interface's bus number and devfn 0 */
1693 parent = pdev->bus->self;
1694 while (parent != tmp) {
1695 ret = domain_context_mapping_one(domain,
1696 pci_domain_nr(parent->bus),
1697 parent->bus->number,
1698 parent->devfn, translation);
1699 if (ret)
1700 return ret;
1701 parent = parent->bus->self;
1702 }
1703 if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */
1704 return domain_context_mapping_one(domain,
1705 pci_domain_nr(tmp->subordinate),
1706 tmp->subordinate->number, 0,
1707 translation);
1708 else /* this is a legacy PCI bridge */
1709 return domain_context_mapping_one(domain,
1710 pci_domain_nr(tmp->bus),
1711 tmp->bus->number,
1712 tmp->devfn,
1713 translation);
1714 }
1715
1716 static int domain_context_mapped(struct pci_dev *pdev)
1717 {
1718 int ret;
1719 struct pci_dev *tmp, *parent;
1720 struct intel_iommu *iommu;
1721
1722 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
1723 pdev->devfn);
1724 if (!iommu)
1725 return -ENODEV;
1726
1727 ret = device_context_mapped(iommu, pdev->bus->number, pdev->devfn);
1728 if (!ret)
1729 return ret;
1730 /* dependent device mapping */
1731 tmp = pci_find_upstream_pcie_bridge(pdev);
1732 if (!tmp)
1733 return ret;
1734 /* Secondary interface's bus number and devfn 0 */
1735 parent = pdev->bus->self;
1736 while (parent != tmp) {
1737 ret = device_context_mapped(iommu, parent->bus->number,
1738 parent->devfn);
1739 if (!ret)
1740 return ret;
1741 parent = parent->bus->self;
1742 }
1743 if (pci_is_pcie(tmp))
1744 return device_context_mapped(iommu, tmp->subordinate->number,
1745 0);
1746 else
1747 return device_context_mapped(iommu, tmp->bus->number,
1748 tmp->devfn);
1749 }
1750
1751 /* Returns a number of VTD pages, but aligned to MM page size */
1752 static inline unsigned long aligned_nrpages(unsigned long host_addr,
1753 size_t size)
1754 {
1755 host_addr &= ~PAGE_MASK;
1756 return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
1757 }
1758
1759 /* Return largest possible superpage level for a given mapping */
1760 static inline int hardware_largepage_caps(struct dmar_domain *domain,
1761 unsigned long iov_pfn,
1762 unsigned long phy_pfn,
1763 unsigned long pages)
1764 {
1765 int support, level = 1;
1766 unsigned long pfnmerge;
1767
1768 support = domain->iommu_superpage;
1769
1770 /* To use a large page, the virtual *and* physical addresses
1771 must be aligned to 2MiB/1GiB/etc. Lower bits set in either
1772 of them will mean we have to use smaller pages. So just
1773 merge them and check both at once. */
1774 pfnmerge = iov_pfn | phy_pfn;
1775
1776 while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
1777 pages >>= VTD_STRIDE_SHIFT;
1778 if (!pages)
1779 break;
1780 pfnmerge >>= VTD_STRIDE_SHIFT;
1781 level++;
1782 support--;
1783 }
1784 return level;
1785 }
1786
1787 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1788 struct scatterlist *sg, unsigned long phys_pfn,
1789 unsigned long nr_pages, int prot)
1790 {
1791 struct dma_pte *first_pte = NULL, *pte = NULL;
1792 phys_addr_t uninitialized_var(pteval);
1793 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
1794 unsigned long sg_res;
1795 unsigned int largepage_lvl = 0;
1796 unsigned long lvl_pages = 0;
1797
1798 BUG_ON(addr_width < BITS_PER_LONG && (iov_pfn + nr_pages - 1) >> addr_width);
1799
1800 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1801 return -EINVAL;
1802
1803 prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
1804
1805 if (sg)
1806 sg_res = 0;
1807 else {
1808 sg_res = nr_pages + 1;
1809 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
1810 }
1811
1812 while (nr_pages > 0) {
1813 uint64_t tmp;
1814
1815 if (!sg_res) {
1816 sg_res = aligned_nrpages(sg->offset, sg->length);
1817 sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
1818 sg->dma_length = sg->length;
1819 pteval = page_to_phys(sg_page(sg)) | prot;
1820 phys_pfn = pteval >> VTD_PAGE_SHIFT;
1821 }
1822
1823 if (!pte) {
1824 largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
1825
1826 first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, largepage_lvl);
1827 if (!pte)
1828 return -ENOMEM;
1829 /* It is large page*/
1830 if (largepage_lvl > 1)
1831 pteval |= DMA_PTE_LARGE_PAGE;
1832 else
1833 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
1834
1835 }
1836 /* We don't need lock here, nobody else
1837 * touches the iova range
1838 */
1839 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
1840 if (tmp) {
1841 static int dumps = 5;
1842 printk(KERN_CRIT "ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
1843 iov_pfn, tmp, (unsigned long long)pteval);
1844 if (dumps) {
1845 dumps--;
1846 debug_dma_dump_mappings(NULL);
1847 }
1848 WARN_ON(1);
1849 }
1850
1851 lvl_pages = lvl_to_nr_pages(largepage_lvl);
1852
1853 BUG_ON(nr_pages < lvl_pages);
1854 BUG_ON(sg_res < lvl_pages);
1855
1856 nr_pages -= lvl_pages;
1857 iov_pfn += lvl_pages;
1858 phys_pfn += lvl_pages;
1859 pteval += lvl_pages * VTD_PAGE_SIZE;
1860 sg_res -= lvl_pages;
1861
1862 /* If the next PTE would be the first in a new page, then we
1863 need to flush the cache on the entries we've just written.
1864 And then we'll need to recalculate 'pte', so clear it and
1865 let it get set again in the if (!pte) block above.
1866
1867 If we're done (!nr_pages) we need to flush the cache too.
1868
1869 Also if we've been setting superpages, we may need to
1870 recalculate 'pte' and switch back to smaller pages for the
1871 end of the mapping, if the trailing size is not enough to
1872 use another superpage (i.e. sg_res < lvl_pages). */
1873 pte++;
1874 if (!nr_pages || first_pte_in_page(pte) ||
1875 (largepage_lvl > 1 && sg_res < lvl_pages)) {
1876 domain_flush_cache(domain, first_pte,
1877 (void *)pte - (void *)first_pte);
1878 pte = NULL;
1879 }
1880
1881 if (!sg_res && nr_pages)
1882 sg = sg_next(sg);
1883 }
1884 return 0;
1885 }
1886
1887 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1888 struct scatterlist *sg, unsigned long nr_pages,
1889 int prot)
1890 {
1891 return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
1892 }
1893
1894 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1895 unsigned long phys_pfn, unsigned long nr_pages,
1896 int prot)
1897 {
1898 return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
1899 }
1900
1901 static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
1902 {
1903 if (!iommu)
1904 return;
1905
1906 clear_context_table(iommu, bus, devfn);
1907 iommu->flush.flush_context(iommu, 0, 0, 0,
1908 DMA_CCMD_GLOBAL_INVL);
1909 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
1910 }
1911
1912 static inline void unlink_domain_info(struct device_domain_info *info)
1913 {
1914 assert_spin_locked(&device_domain_lock);
1915 list_del(&info->link);
1916 list_del(&info->global);
1917 if (info->dev)
1918 info->dev->dev.archdata.iommu = NULL;
1919 }
1920
1921 static void domain_remove_dev_info(struct dmar_domain *domain)
1922 {
1923 struct device_domain_info *info;
1924 unsigned long flags;
1925 struct intel_iommu *iommu;
1926
1927 spin_lock_irqsave(&device_domain_lock, flags);
1928 while (!list_empty(&domain->devices)) {
1929 info = list_entry(domain->devices.next,
1930 struct device_domain_info, link);
1931 unlink_domain_info(info);
1932 spin_unlock_irqrestore(&device_domain_lock, flags);
1933
1934 iommu_disable_dev_iotlb(info);
1935 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
1936 iommu_detach_dev(iommu, info->bus, info->devfn);
1937 free_devinfo_mem(info);
1938
1939 spin_lock_irqsave(&device_domain_lock, flags);
1940 }
1941 spin_unlock_irqrestore(&device_domain_lock, flags);
1942 }
1943
1944 /*
1945 * find_domain
1946 * Note: we use struct pci_dev->dev.archdata.iommu stores the info
1947 */
1948 static struct dmar_domain *
1949 find_domain(struct pci_dev *pdev)
1950 {
1951 struct device_domain_info *info;
1952
1953 /* No lock here, assumes no domain exit in normal case */
1954 info = pdev->dev.archdata.iommu;
1955 if (info)
1956 return info->domain;
1957 return NULL;
1958 }
1959
1960 /* domain is initialized */
1961 static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
1962 {
1963 struct dmar_domain *domain, *found = NULL;
1964 struct intel_iommu *iommu;
1965 struct dmar_drhd_unit *drhd;
1966 struct device_domain_info *info, *tmp;
1967 struct pci_dev *dev_tmp;
1968 unsigned long flags;
1969 int bus = 0, devfn = 0;
1970 int segment;
1971 int ret;
1972
1973 domain = find_domain(pdev);
1974 if (domain)
1975 return domain;
1976
1977 segment = pci_domain_nr(pdev->bus);
1978
1979 dev_tmp = pci_find_upstream_pcie_bridge(pdev);
1980 if (dev_tmp) {
1981 if (pci_is_pcie(dev_tmp)) {
1982 bus = dev_tmp->subordinate->number;
1983 devfn = 0;
1984 } else {
1985 bus = dev_tmp->bus->number;
1986 devfn = dev_tmp->devfn;
1987 }
1988 spin_lock_irqsave(&device_domain_lock, flags);
1989 list_for_each_entry(info, &device_domain_list, global) {
1990 if (info->segment == segment &&
1991 info->bus == bus && info->devfn == devfn) {
1992 found = info->domain;
1993 break;
1994 }
1995 }
1996 spin_unlock_irqrestore(&device_domain_lock, flags);
1997 /* pcie-pci bridge already has a domain, uses it */
1998 if (found) {
1999 domain = found;
2000 goto found_domain;
2001 }
2002 }
2003
2004 domain = alloc_domain();
2005 if (!domain)
2006 goto error;
2007
2008 /* Allocate new domain for the device */
2009 drhd = dmar_find_matched_drhd_unit(pdev);
2010 if (!drhd) {
2011 printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
2012 pci_name(pdev));
2013 free_domain_mem(domain);
2014 return NULL;
2015 }
2016 iommu = drhd->iommu;
2017
2018 ret = iommu_attach_domain(domain, iommu);
2019 if (ret) {
2020 free_domain_mem(domain);
2021 goto error;
2022 }
2023
2024 if (domain_init(domain, gaw)) {
2025 domain_exit(domain);
2026 goto error;
2027 }
2028
2029 /* register pcie-to-pci device */
2030 if (dev_tmp) {
2031 info = alloc_devinfo_mem();
2032 if (!info) {
2033 domain_exit(domain);
2034 goto error;
2035 }
2036 info->segment = segment;
2037 info->bus = bus;
2038 info->devfn = devfn;
2039 info->dev = NULL;
2040 info->domain = domain;
2041 /* This domain is shared by devices under p2p bridge */
2042 domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
2043
2044 /* pcie-to-pci bridge already has a domain, uses it */
2045 found = NULL;
2046 spin_lock_irqsave(&device_domain_lock, flags);
2047 list_for_each_entry(tmp, &device_domain_list, global) {
2048 if (tmp->segment == segment &&
2049 tmp->bus == bus && tmp->devfn == devfn) {
2050 found = tmp->domain;
2051 break;
2052 }
2053 }
2054 if (found) {
2055 spin_unlock_irqrestore(&device_domain_lock, flags);
2056 free_devinfo_mem(info);
2057 domain_exit(domain);
2058 domain = found;
2059 } else {
2060 list_add(&info->link, &domain->devices);
2061 list_add(&info->global, &device_domain_list);
2062 spin_unlock_irqrestore(&device_domain_lock, flags);
2063 }
2064 }
2065
2066 found_domain:
2067 info = alloc_devinfo_mem();
2068 if (!info)
2069 goto error;
2070 info->segment = segment;
2071 info->bus = pdev->bus->number;
2072 info->devfn = pdev->devfn;
2073 info->dev = pdev;
2074 info->domain = domain;
2075 spin_lock_irqsave(&device_domain_lock, flags);
2076 /* somebody is fast */
2077 found = find_domain(pdev);
2078 if (found != NULL) {
2079 spin_unlock_irqrestore(&device_domain_lock, flags);
2080 if (found != domain) {
2081 domain_exit(domain);
2082 domain = found;
2083 }
2084 free_devinfo_mem(info);
2085 return domain;
2086 }
2087 list_add(&info->link, &domain->devices);
2088 list_add(&info->global, &device_domain_list);
2089 pdev->dev.archdata.iommu = info;
2090 spin_unlock_irqrestore(&device_domain_lock, flags);
2091 return domain;
2092 error:
2093 /* recheck it here, maybe others set it */
2094 return find_domain(pdev);
2095 }
2096
2097 static int iommu_identity_mapping;
2098 #define IDENTMAP_ALL 1
2099 #define IDENTMAP_GFX 2
2100 #define IDENTMAP_AZALIA 4
2101
2102 static int iommu_domain_identity_map(struct dmar_domain *domain,
2103 unsigned long long start,
2104 unsigned long long end)
2105 {
2106 unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
2107 unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
2108
2109 if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
2110 dma_to_mm_pfn(last_vpfn))) {
2111 printk(KERN_ERR "IOMMU: reserve iova failed\n");
2112 return -ENOMEM;
2113 }
2114
2115 pr_debug("Mapping reserved region %llx-%llx for domain %d\n",
2116 start, end, domain->id);
2117 /*
2118 * RMRR range might have overlap with physical memory range,
2119 * clear it first
2120 */
2121 dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2122
2123 return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
2124 last_vpfn - first_vpfn + 1,
2125 DMA_PTE_READ|DMA_PTE_WRITE);
2126 }
2127
2128 static int iommu_prepare_identity_map(struct pci_dev *pdev,
2129 unsigned long long start,
2130 unsigned long long end)
2131 {
2132 struct dmar_domain *domain;
2133 int ret;
2134
2135 domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2136 if (!domain)
2137 return -ENOMEM;
2138
2139 /* For _hardware_ passthrough, don't bother. But for software
2140 passthrough, we do it anyway -- it may indicate a memory
2141 range which is reserved in E820, so which didn't get set
2142 up to start with in si_domain */
2143 if (domain == si_domain && hw_pass_through) {
2144 printk("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
2145 pci_name(pdev), start, end);
2146 return 0;
2147 }
2148
2149 printk(KERN_INFO
2150 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
2151 pci_name(pdev), start, end);
2152
2153 if (end < start) {
2154 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2155 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2156 dmi_get_system_info(DMI_BIOS_VENDOR),
2157 dmi_get_system_info(DMI_BIOS_VERSION),
2158 dmi_get_system_info(DMI_PRODUCT_VERSION));
2159 ret = -EIO;
2160 goto error;
2161 }
2162
2163 if (end >> agaw_to_width(domain->agaw)) {
2164 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2165 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2166 agaw_to_width(domain->agaw),
2167 dmi_get_system_info(DMI_BIOS_VENDOR),
2168 dmi_get_system_info(DMI_BIOS_VERSION),
2169 dmi_get_system_info(DMI_PRODUCT_VERSION));
2170 ret = -EIO;
2171 goto error;
2172 }
2173
2174 ret = iommu_domain_identity_map(domain, start, end);
2175 if (ret)
2176 goto error;
2177
2178 /* context entry init */
2179 ret = domain_context_mapping(domain, pdev, CONTEXT_TT_MULTI_LEVEL);
2180 if (ret)
2181 goto error;
2182
2183 return 0;
2184
2185 error:
2186 domain_exit(domain);
2187 return ret;
2188 }
2189
2190 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2191 struct pci_dev *pdev)
2192 {
2193 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2194 return 0;
2195 return iommu_prepare_identity_map(pdev, rmrr->base_address,
2196 rmrr->end_address);
2197 }
2198
2199 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
2200 static inline void iommu_prepare_isa(void)
2201 {
2202 struct pci_dev *pdev;
2203 int ret;
2204
2205 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2206 if (!pdev)
2207 return;
2208
2209 printk(KERN_INFO "IOMMU: Prepare 0-16MiB unity mapping for LPC\n");
2210 ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024 - 1);
2211
2212 if (ret)
2213 printk(KERN_ERR "IOMMU: Failed to create 0-16MiB identity map; "
2214 "floppy might not work\n");
2215
2216 }
2217 #else
2218 static inline void iommu_prepare_isa(void)
2219 {
2220 return;
2221 }
2222 #endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */
2223
2224 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2225
2226 static int __init si_domain_init(int hw)
2227 {
2228 struct dmar_drhd_unit *drhd;
2229 struct intel_iommu *iommu;
2230 int nid, ret = 0;
2231
2232 si_domain = alloc_domain();
2233 if (!si_domain)
2234 return -EFAULT;
2235
2236 pr_debug("Identity mapping domain is domain %d\n", si_domain->id);
2237
2238 for_each_active_iommu(iommu, drhd) {
2239 ret = iommu_attach_domain(si_domain, iommu);
2240 if (ret) {
2241 domain_exit(si_domain);
2242 return -EFAULT;
2243 }
2244 }
2245
2246 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2247 domain_exit(si_domain);
2248 return -EFAULT;
2249 }
2250
2251 si_domain->flags = DOMAIN_FLAG_STATIC_IDENTITY;
2252
2253 if (hw)
2254 return 0;
2255
2256 for_each_online_node(nid) {
2257 unsigned long start_pfn, end_pfn;
2258 int i;
2259
2260 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2261 ret = iommu_domain_identity_map(si_domain,
2262 PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
2263 if (ret)
2264 return ret;
2265 }
2266 }
2267
2268 return 0;
2269 }
2270
2271 static void domain_remove_one_dev_info(struct dmar_domain *domain,
2272 struct pci_dev *pdev);
2273 static int identity_mapping(struct pci_dev *pdev)
2274 {
2275 struct device_domain_info *info;
2276
2277 if (likely(!iommu_identity_mapping))
2278 return 0;
2279
2280 info = pdev->dev.archdata.iommu;
2281 if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
2282 return (info->domain == si_domain);
2283
2284 return 0;
2285 }
2286
2287 static int domain_add_dev_info(struct dmar_domain *domain,
2288 struct pci_dev *pdev,
2289 int translation)
2290 {
2291 struct device_domain_info *info;
2292 unsigned long flags;
2293 int ret;
2294
2295 info = alloc_devinfo_mem();
2296 if (!info)
2297 return -ENOMEM;
2298
2299 info->segment = pci_domain_nr(pdev->bus);
2300 info->bus = pdev->bus->number;
2301 info->devfn = pdev->devfn;
2302 info->dev = pdev;
2303 info->domain = domain;
2304
2305 spin_lock_irqsave(&device_domain_lock, flags);
2306 list_add(&info->link, &domain->devices);
2307 list_add(&info->global, &device_domain_list);
2308 pdev->dev.archdata.iommu = info;
2309 spin_unlock_irqrestore(&device_domain_lock, flags);
2310
2311 ret = domain_context_mapping(domain, pdev, translation);
2312 if (ret) {
2313 spin_lock_irqsave(&device_domain_lock, flags);
2314 unlink_domain_info(info);
2315 spin_unlock_irqrestore(&device_domain_lock, flags);
2316 free_devinfo_mem(info);
2317 return ret;
2318 }
2319
2320 return 0;
2321 }
2322
2323 static int iommu_should_identity_map(struct pci_dev *pdev, int startup)
2324 {
2325 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2326 return 1;
2327
2328 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2329 return 1;
2330
2331 if (!(iommu_identity_mapping & IDENTMAP_ALL))
2332 return 0;
2333
2334 /*
2335 * We want to start off with all devices in the 1:1 domain, and
2336 * take them out later if we find they can't access all of memory.
2337 *
2338 * However, we can't do this for PCI devices behind bridges,
2339 * because all PCI devices behind the same bridge will end up
2340 * with the same source-id on their transactions.
2341 *
2342 * Practically speaking, we can't change things around for these
2343 * devices at run-time, because we can't be sure there'll be no
2344 * DMA transactions in flight for any of their siblings.
2345 *
2346 * So PCI devices (unless they're on the root bus) as well as
2347 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2348 * the 1:1 domain, just in _case_ one of their siblings turns out
2349 * not to be able to map all of memory.
2350 */
2351 if (!pci_is_pcie(pdev)) {
2352 if (!pci_is_root_bus(pdev->bus))
2353 return 0;
2354 if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2355 return 0;
2356 } else if (pci_pcie_type(pdev) == PCI_EXP_TYPE_PCI_BRIDGE)
2357 return 0;
2358
2359 /*
2360 * At boot time, we don't yet know if devices will be 64-bit capable.
2361 * Assume that they will -- if they turn out not to be, then we can
2362 * take them out of the 1:1 domain later.
2363 */
2364 if (!startup) {
2365 /*
2366 * If the device's dma_mask is less than the system's memory
2367 * size then this is not a candidate for identity mapping.
2368 */
2369 u64 dma_mask = pdev->dma_mask;
2370
2371 if (pdev->dev.coherent_dma_mask &&
2372 pdev->dev.coherent_dma_mask < dma_mask)
2373 dma_mask = pdev->dev.coherent_dma_mask;
2374
2375 return dma_mask >= dma_get_required_mask(&pdev->dev);
2376 }
2377
2378 return 1;
2379 }
2380
2381 static int __init iommu_prepare_static_identity_mapping(int hw)
2382 {
2383 struct pci_dev *pdev = NULL;
2384 int ret;
2385
2386 ret = si_domain_init(hw);
2387 if (ret)
2388 return -EFAULT;
2389
2390 for_each_pci_dev(pdev) {
2391 if (iommu_should_identity_map(pdev, 1)) {
2392 ret = domain_add_dev_info(si_domain, pdev,
2393 hw ? CONTEXT_TT_PASS_THROUGH :
2394 CONTEXT_TT_MULTI_LEVEL);
2395 if (ret) {
2396 /* device not associated with an iommu */
2397 if (ret == -ENODEV)
2398 continue;
2399 return ret;
2400 }
2401 pr_info("IOMMU: %s identity mapping for device %s\n",
2402 hw ? "hardware" : "software", pci_name(pdev));
2403 }
2404 }
2405
2406 return 0;
2407 }
2408
2409 static int __init init_dmars(void)
2410 {
2411 struct dmar_drhd_unit *drhd;
2412 struct dmar_rmrr_unit *rmrr;
2413 struct pci_dev *pdev;
2414 struct intel_iommu *iommu;
2415 int i, ret;
2416
2417 /*
2418 * for each drhd
2419 * allocate root
2420 * initialize and program root entry to not present
2421 * endfor
2422 */
2423 for_each_drhd_unit(drhd) {
2424 /*
2425 * lock not needed as this is only incremented in the single
2426 * threaded kernel __init code path all other access are read
2427 * only
2428 */
2429 if (g_num_of_iommus < IOMMU_UNITS_SUPPORTED) {
2430 g_num_of_iommus++;
2431 continue;
2432 }
2433 printk_once(KERN_ERR "intel-iommu: exceeded %d IOMMUs\n",
2434 IOMMU_UNITS_SUPPORTED);
2435 }
2436
2437 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
2438 GFP_KERNEL);
2439 if (!g_iommus) {
2440 printk(KERN_ERR "Allocating global iommu array failed\n");
2441 ret = -ENOMEM;
2442 goto error;
2443 }
2444
2445 deferred_flush = kzalloc(g_num_of_iommus *
2446 sizeof(struct deferred_flush_tables), GFP_KERNEL);
2447 if (!deferred_flush) {
2448 ret = -ENOMEM;
2449 goto error;
2450 }
2451
2452 for_each_drhd_unit(drhd) {
2453 if (drhd->ignored)
2454 continue;
2455
2456 iommu = drhd->iommu;
2457 g_iommus[iommu->seq_id] = iommu;
2458
2459 ret = iommu_init_domains(iommu);
2460 if (ret)
2461 goto error;
2462
2463 /*
2464 * TBD:
2465 * we could share the same root & context tables
2466 * among all IOMMU's. Need to Split it later.
2467 */
2468 ret = iommu_alloc_root_entry(iommu);
2469 if (ret) {
2470 printk(KERN_ERR "IOMMU: allocate root entry failed\n");
2471 goto error;
2472 }
2473 if (!ecap_pass_through(iommu->ecap))
2474 hw_pass_through = 0;
2475 }
2476
2477 /*
2478 * Start from the sane iommu hardware state.
2479 */
2480 for_each_drhd_unit(drhd) {
2481 if (drhd->ignored)
2482 continue;
2483
2484 iommu = drhd->iommu;
2485
2486 /*
2487 * If the queued invalidation is already initialized by us
2488 * (for example, while enabling interrupt-remapping) then
2489 * we got the things already rolling from a sane state.
2490 */
2491 if (iommu->qi)
2492 continue;
2493
2494 /*
2495 * Clear any previous faults.
2496 */
2497 dmar_fault(-1, iommu);
2498 /*
2499 * Disable queued invalidation if supported and already enabled
2500 * before OS handover.
2501 */
2502 dmar_disable_qi(iommu);
2503 }
2504
2505 for_each_drhd_unit(drhd) {
2506 if (drhd->ignored)
2507 continue;
2508
2509 iommu = drhd->iommu;
2510
2511 if (dmar_enable_qi(iommu)) {
2512 /*
2513 * Queued Invalidate not enabled, use Register Based
2514 * Invalidate
2515 */
2516 iommu->flush.flush_context = __iommu_flush_context;
2517 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2518 printk(KERN_INFO "IOMMU %d 0x%Lx: using Register based "
2519 "invalidation\n",
2520 iommu->seq_id,
2521 (unsigned long long)drhd->reg_base_addr);
2522 } else {
2523 iommu->flush.flush_context = qi_flush_context;
2524 iommu->flush.flush_iotlb = qi_flush_iotlb;
2525 printk(KERN_INFO "IOMMU %d 0x%Lx: using Queued "
2526 "invalidation\n",
2527 iommu->seq_id,
2528 (unsigned long long)drhd->reg_base_addr);
2529 }
2530 }
2531
2532 if (iommu_pass_through)
2533 iommu_identity_mapping |= IDENTMAP_ALL;
2534
2535 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
2536 iommu_identity_mapping |= IDENTMAP_GFX;
2537 #endif
2538
2539 check_tylersburg_isoch();
2540
2541 /*
2542 * If pass through is not set or not enabled, setup context entries for
2543 * identity mappings for rmrr, gfx, and isa and may fall back to static
2544 * identity mapping if iommu_identity_mapping is set.
2545 */
2546 if (iommu_identity_mapping) {
2547 ret = iommu_prepare_static_identity_mapping(hw_pass_through);
2548 if (ret) {
2549 printk(KERN_CRIT "Failed to setup IOMMU pass-through\n");
2550 goto error;
2551 }
2552 }
2553 /*
2554 * For each rmrr
2555 * for each dev attached to rmrr
2556 * do
2557 * locate drhd for dev, alloc domain for dev
2558 * allocate free domain
2559 * allocate page table entries for rmrr
2560 * if context not allocated for bus
2561 * allocate and init context
2562 * set present in root table for this bus
2563 * init context with domain, translation etc
2564 * endfor
2565 * endfor
2566 */
2567 printk(KERN_INFO "IOMMU: Setting RMRR:\n");
2568 for_each_rmrr_units(rmrr) {
2569 for (i = 0; i < rmrr->devices_cnt; i++) {
2570 pdev = rmrr->devices[i];
2571 /*
2572 * some BIOS lists non-exist devices in DMAR
2573 * table.
2574 */
2575 if (!pdev)
2576 continue;
2577 ret = iommu_prepare_rmrr_dev(rmrr, pdev);
2578 if (ret)
2579 printk(KERN_ERR
2580 "IOMMU: mapping reserved region failed\n");
2581 }
2582 }
2583
2584 iommu_prepare_isa();
2585
2586 /*
2587 * for each drhd
2588 * enable fault log
2589 * global invalidate context cache
2590 * global invalidate iotlb
2591 * enable translation
2592 */
2593 for_each_drhd_unit(drhd) {
2594 if (drhd->ignored) {
2595 /*
2596 * we always have to disable PMRs or DMA may fail on
2597 * this device
2598 */
2599 if (force_on)
2600 iommu_disable_protect_mem_regions(drhd->iommu);
2601 continue;
2602 }
2603 iommu = drhd->iommu;
2604
2605 iommu_flush_write_buffer(iommu);
2606
2607 ret = dmar_set_interrupt(iommu);
2608 if (ret)
2609 goto error;
2610
2611 iommu_set_root_entry(iommu);
2612
2613 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
2614 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2615
2616 ret = iommu_enable_translation(iommu);
2617 if (ret)
2618 goto error;
2619
2620 iommu_disable_protect_mem_regions(iommu);
2621 }
2622
2623 return 0;
2624 error:
2625 for_each_drhd_unit(drhd) {
2626 if (drhd->ignored)
2627 continue;
2628 iommu = drhd->iommu;
2629 free_iommu(iommu);
2630 }
2631 kfree(g_iommus);
2632 return ret;
2633 }
2634
2635 /* This takes a number of _MM_ pages, not VTD pages */
2636 static struct iova *intel_alloc_iova(struct device *dev,
2637 struct dmar_domain *domain,
2638 unsigned long nrpages, uint64_t dma_mask)
2639 {
2640 struct pci_dev *pdev = to_pci_dev(dev);
2641 struct iova *iova = NULL;
2642
2643 /* Restrict dma_mask to the width that the iommu can handle */
2644 dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
2645
2646 if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
2647 /*
2648 * First try to allocate an io virtual address in
2649 * DMA_BIT_MASK(32) and if that fails then try allocating
2650 * from higher range
2651 */
2652 iova = alloc_iova(&domain->iovad, nrpages,
2653 IOVA_PFN(DMA_BIT_MASK(32)), 1);
2654 if (iova)
2655 return iova;
2656 }
2657 iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(dma_mask), 1);
2658 if (unlikely(!iova)) {
2659 printk(KERN_ERR "Allocating %ld-page iova for %s failed",
2660 nrpages, pci_name(pdev));
2661 return NULL;
2662 }
2663
2664 return iova;
2665 }
2666
2667 static struct dmar_domain *__get_valid_domain_for_dev(struct pci_dev *pdev)
2668 {
2669 struct dmar_domain *domain;
2670 int ret;
2671
2672 domain = get_domain_for_dev(pdev,
2673 DEFAULT_DOMAIN_ADDRESS_WIDTH);
2674 if (!domain) {
2675 printk(KERN_ERR
2676 "Allocating domain for %s failed", pci_name(pdev));
2677 return NULL;
2678 }
2679
2680 /* make sure context mapping is ok */
2681 if (unlikely(!domain_context_mapped(pdev))) {
2682 ret = domain_context_mapping(domain, pdev,
2683 CONTEXT_TT_MULTI_LEVEL);
2684 if (ret) {
2685 printk(KERN_ERR
2686 "Domain context map for %s failed",
2687 pci_name(pdev));
2688 return NULL;
2689 }
2690 }
2691
2692 return domain;
2693 }
2694
2695 static inline struct dmar_domain *get_valid_domain_for_dev(struct pci_dev *dev)
2696 {
2697 struct device_domain_info *info;
2698
2699 /* No lock here, assumes no domain exit in normal case */
2700 info = dev->dev.archdata.iommu;
2701 if (likely(info))
2702 return info->domain;
2703
2704 return __get_valid_domain_for_dev(dev);
2705 }
2706
2707 static int iommu_dummy(struct pci_dev *pdev)
2708 {
2709 return pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
2710 }
2711
2712 /* Check if the pdev needs to go through non-identity map and unmap process.*/
2713 static int iommu_no_mapping(struct device *dev)
2714 {
2715 struct pci_dev *pdev;
2716 int found;
2717
2718 if (unlikely(dev->bus != &pci_bus_type))
2719 return 1;
2720
2721 pdev = to_pci_dev(dev);
2722 if (iommu_dummy(pdev))
2723 return 1;
2724
2725 if (!iommu_identity_mapping)
2726 return 0;
2727
2728 found = identity_mapping(pdev);
2729 if (found) {
2730 if (iommu_should_identity_map(pdev, 0))
2731 return 1;
2732 else {
2733 /*
2734 * 32 bit DMA is removed from si_domain and fall back
2735 * to non-identity mapping.
2736 */
2737 domain_remove_one_dev_info(si_domain, pdev);
2738 printk(KERN_INFO "32bit %s uses non-identity mapping\n",
2739 pci_name(pdev));
2740 return 0;
2741 }
2742 } else {
2743 /*
2744 * In case of a detached 64 bit DMA device from vm, the device
2745 * is put into si_domain for identity mapping.
2746 */
2747 if (iommu_should_identity_map(pdev, 0)) {
2748 int ret;
2749 ret = domain_add_dev_info(si_domain, pdev,
2750 hw_pass_through ?
2751 CONTEXT_TT_PASS_THROUGH :
2752 CONTEXT_TT_MULTI_LEVEL);
2753 if (!ret) {
2754 printk(KERN_INFO "64bit %s uses identity mapping\n",
2755 pci_name(pdev));
2756 return 1;
2757 }
2758 }
2759 }
2760
2761 return 0;
2762 }
2763
2764 static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr,
2765 size_t size, int dir, u64 dma_mask)
2766 {
2767 struct pci_dev *pdev = to_pci_dev(hwdev);
2768 struct dmar_domain *domain;
2769 phys_addr_t start_paddr;
2770 struct iova *iova;
2771 int prot = 0;
2772 int ret;
2773 struct intel_iommu *iommu;
2774 unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
2775
2776 BUG_ON(dir == DMA_NONE);
2777
2778 if (iommu_no_mapping(hwdev))
2779 return paddr;
2780
2781 domain = get_valid_domain_for_dev(pdev);
2782 if (!domain)
2783 return 0;
2784
2785 iommu = domain_get_iommu(domain);
2786 size = aligned_nrpages(paddr, size);
2787
2788 iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size), dma_mask);
2789 if (!iova)
2790 goto error;
2791
2792 /*
2793 * Check if DMAR supports zero-length reads on write only
2794 * mappings..
2795 */
2796 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2797 !cap_zlr(iommu->cap))
2798 prot |= DMA_PTE_READ;
2799 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2800 prot |= DMA_PTE_WRITE;
2801 /*
2802 * paddr - (paddr + size) might be partial page, we should map the whole
2803 * page. Note: if two part of one page are separately mapped, we
2804 * might have two guest_addr mapping to the same host paddr, but this
2805 * is not a big problem
2806 */
2807 ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo),
2808 mm_to_dma_pfn(paddr_pfn), size, prot);
2809 if (ret)
2810 goto error;
2811
2812 /* it's a non-present to present mapping. Only flush if caching mode */
2813 if (cap_caching_mode(iommu->cap))
2814 iommu_flush_iotlb_psi(iommu, domain->id, mm_to_dma_pfn(iova->pfn_lo), size, 1);
2815 else
2816 iommu_flush_write_buffer(iommu);
2817
2818 start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
2819 start_paddr += paddr & ~PAGE_MASK;
2820 return start_paddr;
2821
2822 error:
2823 if (iova)
2824 __free_iova(&domain->iovad, iova);
2825 printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n",
2826 pci_name(pdev), size, (unsigned long long)paddr, dir);
2827 return 0;
2828 }
2829
2830 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
2831 unsigned long offset, size_t size,
2832 enum dma_data_direction dir,
2833 struct dma_attrs *attrs)
2834 {
2835 return __intel_map_single(dev, page_to_phys(page) + offset, size,
2836 dir, to_pci_dev(dev)->dma_mask);
2837 }
2838
2839 static void flush_unmaps(void)
2840 {
2841 int i, j;
2842
2843 timer_on = 0;
2844
2845 /* just flush them all */
2846 for (i = 0; i < g_num_of_iommus; i++) {
2847 struct intel_iommu *iommu = g_iommus[i];
2848 if (!iommu)
2849 continue;
2850
2851 if (!deferred_flush[i].next)
2852 continue;
2853
2854 /* In caching mode, global flushes turn emulation expensive */
2855 if (!cap_caching_mode(iommu->cap))
2856 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2857 DMA_TLB_GLOBAL_FLUSH);
2858 for (j = 0; j < deferred_flush[i].next; j++) {
2859 unsigned long mask;
2860 struct iova *iova = deferred_flush[i].iova[j];
2861 struct dmar_domain *domain = deferred_flush[i].domain[j];
2862
2863 /* On real hardware multiple invalidations are expensive */
2864 if (cap_caching_mode(iommu->cap))
2865 iommu_flush_iotlb_psi(iommu, domain->id,
2866 iova->pfn_lo, iova->pfn_hi - iova->pfn_lo + 1, 0);
2867 else {
2868 mask = ilog2(mm_to_dma_pfn(iova->pfn_hi - iova->pfn_lo + 1));
2869 iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
2870 (uint64_t)iova->pfn_lo << PAGE_SHIFT, mask);
2871 }
2872 __free_iova(&deferred_flush[i].domain[j]->iovad, iova);
2873 }
2874 deferred_flush[i].next = 0;
2875 }
2876
2877 list_size = 0;
2878 }
2879
2880 static void flush_unmaps_timeout(unsigned long data)
2881 {
2882 unsigned long flags;
2883
2884 spin_lock_irqsave(&async_umap_flush_lock, flags);
2885 flush_unmaps();
2886 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2887 }
2888
2889 static void add_unmap(struct dmar_domain *dom, struct iova *iova)
2890 {
2891 unsigned long flags;
2892 int next, iommu_id;
2893 struct intel_iommu *iommu;
2894
2895 spin_lock_irqsave(&async_umap_flush_lock, flags);
2896 if (list_size == HIGH_WATER_MARK)
2897 flush_unmaps();
2898
2899 iommu = domain_get_iommu(dom);
2900 iommu_id = iommu->seq_id;
2901
2902 next = deferred_flush[iommu_id].next;
2903 deferred_flush[iommu_id].domain[next] = dom;
2904 deferred_flush[iommu_id].iova[next] = iova;
2905 deferred_flush[iommu_id].next++;
2906
2907 if (!timer_on) {
2908 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
2909 timer_on = 1;
2910 }
2911 list_size++;
2912 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2913 }
2914
2915 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
2916 size_t size, enum dma_data_direction dir,
2917 struct dma_attrs *attrs)
2918 {
2919 struct pci_dev *pdev = to_pci_dev(dev);
2920 struct dmar_domain *domain;
2921 unsigned long start_pfn, last_pfn;
2922 struct iova *iova;
2923 struct intel_iommu *iommu;
2924
2925 if (iommu_no_mapping(dev))
2926 return;
2927
2928 domain = find_domain(pdev);
2929 BUG_ON(!domain);
2930
2931 iommu = domain_get_iommu(domain);
2932
2933 iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
2934 if (WARN_ONCE(!iova, "Driver unmaps unmatched page at PFN %llx\n",
2935 (unsigned long long)dev_addr))
2936 return;
2937
2938 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2939 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
2940
2941 pr_debug("Device %s unmapping: pfn %lx-%lx\n",
2942 pci_name(pdev), start_pfn, last_pfn);
2943
2944 /* clear the whole page */
2945 dma_pte_clear_range(domain, start_pfn, last_pfn);
2946
2947 /* free page tables */
2948 dma_pte_free_pagetable(domain, start_pfn, last_pfn);
2949
2950 if (intel_iommu_strict) {
2951 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
2952 last_pfn - start_pfn + 1, 0);
2953 /* free iova */
2954 __free_iova(&domain->iovad, iova);
2955 } else {
2956 add_unmap(domain, iova);
2957 /*
2958 * queue up the release of the unmap to save the 1/6th of the
2959 * cpu used up by the iotlb flush operation...
2960 */
2961 }
2962 }
2963
2964 static void *intel_alloc_coherent(struct device *hwdev, size_t size,
2965 dma_addr_t *dma_handle, gfp_t flags,
2966 struct dma_attrs *attrs)
2967 {
2968 void *vaddr;
2969 int order;
2970
2971 size = PAGE_ALIGN(size);
2972 order = get_order(size);
2973
2974 if (!iommu_no_mapping(hwdev))
2975 flags &= ~(GFP_DMA | GFP_DMA32);
2976 else if (hwdev->coherent_dma_mask < dma_get_required_mask(hwdev)) {
2977 if (hwdev->coherent_dma_mask < DMA_BIT_MASK(32))
2978 flags |= GFP_DMA;
2979 else
2980 flags |= GFP_DMA32;
2981 }
2982
2983 vaddr = (void *)__get_free_pages(flags, order);
2984 if (!vaddr)
2985 return NULL;
2986 memset(vaddr, 0, size);
2987
2988 *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size,
2989 DMA_BIDIRECTIONAL,
2990 hwdev->coherent_dma_mask);
2991 if (*dma_handle)
2992 return vaddr;
2993 free_pages((unsigned long)vaddr, order);
2994 return NULL;
2995 }
2996
2997 static void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr,
2998 dma_addr_t dma_handle, struct dma_attrs *attrs)
2999 {
3000 int order;
3001
3002 size = PAGE_ALIGN(size);
3003 order = get_order(size);
3004
3005 intel_unmap_page(hwdev, dma_handle, size, DMA_BIDIRECTIONAL, NULL);
3006 free_pages((unsigned long)vaddr, order);
3007 }
3008
3009 static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
3010 int nelems, enum dma_data_direction dir,
3011 struct dma_attrs *attrs)
3012 {
3013 struct pci_dev *pdev = to_pci_dev(hwdev);
3014 struct dmar_domain *domain;
3015 unsigned long start_pfn, last_pfn;
3016 struct iova *iova;
3017 struct intel_iommu *iommu;
3018
3019 if (iommu_no_mapping(hwdev))
3020 return;
3021
3022 domain = find_domain(pdev);
3023 BUG_ON(!domain);
3024
3025 iommu = domain_get_iommu(domain);
3026
3027 iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
3028 if (WARN_ONCE(!iova, "Driver unmaps unmatched sglist at PFN %llx\n",
3029 (unsigned long long)sglist[0].dma_address))
3030 return;
3031
3032 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
3033 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
3034
3035 /* clear the whole page */
3036 dma_pte_clear_range(domain, start_pfn, last_pfn);
3037
3038 /* free page tables */
3039 dma_pte_free_pagetable(domain, start_pfn, last_pfn);
3040
3041 if (intel_iommu_strict) {
3042 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
3043 last_pfn - start_pfn + 1, 0);
3044 /* free iova */
3045 __free_iova(&domain->iovad, iova);
3046 } else {
3047 add_unmap(domain, iova);
3048 /*
3049 * queue up the release of the unmap to save the 1/6th of the
3050 * cpu used up by the iotlb flush operation...
3051 */
3052 }
3053 }
3054
3055 static int intel_nontranslate_map_sg(struct device *hddev,
3056 struct scatterlist *sglist, int nelems, int dir)
3057 {
3058 int i;
3059 struct scatterlist *sg;
3060
3061 for_each_sg(sglist, sg, nelems, i) {
3062 BUG_ON(!sg_page(sg));
3063 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
3064 sg->dma_length = sg->length;
3065 }
3066 return nelems;
3067 }
3068
3069 static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems,
3070 enum dma_data_direction dir, struct dma_attrs *attrs)
3071 {
3072 int i;
3073 struct pci_dev *pdev = to_pci_dev(hwdev);
3074 struct dmar_domain *domain;
3075 size_t size = 0;
3076 int prot = 0;
3077 struct iova *iova = NULL;
3078 int ret;
3079 struct scatterlist *sg;
3080 unsigned long start_vpfn;
3081 struct intel_iommu *iommu;
3082
3083 BUG_ON(dir == DMA_NONE);
3084 if (iommu_no_mapping(hwdev))
3085 return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
3086
3087 domain = get_valid_domain_for_dev(pdev);
3088 if (!domain)
3089 return 0;
3090
3091 iommu = domain_get_iommu(domain);
3092
3093 for_each_sg(sglist, sg, nelems, i)
3094 size += aligned_nrpages(sg->offset, sg->length);
3095
3096 iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size),
3097 pdev->dma_mask);
3098 if (!iova) {
3099 sglist->dma_length = 0;
3100 return 0;
3101 }
3102
3103 /*
3104 * Check if DMAR supports zero-length reads on write only
3105 * mappings..
3106 */
3107 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3108 !cap_zlr(iommu->cap))
3109 prot |= DMA_PTE_READ;
3110 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3111 prot |= DMA_PTE_WRITE;
3112
3113 start_vpfn = mm_to_dma_pfn(iova->pfn_lo);
3114
3115 ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3116 if (unlikely(ret)) {
3117 /* clear the page */
3118 dma_pte_clear_range(domain, start_vpfn,
3119 start_vpfn + size - 1);
3120 /* free page tables */
3121 dma_pte_free_pagetable(domain, start_vpfn,
3122 start_vpfn + size - 1);
3123 /* free iova */
3124 __free_iova(&domain->iovad, iova);
3125 return 0;
3126 }
3127
3128 /* it's a non-present to present mapping. Only flush if caching mode */
3129 if (cap_caching_mode(iommu->cap))
3130 iommu_flush_iotlb_psi(iommu, domain->id, start_vpfn, size, 1);
3131 else
3132 iommu_flush_write_buffer(iommu);
3133
3134 return nelems;
3135 }
3136
3137 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
3138 {
3139 return !dma_addr;
3140 }
3141
3142 struct dma_map_ops intel_dma_ops = {
3143 .alloc = intel_alloc_coherent,
3144 .free = intel_free_coherent,
3145 .map_sg = intel_map_sg,
3146 .unmap_sg = intel_unmap_sg,
3147 .map_page = intel_map_page,
3148 .unmap_page = intel_unmap_page,
3149 .mapping_error = intel_mapping_error,
3150 };
3151
3152 static inline int iommu_domain_cache_init(void)
3153 {
3154 int ret = 0;
3155
3156 iommu_domain_cache = kmem_cache_create("iommu_domain",
3157 sizeof(struct dmar_domain),
3158 0,
3159 SLAB_HWCACHE_ALIGN,
3160
3161 NULL);
3162 if (!iommu_domain_cache) {
3163 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
3164 ret = -ENOMEM;
3165 }
3166
3167 return ret;
3168 }
3169
3170 static inline int iommu_devinfo_cache_init(void)
3171 {
3172 int ret = 0;
3173
3174 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
3175 sizeof(struct device_domain_info),
3176 0,
3177 SLAB_HWCACHE_ALIGN,
3178 NULL);
3179 if (!iommu_devinfo_cache) {
3180 printk(KERN_ERR "Couldn't create devinfo cache\n");
3181 ret = -ENOMEM;
3182 }
3183
3184 return ret;
3185 }
3186
3187 static inline int iommu_iova_cache_init(void)
3188 {
3189 int ret = 0;
3190
3191 iommu_iova_cache = kmem_cache_create("iommu_iova",
3192 sizeof(struct iova),
3193 0,
3194 SLAB_HWCACHE_ALIGN,
3195 NULL);
3196 if (!iommu_iova_cache) {
3197 printk(KERN_ERR "Couldn't create iova cache\n");
3198 ret = -ENOMEM;
3199 }
3200
3201 return ret;
3202 }
3203
3204 static int __init iommu_init_mempool(void)
3205 {
3206 int ret;
3207 ret = iommu_iova_cache_init();
3208 if (ret)
3209 return ret;
3210
3211 ret = iommu_domain_cache_init();
3212 if (ret)
3213 goto domain_error;
3214
3215 ret = iommu_devinfo_cache_init();
3216 if (!ret)
3217 return ret;
3218
3219 kmem_cache_destroy(iommu_domain_cache);
3220 domain_error:
3221 kmem_cache_destroy(iommu_iova_cache);
3222
3223 return -ENOMEM;
3224 }
3225
3226 static void __init iommu_exit_mempool(void)
3227 {
3228 kmem_cache_destroy(iommu_devinfo_cache);
3229 kmem_cache_destroy(iommu_domain_cache);
3230 kmem_cache_destroy(iommu_iova_cache);
3231
3232 }
3233
3234 static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
3235 {
3236 struct dmar_drhd_unit *drhd;
3237 u32 vtbar;
3238 int rc;
3239
3240 /* We know that this device on this chipset has its own IOMMU.
3241 * If we find it under a different IOMMU, then the BIOS is lying
3242 * to us. Hope that the IOMMU for this device is actually
3243 * disabled, and it needs no translation...
3244 */
3245 rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
3246 if (rc) {
3247 /* "can't" happen */
3248 dev_info(&pdev->dev, "failed to run vt-d quirk\n");
3249 return;
3250 }
3251 vtbar &= 0xffff0000;
3252
3253 /* we know that the this iommu should be at offset 0xa000 from vtbar */
3254 drhd = dmar_find_matched_drhd_unit(pdev);
3255 if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
3256 TAINT_FIRMWARE_WORKAROUND,
3257 "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
3258 pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3259 }
3260 DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
3261
3262 static void __init init_no_remapping_devices(void)
3263 {
3264 struct dmar_drhd_unit *drhd;
3265
3266 for_each_drhd_unit(drhd) {
3267 if (!drhd->include_all) {
3268 int i;
3269 for (i = 0; i < drhd->devices_cnt; i++)
3270 if (drhd->devices[i] != NULL)
3271 break;
3272 /* ignore DMAR unit if no pci devices exist */
3273 if (i == drhd->devices_cnt)
3274 drhd->ignored = 1;
3275 }
3276 }
3277
3278 for_each_drhd_unit(drhd) {
3279 int i;
3280 if (drhd->ignored || drhd->include_all)
3281 continue;
3282
3283 for (i = 0; i < drhd->devices_cnt; i++)
3284 if (drhd->devices[i] &&
3285 !IS_GFX_DEVICE(drhd->devices[i]))
3286 break;
3287
3288 if (i < drhd->devices_cnt)
3289 continue;
3290
3291 /* This IOMMU has *only* gfx devices. Either bypass it or
3292 set the gfx_mapped flag, as appropriate */
3293 if (dmar_map_gfx) {
3294 intel_iommu_gfx_mapped = 1;
3295 } else {
3296 drhd->ignored = 1;
3297 for (i = 0; i < drhd->devices_cnt; i++) {
3298 if (!drhd->devices[i])
3299 continue;
3300 drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3301 }
3302 }
3303 }
3304 }
3305
3306 #ifdef CONFIG_SUSPEND
3307 static int init_iommu_hw(void)
3308 {
3309 struct dmar_drhd_unit *drhd;
3310 struct intel_iommu *iommu = NULL;
3311
3312 for_each_active_iommu(iommu, drhd)
3313 if (iommu->qi)
3314 dmar_reenable_qi(iommu);
3315
3316 for_each_iommu(iommu, drhd) {
3317 if (drhd->ignored) {
3318 /*
3319 * we always have to disable PMRs or DMA may fail on
3320 * this device
3321 */
3322 if (force_on)
3323 iommu_disable_protect_mem_regions(iommu);
3324 continue;
3325 }
3326
3327 iommu_flush_write_buffer(iommu);
3328
3329 iommu_set_root_entry(iommu);
3330
3331 iommu->flush.flush_context(iommu, 0, 0, 0,
3332 DMA_CCMD_GLOBAL_INVL);
3333 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3334 DMA_TLB_GLOBAL_FLUSH);
3335 if (iommu_enable_translation(iommu))
3336 return 1;
3337 iommu_disable_protect_mem_regions(iommu);
3338 }
3339
3340 return 0;
3341 }
3342
3343 static void iommu_flush_all(void)
3344 {
3345 struct dmar_drhd_unit *drhd;
3346 struct intel_iommu *iommu;
3347
3348 for_each_active_iommu(iommu, drhd) {
3349 iommu->flush.flush_context(iommu, 0, 0, 0,
3350 DMA_CCMD_GLOBAL_INVL);
3351 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3352 DMA_TLB_GLOBAL_FLUSH);
3353 }
3354 }
3355
3356 static int iommu_suspend(void)
3357 {
3358 struct dmar_drhd_unit *drhd;
3359 struct intel_iommu *iommu = NULL;
3360 unsigned long flag;
3361
3362 for_each_active_iommu(iommu, drhd) {
3363 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
3364 GFP_ATOMIC);
3365 if (!iommu->iommu_state)
3366 goto nomem;
3367 }
3368
3369 iommu_flush_all();
3370
3371 for_each_active_iommu(iommu, drhd) {
3372 iommu_disable_translation(iommu);
3373
3374 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3375
3376 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3377 readl(iommu->reg + DMAR_FECTL_REG);
3378 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3379 readl(iommu->reg + DMAR_FEDATA_REG);
3380 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3381 readl(iommu->reg + DMAR_FEADDR_REG);
3382 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3383 readl(iommu->reg + DMAR_FEUADDR_REG);
3384
3385 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3386 }
3387 return 0;
3388
3389 nomem:
3390 for_each_active_iommu(iommu, drhd)
3391 kfree(iommu->iommu_state);
3392
3393 return -ENOMEM;
3394 }
3395
3396 static void iommu_resume(void)
3397 {
3398 struct dmar_drhd_unit *drhd;
3399 struct intel_iommu *iommu = NULL;
3400 unsigned long flag;
3401
3402 if (init_iommu_hw()) {
3403 if (force_on)
3404 panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
3405 else
3406 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3407 return;
3408 }
3409
3410 for_each_active_iommu(iommu, drhd) {
3411
3412 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3413
3414 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3415 iommu->reg + DMAR_FECTL_REG);
3416 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3417 iommu->reg + DMAR_FEDATA_REG);
3418 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3419 iommu->reg + DMAR_FEADDR_REG);
3420 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3421 iommu->reg + DMAR_FEUADDR_REG);
3422
3423 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3424 }
3425
3426 for_each_active_iommu(iommu, drhd)
3427 kfree(iommu->iommu_state);
3428 }
3429
3430 static struct syscore_ops iommu_syscore_ops = {
3431 .resume = iommu_resume,
3432 .suspend = iommu_suspend,
3433 };
3434
3435 static void __init init_iommu_pm_ops(void)
3436 {
3437 register_syscore_ops(&iommu_syscore_ops);
3438 }
3439
3440 #else
3441 static inline void init_iommu_pm_ops(void) {}
3442 #endif /* CONFIG_PM */
3443
3444 LIST_HEAD(dmar_rmrr_units);
3445
3446 static void __init dmar_register_rmrr_unit(struct dmar_rmrr_unit *rmrr)
3447 {
3448 list_add(&rmrr->list, &dmar_rmrr_units);
3449 }
3450
3451
3452 int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header)
3453 {
3454 struct acpi_dmar_reserved_memory *rmrr;
3455 struct dmar_rmrr_unit *rmrru;
3456
3457 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
3458 if (!rmrru)
3459 return -ENOMEM;
3460
3461 rmrru->hdr = header;
3462 rmrr = (struct acpi_dmar_reserved_memory *)header;
3463 rmrru->base_address = rmrr->base_address;
3464 rmrru->end_address = rmrr->end_address;
3465
3466 dmar_register_rmrr_unit(rmrru);
3467 return 0;
3468 }
3469
3470 static int __init
3471 rmrr_parse_dev(struct dmar_rmrr_unit *rmrru)
3472 {
3473 struct acpi_dmar_reserved_memory *rmrr;
3474 int ret;
3475
3476 rmrr = (struct acpi_dmar_reserved_memory *) rmrru->hdr;
3477 ret = dmar_parse_dev_scope((void *)(rmrr + 1),
3478 ((void *)rmrr) + rmrr->header.length,
3479 &rmrru->devices_cnt, &rmrru->devices, rmrr->segment);
3480
3481 if (ret || (rmrru->devices_cnt == 0)) {
3482 list_del(&rmrru->list);
3483 kfree(rmrru);
3484 }
3485 return ret;
3486 }
3487
3488 static LIST_HEAD(dmar_atsr_units);
3489
3490 int __init dmar_parse_one_atsr(struct acpi_dmar_header *hdr)
3491 {
3492 struct acpi_dmar_atsr *atsr;
3493 struct dmar_atsr_unit *atsru;
3494
3495 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
3496 atsru = kzalloc(sizeof(*atsru), GFP_KERNEL);
3497 if (!atsru)
3498 return -ENOMEM;
3499
3500 atsru->hdr = hdr;
3501 atsru->include_all = atsr->flags & 0x1;
3502
3503 list_add(&atsru->list, &dmar_atsr_units);
3504
3505 return 0;
3506 }
3507
3508 static int __init atsr_parse_dev(struct dmar_atsr_unit *atsru)
3509 {
3510 int rc;
3511 struct acpi_dmar_atsr *atsr;
3512
3513 if (atsru->include_all)
3514 return 0;
3515
3516 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
3517 rc = dmar_parse_dev_scope((void *)(atsr + 1),
3518 (void *)atsr + atsr->header.length,
3519 &atsru->devices_cnt, &atsru->devices,
3520 atsr->segment);
3521 if (rc || !atsru->devices_cnt) {
3522 list_del(&atsru->list);
3523 kfree(atsru);
3524 }
3525
3526 return rc;
3527 }
3528
3529 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
3530 {
3531 int i;
3532 struct pci_bus *bus;
3533 struct acpi_dmar_atsr *atsr;
3534 struct dmar_atsr_unit *atsru;
3535
3536 dev = pci_physfn(dev);
3537
3538 list_for_each_entry(atsru, &dmar_atsr_units, list) {
3539 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
3540 if (atsr->segment == pci_domain_nr(dev->bus))
3541 goto found;
3542 }
3543
3544 return 0;
3545
3546 found:
3547 for (bus = dev->bus; bus; bus = bus->parent) {
3548 struct pci_dev *bridge = bus->self;
3549
3550 if (!bridge || !pci_is_pcie(bridge) ||
3551 pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
3552 return 0;
3553
3554 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT) {
3555 for (i = 0; i < atsru->devices_cnt; i++)
3556 if (atsru->devices[i] == bridge)
3557 return 1;
3558 break;
3559 }
3560 }
3561
3562 if (atsru->include_all)
3563 return 1;
3564
3565 return 0;
3566 }
3567
3568 int __init dmar_parse_rmrr_atsr_dev(void)
3569 {
3570 struct dmar_rmrr_unit *rmrr, *rmrr_n;
3571 struct dmar_atsr_unit *atsr, *atsr_n;
3572 int ret = 0;
3573
3574 list_for_each_entry_safe(rmrr, rmrr_n, &dmar_rmrr_units, list) {
3575 ret = rmrr_parse_dev(rmrr);
3576 if (ret)
3577 return ret;
3578 }
3579
3580 list_for_each_entry_safe(atsr, atsr_n, &dmar_atsr_units, list) {
3581 ret = atsr_parse_dev(atsr);
3582 if (ret)
3583 return ret;
3584 }
3585
3586 return ret;
3587 }
3588
3589 /*
3590 * Here we only respond to action of unbound device from driver.
3591 *
3592 * Added device is not attached to its DMAR domain here yet. That will happen
3593 * when mapping the device to iova.
3594 */
3595 static int device_notifier(struct notifier_block *nb,
3596 unsigned long action, void *data)
3597 {
3598 struct device *dev = data;
3599 struct pci_dev *pdev = to_pci_dev(dev);
3600 struct dmar_domain *domain;
3601
3602 if (iommu_no_mapping(dev))
3603 return 0;
3604
3605 domain = find_domain(pdev);
3606 if (!domain)
3607 return 0;
3608
3609 if (action == BUS_NOTIFY_UNBOUND_DRIVER && !iommu_pass_through) {
3610 domain_remove_one_dev_info(domain, pdev);
3611
3612 if (!(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) &&
3613 !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) &&
3614 list_empty(&domain->devices))
3615 domain_exit(domain);
3616 }
3617
3618 return 0;
3619 }
3620
3621 static struct notifier_block device_nb = {
3622 .notifier_call = device_notifier,
3623 };
3624
3625 int __init intel_iommu_init(void)
3626 {
3627 int ret = 0;
3628
3629 /* VT-d is required for a TXT/tboot launch, so enforce that */
3630 force_on = tboot_force_iommu();
3631
3632 if (dmar_table_init()) {
3633 if (force_on)
3634 panic("tboot: Failed to initialize DMAR table\n");
3635 return -ENODEV;
3636 }
3637
3638 if (dmar_dev_scope_init() < 0) {
3639 if (force_on)
3640 panic("tboot: Failed to initialize DMAR device scope\n");
3641 return -ENODEV;
3642 }
3643
3644 if (no_iommu || dmar_disabled)
3645 return -ENODEV;
3646
3647 if (iommu_init_mempool()) {
3648 if (force_on)
3649 panic("tboot: Failed to initialize iommu memory\n");
3650 return -ENODEV;
3651 }
3652
3653 if (list_empty(&dmar_rmrr_units))
3654 printk(KERN_INFO "DMAR: No RMRR found\n");
3655
3656 if (list_empty(&dmar_atsr_units))
3657 printk(KERN_INFO "DMAR: No ATSR found\n");
3658
3659 if (dmar_init_reserved_ranges()) {
3660 if (force_on)
3661 panic("tboot: Failed to reserve iommu ranges\n");
3662 return -ENODEV;
3663 }
3664
3665 init_no_remapping_devices();
3666
3667 ret = init_dmars();
3668 if (ret) {
3669 if (force_on)
3670 panic("tboot: Failed to initialize DMARs\n");
3671 printk(KERN_ERR "IOMMU: dmar init failed\n");
3672 put_iova_domain(&reserved_iova_list);
3673 iommu_exit_mempool();
3674 return ret;
3675 }
3676 printk(KERN_INFO
3677 "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
3678
3679 init_timer(&unmap_timer);
3680 #ifdef CONFIG_SWIOTLB
3681 swiotlb = 0;
3682 #endif
3683 dma_ops = &intel_dma_ops;
3684
3685 init_iommu_pm_ops();
3686
3687 bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
3688
3689 bus_register_notifier(&pci_bus_type, &device_nb);
3690
3691 intel_iommu_enabled = 1;
3692
3693 return 0;
3694 }
3695
3696 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
3697 struct pci_dev *pdev)
3698 {
3699 struct pci_dev *tmp, *parent;
3700
3701 if (!iommu || !pdev)
3702 return;
3703
3704 /* dependent device detach */
3705 tmp = pci_find_upstream_pcie_bridge(pdev);
3706 /* Secondary interface's bus number and devfn 0 */
3707 if (tmp) {
3708 parent = pdev->bus->self;
3709 while (parent != tmp) {
3710 iommu_detach_dev(iommu, parent->bus->number,
3711 parent->devfn);
3712 parent = parent->bus->self;
3713 }
3714 if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */
3715 iommu_detach_dev(iommu,
3716 tmp->subordinate->number, 0);
3717 else /* this is a legacy PCI bridge */
3718 iommu_detach_dev(iommu, tmp->bus->number,
3719 tmp->devfn);
3720 }
3721 }
3722
3723 static void domain_remove_one_dev_info(struct dmar_domain *domain,
3724 struct pci_dev *pdev)
3725 {
3726 struct device_domain_info *info;
3727 struct intel_iommu *iommu;
3728 unsigned long flags;
3729 int found = 0;
3730 struct list_head *entry, *tmp;
3731
3732 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3733 pdev->devfn);
3734 if (!iommu)
3735 return;
3736
3737 spin_lock_irqsave(&device_domain_lock, flags);
3738 list_for_each_safe(entry, tmp, &domain->devices) {
3739 info = list_entry(entry, struct device_domain_info, link);
3740 if (info->segment == pci_domain_nr(pdev->bus) &&
3741 info->bus == pdev->bus->number &&
3742 info->devfn == pdev->devfn) {
3743 unlink_domain_info(info);
3744 spin_unlock_irqrestore(&device_domain_lock, flags);
3745
3746 iommu_disable_dev_iotlb(info);
3747 iommu_detach_dev(iommu, info->bus, info->devfn);
3748 iommu_detach_dependent_devices(iommu, pdev);
3749 free_devinfo_mem(info);
3750
3751 spin_lock_irqsave(&device_domain_lock, flags);
3752
3753 if (found)
3754 break;
3755 else
3756 continue;
3757 }
3758
3759 /* if there is no other devices under the same iommu
3760 * owned by this domain, clear this iommu in iommu_bmp
3761 * update iommu count and coherency
3762 */
3763 if (iommu == device_to_iommu(info->segment, info->bus,
3764 info->devfn))
3765 found = 1;
3766 }
3767
3768 spin_unlock_irqrestore(&device_domain_lock, flags);
3769
3770 if (found == 0) {
3771 unsigned long tmp_flags;
3772 spin_lock_irqsave(&domain->iommu_lock, tmp_flags);
3773 clear_bit(iommu->seq_id, domain->iommu_bmp);
3774 domain->iommu_count--;
3775 domain_update_iommu_cap(domain);
3776 spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags);
3777
3778 if (!(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) &&
3779 !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)) {
3780 spin_lock_irqsave(&iommu->lock, tmp_flags);
3781 clear_bit(domain->id, iommu->domain_ids);
3782 iommu->domains[domain->id] = NULL;
3783 spin_unlock_irqrestore(&iommu->lock, tmp_flags);
3784 }
3785 }
3786 }
3787
3788 static void vm_domain_remove_all_dev_info(struct dmar_domain *domain)
3789 {
3790 struct device_domain_info *info;
3791 struct intel_iommu *iommu;
3792 unsigned long flags1, flags2;
3793
3794 spin_lock_irqsave(&device_domain_lock, flags1);
3795 while (!list_empty(&domain->devices)) {
3796 info = list_entry(domain->devices.next,
3797 struct device_domain_info, link);
3798 unlink_domain_info(info);
3799 spin_unlock_irqrestore(&device_domain_lock, flags1);
3800
3801 iommu_disable_dev_iotlb(info);
3802 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
3803 iommu_detach_dev(iommu, info->bus, info->devfn);
3804 iommu_detach_dependent_devices(iommu, info->dev);
3805
3806 /* clear this iommu in iommu_bmp, update iommu count
3807 * and capabilities
3808 */
3809 spin_lock_irqsave(&domain->iommu_lock, flags2);
3810 if (test_and_clear_bit(iommu->seq_id,
3811 domain->iommu_bmp)) {
3812 domain->iommu_count--;
3813 domain_update_iommu_cap(domain);
3814 }
3815 spin_unlock_irqrestore(&domain->iommu_lock, flags2);
3816
3817 free_devinfo_mem(info);
3818 spin_lock_irqsave(&device_domain_lock, flags1);
3819 }
3820 spin_unlock_irqrestore(&device_domain_lock, flags1);
3821 }
3822
3823 /* domain id for virtual machine, it won't be set in context */
3824 static unsigned long vm_domid;
3825
3826 static struct dmar_domain *iommu_alloc_vm_domain(void)
3827 {
3828 struct dmar_domain *domain;
3829
3830 domain = alloc_domain_mem();
3831 if (!domain)
3832 return NULL;
3833
3834 domain->id = vm_domid++;
3835 domain->nid = -1;
3836 memset(domain->iommu_bmp, 0, sizeof(domain->iommu_bmp));
3837 domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE;
3838
3839 return domain;
3840 }
3841
3842 static int md_domain_init(struct dmar_domain *domain, int guest_width)
3843 {
3844 int adjust_width;
3845
3846 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
3847 spin_lock_init(&domain->iommu_lock);
3848
3849 domain_reserve_special_ranges(domain);
3850
3851 /* calculate AGAW */
3852 domain->gaw = guest_width;
3853 adjust_width = guestwidth_to_adjustwidth(guest_width);
3854 domain->agaw = width_to_agaw(adjust_width);
3855
3856 INIT_LIST_HEAD(&domain->devices);
3857
3858 domain->iommu_count = 0;
3859 domain->iommu_coherency = 0;
3860 domain->iommu_snooping = 0;
3861 domain->iommu_superpage = 0;
3862 domain->max_addr = 0;
3863 domain->nid = -1;
3864
3865 /* always allocate the top pgd */
3866 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
3867 if (!domain->pgd)
3868 return -ENOMEM;
3869 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
3870 return 0;
3871 }
3872
3873 static void iommu_free_vm_domain(struct dmar_domain *domain)
3874 {
3875 unsigned long flags;
3876 struct dmar_drhd_unit *drhd;
3877 struct intel_iommu *iommu;
3878 unsigned long i;
3879 unsigned long ndomains;
3880
3881 for_each_drhd_unit(drhd) {
3882 if (drhd->ignored)
3883 continue;
3884 iommu = drhd->iommu;
3885
3886 ndomains = cap_ndoms(iommu->cap);
3887 for_each_set_bit(i, iommu->domain_ids, ndomains) {
3888 if (iommu->domains[i] == domain) {
3889 spin_lock_irqsave(&iommu->lock, flags);
3890 clear_bit(i, iommu->domain_ids);
3891 iommu->domains[i] = NULL;
3892 spin_unlock_irqrestore(&iommu->lock, flags);
3893 break;
3894 }
3895 }
3896 }
3897 }
3898
3899 static void vm_domain_exit(struct dmar_domain *domain)
3900 {
3901 /* Domain 0 is reserved, so dont process it */
3902 if (!domain)
3903 return;
3904
3905 vm_domain_remove_all_dev_info(domain);
3906 /* destroy iovas */
3907 put_iova_domain(&domain->iovad);
3908
3909 /* clear ptes */
3910 dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3911
3912 /* free page tables */
3913 dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3914
3915 iommu_free_vm_domain(domain);
3916 free_domain_mem(domain);
3917 }
3918
3919 static int intel_iommu_domain_init(struct iommu_domain *domain)
3920 {
3921 struct dmar_domain *dmar_domain;
3922
3923 dmar_domain = iommu_alloc_vm_domain();
3924 if (!dmar_domain) {
3925 printk(KERN_ERR
3926 "intel_iommu_domain_init: dmar_domain == NULL\n");
3927 return -ENOMEM;
3928 }
3929 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
3930 printk(KERN_ERR
3931 "intel_iommu_domain_init() failed\n");
3932 vm_domain_exit(dmar_domain);
3933 return -ENOMEM;
3934 }
3935 domain_update_iommu_cap(dmar_domain);
3936 domain->priv = dmar_domain;
3937
3938 domain->geometry.aperture_start = 0;
3939 domain->geometry.aperture_end = __DOMAIN_MAX_ADDR(dmar_domain->gaw);
3940 domain->geometry.force_aperture = true;
3941
3942 return 0;
3943 }
3944
3945 static void intel_iommu_domain_destroy(struct iommu_domain *domain)
3946 {
3947 struct dmar_domain *dmar_domain = domain->priv;
3948
3949 domain->priv = NULL;
3950 vm_domain_exit(dmar_domain);
3951 }
3952
3953 static int intel_iommu_attach_device(struct iommu_domain *domain,
3954 struct device *dev)
3955 {
3956 struct dmar_domain *dmar_domain = domain->priv;
3957 struct pci_dev *pdev = to_pci_dev(dev);
3958 struct intel_iommu *iommu;
3959 int addr_width;
3960
3961 /* normally pdev is not mapped */
3962 if (unlikely(domain_context_mapped(pdev))) {
3963 struct dmar_domain *old_domain;
3964
3965 old_domain = find_domain(pdev);
3966 if (old_domain) {
3967 if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
3968 dmar_domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)
3969 domain_remove_one_dev_info(old_domain, pdev);
3970 else
3971 domain_remove_dev_info(old_domain);
3972 }
3973 }
3974
3975 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3976 pdev->devfn);
3977 if (!iommu)
3978 return -ENODEV;
3979
3980 /* check if this iommu agaw is sufficient for max mapped address */
3981 addr_width = agaw_to_width(iommu->agaw);
3982 if (addr_width > cap_mgaw(iommu->cap))
3983 addr_width = cap_mgaw(iommu->cap);
3984
3985 if (dmar_domain->max_addr > (1LL << addr_width)) {
3986 printk(KERN_ERR "%s: iommu width (%d) is not "
3987 "sufficient for the mapped address (%llx)\n",
3988 __func__, addr_width, dmar_domain->max_addr);
3989 return -EFAULT;
3990 }
3991 dmar_domain->gaw = addr_width;
3992
3993 /*
3994 * Knock out extra levels of page tables if necessary
3995 */
3996 while (iommu->agaw < dmar_domain->agaw) {
3997 struct dma_pte *pte;
3998
3999 pte = dmar_domain->pgd;
4000 if (dma_pte_present(pte)) {
4001 dmar_domain->pgd = (struct dma_pte *)
4002 phys_to_virt(dma_pte_addr(pte));
4003 free_pgtable_page(pte);
4004 }
4005 dmar_domain->agaw--;
4006 }
4007
4008 return domain_add_dev_info(dmar_domain, pdev, CONTEXT_TT_MULTI_LEVEL);
4009 }
4010
4011 static void intel_iommu_detach_device(struct iommu_domain *domain,
4012 struct device *dev)
4013 {
4014 struct dmar_domain *dmar_domain = domain->priv;
4015 struct pci_dev *pdev = to_pci_dev(dev);
4016
4017 domain_remove_one_dev_info(dmar_domain, pdev);
4018 }
4019
4020 static int intel_iommu_map(struct iommu_domain *domain,
4021 unsigned long iova, phys_addr_t hpa,
4022 size_t size, int iommu_prot)
4023 {
4024 struct dmar_domain *dmar_domain = domain->priv;
4025 u64 max_addr;
4026 int prot = 0;
4027 int ret;
4028
4029 if (iommu_prot & IOMMU_READ)
4030 prot |= DMA_PTE_READ;
4031 if (iommu_prot & IOMMU_WRITE)
4032 prot |= DMA_PTE_WRITE;
4033 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
4034 prot |= DMA_PTE_SNP;
4035
4036 max_addr = iova + size;
4037 if (dmar_domain->max_addr < max_addr) {
4038 u64 end;
4039
4040 /* check if minimum agaw is sufficient for mapped address */
4041 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
4042 if (end < max_addr) {
4043 printk(KERN_ERR "%s: iommu width (%d) is not "
4044 "sufficient for the mapped address (%llx)\n",
4045 __func__, dmar_domain->gaw, max_addr);
4046 return -EFAULT;
4047 }
4048 dmar_domain->max_addr = max_addr;
4049 }
4050 /* Round up size to next multiple of PAGE_SIZE, if it and
4051 the low bits of hpa would take us onto the next page */
4052 size = aligned_nrpages(hpa, size);
4053 ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
4054 hpa >> VTD_PAGE_SHIFT, size, prot);
4055 return ret;
4056 }
4057
4058 static size_t intel_iommu_unmap(struct iommu_domain *domain,
4059 unsigned long iova, size_t size)
4060 {
4061 struct dmar_domain *dmar_domain = domain->priv;
4062 int order;
4063
4064 order = dma_pte_clear_range(dmar_domain, iova >> VTD_PAGE_SHIFT,
4065 (iova + size - 1) >> VTD_PAGE_SHIFT);
4066
4067 if (dmar_domain->max_addr == iova + size)
4068 dmar_domain->max_addr = iova;
4069
4070 return PAGE_SIZE << order;
4071 }
4072
4073 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
4074 unsigned long iova)
4075 {
4076 struct dmar_domain *dmar_domain = domain->priv;
4077 struct dma_pte *pte;
4078 u64 phys = 0;
4079
4080 pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, 0);
4081 if (pte)
4082 phys = dma_pte_addr(pte);
4083
4084 return phys;
4085 }
4086
4087 static int intel_iommu_domain_has_cap(struct iommu_domain *domain,
4088 unsigned long cap)
4089 {
4090 struct dmar_domain *dmar_domain = domain->priv;
4091
4092 if (cap == IOMMU_CAP_CACHE_COHERENCY)
4093 return dmar_domain->iommu_snooping;
4094 if (cap == IOMMU_CAP_INTR_REMAP)
4095 return irq_remapping_enabled;
4096
4097 return 0;
4098 }
4099
4100 static void swap_pci_ref(struct pci_dev **from, struct pci_dev *to)
4101 {
4102 pci_dev_put(*from);
4103 *from = to;
4104 }
4105
4106 #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
4107
4108 static int intel_iommu_add_device(struct device *dev)
4109 {
4110 struct pci_dev *pdev = to_pci_dev(dev);
4111 struct pci_dev *bridge, *dma_pdev = NULL;
4112 struct iommu_group *group;
4113 int ret;
4114
4115 if (!device_to_iommu(pci_domain_nr(pdev->bus),
4116 pdev->bus->number, pdev->devfn))
4117 return -ENODEV;
4118
4119 bridge = pci_find_upstream_pcie_bridge(pdev);
4120 if (bridge) {
4121 if (pci_is_pcie(bridge))
4122 dma_pdev = pci_get_domain_bus_and_slot(
4123 pci_domain_nr(pdev->bus),
4124 bridge->subordinate->number, 0);
4125 if (!dma_pdev)
4126 dma_pdev = pci_dev_get(bridge);
4127 } else
4128 dma_pdev = pci_dev_get(pdev);
4129
4130 /* Account for quirked devices */
4131 swap_pci_ref(&dma_pdev, pci_get_dma_source(dma_pdev));
4132
4133 /*
4134 * If it's a multifunction device that does not support our
4135 * required ACS flags, add to the same group as function 0.
4136 */
4137 if (dma_pdev->multifunction &&
4138 !pci_acs_enabled(dma_pdev, REQ_ACS_FLAGS))
4139 swap_pci_ref(&dma_pdev,
4140 pci_get_slot(dma_pdev->bus,
4141 PCI_DEVFN(PCI_SLOT(dma_pdev->devfn),
4142 0)));
4143
4144 /*
4145 * Devices on the root bus go through the iommu. If that's not us,
4146 * find the next upstream device and test ACS up to the root bus.
4147 * Finding the next device may require skipping virtual buses.
4148 */
4149 while (!pci_is_root_bus(dma_pdev->bus)) {
4150 struct pci_bus *bus = dma_pdev->bus;
4151
4152 while (!bus->self) {
4153 if (!pci_is_root_bus(bus))
4154 bus = bus->parent;
4155 else
4156 goto root_bus;
4157 }
4158
4159 if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
4160 break;
4161
4162 swap_pci_ref(&dma_pdev, pci_dev_get(bus->self));
4163 }
4164
4165 root_bus:
4166 group = iommu_group_get(&dma_pdev->dev);
4167 pci_dev_put(dma_pdev);
4168 if (!group) {
4169 group = iommu_group_alloc();
4170 if (IS_ERR(group))
4171 return PTR_ERR(group);
4172 }
4173
4174 ret = iommu_group_add_device(group, dev);
4175
4176 iommu_group_put(group);
4177 return ret;
4178 }
4179
4180 static void intel_iommu_remove_device(struct device *dev)
4181 {
4182 iommu_group_remove_device(dev);
4183 }
4184
4185 static struct iommu_ops intel_iommu_ops = {
4186 .domain_init = intel_iommu_domain_init,
4187 .domain_destroy = intel_iommu_domain_destroy,
4188 .attach_dev = intel_iommu_attach_device,
4189 .detach_dev = intel_iommu_detach_device,
4190 .map = intel_iommu_map,
4191 .unmap = intel_iommu_unmap,
4192 .iova_to_phys = intel_iommu_iova_to_phys,
4193 .domain_has_cap = intel_iommu_domain_has_cap,
4194 .add_device = intel_iommu_add_device,
4195 .remove_device = intel_iommu_remove_device,
4196 .pgsize_bitmap = INTEL_IOMMU_PGSIZES,
4197 };
4198
4199 static void __devinit quirk_iommu_rwbf(struct pci_dev *dev)
4200 {
4201 /*
4202 * Mobile 4 Series Chipset neglects to set RWBF capability,
4203 * but needs it:
4204 */
4205 printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n");
4206 rwbf_quirk = 1;
4207
4208 /* https://bugzilla.redhat.com/show_bug.cgi?id=538163 */
4209 if (dev->revision == 0x07) {
4210 printk(KERN_INFO "DMAR: Disabling IOMMU for graphics on this chipset\n");
4211 dmar_map_gfx = 0;
4212 }
4213 }
4214
4215 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
4216
4217 #define GGC 0x52
4218 #define GGC_MEMORY_SIZE_MASK (0xf << 8)
4219 #define GGC_MEMORY_SIZE_NONE (0x0 << 8)
4220 #define GGC_MEMORY_SIZE_1M (0x1 << 8)
4221 #define GGC_MEMORY_SIZE_2M (0x3 << 8)
4222 #define GGC_MEMORY_VT_ENABLED (0x8 << 8)
4223 #define GGC_MEMORY_SIZE_2M_VT (0x9 << 8)
4224 #define GGC_MEMORY_SIZE_3M_VT (0xa << 8)
4225 #define GGC_MEMORY_SIZE_4M_VT (0xb << 8)
4226
4227 static void __devinit quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
4228 {
4229 unsigned short ggc;
4230
4231 if (pci_read_config_word(dev, GGC, &ggc))
4232 return;
4233
4234 if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
4235 printk(KERN_INFO "DMAR: BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
4236 dmar_map_gfx = 0;
4237 } else if (dmar_map_gfx) {
4238 /* we have to ensure the gfx device is idle before we flush */
4239 printk(KERN_INFO "DMAR: Disabling batched IOTLB flush on Ironlake\n");
4240 intel_iommu_strict = 1;
4241 }
4242 }
4243 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
4244 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
4245 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
4246 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
4247
4248 /* On Tylersburg chipsets, some BIOSes have been known to enable the
4249 ISOCH DMAR unit for the Azalia sound device, but not give it any
4250 TLB entries, which causes it to deadlock. Check for that. We do
4251 this in a function called from init_dmars(), instead of in a PCI
4252 quirk, because we don't want to print the obnoxious "BIOS broken"
4253 message if VT-d is actually disabled.
4254 */
4255 static void __init check_tylersburg_isoch(void)
4256 {
4257 struct pci_dev *pdev;
4258 uint32_t vtisochctrl;
4259
4260 /* If there's no Azalia in the system anyway, forget it. */
4261 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
4262 if (!pdev)
4263 return;
4264 pci_dev_put(pdev);
4265
4266 /* System Management Registers. Might be hidden, in which case
4267 we can't do the sanity check. But that's OK, because the
4268 known-broken BIOSes _don't_ actually hide it, so far. */
4269 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
4270 if (!pdev)
4271 return;
4272
4273 if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
4274 pci_dev_put(pdev);
4275 return;
4276 }
4277
4278 pci_dev_put(pdev);
4279
4280 /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
4281 if (vtisochctrl & 1)
4282 return;
4283
4284 /* Drop all bits other than the number of TLB entries */
4285 vtisochctrl &= 0x1c;
4286
4287 /* If we have the recommended number of TLB entries (16), fine. */
4288 if (vtisochctrl == 0x10)
4289 return;
4290
4291 /* Zero TLB entries? You get to ride the short bus to school. */
4292 if (!vtisochctrl) {
4293 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
4294 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
4295 dmi_get_system_info(DMI_BIOS_VENDOR),
4296 dmi_get_system_info(DMI_BIOS_VERSION),
4297 dmi_get_system_info(DMI_PRODUCT_VERSION));
4298 iommu_identity_mapping |= IDENTMAP_AZALIA;
4299 return;
4300 }
4301
4302 printk(KERN_WARNING "DMAR: Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
4303 vtisochctrl);
4304 }
This page took 0.112957 seconds and 6 git commands to generate.